PHYSICAL REVIEW LETTERS 129, 140402 (2022)

Editors' Suggestion Featured in Physics

Emergence of Fermi’s Golden Rule

Tobias Micklitz ,1 Alan Morningstar ,2 Alexander Altland,3 and David A. Huse>*
'Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
2Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
3Institut fiir Theoretische Physik, Universitit zu Koln, Ziilpicher Strasse 77, 50937 Cologne, Germany
*Institute for Advanced Study, Princeton, New Jersey 08540, USA

® (Received 13 June 2022; accepted 18 August 2022; published 27 September 2022)

Fermi’s golden rule applies in the limit where an initial quantum state is weakly coupled to a continuum
of other final states overlapping its energy. Here we investigate what happens away from this limit, where
the set of final states is discrete, with a nonzero mean level spacing; this question arises in a number of
recently investigated many-body systems. For different symmetry classes, we analytically and/or
numerically calculate the universal crossovers in the average decay of the initial state as the level spacing
is varied, with the golden rule emerging in the limit of a continuum. Among the corrections to the
exponential decay of the initial state given by Fermi’s golden rule is the appearance of the spectral form
factor in the longtime regime for small but nonzero level spacing.
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Introduction and motivation.—Fermi’s golden rule
(FGR) describes the decay of an initial state into a
continuum of final states [1-3]. To have a true continuum
of final states we would need to have an infinite system,
such as an excited atom emitting a photon into an infinite
vacuum. What happens if, instead, the set of final states is
discrete, with some nonzero average energy-level spacing?
This question, which is addressed in the present Letter,
arises in multiple contexts in the study of the quantum
dynamics of isolated many-body systems.

When considering the thermalization of a finite-size
isolated many-body quantum system, we ask, Does this
system act as a “bath” for its own degrees of freedom? As a
finite-size system, it cannot be a perfect bath, since it has a
discrete spectrum. Two limiting situations are rather clear.
If the energy-level spacing in the putative bath is large
compared to the matrix elements coupling our initial state
to these final states, then the initial state typically has no
final states to decay to that are close enough to on shell, so
the initial state typically does not decay. The opposite limit
is where Fermi’s golden rule does apply, because the decay
rate of the initial state is large compared to the energy-level
spacing of the final states, so the discrete spectrum serves as
a good approximation to a continuum. In the present Letter
we analytically calculate the intermediate behavior between
these two limits for a single initial quantum state coupled to
a chaotic quantum dot modeled by a random matrix of large
dimension N and show numerical results in full agreement
with those calculations.

The above considerations have become increasingly
important recently, in an era where controlled and detailed
access to mesoscopic quantum many-body systems is a
reality [4—6]. Such systems can have states that may decay
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into sets of other states of the system, depending on the
degree to which an approximate continuum is formed for the
relevant decay processes. Manifestations of this physics, to
be discussed further near the end of this Letter, include the
crossover or transition at the onset of heating in periodically
driven (Floquet) systems [7-9], “avalanche” instabilities of
many-body localization (MBL) in systems with short-range
interactions [10—-12], the Fock-space localization description
of the onset of many-body quantum chaos in finite-size MBL
systems with long-range interactions [13—17], and finite-size
systems with weakly broken integrability [18-20]. Our
Letter is also related to previous investigations of the
thermalization of single spins coupled weakly to finite
quantum systems [21,22], and to studies of decay and
recurrences in other solvable models of a discrete set of
levels coupled to a (quasi)continuum [23-25].

In the following we will define a concrete level-dot
model to use in exploring various qualitative and universal
deviations from golden-rule behavior. This also reveals
how FGR behavior emerges from the behavior of finite
systems with discrete spectra, as the limit of a continuous
spectrum is approached. A more general two-dot model is
discussed in Supplemental Material [26]. The two dots may
represent two states of a weakly coupled spin.

Model and observable—Consider a single level |0)
weakly coupled to the N >>1 levels {|u)},_, n of a
fully chaotic quantum dot. We first assume that time-
reversal symmetry is broken, and model the system by the
random matrix Hamiltonian,

A=y n)

uv=0

: (1)
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where H and W are a random Hermitian N X N matrix
and an N-component vector of independently distributed
complex variables, respectively. The matrix elements have
zero mean and variances (H H},,) y = (42/N)Siu0;, and
(W W3)y = (g4?/N)5y;, and we assume €y = 0, so the
initial state resides at the band center of the dot states.
The spectrum of H forms the Wigner semicircle [28], with
the density of states at its band center being v = (N/zl).
Below, we will also generalize to cases where time-reversal
symmetry remains unbroken.

