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Abstract—Future computing calls for heterogeneous integration, e.g.,
the recent adoption of the chiplet methodology. However, high-speed
cross-chip interconnects and packaging shall be critical for the overall
system performance. As an example of advanced packaging, a high-
density interconnect (HDI) printed circuit board (PCB) has been widely
used in complex electronics from cell phones to computing servers.
A modern HDI PCB may have over 20 layers, each with its unique
material properties and geometrical dimensions, i.e., stack-up, to meet
various design constraints and performance optimizations. However, stack-
up design is usually done manually in the industry, where experienced
designers may devote many hours to adjusting the physical dimensions
and materials to meet the desired specifications. This process, however,
is time-consuming, tedious, and sub-optimal, largely depending on the
designer’s expertise. In this paper, we propose to automate the stack-
up design with a new framework, ISOP, using machine learning for
inverse stack-up optimization for advanced package design. Given a target
design specification, ISOP automatically searches for ideal stack-up design
parameters while optimizing performance. We develop a novel machine
learning-assisted hyper-parameter optimization method to make the search
efficient and reliable. Experimental results demonstrate that ISOP is
better in figure-of-merit (FoM) than conventional simulated annealing and
Bayesian optimization algorithms, with all our design targets met with a
shorter runtime. We also compare our fully-automated ISOP with expert
designers in the industry and achieve very promising results, with orders
of magnitude reduction of turn-around time.

I. INTRODUCTION

Advances in packaging technologies are driving the scaling of elec-
tronics. Amid the slowdown of the integrated circuits (IC) fabrication
process, on-packaging interconnects and heterogeneous integration
continues to propel the evolution of computing systems [1].

Following the trend, printed circuit board (PCB) technology is
also rapidly evolving. Modern high-performance PCB designs can
typically have 12 to 20 layers [2]. Each layer contains a variety of
signals, ranging from single-ended double data rate (DDR) signaling to
differential serializer/deserializer (SerDes) routing. The developments
of high-density interconnect (HDI) and substrate-like PCB (SLP) are
also increasing the complexity of PCB stack-up design [3]. Advanced
PCB, together with other trends in advanced packaging, is increasing
the degree of integration between chiplets. However, the signals
on such PCBs are sensitive to the physical stack-up design. In a
typical industry setting, the stack-up design is conducted manually
by experienced engineers through many trial-and-error iterations to
ensure signal integrity.

Automation of stack-up design can further optimize the inter-
connects. Historically, interconnect optimization in IC significantly
contributes to the advances of the whole system [4], and a similar
trend is observed in optimizing package-level interconnects for het-
erogeneous integration systems [1]. The high-speed PCB is one of
the key components in the inter-chip interconnection, and its stack-up
design significantly impacts the performance. However, the existing
research in automating the PCB stack-up design is limited. Liao et
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Fig. 1: An illustration of the conventional stack-up design and our
proposed Inverse Stack-up Optimization Framework (ISOP).

al. [5] proposed to use an artificial neural network (ANN) to predict
the resulting PCB performance, such as transmission line impedance,
insertion loss, and cross-talk metrics. Then, a designer uses the ANN
model to quickly obtain the stack-up design performance from PCB
stack-up parameters without running time-consuming simulations. He
et al. [6] proposed using an integer programming-based method to
generate stack-up arrangement candidates, which requires experienced
package designers to define a set of reasonable design rules to
accelerate the overall design cycle. Both [5] and [6] require extensive
manual engineering efforts to make the design decisions. Kiguradze
et al. [7] proposed using the Bayesian optimization (BO) method to
optimize the five-parameter stack-up design, however, fail to provide
a fully automated and scalable solution to the stack-up designs.

In this paper, we propose a fully automated stack-up design
methodology in an inverse optimization setting. Instead of assisting the
manual design, our proposed framework, inverse stack-up optimization
for advanced package design (ISOP), directly produces the stack-
up designs leveraging automated search algorithms and machine
learning (ML) surrogate model. As shown in Fig. 1, given the design
specifications, such as transmission line impedance Z, ISOP searches
for stack-up designs and optimizes for performance metrics, such
as signal loss L at various frequencies and cross-talk. The main
contributions of this work are summarized as follows.

