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A FINITE ELEMENT ELASTICITY COMPLEX
IN THREE DIMENSIONS

LONG CHEN AND XUEHAI HUANG

ABSTRACT. A finite element elasticity complex on tetrahedral meshes and the
corresponding commutative diagram are devised. The H' conforming finite
element is the finite element developed by Neilan for the velocity field in a dis-
crete Stokes complex. The symmetric div-conforming finite element is the Hu-
Zhang element for stress tensors. The construction of an H (inc)-conforming
finite element of minimum polynomial degree 6 for symmetric tensors is the fo-
cus of this paper. Our construction appears to be the first H(inc)-conforming
finite elements on tetrahedral meshes without further splitting. The key tools
of the construction are the decomposition of polynomial tensor spaces and the
characterization of the trace of the inc operator. The polynomial elasticity
complex and Koszul elasticity complex are created to derive the decomposi-
tion. The trace of the inc operator is induced from a Green’s identity. Trace
complexes and bubble complexes are also derived to facilitate the construction.
Two-dimensional smooth finite element Hessian complex and div div complex
are constructed.

1. INTRODUCTION

A Hilbert complex is a sequence of Hilbert spaces connected by a sequence of lin-
ear operators satisfying the property: the composition of two consecutive operators
vanishes. Let © be a bounded domain in R3. The elasticity complex
(1) RM < H'(Q;R%) 2% H(ine, :S) 225 H(div, Q;S) % L*(R?) — 0
plays an important role in both theoretical and numerical study of linear elas-
ticity, where RM is the space of the linearized rigid body motion, def is the
symmetric gradient operator, H (inc, 2;S) is the space of symmetric tensor 7 s.t.
incT := —curl(curl )T € L*(;M), and H(div,;S) is the space for the sym-
metric stress tensor o with dive € L*(;R?). We shall present a finite element
elasticity complex
(2) RM S v, & wine e, sdiv A, 9, 40
on a tetrahedral mesh 7;, of €. In the complex (), the H!-conforming finite
element is the finite element V'), developed by Neilan for the velocity field in a
finite element Stokes complex [34]. The H (div;S)-conforming finite element 33"
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is the Hu-Zhang element for the symmetric stress tensor [28/[31]. The space Q, for
L*(Q; R3) is simply the discontinuous piecewise polynomial space. Some degrees of
freedom of Neilan element and Hu-Zhang element are modified for the consideration
of the commutative diagram. The missing component is an H (inc; S)-conforming
finite element %™ which is the focus of this work.

In the solid mechanics application, the most important component in the complex
@) is the finite element X%V for stress tensors. Construction of finite elements
for stress tensors can benefit from the structure of the complex. For example,
the bubble polynomial elasticity complex is built and used in [5] to construct a
finite element for symmetric stress tensors. Here the bubble polynomial spaces are
referred to polynomials with vanished traces on the boundary of each tetrahedron.
In [17128]131], a precise characterization of H (div;S) bubble polynomial space is
given which leads to a stable P (S) — P, _;(R?) stress-displacement finite element
pair in arbitrary dimension. Identification of its preceding space '}fc will be helpful
for the design of fast solvers and a posteriori error analysis [12] for the mixed
formulation of linear elasticity problems. It may also find applications in other
fields such as continuum modeling of defects [2] and relativity [19].

Elasticity complex (1) and many more complexes can be derived from the com-
position of de Rham complexes in the so-called Bernstein-Gelfand-Gelfand (BGG)
construction [7]. Finite element complexes for the de Rham complex are well un-
derstood and can be derived systematically in the framework of Finite Element
Exterior Calculus [4,6]. It is natural to ask if a finite element elasticity complex
can be derived by the BGG construction. One key in the BGG construction is the
existence of smooth finite element de Rham complexes. With nodal finite element
de Rham complexes, a two-dimensional finite element elasticity complex has been
constructed in [2I] using the BGG construction which generalizes the first finite
element elasticity complex of Arnold and Winther [g].

In three dimensions, however, smooth discrete de Rham complexes are not easy
due to the super-smoothness of multivariate splines [25] (cf. superspline in [24,[33]).
To relax the super-smoothness, the element can be further split so that inside one
element the shape function is not C*° smooth. Such approach leads to the so-called
macro elements. In particular, a two-dimensional elasticity strain complex has
been constructed on the Clough-Tocher split of a triangle [22], and more recently
a finite element elasticity complex has been constructed on the Alfeld split of a
tetrahedron [20] based on the smooth finite element de Rham complex [26] on such
split.

We shall construct a finite element elasticity complex on a tetrahedral mesh
and the corresponding commutative diagram without further splitting. Let K be
a polyhedron. We first give a polynomial elasticity complex and a Koszul type
complex, which can be summarized as one double-directional complex below:

C def inc div
RM == Py, (K; R?) == Py (K S) m Py o (K S) 2 Py 5 (K R?) === 0 .
TRM T TXTX®T sym(vaT) )

Several decompositions of polynomial tensor spaces, especially for Py (K;S), can be
obtained consequently. We then study trace operators for the inc operator since
the traces on face and edges are crucial to ensure the H (inc)-conformity. To do so,
we use a symmetric notation incT = V x 7 X V (see Section [2] for notation) and
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derive the following symmetric Green’s identity:

(VxoxV, 7))k —(0,V x1T xV)g = (tr1(0), tra(7))sr — (tra(o), tr1(7)) ok

+ Z Z (n-oxn,tpe-T)e

FeF(K)ec&(F)

- Z (tpe-0,m-T X 1N)e,

FEF(K) ecE(F)
where, with I denoting the projection operator to face F',
tri(7T) ' =nx T Xmn,
tro(7) :=p(r x V) xn+Ve(n- 7).

We show tri(7) € H(divpdivp, F;S) and tra(7) € H(rotp, F;S), and reveal
boundary complexes induced by trace operators; see Section [4.2] for details. Then
the edge traces of the face traces tri(7) and tra(7) imply the continuity of 7|, and
(V x T) - te. Further edge degrees of freedom will be derived from the require-
ment inc7 is in the Hu-Zhang finite element space. The face degree of freedom
will be based on the decomposition of polynomial tensors of H (divp divg, F;S)
and H(rotp, F;S). The volume degree of freedom is from the decomposition of
P, (K;S) based on the polynomial elasticity complex.

Recently there has been a lot of progress in the construction of finite elements for
tensors [111[14L[161[18,20H22L29]. Our construction appears to be the first H (inc)-
conforming finite elements for symmetric tensors on tetrahedral meshes without
further splitting. Our finite element spaces are constructed for tetrahedrons but
some results, e.g., traces and Green’s formulae etc., hold for general polyhedrons.
Our approach of constructing finite element for tensors, through decomposition
of polynomial space and characterization of trace operators, seems simpler and
more straightforward than the BGG construction through smooth finite element de
Rham complexes. For example, although macro finite elements are adopted, the
finite element elasticity complex in [20] is still smoother than complex (2)) in the
sense that the space V, in [20] is H?-conforming, and "¢ is H'-conforming. Ours
is more natural: V7, is H'-conforming, and X" is H (inc)-conforming.

Notation on meshes. Let {7}, }x~0 be a regular family of polyhedral meshes of
Q. For each element K € Ty, denote by nsx the unit outward normal vector to
OK. In most places, it will be abbreviated as n for simplicity. Denote by F(K),
E(K) and V(K) the set of all faces, edges and vertices of K, respectively. Similarly
let £(F) be the set of all edges of face F. For F € F(K), its orientation is given
by the outwards normal direction ngx which also induces a consistent orientation
of edge e € £(F). Namely the edge vectors ¢ty and outwards normal vector nak
follow the right hand rule. Then define ng. = tr. X nox as the outwards normal
vector of e on the face F.

Let Fp, &, and V;, be the union of all faces, edges and vertices of the partition
Tr, respectively. For any F' € Fj, fix a unit normal vector np and two unit tangent
vectors tg 1 and tpo, which will be abbreviated as t; and t; without causing any
confusions. For any e € &, fix a unit tangent vector ¢, and two unit normal
vectors n. 1 and n. 2, which will be abbreviated as m; and n, without causing any
confusions. Those notation are illustrated in Fig.[Il We emphasize that np, t., n. 1,
and n. o are globally defined not depending on the elements.
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FIGURE 1. Tangent vectors and normal vectors of edges and faces

The rest of this paper is organized as follows. In Section[2, we present a notation
system on the vector and tensor operations. We construct polynomial complexes
and derive decompositions of polynomial tensors spaces related to the elasticity
complex in Section Bl In Section Ml we discuss traces for the inc operator based
on the Green’s identity, and present corresponding trace complexes and bubble
complexes. Two smooth finite element complexes in two dimensions are devised
in Section Bl In Section [6] we construct an H (inc)-conforming finite element and
a finite element elasticity complex in three dimensions. Finally, a commutative
diagram for the finite element elasticity complex is developed in Section [7l

2. VECTOR AND TENSOR OPERATIONS

One complication in the construction of finite elements for tensors is the notation
system for tensor operations. In this section, we adapt the notation system used in
solid mechanics [32]. In particular, we separate the row and column operations to
the right and left sides of the matrix, respectively.

2.1. Tensor calculus. Define the dot product and the cross product from the left
b-A, bxA,

which is applied column-wise to the matrix A. When the vector is on the right of
the matrix

A-b, AXDb,

the operation is defined row-wise. Here for cleaner notation, when the vector b is
on the right, it is treated as a row-vector bT while when on the left, it is a column
vector.

The ordering of performing the row and column products does not matter which
leads to the associative rule of the triple products

bxAxc:=(bxA)xec=bx(Axc).

Similar rules hold for b+ A - ¢ and b- A X ¢ and thus parentheses can be safely
skipped. Another benefit is the transpose of products. For the transpose of product
of two objects, we take transpose of each one, switch their order, and add a negative
sign if it is the cross product.

