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Non-Abelian symmetry can increase entanglement entropy
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The pillars of quantum theory include entanglement and operators’ failure to commute. The Page curve quan-
tifies the bipartite entanglement of a many-body system in a random pure state. This entanglement is known to
decrease if one constrains extensive observables that commute with each other (Abelian “charges”). Non-Abelian
charges, which fail to commute with each other, are of current interest in quantum thermodynamics. For example,
noncommuting charges were shown to reduce entropy-production rates and may enhance finite-size deviations
from eigenstate thermalization. Bridging quantum thermodynamics to many-body physics, we quantify the
effects of charges’ noncommutation—of a symmetry’s non-Abelian nature—on Page curves. First, we construct
two models that are closely analogous but differ in whether their charges commute. We show analytically and
numerically that the noncommuting-charge case has more entanglement. Hence charges’ noncommutation can

promote entanglement.
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I. INTRODUCTION

Entanglement has illuminated quantum many-body phe-
nomena from space-time’s structure [1-3] to phases [4—12]
and thermalization [13]. A large, isolated many-body system
thermalizes internally when evolved under a nonintegrable,
chaotic Hamiltonian. Such dynamics tend to imbue an initial
pure state, after long times, with properties closely approx-
imated in pure states drawn randomly from the available
Hilbert space. The random state’s average bipartite entan-
glement is quantified with a Page curve [14]: Consider
partitioning the system into two subsystems, calculating a
subsystem’s entanglement entropy, and averaging the entropy
over states drawn randomly from the full system’s Hilbert
space. The average, plotted against the subsystem’s size,
forms a Page curve.

Page curves have been studied in the context of Abelian
symmetries [15-34]. Consider a many-body system whose
evolution conserves an extensive observable, or charge; exam-
ples include the total particle number. Studying thermalization
properties via a Page curve, one draws random pure states
from a chosen particle-number sector—an eigenspace of the
charge. We call such an eigenspace a microcanonical sub-
space S. More generally, the system may have multiple
charges that commute with each other, so that the symmetry
remains Abelian. S can be chosen to be an eigenspace shared
by the charges (apart from the Hamiltonian).
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However, noncommutation lies at the heart of quantum
theory, underlying uncertainty relations, measurement distur-
bance, and notions of locality [35,36]. Conserved charges
can fail to commute with each other, though charges’ com-
mutation was assumed implicitly across thermodynamics for
decades [37-43]. The assumption was lifted in quantum ther-
modynamics recently [39-70]. Charges’ noncommutation has
been shown to conflict with derivations of the thermal state’s
form [39,41]; reduce entropy-production rates [56]; and con-
flict with the eigenstate thermalize hypothesis, a framework
for explaining quantum systems’ internal thermalization [40].
The experimental testing of these results [48] has begun with a
trapped-ion simulator [49] whose dynamics were chaotic [57],
yet conserved all three components of the global spin. Inspired
by quantum thermodynamics, we aim to quantify a partic-
ularly quantum feature of many-body physics in this paper:
how charges’ noncommutation—a symmetry’s non-Abelian
nature—affects Page curves.

This comparison calls for two models that parallel each
other closely, yet differ in whether their charges commute.
Whether such models exist, what “parallel closely” should
mean, and how to construct such models is unclear. We
therefore posit criteria to encapsulate models’ analogousness.
Furthermore, we construct two models that meet these criteria.
Each model consists of two-qubit sites. Every local charge is
a product of two-qubit Pauli operators and/or identity opera-
tors.

We compare these models’ Page curves in two settings.
Conventional thermodynamics suggests one: a microcanon-
ical subspace, a simultaneous eigenspace of the charges.
The noncommuting-charge model has only one microcanon-
ical subspace, because noncommutation tends to block
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observables from having well-defined values simultaneously.
Also, the notion of a microcanonical subspace has been gen-
eralized to an approximate microcanonical (AMC) subspace,
to accommodate noncommuting charges [41,49,57]. Here, ev-
ery charge has a fairly well defined value: Measuring any
charge has a high probability of yielding an outcome close
to the expected value. We identify AMC subspaces in the
noncommuting-charge model and analogs in the commuting-
charge model. Each pair of such subspaces yields another pair
of Page curves.

We estimate the Page curves numerically and, in the mi-
crocanonical comparison, analytically. In every setting where
we can do so, the noncommuting-charge Page curve lies
above the commuting-charge curve. On average, therefore,
charges’ noncommutation appears to promote entanglement.
For systems of N > 1 sites, the Page curves’ separation de-
creases, but only polynomially in the system size, as 1/N.
We posit that the gap arises solely from whether the charges
commute, due to the close parallel between our two models.
This conjecture calls for testing with more parallel models
and for more-general explanations, which we partially leave
as a challenge for future research. Yet we find that, in the mi-
crocanonical comparison, the gap arises from state-counting
effects—noncommuting charges’ allowing the subspace to be
larger than commuting charges do. Furthermore, we posit an
explanation based on each subspace’s minimally entangled
basis. Our findings are suggestive of how charges’ noncom-
mutation affects quantum many-body phenomena such as
thermalization.

The rest of this paper is organized as follows. In Sec. II, we
overview Page curves; in Sec. III, we present the analogous
models. We compare the models’ Page curves using micro-
canonical subspaces (Sec. IV), then using AMC subspaces
(Sec. V). Section VI concludes with opportunities established
by this work.

II. PAGE-CURVE BACKGROUND

To introduce Page curves, we must introduce entanglement
entropy. Consider an isolated (“global”) system, associated
with a Hilbert space H, in a pure state |®). Denote by A
a subsystem associated with a dimension-D, Hilbert space.
Denote by B the rest of the system. The full system’s Hilbert
space is the outer product of the subsystems’ Hilbert spaces.
The entanglement entropy is the von Neumann entropy of
pa = Trp(|®)(®]) [71]:

St = S(pa) = ~Tr(palog pa) <logDa. (1)

The logarithms are base e, giving entropies in units of nats. A
is entangled with B if Sg > 0.

