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Bespoke pulse design for robust rapid two-qubit gates with trapped ions
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Two-qubit gate performance is vital for scaling up ion-trap quantum computing. Optimized quantum control
is needed to achieve reductions in gate duration and gate error rate. We describe two-qubit gates with addressed
Raman beams within a linear trapped-ion chain by a quantum master equation (QME). The QME incorporates
the single-ion two-photon effective Rabi frequency, Autler-Townes and vibrational Bloch-Siegert energy shifts,
off-resonant transitions, Raman and Rayleigh scattering, laser-power fluctuations, motional heating, cross-Kerr
phonon coupling, laser spillover, asymmetric addressing beams, and an imperfect initial motional ground state,
with no fitting parameters, whereas state-of-the-art methods are oblivious to these effects in the gate design
procedure. We employ global optimization to design pulse sequences for achieving a robust rapid two-qubit gate
for a simulated chain of seven trapped 171Yb+ ions by optimizing over numerically integrated QME solutions.
Here, robust means resilient against slow drift of motional frequencies, and rapid means gate execution where
the effective Rabi frequency is comparable to the detuning of the laser from the ion’s bare electronic transition.
Our robust quantum control delivers rapid high-quality two-qubit gates in long ion chains, enabling scalable
quantum computing with trapped ions.
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I. INTRODUCTION

Quantum computers are implemented on various plat-
forms: trapped ions [1,2], superconducting circuits [3,4],
photonic systems [5], and neutral atoms [6]. Although logic
cycles are faster for superconducting systems compared to
ion traps, ion-trap systems currently feature better operation
fidelity and qubits with longer coherence time and higher
connectivity, making them one of the leading platforms for
achieving noisy intermediate-scale quantum (NISQ) and post-
NISQ scalable computing [7–9]. Key performance indicators
for entangling gates in trapped ions include peak power, logic-
cycle time τ , connectivity, and Bell-state preparation infidelity
I [2,7], estimated from measurements of the output popula-
tions and parity-oscillation amplitudes [10,11].

High-quality rapid two-qubit gate (2QG) control policies
for preparing Bell states are vital for successful universal
quantum computation, yet these gates have been achieved
only in few-ion systems [12–15]. 2QGs for long ion chains
operate on adiabatic time scales, where slow quantum
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information processing suffers from significant amounts of
decoherence and fluctuations [16–20].

Current control approaches for 2QGs employ certain sim-
plifications, such as the presumption of unitary evolution,
to obtain a closed mathematical expression for trapped-ion
dynamics and employ greedy optimization to devise control
policies [21–34]. Therefore, such control approaches neither
scale properly to fast 2QGs for chains of more than two
trapped ions, nor deliver feasible control sequences. Thus,
we develop and validate a comprehensive model of controlled
open-system dynamics described by a quantum master equa-
tion (QME). We then numerically integrate the QME and use
global optimization to devise quantum control policies for
robust rapid 2QGs. Our approach incorporates the detrimental
effects of noise and decoherence directly into the gate design
procedure. We provide feasible control sequences that deliver
2QG infidelity below 0.01 for a chain of seven trapped 171Yb+

ions in this work, limited by the specific noise environment in
the setup considered. We apply Fourier analysis to motional
mode dynamics and to control sequences in order to iden-
tify and interpret the underlying physics. Our QME method
surpasses the standard approaches and delivers rapid, robust
2QG control policies that maintain high fidelity for long ion
chains under realistic conditions, thereby removing the major
obstacle to implementing scalable quantum computation in
trapped ions [2].

Our aim is to reduce the gate duration τ significantly while
respecting an in-principle lower bound due to the quantum
speed limit [35]. Reducing τ has been explored experimen-
tally for the light-shift gate employing two trapped 43Ca+

ions, achieving τ = 1.6 µs, I = 0.002, and ∼200 mW peak
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power [36]. Scaling this experimental technique to several
ions is very difficult due to the utilization of standing waves
with precise ion indexing, and the restriction to qubit states
that exhibit linear Zeeman splitting [26].

Our 2QG design method involves four steps. First, we
develop a comprehensive model of trapped-ion dynamics rep-
resented by a QME. Second, we validate our algorithm for
computing the 4 × 4 reduced density matrix for the two tar-
get ions based on empirical data. Third, we cast the control
problem of 2QG design as a feasibility problem. Finally,
we employ an off-the-shelf global optimization algorithm to
search for feasible robust, rapid 2QGs.

Below we describe our model, which pertains to the
Mølmer-Sørensen gate acting on qubits manifested by (i) Zee-
man splitting, (ii) hyperfine splitting, or (iii) fine (structure)
splitting [2,37].

