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Quantum many-body scars from Einstein-Podolsky-Rosen states in bilayer systems
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Quantum many-body scar states are special eigenstates of nonintegrable models with distinctive entanglement
features that give rise to infinitely long-lived coherent dynamics under quantum quenches from certain initial
states. We elaborate on a construction of quantum many-body scar states in which they emerge from Einstein-
Podolsky-Rosen states in systems with two layers, wherein the two layers are maximally entangled. We apply

this construction to spin systems as well as systems of itinerant fermions and bosons and demonstrate how
symmetries can be harnessed to enhance its versatility. We show that several well-known examples of quantum
many-body scars, including the tower of states in the spin-1 XY model and the n-pairing states in the Fermi-
Hubbard model, can be understood within this formalism. We also demonstrate how an infinite tower of many-

body scar states can emerge in bilayer Bose-Hubbard models with charge conservation.
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I. INTRODUCTION

Quantum many-body scar (QMBS) states are special
highly excited eigenstates with atypical properties relative
to other eigenstates at the same energy density [1-3]. Such
eigenstates emerge in quantum many-body systems that are
nonintegrable and are expected to obey the eigenstate ther-
malization hypothesis (ETH) [4-6], which states that all
eigenstates in a small energy window should exhibit observ-
able properties that are identical in the thermodynamic limit.
In ETH-obeying systems, quantum dynamics from typical
initial states exhibits relaxation to a local thermal equilib-
rium dictated by the eigenstates with which the initial state
has overlap [7,8]. QMBS states typically constitute a van-
ishing fraction of all eigenstates in the thermodynamic limit
and display no dynamical signature for generic initial states.
However, for special initial states that have overlap either pre-
dominantly [9] or exclusively [10,11] with the scar states, the
resulting dynamics exhibit distinctive coherent features that
are absent in generic quench experiments. QMBS states often
appear in “towers” consisting of a number of states scaling
polynomially with system size [9-23]. When these states are
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equally spaced in energy, the resulting dynamics becomes
perfectly oscillatory, leading to sharp experimental signatures
of these rare eigenstates [24—27]. These coherent dynamics
may enable applications of QMBS states in quantum sensing
protocols [28-30].

One important research direction in this field is the de-
velopment of systematic constructions of QMBS state towers
with distinctive dynamical signatures. Techniques for achiev-
ing this include group-theoretic constructions [19,21,22], ma-
trix product state methods [31,32], and projector embeddings
[33—41]. These methods provide insight into manifestations
of QMBS states in previously unexplored models, which
constitutes another important direction of ongoing research
that is connected to efforts to realize such states in exper-
iments. While QMBS states have been heavily studied in
one-dimensional (1D) systems, their 2D counterparts have
also begun to attract attention [10,20,32,36-38], particularly
in light of recent experimental progress [42].

Generally QMBS states are identified in a many-body spec-
trum through their subextensive entanglement scaling, which
contrasts with the volume law entanglement scaling of typical
finite-energy-density eigenstates. However, sub-volume-law
entanglement entropy is not a necessary condition for an
eigenstate to be a QMBS [43-45]. In Ref. [43], it was demon-
strated that there exists a class of QMBS states that are highly
entangled while retaining a simple entanglement structure and
that can be embedded into many-body Hamiltonians with
a suitable bipartite structure. These states, dubbed “rainbow
scars” for their connection to the rainbow state and its long-
range entanglement structure [43,45-47], display extensive
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entanglement scaling for generic bipartitions, going against
the standard definition of QMBS states. Thus, entanglement
may be a good indicator but not a definitive method to judge
if a quantum state is indeed a nonthermal QMBS state.

In this work, we apply the tools developed in Ref. [43] to
construct a wide variety of models with QMBS states. We
focus our attention on bilayer quantum many-body systems,
which can arise both in systems with two layers separated in
real space as well as systems where two internal states, such
as spin states, play the role of the two layers. We show that
Einstein-Podolsky-Rosen (EPR) states in which the two layers
are maximally entangled give rise to QMBS states, and we
refer to these scar states as “EPR scars” to distinguish their
geometric structure from that of the rainbow state. We con-
struct these EPR scars for spin systems like those considered
in Ref. [43], as well as for itinerant fermionic and bosonic
degrees of freedom, focusing in particular on 2D examples
that cannot be mapped to local spin systems. We lay out the
general construction in Sec. II.

Our main conclusions are twofold. First, we show that
several known examples of QMBS states fall into the EPR
scar framework. In Sec. III, we show that scars in the spin-1
XY model [10] can be recast as EPR scars on mapping the
spin-1 system to a bilayer spin—% system projected onto the
local triplet sector. In Sec. IV, we show that the celebrated
n-pairing tower of states [15,17,20,48] also falls into this
construction, in addition to laying out generalizations beyond
the original Fermi-Hubbard model that include spin-orbit cou-
pling [17,49] and superconducting pairing [20] terms. In both
of these examples the bilayer structure is emergent, stemming
from the rewriting in terms of spin—%’s for the spin-1 XY
model and from the spin index for n pairing. Second, in
Sec. V, we construct an infinite-dimensional tower of states
in bilayer Bose-Hubbard systems. In the simplest case, this
tower emerges in systems where the intra- and interlayer
interactions have opposite signs, a scenario that could be engi-
neered in optical lattices for mixtures of two bosonic species.

II. BILAYER EINSTEIN-PODOLSKY-ROSEN QUANTUM
MANY-BODY SCAR STATES

In this section we describe the construction of EPR scar
states in bilayer systems and consider how different choices of
bipartition influence entanglement calculations. Subsequently,
we describe a general construction of parent Hamiltonians in
doubled Hilbert spaces that is independent of the concrete
details of the single system Hamiltonian H,;.

A. The EPR state and its entanglement structure

We begin by considering two identical quantum systems,
labeled 1 and 2, which may either be spatially separated (e.g.,
the two layers of a bilayer system) or constructed using an
internal degree of freedom (e.g., electron spin). The Hilbert
space IH; () of each system is spanned by an identical basis of
states |n),(). The single-system Hilbert space () need not
have a local tensor product structure, the lack of which could
arise from projection into a symmetry sector or from kinetic
constraints. A general state in the doubled Hilbert space H =
H; ® Hy is given by [¢) = Y, ¥ In); ® |71),. The many-
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FIG. 1. Entanglement bipartitions for bilayer systems. (a) A bi-
partition of type I, where subregions A and B are the top and bottom
layers, respectively. (b) Contrarily a bipartition of type II includes
degrees of freedom from both layers in each subregion (A or B). In
the 2D geometry shown here, each pair of sites i (from the top and
the bottom layer) that interact with each other are sites with the same
coordinates (x, y) and different z coordinates.

body EPR state is a pure state defined in the doubled Hilbert
space as

1 dim(H,)
= W]HO ; [n); & |n), .

Because of its unique entanglement structure, the EPR state
and its finite temperature variant called the thermofield-double
state,

|EPR) (2.1)

1
ITFD(B) = —= Yoy @), (22)

where Z = )" e P is the partition function at inverse tem-
perature (3, are of great research interest across multiple
fields [50-54]. The EPR state that is the focus of our work
is simply the infinite-temperature thermofield-double state:
|[EPR) = |TFD(B8 = 0)). In the rest of paper, we drop the
subscript labeling the two copies 1 and 2 unless ambiguity
arises.

Now we consider the entanglement structure of |EPR).
Throughout the paper, we quantify the entanglement between
a subregion A and its complement B with the von-Neumann
entropy SN = —Tr(pa In pa), Where p, is the reduced den-
sity matrix of subregion A computed from an eigenstate |E),
i.e., pa = Trg(|E) (E|). We note that, by construction, the two
copies of the EPR state Eq. (2.1) share the maximal entangle-
ment entropy SN = In[dim(IH,)], where region A is defined
as in Fig. 1(a).

In the simplest case, each Hilbert space IH; () has a tensor
product structure. For concreteness, let us consider the Hilbert
space of N qubits with dimension 2" for each copy (general-
ization to local dimension larger than 2 is straightforward). In
this case, the sum in Eq. (2.1) can be carried out independently
for each pair of qubits, and the EPR state becomes a product
of local EPR pairs,

.
|EPR) = W 1_[ (10:) ®10;) + [1;) @ [1:)). (2.3)
i=1

The bipartition in Fig. 1(a) cuts through N EPR pairs, leading
to the maximal entanglement entropy S*N = N In2 between
the two copies. On the other hand, the bipartite entanglement
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in Fig. 1(b) is zero because of the tensor product structure of
the Hilbert space.