For two column vectors u,v, the tensor product v ® v = wwT is a matrix
which is also known as the dyadic product uv := uwwT with cleaner notation (one
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T is skipped). The row-wise product and column-wise product of wv with another
vector  will be applied to the neighboring vector:

- (uwv) = (z-uw)v’, (uv) x=u(v-x),
z X (uv) = (z x u)v, (uv)xx=u(vxx).

We treat the Hamilton operator V = (01,02,03)T as a column vector. For a
vector function u = (uy,us,u3)7, curlu = V X u, and dive = V - u are standard
differential operations. Define Vu = VuT = (9;u;) which can be understood as the
dyadic product of Hamilton operator V and column vector u.

Applying these matrix-vector operations to the Hamilton operator V, we get
column-wise differentiations V- A, V x A, and row-wise differentiations A-V, AX V.
Conventionally, the differentiation is applied to the function after the V symbol.
So a more conventional notation is

A V:=(V-AT)T, AxV:=—(VxAT)T.

By moving the differential operator to the right, the notation is simplified and the
transpose rule for matrix-vector products can be formally used. Again the right
most column vector is treated as a row vector to make the notation cleaner. We
introduce the double differential operators as

incA:=VxAxV, divdivA:=V-A-V.

As the column and row operations are independent, and no product rule of differ-
entials is applied, the ordering of operations is not important and parentheses are
skipped. Parentheses will be added when it is necessary.

In the literature, differential operators for matrices are usually applied row-wise
to tensors. To distinguish with V notation, we define operators in letters as

gradu = uVT = (0;u;) = (Vu)T,
curlA:=—-AxV=(VxA"T,
divA:=A-V=(V-A")".

Note that the transpose operator T is involved for tensors and in particular grad u #
Vu,curl A #V x A, curl A # A x V and div A # V - A. For symmetric tensors,
divA=(V-A)T, curlA = (V x A)T.

Integration by parts can be applied to row-wise differentiations as well as column-
wise ones. For example, we shall frequently use

(Vxt,0)k =(1,.Vxo)k+(nXT1,0)sK,
(rxV,0)gk = (1,06 xV)Kk + (T Xn,0)9k.

Similar formulae hold for grad, curl, div operators. Be careful on the possible sign
change and the transpose operator when letter differential operators and V op-
erators are mixed together. Chain rules and product rules are also better used
in the same category of differential operations (row-wise, column-wise, or letter
operators).

Denote the space of all 3 x 3 matrices by M, all symmetric 3 x 3 matrices by
S, and all skew-symmetric 3 x 3 matrices by K. For any matrix B € M, we can
decompose it into symmetric and skew-symmetric parts as

B = sym(B) + skw(B) := %(B +BT7) + %(B — BT).
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The symmetric gradient of a vector function w is defined as
1 1
def u := sym Vu = g(Vu + (Vu)T) = g(uv + Vu).

In the last identity, the dyadic product is used to emphasize the symmetry in
notation. In the context of elasticity, def w is commonly denoted by &(u).

We define an isomorphism from R? to the space of skew-symmetric matrices K
as follows: for a vector w = (wy,wa,w3)T € R3,

0 —Ww3 w2
mskww = | ws 0 —w1
—W w1 0

Obviously mskw : R? — K is a bijection. We define vskw : M — R3 by vskw :=
mskw ! o skw. Using this notation, we have the decomposition

1
(3) gradv = defv + 3 mskw(V x v).

2.2. Identities on tensors. We shall present identities based on diagram () and
refer to [7] for a unified proof. Let S7=7T —tr(7)I and ¢ : R — M by w = vI.

C®R) —Y 5 C®(R3) — X C®°(R%) — Y C=(R)
CoR3) — Y C°(M) ——X 4 C®°(M) —— C(R3)
(4) X —rm% . / o V .
Co(R3) — Y C®(M) —X 5 C®(M) —Y—— C°(R3)

C®(R) — Y C®(R3) — VX ¢°(R3) — Y C2(R).

The north-east diagonal operator is the Poisson bracket [d, k] = d((-)x)—(d(-))x
for d = V, VX, V- being applied from the left and the Koszul operator k = x, xx, -@
applied from the right. For example, we have

(5) Vx(r-x)— (Vx71)-x&=2vskwr, block (1,2),

V(u x x) — (Vu) x x = —mskwu, block (2,1).
The parallelogram formed by the north-east diagonal and the horizontal operators
is anticommutative. For example, we will use the following identities:
(6) tr(V x 1) = =V - 2vskw(7),  block (1,2),

2vskw Vu = =V X u,

V xu =V - mskw(u).

Taking transpose, we can get similar formulae for row-wise differential operators.
By replacing 0; by z;, we can get the anticommutativity of the parallelograms

formed by the vertical and the north-east diagonal operators. For example, ()
becomes

(7) tr(T x ¢) = =2 vskw(7) - .
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2.3. Tensors on surfaces. Given a plane F' with normal vector n, for a vector
v € R3, we define its projection to plane F'
Mpv:=nmxv)xn=nx(vxn)=-nx(nxv)=1—-nnT)v,
which is called the tangential component of v. The vector
Hfv:=nxv=(nxp)v

is called the tangential trace of v, which is a rotation of IIpv on F (90° counter-
clockwise with respect to n). Note that IIp = I — nnT is a 3 x 3 symmetric
matrix. With a slight abuse of notation, we use IIr to denote the piecewise defined
projection to the boundary of K.

We treat the Hamilton operator V = (9, d2,05)T as a column vector and define

Vp:=1IpV, Vi :=II4V.
We have the decomposition
V=Vr+no,.
For a scalar function v,
Vv =1lp(Vv) = —n x (n x Vv),
Viv=nxVv=mnxVpv

are the surface gradient and surface curl of v, respectively. For a vector function v,
V- v is the surface divergence:

divpv:=Vp-v=Vp- (llpv).

By the cyclic invariance of the mix product and the fact n is constant, the surface
rot operator is

(8) rotpv = Vy-v=(nxV) - v=n-(Vxv),
which is the normal component of V x v. The tangential trace of V x v is
(9) nx (Vxv)=V(n-v)—0,v=Vpn- -v)—0,(Ilpv).
By definition, for a vector function v,
rotpv = Vg v = -Vp - (nxv), divpv=Vp-v=Vs-(nxv).
We define, for a vector function v,
Vev:=VpepvT =lpVoT, gradpv =vVp = (Vpo)T,
Viv:i= Vot =n x (VoT), curlpv:=oVg = (Vio)T,
defp v :=sym(Vpv), symecurlyv :=sym(curlpv).
For a tensor function T,
divpr:=7-Vp=(Vp-0)7, divpdivpT:=Vp -7 Vg,
rotpTi=7-(nx V)= (Vg 77T, rotprotpr := Vg -7 V5.

Although we define the surface differentiation through the projection, it can be
verified that the definition is intrinsic in the sense that it depends only on the func-
tion value on the surface F. Namely Vpv = Vp(v|p),Vp-v = Ve -lpv, Vv =
Vr(v|r) and thus I is sometimes skipped after V.
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3. POLYNOMIAL COMPLEXES

In this section we consider polynomial elasticity complexes on a bounded and
topologically trivial domain D C R3. Without loss of generality, we assume 0 =
(0,0,0) € D which can be easily satisfied by changing of variable & — x, with an
arbitrary . € D.

Given a non-negative integer k, let P (D) stand for the set of all polynomials
in D with the total degree no more than k, and P;(D;X) denote the tensor or
vector version for X = S, K, M, or R3. Similar notation will be applied to a two-
dimensional face F' and one-dimensional edge e. Let Q% be the L?-orthogonal
projection operator onto Py (D;X). Let Hg(D;X) := P (D; X)\Pr_1(D;X) be the
space of homogeneous polynomials of degree k.

Recall that dimPy(D) = (k'gd) for a d-dimensional domain D, dimM = 9,
dimS = 6, and dimK = 3. We list a useful result in [16]

(10) Py(D) Nker({I +x-V)=0

for any positive number ¢, where [ is the identity operator.

3.1. Polynomial elasticity complex. The polynomial de Rham complex is
(11) RS Pui(D) 5 PL(D;R?) X5 Py (D;R?) 5 Py_o(D) — 0.

As D is topologically trivial, complex (1)) is also exact, which means the range of
each map is the kernel of the succeeding map.
For later use, recall the following polynomial elasticity complex in [5 (2.6)]

def inc div

(12) RM S Pj1(D;R?) =5 Pu(D;S) =% Pr_o(D;S) <5 Pr_s(D;R?) — 0,
where the linearized rigid body motion
(13) RM={axxz+b:a,bcR}={Nz+b: NcK,bcR}.

Complex ([12)) is an exact sequence for a topologically trivial domain D. In the
following, we give a more precise characterization of the div operator.

Lemma 3.1. div : sym(xPy_3(D;R?)) — P_3(D;R3) is bijective.

Proof. As div(sym(zP;_3(D;R?))) C Py_3(D;R?) and dimsym(zP;_3(D;R?)) =
dim Py _3(D;R?), it is sufficient to prove sym(zPy_3(D; R?))Nker(div) = {0}. That
is: for any q € Pj_3(D;R?) satisfying divsym(xzqT) = 0, we are going to prove
q=0.
By a direct computation,
div(geT) = (qzT) -V =¢q(x-V)+ (¢V) - = 3q + (gradq) -
div(zq") = (xq") -V =z(q- V) + (V) - ¢ = (divg)z + g,
2divsym(xzqT) = 4q + (grad q) - = + (div q).
It follows from divsym(axq) = 0 that

(14) 4q + (grad q) - € = —(div q)=.