The Page curve quantifies the average entanglement in a
subspace S of interest. Let A consist of N, identical sites, and
let B consist of Ng more, such that Ny + Ng = N. Consider
selecting a global pure state from S uniformly randomly—
according to the Haar measure [72]. Calculating Sg, then
averaging over Haar-random states, yields

(Se)s = —(Tr(palog pa))s. (@)

Plotted against Ny, (Sg)s forms the Page curve for subspace

S [14].

We estimate the curve numerically as follows. Denote by
{|¥¢)} any basis for the subspace. We weight the £th element
with a random number c¢; drawn from a complex normal
distribution. Summing the weighted elements, and renormal-
izing with a constant Cporm, We form a Haar-random state:
ﬁ D s cele). We sample 103-10* states, calculate each
state’s Sg, and average to estimate the Page curve.

In the best-known example, no charges constrain the sys-
tem [14]. Denote by H the full Hilbert space and by d the
local dimension (of a site’s Hilbert space). The unconstrained
Page curve is, for Ny < Np,

(Se)u ~ Nylogd — 3 ™. 3)

The terms in Eq. (3) stem from different physics, as do
the analogous terms in constrained Page curves. Consider
averaging the Haar-random states over S before calculating
any entropy. The averaged state, (p)s, is the maximally mixed
state within S. Tracing out B yields (p4)s := Trg({p)s),
whose entropy follows from state-counting arguments (Ap-
pendix A). We therefore call S({pa)s) the subspace-S Page
curve’s state-counting term. In terms of it, the curve decom-
poses as

(Seds = S((pa)s) + [(Se)s — S((pa)s)]- “

Since (p)s is maximally mixed, S({ps)s) equals the great-
est possible entropy: (Sg)s < S({pa)s). Hence the bracketed
term in Eq. (4) is < 0. That term encodes the interference
between different states’ contributions to the Page curve’s
Haar average. This interference term is exponentially small in
Np — Ny [14]. In the unconstrained curve (3), N4 logd is the
state-counting term, and —%dNA —Ns is the interference term.

III. ANALOGOUS NONCOMMUTING-CHARGE
AND COMMUTING-CHARGE MODELS

We aim to identify how charges’ noncommutation affects
the Page curve. Therefore, we need two models that differ
in whether their charges commute and otherwise differ min-
imally. Whether such models exist, what “differ minimally”
should mean, and how to construct such models is unclear. For
instance, the most commonly studied non-Abelian symmetry
group is SU(2); the associated charges are the Pauli operators,
X, Y, and Z. How to construct an analogous model with three
commuting charges is not obvious. For example, the group
U(1)*? is generated by three charges that commute but are
not multiplicatively interrelated. In contrast, XY = iZ.

We address this challenge by positing five criteria that
capture what renders noncommuting-charge and commuting-
charge models analogous. Then, we construct two models that
meet these criteria. We denote by Q™! the global noncommut-
ing charges and by C/* the global commuting charges. The
criteria concern also the subspaces used to calculate the Page
curves. Denote by |¢) any state from the noncommuting-
charge subspace . Measuring Q' yields outcome y with
some probability. This probability, averaged over the |y),
we denote by pgf (y). Define pg(y) analogously for the
commuting-charge subspace C.

We define as analogous any commuting-charge and
noncommuting-charge models that satisfy five criteria:
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FIG. 1. Analogous noncommuting-charge and commuting-
charge models. Each model consists of N sites. A site consists of
two qubits, a and b. The local noncommuting observables of interest
include Q1; and the local commuting observables, C;.

(1) In each model, the system consists of N sites, each
formed from a d-level qudit. Each model has ¢ constrained
global charges.

(2) Each global charge (i) is a sum of single-site observ-
ables and (ii) acts nontrivially and identically on all sites.

(3) Each charge Q™! has the same spectrum as its analog
ce.

(4) Any two commuting charges form a product analogous
to the analogous noncommuting charges’ product.

(5) The constrained subspaces, N and C, are such that
P () = PS().

We now construct two models that satisfy the criteria
(Fig. 1). Each global charge (Q'' or C*") follows from sum-
ming single-site observables Q, or C,. Denote by Q(S/) an
observable defined on site j’s Hilbert space, and define Céj )
analogously. The global charges are extensive: If 1 denotes
the single-site identity operator,

N N
00 =3 12UV g ol © 19V = 3" 00, (5)

J=1 J=1

and C1* = Z},Ll cd.

The noncommuting charges can generate su(2) if each
site contains one qubit (d = 2). By criterion 2, three charges
impose three restrictions on each site. A fourth restriction
follows from the normalization of the site’s state. These
restrictions suggest that, to support a model with three
commuting charges, d should be > 4. Choosing d = 4 for
simplicity, we form each site’s qudit from two qubits, a and
b. The noncommuting local observables are

Ql :Xa®:ﬂ-b’ Q2 :Ya®lbs and Q3 :Za®1b; (6)

and the commuting local observables are
C1 = Xa ® Xb, C2 = Ya ® Yb, and C3 = Za X Zb. (7)

These models satisfy criteria 1-3 overtly and by simple
calculation. Criterion 4 concerns products of charges. For
unequal indices «, 8, y € {1, 2, 3},

QaQﬁ = ieaﬁy Qy s

These equations parallel each other because multiplying two
distinct charges yields the third charge times a constant. Fur-
thermore, 0,0, = C,C, = 1 Va.

and C,Cy = —C,. ®)

=
3]
a
|
9 ,
C\Q/ +- Commuting e,
03! =3¢ Noncommuting "o
1 2 3 4
Na

(b) Global-system size N = 8

FIG. 2. Page curves constructed from microcanonical subspaces.
(Se)s denotes any Page curve restricted by charges; and (Sg)y,
the unrestricted Page curve. The red x’s form the noncommuting-
charge model’s Page curve, and the circular blue markers form the
commuting-charge model’s Page curve. The connecting lines guide
the eye. We calculated the top panel’s (N = 4) Page curves from 10*
samples each and the bottom panel’s (N = 8) Page curves from 103
samples each. The x axis ends at Ny = N/2 for conciseness; the Page
curves are symmetric according to numerics.