• We propose an agile HDI PCB stack-up design framework, ISOP,
which automates the stack-up design process and outperforms
manual design. To the best of our knowledge, this is the first
work to provide a fully-automated solution to stack-up design. We
believe the proposed methodology, in general, can be extended
to many other scenarios of interconnect optimization.

• We formulate the inverse stack-up optimization as a hyper-
parameter optimization (HPO) problem. An effective two-stage
HPO search algorithm is developed to solve the stack-up design



efficiently.
• We accelerate the HPO process by introducing ML surrogate

models to predict stack-up design performance. The ML models
replace the expensive simulations in the search for space explo-
ration.

• Experimental results demonstrate that the ISOP framework re-
duces the design cycle from hours to minutes and outperforms
other baseline optimization methods.

The rest of this paper is organized as follows. We introduce the
stack-up design problem and its formulation in Section II. Section III
describes the details of our proposed framework and its major
components. Section IV presents the experimental results with other
optimization methods. The conclusions are provided in Section V.

II. PRELIMINARIES

In this section, we introduce the preliminaries of PCB stack-up
design (Section II-A) and HPO problem (Section II-B). We then
formulate the inverse stack-up design problem (Section II-C).

A. PCB Stack-Up Design

A PCB’s construction begins with designing its material layers’ ar-
rangement, i.e., stack-up. PCB consists of mainly passive components,
and its primary function is to transfer a signal from one port to another
while maintaining signal integrity. A layer’s physical dimensions and
material properties determine the transmission line performance. A
simplified structure of a single differential strip-line layer is illustrated
in Fig. 2. The subscript t, c, and p denote a layer’s metal trace,
glass-reinforced epoxy laminate sheet (core), and pre-impregnated
bonding sheet (pre-preg), respectively. Parameters H , W , S, D,
and E represent the height, width, the spacing between differential
signals, the distance between two differential pairs, and an etch factor
representing the trapezoidal shape of the metal trace, respectively.
Material properties Dk, Df , R, and C denote dissipation factor,
dielectric constant, surface roughness, and conductivity, respectively.

In conventional industrial design flow, a designer usually selects
a combination of design parameters and uses a computationally
expensive electromagnetic (EM) field simulation software to evaluate
the selection [8]. Software based on integrated channel analysis
tool (ICAT) [9] is one example of an EM simulation tool. It takes
about two minutes to compute performance metrics for each stack-
up design. The designer evaluates the simulation result against the
system’s requirements, which include matching differential impedance,
minimizing insertion loss, and minimizing near-end and far-end cross-
talk. Optimization of stack-up design is a time-consuming task that
requires a number of iterations of simulations by trial-and-error.
Furthermore, designers’ reliance on heuristics and intuition can cause
them to overlook non-intuitive solutions. Our studies show that manual
stack-up designs often result in inferior quality, especially when facing
trade-offs between different performance metrics. In this work, we
propose an automated and efficient stack-up design framework that
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Fig. 2: Structure of a Differential Stripline Layer

can significantly reduce manual efforts and turnaround time while
producing improved solution quality.

B. Hyper-parameter optimization

Hyper-parameter optimization (HPO) searches for the best set of
parameters in an optimization problem that is costly to evaluate in
general. An HPO aims to obtain a parameter set x as shown in (1).

x∗ = argmin
x∈X

f(x), (1)

where x denotes the hyper-parameters and f(x) is the objective
function to be minimized. Unlike traditional optimization problems,
the objective functions in HPO are usually non-convex and non-
differentiable, which blocks the adoption of many optimization tech-
niques. Meanwhile, the evaluation time for f(x) is often non-
negligible, which imposes a higher requirement on sampling efficiency
on HPO algorithms.