II. MODEL

A linear Paul trap with N alkali-like �-type [38] ions (each
labeled j ∈ [N] := {1, . . . ,N}) are prepared in an electronic
(meta)stable stationary state |0〉; another (meta)stable station-
ary state is |1〉. For a third (meta)stable stationary state |2〉,
three driving fields are applied to each ion: a beam is red
detuned by � from the |0〉 ↔ |2〉 transition, and the other
two beams are detuned by � ± μ(t ) from the |1〉 ↔ |2〉 tran-
sition, which we call chromatic components for red and blue
detuning. Collectively, these three beams drive a bichromatic
stimulated Raman transition for |0〉 ↔ |1〉, with effective
Rabi frequency �j (t ) for the j th ion. The phase difference
2φj between the two chromatic components is effectively
constant [39]. The three beams are arranged in a counterprop-
agating geometry to increase net momentum transfer along
one of the principal axes of the trap with a wave-vector differ-
ence �k and to cancel the common-mode phase fluctuation
of the bichromatic fields on the spin-dependent force [39].
The time-dependent chromatic beams interact with the ions
for t ∈ [0, τ ].

Ion motion is given by N collective oscillatory modes. The
rotating quadrature operator is

xl (t ) := al exp{−i((νl + δ)t + ϕl )} + H.c., l ∈ [N], (1)

with al the phonon-annihilation operator and H.c. the Her-
mitian conjugate. Here ν = (νl ) ∈ RN represents motional
angular frequencies, with l = 1 for center-of-mass (CoM) mo-
tion of the Wigner crystal, next, l = 2 is for the rocking (tilt)
mode and so on up to l = N . The offset in motional-mode fre-
quencies, caused by slow drift in the overall trapping strength,
is represented by δ. Phase offsets are incorporated into ϕ =
(ϕl ) ∈ [0, 2π ]N . The coupling parameter between ion j and
mode l in the interaction is described by the Lamb-Dicke
parameters ηj l := bj l�k

√
h̄/2m(νl+δ) with bj l the normal-mode

coupling parameters and m the ion’s mass [40]. The j th ion’s
position operator is βj (t ) := ∑

l∈[N] ηj l xl (t ).
The internal states of each ion are treated as a two-level

system (2LS) with |2〉 adiabatically decoupled from the Ra-
man transition with �j (t ) � �max. The laser detuning μ(t ) ≡
μ is constant, and we restrict ourselves to identical pulses for
each of the two (r and s) target ions for the 2QG and zero
driving for the other ions. The ion motion is not perfectly

TABLE I. Jump coefficients for a linear Paul trap with 171Yb
+

ions. Here 
l corresponds to the heating rate for the mode l , 
MC to
the motional dephasing rate per mode l , 
EL to the Rayleigh photon
scattering, 
R to the Raman photon scattering from the ions, 
LC

to the laser dephasing rate, and 
P to the laser-intensity fluctuations.
Both 
EL and 
R are �(t ) dependent, and here we report the nominal
values for � = 1 Mrad/s.

Rate Value [s−1] Jump


l∈{1} 100.0
√


l{al , a†
l }


l∈{2,...,N} 10.0
√


l{al , a†
l }


MC 27.7
√


MC/πa†
l al


EL 1.5 ×10−3
√


ELσ z
j /2


R 30.0
√


Rσ+
j


P 70.0
√


PH (t )

LC 3.0 ×10−6

√

LCσ z

j

cooled to the ground state: η2
j l (2n̄l + 1) � 1∀j , l with n̄l

the mean phonon occupation number of mode l . Note that
our condition differs from the original definition of a warm
ion, which presupposes that all but the motional mode used
for logical operations have zero phonons [37]. All motional
modes are in thermal equilibrium. The temperature T for all
motional modes is specified by mean phonon number n̄l for
each mode l [40,41].

III. QUANTUM MASTER EQUATION

The interaction Hamiltonian between the j th ion and
the electromagnetic field, in the interaction picture with the
rotating-wave approximation with respect to qubit resonance
frequency, is

Hj (t ) = −h̄�j (t ) cos (μt + φj )
(
σ+

j ei(βj (t )−φj ) + H.c.
)

(2)

with ladder operators σ+ = |1〉〈0| = σ−†
. We use the interac-

tion picture to avoid numerical instabilities while integrating
the QME. The system Hamiltonian for all ions is H (t ) =∑

j∈[N] Hj (t ). The Autler-Townes shift is calculated and in-
cluded as a pulse-dependent drift of laser detuning. The
cross-Kerr coupling is taken into account by adding the term
χnlnl ′ [42–44] to H (t ), where nl is the phonon-number op-
erator of motional mode l and the coupling constant χ is
taken from the experimental data reported in Ref. [44]. The
laser spillover onto other ions is 2% of the Rabi frequency on
neighboring ions.