Since div((grad q) - ) = (I + « - grad) div q, applying the divergence operator on
both side of (I4]) yields

(5] + x - grad)divg = —(3] 4+ x - grad) div q.
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Hence we acquire from (L0) that divg = 0, and ([14)) reduces to
4q + (gradq) -x =0 Vx € D.
Applying ([I0) again gives q = 0. O

3.2. Koszul elasticity complex. Recall the Koszul complex

uUXx

(15) 0= Pp_o(D) 22 Pyo_y(D; R?) 225 Py (D;R?) 2% Py i (D) — 0,

which is also an exact sequence.
Define operator wrys : C1(D;R?) — RM as

wrMv = v(0) + %(curlv)(O) X .

By a direct calculation V X (a x &) = 2a and the definition of RM, cf. (13)), it
holds

(16) TrRMV=v VYveERM.

Lemma 3.2. The following polynomial space sequence
(17)
0 -5 Pe_y(D;R3) 28 B, o (D;S) *XTX% By (D;S) 7% Pryr (D;R?) ™% RM — 0

is a complex and is exact.

Proof. We first verify (I7) is a complex. For any v € P,_3(D;R?) and 7 €
Pr_2(D;S), we have

1
wxsym(um)xw:?ﬂx(mv—l—vw)xw:O,
(xxTxax) x=0.

As T € Pi(D;S), (@) implies V x (7 -x) = (V x T) - @, we get wryp (T - x) = 0.
Thus ([I1) is a complex.

We now verify the exactness.

(1) IfexTxx =0 and 7 € Pr_2(D;S), then 7 = sym(vx) for some v €
Pj_3(D; R?).

For any T € Pr_5(D;S) satisfying  x (7 X &) = 0, by the exactness of Koszul
complex ([15)), there exists ¥ € Py_o(D;R3) such that 7 x ¢ = xv. By (@), as 7
is symmetric, 7 X @ is trace-free. Then it follows v - & = tr(zv) = tr(7 x ) = 0.
Then there exists v1 € Pr_3(D;R?) such that ¥ = v; x &. As a result, we have

(tT—zv))xzx=TXx—2(vy1 XT)=TXT—20=0.
Again there exists ve € Pr_3(D; R3) such that 7 = v, 4+ vax. By the symmetry
of T, it holds 7 = sym(xz(vy + v2)).
(2) If -z =0 and T € Pi(D;S), then T = x x o X x for some o € P_2(D;S).
For any T € Pi(D;S) satisfying 7 - £ = 0, by the exactness of Koszul complex

(18], there exists 71 € Pr_1(D; M) such that 7 = 71 x @. By the symmetry of 7,
it holds

(x-T)xx=z-(T1xx)=x-7=(T-2)T=0.
Thus there exists ¢ € P,_1(D) satisfying @ - 71 = qz, i.e. ©- (71 —¢I) = 0. Again
there exists 7o € Pr_o(D; M) satisfying 71 = ¢I + @ x 72. Hence

T=ql Xx+2xXT9 XT.
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It follows from the symmetry of 7 that
T=symT =sym(gl Xz +x X Ty X x) =sym(x X T X ) =T X SymTa X &.

Here we use the fact that @ x skw Ty x & € Pi(D; K).
(3) Pk(D, S) - = PkJrl(D;Rs) M ker(wRM).
As a result of step (1),

dim(z x Py_o(D;S) x «) = dimPj,_o(D;S) — dimP,_3(D; R?)
= %k(k —1)(k+4).
Then we get from step (2) that

dim(Pr(D;S) - ) = dim Py (D;S) — dim(x x Pr_2(D;S) x x)
1
= (k+3)(k+2)(k +1) = Sh(k = 1)(k+4)
1
(18) :§(k+4)(k+3)(/€+2)—6.
It follows from (6] that 7ra/Pry1(D;R?) = RM, and by (I8),
dim(Py(D;S) - &) + dim RM = dim Py, ;(D;R?).
Therefore the complex (7)) is exact. O
Remark 3.3. Another Koszul elasticity complex
0 -5 Hy_5(D; R3) X% Hy_o(D;S) 22 Hu(D;S) &5 Hyyy (D;R?) — RM — 0

has been constructed in [23] Section 3.2] by using different Koszul operators

1 1
IClek—HT'(B—WCBX(VXT)'(E,
1
’CQT——k(k+1)$XT><$,

1
Ksv = z sym(va) — sym((zvT x ) x V),

1
E(k+1)
which satisfy homotopy identities

Kidefv=v Vove&H, (D;R? k>1,
def K17+ KoineT =7 V7 € Hi(D;S),
inc Kot + Kgdivr =7 V1 € Hi_2(D;S),
divKsv =v Vo€ H,_3(D;R?).
Ours are simpler but without homotopy identities.

3.3. Decomposition of polynomial tensor spaces. Combining the two com-
plexes ([12)) and (7)) yields

C . def in div .
(19) RM —=P,(D;R?%) — Pr(D;S) — Pr_2(D;S) — Py _3(D;R3) =—=0.
TRM T TXTXT sym('va:) D

Although there are no homotopy identities, from ([19)), we can derive the following
space decompositions which play a vital role in the design of degrees of freedom.
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Lemma 3.4. We have the following space decompositions

(20) Pt1(D;R?) = (Px(D;S) - @) & RM,
(21) Py(D;S) = def P41 (D;R?) @ (z x Py_o(D;S) x x),
(22) Pi_o(D;S) = inc Py (D;S) @ sym(Py_3(D; R*)z).

Proof. The decomposition (20) is trivial by the exactness of (7).
For any q € Py, 1(D;R3) satisfying def q €  x Pr_»(D;S) x x, we have

(Vg+ (Vq)T) -« =2(defq) -z = 0.
Since (Vq@)x = V(xTq) — q, we get
(23) (V@)T -z +V(zTq) = q.
Noting that

z-(Vg)T-x=x-(defq) -z =0,
we obtain from (23]) that
(- V)(@Tq) = x7q.

Hence £Tq is a linear function. In turn, it follows from (23) that g € Py(D;R3),
which together with the fact €7q is linear implies ¢ € RM. Thus (21)) follows from
the fact that the dimensions on two sides of (21]) coincide.

By Lemma B.1] the sum in (22) is a direct sum. Thus the decomposition ([22))
follows. .

3.4. Polynomial complexes in two dimensions. We have similar polynomial
complexes in two dimensions. Here we collect some which will appear as the trace
complexes on face F' of a polyhedron. Let n be a normal vector of F. For « € F,
denote by £t = n x x. Set RT := Py(F;R?) + xPy(F). For a scalar function v,

mv = 0v(0,0) + = - Vrv(0,0).

Again, here without loss of generality, we assume (0,0) € F and in general the x
in the results presented below can be replaced by @ — @, with an arbitrary . € F.
The following div div polynomial complexes have been established in [14]:

C 9 sym curl g divp dive
(24) RT —= Py (F;R?) == Pr(F;S) == Py_o(F) <—D_>()7
z Tz vexeT

which implies the following decomposition

o ]Pk+1(F;R2) = (]Pk(F,S) . wL) ® RT.

o Pi(F;S) = symcurlp Py 1 (F;R?) @ Py_o(F)zxT.

o divpdivp : Py_o(F)zaT — Pi_o(F) is a bijection.
The following two-dimensional Hessian polynomial complex and its Koszul complex
can be also found in [14] Section 3.1]

C : rot
i T sym(z—v)
The implied decompositions are
[ Pk+1(F) = (CC . Pk_l(F,S) . :E) @Pl(F)
o Pp_1(F;S) = Vi Pyir (F) @ sym(z' Py_o(F; R?)).
e rotp : sym(z P _o(F;R?)) — Pp_o(F;R?) is a bijection.
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4. TRACES AND BUBBLE COMPLEXES

Besides the decomposition of polynomial spaces, another key of our construction
is the characterization of the trace operator. We first derive a symmetric form of
Green’s identity for the inc operator from which we define two traces. We show the
traces of spaces in the elasticity complex form two complexes on each face and will
call them trace complexes. On the other hand, the kernel of traces in the polynomial
space is called bubble polynomial function spaces, abbreviated as bubble spaces,
which also forms a complex and is called the bubble complexes. We also present
several bubble complexes on each face.

When defining and studying the traces, we consider smooth enough functions
not in the most general Sobolev spaces setting. The precise Sobolev spaces for
the traces of the inc operator are not easy to identify and not necessary for our
purposes, as the shape function is a polynomial being smooth inside the element.

4.1. Green’s identity. Consider o, 7 € H> (K;S). By the symbolical symmetry,
we expect the following symmetric form of the Green’s identity

(VxoxV, 7))k — (VX1 xV,0)k = (tr1(0), tra(7))ox — (tr1(7), tra(0)) ok,

which belongs to a class of second Green’s identities. For the scalar Laplacian
operator, it reads as: for u,v € H*(K),

—(Au,v) g + (Av,u) g = (tr1(u), tr2(v))ox — (tr1(v), tra(u))ox.

where try(u) = u is the Dirichlet trace and tra(v) = 9, v is the Neumann trace. For
the double curl operator, we have a similar formula: for u,v € H? (K;R3),

(VX (Vxu),v)g —(Vx(Vxv),u) g =—(tr;(u), tra(v))ox + (tr1(v), tra(w)) sk,

where tri(u) = (n X u) X n is the tangential component of w (Dirichlet type) and
tra(u) =n x (V x u) is the Neumann type trace.
As o is symmetric, (V x 6)T = —o x V. Therefore (V x (-),(-) x V) is a
symmetric bilinear form on H'(K,S), i.e.,
(Vxo, TxV)k=(Vx1,0xV)k.
Applying integration by parts, we have

(26) (Vxo,7xV)k=(VXxoxV,T)k+(VXo,7Xn)sk,
(27) (VxT,0xV)gk=(VxTxV,0)k+(VXT,0Xn)skK.