Criterion 5 is satisfied if we choose subspaces adroitly. In
the microcanonical subspaces identified below, the PQ/ (y)’s
and pg(y)’s equal Kronecker delta functions and so each
other. As detailed below, we can also construct AMC sub-
spaces such that If(y(y) = pg(y) for all @ and y.

IV. MICROCANONICAL-SUBSPACE COMPARISON

The noncommuting-charge model has exactly one micro-
canonical subspace, Ny: the eigenvalue-0 eigenspace shared
by O ;. This subspace exists only if N is even. The anal-
ogous commuting-charge subspace, Cp, is the eigenvalue-0
eigenspace shared by C|% ;. This subspace exists only if N
equals a multiple of four (Appendix A 2).

We estimate Page curves numerically using the procedure
outlined in Sec. II and using [73]. Here, (Sg)s denotes the
Page curve for a subspace S, and (Sg) denotes the unre-
stricted Page curve (3). To highlight the gap between the
noncommuting-charge and commuting-charge curves, we plot
(Sg)s — (Sg)u for & = Ny, Cp in Fig. 2. At all partition loca-
tions Ny, the noncommuting-charge Page curve lies above the
commuting-charge Page curve. For example, at the midpoint
(Ny = N/2), the gap is 0.124 nats (17.8% of the average of the
two Page curves at Ny = N/2) when N = 4 and 0.0797 nats
(10.5%) when N = 8. In this microcanonical case, therefore,
the subspace constrained by noncommuting charges has more
entanglement, on average.
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We posit the following explanations for this phenomenon
in our setting. First, the subspace’s dimensionality upper-
bounds the entanglement entropy: Sg < log D4 [Eq. (1)]. The
bound tends to approximate random states’ entropies. Hence
one might expect a higher Page curve of whichever model
has the larger subspace. Indeed, the noncommuting-charge
subspace is of dimensionality 32, when N = 4, exceeding
the commuting-charge dimensionality of 24. When N = §,
the noncommuting-charge dimensionality is 3584, again ex-
ceeding its commuting-charge analog, 2520. Our analytical
results below agree at large N: The noncommuting-charge
curve lies above the commuting-charge curve if approximated
with the state-counting term, which depends essentially on
subspace dimensionality. We expect this dimensionality ar-
gument to explain our results only partially; the Page curves
do not saturate the upper bound (1). Hence we posit that,
when the compared subspaces have similar dimensionali-
ties, their minimally entangled bases may help determine
the Page curves’ relative locations. The commuting-charge
model’s microcanonical subspace, Cy, has a tensor-product
basis. The reason is, every global charge C**' commutes with
all the subsystem charges Co(f,‘) and C(ff). In contrast, in the
noncommuting-charge model, each global charge Q" fails to
commute with some subsystem charges Q((;}) and Q((ﬁ). Hence
the microcanonical subspace Ny has no tensor-product basis.
Therefore, the minimally entangled basis has more entangle-
ment in the noncommuting-charge model. Hence one might
expect a higher Page curve there. Additionally, in Appendix C,
we show that sequentially introducing charges restricts the
Page curve subadditively if the charges fail to commute, and
superadditively if the charges commute, at finite N.

We now analytically calculate the difference between the
noncommuting-charge and commuting-charge Page curves in
these microcanonical subspaces at large N. Recall that the
interference term [Eq. (4)] is exponentially small in Ny —
N, [14]. Consequently, the state-counting term approximates
the Page curve when Ny — Ny > 1 [74]. We calculate state-
counting terms in Appendix A, using large-N expansions. We
assume that Ny, Ng = O(N); the subsystems’ sizes are near
their average values. Both subspaces’ Page curves have the
leading, O(N°) term

3 N 3Ny
L :=Njlogd — -log — + —. 9
e T ®
The noncommuting-charge Page curve is
Ly Mot (10)
4N2 ' 2N2Np o
and the commuting-charge Page curve is [75]
W o ML ot (1
4N?  2N2Np '

The noncommuting-charge Page curve is greater by an

amount % at leading order. The difference decreases as
N grows. This decline is consistent with the correspondence
principle [76]—as systems grow large, they grow classical.
Noncommutation is nonclassical, so its effects on observable
phenomena should diminish as N — oo [41]. More precisely,

the charge densities Q'°'/N have commutators that vanish

in the thermodynamic limit [41,77]: [Q''/N, Q'!/N] — 0,
for all « and o, as N — oo. However, the Page-curve
difference shrinks relatively slowly—as 1/N, rather than
exponentially—as N grows.

V. APPROXIMATE-MICROCANONICAL-SUBSPACE
COMPARISON

Having compared our two models using microcanonical
subspaces, we progress to AMC subspaces, generalizations
that accommodate charge noncommutation [41,49,57]. In-
stead of having well-defined values in an AMC subspace,
the charges have fairly well defined values: Measuring any
0% has a high probability of yielding an outcome close to
the expected value. This section outlines how to construct
analogous AMC subspaces in the noncommuting-charge and
commuting-charge models. We then compare the models’
Page curves numerically. The noncommuting-charge Page
curve is always higher, as in the microcanonical-subspace
comparison.

One can construct as follows AMC subspaces in the
noncommuting-charge model. Define the a-qubit magnetiza-
tion Z* = 21}[:1 Z,, which has eigenvalues 2m. Define the
a-type spin-squared operator (S)2 := Zfl:l(ij’t)z, which
has eigenvalues s(s + 1) (we set i = 1). (S’;"t)2 shares with
ZP —and so (§)? ® 1\ shares with Qf'—eigenspaces
N labeled by the quantum numbers (s, m). Some such
eigenspaces are AMC subspaces, we find by direct calcu-
lation. For each (s, m) value, we calculate the probability
distributions 17[/1\[ (y). Each distribution exhibits one peak, as
required by the definition of “AMC subspace,” for certain
(s, m) (Appendix D). Having identified AMC subspaces de-
fined by noncommuting charges, we construct analogs C
defined by commuting charges. Appendix D details the pro-
cess. We identify six pairs of parallel (commuting-charge
and noncommuting-charge) AMC subspaces, labeled by s =
m=1,N/2, for N =4,8, as well as by s =m = N/2, for
N=2,6.