To study the decay of the initial state |0), we consider
the average of the time-dependent probability to stay in
that state:

P(t) = ([{00(t)*) 1rw- 2)

Averages (- - -)y y here are over the random components of
H and W, and |0(¢)) = e~""|0) is the time-evolved initial
state. Before turning to concrete calculations, let us for-
mulate some qualitative anticipations.

In the case where we assume the quantum dot is a perfect
bath, Fermi’s golden rule gives the decay P(f) ~ e rorl
with the realization-averaged decay rate

Trgr = 272(W, W) yv = 2gA. (3)

The above result predicts a vanishing longtime “proba-
bility of residence” P, = P(t — o) = 0. However, this
result cannot completely describe the decay of |0) into a
system of finite dimension N: If the level-dot coupling is
strong, e.g., g = 1, the longtime state |0(r — o)) will be
spread over the joint level-dot Hilbert space of dimension
N+1=x=N, ie., there is a lower bound P, = 1/N,
different from zero. For a diminished coupling, g < 1,
the level broadens to mix with only about I'egrv ~ gN of
the dot levels, so we anticipate an enhanced probability of
residence P, ~ 1/(gN). Further diminishing the coupling
down to g~ O(N~") leads into a regime where the effects
due to the nonzero dot-level spacing become strong, and
ultimately to a limit where only rare realizations have a dot
level in resonant contact with the initial state. In the
process, FGR breaks down, and P, approaches unity.

Stationary limit.—To quantitatively describe this phe-
nomenon, we have applied nonperturbative methods of
(effective) matrix theory [26]. The result reads

Ps= 1= =vir(3 -7 ety @)

with y = gN and erfc(x) = (2/y/x) [ dxe™ the com-
plementary error function. The limits N — oo and g — 0
have been taken jointly such that y remains finite. This
formula [see the gray curve in Fig. 2(d)] indeed predicts a
crossover from the golden-rule estimate P, = 1/y =
1/gN for y > 1 (the purple curve) to a fully decoupled

FIG. 1. Diagrammatic representation of the short-time (z < 1)
correction to the FGR exponential decay of the initial state. Left-
hand diagram (one ladder): classical probability that a particle,
escaped into the dot, returns to the weakly coupled level. Right-
hand diagram (two ladders): quantum interference correction to
classical return probability. Dashed and solid lines here represent
the retarded (black) or advanced (red) level and dot Green’s
functions G (¢) ~ (e —¢; +i%;)~!, dressed by self-consistently
calculated self-energies Xy ~ g4 and X, ~ 4, as indicated in the
box. The ladder defines the ergodic quantum dot mode
D(w) ~il?/(Nw"), and is recursively defined in the third
equation in the box. The solid vertical line represents the coupling
between |0) and quantum dot states. See also the Supplemental
Material for further details and a nonperturbative calculation
addressing all times, including 7 > 1 [26].

level, P, = 1, at y — 0. The blue dots are results obtained
via numerical diagonalization for matrices of size
N +1 =103 averaged over 10* samples, and are in
excellent agreement with our analytic result [29].
Dynamics.—We next turn to the interesting question of
how the above longtime limits are dynamically approached.
Before turning to the quantitative computation of P(z), let
us discuss some estimates based on perturbation theory
applied to the quantum mechanical propagator P(r) =
(0[0(7)) = (0]e="|0) of the level. In the joint limits
y = o0, g — 0, P(¢) is structureless, except for incoherent
FGR decay due to coupling to the dot continuum.
Substituting the broadened amplitude into Eq. (2), we obtain
the zeroth-order result whose Fourier transform is
Po(w) ~1/(w + 2igA). However, for finite N, coherent
processes involving the propagation of the retarded ampli-
tude P(¢) and its advanced complex conjugate along
identical dot-scattering paths begin to play a role (see
Fig. 1 for the first two corrections of this type). While these
processes are small in phase volume, ~N~!, each introduces
afactor in time 7 indicating that the effective parameter of the
perturbative analysis is 7 = t/(2zv) ~ tA/N. Referring to the
Supplemental Material for details, the first-order process
yields the contribution P;(w) ~i/(gNw), where the fre-
quency dependence w~! — ©(t) reflects the ergodicity of the
dot propagation on long time scales [26]. To second order,
P,(w) ~—=2/[g(Nw)?], and higher-order perturbative con-
tributions do not exist (in the absence of time reversal; see
below). Fourier transformation to the time domain yields
initial exponential time dependence Py(z), cut off by a
constant value P;(7) = P, followed by a linear increase
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FIG.2. The probability P(¢) to be in the initial state after time ¢. The total Hilbert space dimension is N + 1 = 10° and numerical data
are averaged over 10* samples. (a)—(c) The time dependence of P(t) for y € {46,0.46,0.022}, respectively. The black curves are data
from numerical simulations of the model Eq. (1). The red curves are theoretical predictions obtained by evaluating the integral in Eq. (5)
numerically. (d) The t — oo limit P,.,. Blue dots are numerical data. The gray curve is the theoretical prediction of Eq. (4). The purple
curve is the FGR result 1/y [29]. The small black arrows point to data that correspond to the late-time limits of the three upper panels.
(e) The spectral form factor arises in the time dependence of P(¢) for the three versions of our model derived from the three Wigner-
Dyson classes (GOE, GUE, GSE). The black curves are data from numerics, and the colored curves are Eq. (6) with parameters ay and

by as given in the main text. In panels (a)—(d) H is GUE.

