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1. Introduction

Dynamic macroeconomic models are generally built on the assumption of continuous-set choices. For example, the agent
can distribute wealth in any proportion between consumption and savings or she can distribute time endowment in any
proportion between work and leisure. But certain economic choices are discrete: the agent can either buy a house or not,
be either employed or not, either retire or not, etc.' The progress in modeling discrete choices is still limited because such
choices are more challenging to characterize.

In the present paper, we introduce a deep learning classification (DLC) method that can be used to solve a broad class of
dynamic economic models with both continuous-set and discrete-set choices. To solve for continuous-set choices, we apply
a projection-style method, specifically, we parameterize decision functions with a deep neural network, and we find the
coefficients of the neural network (biases and weights) to satisfy the model’s equations. Our main novelty is a classification
method for constructing discrete-set choices. We define a state-contingent probability function that, for each feasible discrete
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choice, gives the probability that this specific choice is optimal; we parameterize the probability function with a deep neural
network; and we find the network parameters to satisfy the optimality conditions for the discrete choices.

As an illustration, let us consider the image recognition problem, which us a typical classification problem in data sci-
ence. For example, a machine classifies images into cats, dogs and sheep. We parameterize the probabilities of the three
classes with a deep neural network. The machine is given a collection of images and is trained to minimize the cross-
entropy loss (which is equivalent to maximizing the likelihood function) that ensures the correct classification of images;
see Goodfellow et al. (2016) for a survey of classification methods in data science.

Our classification method for constructing discrete choices in economics is analogous to the above image-recognition
analysis. For example, in a model with three indivisible labor choices, we use a deep neural network to parameterize the
probabilities of being full-time employed, part-time employed and unemployed.? The machine is given a collection of em-
ployment choices conditional on state and is trained to maximize the likelihood function that those choices are optimal.
The same idea can be applied for analyzing the models with retirement, default, house purchase, etc.

However, the analogy between the image recognition and our solution technique is not exact. Image recognition is the
skill that human beings instinctly know how to do, so that software is trained on a set of images that human being first
identified as matching or not matching. In our application, the software is trained to do something that human beings do
not instinctly know how to do, namely, to construct matched vectors of independent and corresponding dependent variables
that satisfy a set of model’s equations.

The classification solution method we propose can be used to solve small-scale representative agent models. However,
the power of deep learning consists in its ability to solve large-scale applications that are intractable with conventional
solution methods. To illustrate these remarkable capacities of the proposed DLC method, we solve a large-scale application,
specifically, a version of Krusell and Smith (1998)’s model in which the agents face indivisible labor choices.

The studied model features heterogeneous agents, incomplete markets and borrowing constraints and is computationally
challenging even in the absence of discrete choices. The state space of the studied model may include thousands of state
variables of heterogenous agents and is prohibitively large. To make the model tractable, Krusell and Smith (1998) construct
a reduced state space of each agent by considering her own state variables and one or few aggregate moments of the wealth
distribution; see Den Haan (2010) for a review of earlier techniques for reducing the state space. Furthermore, several recent
papers use linearization and perturbation to simplify the analysis of equilibrium in heterogeneous-agent models, including
Ahn et al. (2018); Boppart et al. (2018); Childers (2016); McKay and Reis (2016); Mertens and Judd (2017); Reiter (2010);
Winberry (2018), (Bayer and Luetticke, 2020); see Reiter (2019) for a thoughtful discussion of that literature.

A distinctive feature of our DLC method is that it does not rely on moments, linearization, perturbation or any other
pre-designed reduction of the state space but works with the actual state space consisting of all individual and aggregate
state variables - we let deep neural network to choose how to condense large sets of state variables into much smaller
sets of features. Our code is written using Google's TensorFlow platform - deep learning software that led to many ground
breaking applications in data science - and is it tractable in models with thousands of state variables.

The studied indivisible labor model was analyzed in important contributions of Chang and Kim (2007) and
Chang et al. (2019). The former paper extends Krusell and Smith (1998)’s analysis to include indivisible labor choice by
constructing value functions of employed and unemployed agents; their approach reduces the discrete choice problem to
the analysis of two continuous-choice value functions. The latter paper offers a more simple and tractable way of modeling
indivisible-labor choice by discretizing the first-order conditions of the associated divisible labor model, namely, it assumes
that the labor is divisible and that the agent decides on how many hours to work but if the chosen hours fall below a cer-
tain level, the agent becomes unemployed. With that assumption, the model with discrete choices is reduced to a familiar
setup with continuous labor choices and occasionally binding constraints. We go a step further and solve for entirely dis-
crete choices by using classification techniques instead of relying on some continuous choice representations. Our decision
functions tell us when the agent switches from one discrete choice to another, conditional on the individual and aggregate
states.

We solve three numerical examples: a version of Krusell and Smith (1998)’s model with continuous choices (i.e., divisible
labor), a version of that model with continuous-discrete choices (i.e., indivisible labor) and the corresponding representative-
agent model. We find that the introduction of indivisible labor helps us correct some shortcomings of the divisible labor
model in reproducing the data, in particular, the data on labor markets. One improvement relatively to empirical data is
that the volatility of labor increases relatively to the output; in that respect, our findings are similar to the indivisible labor
framework of (Hansen, 1985; Rogerson, 1988). Another improvement is a reduction in the correlation between labor and
wages which is excessively high in the representative-agent model with divisible labor; this implication is an outcome of
both the assumptions of indivisible labor and heterogeneous agents. As for distributional implications, the predictions of our
heterogeneous-agent model with indivisible labor are similar to those of the models studied by Chang and Kim (2007) and
Chang et al. (2019). First, the assumption of indivisible labor increases the degrees of inequality, helping to bring the model
closer to the data. Furthermore, unlike in the divisible labor model, the degrees of income and wealth inequalities in the
indivisible labor economics are less sensitive to variations in the coefficient of risk aversion. However, we conclude that

2 The earlier literature on indivisible labor (e.g., Rogerson (1988) and Hansen (1985)) convexifies the choice set by introducing lotteries, i.e., they assume
that the agent chooses the probability to be employed and unemployed. In our analysis, we also construct probabilities but such probabilities have totally
different meaning: they indicate which of the available discrete choices is most likely to be optimal and hence, is selected by the agent.
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the assumption of indivisible labor alone is not sufficient to produce empirically relevant degrees of income and wealth
inequality in the model. We should emphasize that this is a common outcome of the Krusell and Smith (1998) type of
model (without assuming heterogeneity in discount factors).

Our DLC method is related to recent papers on deep learning, including Duarte (2021), Villa and Valaitis (2019),
Fernandez-Villaverde et al. (2018), Azinovic et al. (2020), Lepetyuk et al. (2020) and especially, Maliar et al. (2018, 2019,
2021). However, this literature does not analyze models with discrete choices, which is the main subject of the present
paper. From the other side, there are numerous methods in econometrics for estimating discrete-choice models but these
methods are limited to statistic applications; see Train (2009) for a review. An exception is an endogenous grid method
with taste shocks by Iskhakov et al. (2017) that is designed to deal with discrete choices in dynamic environment; see also
Iskhakov and Keane, 2021 for an application of this method for estimating a partial equilibrium model with discrete labour
supply. In the context of Carroll (2005)’s analysis, these papers suggest to apply logistic smoothing to the kinks by transfer-
ring the problem into the choice probability space via the taste shocks. There is an important conceptual difference between
our analysis and those papers, namely, we do not attempt to smooth the kinks but instead to accurately approximate such
kinks by using the-state-of-the-art deep learning classification method.

Finally, our solution method is related to the fields of supervised, unsupervised and reinforcement learning from machine
learning literature. First, nonlinear regression equations, which we estimate using artificial data, can be viewed as a gener-
alization of canonical supervised learning; see Maliar et al. (2021) for a discussion. Second, the decision and value functions
are not known in economic models, so we can also interpret our solution method as unsupervised learning; such inter-
pretation is advocated in Azinovic et al. (2020) Third, our solution method approximates not only the decision and value
functions but also the ergodic set, so it has a direct connection to reinforcement learning; see Goodfellow et al. (2016) for
a review of supervised and unsupervised learning in the computer science literature including deep learning; see Sutton
and Barto (2018) for a review of reinforcement learning literature, and see Powell (2008) for a review of the related field of
approximate dynamic programming.

The rest of the paper is as follows: In Section 2, we set up the Krusell and Smith (1998) model with divisible labor
choice; in Section 3, we solve the model with indivisible labor choice; in Section 4, we analyze the model with full- and
part-time employment; in Section 5, we compare the aggregate and distributional predictions of divisible and indivisible
labor models; and finally, in Section 6, we conclude.