There are several existing methods that target the HPO problems,
including [10]. Grid search and random search are two simple ap-
proaches. Their search schemes do not leverage the evaluated records,
so the sample efficiency is usually low. Metaheuristic algorithms, such
as genetic algorithms and simulated annealing, use a heuristic algo-
rithm to guide the randomized search process to improve efficiency.
In recent years, Bayesian optimization (BO) and its variants have
become popular with HPO [11]. BO is an iterative process that builds
a surrogate model to fit observed points into the objective function
and guides the exploration. It uses an acquisition function to balance
exploration and exploitation but hard to parallelize due to its sequential
nature.

HPO has been used to tune parameters in design flow for Very
Large Scale Integration (VLSI) [12]–[16] and Field-Programmable
Gate Array (FPGA) [17]. It can also be used to optimize the hyper-
parameters for individual stages, such as placement [18], [19]. Besides
tuning the parameters, HPO is also adopted in solving the analog
device sizing problem. The automated analog sizing methods work
on the inverse design problem. Given target specifications, automatic
analog sizing treats design parameters, such as transistor width,
as hyper-parameters and applies HPO to find the sizing solution.
There have been a variety of HPO search algorithms applied to the
analog sizing problem, including genetic algorithm [20], BO [21], and
reinforcement learning [22]. Inspired by the analog sizing problem, we
apply HPO to automate the stack-up design in inverse optimization.

C. Inverse PCB Stack-Up Optimization: Problem Formulation

The inverse PCB stack-up optimization process searches for a set of
design parameters that meet the system specifications while optimizing
a user-defined figure of merits (FoM). In science and mathematics, an
inverse problem often refers to estimating the unknown parameters
inversely through measurements. Similarly, our optimization scheme
searches for valid stack-up design parameters by obtaining information
about the target performance measurements.

Problem 1 (Inverse PCB Stack-Up Optimization). Given a set of
input search range S and a set of performance constraints C, solve
the optimization problem and obtain the stack-up design parameters
as shown in (2).

x∗ = argmin
x

fFoM (x)

subject to xi ∈ Si for i = 1,· · · , d
fC
j (x) ≤ 0 for j = 1,· · · , k.

(2)

where x is a d-dimensional parameter vector, and Si denotes the
set of valid numbers for parameter xi. fFoM is the FoM function to



optimize, and fC denotes the performance specifications constraints.
k is the number of constraints.

III. ALGORITHMS

This section presents our ISOP framework and inverse stack-up
design optimization. It shall be noted that our framework can be easily
extended to other advanced packaging designs where stack-up design
and optimizations are needed.

A. Overall flow

The inverse stack-up design optimization aims to find the optimal
set of design parameters for each layer of a PCB’s stack-up. The final
stack-up design must meet performance specifications and optimize
a specified performance FoM objective function. Both the constraints
and FoM are from performance metrics and are non-trivial to evaluate.
Traditional manual design flow rely on an engineer’s experience and
trial-and-error approach using slow simulations. ISOP offers a more
efficient and automated alternative.

The ISOP framework solves the inverse PCB stack-up optimization
by incorporating a discrete domain HPO. Fig. 3 shows an illustration
of the overall flow. It takes an FoM function, a set of performance
constraints, and a set of parameter search spaces as inputs and the
stack-up design parameters as output. The HPO process contains two
stages: early search exploration and later candidate roll-out. The first
stage samples the parameters globally to explore the search space.
The second stage then chooses the final stack-up designs based on the
results from the first stage.

Algorithm 1 shows the details procedures of our ISOP framework.
We first encode an initial search space based on the input parameter
search range (line 1). In the exploration stage, the search space is
iteratively shrunk to prune the non-ideal stack-up parameters based on
an optimization objective function ĝ(·) (lines 3-6). Instead of using
time-consuming EM simulations, we sample the performance metrics
from ML surrogate model. We intend to obtain more samples and
rapidly reduce the search space in a trade-off of some accuracy. After
exploring the search space, we roll out cand num design candidates
from the reduced search space. (lines 7-10) We further evaluate them
with accurate EM simulations and choose the final solution based on an
objective function g(·). ISOP can generate multiple design candidates
ranked by FoM in the roll-out stage if specified by the user.

In the rest of the section, the details of the ISOP framework
algorithm are presented.