We now consider strong nonunitary processes such as
heating and dephasing of motional modes, both Rayleigh
and Raman photon scatterings, and laser-intensity fluctuation.
The Born-Markov approximation for these dynamics [45–49]
yields QME ih̄ρ̇ = [H (t ), ρ] + L[ρ] for ρ the state of the ions
and L[ρ] = ∑

ı Lı[ρ] the Liouvillian superoperator [50–52].
Table I presents Liouville jump terms with reasonable rate
values [46,53,54]. We integrate the QME to time τ .

Problem 1 (Find a physical solution). Input: Number N of
trapped ions, labels (r, s) of any pair of ions, motional angular
frequencies ν, temperature T for the CoM mode, physical
bounds for �(t ) and μ, δtol and I�. The ions’ internal states
are initialized in |0〉. Output: Shortest (r, s)-2QG duration τ
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such that (�(t ), μ) exists and satisfies

0 � �j � �max∀j , μmin � μ � μmax (3)

and, for |�±〉 := |00〉 ± i|11〉,
max
|δ|�δtol

I (δ) � I�, I := 1 − 〈�±|ρ(�, μ, δ, τ )|�±〉 (4)

with ρ the QME solution.
The problem is thus to reduce τ , which is a functional

of �(t ) and μ, while ensuring that I does not increase
and the 2QG is robust. 2QG speed up typically requires
increased peak Rabi frequency [55]. Formally, we adapt Prob-
lem 1 mathematically as a feasibility problem. First, we
discretize time by introducing a time mesh comprising m
equal segments so t ∈ (τ/m)Zm+1 with m a hyperparameter,
meaning a parameter that is tuned for optimization. As m =
2N + 1 suffices [21,22], we replace �(t ) by � ∈ [0,�max]m.
The functional τ [�(t ), μ] is thus replaced by the function
τ (�, μ).

Problem 2 (Feasibility). Given constraints (3), (4) and
τ (�, μ) � τmax for some given maximum 2QG duration τmax,
find feasible � and μ.

IV. APPROACH

We develop a code to simulate an ion-trap system, which
involves the time-dependent Hamiltonian, jump operators
with time-dependent rates, input state descriptions, thermal
preparation of motional modes, and Bell-state preparation
fidelity estimator. Subsequently, we unravel the QME employ-
ing the quantum trajectories theory [56] and use the C + +
quantum trajectory class library [57] to integrate the resulting
stochastic quantum trajectories. We also develop our own
code for the state-of-the-art (SotA) method for pulse shap-
ing [21,22].

We solve the feasibility problem by employing an off-
the-shelf global-optimization (GO) algorithm, specifically
differential evolution [58,59], to search for a feasible � and
μ in the region [0,�max]m × [μmin, μmax] over the uniform
measure. We then compare our method to SotA. Whereas
our GO method uses the numerically integrated solutions of
the QME to compute I , the SotA method relies on certain
simplifications to obtain a closed mathematical expression for
trapped-ion dynamics. SotA and other standard approaches
then obtain a pulse sequence by minimizing the phase-space
closure criterion without regard to the geometric phase con-
dition required for the entangling 2QGs. The pulse sequence
is later scaled to meet the geometric phase condition, assum-
ing that the dynamics of motional phase-space trajectories
are linear in �(t ). Finally, we gain physical insight into
pulse sequences and motional mode dynamics through Fourier
analysis and by investigating the infidelity contributions by
different noise sources.

We validate our algorithm for computing the 4 × 4 re-
duced density matrix for the two target ions as follows. The
predicted I and even-parity population P must agree with
empirical results within experimental error. We choose these
two quantities to validate as the experimental results along
with all requisite experimental parameters and device noise
characteristics are available to us [55,60].

TABLE II. We use existing data together with independently
measured device noise characteristics to validate our method. A
successful validation means reproducing the accessible empirical
data within experimental error. The table presents empirical and
estimated results for 2QGs designed using the state-of-the-art ampli-
tude and frequency modulation method [60]. Here τ corresponds to
2QG duration, �0 (error) to Rabi frequency, P (error) to even-parity
population, and P̄ to estimated even-parity population.