2. Krusell-Smith model with divisible and indivisible labor choices

We consider a version of Krusell and Smith (1998)’s model with three different sets of labor choice: divisible labor in
which the agent can work any number of hours, indivisible labor in which the agent chooses between employment and
unemployment, and a version of indivisible labor model in which the agent can work part time and full time.

Consumer side The economy consists of a set of heterogeneous agents i =1,..., ¢ that are identical in fundamentals, but
differ in dimensions of productivity and capital holdings. The agents experience idiosyncratic productivity shocks and the
economy experiences aggregate shock. Each agent i solves

o]

~max _Ep Z,B‘u(ci,ni) v
{Clr'kltﬂ’n;}t:n t=0
s.t. Cg + k£+] = Rtki + W[U{,n{», (2)
ng € N, (3)
In Ui+1 = pyInv} + oy€l with € ~ N'(0, 1), v
£+1 z E’ o

where c[, n{, k{ and v{ are consumption, hours worked, capital and idiosynratic labor productivity; B € (0,1) is the discount
factor; p, € (-=1,1) and o, > 0; and initial condition (k{), vb) is given. The capital choice is restricted by a borrowing limit
k < 0. The three different versions of the model are distinguished by the set of allowable labor choices N. We normalize the
idiosyncratic productivity levels to one by ZfZI vy =1 for all t, so that they have no impact on the aggregate productivity
level.

Production side

The production side of the economy is described by a Cobb-Douglas production function exp (zt)kﬁ‘*lht]*“, where k; =
Zle ki is aggregate capital, hy = Zle vin; is aggregate efficiency labor, and z is an aggregate productivity shock following
a first-order autoregressive process,

Inze 1 = p;Inze + 0,¢; with €, ~ N (0, 1), (6)
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where p; € (—1,1) and o, > 0. The interest rate R; and wage W; are given by
R =1-d+zakh!=* and W, =z (1 — 0)k*h;®, (7)

where d € (0, 1] is the depreciation rate.
Intertemporal choice
The Kuhn-Tucker condition of the agent’s problem (1)-(5) with respect to capital is

pisi = 0, (8)

where 8{ = k{ 1 —k >0 is the distance to the borrowing limit, and ,u,{ > 0 is the Lagrange multiplier associated with the

borrowing constraint (5) which satisfies the Euler equation,
i P i i
e = U (CL Tl[> - ﬁEt[lh <C§+1, nH])RHl]s 9)
where u; denotes a first-order partial derivative of function u with respect to the first argument. Whenever 8{ > 0, the agent
is not at the borrowing limit, i.e., kiﬂ > k, so the Euler equation must hold with equality leading to M; =0, and whenever
the Euler equation does not hold with equality, it must be that the agent is at the borrowing constraint 8{ =0.
The optimality conditions for labor
To characterize labor choice, we assume that the utility function in (1) takes the form
v -1 L—m"-1
u(c,n) = +B ( )
1-vy 1-n
where y, n > 0 and L is the total time endowment which we normalize to L instead of the conventional normalization to 1
because it helps to calibrate the divisible and indivisible labor models to the same steady state.

We consider three versions of the model that differ in the set of allowable labor choices n; € N: i) the divisible labor
model, ii) indivisible labor model and iii) full- and part-time employment model.

i)  divisible labor model N =10,1],
ii)  indivisible labor model N=1{0,n},
iii) three-state employment model N = {0, n,n},

: (10)

In the divisible labor model i), the labor choice is characterized by a FOC of (1)-(5) with respect to labor, which, under
the utility function (10), is

- i7-1/n
) ¢ YWi
m:L_['lgf] . (11)

In the indivisible labor model ii), the agent chooses to be employed (ni = 1) or unemployed (n{ = 0) depending on which
of the two choices leads to a higher continuation value, i.e.,

np =7 if VE = max {VE, vV} and n} = 0 otherwise. (12)

where VE and VU denote value functions of the agent in the employed and unemployed states, respectively.
Finally, in the three-state model iii), the three employment states, n; =7, n; =n and n; =0, correspond to full-time
unemployment, part-time employment and unemployment, respectively,

ni =7 if VFT = max {V”, VFT,VPT}, ni =n if VT = max {VU, VFT,VPT} and ni = 0 otherwise, (13)

where VFT, VPT and VU denote value functions of full-time employed, part-time employed and unemployed agents, respec-
tively.

3. Deep learning algorithm for divisible labor model

In this section, we first describe a collection of machine learning techniques for analyzing large scale dynamic economic
models. We then combine these techniques into a deep learning solution algorithm for solving large scale dynamic economic
models. We finally apply the developed deep learning algorithm to solve a version of Krusell and Smith (1998)’s model with
divisible labor.

3.1. The ingredients of the deep learning analysis for continuous choice

The state space of Krusell and Smith (1998)’s model includes the state variables of ¢ heterogenous agents, as well as
aggregate productivity, ({ k{, vi}’Z zt). In total, this is 2¢ + 1 state variables; for example, with ¢ = 1000, the state space has

1’
2001 state variables. To deal with so large dimensionality, we rely on a combination of techniques introduced in Maliar et al.
(2018, 2019, 2021), including: i) stochastic simulation that allows us to restrict attention to the ergodic set in which the so-

lution “lives” - this technique is not specific to deep learning but it help reduce the size of the solution domain under any

4
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Fig. 1. Hypercube versus hypersphere.
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Fig. 2. Artificial neuron and neural network.

approximation function; ii) multilayer neural networks that perform model reduction and help deal with multicollinearity;
iii) a (batch) stochastic gradient descent method that reduces the number of function evaluations by operating on random
grids; iv) a Fischer-Burmeister function that effectively approximates the kink; v) and most importantly, “all-in-one expec-
tation operator” that allows us to approximate high-dimensional integrals with just 2 random draws (or batches) on each
iteration. We implement the numerical method using TensorFlow - a Google data science platform that is used to facilitate
the remarkable data-science applications such as image and speech recognition, self driving cars, etc. Below, we describe
this methodology in more details. Later, we will augment this methodology to accommodate the indivisible labor model.

Ergodic-set domain

We solve the model on simulated series (ergodic set) instead of a hypercube-style domain used by the classical projection
methods (like the Smolyak method, see Maliar and Maliar, 2014). Under normally distributed shocks, stochastic simulation
typically have a shape of a hypersphere (hyperoval), like the one shown in Fig. 1.

The ratio of a volume of a hypersphere to the volume of an enclosing hypercube is an infinitesimally small number in
high-dimensional applications; for example, for a 30-dimensional case, this ratio is of order 10~; see Judd et al. (2011) for
a discussion. Thus, by solving the model on simulated series, we restrict attention to a relatively small ergodic set in which
the solution “lives” - this is the first technique that helps us deal with the curse of dimensionality.

Neural networks

We use neural networks for parameterizing decision and value functions instead of more conventional approximation
families like polynomial functions. Examples of an artificial neuron and a neural network are represented in Fig. 2a and b,
respectively.

In Fig. 1a, the circle represents an artificial neuron that receives 3 signals (inputs) x1, X, and x3. We construct a weighted
sum of the signals z = 6y + 01x1 + 65X, + O3x3, where 6, is a constant term called “bias” and 6y, 6, 03 are called “weights”.
We then apply an activation function 7(-) to the linear combination z to obtain output 7 (z) = 7(6g + 01x1 + 02%3 + 63X3).
The coefficients 6; control the strength of a signal that is passed to the output.

In Fig. 1b, we combine multiple neurons into a neural network. Each neuron of the hidden layer receives a combination
of inputs 1, ., n (state variables in terms of our model); it aggregates these signals with some weights and a bias, applies
some activation function (linear or nonlinear transformation) and passes the resulting output forward. Similarly, the output
neuron collects the activated signals from the neurons of hidden layer, aggregates them with some weights and bias and
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sigmoid function
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Fig. 3. Sigmoid function.

transforms them with (possibly) another activation function to produce the final output (decision and value functions in
terms of our model). Thus, the neural network is a collection of nested linear and nonlinear polynomial functions to which
we apply nonlinear transformations. To our purpose, it is a flexible approximating family characterized by a vector of weights
and biases in the same way as a polynomial function is characterized by a vector of polynomial coefficients. However, neural
networks may be more effective than polynomial functions for constructing approximations on unstructured data such as
collections of simulated points.

Activation functions

The activation function that we wuse in our benchmark experiments is a sigmoid function o (z)

; see Fig. 3.