B. HPO Search Algorithm

ISOP adopts and adapts the Harmonica algorithm [23] in search
space exploration. Harmonica is a spectral approach to discrete domain
HPO. The core principle is that an objective can be modeled as
a sum of sparse and low-degree Fourier polynomials. Harmonica
invokes the polynomial sparse recovery (PSR) subroutine to reduce
the search space iteratively. Equation (3) shows the simplified version
of Harmonica’s PSR subroutine.

p(x) =
∑

αciψci(x)

subject to argmin
α
{

q∑
i=1

(
∑

αcψc(xi)−F(xi))
2},

(3)

where c1,· · · , ck is the indices of the most significant k compo-
nents of the Fourier coefficients α, and F(·) denotes the objective
function, which in our case is ĝ(·). This approximation method can
efficiently reconstruct the objective function with limited randomized
samples [24]. In the search process, the Harmonica algorithm iter-
atively fixes the significant variables based on the p(x) polynomial
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Fig. 3: Overall Flow of ISOP framework.

Algorithm 1 ISOP

Input: fFoM (·), fC(·), S
Output: cand num combination of x∗

1: Encode x and S
2: search space T (x)← S
3: for i← 1 to iter num do
4: Take q random sample xq from T (x)
5: T (x)← update_space(T (x), xq, ĝ(M̂(·)))
6: end for
7: for i← 1 to cand num do
8: xi ← T (x)
9: yi ← g(M(xi))

10: end for

approximation to reduce the search space. Each iteration selects a set
of variable combinations from the reduced search space and further
evaluates with the performance models. In our implementation, the
variable combinations are chosen based on the Hyperband [25] algo-
rithm, which is a bandit algorithm that balances the exploration versus
exploiting, given a limited sampling budget. In our experiments, the
Hyperband greatly outperforms the naive random sampling method.

The proposed HPO search algorithm allows parallelized design
parameter sampling in the ISOP framework. In each iteration, the ISOP
framework evaluates multiple candidate parameter sets in parallel. The
batched samples can be combined into the polynomial approximation
to fit the optimization objective function. Compared to the conven-
tional sequential HPO algorithms, such as Bayesian optimization, the
proposed parallelized method allows us to obtain more samples in the
same runtime budget and produce better optimization results.

The Harmonica algorithm can in-situ optimize over a constrained
and discrete parameter search space. Due to material and technology
selection limitations, the valid stack-up parameters are limited to
discrete values and specific ranges. The conventional HPO algorithm
assumes a continuous space, and this gap can degrade the HPO
results. In ISOP, we encode the entire discrete search space S to a
binary search space T (x). The variable combination to be evaluated
is directly chosen from the encoded space, ensuring that it is within the
defined search space S. Such property benefits the overall efficiency of
the optimization process by avoiding explorations with invalid design
parameter values.

C. ML-based Surrogate Models

We use an ML-based surrogate model to replace the expensive EM
simulation in the early exploration to accelerate the optimization pro-
cess. Our HPO procedures require frequent performance evaluations
on different design parameters. Relying on the time-consuming EM
simulations slows down the process and limits the number of samples
we can afford. Therefore, we use an ML-based surrogate model to
increase the number of samples observed by the HPO search algorithm
within the runtime budget.



Building our ML surrogate models is essentially a regression prob-
lem with tabular features. We construct one regression model explicitly
tailored for each performance metric. Our dataset contains 90k unique
stack-up design combinations, of which 80% are used for training and
20% for testing. Using an industry-standard simulation tool based on
ICAT [9], we randomly query the data throughout the wide range of
each parameter. The design parameters and their ranges represent a
large solution space, 1029, and are set by designers. Preprocessing of
the dataset includes parameter normalization and feature engineering
to add relevant features based on transmission physics understanding.
For instance, a feature is included to show when the core height or
pre-preg height is particularly small, indicating when the electric field
between the copper planes becomes extremely high and causes the
transmission line to have high capacitance. While the training dataset
is equivalent to only 7 × 10−23% of the entire search space, our
ML surrogate models empirically result in satisfying accuracy and
effectively guide the search space exploration.