Now we consider the EPR state in Eq. (2.1) for more
general Hilbert spaces without tensor product structure. As
mentioned before, by construction, the bipartition in Fig. 1(a)
always leads to the maximal entanglement entropy SYN =
In dim(IH). However, the entanglement entropy for the bipar-
tition in Fig. 1(b) is in general nonzero for Hilbert spaces that
are not factorized. A common approach to realizing such a
Hilbert space is to add a constraint, e.g., from symmetries or
kinetic constraints, to the Hilbert space of N qubits. Suppose
the constraint is implemented by fixing some set {p} of con-
served quantities in IH; ), and let PPy, be the projector into the
constrained Hilbert space. Assuming a bipartition of the type
shown in Fig. 1(b), the EPR state can then be written as

|EPR) n); ®P{p} 1),

_;Zp |
~ J@m@) &~

1
= \/ﬁ HAX”:B Py Inang)y ® Pypy Inang), ,
24
where |n) now lives in the Hilbert space of qubits and can be
split into two parts |ns) and |ng). The only nonzero matrix
elements of the density matrix p4 of region A are then given
by
(naly ® (naly pa 1), @ 1M))y =D PuangPugngs (2.5

np

where the matrix element p,,,, equals 1 up to normalization
for states |nanp) within the constrained Hilbert space and zero
otherwise.

From the above calculation, it becomes clear that the en-
tanglement entropy of |EPR) for the bipartition in Fig. 1(b) is
the same as that of the following state defined in a single copy
of the system,

V) (2.6)

1
= Jama &7

Without the constraint imposed by the set {p}, this state
is the x-basis product state |+) - - - |[4+), where |[+) = (|0) +
[1))/+/2. Adding a constraint results in entanglement. For
instance, in the case of U(l) symmetry, the projection of
this state into a generic magnetization sector (i.e., one with
a finite magnetization density above a fully polarized state)
has bipartite entanglement entropy of order In N. Another
example for a system with a constrained Hilbert space is
the well-known PXP model, which captures the physics of
Rydberg atoms in the regime when two neighboring atoms
cannot be simultaneously in the excited state [9,42,55-57].
Here the single-layer state and thus the constrained EPR states
display an area law entanglement entropy.

B. Constructing the parent Hamiltonian for the EPR scar state

Because of the maximal entanglement between the two
copies, the EPR state in Eq. (2.1) has the special property that
applying an operator O to one copy is equivalent to applying
its transpose O to the other copy. To show this, consider the

single-copy operator O = )" |m) O,,, (n| and its transpose

o7 = > 1M) Oy (1], which we take to act within H;. Us-
ing the definition of the EPR state in Eq. (2.1), one can show
that

O QI |EPR) = )

1
——— ) OpmIim ®|n
V/dim(H,) ; 2.7)
=1® OT [EPR).

Based on this property, one can construct a family of in-
teracting parent Hamiltonians for which |[EPR) is an exact
eigenstate. Since |EPR) has a very simple entanglement struc-
ture described in the last section, it is not thermal and becomes
a QMBS state, which we call the EPR scar state, when the
parent Hamiltonian is nonintegrable.

We now outline the construction of the parent Hamiltonian.
Consider the Hamiltonian in the doubled Hilbert space:

H=H,1 QT +1Q H,+ Hi. 2.8)

In the above, H; and H, are the Hamiltonians within each
copy and 7, describes the interaction between the two
copies, which can be expanded in the basis {O4} of one-copy
Hermitian operators as ), , 24504 ® Op. Using Eq. (2.7) to
move the nontrivial actions of % on |[EPR) to a single copy,
we find that the general condition for the EPR state to be an
eigenstate of H with energy E is that
Hi+H;+ Y 200y = ELL (2.9)

AB

Notice that Y 4.8 +480a0p now acts on a single copy, and
hence this is an operator equation in a single copy of the
Hilbert space. The construction Eq. (2.8) is valid in arbitrary
spatial dimensions. In our previous work [43], we considered
a less general construction also requiring H; + H3 = 0. The
general construction can be further enriched by considering
local unitary transformations and symmetries. In the follow-
ing sections, we demonstrate the general construction using
specific examples with different Hilbert space structures, in-
cluding spins, fermions, and bosons, and uncover EPR scars
in some well-studied many-body Hamiltonians.

II1. SPIN SYSTEMS

In the first part of this section devoted to spin systems we
formulate the EPR scar construction for spin-S degrees of
freedom. We then proceed to demonstrate that the tower of
QMBS states in the spin-1 XY model [10] can be recast as
EPR scars in a bilayer spin—% system, which in 1D reduces
to a ladder geometry. In the process, we illustrate how the
general construction outlined in Sec. II can be enriched by
unitary transformations and U (1) symmetry. Finally, we con-
sider a bilayer Heisenberg model on the triangular lattice and
illustrate the even richer interplay of SU(2) symmetry with
our construction.

A. Spin EPR state

We start by considering a spin-S model on a lattice of
N sites with 8¢ € {=S,...,+S},Vi=1,...,N. For such a
system, the EPR state in the doubled Hilbert space takes the
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form
N
EPR ) ® |my)
IEPR) = (2S+1)N/2 ‘??;_S' |
with T'(S, m) = —(2§i?$l{9)! and S;r =5 —i—iSi. In this spin
EPR state, spins from Hilbert spaces H; and H, that

share the same site index i are perfectly correlated.
In cases where the parent Hamiltonian of the EPR state
(3.1) respects a global symmetry, the projection of |EPR) into
each symmetry sector becomes an independent eigenstate of
the Hamiltonian. For example, it is easy to see that, when
multiplied out, the state |[EPR) (3.1) consists of several terms
that each can be associated with an eigenvalue of the total

magnetization operator,
Seu=Y_ (S 9T+1®5)).

i

(3.2)

Consequently, in models with a U(1) symmetry generated by
St the projections of the EPR state (3.1) into each magneti-
zation sector become scar states themselves. More generally,
as we will see in Secs. III B and IIIC and in Appendix B,
the total number of scar states into which Eq. (3.1) separates
depends on the symmetries of the underlying bilayer construc-
tion. For example, for a bilayer spin-% system with only U(1)
symmetry, we will see that the number of EPR scarsis N + 1.

B. Spin-1 XY model: U (1) symmetry

An early example of an exact QMBS tower and the associ-
ated periodic dynamics was found in Ref. [10], which studied
the spin-1 XY model on a D-dimensional hypercubic lattice.
The model hosts a tower of scar states with anomalously low
entanglement entropy, with each scar state obtained from the
previous one through a raising operator due to an emergent
SU (2) algebra. Furthermore, time evolution from an initial
state has finite overlap with the tower and exhibits perfect pe-
riodic revivals, while generic initial states rapidly thermalize
as dictated by ETH. We will show how these scars are in fact
EPR scars.

For concreteness, let us first consider the spin-1 XY model
on a 1D chain with N sites given by

N—-1

HXY —Z( S+ S Sz+l)

i=1

(3.3)

We take N to be even for convenience. In the following,
we map the spin-1 chain onto a ladder composed of spin—%
degrees of freedom (see Fig. 2) and demonstrate that the new
Hamiltonian obeys the operator equation in Eq. (2.9) after
a local unitary transformation. As a result, the EPR state
emerges as a scarred eigenstate of the original Hamiltonian.
First, we replace each spin-1 operator by a sum of two spin-
% Pauli operators:
S %(o;" RI+I®0), (3.4)
where 0 @ I and I ® 0 (@ = x, y, z) are the Pauli operators
on site 7 of the top and bottom leg.

(25 + 1)N/2

® Z LS, mSF @) |-y ®1-S) (3.1

i=1 m=-§

The spin-1 Hamiltonian then becomes a ladder Hamilto-
nian

N-1
Z( of H—1®]I+]I®6 H—l)

i=1

+ (O’ix ®oj +05, ® oix) + (x = ).

s=1/2 _
Hyy '™ =

(3.5)

By construction, the ladder Hamiltonian commutes with the
total spin on each rung, which takes value O (singlet) or 1
(triplet). The subsector with all triplets coincides with the
original spin-1 Hamiltonian. This subsector is defined by the
global projector P = [T, PV with

1 3
1 a o
Pi( ) — 4_1 E o ®o; + 4_1 (3.6)

O=X, V.2

Equipped with Egs. (3.3)—-(3.6), it is easy to see that

Hy =PO (M )P 3.7
At first glance, the Hamiltonian in Eq. (3.5) does not obey
the general construction in Eq. (2.9). However, there exists a
simple local unitary transformation bringing it to the required
form. Consider the unitary transformation

N/2

C=1I® HGZZI;I.
i=1

Under this transformation, I ® o;* and I ® o; acquire a minus
sign for odd i. Now we split the transformed ladder Hamilto-
nian into terms within each leg and terms connecting the two
legs, i.e.,

(3.8)

CHSPC=M @T+T®Hy+ Hia, (3.9)
(a) 1 (b) Hq
i[53 i —fe— e — e — e —
i\® i —— & — @ —-0—
Ho

FIG. 2. The spin-1 XY chain. (a) A spin-1 degree of freedom
expressed in terms of two spin—% particles. The operator P,.“) projects
a pair of spins i onto the triplet subspace to recover the spin-1 degree
of freedom. (b) A one-dimensional chain of § = 1 spins expressed as
a ladder of spm—— particles. Each leg is composed of spm—— degrees
of freedom, where sites on the upper (lower) leg are denoted by i. The
green ovals denote the local projections 73,-“) onto the spin-1 space,
while the solid horizontal lines depict the intra-leg coupling, i.e., H;
and H,. Dashed lines indicate the coupling between the two legs, i.e.,

Hia.
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where

_ X X y .y
Hi= 1 § :(‘71' ol + 07 0}),
i

1
HZ:_ZZ O; 01+1+001+1)
' (3.10)

1
Ho=7) (07 @k — ol ®0))

icodd

1
~3 Z (af@alﬂ_l

iceven

Oy ®oix) + (x — ).