The difference between (26) and (27) implies the following Green’s identity
(VxoxV,T)gk —(6,VXxTxV)g=(0xn,VXT)ox —(VX0o,TXn)k.

But in this form, the traces o x n and V x o are still linearly dependent.
We further expand the boundary term into tangential and normal parts

(exnVxThoagk=mxoxnnx(VxT))ox+n-oxnn-(Vx7)sk.
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Recall that, on one face F € F(K), n-(Vx1) = Vg -Illpr = —Vp-(nx 7). Then
we get from the integration by parts on face F' that

(n-oxn,Vp-(nx7))p=—(Vp(n-oxn),nxt)p
+ Z (n-oxn,np.-(nxT)).
e€&(F)

=(Vr(n-olUp),n X T xXn)p
- Z (n-oxn,tpe T)e,
ecE(F)
where recall that ty. = n x np.. Therefore we can write the boundary term as

(e xn,VXT)ogg =(Mmxoxnnx(VXT)sk

- Z (Vr(n-ollp),n x T Xn)p
FeF(K)

+ Z Z (n-oxn,tpe T)e,

FeF(K)ecE(F)
and by symmetry

(Txn,Vxo)ogg =Mmx1Txn,nx(Vxo)sk

- Z (Ver(n-t1lp),n X o xXn)r
FeF(K)

+ Z Z (n-Txn,tpe-0)e.

FEeF(K) ec&(F)
The difference of these two terms suggests us to define
tri(7T) ' =nx T Xmn,

tro(1) = n x (Vx 7)p + Ve(n - F).

We can simplify the trace try(7) as follows. Apply IIx(-)IIx to the tangential trace
of V x 7, cf. (@), to get

(28) HF(nx (VXT))HFZVF('I’I,~THF)—HF6,LTHF.

Because tro(7) is integrated on the face with a tangential symmetric matrix n x
o X n, it can be further simplified to sym try(7). Therefore we define

(29) tro(7) i= symtry(7) = 2defp(n - 7 p) — Hpd, T p,

which is a symmetric matrix on each face. Such trace has been identified in [5].
We present another form of tro which is obtained by taking the transpose of the
second term in tro(7) and more useful than (29).

Lemma 4.1. For any sufficiently smooth and symmetric tensor T, it holds
(30) tro(T) =n x (Vx 7)llp + (Up7-n)VpE

(31) =lp(txV)xn+Ve(n-7Ip).

Proof. We take the transpose of (28] and use the symmetry of T to get
(32) Ip((t x V) xn)p = (IIpT - n)Ve — pd, 7.
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The difference of ([82) and (28)) implies
HF(’I’L X (V X T))HF + (HF’T . ’I’L)VF = HF((T X V) X ’I’L)HF + VF(TL . THF)

As try(T) = symtry(7), we obtain [B0). As T is symmetric, taking transpose, we
obtain (BI)). O

We are in the position to summarize the symmetric form of Green’s identity.

Theorem 4.2 (Symmetric Green’s identity for the inc operator). Let K be a poly-
hedron, and let o, T € HZ(K; S). Then we have

(VxoxV, 1)k —(0,V xTxV)g = (tr1(o),tr2(1))ax — (tra(o), tri(7))ox

+ Z Z (n-oxn,tpe T)e

FEF(K) ec&(F)

(33) - Z Z (tpe-o,m T XN),,

FEF(K) e€E(F)
where tr1(T) =n X T X n, and tro(7) is given in [BQ) or (B1).

As both o and 7 are symmetric, by taking transpose of the boundary terms, we
can get another equivalent version of Green’s identity. For example, the edge term
canbe —(nx o -n, T -tp.)e.

When the domain €2 is decomposed into a polyhedral mesh, for piecewise smooth
function to be in H (inc, );S), it suffices that the edge terms across different ele-
ments are canceled.

Lemma 4.3. Let T € L*(Q;S) such that
(i) 7|k € H(inc, K;S) for each polyhedron K € Tp;
(ii) tri(7)|p € L*(F;S) is single-valued for each F € F ;
(iit) tra(7)|p € L2(F;S) is single-valued for each F € Fi;
(iv) T|. € L*(e;S) is single-valued for each e € &},
then T € H (inc, §2; S).

Proof. Take any o € C§°(€2;S). Sum the Green’s identify [B3]) over K € Ty, to get

(r,VxoxV)-— Z(VXTXV,O’)K
KeTh

= > (try(0), tra(7))ox — D (tra(0), try(7))ox

KeT, KeTy

(34) + Z Z Z (n-oxntpe T)e— (tpe-o,m-Txn),).

KeT, FEF(K) ecE(F)

We note that try (7) is independent of the choice of the direction of normal vectors
but tra(7) is an odd function of m in the sense that tra(7;—m) = —tra(T;n).
Therefore if try (7) and | tra(7)| are single-valued on face F, the face terms in (B4)
will be canceled out when integrated over a mesh of the domain €.

The edge vector ¢ in (34) is the orientation of edge e induced by the outwards
normal vector ngg of the face F' with respect to K. Therefore, for an interior face
F = KNK', tpk)e = —tr(k’),e, where F(K) means F € F(K) with normal
vector ngr. Hence if 7T is single-valued on edge e, the edge terms in ([34]) will be
canceled out when integrated over a mesh of the domain €.
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Then (34) reduces to

(T1,VxoxV)= Z(VXTXV,O’)K,
KeTh

which implies the distribution V x 7 x V € L*(Q;S). So T € H (inc, ;S). O

Remark 4.4. The continuity of 7 |, which implies 7(¢) is also continuous at vertices,
is a sufficient condition for the cancelation of edge terms but may not be necessary.

Lemma [4.3]is implicitly contained in [5, Section 6] but the Green’s identity (33)
and the form of tra(7), cf. (BQ), seem new. When the domain is smooth, the edge
jump can be replaced by a curvature term, cf. [1, Theorem 3.16], where a different
Green’s formula on smooth domains is derived.

4.2. Trace complexes. For a vector v € R3, define the tangential trace and the
normal trace as

tri(v) :=vxmn, tra(v):=v-n.

For a smooth and symmetric tensor o € H(div, K;S), define the normal-normal
trace and the normal-tangential trace as

tri(o):=n-o-n, tra(o):=nxo-n.

Then we will have the following trace complexes

(35) axx+ b C v def - inc div

o
ltrl ltrl ltrl Ltrl
C sym curlp divpdive

apXp +bp —=vXn—snxrTxXxn——sn-oc-n——0

and
(36) axxz+b = v def T inc o div p.
ltr2 Ltrg ltrg LtI‘Q
v2 V-
aF-acF—i—bFC v-on—2 tra(T) Y noxn—-s=0

In (33) and (B6]), we present the concrete form instead of Sobolev spaces as we will
work mostly on polynomial functions which are smooth enough to define the trace
pointwise. In Lemmas [4.5] and [4.6] we will verify the commutative diagrams (B3]
and (B6). Again, some results can be found in [5, Section 5].

Lemma 4.5. For any sufficiently smooth vector function v, we have

(37) n X (defv) x n = symcurlp(v X n),

(38) try(def v) = V4 (v - n).

Proof. Using our notation, the first identity (B87) is straightforward:
n x (Vo) x n = Vi(v x n) = (curlp(v x n))7.

Then apply the sym operator to get (37).
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Let 7 = defv. Using (3I)), V x Vo = 0 and (9)), it follows that
tI‘g(T) = HF(T X V) X n+VF(n T HF)

= %HF(Vv X V) Xn+ %Vp(an(ﬂp’v) +Ve(v-n))

= %VF(VF(’U m) — 9, llpv) + %VF((?”(HF’U) + Ve(v-n))

=Vi(v-n),
as required. O
We then verify the second block.
Lemma 4.6. For any sufficiently smooth and symmetric tensor T, it holds that
(39) n-(VxrTxV) - n=divpdivp(n x 7 X n),
(40) n-(Vx7xV)xn=Vg-try(r).
Proof. The first identity is from a direct computation
n-(VxTxV) n=Vg- Uprlp- Vi =divpdive(n x 7 x n).

To prove the second identity, we use the trace representation form (BI) and the fact
Vf-VF:()toget

n-(Vx7TxV)xn=Vg-(TxV)xn=Vg-tra(7).

O

4.3. Continuity on edges. In order to construct an H (inc)-conforming finite ele-
ment, the trace complexes inspire us to adopt H (divg divg, F';S) conforming finite
element to discretize n x 7 x n, and H (rotp, F; S)-conforming finite element to
discretize tra(7). The trace for vy € H(rotp, F';S) is vp -t on OF. Two trace op-
erators for H(divp divp, F'; S) are identified in [14] Lemma 2.1] and will be recalled
below.

Lemma 4.7 (Green’s identity for the two-dimensional div div operator [14]). Let
F be a polygon, and let 7 € C*(F;S) and v € H*(F). Then we have

(divp dive 7,v) g = (T, Vau) g — Z Z sign, 5(tre - T npe)(9)v(d)
ecE(F) d€0e

(41) - Z [tre,l('r),anp,e”)e_(tre,2(7),v)e]v

ec&(F)

. 1, if 6 is the end point of e,
sign,_ 5 1=
Blle,s —1, if 6 is the start point of e,

tre1(7) ' =Npe T Npe,

treo(T) = 0(tpe - T Npe) + npe - dive T,

The trace of 7 € H(rotp, F;S) is 7 - t and denoted by tr. 3(7) =7 - ¢.
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Lemma 4.8. Let F € F(K), e € E(F), t be the unit tangential vector of e, and

npe =t xn. For any sufficiently smooth and symmetric tensor T, we have on
edge e that

(42) tre1(tri(r)) = —t-7-t,

(43) treo(tri(7)) = 0(npe-7-t) —n - (V xT) - ¢,

(44) tres(tra(7)) =n x (Vx 1) -t + 0, (Ilp7 - n).