__1 _
T 14e 7z T

l+e_90+91 Xq 192x2+...+(')nxn
The sigmoid function has two convenient properties: First, its derivative can be inferred from the sigmoid function it-
self 0/ (x) = 0 (x)(1 — o (x)) without using the operator of differentiation. Second, it maps a real line into a unit interval
o :R" — [0, 1] which makes it a natural candidate for approximating variables that are bounded between 0 and 1. There are
many other activation functions used in machine learning literature: (i) heaviside step function: 7(z) = 1,5¢; (ii) tanh (hy-
perbolic tangent) t(z) = gﬁ;gj: (iii) relu (rectified linear units): t(z) = max(0, z); (iv) leaky relu: r(z) = max(xz, z), k <0;
(v) maxout: 7(z) = max(aiz + by, ayz + b, asz + b3). It depends on a specific problem which activation function works best.
~ In our deep learning algorithm, we solve for two decision functions in terms of state variables, which are hours worked

1 1 . . . .
% and the fraction of wealth that goes to consumption % where wealth is defined as w; = Rek; + W;vin;. These two deci-
t

sion functions are parameterized by a sigmoid function

o (g0 + (Kot [k i)y 2:0)). (14)

1

where ¢(-) is a multilayer neural network parameterized by a vector of coefficients 6 (weights and biases), 0 (2) = 174=

1 .
is a sigmoid function which ensures that % and n; are bounded to be in intervals [0, 1] and [0, L], respectively, and ¢ is
t .
a constant term that we use to initialize the network. In addition, we parameterize the Lagrange multiplier w} associated
with the borrowing constraint using an exponential activation function

exp (o-+ ¢ (K vk [k ) 2:0)). 15)

The exponential activation function ensures that the Lagrange multiplier is always non-negative. Since the agents are iden-
tical in fundamentals, the above three 2¢ + 1-dimensional decision functions are sufficient to characterize the choices of all
¢ heterogeneous agents.

Model reduction

Our solution method aims at solving models with thousands of heterogeneous agents (and thus, state variables). The deep
learning analysis can deal with such a huge state space because neural networks possess a remarkable property of model
reduction. It condenses the information from a large number of inputs into a smaller number of neurons in the hidden lay-
ers, making it progressively more abstract and compact. In some sense, this procedure is similar to a photo compression or
principal component transformation when a large dataset is condensed into a smaller set of principal components without
losing essential information; see Judd et al. (2011) for a discussion of model reduction using principal-component analysis.

In some cases, neural networks can be more effective for approximating non-linear functions than polynomial functions.
For example, if we have 2001 state variables, a second-order polynomial function has about 2 millions of polynomial coeffi-
cients and yet it is not sufficiently flexible for approximating kinks. In turn, a neural network with two hidden layers, each
of which is composed of 32 neurons, has a comparable number of coefficients (weights and biases) but produces a far more
accurate approximation to kinks in the context of our model.
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Krusell and Smith (1998) proposed one specific model reduction method, namely, they approximate the distribution of
state variables with just one moment - the mean of wealth distribution m;. For their model, such model reduction works
extremely well because it turned out that the mean is a sufficient statistic for capturing essentially all relevant information
from the distribution, which reduces their state space to just four state variables (k{, v;,z[, me).

If Krusell and Smith (1998)’s model reduction is the most efficient representation of the state space, the neural network
is likely to find this reduction as well, as an outcome of training. However, the neural network will automatically consider
many other possible ways of extracting the information from the distribution {kl] v"l }f=] and condensing it in a relatively
small set of hidden layers. The output of the hidden layers may look like moments or some other statistics - we will not
always be able to understand how the machine learning handles the information in the hidden layers but this fact does not
prevent us from using model reduction in applications.

Casting the model into an objective function for deep learning

We form the objective function that minimizes the Euler-residual by minimizing the squared residuals in three model’s
conditions,

2
N — .q-1/n
. 2 i\~ i
c ; . c Wi
E@)=Exyy | YPB(1- S 1—pul )| +@n|ni-|L- L
wi B
.=y 2
lgE(Zm,ém)[(C;H) Reiq Et+1s6t+1] )
+ ZD-//» Y - M; s (16)
(ct)
where K = (kl, ey k“) and Y = (vl, ey v‘) are the vectors of individual state variables; z; is aggregate productivity; X;,; =
(etlﬂ,...,efﬂ) is the vector of individual productivity shocks; €, is the aggregate productivity shock; WfB is a Fisher-

Burmeister objective function

W@ b)y=a+b—+/a+ b2, (17)

whose solution to WFB(a, b) = 0 satisfies a > 0, b > 0 and ab = 0 and is equivalent to the solution to the Kuhn-Tucker condi-
tions (8) but it is differentiable. Finally, @, and @, are the two weights that reflect the relative importance of the different
terms in the objective function (for unit-free terms, we can set these weights to one). The objective function is constructed

1
so that by minimizing it with respect to the coefficients 6 of neural network, approximations for decision functions for %
t

wi, ni deliver us the solution.
All-in-one expectation operator
However, the constructed objective function E(@) is not convenient for numerical treatment because it contains a square
2
of the expectation operator [E (Zeoréen) [~]] nested inside another expectation operator E, y, ;,)[-]. Constructing two nested

expectation operators is costly if feasible at all because the inner expectation operator E(Em, GM)[-] has very high dimen-

sionality; in particular, if ¢ = 1,000, it amounts to a construction of 1,001 -dimensional integral. This task would be simpli-
fied enormously if we could combine the two expectation operators into one but this is not possible to do directly since by

2
e . 2
Jensen’s inequality we have E(Kth.Zz)[[E(EM,QH)[']] } +# E(Ktvyt-zt)E(2[+1,€[+1)[[.] ]-
Maliar et al. (2021) propose a simple but powerful technique, called all-in-one (AiO) expectation operator, that can merge

2
the two expectation operators into one. The idea is to replace the squared expectation function [E(Emfm)[']] under

one random draw (X;,q, €.,1) with a product of two expectation functions [E s e [-]] X [E S e [-]] under two
( t+1‘€t+1) ( t+]’€t+1)

uncorrelated random draws (Et’ 10 € +1) and (E{’Jr],et’ﬁr]). Since the two random draws are uncorrelated, the expectation

operator can be taken outside of the expectation function which allows us to re-write (16) as

2

. 2 iV i -1/n
o B cl ; , (ch) "W
BO) =E (e vz e [‘I’ ( —M,EJ—M)} +on | nf- | L-|
- -
Bl(d) TRl Zhern] [ B[ (@) R Bt
+ oy — Mt - | ¢ (18)

G ()"
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Thus, we are able to represent the studied model as an expectation function (18) across a vector of random variables
(Kt,Yt,zt, E{H,E;H, Z;jﬁl,eggl); see Maliar et al. (2021) for a discussion and further applications of the AiO expectation
operator.

Training: gradient descent, batches and parallel computing

We use a gradient descent method to train the model, i.e., to search for a vector of coefficients 6 that minimizes (18).
Given that (18) is an expectation function, we can bring the gradient operator inside by writing VyE(0) = VyE[& (w; 0)] =
E[Vgg(w; 9_)], where V, is a gra_dient operator, = (Kt, Y;, zt, E{H_, Et/+.1’ Ef/+1 e[”H) is a vector of all random variables, a_nd
&(-) is an integrand of expectation function (18) (i.e., the expression inside the curly brackets {-}). The latter expectation

function can be approximated by a simple average across Monte Carlo random draws E[Vy§ (w; 0)] ~ % ZL] V& (wn; 6),
where w; denotes a specific realization of the vector of random variables. Thus, the gradient descent method can be imple-

mented as
- , - 1
0«60 —-AVyE(@®) with VyE(O) ~ N,?_l Vo (wp; 0), (19)

where 0 and A are the parameter vector and learning rate, respectively.> The advantage of this representation is that we
implement a cheap computation of the gradient of the integrand instead of computing far more expensive gradient of the
expectation function. The modern data platforms such as TensorFlow and PyTorch can compute such a gradient using a
symbolic differentiation, which facilitates an the implementation of parallel computation.* Specifically, it allows to construct
N multiple realizations of w by using N batches (replications of the model) and to compute the expectation functions as
simple averages across such batches. TensorFlow and PyTorch are designed to effectively work with batches using parallel
computing, so the calculation of expectation functions is remarkably cheap. Finally, even if we use just one batch in each
iteration which leads to a poor estimator of the expectation function, such an estimator is still unbiased and converges to
its true value over the iteration process.

Dealing with multicollinearity

In the arguments of approximating functions (14) and (15), the state variables of agent i appear twice

go(k{, vl {k{, v{};,zt; 49) because they enter both as variables of agent i and as an element of the distribution. This rep-

etition implies perfect collinearity in explanatory variables, so that the inverse problem is not well defined. Such a mul-
ticollinearity would break down a conventional least-squares method which solves the inverse problem (since an inverse
of a matrix with linearly dependent rows or columns does not exist). However, neural networks are trained by using the
gradient-descent method that avoids solving an inverse problem. As a result, neural networks can learn to ignore redundant
colinear variables; see Maliar et al. (2021) for numerical illustrations and a discussion.”