τ (µs) �0/2π (kHz) P P̄

190 286(5) 0.977(2) 0.978(3)
200 182(4) 0.995(1) 0.991(1)
250 149(4) 0.994(1) 0.991(1)
300 113(3) 0.991(1) 0.991(2)
350 107(4) 0.991(1) 0.991(3)

We simulate a chain of seven 171Yb+-ions in a linear Paul
trap with motional frequencies on a transverse axis span-
ning from 3.07 MHz (CoM) to 2.96 MHz (seventh mode)
and ηj1 ≡ 0.065 ∀j based on the experimental parameters in
Ref. [55]. The qubit states, |F,mF 〉, are encoded into 171Yb+

hyperfine states |0, 0〉 and |1, 0〉 with separation ω0 = 2π ×
12.642821 GHz. Stimulated Raman transfer occurs by virtu-
ally exciting 62P1/2 and 62P3/2. One Raman beam is global, it
illuminates the entire crystal, whereas the others are a pair of
tightly focused beams on the target ions.

In order to validate our algorithm, we first estimate I
for the (3,4)-2QG with τ = 254 µs [60]. Our resultant I =
0.005(3) agrees, within experimental error, with the empirical
result I = 0.007(4). Second, Table II summarizes predicted
and empirical values of P for the (4,5)-2QG over five values of
τ [55]. The data set shows good theoretical-empirical agree-
ment, considering the uncertainties in ηj l and �0 [55].

V. RESULTS

Now we show that our GO method delivers superior pulse
sequences compared to SotA in the sense that our GO method
always works when SotA works, and our GO method succeeds
even when SotA fails. In Figs. 1(a) and 1(b) we present two
SotA pulse sequences and three GO pulse sequences for a fast
2QG. In this case, all GO pulse sequences are feasible, but nei-
ther SotA pulse sequence is feasible unless I� is adequately
increased.

We now discuss GO and SotA performance for an increas-
ingly fine time mesh hyperparamaterized by m. We observe
that, for SotA, increasing m beyond 2N + 1 increases both
I and peak Rabi frequency �peak := max � for fixed τ and
μ. These increases are evident in Fig. 1(b). Specifically, no
feasible SotA pulse sequence for m = 30 exists unless we
double the �max constraint and increase I� to 0.50. On the
contrary, the m = 30 GO pulse sequence is feasible under the
same constraint as is the m = 15 GO pulse sequence.

Computing I with the jump terms for individual noise
sources removed reveals the contribution of different sources
of decoherence. In our case, the most detrimental are mo-
tional dephasing and laser power fluctuation, which account
for 23.4% and 22.7% of the total I, respectively. This kind
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FIG. 1. (3,4)-2QG pulse sequences for N = 7, τmax = 35 µs, μmin/2π = 2.65 MHz, μmax/2π = 3.35 MHz, and m and �max/2π expressed in the
legends. (a) Pulse sequences generated using GO with I� = 0.01. All pulse sequences have I = 0.006. (b) Pulse sequences generated using
SotA. The pulse sequence with �max/2π = 1129 kHz (dashed blue) is generated at the same detuning as the GO pulse sequence with �max/2π =
840 kHz. The other pulse sequences are generated with I� = 0.02 for m = 15 and I� = 0.50 for m = 30. (c) (3,4)-2QG I as a function of
long-term motional frequency drift δ. The horizontal line shows the feasibility condition I� = 0.01 and the two vertical lines indicate the
experimentally relevant δtol/2π = 1.5 kHz domain. The SotA pulse sequence is minimized at δ/2π = −2.67 kHz, indicated by the � symbol, due
to not accounting for the vibrational Bloch-Siegert shift. Our GO method searches for 2QGs that satisfy both feasibility conditions (3),(4).
Therefore, the minimum of the robustness curve does not necessarily happen exactly at δ/2π = 0. (d), (e) Fourier transform of m = 15 SotA and
GO pulse sequences with �max/2π = 1129 kHz, and �max/2π = 840 kHz, respectively. Both pulse sequences are generated for μ/2π = 2.89 MHz.
Circles indicate the relative frequencies of motional modes from the solutions.

of analysis can help identify the most profitable avenues for
hardware improvements.

Now we discuss pulse-sequence robustness against long-
term drift δ of motional frequencies. Figure 1(c) presents a
plot of I versus δ for the (3,4)-2QG in a seven-ion chain.
The GO pulse sequences yield superior I and meet the fea-
sibility condition I� = 0.01 for the experimentally relevant
domain |δ| � δtol = 1.5 kHz. The SotA pulse sequence does
not achieve I� = 0.01 and is minimized outside of the δtol �
1.5 kHz domain. Figure 1(c) also indicates the greater robust-
ness that is achieved with respect to δ by increasing, either
�max or m for our method. The displacement in the minimum
of the robustness curve for the SotA pulse sequence is due to
not accounting for the vibrational Bloch-Siegert shift in the
Hamiltonian [61].