Proof. Let us compute
(45) (trxn) np.=7-(nXnp.)=7-t.
Then identity ([42) follows. The identity (43) follows from
Ot -(nx7Txn) np.)=0(npe-7-t),
and
Npe - divpim X TXn)=Vp-(MXTXnN) np,
=—n-VXx((txn) np.)=-n-(VxT)-t,

which holds from (§]) and ([3]). The identity (d4)) is a direct consequence of (3Q). O

Those formulae on the edge trace suggest the continuity of 7-¢ and (V x 7) - ¢
on edges. As we mentioned before, in view of conformity, it is sufficient to impose
the whole tensor 7 is continuous on edges. The continuity of (V x 7) -t is not
surprising as V x 7 x V € H(div;S) and thus the normal trace (V x7)x V) -n =
(V x 7)-V§ € L*(F;R%). Namely V x 7 € H(rotg, F;R3*?), and the trace of
H (rotp, F;R3*2) implies the continuity of (V x 7) - t on edges.

The following result on the vanishing edge trace is an easy consequence of for-

mulae (42)-(44).

Corollary 4.9. If |, = 0 and (VxT)-t|. = 0 for alle € E(K), then tre1(tr1(7)) =
treo(tri(7)) = tre s(tra(r)) = 0.

4.4. Bubble complexes. We give a characterization of bubble functions follow-
ing [5]. Let K be a tetrahedron with vertices ¢, xo, x3 and x4. We label the
face opposite to x; as the i-th face F;, and denote by m; the unit outwards normal
vector of face F;. Set N ; := sym(nyn]) = 3(nyn] + nyn]), where (ijkl) is a
permutation cycle of (1234). Then it is shown in [10/[19] that the 6 symmetric
tensors {IN; ;,4,7 = 1,2,3,4,i1 < j} form a basis of S.

Define a tangential-tangential bubble function space of tensorial polynomials of
degree k as

ngk = P(K;S) Nker(try).

It is easy to verify tri(A;A;IN; ;) = 0, where )A; is the barycentric coordinate of
x corresponding to vertex ;. Since the dimension of B}, is k(k? — 1) (cf. |5,
Lemma 6.1]), we have

Bngk =Pr2(K)® {)\z)\sz‘,j} = Z ]P)k_g(K))\iAjNi,j.
1<i<j<4

Define an H (inc, K; S) bubble function space of polynomials of degree k as
i};fk = Pi(K;S) Nker(try) Nker(try) = B;&k N ker(trz).
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According to Lemma 6.2 in [5], for any 7 € ]B%i;;fk, it holds 7 |.= 0 for all e € E(K)).
Thus
T E Z Aij ()\kPk_g(K) +>\1Pk_3(K))Ni7j.
1<i<j<4

Although there is no precise characterization of IB%}‘;’C,C, it is shown in [5] that the
dimension of B}?Tk is k3 — 6k2 + 11k.

Furthermore the bubble polynomial elasticity complex with k£ > 4 is established
in [5 Lemma 7.1] and [31, Lemma 3.2]

(46) 0 S brP (K R?) 25 Bipe, 2% BIY, , Y Py o(K;R?)/RM — 0,

where b = AjA2A3\4 is the volume bubble polynomial and B‘}éj’k = Pu(K;S) N
H(div, K;S) is the H(div;S) bubble function space and is characterized in [31]
(47) B = > NAPeo(K)Tij, k>2

0<i<j<3

with T'; ; t”tZ cand t; ;1= x; — ;.
Similarly we also have two-dimensional bubble complexes on face F'. The bubble
function space B%i",’cdi" =Pp(F;S)N Ho(divp divp, F;S) is

{T € P(F;S) : tre1(T) =treo(r) =0,Ve € E(F), 7(0) =0 Ve V(F)}
We present the results below and a proof of (@8] can be found in [14].
(48) 05 bpPy_o(F;R?) ML, plivdiv AVedVe, p,  (F) /Py (F) — 0.
For the two-dimensional Hessian polynomial complex, let IB%’“)t 1 =P (F58) N
H(rotp, F;S), we have
(49) 0S5 b3Py_5(F) i, Byt 5 By _o(F;R?)/RT — 0,

which is a rotation of the two-dimensional elasticity bubble complex established
in [8].

At the end of this section, we present two results on the characterization for the
dual spaces of bubble spaces. The first one is also included in [15].

Lemma 4.10. Assume finite-dimensional Hilbert spaces By, Bo, ..., B, with the
inner product (-,-) form an exact Hilbert complex
0SB, 4. B, % B, =0,

where B; C ker(tr(d;)) fori=1,2, ..., n—1. Then the bubble space B;, fori=1,
.., n—1, is uniquely determined by the DoF's

(50) <d7;’l), Q> v q € (dle)/a
(51) (v,q) VqeQ=(di—1B;—1),

where (-,-) is the duality pair and the isomorphism Q — (d;—1B;_1)" is given by
p—(p,") forpe Q.

Proof. By the splitting lemma in [27] (see also Theorem 2.2 in [13]),
(52) B, = d;k 4;B; & d;1B;_1,

where d} is the adjoint of d; with respect to the inner product (-,-). Since df
restricted to d;B; is injective, the number of DoFs (B0)-(&1) is same as dimB;.
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Assume v € B; and all the DoFs (B0)-(21) vanish. By the decomposition (52),
there exist v; € B; and v € B;_; such that v = d} d;v1 + d;—1v2. The vanishing
(B0) yields d;v = 0, that is d;df(d;v1) = 0. Noting that d;df : d;B; — d;B; is
isomorphic, we get d;uv; = 0 and thus v = d;_1v2. Now apply the vanishing (1))
to get v = 0. O

Corollary 4.11. Assume B = ulP, where function p >0 and p # 0, and d* : Q —
P is isomorphic. Then

(1) P2=B': forveB, if (v,p) =0 for all p € P, then v =0.

(2) Q= (dB)': forv e dB, if (v,q) =0 for all ¢ € Q, then v =0.

Proof. (1) By assumption v = pw for some w € P. Then choose p = w to get
(pw, w) = 0 which implies w = 0.
(2) By assumption v = d(pw) € dB with w € P. Notice that (v, q) = 0 implies

(pw, d*q) =0 VqeQ.

As d* : Q — P is isomorphic, we can find ¢ € Q s.t. d*¢ = w and (pw,w) = 0
which implies w = 0 and consequently v = 0. (]

The Koszul complex will play a vital role to find the space Q. Hereafter let
{Th}n>0 be a regular family of simplicial meshes of a two- or three-dimensional
domain 2.

5. FINITE ELEMENT COMPLEXES IN TWO DIMENSIONS

In this section we will construct a smooth finite element Hessian complex and a
smooth finite element div div complex in two dimensions and construct commutative
diagrams. Assume  C R? in this section.

5.1. Smooth finite element Hessian complex in two dimensions. First we
construct a finite element Hessian complex in two dimensions, which is smoother
than a rotation of the elasticity complex established in [12] (2.3)]. For an integer
k > 6, we shall also construct the following commutative diagram

C 2 rotp

(53)  Pi(F) —S> C%(F) — > C(F;S) —C> 0(F; R?)

l[lg‘ess ll;:?t lllg‘ﬂrad
v?

rot g

Py (F) > Ppi1(F) —=Pj_1(F;S) —> Py_o(F;R?) — 0.

0

Recall the Argyris element in [3L[9]. Take P41 (F) as the shape function space.
The degrees of freedom are

(54) v(0), Vrv(8), Vau(d) V6 e V(F),

(55) (v,q9)e YV q€Pr_s(e),ec&(F),
(56) (Onv,q)e Y q €Pr_ule),e € E(F),
(57) (V2v,q)r ¥V q € xxTPy_5(F).

The last DoF (57) is based on (B0), the characterization of (dB)’ for d = V% and
B = b2P_5(F), and the isomorphism divp divy : Py_5(F)zxT — P_5(F), cf.
(24). One can also use P = B’ to replace (51) by (v,q)r for all ¢ € Pr_5(F). The
choice (B7)) is for the commutative diagram (53)).
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Then consider an H(rot)-conforming element for symmetric tensors.

Take Py_1(F;S) as the shape function space. The degrees of freedom are
(58) 7(0),rotp 7(8) V€ V(F),

(Tt,q)e V q €Pr_s(e;R?), e € E(F),
(rotr7,q)e YV q € Pr_4(e;R?), e € E(F),

(r,q)r YV q€xx™Pr_5(F),
62) (rotpT,q)p ¥V q € Py_g(F;S) -zt = Py_5(F;R?)\RT.
Again (61)) is based on (5I) and the characterization of (dB) for d = V% and
B = b2.Py_5(F), and (62) is on (50). Note that due to (58)) and (60Q), rotp T is
continuous on OF and thus the last polynomial space Py_o(F;R?) in (53)) is the

continuous Lagrange element not discontinuous one. This is smoother than the
rotation of the H(div)-conforming element for symmetric tensors in [28].

Lemma 5.1. The degrees of freedom (58)-(62) are unisolvent for Pr_1(F};S).

Proof. The number of degrees of freedom (B8)-(62) is 3
15+ 6(2k —5) + S(k = 3)(k—4) =3 = Sk(k +1),

S O W
— o ©
_ =

(
(
(
(

which equals dim Py_1 (F;S).

Take 7 € Py_1(F;S) and assume all the degrees of freedom (58))-(62) vanish.
The vanishing degrees of freedom (58])-(60) imply 7¢t|gr = 0 and (rotp 7)|gr = O.
Apply the integration by parts to get

(rotpT,q)F = (T,symcurlp q)p =0 V q € RT.