3.2. Deep learning method for divisible labor model

Below, we combine the above techniques into a deep learning method for solving the divisible labor model. Our deep
learning method is similar in spirit to Krusell and Smith (1998)’s analysis but is simpler conceptually as it does not alternate
between approximating the individual decision functions and the law of motion for aggregate variables. We just simulate
the panel of heterogeneous agents, use the resulting distributions to infer the aggregate quantities and prices and train the
individual decision functions. As the machine is trained and the panel is simulated, the decision functions are refined jointly
with the ergodic distribution. Since random variables are autocorrelated, the stochastic gradient is also correlated over time
and hence, it is biased. To reduce the bias, we train the model on cross-sections which are sufficiently separated in time
instead of using all the consecutive periods. Specifically, we train the model and simulate it for 10 or more consecutive
periods before implementing the next training step.

For our numerical analysis, we assume « = 0.36; d =0.08; 8 =0.96; p=0.9; 0 =0.1; p,=09; 0, =021; and k=0 -
these values are in line with the literature, e.g., Chang and Kim (2007), Reiter (2010, 2019), Chang et al. (2019). We perform
training using the ADAM stochastic gradient descent method with the batch size of 100 and the learning rate of 0.001. We
fix the number of iterations (which is also a simulation length) to be K = 100, 000. The choice of these parameters must
ensure both convergence and low running time and it reflects our experience in constructing deep learning approximations.
Finally, we study numerically the role of the elasticities y and 7 of the utility function by performing a sensitivity analysis.

3.3. Numerical results for the divisible labor model

In Fig. 4, we illustrate the accuracy and cost of our deep learning methods, specifically, the reduction in the loss function
over the process of training (left panel) and the running time per iteration depending on the number of agents (right panel).

3 In our code, we used a version of the gradient descent method, called ADAM, which updates each coefficient of 6 at a different rate which we find to
enhance the convergence compared to conventional gradient descent method.

4 Notice that we would not be able to bring the gradient operator inside the expectation function without the AiO operator. We would have no choice
but to approximate the gradient of the expectation function numerically, which may be infeasible with a large number of agents.

5 It is possible to design a transformation that avoids a repetition of state variables in the set of arguments but it would require cumbersome and costly
permutations, so we find it easier to keep the repeated arguments since their do not have a significant negative impact on the constructed neural network
approximations.
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Fig. 5. Solution to divisible labor model under y =1 and n =1.

From the left panel of the figure, we see that the loss function is reduced to about 10~3 over the training steps which
implies that the unit-free residuals in the model’s equation are of order of 0.1%. In turn, from the right panel, we see that
the running time increases more than linearly in the logarithmic scale. That happens because large number of state variables
in the model such as 1000 or 2000 involves larger memory usage, in addition to larger running time. Even though our deep
learning method is capable of analyzing models with a very high dimensionality, it does not scale linearly for a very large
number of agents.

In Fig. 5, we show the solution with ¢ = 300 heterogeneous agents under y =1 and n = 1.

In the top row, we show the individual decision rules as a function of previous capital for seven different states of
individual productivity. We see that next-period capital ki 41 and consumption c{ increase in the current capital ki, while
labor ni is decreasing meaning that the agent chooses to enjoy more leisure L — ni The seven lines in each graph correspond
to seven different productivity states representing a mean + 1, 2 and 3 standard deviations; they show that kt 1 cl and n{
are all increasing with productivity 1/}. We observe a soft kink in the consumption function in the area where the agent
reaches the borrowing limit.

In the bottom row, we show simulated series for 5 agents over time (we do not show all agents to avoid the clutter).
Here, we also show as the thick lines the simulation for the corresponding aggregate variables. As expected, fluctuations in
individual capital of agents are significantly larger than the fluctuations in their consumption and labor. In the bottom row,

9
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Fig. 6. Examples of binary classification.

we also show simulation for the corresponding aggregate variables k.1, ¢; and n;. The volatility of the aggregate variables
is typical for the real business cycle models and is considerably lower than that of the individual variables. We will quantify
the business cycle and distributive properties of the model in Section 5 after we present the version of the model with
indivisible labor.

Finally, we comment on two alternative solution methods that we could have used instead of the present one and that
would have simplified the construction of equilibrium. First, we could have approximated numerically just one labor decision
function instead of both consumption and labor functions. This point was emphasized in Maliar and Maliar (2005), who
argue that given n{, we can find h¢, W; and hence, c{, in a closed form, while given c{, we need a numerical procedure to
construct hy, W; and ni - hence, it is better to parameterize ni than ¢! in a similar model. Second, we could have solved for
one individual decision function (for example, c{) and one aggregate variable (for example, W;) in terms of state variables
since we can find ni in a closed form, given c{ and W;. We do not follow these approaches because they do not carry over
to the model with indivisible labor.

4. DLC algorithm for indivisible labor: logistic regression

In this section, we introduce the DLC method for solving the indivisible labor model. Like in the divisible labor case, we
consider the actual state space composed of the individual and aggregate state variables, and we let the neural network to
perform the model reduction. To construct the policy function for discrete labor choice, we use a logistic regression algo-
rithm - a popular technique from the field of machine learning. We first describe this techniques using a simple regression
example, and we then show how the logistic regression can be used for modeling a discrete labor choice in the context of
our indivisible labor analysis.

4.1. Binary classification problem in supervised learning literature

Let us consider a typical classification problem. We have a collection of ¢ data points {Xl',y"}:;1 where Xi = (1, xixb, )
is a collection of dependent variables (features) and y' is a categorical independent variable (label) that takes values 0 and
1. For example, y' is a tumor that can be benign “0” or malignant “1”, and X' is a set of observed characteristics such as
the size of the tumor and lab test. Our goal is to construct a line that separates the classes 0 and 1. In Fig. 6, we show two
examples of a binary classification with two features x; and x, in which the classes 0 and 1 are represented by “0” and “x”,
respectively. In both cases, the goal is to constuct a dashed line that separates the known examples of the two types.

There are numerous techniques in the machine learning literature that can be used for training binary classifiers, includ-
ing k-nearest neighbors, decision trees, support vector machine, logistic regression, extreme learning machine, naive Bayes.
We will restrict attention to one such technique - logistic regression - which is simple, general and can be conveniently
combined with our deep learning analysis.

As a first step, we form a hypothesis about the functional form of the separating line. For the left panel, it is sufficient
to assume that the separating line is linear

Hp : 90 +9]X1 +92X2 =0,

but for the right panel, we must use a sufficiently flexible nonlinear separating function such as a higher-order polynomial
function,

Ho : 6o + 601X1 + 63%5 + 3% + Oax1% + O05X3 + ... =0,

where (6, 61, ...) =0 are the polynomial coefficients. When X6 = 6y + 01x1 + 0,x5 + ... > 0, we conclude that y belongs to
class 1 and otherwise, we conclude that it is from class O.
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Our next step is to estimate 6 coefficients. Since y is a categorical variable y € {0, 1}, we cannot use ordinary least-squares
estimator, i.e., we cannot regress y on X6. Instead, we form a logistic regression

Ho: log% = X0, (20)

where p is the probability that a data point with characteristics X = (1,x1,x2,x%,...) belongs to class 1, and 6 =
(69,61, ...,6m,...,0y) is a coefficient vector. The logistic function is an excellent choice for approximating probability: First,

it ensures that p = m € (0,1) for any 0 and X, and hence p and (1 — p) can be interpreted as probabilities that a

data point belongs to classes 1 and 0, respectively. Second, p = % corresponds to the separation line X6 = 0. Hence, when
D> % the data point is “above” the separating line X6, and thus, belongs to the class 1 and if p < % the opposite is true.
Finally, when X6 — —oo and X0 — +o0o, we have that p — 0 and p — 1, respectively.

The logistic regression (20) provides a convenient way to estimate the decision boundary coefficients 6 by using a max-
imum likelihood estimator.® A probability that the data point i belongs to classes 0 and 1 can be represented with a single

formula by

Prob(y | X;:0)=p’(1 - p)'7.
Indeed, if y =1, we have Prob(y =1]X;0) = (p)' (1 - p)° = p; and if y =0, we have Prob(y =0|X;0) = (p)°(1 -p)' =
1 — p. We search for the coefficient vector € that maximizes the (log)likelihood of the event such that a given matrix of
features {Xf}f=] produces the given output realizations {yi}f=1, ie.,

maxint@) =[] (o 0)) (1 - (x:0))" =
D[ (p(x56)) + (1 -y)In (1- p(x50))]. - @21)

i=1

where the probability p(Xi; 0) = W is given by a logistic function.” To find the maximizer, we compute the first-

order conditions with respect to all coefficients 0, for m=0,..., M,

ainl®) g | _ ¥ op(xi0)  (1-y) 9p(X:6)
00m p(Xi:0) 00w  (1-p(Xi6)) 00m

i=1

14

= Z [Yixi (1= p(X':6)) — (1= y)xhp(X:6)] = D [V = p(X': 6) |xh.  (22)

i=1 i=1
where xi is the feature m of agent i.® To show the second equality in (22), we have used the remarkable property of

the logistic function that its derivative can be computed directly from the logistic function itself a%@ = %[m =

. /
p(z)(1 — p(2)). The constructed gradient VInL,(0) = [31351(9),..., algéﬂsg)] can be used for implementing the gradient

descent-style method 6 < 6 — AV InLy(0) described in (19).