We estimate each AMC subspace’s Page curve numeri-
cally. In every comparison, the noncommuting-charge (N)
Page curve lies above its commuting-charge (C) partner. An
illustrative example is parametrized by N =8 and s = m =
1. We compare the two curves at the midpoint Ny = N/2.
Recall that (Sg)s denotes a Page curve for the subspace S.
When Ny =4, (Sg)n — (Se)e = 0.027 nats, which is 7.11%
of the two Page curves’ average. The percent difference
varies across the AMC-subspace pairs from 0.272% to 7.11%.
Hence charges’ noncommutation increases the average entan-
glement entropy in AMC subspaces as in the microcanonical
comparison.

VI. OUTLOOK

We have demonstrated that constrained charges’ non-
commutation promotes average entanglement. Numerical
and analytical calculations support this conclusion in mi-
crocanonical and AMC subspaces. In the microcanonical
comparison, the Page-curve gap stems from the discrepancy
between the subspaces’ dimensionalities. This work reveals
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how one hallmark of quantum theory—operators’ failure to
commute—influences another—entanglement. Due to entan-
glement’s role in thermalization, our results are suggestive of
how charges’ noncommutation affects quantum many-body
thermalization (as discussed more below).

Our conclusions rest on two models that resemble each
other closely but differ in whether their charges commute.
Our models can now be used to explore effects of charges’
noncommutation on other quantum phenomena. Possibilities
include chaos [78,79], as analyzed with out-of-time-ordered
correlators [80-83] and random unitary circuits [84,85];
bounds on quantum-simulation errors [86]; and quantum-
machine-learning algorithms’ performances [87].

Additionally, our results raise a puzzle. We find that
charges’ noncommutation promotes entanglement, which
accompanies thermalization. Another result links noncom-
muting charges to enhanced thermalization: Non-Abelian
symmetries destabilize many-body localization, a phase of
matter in which entanglement spreads very slowly [88].
In contrast, charges’ noncommutation was found to restrict
thermalizing behaviors in two ways. First, local operators’
time-averaged expectation values may deviate from thermal
predictions by anomalously large corrections if charges fail
to commute [40]. Second, charges’ noncommutation can de-
crease the rate of entropy production, which accompanies
thermalization [47]. These two results technically do not con-
flict with ours or with Ref. [88], concerning different setups.
However, they invite a more general understanding of when
non-Abelian symmetries enhance or suppress entanglement
and thermalization.

Apart from the foregoing theoretical opportunities, the
difference between commuting-charge and noncommuting-
charge entanglement entropies may be observed experimen-
tally. For example, at the Page curves’ midpoints (N4 = N/2),
the difference is 0.124 nats in the microcanonical setting for
N = 4. A precision of ~0.05 nats should therefore suffice to
observe the difference. Such a precision has been achieved
with trapped ions [89-91] and ultracold atoms [92-94]. Fur-
thermore, noncommuting-charge thermodynamics has been
argued and demonstrated to be observable on these platforms
[48,49,57].
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APPENDIX A: ANALYTIC EXPRESSIONS FOR
STATE-COUNTING TERMS IN MICROCANONICAL
SUBSPACES’ PAGE CURVES

The Page curve (2) naturally splits into two terms, the state-
counting term [S({p4)s) from Eq. (4)] and the interference
term. The interference term is exponentially small in Ng — Nj.

Thus, if Ny < Np, the Page curve approximately equals the
state-counting term. As explained in Sec. II, the state-counting
term is easier to calculate than the Page curve is. We calculate
the term in this Appendix.

To recall the term’s definition, consider a system restricted
to a subspace S (e.g., a microcanonical or an AMC subspace)
of dimensionality D. Denote by {|)} any orthonormal basis
for the subspace. Taking any pure state from that subspace and
Haar-averaging it yields the maximally mixed state, (p)s =

5 300 W) (el Tracing out B yields (pa)s = Tra((p)s).
whose entropy is the state-counting term:

S({pa)s) = =Tr({pa)s log(pa)s)- (AD)

We calculate this term for microcanonical subspaces below.
First, we introduce notation, a technical tool, and assumptions
(Appendix A 1). We address the commuting-charge model in
Appendix A2 and the noncommuting-charge model in Ap-
pendix A 3.

1. Preliminaries

We use the following notation throughout this Appendix.
Denote by X = Z]}’:l X, the sum of the a qubits’ X
operators, and define Y and Z!** analogously. The a
qubits’ total-spin-squared operator, 52 = [(X\°")% 4 (Y*")% 4
(Z°)?]/4, has eigenvalues s(s + 1) (we set /i = 1). Denote
by m the Z!*'/2 eigenvalue. Denote by s4 subsystem A’s spin
quantum number, and denote by my4 subsystem A’s magnetic
spin quantum number. Define s and mp analogously.

We will use Catalan’s triangle, a triangular array of num-
bers related to the dimensionalities of qubit systems’ Hilbert
spaces [95,96]. The element in row a and column b is

a—b+1fa+b
a+1 b

The bound a > b lends the array its triangular shape.
Temporarily consider an N-qubit system that has quantum
numbers s and m. For arbitrary m, C% Iy equals the s
eigenspace’s dimensionality.

Throughout our approximations, we assume that
parameters approximately equal their typical values:
m, s, ma, s4, mg, sg = O(N~Y2); and Ny, Ny = O(N). We
assume also that the global system is large: N > 1.

Cop = ), for a=>b. (A2)

)

2. Commuting-charge model’s state-counting term

Appendix A2a describes how the commuting-charge
model is constrained in a microcanonical subspace. In
Appendix A2b, we calculate the commuting-charge state-
counting term exactly. How the exact formula scales with N is
unclear. Therefore, we approximate the term to O(N~") in Ap-
pendix A 2 c, to identify differences from the noncommuting-
charge model.

a. Constraints on commuting-charge model
in microcanonical subspace

The microcanonical subspace (; parallels the
noncommuting-charge model’s s =m =0 subspace. Let
us specify quantitatively how the commuting-charge model is
constrained. First, we introduce notation.