Then it follows from the vanishing DoF (62)) and the unisolvence of Lagrange ele-
ment that rotp 7 = 0. Thanks to the bubble complex ([49)), there exists v € Py_5(F)
such that 7 = V% (b%v). Finally 7 = 0 follows from the vanishing DoF (61 and
the isomorphism divp dive : Py_o(F)xaT — Pr_o(F). O

Let I}ess : C°(F) — Pj41(F) be the nodal interpolation operator based on the
degrees of freedom (B4)-(B7), 132" : C°(F;S) — Pr_1(F;S) be the nodal interpola-
tion operator based on the degrees of freedom (58)-(62), and I8! : C*°(F;R?) —
Pi_2(F;R?) be the canonical Lagrange interpolation operator based on the degrees

of freedom v(8) Ve V(F),
(v,9)e V¥V q€Py_4(e;R?), e € E(F),
(v,@)p V q€Py_5(F;R?).
Lemma 5.2. The diagram ([B3) is commutative.
Proof. Consider T € C*(F;S) and q € P,_5(F;R?). For q € P,_5(F;R?)\RT
(I8 rotp T — rot p(15°07), @) = (rotp (T — [%7), @) = 0.
When g € RT, then using integration by parts
(Ilg,rad rotr T —rotp(I71), q)r = (7 — [P'1, symcurlp q) p = 0,

as symeurlp ¢ = 0 and ((7 — I'*'7)t,q). = 0 for ql. € P1(e;R?) C Pr_y(e;R?). It
is easy to see that (I rotp 7 — rot p(1°°7))|ar = 0. So we have verified

(63) 15 rotp 7 = rotp (IK07) V7 € C°(F;S).
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For v € C*(F), apparently (V4 (I5s50))(8) = (I%%(VZ0))(8) = (VZv)(d) for
each 6 € V(F), and by the integration by parts,
(t-Va(IE™),q)e = (t- ViV, q@)e = (t- I (VEV),@)e V¥ q € Pr_z(e;R?)
on each e € £(F). By (63)),
rotp (IR°(VE0) — VE(IE0)) = rotp (IFY(VEv)) = I8 rot p (Vi) = 0.
For q € xx™P;,_5(F),
(I (VE0) = VEIE™0).q) 5 = (Vi(v = ["0),q) , = 0.

Then by the unisolvence result, cf. Lemma [5.1]

(64) [P (Viv) = VE(Iy) Vv e C®(F).
Combining (63]) and (64)) yields the commutative diagram (53)). O

Next we show the smooth finite element Hessian complex in two dimensions. For
an integer k > 6, define global finite element spaces

Vihess .= Loy, € H*(Q) wop|r € Py (F) for each F € Fy,, all the
degrees of freedom (B4)-(56]) are single-valued},
%= {7, € H(rot,Q;S) :71|r € Pr_1(F;S) for each F € Fj, all the
degrees of freedom (G8)-(60) are single-valued},
verd = (g, € HY(Q;R?) :q), |k € Py_o F;R?) for each F € Fy}.
Note that rot £}°" ¢ H'(Q;R?).
Counting the dimensions of these spaces, we have

1
dim VPS5 = 64V, + (2k — T)#E + 5 (k= 3)(k — )#Fh,

dim S = 54V, + (4 — 10)4E, + g(k: _3)(k — )T — 34,
dim VE* = 24V, + (2k — 6)#E), + (k — 3)(k — 4)#F,.

Theorem 5.3. The finite element Hessian complex in two dimensions

rot

2
(65) Py() S Ve 2 met Iy
s exact.

Proof. The inclusion V2V;hess C 31 follows from (54) and (B8), and rot 3;°° C
Ve Ji0lds from (58) and (60). Hence (63) is a complex.

For 7), € £}°" N ker(rot), there exists v, € H?(Q) such that 7, = V2v;, and
vp|F € Pry1(F) for each F € F,. Thanks to DoF (B8], v, € VP, Thus X2}°° N
ker(rot) = V2V;Pes5. Then by the Euler’s identity,

dim(rot 3;°*) = dim 2}°" — dim V;"*s + 3
= —#V), + (2k — 3)#En + (k — 3)(k — 4)#Fy, — 3#F, +3
= 2#Vh + (2k — 6)#5h + (k — 3)(k — 4)#]:}1 = dim ‘/v%lra»d7

which implies rot 3;°* = V%Tad_ -
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5.2. Smooth finite element divdiv complex in two dimensions. Next we
construct a finite element divdiv complex in two dimensions, which is smoother
than those in [14,[30]. We also have the following commutative diagram

C sym curlp
_—

diVF diVF
-

0

(66) RT C=(F;R?) C>(F;S) C=(F)

sym curl div div grad
l IF l IF l IF

RT —~— IP’k+1(F;RZ)Symcilg Py (F;8S) drrdvy Pj_o(F) —0.

We start from the Argyris element for smooth finite element div div complex in
two dimensions. Choose Py 1(F;R?) as the shape function space. The degrees of
freedom are given by

(67) v(8), Vrv(8), VEv(s) V&€ V(F),

(68) (v,@)e ¥V qePr5(e;R?),e€&(F),
(69) (0nv,q)e ¥ q € Pr_y(e;R?) e € E(F),
(70) (symcurlpv,q)r V q € sym(xrPy_5(F;R?)).

In order to have the commutative diagram, the last DoF ([fQ) is based on char-
acterization of (dB)’ for d = symcurlp, B = b3Px_5(F;R?), and the bijection
rotp : sym(ztPy_5(F;R?)) — Pp_5(F;R?).

Now we construct smooth divdiv element for symmetric tensors. Take Py (F;S)

as the space of shape functions. Choose the following degrees of freedom
(71) 7(8), Vr7(0), (divp divpT)(d) V6 € V(F),

(72) (1,q)e YV qePr_y(e;S),ec&(F),
(73) (divpdivpT,q)e V q € Pr_y(e),e € E(F),
(74) (tre2(T), @)V q € Prs(e),e € E(F),
(75) (T.@)r Vg €sym(zzpP_s(F;R?),
(76) (divpdiveT,q)r VYV q € Pr_5(F)\P1(F).

Lemma 5.4. The degrees of freedom ([[1))-(T6) are unisolvent for P (F;S).
Proof. The number of degrees of freedom (71))-(Z6) is

30+12(k;—3)+3(k;—2)—1—%(1:—3)(1@—4)—3:g(k+1)(k+2),

which equals dim Py (F’; S).

Take 7 € Py (F;S) and assume all the degrees of freedom (7I)-(76) vanish. The
vanishing degrees of freedom ({1)-(74) imply 7|sr = 0, (divp divepT)|gr = 0 and
tre2(7)|or = 0. We get from the Green’s identity (@Il that

(divpdiveT,q)p =0 V g€ Py(F),

which together with the vanishing (7€) and the unisolvence of the Lagrange el-
ement that divediveT = 0. By the bubble complex (48], there exists w €
Py, 1(F;R?) such that 7 = symcurlpw. By the homogeneous boundary condi-
tions, T = sym curlg(b%v) with v € Pr_5(F;R?). Finally 7 = 0 follows from the
vanishing (7)) and the polynomial complex (23]). O
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Let ™™ . C®(F;R?) — Py, (F;R?) be the nodal interpolation operator
based on the degrees of freedom (67)-(7Q), and I#V4Y : C(F;S) — P(F;S) be
the nodal interpolation operator based on the degrees of freedom (71))-(76]).

Lemma 5.5. The diagram (66]) is commutative.
Proof. For 7 € C*(F;S), clearly we have
(Iffad(divF dive 7) — divp dive (I8 diVT)) lor = 0.
Then by the Green’s identity (41l), for ¢ € P1(F') we have
(Ilg;rad(divF dive 7) —dive divp (ISV9r) g)p = (dive dive (7 — T8V 9YE) ¢)p = 0.
For g € Py_5(F)\P1(F),
(I%rad(diVF dive 1) —dive dive (I8 9r) @) p = (dive dive (T — ISV 4Vr) ¢)p = 0.
Hence we get from the unisolvence of the Lagrange element that
(77) dive divp(IEV W) = 12 divp dive T ¥V 1 € C°(F;S).

For v € C*(F;R?), set 71 = symcurlp(IZ™ “urly) and 74 = TEV Y (sym curl g v)
for simplicity. Obviously

(1 —72)(0) =0, V(r1—72)(0)=0 VdecV(F).
For g € Pr_4(e;S) and e € E(F),
(T1,q)e = (symewrlp v, q)e = (72, q)e.
For g € P_3(e),
O(tTTin) + nTdive T1,¢)e = (O (I v - 1), 9)e = (Due(v - 1), q)e
= (0y(tTTon) +nTdive T2, q)e.
And for q € sym(zF ® Py_5(F; R?)),
(T1,9)r = (symcurlpv,q)r = (72,q)F.
By (D),
divp dive(r2) = I}%fad divg dive(symcurlp v) = 0 = divp dive 71.

Then by Lemma [5.4]

(78) sym curlp (1™ o) = I8V Y (sym curlp v) ¥V v € C(F;R?).
Combining (7)) and (78) yields the commutative diagram (G6l). O

Next we show the smooth finite element divdiv complex in two dimensions.
Define global finite element spaces

vy — Ly, € HY(Q;R?) wop|p € Ppy1(F;R?) for each F € Fy, all the
degrees of freedom (67)-([69) are single-valued},
sdivdiv.— {0, € H(divdiv, QS) :7|r € Pp(F;S) for each F € Fy, all the
degrees of freedom (T1)-(74) are single-valued},
Ve = (g, € HY(Q) :qn|x € P_o(F) for each F € F,}.
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Counting the dimensions of these spaces, we have

dim V5™ = 124V, 4+ (4k — 14)#E, + (k — 3)(k — 4)#Fn,
dim VY = 104V, + (5k — 14)#5h + = 5 (k 3)(k — 4)#F, — 3#Fn,

dim VY = 4V, + (k= 3)#En + = (k 3)(k — 4)#Fy.
Theorem 5.6. The finite element divdiv complex in two dimensions
(79) RT S yymeu! symentl, syivdiv divdiv, prerad _

18 exact.