4.2. Binary classification of labor choice

In the divisible labor model studied in Section 2, we construct a policy function that determines the hours worked, while
in the indivisible labor model studied here, we construct a decision boundary go(s;; 9) = 0 that separates the employment

and unemployment choices conditional on state si = (ki, vi, {ikd. v{}:;l,z[). Whenever ¢(si; 6) > 0, the agent is employed

ni =7 and otherwise, the agent is unemployed ni = 0. Let us show how such a decision boundary can be constructed by
using the logistic regression classification method.

Since our model has a large number of explanatory variables (state variables) as well as a highly nonlinear decision
boundary, we use neural networks for approximating such boundary (instead of the polynomial function). We estimate the

¢ . 2
6 One can be tempted to minimize the least-squares style criteria meinz (y’ - m) instead of maximizing the likelihood function but that
i=1
would not lead to efficient training (as the sigmoid function has many local minima).

7 In the machine learning field, the problem of maximizing the likelihood function is typically formulated as the problem of minimizing the cross entropy
loss, which is defined as a negative likelihood function. The two representations are obviously equivalent.

8 Interestingly, the gradient of the logistic regression is given by the same expression as the gradient of the conventional linear regression, namely,

14 . . . 3 . . .
minimizing L(0) = § z% (' —X‘B)z with respect to 6; leads to partial derivatives of type %ﬁ) = Z% (' —Xio)i, form=1,..., M.
1= I=

1
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coefficients of the neural network (weights and biases) by formulating a logistic regression in the way which is parallel to
(20),
. P _
Ho.log]_p =¢(s; 0). (23)

. i
We parameterize the decision functions p; and % by a sigmoid function in the indivisible labor model (instead of parame-
t

terization (14) of the divisible labor model):
o (g0 + (k. vh. [k vi)y . 2:0)). (24)

where ¢(-) is a multilayer neural network parameterized by a vector of coefficients 6 (weights and biases), o (2) 1

= ez IS

a sigmoid function which ensures that % and pl; are bounded in the interval [0, 1], respectively, and ¢y is a constant term
t

that we use to initialize the network. (Here, we also parameterize the Lagrange multiplier as is shown in (15)). The fun;tion

2 parametgrized by (24), allows us to infer the indivisible labor choice directly, speciﬁcglly, an agent is employed n; =71

whenever p; > % and is unemployed otherwise n; = 0. We can then compute h; = Zf=1 vin' and find W; and Ry from (7) and

restore the remaining individual and aggregate variables.

Our next goal is to check if the constructed labor choices are consistent with the individual optimality conditions. To
. i .
validate the individual choices, we use the decision functions pj, % and p} to restore the value functions for the employed
t

and unemployed agents VE(si; 6F) and VU(si; 0V), respectively, from appropriately formulated Bellman equations like those
used in Chang and Kim (2007). We next construct the labor choice ﬁ; implied by these two value functions

"t =10 otherwise. (25)

. {n if VE = max {VE, vV},
In the solution, the labor choice ﬁ; implied by the value functions must coincide with the labor choice n{ produced by our
decision function for all i and t. If this is not the case, we proceed with training our classifier. To this purpose, we construct
the categorical variable y; € {0, 1} such that

i 1ifni =n,
Y= {O othterwise, (26)
and we use it to form the (log)likelihood function
1. . ) )
InL(6) = 7 > [viin(p(si: 0)) + (1 —yi) In (1 - p(si: 0))]. (27)

i=1
We then maximize the likelihood function (27) by using a conventional / stochastic / batch stochastic gradient descent

. 1 .
methods described in (19), where we construct the gradient as in (22). We iterate on the decision functions pi, % and pu;
t

until convergence.

4.3. Determining indivisible labor: value functions versus “discretized” FOC

Note that there is an important implementational difference in the construction of the labor choice in the divisible
and indivisible labor models. In the former model, the optimal labor choice must satisfy FOC (11) and hence, it can be
constructed by considering just the current period variables. However, this is not true for the indivisible labor model in
which the agent chooses to be employed or unemployed depending on which of the two continuation values is larger VE or
vy,

Prescott et al. (2009) propose a cleaver approach to modeling the indivisible labor choice under which such a
choice can be constructed from the current state variables without the need of constructing value functions; also, see
Chang et al. (2019) for implementation of this idea in the context of Krusell and Smith (1998)’s model. Their main idea
is to allow for intensive and extensive margins by “discretizing” the FOC (11). To be specific, they assume that the labor
choice is divisible and is characterized by the divisible-labor FOC (11) as long as it is above a given threshold n; but it
jumps to zero whenever the labor choice falls below 7 (i.e., the agent becomes unemployed):

) ci’VW,exp(v{) =im
ﬁ't: L- #] =z Ny, (28)

0 otherwise.

We borrow from Prescott et al. (2009) and Chang et al. (2019) the idea of discretizing the FOCs of the diyisible labor model,
however, we go a step further and we make the labor choice entirely indivisible by assuming that n} can take just two

12
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values 0 (unemployed) and 7 (employed):

) . ci’VW[exp(U{) =im
ﬁ't _ nif L — #] > Ny, (29)

0 otherwise.

We believe that the above approach can be a simple and effective alternative to conventional methods that solve for indi-
visible labor by constructing the value functions VE and VY explicitly.

4.4. Solution method for the indivisible labor model

The deep learning method for the indivisible labor model is similar to the one for the divisible labor model except for
the way we construct the labor choice. Concerning the labor choice, we show two options: one is based on a reconstruction
of value functions and the other is based on the discretized FOC. We again simulate the panel of heterogeneous agents, and
we use the resulting distributions to infer the aggregate quantities and prices. As the machine is trained and the panel is
simulated, the decision functions are refined jointly with the ergodic distribution. The omitted steps coincide with those in
Algorithm 1.

Algorithm 1 Deep learning for divisible labor model.

Step 0: (Initialization).
I3

Construct initial state of the economy ({kg, UB}H,ZO) and parameterizethree decision functions

by a neural network with three outputs

ni L PN

[ &) =00+ (ke vh {lrk) iy 2:0)).
. L N

= exp(co+ ¢ (K. vh. {11}, 20) ).

where wi = Riki +Wevini is wealth; ! isLagrange multiplier associated with the borrowing

constraint; ¢(-) is a neuralnetwork; o (z) = 1:7 is a sigmoid(logistic) function; ¢y is a constant;

6 is a vector of coefficients (biases andweights).

Step 1: (Evaluation of decision functions).

Given state (klt vi, ki, v;}j; 1,zf> = si,compute ni, ul, V% fromthe neural networks, find the prices R
and W;; and find kiH from the budgetconstraint for all agents i=1,...,¢.

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks ¥y = (€{,..., €{), £ = (€}..... €}) and
two aggregate shocks €;, €;,and construct the Euler residuals

2

s < Twrs(1_4 1_i\T i | )W o

E@) = ( e —,u[) tn|n— L | gt

+w'u /3|:(C£+1)’Vg[+j)/|2£+l,eg+lj| _ Mlt ﬁ[(CLI)?)/R‘HJ)/Z{;]’Q/;]] _ Mlt )
(<) (<)

where WFB(a, b) = a+b — /a2 + b2 is a Fischer-Burmeister function; and @y, @), are given weights.

Step 3: (Training).

Train the neural network coefficients 6 tominimize the residual function E(#) by using a
stochastic gradient descent method 6 « 6 — AV, E(0) with V4 E(0) ~ % Z’,;’ﬂ V& (wn; 0),
where n =1, ..., N denotes batches.

Step 4: (Simulation).
Move to t + 1 by using endogenous and exogenousvariables obtained in Step 3 under

— (el ¢ _peri i i’
T = (€].....€}) and € as a next-period state ({k[H,vt}i:],zM).

The proposed algorithm can be viewed as policy iteration because it solves for the decision functions by updating
the value functions as opposed to value function iteration which constructs value functions by inferring the policy func-
tions from the given value function. In that respect, we differ from the related literature, in particular, from Chang and
Kim (2007) and from Chang et al. (2019). In our numerical experiment, we implemented a version of Algorithm 2, in which
we construct the indivisible labor choice from the discretized FOC (29). An important role in equilibrium play the parameter
n and 7y which determine how often the agents will be employed and unemployed. We calibrate the hours of employed

13
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Algorithm 2 Deep learning for the indivisible labor model.