There are a variety of regression methods, including decision
tree (DT), gradient boosting regressor (GBR), random forest (RF),
support vector machine (SVM), multi-layer perceptron (MLP), and
XGBoost [26]. In this work, we empirically choose the MLP model
for impedance and loss and XGBoost for cross-talk mode based on
the test accuracy. We utilize the model as a proxy; therefore, it must
produce accurate predictions within an error margin relative to the
actual value. Mean average percentage error (MAPE) is used as the
primary evaluation metric for impedance and loss, and symmetric
mean absolute percentage error (sMAPE) for cross-talk as it could
have zero values. The comparison study of the different models and
their accuracy is presented in Section IV-B.

D. Optimization Objective Function

We introduce an objective function ĝ(·) for optimization in the
early search space exploration stage. The inverse stack-up optimization
problem is to minimize fFoM while honoring the constraint fC . How-
ever, directly solving the constraint problem is difficult and inefficient.
Evaluation of fFoM and fC requires querying from performance
models. A naive approach ignores the constraints in the exploration
stage and filters out the invalid results at the last stage. This blind
search space exploration could result in unnecessary computation that
violates the constraint and produces a poor-quality solution.

In this work, we propose to relax the constraints into the penalties
in the optimization objective function g(·) to guide our optimization
task appropriately. Consequently, our problem statement becomes (4).

x∗ = argmin
x∈X

g(x) (4)

g(x) =
∑
i

wFoM
i · fFoM

i (x) +
∑
j

wC
j · fC

j (x),

where fC
j (x) = max(Mj(x)− fj±, 0).

(5)

The fC
j becomes a clip function for constraints. For instance, one

may wish to give a constraint for impedance such that it has an
acceptable tolerance, Z±, of the characteristic impedance Zo, in which
fC
Z (x) = max(|MZ(x)− Zo| − Z±, 0).

We further smooth g(·) into our optimization objective function
ĝ(·). In the HPO search scheme, the Harmonica algorithm
approximates a polynomial function to guide the search space
reduction. Directly modeling the non-differentiable function g(·) is
empirically inefficient and inaccurate. A smooth objective function
would enable more searches at the border. Therefore, we enhance the
performance of our HPO algorithm and locate optimal points more
efficiently. We suggest a smoothed approximation of the maximum
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Fig. 4: Function g(·) and ĝ(·) with different γ.

function using the double sigmoid functions, ĝ(x). S(·) indicates a
sigmoid function.

ĝ(x) =
∑
i

wFoM
i · fFoM

i (x) +
∑
j

wC
j · f̂C

j (x), where

f̂C
j (x) = (S(γ · M̂j(x)− fj±) + S(−γ · M̂j(x)− fj±))

(6)

Our framework utilizes both g(·) and ĝ(·). Fig. 4 gives a comparison
between the two. We can adjust ĝ(·) furthermore for our objective by
giving control parameter γ. While ĝ(·) is utilized for the ML surrogate
model to help better navigate the search space, g(·) is used in the
later roll-out simulation stage, as this is our ultimate objective. We
empirically choose γ and weights wFoM and wC in the experiments.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for the ISOP
framework to prove its effectiveness and reliability. We implement
all the algorithms in Python and report performance metrics verified
with EM simulations in an industrial setting. We first evaluate the
effectiveness of the proposed inverse optimization method in Sec-
tion IV-A. The accuracy evaluation of our ML-based surrogate model
is in Section IV-B. The Section IV-C presents a comparative study
between the ISOP-generated and the manual stack-up design.

A. Evaluation of the HPO framework

This section describes the experimental results for the proposed
framework and baseline approaches. No current research, to our
knowledge, serves as a baseline for this problem. Therefore, utilizing
the same surrogate model, we compare our method to two other
well-known optimization techniques, simulated annealing (SA) and
Bayesian optimization (BO). We further adjust the hyper-parameters
of SA and BO to match either the runtime (denoted as “-1”) or
the number of observed samples (denoted as “-2”) of the proposed
ISOP framework. For example, SA-1 is the SA algorithm with similar
runtime to ISOP, and SA-2 is when similar number of samples are
observed as ISOP. The optimization is terminated after 1500 seconds.
The BO algorithm is slow due to its sequential process, and BO-
2 experiments are terminated earlier. In addition, the experiment
conducts optimization tasks with 4 different user objectives and
constraints as shown in Table I. Z is differential impedance, |Zo|
is the transmission line’s characteristic differential impedance, Z± is