P (7) ~ 7. We thus observe nonmonotonic dependence of the
probability P(z), where an initial fast exponential decay is
followed by an extended period of slow partial recovery. The
resemblance of this temporal profile to that of the spectral
form factor of random matrix theory [30] suggests that the
late-time increase of P(z) will saturate at a plateau P(z) ~
(gN)~'fort > 1. However, at this stage we are probing times
t ~ v of the order of the inverse average level spacing, outside
the regime of perturbation theory.

The above discussion suggests that the discreteness of
the level spacing is felt in two different ways: saturation of
P(r) at times beyond the Heisenberg time, 75 = 2zv, and
the recovery of P, ~ 1 for small coupling y <1. To
quantitatively describe these phenomena, we apply non-
perturbative methods of (effective) matrix theory (see
Refs. [26,31]). The idea of this approach is to trade the
complexity of an integral over the high-dimensional
random matrices modeling the dot for a simpler one over
a four-dimensional (super)matrix. The symmetry of the
problem affords a further reduction to an integral over just
two “radial coordinates,” leading to our main analytic
result,

—ZyM;,

P()—e47’+2y/d/1f/ dllb PRy
x [Aplo(zp) = upl1(25)]O(x), (5)

where x = x(Ag, 4, 7) = 27— Ay + Ay, 2 = 2yxp;, With
Hp = 4 //li — 1, and I, are modified Bessel functions of the

first kind. This expression captures the universal longtime
deviations from FGR for finite y. For finite N there will
also be nonuniversal short-time deviations set by ultra-
violet details.

For large y > 1, an approximate evaluation of the integral
leads to P(t)=e~*"+(1/2y)(1+7)0(1-7)+(1/7)O(z—1),
where the first two terms recover the results of our previous
perturbative estimate, and the third adds the expected
saturation at a plateau value. The numerical evaluation of
the full integral is shown in Figs. 2(a)-2(c) for values y = 46,
0.46, and 0.022 (red curves). Comparison to numerical
diagonalization of Eq. (1) with a total of 103 levels shows
excellent agreement. These curves contain the main results of
our analysis: for all coupling strengths, we observe initial
decay followed by a slow partial recovery of P(t), which
eventually terminates in a stationary plateau. Diminishing the
coupling leads to a rounding of the temporal profile, and to an
increase in the stationary probability with a limiting value
predicted by Eq. (4).

We finally mention one more universal signature of the
profile P(¢), namely, a factor of 2 between the minimum
Py and the plateau (longtime residence) value Pp =
Py = 2P in the regime y > 1. This universal ratio is
remarkable inasmuch as it connects an early time
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semiclassical probability with a deep quantum signature
depending on the discreteness of the spectrum. In the
limits N >y > 1, the semiclassical calculation yields
Py = 1/(2y). The connection to P, follows from a formal
decomposition of P(1) = 3" [Waol*lwpole ) in
eigenfunctions. For times exceeding the inverse level
spacing, 7 > 1, only the coherent diagonal sum a =
contributes. Noting that eigenfunctions of chaotic systems
behave as Gaussian distributed random variables, we obtain
P(t) = Py =>4 |Waol* ~ 1/y, twice as high as the semi-
classical value due to constructive quantum interference.
Time-reversal symmetry.—While the exponential decay
at short times does not depend on symmetries, later stages
of the dynamics do. Distinguishing between the three cases
T =(0,1,—-1)=(U,0,S) of broken time-reversal invari-
ance (U), and time-reversal invariance with (O) or without
(S) spin rotation invariance, we note that for O, the
semiclassical probability to return to the initial quantum
state |0) doubles due to weak localization—i.e., construc-
tive interference between a returning path and its time
reverse. No such doubling occurs for S, because in this case
the time-reversed amplitude ends up in a spin reversed state
that is different from the initial state. We thus expect
Py = (1,2,1)/(2y). Turning to the asymptotic plateau
value, wave functions in the presence of time reversal
(O and S) can be chosen real, and on this basis we expect
Py = (2,3.3)/(2y). This leads to a generalization of the
universal ratios as Pp/Pus = (2,3/2,3). To understand
the temporal profile at intermediate times, we suggest the
generalization of P(¢) at coupling y > 1 to be