045102-5



MAIJIDY, LASEK, HUSE, AND YUNGER HALPERN

PHYSICAL REVIEW B 107, 045102 (2023)

The local charges Cj 3 share four eigenstates, the max-
imally entangled Bell states [71]. They are, if | 1) and | |)
denote the Z eigenstates,

1
1B1) := —=( {)al 1o

G = Ml )p)
1B>) = %(I Pal Lo =1 Phal 1)b)s (A3)
1B3) = %(I Pal Lo +1 Mhal 1)), and
1Bs) = %(I Dal Do+ 1 Mal 1)5)- (A4)

The Bell states correspond to the (Cj, C;, C3) eigenvalues
(-1,—-1,-1), (1,1, 1), (1, =1, 1), and (1, 1, —1), respec-
tively. We will use a Cy basis formed from tensor products of
single-site Bell states. For a given basis state, let P, denote the
number of sites in Bell state k.

Having specified notation, we use it to derive con-
straints on the system. The microcanonical subspace Cy is
the eigenvalue-0 eigenspace of C|% ;, by analogy with the
noncommuting-charge s = 0 subspace. If the global system
is in an eigenvalue-0 eigenstate of C|', then P, + P, = P; +
Py = % If the system is in an eigenvalue-0 eigenstate of

CY', then Pi+ Py =P, + Py = 4. If the system is in an

eigenvalue-0 eigenstate of Ci*, then Py + P, =P, + Ps = 5
Together, these constraints imply
P =P, =P; =P, =N/4. (AS5)

Since N is an integer, these constraints can be met if N is a
multiple of 4, which we assume.

b. Exact expression for the commuting-charge state-counting term

We first calculate (p4)c,, the reduced state of system A
when the global system is maximally mixed. In addition to
the definitions above, we invoke the “quadnomial” coefficient
(6 sors) = m Under the population restriction (AS),
the global system’s Hilbert space is of dimensionality

(A6)

Denote by A; the number of A sites in the Bell state |B), and
denote by By the number of B sites in |3;). The global system
is restricted to a subspace of dimensionality

Ny Np
Dy =
Ay,Ar,A3,A4) \B1, B>, B3, By

_< Na
=1\n N N, N
Dtmy, P tmy, P+ ms, P

(A7)

+ m4>

X
N, N N N .
Tom, G —my, F—ms, G —my

In accordance with Eq. (AS), Ay + By = N/4. Furthermore, A
is restricted to a subspace of dimensionality

Ny
dy =
Ay, A, Az, Ay

Ny )
= . (A9)
<%+m1, %-ﬁ-mz, %+m3, %-i—mzt
The global maximally mixed state is (p)c, =
L—I)Zf:l [Ve) (Yel; the sum runs over all the states in our
basis for Cy. Denote by {|A|,As, A3, Ay, i)} a basis for
subsystem A’s Hilbert space. The index i distinguishes basis
states that share the same Aj, A, A3, and A4. Tracing out
subsystem B yields

</0A>C(]:é Z

A],Az,A3,A4,l

_A|A1»A21 A3aA47 ><A1aA27A31 A4a ll
(A10)
The 3—: equals the dimensionality of the subsystem-B sub-
space that is consistent with the subsystem-A populations
A1,As, Az, and A4. Taking the spectral decomposition, we
calculate (p4)c,’s entropy and so the state-counting term:

DA DA
SUonde) = — 3. _10g<_ ) Al
0 A1,A2,A3,A4 D daD
Np
= Z < NA )_(31,32,33,34)
- N
A1,Ar,Az Ay A17A27A31A4 (%%’%Y%)
(B BNBB B)
x log | =222 (A12)

N
N N NN
10311

¢. Closed-form approximation to the commuting-charge
state-counting term
Let us approximate the 4 in Eq. (A11) as a Gaussian func-
tion. Via differentiation, we determlne that lo g( 4 ) maximizes
at my = 0 for all k. We Taylor-expand log( DA) around this

maximum, keeping only terms larger than OWN—3/ 2) For con-
ciseness, we deﬁne c: NN = 0( ), d = 3(

O(). f = N2 Ng) O(x2): andg—z(;l\%—i- )_
o( N3) We substltute these definitions into the expanswn of
log(%):

Dy 2c3/? : 5 ! 3
log<D>=log<—n3/2>—c ;mi —d ;mi

Exponentiating each side yields

5 e m)o(2)

i=1

PRI RN B O(N~ 3/2)} (Al14)

AN 4Ny, 4Ng
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We check that this function is normalized to O(N~%?) (as
% should be normalized), but omit the check from this Ap-
pendix.

Having approximated the first factor in the state-counting
term (All), we address the second, log( ). By Stirling’s
approximation (A15),

1 1
log(n) = nlog(n) —n+ = 3 log(27n) + o +0@m™), (A15)
the logarithm is
Dy Nj
log ( ) = — Nlog4) + log
daD (5 —m) (5 —m2) (5 —ma) (3 —ma)
N, N N, N
+ m log (—B —m1> + my log (—B —m2> + m3 log (TB — ) + my log (—B —m4)
N4
Np(%) 5 1 1
+ E 10g Ng Ng Ng Np +-t - Ng
N —m) (5 —m) (g —m3) (3 —ma) ) 4N 12Ng  12(7¢ —my)
1 1 - + O (A16)
M —m) 2% —my) 12(% —my)
We Taylor-approximate about N = oo and reorganize:
Dy 3 N 2m2  8md  4m?  16m? 5 5
1 = —N, log(4 1 S s B B ! - =+ OWN? Al7
0g<dA ) alog(4) + = og< B>+2,~:< N, it ) tav T ONT2). (A7)

The logarithm approximation (A14) and the ratio approxi-
mation (A17) can now be substituted into the state-counting
term (All). The summand varies slowly where its value
is large, so we approximate the sum as an integral. Also,
the integrand falls off quickly enough at large |Ay| that we
approximate the limits as +co. Evaluating the resulting Gaus-
sian integrals, we obtain the commuting-charge state-counting

term:
3 N 3N,
S({pa)c,) =Nalog4) — = log <N3> + N
3N, N2 3
- O(N3/? Al8
+4N2 NN, + O( ). (A18)

3. Noncommuting-charge model’s state-counting term

The noncommuting charges share exactly one eigenspace,
No, specified as follows. Recall that the a qubits’ total-
spin-squared operator, Sa, has eigenvalues s(s + 1). Consider
tensoring the a qubits’ s = 0 eigenspace onto the b qubits’
full Hilbert space. The product is the eigenvalue-0 eigenspace
shared by Q' ;.