TABLE I: Description of Each Experiment Tasks

Tasks fFoM fC Zo Z± NEXTo NEXT±
(Ω) (Ω) (mV ) (mV )

T1 {L} {Z} 85 1 - -
T2 {L} {Z} 100 2 - -
T3 {L} {Z, NEXT} 85 1 0 0.05
T4 {L+ 2 · NEXT} {Z} 85 1 - -

TABLE II: Design Space Parameter Ranges and Increments for
Experiments (S)

Wt 2-5, 0.1 St 2-10, 0.5 Dt 30-40, 5
Et 0-0.3, 0.05 Ht 0.6-1.5, 0.1 Ct 3.8e+7-5.8e+7, 1e+6
Rt -14.5-14, 0.5 Dkt 2.5-4.5, 0.05 Dft 0.001-0.02, 0.001
Hc 2-8, 0.2 Dkc 2.5-4.5, 0.05 Dfc 0.001-0.02, 0.001
Hp 2-8, 0.2 Dkp 2.5-4.5, 0.05 Dfp 0.001-0.02, 0.001



TABLE III: Experiment Result Comparison for T1 and T2

Tasks Methods
Success Ave. Ave. ∆Z L

fFoM
fFoM

rate run sample mean stdev mean stdev Impv. of
(success/total) time (s) seen ISOP (%)

T1

SA-1 10/10 535 100,000 0.590 0.258 -0.451 0.010 0.4512 2.41
SA-2 10/10 402 60,000 0.349 0.243 -0.458 0.011 0.4576 3.78
BO-1 10/10 411 1,908 0.443 0.346 -0.498 0.037 0.4980 11.58
BO-2 10/10 >1500 5,155 0.483 0.145 -0.473 0.006 0.4733 6.78
ISOP 10/10 395 62,260 0.534 0.313 -0.440 0.005 0.4403 -

T2

SA-1 10/10 525 70,000 0.055 0.021 -0.473 0.015 0.4725 2.54
SA-2 10/10 504 64,000 0.370 0.331 -0.469 0.040 0.4693 1.86
BO-1 10/10 503 1,800 1.232 0.374 -0.742 0.279 0.7424 37.97
BO-2 10/10 >1500 4,799 0.895 0.533 -0.585 0.135 0.5852 21.30
ISOP 10/10 483 63,290 0.480 0.461 -0.461 0.009 0.4605 -

TABLE IV: Experiment Result Comparison for T3 and T4

Tasks Methods
Success Ave. Ave. ∆Z L NEXT

fFoM
fFoM

rate run sample mean stdev mean stdev mean stdev Impv. of
(success/total) time (s) seen ISOP (%)

T3

SA-1 1/10 375 22,000 0.010 N /A -2.054 N /A 0.000 N /A 2.0540 77.49
SA-2 2/10 666 55,000 0.445 0.120 -1.107 0.728 -0.020 0.028 1.1065 58.22
BO-1 10/10 390 1,310 0.484 0.324 -0.585 0.141 -0.027 0.016 0.5852 21.00
BO-2 10/10 >1500 3,822 0.552 0.354 -0.544 0.032 -0.010 0.012 0.5436 14.95
ISOP 10/10 364 54,944 0.650 0.269 -0.462 0.008 -0.021 0.020 0.4623 -

T4

SA-1 1/10 405 23,000 0.080 N /A -0.993 N /A 0.000 N /A 0.9930 54.66
SA-2 1/10 573 46,000 0.080 N /A -1.067 N /A 0.000 N /A 1.0670 57.81
BO-1 10/10 410 1,400 0.577 0.390 -0.594 0.103 -0.003 0.007 0.6000 24.97
BO-2 10/10 >1500 3,927 0.470 0.298 -0.515 0.025 -0.002 0.004 0.5186 13.20
ISOP 10/10 411 46,000 0.628 0.176 -0.450 0.003 0.000 0.000 0.4502 -