Step 0: (Initialization).
Construct initial state of the economy {k{), vg}li ],zo) and parameterizethe decision functions by

[pi, %} = a(;‘o +<p(l<§,v§, {k{,vi}le,zt; 9))
t

ui = exp({o + go(ki, vi, {ikd, v{}f:1,zt; 0))
where pi is the probability of being employed ni = 7.

Step 1: (Evaluation of decision functions).
Given state (klt vi, {Kkd, v{};,zf) = si,compute n{ =7 if p. > 1 and nl = 0 if p| < }. Compute
. i .
w; and % from thedecision rules, find the prices R; and and W;; and find lel
t
constraint for all agentsi=1,...,¢.

from the budget

7 if VE = max {VE,VU},

Option 1: Construct value functions VEand VY and find i}l = .
0 otherwise.

) TifL ¢ Wy exp (1) 1 .

Option 2: Define iy and usethe discretized FOC to find ﬁ’[ = {niL-= B =N
0 otherwise.

1ifal =7,

. for each si.
0 otherwise, t

Define yi = {

Step 2: (Construction of Euler residuals).
Draw two random sets of individual productivity shocks £ = (€], ... €f), £ = (€].....€5) and
two aggregate shocks €1, €;,and construct the Euler residuals

26 = |[972(1- 1 )]+ ol (o(es0) + (151 - i)

/3[(C£+1)7VRH1‘E;+1*Q/+1] ij| |:ﬂ[(ci+1)th+1 ‘Zt/;lft//ﬂ] :““ii| ]

T [ @7 e )

@ f

where WFB(a, b) = a+b — /a2 + b2 is a Fischer-Burmeister function; and @y, @), are given weights.
Step 3: (Training).

Step 4: (Simulation).

agent at n=1.1 and we set the parameter 7y at iy = 0.5, which implies that the agents who choose to work less than
0.5 in the divisible labor model become unemployed in the indivisible labor model. We set the hours of unemployed agent
to a small number n = 0.01 because n =0 leads to numerical issues in training. The resulting parameterization delivers
unconditional probability of employment of about 90%, which is roughly consistent with the data.

4.5. Numerical results

In Fig. 7, we show the accuracy and cost of the deep learning classification method, specifically, the reduction of the loss
function during the process of training and the time per iteration depending on the number of agents in the model. The
regularities here are very similar to those observed in the divisible labor version of the model.

In Fig. 8, we illustrate the solution to the model with discrete labor choice produced by the DLC method.

The magnitude of fluctuations of consumption and capital appears to be similar in Fig. 8 but this happens because
consumption and capital graphs have different units. In fact, capital is far more sensitive and volatile than consumption in
the constructed solution, which is stylized feature of consumption-saving models.

The decision rules in the top row are qualitatively similar to those in the divisible labor model, however, the changes in
labor happen in discrete jumps and they induce the corresponding discrete jumps in consumption and capital (the seven
lines again correspond to seven individual productivity levels). The jumps in consumption happen because in equilibrium,
the employed agent accepts a consumption cut to enjoy more leisure in the unemployed state. The exact moment when
the agent switches from the employed to unemployed states depends on the productivity level. Also, we see that more
productive agents remain employed for larger capital levels than low productive agents.

14
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Algorithm 3 Deep learning for the model with full and partial employment.

Step 0: (Initialization).

Construct initial state of the economy {k{), vg}li ],zo) and parameterizethe decision functions by
[0, 5 20 ) o (s (o 1) 200)).

where pi (n) pi(n) and pi(0) arethe probabilities to be full- and part-time employed and unemployed,
respectively, and ¥ = p[(n) + p[(n) + p}(0) is a normalization of probability to one.

Step 1: (Evaluation of decision functions).
Given state (k; vi, {id, v{}f:],zt) =sl set ni =7, ni =n and ni = 0depending on which probability
pi(@), pi(n) and pi(0) isthe largest. Compute wi, v% from thedecision rules and find ki, from the
budget constraint for all agents i =1, ...¢.
Reconstruct the value functions in the employed, parttime employed and unemployed agents
VE, VPT and VY, respectively.
m if VE = max {VE, vPT vU}, (1,0,0) if Al =1,
Find Ail = { n if VPT = max {VE. VT, vU1, and define yi= :(0, 1,0) if nl =n, for each si.
0 otherwise. (0,0, 1) otherwise.
il if VE = max {VE, VPT vU},
Option 1: Construct value functions VE, VT, VY and find 7il = { n if VPT = max {VE, VT vU},
0 otherwise.

_ N 1-n
Y i
nifL— [Cf Wrgxp(vt) > 7,

- L 7-1/n
Y
nif L — [76" WIEXD(U;)] IS [ﬁp,ﬁf]

0 otherwise

Option 2: Define [T, 7if] and use discretized FOC to find il =

~((1.0.0)if Al =T, .
Define yi = {(0,1,0) if il =n, for each si.
(0,0, 1) otherwise.

Step 2: (Construction of Euler residuals).
Draw two random sets of individual productivity shocks £ = (€], ... €f), £ = (€].....€5) and
two aggregate shocks €, ez,and construct the Euler residuals

200 = {[0r (1= &1 -d)] 5 2 [0 (0650%) + (157 (1= 0)

/3[(C£+1)7VRH1‘E;+1*Q/+1] i 5[(C{+1)7VRH1 ‘Ztﬂ ét//ﬂ] i
+ou N7 - M N7 —Me | (e
(ct) (<)

where WFB(a, b) = a+b — /a2 + b2 is a Fischer-Burmeister function; and @y, @), are given weights.

Step 3: (Training).

Step 4: (Simulation).

The simulated series for the individual capital and consumption in Fig. 8 are similar to those in the divisible labor model
in Fig. 5, althiugh labor fluctuates between the employed and unemployed states in discrete jumps. Finally, the fluctuations
in aggregate series are again typical for the real business cycle models, except that we can observe that aggregate labor
changes in small discrete increments which are a consequence of discrete jumps in individual labor.

[skhakov et al. (2017) introduce another method for solving dynamic models with discrete-continuous choices, namely,
an endogenous grid method with taste shocks, so it is interesting to compare our analysis to theirs. There are three main
differences: First, our DLC method is designed to approximate sharp kinks in policy functions like those shown in the figure,
while Iskhakov et al. (2017) suggest to smooth the kinks by introducing supplementary preference shocks which transform
the discrete choice problem into the choice probability space. Second, in our application, our discrete-choice decisions de-
pend only on the economy’s state, while in their application, such decisions depend both on state and time, namely, the
agent has to decide which time period to retire. The presence of time among the argument of the choice function feature
creates “secondary” discrete shocks that propagate across time domain; such secondary shocks are absent in our applica-
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Fig. 8. Solution to indivisible labor model under y =1 and 1 = 1.

tion. Finally, the problems that we solve have much larger dimensionality than those studied in Iskhakov et al. (2017), but
that paper is more challenging in another respect: they estimate the model’s parameters which requires solving the model
a large number of times. It would be interesting to see how our DLC method performs in the context of their application
but this lies beyond the scope of the present paper.

5. Deep learning classification method for multiclass problems: softmax regression

How can logistic classification approach can be generalized for the case of more than 2 outcomes? Specifically, we are
interested in the case when the agent faces three labor choices: full-time employment, part-time employment and unem-
ployment. We again start by reviewing the multiclass classification techniques in the machine learning literature, and we

then show how such techniques can be incorporated in a solution method for dynamic economic models.

5.1. Multiclass classification problem in supervised learning literature

Let us consider a multiclassification problem. We again have a collection of ¢ data points {X", y"}f:l where X =
(]xgx’z) is composed of dependent variables (features) but now y' is a categorical independent variable (label) that
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Fig. 9. Examples of multiclass classification.

takes K values. For example, y' is a tumor that can be benign “1”, malignant “2” or advanced malignant “3”, and X is a
set of observed characteristics such as the size of the tumor and lab test. Our goal is to construct the lines that separate
the classes 1, 2 and 3. In Fig. 9, we show two examples of multiclass classification problem with two features x; and x, in
which the classes 1, 2 and 3 are represented by “x”, “A” and “0”, respectively; in the left panel, the decision boundaries
between the classes are linear, and in the right panel, they are nonlinear.

A popular approach in machine learning is to reformulate a multiclass classification problem as a collection of binary
classification problems.? The key assumption behind this approach is the hypothesis of an independence of irrelevant alter-
natives which postulates that the agent’s choice between any two alternatives is independent of the presence or absence
of other alternatives.'® In our analysis, that means that the choice between {x} and {A} is independent of the availability
of {0}, the choice between {A} and {o} is independent of the availability of {x} and the choice between {0} and {x} is
independent of the availability of {A}.