We calculate first the a qubits’ contribution to the
state-counting term, then the b qubits’ contribution (Ap-
pendix A3a). In Appendix A3b, we approximate the
state-counting term to order O(N "), as is necessary for iden-
tifying differences from the commuting-charge model.

a. Exact expression for the noncommuting-charge model’s
state-counting term

First, we calculate the a qubits’ contribution to the
state-counting term. By the rules for angular-momentum addi-
tion, s = |s4 — sgl, |sa —sg| + 1, ..., sa + sg. Therefore, s =

(

m =0 only if |s4 — sp| = O—equivalently, only if sy = sp
and my = —mg. This restriction constrains the global system
to a subspace Ny of dimensionality

p=cyy =5 (y)
=(C~N N = .
SRRt

We now choose a basis for this subspace. A natural choice
consists of states with quantum numbers sy = sp. If s4 = 55 =
0, these basis states are tensor products. However, almost
all the basis states correspond to s4 = sp > 0 and encode
entanglement between A and B, unlike the basis states chosen
for the commuting-charge model. The noncommuting-charge
basis states Schmidt-decompose as

(A19)

|Sa, I, J) Z ( D™ |sa, m |sp=s
As A A, DA |SB=SA,
e sy /\/2SA +1
mp = —my, j)p- (A20)

The i indexes the elements of an arbitrary orthonormal basis
for the subsystem-A subspace associated with the quantum
numbers s4 and m4. This subspace is of dimensionality

254 + 1 Ny
(W) e
F+sa+1\F —sa

The j in (A20) indexes the elements of an arbitrary orthonor-
mal basis for the subsystem-B subspace associated with the
quantum numbers s and mp. This subspace is of dimension-
ality

dy = Cy, N, =
A T4, 5 —sa

253+1 NB
dB ZCNfB+s Y5 = N—<
S

). (A22)
B
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The global system’s maximally mixed state is

1
Ao =y D sas b i) sas s . (A23)
Sast,J
Tracing out subsystem B yields
(0a) 12 b i) . (A24)
= — SA, A, 1) (Sa, Ma, i
PAIN = 1 e 1AM A» MA
SA,MA,L

Taking the spectral decomposition, we calculate the state’s
entropy and so the a qubits’ contribution to the state-counting
term:

£l dudp dg
S(eadn) = = D =5~ log (D(zsA n 1)) (A2
SA=0
z_ixg+qgﬂ%! 251 +1
—\2 NI Bopsy+1

2SA+1 < NA >< NB )
X —
B otsa+1 VA

g BLG)G+D) (% )]
Nl (F4sa+1D\F —sa

(A26)

We now calculate the b qubits’ contribution. N4 un-
constrained qubits have a state-counting term of N, log(2).
Adding N4log(2) to Eq. (A26) yields the noncommuting-
charge state-counting term:

E+Qtﬂﬂl

S({pa) ;) =Na log(2) — Z (2 v

X(zj;iJ(mfii)(J?m>
X( ) [() (3 +1)

(% + 54 +1)

(A27)

J

b. Closed-form approximation to the noncommuting-charge
model’s state-counting term

First, we approximate the ‘% in Eq. (A25) as a Gaussian
function. We break d/‘# into two factors, one consisting of
factorials and the other of everything else: % = f(sa)g(sa),

wherein
(3)'(5)! (Na)!
WNE (5 45413 = sa)!
(Np)!

X
(3 +58)! (3 — 55)!
( ) 2SA+1 2SA+1
S4) =
g B+ 1)\ 2 4s50+1

()

We Taylor-expand log[ f (s4)] around its maximum, s4 = 0, to
O(N -1 ), assuming si ~ N. Then, we exponentiate the result:

f(sa) =

and (A28)

(A29)

fon N N[, L 1
= ex - -
W=V NaNgr P\ NN AN T AN, 4N
2sA 2SA 4sj 4sA D)
DA LS8 3 A L ov?y | (A30
+ 2 + N T3N3 +OWNT)|. (A30)

Next, we expand g(s4) [Eq. (A29)]:

8st‘ 1 254 254 2 4 4
8(sa) = I+———--—4+—-—— - —
NANB SA NA NB N NA NB
1 455 453 43 3
++—=5+=+ +O(N"?
v A AR
(A31)

The right-hand sides of (A30) and (A31) multiply to
dadp 42N): ( 2NsA>
= 3 Sa exp
D (NaNp)2 ﬁ NjNp
1 2Nsa 9 17N
x |1+ —— +— -
SA NANB 4N

4N;Npg
652 652 4> 1 4% 45t

et e T i
N2 ' N2 ' N4Np 453 3N] 3N}

+ 0(N3/2)]. (A32)

We check that this function is normalized to O(N~3/?) (as ‘%
must be normalized), but omit the details of the check.

Having approximated the first factor in the state-counting
term (A25), we proceed to the second. According to the Stir-
ling approximation (A15), the logarithm is

Io < A ) _ Nlog(2) + Y& N Fsal 3 s
_— 0O 0O S4 10
€\ Dss+ 1) ST R @ ) (B sy ) T\,

NN

1
+ —=1lo
2 g<4(&—SA

2

S+1
(E 50 Tt
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1 1

1

+—+

AN T 12Np 12

Taylor-approximating about N = oo yields

dp 3 N
1 _— — Ny log(2 1
% (D(zsA+ 1)) alog@)+ 3 °g< B)

2s§ AV 4sA 4SA
Ny Ny 3N; N}
9 9

+— —— +OWN?).