This transformed Hamiltonian obeys Eq. (2.9) with E = 0.
Therefore, the unconstrained EPR state in Eq. (2.3) is a zero-
energy eigenstate of the transformed ladder Hamiltonian, i.e.,
CHyy'/>C |EPR) = 0. Multiplying both sides by C and using
C? =T, we find that the transformed EPR state

1 X :
CIEPR) =5 @Q)(10:) ® [0;) + (=1)' [1) ® |1:))

i=1
3.11)
is an eigenstate of the original ladder Hamiltonian,

Hyy *C [EPR) = 0. (3.12)

Note that C [EPR) lives in the subsector of ’H,S 2 that co-
incides with the spin-1 Hamiltonian. It turns out the above
construction can be generalized to the spin-1 XY model on
any bipartite lattice, including the D-dimensional hypercubic
lattice studied in Ref. [10]. The only required modification is
that the product in C should be taken only over one of the sub-
lattices. We henceforth restrict to the 1D case for simplicity.

To connect the EPR scar state C |[EPR) to the tower of
states found in Ref. [10], we rewrite Eq. (3.11) in the spin-1
language:

C [EPR) = + (=1 [=1:)).

W ®(|+1

Next, note that H35' (H5y'/>) conserves the total magnetiza-
tion ), S7. The projection of C |EPR) into each magnetization
sector therefore remains an eigenstate. Notice that C |[EPR)
overlaps with only the even magnetization sectors, leading to
N + 1 degenerate scarred eigenstates including the two fully
polarized states |+1---+4 1) and |—1--- — 1). Explicitly, we
can write C |[EPR) as

(3.13)

1 < [(N
— (—])V/?
C|EPR) = (-1 2’“; <n>|sn>, (3.14)
where
|Sn) = —(J+)n |=1---—1) (3.15)

ny ()

is the (normalized) projection of C |[EPR) into the sector with
magnetization 2n — N. The raising operator J* is given by

e
=32 (=D
i=1

(3.16)

The states |S,) are precisely the scar states constructed by
other means in Ref. [10]. They are degenerate eigenstates of
H3y', but adding a magnetic field h, Y, S¢ lifts the degener-
acy and results in a tower of states with equal energy spacing
2h,. The state C |EPR) belongs to the family of initial states
shown in Ref. [10] to exhibit perfect periodic revivals with
period  /h, under a quantum quench.

Finally, we remark that the (N 4+ 1)-fold degeneracy is a
generic feature of the EPR scars in systems with U (1) symme-
try. In Appendix B, we consider two square-lattice Heisenberg
layers coupled by an Ising interaction as another example of a
spin system with a U(1) EPR scar tower.

C. Bilayer triangular-lattice Heisenberg model: SU (2)
symmetry

Having studied a U(1) symmetric spin model in the pre-
vious section, we now move on to an SU(2) symmetric spin
model and show how the SU(2) symmetry leads to an EPR
scar tower with a rich structure. We consider the follow-
ing bilayer triangular-lattice Heisenberg model consisting of
exchange-coupled ferromagnetic and antiferromagnetic lay-
ers,

H=H1QI+1®H,+ Hi. (3.17)
The individual Hamiltonians take the form
Hi=) JijSi-S;. Ha=—Hi,
) (3.18)

Hio ZKZ§[®§i.

The operators S; and S; = (87,87, 87) are spin-% operators
acting on sites i in either the top or bottom layer.

This model has an SU(2) symmetry with commuting gen-
erators

St =Sol +Sai =) SiQI+1®S;,

(3.19)

2
S = (Zs ®]I+]I®S>

which correspond respectively to the magnetization and the
total spin. With SU(2) symmetry, the unconstrained EPR state
of 2N qubits, Eq. (2.3), can be projected into each sector with
fixed S2, = S(S + 1) and S%, to yield a scar state in that sector.
Generally speaking for a system of 2N spin-1/2 particles we
can have S € {0,1,...,N} and S, € {—S, =S+ 1,...,5 —
1, S}. However, as is evident from Eq. (2 3), the EPR scars
can only reside in sectors with Sgot = Sfot ={-N/2,-N/2 +
1,...,N/2}. Hence, the allowed values of S{, for the EPR
scars to exist are S, = {—N, —N + 2, ..., N} in increments
of 2. Likewise, the allowed values of the total S also decrease
from N in steps of 2.

To count the total number of EPR scars, it is necessary to
distinguish the cases where the number N of spins in each
layer is even or odd. For N odd the allowed values of S
are {1, 3, ..., N}, whereas for even N they are {0, 2,...,N}.
For each S, the EPR state overlaps with § 4 1 of the 25 + 1
possible magnetization sectors. We therefore conclude that
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(a) (b) (c)
S=1 non—scars (any Si,,) s=3 non—scars (any S%,) 5=3
layer s=1 S=5 scars with S, s=1 S=
] S=3 S=5 ®  scars with S s=3 = .
0.15 . : ) % - : . - :
- R ’ . .
= 2N=14 . .
2 . 3
Ho.10 ‘
~ S=3 scars with S5, = +7 [ |2
g i £
@ bipartition 2
= .
g 5= type ey -
3 0.05
S=5 = o® . Chd
= 1 . 1 .
5=z S=7 T ° 5=7
H e s=7 bipartion “FE= 57
0.00 L. type A >
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
energy £ energy £ energy E

FIG. 3. Heisenberg spin-1/2 bilayer system on a triangular lattice. Results were obtained from exact diagonalization of Eq. (3.22) with
random J;; € [0.9, 1.1] and A =1 for a 2N = 14-site bilayer with hexagon-shaped layers [see inset of panel (a)]. (a) Overlap |(E,|EPR)|?
between the EPR scar and each eigenstate. Each eigenstate is characterized by the quantum numbers (S, S, ); for the scar states, S €
{1,3,5,7} and S5, € {—S, ..., +S} in increments of 2 with § = 7 (see Table I). Colors are used to identify multiplets of scar states with fixed
St and all allowed corresponding S;. We do not resolve the symmetries (Sio, S, ) for the nonscar states. (b) The von-Neumann entanglement
entropy S*N for a bipartition (see inset) parallel to the two layers reveals that the scar states have maximal entanglement entropy for their
symmetry sector. (c) The entanglement entropy S*N for a bipartition perpendicular to the two layers reveals that the scar states have atypically
low entanglement. A dome-shaped structure formed by eigenstates associated with a fixed Sy is also clearly visible.

the total number of scars in an SU (2)-invariant bilayer spin
system is Ncars = ) _ajiowed sS + 1), 1.€.,

1 8 {(N+ 1)(N +3) for N odd

Nscars = Z (N + 2)2 for N even’

(3.20)
As a concrete example, we now consider a bilayer system
living on a triangular lattice with 2N = 14 spins. The shape of
each N = 7 layer is shown in the inset of Fig. 3(a). Since N is
odd, the EPR state has overlap with sectors of spin quantum

number, Sic € {1, 3,5, 7} and total magnetization
SZ

< =+p with p=1,3,5,7. (3.21)

Each of these magnetization sectors contains 4, 3, 2, or 1 scars
with corresponding values for Sy (see Table I). We visualize
this set of EPR scars by performing an exact diagonalization
study. To fully resolve all scar states, we diagonalize the
Hamiltonian

H A+ S, + 82, (3.22)

which ensures that all scar states are nondegenerate. In our
numerics, we draw the exchange couplings J;; uniformly from
the interval [0.9,1.1] to break the rotational symmetry of the
lattice, and set the interlayer coupling A = 1.