X €{U,0,S}.
(6)

i.e., a sum of incoherent decay, semiclassical return
probability, and a slow partial revival described by the
spectral form factor Ky(z) [30,32]. Assuming a normali-
zation K (7 — o0) — 1, the values of the coefficients ay =
(1,2,1) and by = (1,1,2) follow from the requirement
that Py(c0) = P = 7! in the unitary case, and from the
above discussion of Py and P/ Pg. Figure 2(e) shows
that this hypothesis is in excellent and parameter-free
agreement with our numerical analysis. In each case, a
reduction of y will lead to a rounding of these structures, as
we show explicitly for the unitary case [Figs. 2(a)-2(c)].

Applications.—Let us finally mention a few concrete
contexts where we expect the above coherent generalization
of FGR relaxation dynamics to be physically relevant. The
quantum many-body phenomenon that seems to connect
most directly to the results of the present Letter is the
crossover or transition at the onset of heating in periodically
driven (Floquet) systems of finite size [7-9]. Generically,
such systems are quantum chaotic both in the nonheating

1
Py(r) = e + 2 lax + bxKx(7)].

regime and in the regime where they do exchange energy
with the periodic drive and thus heat up. The basic decay
process in this case changes the system’s energy by one
quantum of the drive’s energy, so a state of the system at
one energy decays to states at another energy [7].

Another set of many-body systems where the discrete-
ness of the spectrum of a putative bath plays a central role is
the so-called “avalanche” instability of many-body locali-
zation in systems with short-range interactions [10-12].
There, a small local rare region serves as a finite bath with a
discrete spectrum, and the question is whether this bath
succeeds in relaxing distant spins, and thus grows in size or
not [33-36]. If the coupling to the bath falls off too rapidly
with the distance between the spin and the rare region, the
discreteness of the finite bath’s spectrum stops its ability to
relax spins beyond some finite distance, so the avalanche of
thermalization stops and the MBL phase can remain stable
[10-12].

A third set of many-body systems where similar con-
siderations arise is in the Fock-space localization descrip-
tion of the onset of many-body quantum chaos in finite-size
MBL systems with long-range interactions [13—17], and
relatedly, finite-size integrable systems with weak breaking
of the integrability [18-20].

Finally, our Letter is also related to previous investiga-
tions of the thermalization of finite many-body systems
with a single weakly coupled spin [21,22]. In Ref. [21],
Crowley and Chandran study deviations from FGR be-
havior in autocorrelation functions of the weakly coupled
spin. In that case the analogous quantum dot model is
two weakly coupled dots, each with N levels, which is a
different limiting case of the more general two-dot model
that we consider in the Supplemental Material [26].

Summary and discussion.—We studied the decay of a
quantum state |0) coupled to a system with a large but,
importantly, finite dimension N acting as an imperfect bath.
Assuming quantum chaos, we modeled the latter by a
Gaussian-distributed random matrix of spectral range 1. We
analytically calculated the probability P(¢) to remain in |0)
at time ¢ for the case of weak coupling g < 1, where the
initial state hybridizes with only ~y = gN < N of the bath
states. Our main observation is that the decay dynamics is
generically nonmonotonic: At early times ~(g1)~!, P(z)
decreases to an offset value Py ~ 1/(gN). This is then
followed by a slow process of partial recovery up to a
stationary (plateau) value P, where the ratio P/ P =
(2,3/2,3) is, for N > y > 1, universal and depends only
on the symmetry class U, O, or S (broken time reversal, and
time-reversal invariant with or without spin rotation sym-
metry, respectively). We established a quantitative con-
nection between the dynamics of recovery and the spectral
form factor of quantum chaos, thus demonstrating that the
phenomenon relies on the repulsion of individual levels in
the resulting joint level-dot system. This level of sensitivity
is remarkable inasmuch as the naive golden rule “smearing”
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of the initial state over energy ~gN exceeds the level
spacing by far. In the opposite case where only a few levels
are coupled [g~ O(N7')], the decay dynamics is more
complicated [Eq. (5)] and effectively described by a washed
out version of the form factor. The above phenomena are
universal in that they require only relatively mild inducers
of quantum chaos. For example, we have checked numeri-
cally and analytically that randomly distributed dot-level
couplings {W,} to a bath of Poisson-distributed levels
suffices to generate the above structures. Finally, we have
identified a number of examples of genuine many-body
dynamics where we expect the phase coherent generaliza-
tion of Fermi’s golden rule introduced in this Letter to
become physically important. However, the concrete dis-
cussion of how the fundamental physics discussed in this
Letter will manifest itself in such applications remains a
subject of future research.
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