(A34)
4N  4Np

We can now substitute the logarithm (A34) and the dsdp/D
factor (A32) into the state-counting term (A25). Since the
summand varies slowly where its value is large, we approxi-
mate the sum as an integral. Also, since the integrand falls off
rapidly at large s4, we approximate the integral’s upper limit
with co. Evaluating the integral, we calculate the a qubits’
contribution to the state-counting term. Adding the b qubits’
state-counting term, Ny log(2), we obtain the noncommuting-
charge state-counting term:

3 N 3N,
Sg)s =Ny log(4) — = 1 il
(Se)s = N4 log(4) 0g< >+2N
3N4 N? 3
- ON3? A35
+4N +2N2N + O( ). (A35)

APPENDIX B: HOW OUR MODELS’ CHARGES RESTRICT
THE MICROCANONICAL SUBSPACES

The main text posits an explanation for why, in the
microcanonical-subspace study, the noncommuting-charge
Page curve lies above the commuting-charge Page curve. We
propose another explanation, using specifics of our models,
here. To what extent this reasoning generalizes beyond those
models merits further study.

Consider beginning with an unconstrained system, then
restricting the Hilbert space to the eigenvalue-0 eigenspace of
O, then restricting further to the eigenvalue-0 eigenspace of
0%, then restricting to the eigenvalue-0 eigenspace of Q%"
The first two restrictions already restrict the system to the
s = 0 subspace; the third restriction is redundant.

Now, consider undertaking the same process but replacing
the Q°"s with C°"s. The first two restrictions only par-
tially imply the third, which therefore constrains the Hilbert
space nontrivially. (Appendix B 1 contains a proof.) One
might therefore expect the microcanonical subspace to be
larger when defined by our three noncommuting charges than
when defined by our three commuting charges. We have con-
firmed this expectation by direct calculation. Furthermore,
the available Hilbert space’s dimensionality upper-bounds the
entanglement entropy [Eq. (1)]. Hence the noncommuting
charges should enable more entanglement—a higher Page
curve—than the commuting charges do.

N SA) B ]2(% + SA)

+ O(N7?). (A33)

[
1. Constraining C{** and C{"* constrains C}* only partially

Consider an unconstrained system of N 4-level qudits.
Consider restricting the Hilbert space to the eigenvalue-0
eigenspace of C|”, then restricting further to the eigenvalue-0
eigenspace of CI*, and then restricting to the eigenvalue-0
eigenspace of C}*'. The first two restrictions partially imply
the third, which constrains the Hilbert space nontrivially. We
prove this claim here.

The local charges C;» 3 share four eigenstates, the max-
imally entangled Bell states [71]. They are, if | 1) and | |)
denote the Z eigenstates,

1
1B1) == —=( {)al 1o

7 =Ml $)b), B
1By) = %(I Pal 1o =1 Phal o), (B2)
|B3) = %(I Pal 1)+ 1 1)al 1)), and  (B3)
|Bs) = %(I Dal Do+ 1 1al $)b)- (B4)

Denote by p; the jth qubit’s reduced state, which has a weight
(Bk|pj|Bk) on the kth Bell state. Summing over qudits yields
the total population P = Z?’Zl (Bilpj|Br).

If the system is in an eigenvalue-O eigenstate of C|,
then P, + P, = P3 + P4. If the system is in an eigenvalue-0
eigenstate of C), then P, + P; = P, + P4. Together, these
constraints imply P; = P, and P, = P3. Furthermore, (C5*) =
P, 4+ Py — Py — P,. This expectation value, under the Ct"2 con-
straints, is restricted to 2(P, — P;), which need not vanish.
Thus, the first two charges do not restrict the C}** expectation
value completely. Contrarily, if in an eigenstate of ‘1‘”2, the
system is in the eigenvalue-0 eigenstate of QF'. Hence C|%
restrict the Hilbert space less than Q' do.

APPENDIX C: HOW SEQUENTIALLY INTRODUCED
CHARGES CHANGE THE PAGE CURVE:
SUPERADDITIVELY, SUBADDITIVELY, OR ADDITIVELY

Figure 2 shows Page curves constructed from microcanon-
ical subspaces. At finite N, the curves violate an expectation
that one might gather from earlier literature. We explain the
expectation, discuss the violation, and provide numerical ev-
idence for the expectation in the thermodynamic limit (as
N — 0).

Consider beginning with an unconstrained N-site system,
restricting the Hilbert space to the eigenvalue-0 eigenspace
of C}*, then restricting further to the eigenvalue-0 eigenspace
of C*', and then restricting to the eigenvalue-0 eigenspace of
CY'. One might expect that, as more charges were introduced,
each successive charge would lower the Page curve by the
same amount as the last charge. Such lowering has been ar-
gued to happen in the thermodynamic limit, with commuting
charges [15]. We call an expectation of such lowering the
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=
C\Q:j -0.1
\
/:J\J 0.2 -+ Commuting o %
) = Noncommuting ’~.\
.03+ - Additivity a‘msatz | "o
1 2 3 4

Ny

FIG. 3. Testing the additivity ansatz. (Sg)s denote any Page curve restricted by charges; and (Sg)4, the unrestricted Page curve. The red
x’s form the noncommuting-charge model’s Page curve, and the circular blue markers form the commuting-charge model’s Page curve. Both
curves were calculated using microcanonical subspaces. The gray triangles illustrate the additivity ansatz.

additivity ansatz. One might posit it, expanding on [15], (i)
for noncommuting charges in the thermodynamic limit and
(i1) for commuting and noncommuting charges at finite V.

If the additivity ansatz were true, the Page curve (for three
equivalent commuting or noncommuting charges) could be
constructed as follows. Consider restricting the global Hilbert
space to one charge’s eigenvalue-0 eigenspace (any C.* or
0% —which one does not affect the curve). The corresponding

Page curve, we denote by (SE)fS]). Recall that (Sg)# denotes
the unrestricted Page curve. The additivity ansatz predicts the
Page curve (Sg)y — 3((Se)n — (SE)SSI)) for our models with
three equivalent charges constrained in each.