TABLE V: Design Space Parameter Ranges and Increments for
Training Dataset
Wt 1-29, 0.5 St 1-64, 0.5 Dt 1-100, 1
Et 0-0.7, 0.1 Ht 0.3-3.9, 0.1 Ct 3.0e+7-5.8e+7, 1e+6
Rt -14.5-14, 0.5 Dkt 1-7, 0.1 Dft 0.0001-0.1, 0.0001
Hc 1-40, 1 Dkc 1-7, 0.1 Dfc 0.0001-0.1, 0.0001
Hp 1-40, 1 Dkp 1-7, 0.1 Dfp 0.0001-0.1, 0.0001

the acceptable tolerance of |Z−Zo|, L is differential insertion loss at
16GHz in dB/inch, and NEXT is the peak near-end differential cross-
talk. T3 and T4 incorporate NEXT to observe scenarios with more
than two objectives.

To ensure the reliability of the approaches, we conduct repeat trials
under the same conditions ten times. The final results are collected for
each trial by running ten EM simulations on the candidate selected by
the ML surrogate model and HPO algorithm. The success rate is the
number of times a solution satisfying the constraint is discovered. The
design search space used in the experiments is described in Table II.
It shows that the solution space is larger than 1019.

Table III compares average performance statistics for each method
for T1 and T2. T1 and T2 are designed to evaluate the performance
under the same design objectives with varying values, i.e., minimize L
for varied target Zo and tolerance Z±. We observe that ISOP achieves
better efficiency and reliability in finding minimum points in all task
cases. fFoM improvement of ISOP is calculated by 100× (fFoM

method−
fFoM
ISOP )/f

FoM
method, and ISOP achieves at most 2.54%, 3.78%, 37.97%,

and 21.30% better performance compared to SA-1, SA-2, BO-1, and
BO-2, respectively. ISOP produced a lower standard deviation for L,
indicating that it is more reliable than other methods.

Table IV presents the result comparison of each method on T3 and
T4. T3 and T4 have the same constraint for Z as T1; however, they
include NEXT in the metric as a constraint and FoM, respectively.
The result shows that SA fails to find a viable solution as the search
space becomes complex with NEXT involved in the metric. BO can
also find feasible results, but ISOP finds better answer consistently
at all times. ISOP achieves better FoM performance under similar

TABLE VI: Evaluation of Trained Models

ML method
Z L NEXT

MAE MAPE MAE MAPE MAE sMAPE

DT 8.260 0.091 0.440 0.127 4.004 1.047
GBR 6.173 0.082 0.325 0.101 1.215 0.861
PL 13.051 0.219 0.550 0.173 2.044 1.048
RF 4.401 0.050 0.247 0.071 3.298 1.051

SVR 5.961 0.108 0.342 0.101 1.989 0.914
XGB 1.417 0.016 0.112 0.031 0.431 0.342
MLP 0.459 0.006 0.053 0.016 0.203 0.442
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Fig. 5: Predicted performance versus ground truth. (a) Z. (b) L. (c)
NEXT .

runtime compared to BO by 21.00% and 24.97% for T3 and T4. Also,
ISOP offers better FoM performance with significantly less runtime.

B. Evaluation of ML Model Accuracy

We experiment with several basic regression models with cross-
validation, and including multiple iterations with HPO methods. As
shown in Table V, we use the training dataset with a design space
significantly larger than our target space. Table VI demonstrates that
MLP and XGBoost performed significantly better than others in both
MAE and MAPE. Overall, MLP produces the best MAE for all three
tasks We believe it is due to the complexity of functions between
design parameters and performance metrics that MLP is capable of
modeling. XGBoost also produces good accuracy compared to other
methods. Fig. 5 illustrates the behavior of trained models for Z, L, and



TABLE VII: Experiment Result Comparisons with Manual Designs over Different Tasks