Proof. The inclusion sym curl V3™ ™ € S8V follows from (67)-(69) and (71)-
(@), and div div Z¢V 4V Vgrad holds from ([T]) and ([73). Hence ([{9)) is a complex.

For ), € E‘,ili"div N ker(div div), there exists v, € H'(Q;R?) such that 7, =
symecurlvy, and vy,|p € Ppyq(F;R?) for each F € Fj,. Thanks to DoFs (TI)-(72),
v, € VI Thus S8V ker(div div) = sym curl V™ ™. And by the Euler’s
identity,

dim(div div Z3V ) = dim SV — dim VSym ol 13
= —2#Vh + k#EL + o (k: 3)(k — 4)#Fn — 3#Fn +3
= #Vn + (k= 3)#En + = (k 3)(k — 4)#F;, = dim V9,
which implies div div Sv 4 = g2, O
The finite element divdiv complex (79) is smoother than that in [14,130] as
vERd ¢ HY(Q) and V™ € HP (5 R?).
6. FINITE ELEMENT ELASTICITY COMPLEX

In this section we present a finite element elasticity complex. In the complex,
the H!-conforming finite element is a variant of the finite element developed by
Neilan for the Stokes complex [34] with modified DoFs. The H (div;S)-conforming
finite element is the Hu-Zhang element [28][31] with modified DoFs. The missing
component is H (inc; S)-conforming finite element which is the focus of this section.

6.1. H' conforming finite element for vectors. Recall the H'-conforming fi-
nite element for vectors by Neilan in [34]. The space of shape functions is chosen
as Ppy1(K;R?) for k+ 1 > 7. The degrees of freedom are

80) v(8), Vo(8), VZ(5) Vi€ V(K),
) (v,@)e ¥ q€Prs(e;R), e € E(K),
) (0n,v,q9)e YV qEPy_4(e;R?), e € E(K),i=1,2,
83) (symcurlp(v x n),q)r V q € sym(zrPy_5(F;R?)), F € F(K),
) (Vi(v-n),qr VqexxP, 5(F),F e F(K),
) (defv,q)x VY g € sym(Py_3(K;R*)T).
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The face moment in the original Neilan’s element is (v,q)r, ¥ q € Pr_5(F;R3).
We split it into two (dB)’ forms as v x n € H(symcurlg, F) and v -n € H?(F)
cf. the trace complexes ([B) and (B6) and DoFs (57) and (ZQ). The unisolvence of
this variant is easy. The Neilan element has extra super-smoothness at vertices and
edges. Note that the normal derivative is only continuous on edges not on faces and
thus this element is only in H' not H2. To construct an H2-conforming element on
tetrahedron, the degree of polynomial will be higher, i.e. k41 > 9; see Zhang [35].

6.2. H(div) conforming finite element for symmetric tensors. Recall the
H (div)-conforming finite element for symmetric tensors in [31]. The space of shape
functions is chosen as Pj_o(K;S) for kK — 2 > 4. The degrees of freedom are

) T(6) Ve V(K),

) (nimn;,q)e ¥V qePyule),ec&(K),i,j=12,
88) (n]Tt.q)e Y q€Pyale) e (K)i=12

) (tn,q)r V¥ q€Py_5(F;R%),F e F(K),

) (divr,q)x ¥ q€ Py 3(K;R*)\RM,

) (1,@)x ¥V qexxP, (K;S) x .

The boundary degree of freedom (86])-(89) will determine the trace 7n uniquely by
the unisolvence of the Lagrange elements. Due to the characterization of
H (div, K;S) bubble function, cf. (41), ]B%‘}(ij’k_z is uniquely determined by DoF
(1,9) Kk for g € Py_4(K;S), i.e. (B‘}éj’k_z)’ >~ Pj,_4(K;S). The unisolvence will be a
consequence of the characterization of the dual of B%Yk% based on Lemma [A.10]

Lemma 6.1. The bul?ble space B‘}(i:’k72 is uniquely determined by DoFs (90)-(91)
and the subspace inc BRS, is determined by DoF (91)).

Proof. By Lemma [4.I0] we can determine B?(i?’k—Q by two parts: one part for
div IBS(}(‘ o and the other part for inc Bmc Thanks to the bubble complex (46,
div B%ka = Pj_3(K;R3)\RM which motivates DoF @©Q).

For T € incIB%i;;fk, 7 L def H'(K;R?) through integration by parts. If (QI)
vanishes for 7, from the space decomposition Py_4(K;S) = def P,_3(K;R3?) & (z x
Pi_6(K;S) x @) in (1)), we conclude 7 L Pr_4(K;S) and thus 7 = 0. So we have
proved (inc ]Bi;;fk)' >~ x X Py_g(K;S) x x, which indicates DoF (91]). O

6.3. H(inc) conforming finite element for symmetric tensors. With previous
preparations, we can construct an H(inc) conforming finite element now. Take
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Py(K;S), k > 6, as the space of shape functions. The degrees of freedom are

(92) 7(6),V7(5) Vb€ V(E),
(93) (VxTxV)0) VieVK),

(94) (1,q)e V q€Pr_y(e;S),e € E(K),

(95) (VxT-t,q@)e Vq€cPi_s(e;R?),ec(K),

(96) M](VxTxV)nj,qe VqePyyle),ecé(K),ij=1,2,
(97) M (VXxTxV)t,q)e VqgePy_ule),ecé(K),i=1,2,

(98) (divpdivptri(1),q)r Y q € Pr_s5(F)\P1(F), F € F(K),

(99) (tri(7),@)r Vg €sym(zPy_5(F;R?)), F € F(K),
(100) (rotptra(1),q)r YV q € Pp_g(F;S) -z, F € F(K),
(101) (tra(7),q)r YV q € zx™Pr_5(F), F € F(K),

(102) (inet,q)k VqexxPr(K;S)xa,

(103) (1,q@)x Y q € sym(xP;_3(K;R?)).

We first show the trace is uniquely determined by the degree of freedom (92))-
(I01)) on the boundary.

Lemma 6.2. Let F' € F(K) and 7 € Py(K;S). If all the degrees of freedom
©2)-[01) on face F vanish, then tr1(7) = 0 and tra(7) = 0 on face F.

Proof. We split our proof into several steps. For the ease of notation, denote
o=V XxT XVEPk,Q(K;S).

Step 1. Traces on edges vanish. By the vanishing degrees of freedom (02), ([94),
and ([@8), 7 |.=0 and (V x 7 -t) |.= 0 for any edge e € E(F). Then it follows from

Corollary [.9] treq(tr1(7)) = treo(tri(7)) = tres(tra(r)) = 0. Hence tri(7) €
B‘}{‘,’cdi" and try(7) € B ;.

By the vanishing degree of freedom (93], (96, and (97) for o, we know all
components of o |., except t - o - t, are zero.

Step 2. try(7) vanishes. Using B9), divp divp(tri(7)) |sp= n-o-n |gp= 0. Thanks
to Lemma [5.4] it follows from the vanishing (92), (@8) and ([@Q9) that tri(r) =
nxtTxn=0.

Step 3. tro(T) vanishes. Apply Q) to acquire rotp(tra(7)) lop=n-0 xXn |gp= 0.
By Lemma [5.1] it follows from the vanishing (100) and (101 that tro(7) =0. O

Now we are in the position to present the unisolvence.

Theorem 6.3. The degrees of freedom (92)-(103) are unisolvent for P (K;S).
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Proof. We count the number of degrees of freedom (92)-(103]) by the dimension of
the sub-simplex

4 vertices : 4 x (6 +3 x 6 + 6) = 120;
6 edges : 6[6(k — 3) + 3(k — 2) + 3(k — 3) + 2(k — 3)] = 6[14(k — 3) + 3];

4 faces : 4 <k23) —3+2(k;3>+2(k;3>_3+(k;3)]

=4[3(k - 3)(k — 4) — 6];
1 volume : 6<k3 )—3<k>+6+3<§>—(k—l)(k—Q)(k—3)+6
= k% — 6k* + 11k.

The total dimension is k% + 6k% 4+ 11k + 6, which agrees with dim Py (K;S).

Take any 7 € P (K;S) and suppose all the degrees of freedom (92)-(103]) vanish.
We are going to prove it is zero.

First of all, by Lemma [6.2] we conclude tr;(7) = 0 and try(7) = 0 and thus
T € Hy(inc, K;S), which immediately induces inc T € inc B}r}ck Then by Lemma

[6.1] vanishing (I02) implies incT = 0.

By the complex for bubble function spaces (46]), there exists v € Pj_3(K;R3)
such that 7 = def(bgv). Lastly by the characterization of (dB)’ for d = def, B =
brPr_3(K;R3), and the isomorphism div : sym(zP;_3(K;R3)) — Pp_3(K;R3), cf.
Lemma [3.1] we conclude v = 0. |

6.4. Finite element elasticity complex in three dimensions. For an integer
k > 6, define global finite element spaces

V5= {v, € H (Q;R?) oy, |k € Py (K;R?) for each K € Ty, all the
degrees of freedom (8Q)-(B84) are single-valued},
»i¢ = {1, € L*(;S) i1k € PL(K;S) for each K € Ty, all the
degrees of freedom (02)-(101]) are single-valued},
Eﬁiv ={rn € H(div,S) :7h|k € Pr_2(K;S) for each K € Ty, all the
degrees of freedom (86)-(89) are single-valued},
Q= {q), € L*(Q;R?) :q;,|x € Pr_3(K;R?) for each K € Ty, }.