Now we Fourier analyze � to gain physical insight.
We sample the SotA and GO pulse sequences with
�max/2π = 1129 kHz and �max/2π = 840 kHz, respectively, at
fs = 10 MHz to minimize aliasing. The discrete Fourier trans-
forms �̃ of the sampled SotA and GO pulse sequences are
shown in Fig. 1(d), where f ∈ (1/τ )Z( fsτ/2)+1. The spectral
width of both pulse sequences is about 28.57 kHz. The feature
around 428 kHz is an artifact due to discreteness imposed by
the segment size of 2.3 µs. The broad bump in both spectra
starting from about 142 kHz to 285 kHz corresponds to contri-
butions about two times the pulse segment size of 2.3 µs. The

SotA pulse sequence exhibits a greater contribution in this re-
gion, which corresponds to the square-wave-like pattern of the
pulse sequence with a period of twice the pulse segment size.
The GO pulse sequence does not manifest such pronounced
periodicity.

Phase profiles for SotA and GO are shown in Fig. 1(e). We
note that significant differences in arg�̃ can indicate a defi-
ciency in the SotA pulse-sequence design method. SotA and
GO phases are similar for all frequencies (mod 2π ) except be-
tween 150 kHz and 250 kHz, where the phase of the GO pulse
is antisymmetric about the midpoint 200 kHz. This antisym-
metry signifies weak coupling to the CoM mode in compari-
son to the SotA solution, showing that the GO pulse succeeds
because GO avoids channeling energy to the CoM and instead
concentrates the force onto the lower-frequency modes.

Now we analyze the spectral properties of phase-space
trajectories for the sixth and seventh motional modes. These
trajectories are defined by the complex-valued āl (t ) := tr(| +
+〉〈+ + | ⊗ alρ(t )), where |+〉 := |0〉 + |1〉, and are solved
for the SotA pulse sequence with �max/2π = 970 kHz and
μ/2π = 2.88 MHz, and plotted in Figs. 2(a) and 2(b). We ob-
serve that the phase-space trajectories are jagged when solved
using our QME, which is due to off-resonant coupling of the
driving field to the bare electronic transition. The SotA model
is oblivious to this effect. Therefore, SotA pulse sequences
fail to close the phase-space trajectories into orbits at the end
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FIG. 2. Evolution of phase-space trajectories for motional modes
(a) six and (b) seven computed using SotA’s model for trapped-ion
dynamics (dashed green) and the QME based on the comprehensive
model constructed in this work (solid orange). (c) Fourier transform
of the real component of the seventh motional mode for SotA’s model
(solid green) and the QME (dashed orange). The standard approaches
for 2QG gate design, including SotA, are oblivious to both the off-
resonant coupling of the driving field to the bare electronic transition
and the detrimental effect of the aforementioned sources of noise and
decoherence.

of 2QG implementation, which leads to residual entanglement
between the electrons and the motional modes.

The Fourier transform of the real component of the seventh
motional mode is shown in Fig. 2(c). The QME approach
shows frequency contributions around multiples of μ, which
correspond to the higher-order effects of the off-resonant bare
electronic transitions.

VI. CONCLUSION

Although we provide a study of our 2QG design method
on a simulated chain of seven 171Yb+-ions in a linear Paul

trap, our method is readily extensible to longer chains of
ions, gate duration, and physical constraints. We validate our
model by computing I for two of the state-of-the-art 2QG
methods within experimental error. Thus, we show that the
physics we extract applies across other control scenarios, error
environments, and system sizes considered within the scope of
this work. The maximum dimension of the Hilbert space we
use for simulating the chain of seven 171Yb+-ions is 320 000,
which includes the Hilbert space for two ions plus two more
neighboring ions due to laser spillover. Additionally, our op-
timized implementation of the QME integrator dynamically
lowers or increases the size of Fock space for motional modes
based on their occupation probability and adjacency to μ. The
parallelized implementation of our GO method takes about
45 min on a computer with 40 cores to obtain a feasible 2QG
solution, which is well within the time frame required for an
experimental test. We expect that with further optimization
this time can be considerably reduced as well.

Our work uncovers principles for 2QG design that are
informed by a comprehensive model of trapped ions. To
minimize off-resonant carrier modulation, the pulse sequence
should begin and end smoothly at zero strength since the
amplitude of the modulation depends linearly on the Rabi
frequency. Moreover, the pulse symmetry, together with the
appropriate detuning, contribute to close the phase-space tra-
jectories and improve the robustness.
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