Methods Tasks top
Design Parameters Objectives

(Wt, St, Dt, Et, Ht, Ct, Rt , Dkt, Dft , Hc, Dkc, Dfc, Hp, Dkp, Dfp) Z L NEXT

Manual T1 1 (5.0, 6.0, 20, 0.00, 1.5, 5.8e+7, -14.5, 4.30, 0.001, 8.0, 4.30, 0.001, 8.0, 4.30, 0.001) 85.69 -0.434 -2.77

ISOP T1
1 (5.0, 5.5, 30, 0.00, 1.5, 5.8e+7, -14.5, 3.70, 0.001, 7.2, 4.10, 0.001, 7.0, 3.70, 0.001) 85.91 -0.434 -0.26
2 (5.0, 5.5, 30, 0.05, 1.5, 5.8e+7, -14.5, 3.45, 0.001, 5.8, 4.25, 0.001, 8.0, 3.55, 0.001) 85.31 -0.441 -0.19
3 (5.0, 5.5, 40, 0.05, 1.5, 5.8e+7, -14.5, 2.80, 0.001, 5.6, 4.40, 0.001, 8.0, 3.65, 0.001) 84.98 -0.443 -0.02

ISOP T3
1 (5.0, 9.0, 40, 0.00, 1.5, 5.8e+7, -14.5, 3.85, 0.001, 5.2, 3.15, 0.001, 4.0, 3.25, 0.001) 85.58 -0.457 0
2 (4.9, 8.0, 30, 0.00, 1.5, 5.8e+7, -14.5, 4.00, 0.001, 6.2, 3.80, 0.001, 4.0, 3.20, 0.001) 84.82 -0.463 -0.04
3 (5.0, 8.0, 40, 0.15, 1.5, 5.8e+7, -14.5, 2.70, 0.001, 5.4, 3.95, 0.001, 4.0, 3.20, 0.001) 84.99 -0.475 0

ISOP T4
1 (5.0, 8.0, 40, 0.00, 1.5, 5.8e+7, -14.5, 4.00, 0.001, 4.8, 4.15, 0.001, 6.0, 3.15, 0.001) 85.69 -0.447 0
2 (5.0, 7.5, 40, 0.10, 1.5, 5.8e+7, -14.5, 3.85, 0.001, 5.2, 4.50, 0.001, 5.0, 2.65, 0.001) 85.59 -0.451 0
3 (4.9, 6.5, 40, 0.05, 1.5, 5.8e+7, -14.5, 3.95, 0.001, 5.6, 4.10, 0.001, 4.5, 2.75, 0.001) 84.76 -0.456 0

NEXT , and shows that the predicted performances are well correlated
with the golden values. The high accuracy of the ML models allows
us to accelerate the overall optimization flow by replacing the time-
consuming simulations. In the other evaluations of the experiments,
we choose the models based on the lowest MAPE and sMAPE (MLP
for Z/L and XGBoost for NEXT ).

C. Case Study: Comparisons with Manual Designs

To acquire a comprehensive understanding of the time-efficient
result ISOP produces, we investigate one trial case and present the
three best candidates from that trial. As a comparison, we obtained
a manual result from an experienced designer. The designer tries to
optimize for loss when given the impedance target at 85 Ω with the
acceptable tolerance of 1 Ω.

Table VII presents the result of manual and ISOP design. Overall,
the ISOP framework produces an excellent stack-up design comparable
to the manual. The top-1 design parameter from ISOP for T1 achieves
the same L as the manual. It demonstrates the capability of ISOP to
find non-intuitive solutions to design expertise. Our framework can
also perform multi-objective optimization to balance L and NEXT .
We believe that as the system becomes more dense and high-speed,
the advantages of our flexible framework will continue to expand to
enable global optimization over different performance metrics.

V. CONCLUSION

This paper presents a novel framework, ISOP, for automating stack-
up design for advanced package design. ISOP leverages a HPO
search algorithm to find the design parameters and optimize for layer
performance. An ML-based surrogate model is used to accelerate
the optimization process by replacing time-consuming simulations.
Experimental results demonstrate that the ISOP framework can pro-
duce excellent design solutions in minutes. The proposed methodology
provides an effective and efficient solution to automate the interconnect
design for future packaging technology.
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