TABLE I. EPR scar states in the Heisenberg bilayer model on
the triangular lattice. Due to S, and S2, = S(S + 1) being con-

tot
served quantities we distinguish the single members of the EPR scar

tower by their respective quantum numbers (S, S;,,). For a bilayer

consisting of 2N = 14 sites, the allowed values of S7, are Sg,

+1, £3, £5, £7 with each S}, sector containing 4, 3, 2, or 1 scars

tot
with corresponding values for S. In total, we have 20 scar states.

z

Bilayer triangular lattice Heisenberg model

52 -7 -5 -3 -1 +1 43 45 +7
Total spin S 7 5.7 3,57 1357 1357 357 57 17
Necars 1 2 3 4 4 32 1

In Fig. 3(a) we compute the overlap |(E,|EPR)|? between
the EPR state (2.3) and each energy eigenstate of Eq. (3.22).
We utilize different colors (see legend) to label scars with
quantum numbers (S, S5, ) according to their S§; sector. One
clearly sees that the entropically most likely allowed magne-
tization sectors S, = =1 (light and dark purple, respectively)
have the highest total weight when summing over allowed val-
ues of S, as should be expected from the fact that |EPR) is an
equal amplitude superposition of allowed spin configurations.

In Figs. 3(b) and 3(c) we plot the entanglement entropy S'
of all eigenstates for bipartitions of types I and II, respectively
(see insets and Fig. 1). The scar states are highlighted using
the color scheme of Fig. 3(a). In Fig. 3(b), the entanglement
with respect to the type-I cut scales extensively. Indeed, each
scar state is a projection of |EPR) into a symmetry sector, so
the two layers retain the maximal entanglement allowed by
the dimension of that sector, consistent with the discussion
in Sec. II. In comparison, Fig. 3(c) utilizes a type-II cut for
which the scar states appear as states with anomalously low
entanglement. Note that we have not resolved any symmetries
for the nonscar states in Figs. 3(b) and 3(c) which is why the
distribution of entanglement entropy appears broad. Nonethe-
less, the domelike structure for each set of states with fixed
Stot 18 clearly visible.

We stress that the 2D bilayer Heisenberg model in
Egs. (3.17) and (3.18) with and even without random in-
tralayer exchange couplings is nonintegrable. To confirm this,
we study its level statistics. We utilize the same coupling pa-
rameters J;; and A as before and fix the magnetization to S, =
+5. We find the mean level-spacing ratio (r) &~ 0.50379,
which is in reasonably close agreement with the Gaussian
orthogonal ensemble (GOE) [6], which according to random
matrix theory has (r)gog &~ 0.536. To compare the Poisson
distribution value found in integrable (localized) models is
(r)poisson ~ 0.386 [58]. More details on the level statistics are
presented in the Appendix A, where we also discuss a spin-%
bilayer system with U(1) symmetry on the square lattice.
Moreover, the Appendix B provides additional information on
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the spin-% bilayer models and on a Bose-Hubbard model that
will be scrutinized in Sec. V B.

IV. FERMIONIC SYSTEMS

In this section, we apply the general construction outlined
in Sec. II to spinful fermionic systems, where we take ad-
vantage of the internal spin degree of freedom to obtain the
desired doubled Hilbert space structure.

A. Fermionic EPR state

A generic spinful fermionic Hamiltonian # is written in
terms of the fermionic creation (annihilation) operators czg
(¢;,) on site i with spin o = {1, |}. To directly apply the
formalism in Sec. II and decompose the full Hilbert space as
H;y ® IH,, one has to be careful about fermionic anticommu-
tation; fermionic operators with opposite spins anticommute
with each other, therefore they do not act totally independently
on the two copies of the Hilbert space. To mitigate this prob-
lem, we introduce two flavors of spinless fermionic operators
Y1 and ;5. They are related to the original spinful fermions
via

Vi1 = Ciy,
Vi = (=D)Ve

where Ny = Z/’ C;Tcm and (—1) = F; is the parity of the
spin-up fermions. One can readily check using {c; ;, F3} =0
that they satisfy the commutation relations:

Wi ¥ =8, Wia, ¥i,b =85, [, ¥j2] =0.
4.2)
Therefore, ;1 and v, have fermionic self-statistics and
bosonic mutual statistics. Hence, one can treat the Hilbert
space spanned by the two flavors of fermions as independent
and construct EPR scars in a way analogous to spin systems.
The inverse mapping of Eq. (4.1) is given by

A.1)

Cip = 1/fi,l,
ciy = (=D"ia,
where Nj =}, w;,lw 1. In what follows, we shall represent

these two flavors of fermions using notation consistent with
previous sections, i.e.,

(4.3)

Yiit—> i @1,
Vi = 1 ® 9.

The unconstrained EPR state Eq. (2.3) in H; ® IH, can be
written as

4.4

1 N
[EPR) = 25 [ @@ I+ @ v)10)

i=1

1 Yvley
= v’ 10)
1 Y —Frel o
= W@ i T |0) s (45)
where ! @y =y v, = -Ficf ch: , and |0) =

®$V=1 |0;) ® |0;) is the vacuum for 2N sites on the two

layers. In the presence of U(l) charge conservation, the
projection of |EPR) into each charge sector also becomes
an eigenstate, leading to a U(1) tower of EPR scars of the
following form on expanding the exponential function in

Eq. (4.5):
1 n
|EPR), = e ) 0) .
n!,/(]’f) (Z LA

Note that in each charge sector the factor —F} becomes an
overall phase of 1 and can therefore be omitted. The particle
number of the state |[EPR), is 2n for 0 < n < N. As a result,
there are N + 1 states in the U (1) tower.

In the following, we show that applying appropriate trans-
formations to |[EPR) yields two towers of exact eigenstates in
the Fermi-Hubbard model. One unitary transformation, which
is well defined only on bipartite lattices, yields the celebrated
n-pairing states [48]. The other transformation, which can
be defined on any lattice, yields another tower of eigenstates
that was also considered in Refs. [19,20]. We further give the
necessary conditions for the EPR state to remain an eigenstate
of the most general quadratic interaction, including spin-orbit
coupling [49] and superconducting pairing [20] terms.

(4.6)

B. Fermi-Hubbard model

The Fermi-Hubbard model on an arbitrary lattice with N
sites is given by

H=—t Z Z(Cl,icmi +H.c)

o (ij)

1 1
U3 (i 5) (i 3)

where we label sites with indices i, j and where (ij) denotes
a pair of nearest-neighbor sites. The operators n, ; = c;,icm
are the standard number operators. The Hubbard onsite in-
teraction in Eq. (4.7) is formulated in such a way that it is
invariant under particle-hole symmetry as is the kinetic part.
To check whether H obeys the general criterion in Eq. (2.9), it
is easier to rewrite it in terms of the spinless fermion operators
¥;. We also define the spinless number operator n; = v/, ;.
With these operators,

A7)

NU
H=H¢®H+H®H¢+HN+T, (4.8)
where
U
HT = ’H¢ = —t Z(lﬁ, % +H.c.) — 5 Zni’
{@J) ! (4.9)

HN =UZni®n,~.

When deriving these terms, we used the identity F 2=Tso
F does not appear. Although these terms do not obey the
criterion (2.9), we demonstrate below that there exist simple
unitary transformations bringing the Hamiltonian to the re-
quired form. We consider two transformations. The first one,
denoted C, is similar to the chiral transformation used in our
treatment of the spin-1 XY model in Sec. III B and works for

205142-7



JULIA WILDEBOER et al.

PHYSICAL REVIEW B 106, 205142 (2022)

bipartite lattices. The second one, denoted 7, is a particle-hole
transformation and works for any lattice.

1. Chiral transformation

For a bipartite lattice, we can associate each site i with one
of the two sublattices A or B. We define the chiral transforma-
tion C to act on one of the spin species (say o =|,) and on one
of the sublattices (say B), sothatC : ¢, ; - —c, ; fori € Bor,
equivalently,

C:I®y; —> -I®y; forieB. (4.10)

The nearest-neighbor hopping term in # links the two
sublattices and therefore acquires a minus sign under the
transformation. The Hamiltonian in Eq. (4.9) becomes

. U

CHiC=—t Y (Y/¥;+He) - 5 > i,
(i) i

CH,C=+t Y (¥]¢;+Hce)— % > ni (4.11)

(i) i

CHNC = UZn,@n,

Using the property (2.7) of the EPR state and ”12 = n;, one
can verify that Eq. (4.11) obeys the general criterion Eq. (2.9)
with E = 0. Hence, taking account the constant piece NU /4,
we have demonstrated that the C-transformed EPR state is an
eigenstate of the Hubbard model on arbitrary bipartite lattices,
ie.,

‘HC |[EPR) = %C |EPR) . (4.12)

The C-transformed EPR state takes the following form in
terms of the original ¢ operators:

N
1
[EPR)c = CIEPR) = v [ [(1 = &F1cf ¢ )10}
i=1

(4.13)
where & = +1 (—1) fori € A (B).