Two binary reformulations of a multiclass classification problems are the one-versus-one and one-versus-rest (or one-
versus-all) classifiers,

one — versus — one ln% =Xx0M lnLﬁ)) =X0® lnLﬁ; = X003,
_ _ p(x) _ 1) p(a) _ ) p(o) _ 3)
one — versus —rest In OIS = X0 In OEIC X0 In O X006,

where 01, @) and 63 are the regression coefficients and X is the matrix of features. Under one-versus-one method, we
construct decision boundaries between each pair of classes by running w pairwise logistic regressions, specifically, we
separate {x} from {0}, we separate {A} from {0}, and we separate {A} from {x}, where the number of classes is K = 3. In
turn, under one-versus-rest approach, we construct decision boundaries between each given class and the remaining classes
by running K pairwise logistic regressions, specifically, we separate {x} from {0,A}, we separate {A} from {0, x}, and we
separate {0} from {A, x}. For a larger number of classes K, the one-versus-one method is more expensive than one-versus-rest
method but it is more robust to unbalanced data sets. Again, there are numerous techniques in machine learning literature
for constructing and training multiclass classifiers, including k-nearest neighbors, decision trees, naive Bayes, random forest,
gradient boosting, neural networks, extreme learning machine.

To train the constructed multiclass classifiers, we may omit one of three regressions by imposing the restriction that the
probabilities are added to one. For the one-versus-one classifier, the first two regressions imply p(x) = p(0) exp (XG(”) and
p(a) = p(o)exp (X0@) so that p(0)(1+exp (X0D) +exp (X0@)) =1. In turn, for the one-versus-rest classifier, in the
first regression, we replace p(0) + p(A) with 1 — p(x) and in the second regression, we replace p(0) + p(x) with 1 — p(a).
Consequently, we can re-write two classifiers as

one —versus —one  p(x) = exp (X6V)p(©)  p(&) = exp (X6P)p(©)  P©) = 1ot
one — versus —rest  p(x) = m p(A) = W p(0) =1—p(x) — p(a).

Note that in the above expressions, we treat the normalizing class {o} differently from the other two classes {A, x}. There
is also a symmetric version of the one-versus-rest method in which all K classes are treated identically by estimating K
unnormalized one-versus-rest logistic regressions Inp(x) = X0, Inp(a) =X0®@), Inp(0) = X0 and by normalizing the

9 One may think of an alternative approach in which we construct an interval [a, b) and one decision boundary Hy : X6 = 0 which separates the data into
multiple classes; for example, if X0 < a, we choose 0, if X6 € [a, b) we choose 1 and if X6 > b we choose 2. But this approach requires strong monotonicity
and is tractable only in very special cases.

10 1t js possible to find some real-life situations in which this assumption is violated, for example, the voting preferences between two politicians can be
affected by the presence or absence of another politician which is nobody preferred alternative but which everyone prefers to avoid the victory of the least
preferred candidate.
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exponential function ex-post by their sum. This classifier is called softmax and it is a generalization of a logistic function to
multiple dimensions,

one — versus — rest softmax  p(x) = ¢ exp (X0(M) p(a)=£exp(X6®) Inp(o) =+ exp (X6©®),

where ¥ = exp (X0() + exp (X0@) + exp (X6®)). The symmetric treatment is particularly convenient in the context of
our deep learning analysis because it allows us to use a neural network with K symmetric outputs in which the softmax
function in the last layer selects the largest probability from K probabilities constructed.

The log-likelihood function for the softmx classifier is similar to the one for the binary classifier (21) except that we also
do a summation over K of possible outcomes,

14

Gmax InL(6s, ...,0k) KZ Z [ ik n (p(Xi; 9")) + (1 —y”‘) In (1 - p(Xi; 9"))], (30)

""" =1 i=1

where y'¥ is a categorical variable constructed so that y“k = 1 if observation i belongs to class k and it is zero otherwise.
Again, we maximize the constructed likelihood function (30) by using a gradient descent style method, 8 < 6 — AV InLy (),
described in (19).

5.2. Multiclass classification of labor choice

We next extend our indivisible labor heterogeneous-agent model with two employment choices {0, nn} to three employ-
ment choices {0, n,n}. In the latter case, we parameterize not one but three decision boundaries that separate the three
employment choices, so instead of the parameterization (14), we use a sigmoid function to parameterize four functions

pt(n) pt(n) pi(0) Ct
T % T

a(;ow(kz,ug, {ki,v{}f:],z[;e», (31)

where ¢(-) is a multilayer neural network parameterized by a vector of coefficients 6 (weights and biases) Y= pt(n) +

is a sigmoid function which ensures that and pf(m pfé")

spec1ﬁcally

pi(n) + pi(0) normalizes the probabilities to one; o (z) =
pi(0)
N

1
= Tre?
and are bounded in the interval [0, 1], and ¢y is a constant term that we use to initialize the network. (In addition,

i opl i
we also parameterize the Lagrange multiplier as shown in (15)). The output of the logistic function max { @, pféﬂ), pféo)

allows us to infer the indivisible labor choice, specifically, an agent is employed n{ =7, part-time employed n{ =n and un-

i A
employed nl = 0 whenever its maximum is equal to pf(") pfé”) and pf( ) , respectively. We can then compute hy = ¥°F_, A

and find W; and R; from (7) and restore the remaining mdlvidual and aggregate variables.
Our next goal is to check if the constructed labor choices are consistent with the individual optimality conditions. To
validate the individual choices, we use the decision functions p[f)én), plféﬂ),plféo), ;/—lﬁ and ,u,{ to recover the value functions
t
for employed, part-time employed and unemployed agents, VE, VPT and VY, respectively, using the appropriately formulated
Bellman equations; see Chang and Kim (2007). We then construct the labor choice 7l implied by such value functions,

i if VE = max {VE, vFT vV},
nl = gifV”T:max{VE, VFT,VU}, (32)
0 otherwise.

In the solution, the labor choice implied by the value function 'ﬁ’t must coincide with the labor choice produced by our
decision function n; for all i, t. If this is not the case, we proceed to training of our classifier. To this purpose, we construct
the categorical variable y! = (v}, yi?. ylf) such that
. (1,0,0) if n} =1,
¥t =14(0,1,0) if nl =n, (33)
(0,0, 1) otherwise.

We then formulate the (log)likelihood function

3 ¢
InL(6M, 0@, 69)) = 317 Y [ In(p(s: 0®)) + (1= 3*) In (1= p(s: 6®))]. (34)

k=1 i=1

We train the model to maximize the likelihood function (34) by using a conventional | stochastic / batch stochastic gradient
descent method described in (19) where the gradient can be constructed as in (22). We iterate on the decision functions

pi(A), pi(n), p[(O) f and /Lt until convergence.
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Fig. 10. Training errors and running time for three-state employment model under y =1 and n =1.

5.3. Determining three-state labor: value functions versus “discretized” FOC
Chang and Kim (2007) consider a related heterogeneous-agent model with three states but they allow for intensive and
extensive margins. In contrast, we assume an entirely discrete choice between the three employment states:

. -1/
ﬁl—[i@qggﬁ "o

i, = i L [c;VW[pr(vi)]_”n c [f = ] (35)

3|
Ny

n
0 otherwise

Thus, we assume that the agent chooses full-time employment, n{ = n, whenever her labor choices implied by the FOC of
the divisible labor model (11) is above a threshold 7;; she chooses part-time employment, n; = n, whenever it belongs to

the interval [ﬁp,ﬁf]; and she chooses unemployment whenever it falls below the part-time employment threshold 7p.

5.4. Solution method for the model with full- and part-time employment

Below, we describe the deep learning method for the indivisible labor model with three employment states (the omitted
steps coincide with those in Algorithm 1). Again, we allow for two options in the construction of labor choice: one is based
on a reconstruction of value functions and the other is based on the discretized FOC.

We calibrate 7= 1.1 and n = 0.55. Again, these choices together with the interval [ﬁp,ﬁf] determines how often the
agents will be employed and unemployed. We calibrate these parameters at 7, = 0.25 and ny = 0.75 which means that
the agents who would choose to work less than 0.25 in the divisible labor model will become unemployed in the indivis-
ible labor model, the agent who would choose the hours worked in the range [0.25,0.75] would be part time employed
and the agent who would choose the hours worked larger than iy = 0.75 would be full time employed. We again set the
hours of unemployed agent to a small number n = 0.01 because n = 0 produces numerical issues in training. The resulting
parameterization delivers unconditional probability of employment of about 90%, which is roughly consistent with the data.

5.4.1. Numerical results

In Fig. 10, we illustrate the training procedure and the time per iteration, and we observe that the tendencies are similar
to those in the previously considered models.