Figure 3 tests this prediction at finite N. The gray tri-
angles form the additivity-ansatz curve. It lies below the
noncommuting-charge Page curve (red x’s), which are there-
fore superadditive. The ansatz curve also lies above the
commuting-charge Page curve (blue circles), which are sub-
additive. Hence the additivity ansatz breaks in a commutation-
dependent manner at finite N. However, all three curves
converge as N grows. We hence provide numerical evidence
for the additivity ansatz, supported analytically in [15] and in
Appendix A above, in the thermodynamic limit.

APPENDIX D: ANALOGOUS APPROXIMATE
MICROCANONICAL SUBSPACES

The main text specifies how to construct AMC subspaces
in the noncommuting-charge model. We augment this expla-
nation with examples. Then, we explain how to construct
analogous AMC subspaces in the commuting-charge model.
We also specify the six analogous-AMC-subspace pairs re-
ported in the main text.

First, we review how to construct AMC subspaces in the
noncommuting-charge model. Denote by 2m the Z*' eigen-
value. ZI*" shares eigenstates with 5’2 Shared eigenstates
labeled by the same two quantum numbers form the (s, m)
eigenspace. Some such eigenspaces are AMC subspaces, we
find by direct calculation. For each (s, m) value, we calculate
the probability distributions pgf (y). Each distribution should
exhibit one peak for the eigenspace to satisfy the AMC sub-
space’s definition. p/3‘[ (y), being a Kronecker delta function
in the (s, m) subspace, meets this criterion. Also, according to
direct calculation, p{v (y)= p/2V (y) for all y. Hence we need
calculate only p’{\/ (y) to check whether an (s, m) eigenspace
is an AMC subspace. Table I presents these distributions for

s < 4. Whenever s = m, each distribution exhibits one peak.
Therefore, each (s, m = s) subspace qualifies as an AMC
subspace.

Having identified AMC subspaces defined by noncom-
muting charges, we construct analogs defined by commuting
charges. For each N, we identify the eigenspaces shared by
C {053 For consistency with the noncommuting-charge model,
we keep only the eigenvalue-m eigenspaces of C{. For each
shared eigenspace, we calculate the distributions pC(y). If
they equal their noncommuting-charge counterparts py (y)
(criterion 5), the eigenspace forms an analogous AMC sub-
space.

An illustrative example is parameterized by N = 8 and
(in the noncommuting-charge model) s = m = 1. We keep
only the eigenvalue-1 eigenspaces of C{'. Denote by ¢, the
Ci** eigenvalues and by c, the C}** eigenvalues. We label
by (cy, ¢y, 1) the eigenspaces shared by C|% ;. For consis-

TABLE 1. Probabilities plN (y) that characterize (s, m)
eigenspaces. Denote by |¢) any state from an (s, m) eigenspace of
the noncommuting-charge model. Measuring Q' yields outcome y
with some probability. This probability, averaged over the |¢), we
denote by pfv (y). The possible measurement outcomes range from
—s to s. The probabilities p/lv (y) are listed for each (s, m) and are
independent of the system size, N. p{\/ (y) has exactly one peak only
if s =m.

Possible measurement outcomes

(s,m) —4 -3 -2 -1 0 1 2 3 4

(1,0) 0.500 0 0.500

(1,1) 0.250 0.500 0.250

(2,0) 0375 0 0250 O 0375

2,1) 0.250 0.250 0 0.250 0.250

(2,2) 0.063 0.250 0.375 0.250 0.063

(3,0) 0313 0 0.18 0 0.188 0 0.313
3.1) 0.234 0.156 0.016 0.188 0.016 0.156 0.234
3.2) 0.094 0.250 0.156 0 0.156 0.250 0.094
(3,3) 0.016 0.094 0.234 0.313 0.234 0.094 0.016

4,0 0273 0 0156 0 0.141 O 0.156 0 0.273
(4,1) 0219 0.109 0.031 0.141 0 0.141 0.031 0.109 0.219
(4,2) 0.109 0.219 0.063 0.031 0.156 0.031 0.063 0.219 0.109
(4,3) 0.031 0.141 0.219 0.109 0 0.109 0.219 0.141 0.031
(4,4) 0.004 0.031 0.109 0.219 0.273 0.219 0.109 0.031 0.004
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TABLE II. Differences between Page curves, constructed from
approximate microcanonical subspaces, at Ny = N/2. The Page
curves’ values at Ny = N/2 are listed for various N and s = m val-
ues. We abbreviate “difference” with “diff.,” “noncommuting” with
“NC,” and “commuting” with “C.”

N s=m NC C NC-C % diff.
4 1 —0.455 —0.479 0.024 5.112
8 1 —0.364 —0.390 0.027 7.106
2 N/2 —0.587 —0.589 0.002 0.362
4 N/2 —1.350 —1.354 0.004 0.272
6 N/2 —2.074 —2.086 0.012 0.600
8 N/2 —2.770 —2.788 0.017 0.625

tency with the noncommuting-charge model, we ignore any
eigenspaces in which ¢, > s or ¢, > s. Four eigenspaces
remain: (0, —1,1), (—-1,0,1), (1,0,1), and (0, 1, 1). Each

is of dimensionality 1680. The candidate AMC subspace is
the union of these four subspaces and is of dimensional-
ity 6720. These dimensionalities fix the probabilities p$ (y ).
For example, p‘f(O) = (1680 x 2)/6720 = 0.5. The remain-
ing probabilities are p§(—1) = 0.25 and p$(1) = 0.25. This
distribution equals the corresponding p'{‘[ (). Checking every
eigenvalue-m eigenspace of C}*', we find six eigenspaces for
which pC(y) = pY(y) Va, y, satisfying criterion 5.

We have identified six pairs of parallel (commuting-charge
and noncommuting-charge) AMC subspaces. The pairs are la-
beledbys =m = 1,N/2and N =4, 8§,aswellasby s =m =
N/2 and N = 2, 6. (Computational limitations restrict us to
N < 8.) Table II compares the two Page curves formed from
each subspace pair. We compare the curves at their midpoints,
N4 = N/2. The percent difference between the two curves
varies from 0.199% to 3.06% across the subspace pairs. Hence
noncommuting charges increase the average entanglement en-
tropy in AMC subspaces as in microcanonical subspaces.
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