The Hubbard model separately conserves the number of
spin-up fermions N4 and the number of spin-down fermions
N,. In the C-transformed EPR state, a spin up creation opera-
tor and a spin down creation operator always appear together.
As a result, Ny = N, = n, ranging from 0 to N. Projecting
C |[EPR) into each allowed total charge sector yields the fol-
lowing modification of Eq. (4.6):

1 n
C |[EPR), = (Z & czTch) 0) .
n!\/@ i

This tower of N + 1 states is nothing but the n-pairing states.
The construction of this tower in the Hubbard model is very
similar to that in the spin 1 XY model discussed in Sec. III B,
consistent with the connection found in Ref. [15].

(4.14)

2. Particle-hole transformation

Now we consider another transformation, the particle-hole
transformation v, which we apply to one of the spin species

(say, 0 =] ). This transformation exchanges creation and an-
nihilation operators, 7 : Ci ; <> ¢y, or, equivalently,

71y <1y (4.15)

This transformation flips the sign of ¢ for the spin-down
fermions as well as that of the interaction strength U. Under
the transformation, the Hamiltonian becomes

U

— E: i E:

T[HTT[——I - (1//1 I//]+HC)+E : n;,

rH,T =+ ) (le/f'—i-HC)—l—gE:n- (4.16)
Y i Vi G2 is .

(ij)

JTHTiﬂ = —UZni(X)ni,

which obeys the general criterion (2.9) with E = 0. Therefore,
the m-transformed EPR state is an eigenstate of the Hubbard
model on arbitrary lattices,
NU
Hm |EPR) = —Tn |EPR) . 4.17)
The minus sign comes from the fact that the constant piece
in the Hamiltonian changes sign under . The 7 -transformed

EPR state takes the following form in terms of the original ¢
operators:

N
1
[EPR), =7 [EPR) = >3 [[a-Ficl eI, @.18)

i=1

where the particle-hole-transformed vacuum
9 =]]ei, 10

is the spin polarized state in which each site is occupied by
a spin-down fermion. Since cTT appears together with another
¢, operator, the 7 transformed state has a fixed total parti-
cle number Ny + N, = N. However, the total magnetization
Ny — N, varies from —N to N in steps of 2, leading to a new
tower of N + 1 states [19,20],

1 . n
ci" ciy | 1€2)
n! (g)(Z ! )

with total magnetization —N + 2n. That is distinct from the
C-transformed EPR states which instead has varying charge
but zero magnetization.

We remark that in the standard Hubbard model, both the C
and 7 towers of states are not regarded as many-body scars,
since their existence is enforced by symmetry. For instance,
the Hubbard model has a spin SU(2) symmetry, and the &
tower of N + 1 states are the unique states with maximal total
spin N/2 and their respective magnetizations. Furthermore, on
bipartite lattices, the Hubbard model acquires another SU(2)
symmetry of the charge degrees of freedom [48], and the C
tower of N + 1 states are enforced in an analogous fashion.
However, a variety of extended Hubbard models are known in
which these enforcing symmetries are broken such that these
two towers become genuine scar towers [15,17,20].

(4.19)

7 [EPR), =

(4.20)

l
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FIG. 4. Fermi-Hubbard bilayer system on a square lattice. Results are obtained from exact diagonalization of Eq. (4.21) for a square lattice
of dimension (L., L,) = (3, 2), with hopping amplitude ¢ = 1 and interaction strength U = 0.56, chemical potential ;= = 3.0, and magnetic
field 4 = 5.25. (a) Overlap between each energy eigenstate of Eq. (4.7) and the C- (magenta) and x-transformed (purple) EPR state, i.e.,
>, I{E.| [EPR) c(ﬂ))|2 = 1. (b) Von Neumann entanglement entropy as a function of energy for a type-I bipartition (see inset) for which the
EPR towers exhibit high entanglement. (c) Same as in (b) except for a type-1I bipartition (see inset) for which the EPR towers exhibit low

entanglement.

3. Two towers of states on the square lattice

We have shown that the standard Hubbard model on a
bipartite lattice hosts two towers of states from the C- and
m-transformed EPR states, respectively. To visualize these
towers, we consider the Hubbard model on the square lattice
in the presence of a chemical potential ;« and a magnetic field
h in the z direction:

H=—t Z Z (c;ica,j + H.c.)
o (i)

1 1
+UF (- 3) (i)
Fu Y iy nm ) +hYy (g —niy). (420

The chemical potential ; and magnetic field A lift the degen-
eracies of the C and = EPR towers, respectively. From the
analysis of the last two subsections, the energies of the two
towers of states are

(4.22)

ET = (—% —u+h)N—2hn
forO <n <N.

We explicitly verify the two towers by diagonalizing
Eq. (4.21) on a 3 x 2 square lattice, choosing t =1, U =
0.56, . =3.0, and h=5.25. In Fig. 4(a), we plot the
overlap between each eigenstate and the C- (magenta) and
m-transformed (purple) EPR states, highlighting both towers
of states with the expected equal energy spacings. Figures 4(b)
and 4(c) show the entanglement entropy for bipartitions of
types I and II, respectively. Note that the entanglement entropy
for the type-I bipartition is interpreted in this setting as an en-
tanglement in spin space, rather than real space. As expected,
the entanglement entropy for the type-I bipartition takes the
maximum value allowed within each symmetry sector, while
that for the type-II bipartition is markedly smaller for the scar
states than for typical eigenstates.

C. Generalized Fermi-Hubbard models

In this section we generalize the Fermi-Hubbard model
(4.7) to include spin-orbit coupling and superconducting pair-
ing terms and derive the conditions under which the EPR
state and its C- and m-transformed variants are eigenstates.
We work on an arbitrary lattice and consider a generic Hamil-
tonian of the following form:

H = Hyx + Hine, (4.23)

where Hy is quadratic in fermion operators and Hi, =
> Uiy — 1/2)(n;;, — 1/2). |EPR) is an eigenstate of Hip
with eigenvalue ) _; U;/4. The quadratic part #y contains hop-
ping, spin-orbit coupling, and superconducting pairing terms:

Hy = Z Z (tlf;"/czgcj(,/ + H.c.)

o0’ 1,

+ Z Z (Afj“/czac;a, + Hc)

o0 i,j

(4.24)

Here ti‘;"/ (A;’j",) are spin- and position-dependent hopping
(pairing) strengths for i # j, and the Hamiltonian is mani-
festly Hermitian in this form. We emphasize that the terms ¢ o
correspond not to hopping but rather to a chemical potential
when o = ¢’ or a magnetic field for o # o’. The parametriza-
tion of  and A contains a redundancy that is removed by
setting

17 = (t}’i") . AT =A% (4.25)
Demanding that Eq. (4.24) satisfy Eq. (2.9) when written in
terms of the i operators, we find the following constraints on
t and A such that H |EPR) is confined to a two dimensional
subspace spanned by |[EPR) and its parity partner F; |[EPR)
(see Appendix C for further details):
Gt =0, Al +al =0,
(4.26)
=it =0, Al +all =0
Note that the above criteria are not satisfied for the standard
Fermi-Hubbard model (4.7)—for example, the above condi-
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tions imply that the two spin species have hopping amplitudes
of opposite signs. To ensure that |EPR) is an exact eigenstate
there is an additional constraint, namely, Zi Ai.T =0.

In the most general case, the model (4.23) does not con-
serve U(1) charge owing to the pairing terms A7, and only
the global fermion parity is conserved. In this case, the only
eigenstates guaranteed by Eq. (4.26) are |[EPR) and its parity
partner. If instead A;’j"’ = 0 and charge is conserved, then we
recover the U(1) EPR towers obtained from projecting these
states onto each U(1) sector.

In order to connect the general Hamiltonian Eq. (4.23) to
the standard Fermi-Hubbard model, we consider the effect
of the particle-hole transformation m and the chiral trans-
formation C on the above _conditions. We first discuss the
transformation 7 : ¢; | <> ¢, |, whose action on the EPR state
is shown in Eq. (4.18). Under this transformation, the con-
straints [Eq. (4.26)] become

=k =0, Al £ AY =0,

ij ij ij ji 4.27)
it =0, All—all=o0.
Notice that, under this transformation, the spin-orbit coupling
and pairing between opposite spins exchange with one an-
other. As with the constraints (4.26), the constraints (4.27)
only ensure that Hm |EPR) resides in a two-dimensional sub-
space spanned by 7 [EPR) and 7 F' |[EPR). To ensure that
7 |EPR) is an eigenstate we must add the condition ) ; tlfT
0.