By Lemma [6.2] 7, |. is single-valued for e € &, and try(T4), tra(7,) are single-
valued on each F' € Fy, therefore by Lemma [4.3] 3;'° C H (inc, Q;S).
Counting the dimensions of these spaces, we have

dim V'j, = 304V, + (9% — 30)#E) + g(k —3)(k — A)#Fn + %k(k —1)(k = 2)#Th,
dim 23’ = 304V, + (14k — 39)#E), + (3k — 21k + 30) #F,
+ (K* — 6k2 + 11k)#Th,
dim B3 = 64V, + (5k — 15)#E, + 3(k 3)(k — 4)#F
+ (k—=1)(k—2)(k — 3)#Th,

dim Q), = %k(k —1)(k — 2)#Th.
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Lemma 6.4. Let T € Ei,?c and incT = 0. Then there exists v € V', satisfying
T = defv.

Proof. By the polynomial elasticity complex ([[2) and the elasticity complex (1),
there exists v = (v1,v2,v3)T € H'(Q;R3) s.t. 7 = defv and v|g € Py (K;R?)
for each K € T;,. We are going to show such v € V', by verifying the continuity of
degrees of freedom (8Q)-(84). As an H'! function, v is continuous at vertices, edges
and faces. The focus is on the derivatives of v.

Due to the additional smoothness of i, V(def v)(d) is single-valued at each
vertex § € Vy,, and (defv) | and (V x (defv) - t) | are single-valued on each edge

e € &,. Next we show that Vv is single-valued on each edge e € &,. By (@),
1 1
Ov = (Vo)T -t = (defov) -t + §mskW(V xv)-t=(defv)-t+ i(V X v) X t,
1
(104) V x (defv) -t = 58t(V X ’U)

on edge e with the unit tangential vector ¢t. Hence (V x v) x t and 9;(V x v) are
single-valued across e. Taking any face F' € F} shared by K1, Ky € Ty, it follows
from the single-valued (V X v) X t|gr that (V x v)|g, and (V x v)|k, coincide
with each other at the three vertices of F'. Thus (V x v)() is single-valued at each
vertex d € Vy, which together with the single-valued 9;(V x v) on &, implies that
V x v is single-valued on each edge e € &,. Since (Vv)T = def v + 1 mskw(V x v),
Vv is single-valued on each edge e € &p,.
By the identity

8ijUIc = 8i((def v)jk) + 8j((def 'U)ki) — 8k((def ’U)ij) fori,j,k=1,2,3,

the tensor V2v(d) is single-valued at each vertex § € V}, as V(def v)(4) is single-
valued. Therefore v € V,. O

Theorem 6.5. The finite element elasticity complex

105 RM S v, 2 wine e, sudiv AV, 5, 4 0
( h h

15 exact.

Proof. The inclusion def V', C i€ follows from (I04) and (B7)-(38), and inc e
=4 holds from ([B9)-(@0) and Lemmal6.2l The proof of div Y = @}, can be found
in [28/[31]. Hence (03] is a complex. And

dim(= N ker(div)) = dim =Y — dim Qy,
3
= 64V + (5k — 15)#En + 5 (k — 3)(k — )

+ %(k —1)(k —2)(k — 6)#Th.

It follows from Lemma [6.4] that def V', = 2" N ker(inc). Thus
dim(inc £*¢) = dim I — dim def V;, = dim i’ — dim V'j, + 6
3
= (5k — 9)#E, + 5(k2 — Tk + 8)#F;,

1
+ 5(1& — 9K + 20k)#T;, + 6.
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Then we get from the Euler’s identity that

dim(Z8Y Nker(div)) — dim(inc ) = 64V}, — 64E), + 64F), — 6475, + 6 = 0.
Therefore 8 N ker(div) = inc I3, O
Remark 6.6. The finite element elasticity complex in [20] holds for k > 4, while in
complex ([I05]) k > 6 is required. The space V', in complex ([105]) is H '_conforming,
while the corresponding space in [20] is H?2-conforming, and X' in [20] is H'-

conforming. Although macro finite elements are adopted, the finite element elas-
ticity complex in [20] is still smoother than complex (103]).

7. COMMUTATIVE DIAGRAM

In this section, we will show the canonical interpolation operators based on
DoFs for the finite element elasticity complex (105) commute with the differential
operators.

Let IV : C°(K;S) — Py_o(K;S) be the nodal interpolation operator based on
DoFs (86)-(1), Ii2¢ : C°(K;S) — Pi(K;S) be the nodal interpolation operator
based on DoFs ([02)-(103)), and I§$<f : C®°(K;S) — Pi41(K;S) be the nodal interpo-
lation operator based on DoFs (80)-(83). Recall Qx := Q%3 is the L?-projection.
Here for the ease of notation, we skip the degree of polynomial which will be clear
in the context.

Lemma 7.1. It holds
(106) div(I§Vr) = Qg divr V7 € C>®(K;S).
Proof. For 7 € C*(K;S) and ¢ € RM, employing the integration by parts,
(Qr divr — div(I¥V7), @) = (div(T — I§V7),q)x = 0.
For g € P,_3(K;R*)\RM, by (@0),
(Qr divr — div(I¥V7), @) = (div(T — I§V7),q)x = 0.
Combining the last two identities gives (106I). (Il

Note that the canonical interpolation for the original Hu-Zhang element using
(1,q) Kk for g € Pr_4(K;S) as interior DoFs will not satisfy the property (106]).

Lemma 7.2. It holds
(107) inc(Ii°r) = I (inc ) V71 €C®(K;S).
Proof. For ease of presentation, set o = I&V(incT) — inc(Ii°T) € P;_o(K;S).
By (I06]), we get
dive = div (I§" (inc 7)) = Qx div(inc ) = 0.

Thanks to DoFs (93) and (96)-(91), the DoFs (86)-(88) of o vanish. Then apply
the integration by parts to get

(divp divp(n x (1 — I°T) x n),q)rp =0 V q € P (F),
(rotp(tro(T — I¥°T)),q)p =0 V g € RT.
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For g € Py_5(F;R?) and F € F(K), it follows from (39)-(40), and DoFs (98], (L00)
that

(en,q)r = (I (incT))n, q)r — (inc(Ig°T)n, q)p = (inc(t — I¥°T)n, q)F

= (n-inc(t — IP°7) -n,n-q)r + (n x inc(t — IP°T) -n,n x q)p
= (divpdivp(n x (T — I[E°T) x n),n-q)r
— (rotp(tra(T — I2°7)),n x q)p = 0.
For g € @ x Py_g(K;S) x x,
(,q)k = (incT — inc(I2°T),q)x = 0.

Therefore we conclude (107) from the unisolvence of H(div)-conforming finite ele-
ment for symmetric tensors. ]

Lemma 7.3. It holds
(108) def(I#fv) = I'2¢(defv) VY v € C®(K;R?).

Proof. For ease of presentation, set 7 = I2¢(def v)—def(I*fv) € Py (K;S). By (107,
we get

inc7 = inc (1 me(def v)) = AV (inc(def v)) = 0.
Then DoF ([102)) vanishes. This also means DoFs (93] and (96])-(97)) vanish. By the
definitions of I'3¢ and I, we have for § € V(K),

Vir(8) = Videf(v — I¥'w) =0, i=0,1,
and for e € £(K),
(T,q)e = (def(v — I¥M),q)e =0 V q € Pr_y(e;S).
For g € Pr_3(e;R3) and e € £(K), it follows

1
(VxT-t,q).=(V xdef(v— Idef )-t,q)e = —§(V x (v — Idef ),0:q)e = 0.

Hence DoF's ([02) and (94)-(95) vanish.
Employing (37), it holds trq (def(v — I$fv)) = sym curlg((v — I#fv) x n). Then
for g € Pr_5(F)\P1(F) and F € F(K),

(divp dive tri (1), @) r = (dive dive try (def(v — IM)), @) r
= (divp dive sym curlp((v — I8'v) x 1), q)r = 0.
We get for g € sym(zPy_5(F;R?)) that
(tr1(7), q)p = (tri(def(v — I¥)), @) r = (sym curlp((v — I¥v) x n),q)r = 0.

Employing (8)), it holds tra(def(v — I¥fv)) = V4 ((v — I¥fv) - n). Then for
q € Py o(F;S) -zt

(rotp tra(7), @) r = (rotp tro(def(v — ITw)), @) p
= (rotp VE((v — I¥'v) - n),q)r = 0.
We obtain for ¢ € xxTP;,_5(F') that
(tra(7), ) = (tra(def(v — I§'0)), @) = (Vi((v — I§'v) - n),q)p = 0.
Thus DoFs (98))-[I01)) vanish.
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For q € sym(zPy_3(K;R?)), it follows
(7.q@)k = (defv — def(I3¢"v), q) x = 0.

Finally we conclude (108) from the unisolvence of H (inc)-conforming finite ele-
ment for symmetric tensors, i.e. Theorem [6.3] O

Define global commutative projection operators I3t : C>°(;R3) — V7, Iinc .
C®(S) — XPe) IV . ¢°(;S) — =Y and Qp, : C®°(%R3) — Q as follows:
for each K € Ty,

(Idef )‘ . def(’l]|[{), (Imc )‘K . 1nc<T|K)
(I3 7) i —Id’V(T|K)a (Qnv)|k = QK (v[K).
Then combining (I06]), (Im) and ([108) implies the following commutative diagram

RM —S5 ¢ (Q; R?) 2 00(; ) 2% 00(Q; ) — ¥ oo (0 R%) ——> 0
[ lf;;m l,gw Jo
RM C Vh def Ei,?c inc E?Liv div Qh 0.
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