In Fig. 11, we show the numerical solution to the model with three employment states produced by the DLC method.

The decision rules in the top row now experience two jumps instead of one jump in Fig. 8 because there are switches,
one is between the full and partial employment, and the other is between the partial employment and unemployment (for
each of the seven productivity levels). For more productive agents, the switches occur for higher levels of wealth than for
less productive agents. This is because the opportunity cost of leisure is higher for more productive agents.

The simulated series for the individual capital and consumption in the bottom row are similar to those in the previous
figure but the individual labor switches in two discrete steps between full employment, partial employment and unemploy-
ment. Finally, in the bottom row, we show the fluctuations of the aggregate variables (see the thick lines) where we can
distinguish how discrete changes in individual labor are transformed into discrete changes in aggregate labor.

6. Assessing the role of heterogeneity and labor choice
We discuss the aggregate and distributional implications of indivisible labor choice in Sections 5.1 and 5.2, respectively.
6.1. Aggregate implications

In Table 1, we provide selected business cycle statistics for the studied divisible and indivisible labor economies,
as well as for the associated representative-agent model with divisible labor. where the variables y;, c;, n¢, he, iy and
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Fig. 11. Solution to the three-state employment model under y =1 and n = 1.
Table 1
Selected business cycle statistics.
RA HA Divisible labor HA Indivisible labor HA Full/Part time US data®
Elasticity n 1 5 1 1 5 1 1 5 3 1 5
std(y) 0.046 0.044 0.035 0.045 0.033 0.043 0.037 0.040 0.031 0.034 0.039 0.036 0.021
jfsg)) 0.784 0872 0922 0.725 0.898 0.860 0.880 0903 0856 0913 0.862 0.858 045
jﬁg("; 0318 0.153 0.044 0648 0.616 0.143 0931 0627 0078 1.044 0.654 0225 -
;iz((y; 0.318 0.153 0.044 0.769 0.389 0.100 0.685 0.402 0.032 0.761 0.439 0.134 0.82
ety 208 175 167 153 188 172 209 179 183 216 187 173 241
std(y/m) 0.789 0.885 0.960 0.935 1.07 0.953 1.06 1.02 1.00 1.09 0.972 0.975 0.50

std(y)
corr(c,y) 0.931 0953  0.951 0.778 0.876 0942 0.829 00911 0926 0807 0895 0940 0.69

corr(n,y) 0.754 0.783 0.897 0419 0.193 0387 0410 0.283 0.008 0433 0369 0223 -

corr(h,y) 0.754 0.783 0.897 0.647 0377 0425 0457 0321 0.014  0.461 0367 0.244 0.86
corr(i,y) 0.897 0877 0836 0.951 0817 0.886 0.805 0.826 0.866 0.772 0849 0.886 0.90
corr(%.h) 0.964 0.994 1.00 779 0.824 0990 0584 0805 0997 0500 0778 0974 0.08

Note: The statistics are computed across 100 simulations, each of which is length 1000 periods; RA and HA refer to representative- and
heterogeneous-agent models; *) source: Chang and Kim (2007).

ye/he are, respectively, the aggregate output, consumption, labor, efficiency labor, investment and productivity, where y; =
exp (zt)kf‘hg‘“, ¢t, N and h are constructed by aggregating the corresponding individual quantities and ir = k; 1 — k: (1 — d).

The business cycle statistics of all studied economies are typical for the real business cycle models. The volatility of out-
put is somewhat higher than that in the US economy because the individual shocks contribute to the volatility of aggregate
variables. To adjust for this effect, we report the ratio of volatilities of other variables relative to that of output.

It is well known that the representative-agent divisible-labor model is capable of accounting for stylized features of
consumption-saving behavior over the US business cycle, however, has difficulties in reproducing the labor market statistics.
In particular, it underpredicts the volatility of labor and overpredicts the correlation between labor and output and that
between the labor and wage.

Concerning the first problem, the seminal works of (Hansen, 1985; Rogerson, 1988) showed that the introduction of
indivisible labor helps increase the volatility of labor. Under the assumption of complete markets, agents trade employment
insurances, and the economy behaves as if the utility is linear in labor, which magnifies labor fluctuations compared to the
economy where agents are risk averse with respect to labor choice. Chang et al. (2019) consider the model with intensive
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Table 2
Distributional implications of the studied models.
HA Divisible labor HA Indivisible labor HA Full/Part time US data®™
Elasticity .~ § 1 5 1 1 5 1 1 5
Income distribution
Top 1% 0.015 0.036 0.032 0.033 0.032 0.029 0.031 0.032 0.030 0.14
Top 20% 0.270 0.398 0.374 0.385 0.368 0.358 0.371 0.371 0.359 0.38
Top 40% 0.520 0.636 0.610 0.630 0.606 0.595 0.612 0.610 0.594 0.62

Bottom 40%  0.254 0.193 0214 0.193 0214 0224 0205 0.211 0226  0.19
Bottom 20%  0.082  0.071 0.083 0.068 0.081 0.088 0.072 0079 0.089 0.08

Gini 0.190 0327 0292 0320 0288 0272 0300 0294 0.271 0.53
Wealth distribution

Top 1% 0.013 0.038 0.043 0.042 0.043 0.042 0.037 0.042 0.041 0.28
Top 20% 0.243 0422 0461 0.453 0.446 0447 0407 0447 0445 0.76
Top 40% 0470 0.666 0.708 0.705 0.691 0696 0.648 0.690 0.689  0.95

Bottom 40%  0.319  0.169  0.137 0.135 0.148 0.143  0.181 0.149  0.150 0.02
Bottom 20%  0.133  0.059  0.043  0.041 0.047 0045 0064 0.048 0.048 —-0.01
Gini 0.111 0.365 0420 0416 0.401 0405 0344 0400 0398 0.76

Note: The statistics are computed across 100 simulations, each of which is length 1000 periods; RA and HA refer to
representative- and heterogeneous-agent models; ) source: Chang et al. (2019).

and extensive margins and find that this effect is quantitatively important, namely, the volatility of labor ranges between
30% and 60% of the output. Our analysis for the models with indivisible labor led to similar predictions for the benchmark
case n = 1, however for n = 5, the volatility is excessively low; Chang et al. (2019) do not get so low volatility because they
do not consider so high degrees of risk aversion, as we do.

Concerning excessively high correlation of labor variables, we can see in the table that the assumption of indivisible la-
bor reduces the correlation corr(n,y) from 0.7-0.8 to 0.4-0.2 relative to the representative-agent model. A similar reduction
is observed for the correlation between efficiency labor and output. The reduction in correlation is due to the assump-
tion of heterogeneity: in the representative-agent economy, a higher wage induces higher labor efforts, whereas in the
heterogeneous-agent model, the efforts depend also on the individual productivity and the level of wealth which can offset
some of the wage effect; see Maliar and Maliar (2003) for a related discussion.

6.2. Distributional implications

In Table 2, we summarize the distributional statistics produced by the heterogeneous-agent models.

Overall, the distributional implications of the studied models with indivisible labor are similar to those of the
heterogeneous-agent model with intensive and extensive margins studied in Chang et al. (2019). A robust distributional
implication of this class of models is that they underpredict the degree of inequality relative to the US economy; see, e.g.,
Alyagari (1994) for the corresponding statistics on the US economy data. We see that the introduction of indivisible labor
helps us mitigate this problem and increase the degrees of inequality, in particular, the share of wealth that belongs to
the top one percent of the population. Unlike the divisible labor model, the indivisible labor models are characterized by
the degrees of income and wealth inequalities that do not significantly depend on the inverse of elasticity of intertemporal
substitution of labor. However, the assumption of indivisible labor alone is not sufficient to produce the empirically relevant
degrees of income and wealth inequalities as in the data.

7. Conclusion

This paper shows how to use deep learning classification approach borrowed from data science for modeling discrete
choices in dynamic economic models. A combination of the state-of-the-art machine learning techniques makes the pro-
posed method tractable in problems with very high dimensionality - hundreds and even thousands of heterogeneous agents.
We investigate just one example - discrete labor choice - but the proposed deep learning classification method has a variety
of potential applications such as sovereign default models, models with retirement, and models with indivisible commodi-
ties, in particular, housing.

Appendix A

In this appendix, we show sensitivity results with respect to the inverse of intertemporal elasticity of substitution of
labor 7 for the models with divisible labor, indivisible labor model and full- and part-time employment (Figs. A1- A6).
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Fig. Al. Solution to divisible labor model under y =1 and n =1/5.
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Fig. A2. Solution to divisible labor model under y =1 and n =5.
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Fig. A5. Solution to the three-state employment model under y =1 and n = 1/5.
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Fig. A6. Solution to the three-state employment model under y =1 and n = 5.
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