We now make a connection with the C-EPR tower and
the n-pairing states and specialize to the case of a Bravais
lattice in which site i is located at position r;. We consider
the transformation

WJr .,
N {e? ciy

Ci, {
Co: {w er@ricl,

(4.28)

where Q is a generic momentum vector. The transformed EPR
state becomes

N
1 o
Co [EPR) = 7 ]_[(11 —e T Ficl @l )10). (4.29)

i=1

This transformed state generalizes the C-transformed EPR
state in Eq. (4.13)—for example, on the 2D square lattice,
choosing Q = (m, ) (in units where the lattice spacing is
one) results in Eq. (4.13). Under this transformation, the con-
straints in Eq. (4.26) become

1= b i 1= A0t
Gyt ==t Q0T ALl = AL,

(4.30)

M= lhe 1 AV,
tij _tjl elQ(r rj)7 A[/ — _Alj elQ(r r])'

The EPR state Cp|EPR) is an exact eigenstate when
>, AT = 0. Note that, when Q = 0, the above con-
stramts reduce to those in Eq. (4.26).

As a specific example of applying Eq. (4.30), first demand
that the couplings are translation invariant, i.e., t"" = t,""j
Since the phase factors on the A constraints oscﬂlate with
(r; +r;), breaking the assumption of translation invariance,

we set the pairing terms to zero. We now rewrite the remaining

two conditions in momentum space as follows:

M _t¢i+Q’ tkN - tTlt-‘rQ
These constraints are the same as the ones found in Ref. [49]
guaranteeing that the n-pairing states are eigenstates of the
Fermi-Hubbard model with spin-orbit coupling. More generic
Fermi-Hubbard models are realized through the use of the
constraints in conjunction with unitary transformations, such
as the Hirsch model [15,59-62].

(4.31)

V. BOSONIC SYSTEMS

We now focus on bilayer systems consisting of bosonic
degrees of freedom. Advances and new possibilities of engi-
neering lattice models with ultracold gases in optical lattices
have delivered a plethora of new discoveries experimentally
and theoretically [63—-67]. Phonons in trapped-ion crystals
(see, e.g., Refs. [68—72]) and optomechanical arrays (see, e.g.,
Refs. [73-75]), as well as photons in multimode cavities (see,
e.g., Refs. [76]) and cavity arrays (see, e.g., Refs. [77-79]),
are also often well described by bosonic lattice Hamiltonians.
The aim of the present section is to formulate the EPR scar
construction in bilayer systems of itinerant bosonic degrees
of freedom. In the case of U(l) symmetry, we uncover an
infinite tower of EPR scar states labeled by the total U(1)
charge, which is unique to the bosonic case. We then discuss
different options for the interlayer interaction and comment on
experimental settings for possible realization and detection.

A. Bosonic EPR state

Consider a bosonic model on a lattice of N sites with
annihilation (creation) operators b; (b}L) defined on each site i

that satisfy the canonical commutation relation [b;, ]] = ;).
Defining the normalized local number states for individual
sites in H‘Il(z),

(b
VM

we can write the EPR state in the doubled Hilbert space as

N 00
IEPR) = (X) (Z IM;) ® IM,-))

i=1 \M=0

N
= exp (Z b ® bj) 0),

i=1

IM;) =

107 , (.1

(5.2)

where |0) = ®§V:  10;) ® 0;) is the vacuum state. Note that
this state is not normalizable, a feature unique to bosonic
systems due to their infinite-dimensional local Hilbert space.
However, in the presence of U (1) symmetry, the projection of
this state into each charge sector is normalizable. Expanding
the exponential in the second line of Eq. (5.2), we find an
infinite tower of states spanned by

i
N+M—1 (Zb ®b) 1) (5:3)

which are normalized states with fixed boson number 2M.

EPR),, =
M! (
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B. Bose-Hubbard models

Now we are ready to construct a bosonic many-body bi-
layer model that realizes this infinite tower of states. Consider
the following bilayer Bose-Hubbard model

H=H QLI +I1QH, +Hi (5.4)

with
Z(r,,b*b +Hc)+ZUn(n,— ),

(5.5)
+Z(ru b, +HC)+ZUn(n,— 1),

where n; = bl. b; is the number operator, #;; are nearest-
neighbor hoppings which in general can be complex, and U;
is the onsite interaction strength. The Hamiltonian Eq. (5.5)
conserves the boson number M = ). n; in each layer. One
choice of interlayer coupling such that |EPR) is an eigenstate
is
Hiz =)L2(ni®]l—]l®ni)2, (5.6)
which explicitly penalizes differences in particle num-
ber between corresponding sites in different layers. It is
then straightforward to show, e.g., using Eq. (2.7), that
‘Hi> |EPR) = 0, such that Eq. (2.9) is satisfied with £ = 0.
The hopping terms in the two layers are related by complex
conjugation with a minus sign, and thus become the same if
1;; is purely imaginary. When ¢;; is real, the relative minus sign
can be partially removed on bipartite lattices with sublattices
A and B by performing a chiral transformation on bosons in
one of the layers,

C:I1®b;— —-1®b; forieB. 5.7

This transformation commutes with 7{; and 7, but changes
the sign of the hopping term in H;:
CHaC == t;;(bjb; +He) — ZUn (ni = 1).
(ij)
The C-transformed EPR state

N
C |[EPR) = exp (Z £bl ® bf) 0},

i=1

(5.8)

(5.9)

where & = +1 (—1) for i € A (B), and the associated U (1)
tower of states,

M
1
C|EPR),, = (Z&b%b*) 0), (5.10)

M! (N+M l) i1

are then eigenstates of CHC.

To visualize the U (1) scar tower of CHC, we perform an
exact diagonalization study. For practical reasons, we limit the
number of bosons to a maximum of M, per layer, i.e., we
consider the C-transformed version of the truncated EPR state

N+M-—1 EPR)
M M

(5.11)

Minax

[EPR)g1r,,,. = DN, Myiar) Y
M=0

with a normalization factor of I'"(NV, My.x) = W For
Mmax

the numerical study, we set Mp.x = 3; we then expect four
EPR scar states with 0 < M < 3. We consider a bilayer
square lattice where each layer is of dimensions (L, L) =
(3,2). The site-dependent Hubbard interaction U; and hop-
ping matrix elements ¢;; are uniformly drawn from the interval
[0.9,1.1] while the interlayer interaction strength A = 1.
Since the states |EPR),, described by Eq. (5.3) are eigenstates
of Eq. (5.4) with the same energy, we numerically scrutinize a
slightly modified Hamiltonian by adding a chemical potential
to Eq. (5.4) so that the newly designed Hamiltonian

N
7—[+u2ni®]l+ll®n,-,

i=1

(5.12)

with u = 1.0, hosts a tower of EPR scars with equal energy
spacing.

In Fig. 5(a), we plot the overlap between Eq. (5.11) and
each eigenstate of the bilayer system as a function of en-
ergy. The four scars with boson numbers 2M (M =0, 1, 2, 3,
with data from different sectors plotted in different colors)
are clearly visible and are located at energies uM. Note
that the overlap of the scar states with C |EPR).; increases
monotonically with particle number, since the total number
of configurations grows as more bosons are added. We also
compute the entanglement entropy for bipartitions of types I
and II in Figs. 5(b) and 5(c), respectively. As in Secs. III and
IV, the bipartition dependence of the entanglement entropy
characteristic of EPR scars is again clearly visible.

We close this section by summarizing two alternative
parent Hamiltonians for EPR scar states in Bose-Hubbard
systems. We present these Hamiltonians assuming a bipartite
lattice so that hoppings of the same sign can be used in both
layers; the relevant scar state is then the C-transformed EPR
state.

The first parent Hamiltonian we consider is defined by

== 1;(b]b; +Hc)+UZn(n, -
(ij)

=H,
Hi, = =2U Zni X n;.

(5.13)

This is simply a system of two identical Bose-Hubbard lay-
ers coupled by an interlayer density-density interaction. The
hopping terms in H; and H, cancel when acting on the state
C |[EPR); however, the interaction terms do not as they are
invariant under C. However, the coefficient of the interaction
term in | is chosen such that it cancels the intralayer inter-
action terms on applying Eq. (2.7):

<7—l1 +H; 20 ) n,?)c [EPR) = —2U ) "n,C [EPR).

(5.14)

The leftover term is just a chemical potential that is fixed
within each U(1) charge sector. Therefore the states in the
infinite U(1) C-EPR tower Eq. (5.10) are eigenstates of the
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FIG. 5. Bose-Hubbard bilayer system on a square lattice. Results shown are from exact diagonalization of CHC [see Egs. (5.4)—(5.7)] for
two square-lattice layers of size (L., L,) = (3, 2), for a total of 2N = 12 sites. U; and t;; are uniformly drawn from the interval [0.9, 1.1] while
the interlayer interaction A = 1. The chemical potential i = 1.0 is responsible for the position of the four scars in the energy spectrum [see
Eq. (5.12)]. (a) The overlap between the EPR scar C |[EPR),.; [see Eq. (5.11)] and each energy eigenstate. Each M sector contains exactly one
scar state. (b) Entanglement entropy utilizing the the type-I bipartition shown in the inset for M = 0, .. ., 3. The respective single scar state in
each M sector is identified with a closed square highlighted by a circle. (c) Same as in (b) but with a type-II bipartition.

Hamiltonian defined by Eq. (5.13):
HC |EPR),; = —2UMC |[EPR),, . (5.15)

The second parent Hamiltonian we consider is defined by

Hi=—Y t;(blb; +He) +U Y min; — 1)

(i) i
A
+3 Z (@] + 7]
= Ha,
Hio=—1) (b @b +b; QD).

(5.16)

In this case, the layers are coupled by an interlayer tunneling,
which is present in experimental realizations of Bose-Hubbard
bilayers [80]. The U (1)-nonconserving term  3°,[(b])? + b?]
in both layers is necessary to retain C |[EPR) as an eigenstate
in the presence of interlayer tunneling. Such pair creation-
annihilation Hamiltonians can be engineered, for example,
in photonic [81] and atomic [82] systems using a coherent
state of another species of bosons that can be coherently
converted into a pair of b; bosons. Since the operators b; and
bl’ are real in the Fock basis, mapping H;, onto a single layer
using Eq. (2.7) yields —2 Zi[(bj )* + b?], which then cancels
against the corresponding terms in H;(2) when H is applied to
C |EPR). Note that the model (5.16) conserves the parity of the
total number of bosons—thus, there are two EPR scar states
corresponding to the projection of C |[EPR) into each parity
sector.

VI. CONCLUSION

In this work, we elaborated on a construction [43] in which
maximally entangled EPR states between two copies of a
quantum many-body system give rise to scar states with a dis-
tinctive entanglement structure. We applied this construction
to systems of spins, fermions, and bosons and demonstrated
that it can be used to obtain several well-known examples of

scar states, including the towers of states in the spin-1 XY
[10] and Fermi-Hubbard [15,17,19,20,48] models. We also
demonstrated a qualitatively distinct infinite tower of states in
number-conserving bosonic models.

Our work motivates several directions of future research.
One direction is to apply the construction to constrained de-
grees of freedom such as anyons and dimers, the latter of
which can be realized experimentally in systems of Rydberg
atoms [83,84]. Our results on bosonic systems also raise the
possibility of finding scar states in Bose-Hubbard bilayers
[80] or multispecies mixtures. An important concern in ex-
perimental realizations is the ability to prepare a state having
large overlap with the EPR state for a subsequent quantum
quench, which reveals coherent dynamical signatures of these
scar states [43]. A variety of state preparation protocols are
possible depending on the nature of the experimental appa-
ratus. For example, in hybrid analog-digital setups such as
the one detailed in Ref. [85], the EPR state can be prepared
using digital gates before performing an analog quantum
quench. An alternative possibility is to prepare the EPR states
adiabatically using an appropriately engineered Hamiltonian.
Another intriguing option is to use nonunitary methods, e.g.,
as described in Ref. [86].
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FIG. 6. Heisenberg spin-1/2 bilayer system on a square lattice. (a) Overlap |(E,|C|EPR)|? between the EPR scar and each eigenstate |E,,)
of Eq. (A1) as a function of energy. The full EPR scar (A4) is projected into each nonzero magnetization sector in the range [—N, N] in steps of
2 with N = 9 leading to N 4 1 = 10 scars. Each of the two layers is of size (L., L,) = (3, 3) (see inset). (b) The von Neumann entanglement
entropy S*N utilizing the bipartition given in the inset within the magnetization sector S5, = +5 where the single EPR scar is denoted with
a square. (c) The same as in (b) with a different bipartition to demonstrate that the EPR entanglement scaling depends on the chosen system
bipartition. Here we choose a cut (see inset) that does not cut the interlayer interaction H,.

APPENDIX A: BILAYER SQUARE-LATTICE HEISENBERG
MODEL: U(1) SYMMETRY

To emphasize that the number of EPR scars does not de-
pend on the geometry but rather on the symmetries of the
Hamiltonian, we study in this Appendix the Heisenberg model
on a square lattice utilizing our bilayer prescription. For this
example, we take the Hamiltonian of the form

H=H QI +1Q® H, + Hiz, (Al)
where
MHi=) Jii(STS; +S7SH+ Y AiSiss,
(i) {ij)
Moo= Jy(STS;+S7SH =D ASISS, (a2

(i) (i)

Hin=1) Si®S:

Notice that, unlike in Eq. (3.18), we assume interlayer Ising—
rather than Heisenberg—coupling. The minus sign from the
construction relating the single-copy Hamiltonians is partially
gauged away under the transformation

C:I®SF— -1®S" forieB, (A3)

which acts on one sublattice (B) of one layer. Consequently,
the intralayer couplings J;; in Eq. (A2) appear with the same
sign, while the parameters A;; in the two layers are still
required to appear with opposite signs. Similarly to the case
described in Sec. III B, the C-transformed EPR state is

1 X .
CIEPR) =5 Q)10 ® [0;) + (=1)' 1) ® [1).
i=1

(A4)

The Hamiltonian Eq. (A1) has two independent U (1) sym-

metries associated with S5/ = 3", S*® T and §57 = Y, I ®

S?. However, we stress that despite the two independent

symmetries present in Eq. (A2), only the U(1) symmetry

associated with the total S5, = %! + S57 is relevant for the
tower of scar states.

To visualize this tower of EPR scar states we perform an
exact diagonalization study. To fully resolve all scar states,
we add to Eq. (A1) a term proportional to S5, = 55! 4 S2 to
guarantee that each of the N 4+ 1 EPR scar states arising from
projecting Eq. (A4) into different S, sectors has a distinctive
energy offset. Specifically, we diagonalize the Hamiltonian

H+h) (SRI+I®S). (AS)
with H defined in Eq. (A1). We study a system of 2N = 18
spins on a square lattice bilayer, where each layer is of size
(Ly, Ly) = (3, 3) [see Fig. 6(a) inset]. The intralayer exchange
couplings J;; and A;; are uniformly drawn from the interval
[1.0, 2.0] to break the 7 /2 rotational symmetry of the square
lattice. The interlayer coupling and the magnetic field are set
toone,ie, A=1landh = 1.

In Fig. 6(a) we compute the fidelity |(E,|C|EPR)|? between
each energy eigenstate |E,) of the Hamiltonian (AS5) and the
EPR state (A4). Due to the correlated nature of the EPR state,
the total magnetization S5, of the states in the scar tower is
restricted to values

Siy = (&1, £3, £5, £7, +9} (A6)

associated with N + 1 = 10 scar states projected into each
nonzero total magnetization sector as seen in Fig. 6(a). In
analogy with the bilayer system discussed in Sec. IIIC we
clearly see that the entropically most likely allowed magne-
tization sectors S, = %1 have the highest total weight, as
should be expected from the fact that C |EPR) is an equal
amplitude superposition of allowed spin configurations.

We study the entanglement properties of the eigenstates in
Figs. 6(b) and 6(c) for two different bipartitions, types I and 11,
respectively (see insets and Fig. 1) in the Sf,, = 45 sector. The

single scar state associated with S5, = 45 is highlighted by a
closed purple square. In Fig. 6(b), the entanglement entropy of
the scar state with respect to the type-I cut takes the maximum
value allowed by the dimension of its S, sector, consistent
with the discussion in Sec.II. In comparison, Fig. 6(c) utilizes
a type-II cut for which the scar state appears as a state with
anomalously low entanglement. The domelike structure for

each set of states with fixed S is clearly visible.
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% 1.0 \\\\ FIG. 8. Square and triangular lattices for the bilayer systems.
\\\\\ (a) The N = 7 single layer triangular lattice that in its doubled form is
r\\\\\\ utilized for the SU(2) symmetric spin-% Heisenberg bilayer system
~~\_\\\§ discussed in Sec. III C while panel (b) shows the (L., L,) = (3, 3)
0.5 square lattice that is used for the U(1) symmetric spin-% bilayer
system scrutinized in Appendix A. (c¢) The (L., L,) = (3, 2) square
lattice that the Bose-Hubbard bilayer model presented in Sec. VB
0 | lives on. Links representing the periodic boundaries are given by
'8.0 0.2 0.4 0.6 0.8 1.0 dashed lines. Sites number in connection with couplings listed in

energy spacing ratios r

FIG. 7. Heisenberg spin-1/2 bilayer system on a square lattice.
Probability distribution P(r) for the energy level spacing parameter
r from exact diagonalization. The curves represent the analytical
predication from Wigner-Dyson statistics (green) and Poisson statis-
tics (magenta). We also find the average level spacing parameter
(r) =~ 0.528, which is near the GOE predication (r)gog =~ 0.53 indi-
cating a thermalized system. The parameters used here are the same
as in the data shown in Fig. 6, i.e., a square lattice bilayer of size
2N = 18 with layer dimensions (L., L,) = (3, 3), restricted to the
magnetization sector Si, = 5. The results are averaged over 2000

independent disorder (J;;, A;; € [1.0, 2.0]) realizations.

We point out that the 2D bilayer Heisenberg model in
Egs. (Al) and (A2) is nonintegrable with and without ran-
dom intralayer exchange couplings. To provide evidence for
this, we study the level statistics. Specifically, we utilize the
same coupling parameters J;;, A;; and A as before and fix the
magnetization to S5, = +5. In Fig. 7, we plot the probability
distribution P(r) of the ratio r between the spacings of adja-

cent eigenvalues of Eq. (A1), defined as

;o= min(En-H - Ena En+2 - En+1)
" max(E,11 — E,, Eyqp — En+1).

Here the {E,} form an ordered list of energy eigenvalues.
We compute the mean level-spacing ratio to be (r) = 0.528,
which is in excellent agreement with the GOE [6], which
according to random matrix theory has (r)gog &~ 0.536. We
stress that this is markedly different from the Poisson dis-
tribution value (r)poisson ~ 0.386 [58] found in integrable
(localized) models.

(AT)

Tables II, III, and IV give information on the parameters used in the
numerics.

APPENDIX B: ADDITIONAL INFORMATION ON THE
SPIN-% BILAYER MODELS AND THE BOSE-HUBBARD
MODEL

In this Appendix we provide the full set of parameters for
the spin-% models scrutinized in Sec. III C and in Appendix A
and the Bose-Hubbard model in Sec. V B.

The numerics presented for the SU(2) symmetric spin-%
bilayer model in Sec. III C are obtained from a system which
consists of two N = 7 triangular lattice layers [see the inset in
Fig. 3(a) or Fig. 8(a)]. The intralayer couplings J;; acting on a
pair of sites (i, j) are given in Table II. Labeling of the sites is
shown in Fig. 8(a). The Heisenberg-type interlayer interaction
is given by A = 1.

In Appendix A we scrutinize another spin-% model, namely
a Heisenberg model living on two square lattice layers of
size (Ly,Ly) = (3,3). The two layers interact via an Ising
interaction resulting in a bilayer model with U(1) symme-
try. The intralayer interaction couplings J;; and A;; [pairs of
sites (i, j) are as shown in Fig. 8(b)] for the U (1) symmetric
model are uniformly drawn from the interval [1.0,2.0], and the
specific values are given in Table III. The interlayer coupling
parameter X is setto 1.

In Sec. V B we present a Bose-Hubbard bilayer model that
hosts an infinite U (1) tower of scar states. We offer numerical
data on a bilayer system where each layer is a square lattice of
size (Lx, Ly) = (3, 2) utilizing periodic boundary conditions
[87]. The hopping parameters #;; and the onsite Hubbard in-

TABLE II. Random intralayer couplings J;; for the SU(2) symmetric spin-% Heisenberg bilayer model on the triangular lattice. Shown are
all coupling parameters J;; uniformly drawn from the interval [0.9,1.1] for each of the 12 links, i.e., pairs of sites (i, j) as depicted in Fig. 8(a).

Pair (i, j) Coupling J;; Pair (i, j) Coupling J;;
(1,0) 1.02907 4,3) 1.03556
(2,0) 1.06241 (5,2) 1.04165
(3,0) 0.99934 (5,3) 1.07462
3,1 1.04354 (6,3) 0.94805
3,2) 1.05231 (6,4) 0.958189
4,1) 1.07878 (6,5) 0.921175
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TABLE IIl. Random intralayer couplings J;; and A;; for the U (1) symmetric spin—% Heisenberg bilayer model on the square lattice. Shown
are all coupling parameters J;; and A;; uniformly drawn from the interval [1.0,2.0] for each of the 12 links, i.e., pairs of sites (i, j) as depicted

in Fig. 8(b).

Pair (i, j) Coupling J;; Coupling A;; Pair (i, j) Coupling J;; Coupling A;;
(1,0) 1.09727 1.76540 5.4) 1.23907 1.64768
(2,1) 1.54445 1.52591 (6,3) 1.90745 1.22202
(3,0) 1.45301 1.31678 (7,4) 1.24303 1.58075
4,1) 1.12546 1.68808 (7,6) 1.20747 1.08961
(4,3) 1.44898 1.13261 (8.5) 1.12325 1.45412
(5,2) 1.06910 1.89085 8,7 1.88908 1.55184

teraction U; are uniformly drawn from the interval [0.9,1.1],
and the specific values are given in Table IV. Pairs of sites
(i, j) are as shown in Fig. 8(c).

APPENDIX C: GENERALIZED FERMION CONSTRAINTS

1. Deriving the EPR constraints

In this Appendix, we give an explicit example of how
the constraints in Egs. (4.26)—(4.30) are derived and how
the action of H on the EPR state is constrained to a two-
dimensional EPR scar subspace unless an additional condition
is imposed. As our example, we will derive the third constraint

J

R A

in Eq. (4.27) on the spin-orbit coupling constants tl.zl. Con-
sider the Hamiltonian under the 7 transformation:

SN
JTHT‘L]T = Zl; Ci,TCj,J, + (ti1j\'¢)*cj,ici,T- (C1)
iJ
In the following derivation, we will use the following forms
of Eq. (2.7):

ciy [EPR) = Fic/, [EPR)
. (C2)
¢}, [EPR) = Fic;y [EPR),

which follows from applying Eq. (2.7) to the ¢ fermions and
rewriting the result in terms of ¢ fermions We now give a step-
by-step procedure for determining the constraints on ty:

aHWx [EPR) = ) [t}¥e] el — (]} cire; 1 [EPR)
iJ

=7 Z[ti.Til‘FTc%chT - (ti‘T,‘i)*fTCi,TC;T] |EPR)
—

J
==Y [t} Frc)icin + @) Fycl i s 1 [EPR) + ) (t14)" Fy [EPR)
i,j i

(€3)

== > I+ @)1 Fyel ¢t [EPR) + ) (1]V)* F; [EPR) .
ij i

In the first line above we anticommuted the second set
of fermionic operators. In the second line we applied the
identity Eq. (C2) and moved the parity operator to the left
using the relations [F}, ¢;.y (c] )] = 0 and {Fy, ¢ip (] )} =

(

0. In the third line, we normal ordered the second term,
giving rise to an extra term ~F; |EPR). To arrive at the
constraint, we set the first term in the final line to zero
and find that (tiEi + tiﬁT) = 0, which matches the main text.

TABLE IV. Random hopping strengths #;; and onsite Hubbard repulsion U; for the U(1) symmetric Bose-Hubbard bilayer model on the
square lattice. Shown are all hopping parameters #;; and onsite Hubbard interaction strength U; uniformly drawn from the interval [0.9,1.1]
for each of the 12 links, i.e., pairs of sites (i, j) as depicted in Fig. 8(c). Pairs of sites (i, j) with i > j refer to links representing the periodic

boundaries [see dashed links in Fig. 8(c)].

Pair (i, j) Hopping ¢;; Pair (i, j) Hopping ¢;; Site i Coupling U;
0,1) 1.08498 0,3) 0.98946 0 1.07920
1,2) 1.04128 (3,0 0.90974 1 1.03249
(2,0) 1.00495 1,4) 1.05341 2 1.08896
3.4) 0.97037 4.1) 1.04650 3 1.01060
(4,5) 1.07180 (2,5) 0.99541 4 1.00565
(5,3) 0.90285 (5,2) 1.06707 5 0.90678
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When this constraint is satisfied, we find that 7M™V 7 maps
|[EPR) to its parity partner ' |EPR) (up to a constant). To
obtain the EPR state as a true eigenstate, we must addi-

tionally demand that ), tJi = 0. All other constraints found
in the main text are derived in a similar manner to the
above.
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