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FINITE ELEMENTS FOR DIV- AND DIVDIV-CONFORMING

SYMMETRIC TENSORS IN ARBITRARY DIMENSION
⇤
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Abstract. Several div-conforming and divdiv-conforming finite elements for symmetric ten-
sors on simplexes in arbitrary dimension are constructed in this work. The shape function space
is first split as the trace space and the bubble space. The later is further decomposed into the
null space of the di↵erential operator and its orthogonal complement. Instead of characterizations
of these subspaces of the shape function space, characterizations of corresponding degrees of free-
dom in the dual spaces are provided. Vector div-conforming finite elements are first constructed
as an introductory example. Then new symmetric div-conforming finite elements are construc-
ted. The dual subspaces are then used as build blocks to construct new divdiv-conforming finite
elements.
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1. Introduction. In this paper we construct div-conforming finite elements and
divdiv-conforming finite elements for symmetric tensors on simplexes in arbitrary
dimension. A finite element on a geometric domainK is defined as a triple (K,V,DoF)
by Ciarlet in [18], where V is a finite-dimensional space consisting of the so-called
shape functions and the set of degrees of freedom (DoFs) is a basis of the dual space
V

0. The shape functions are usually polynomials. The key is to identify an appropriate
basis of V 0 to enforce the continuity of the functions across the boundary of elements
so that the global finite element space is a subspace of some Sobolev space H( d,⌦),
where ⌦ ⇢ R

d is a domain and d is a generic di↵erential operator.
Denote by trd the trace operator associated to d and the bubble function space

B(d) := ker(trd) \ V . We shall decompose V = B(d) � E(img(trd)), where E is an
injective extension operator E : img(trd) ! V , and find DoFs of each subspace by

1. characterization of (img(trd))0 using the Green’s formula;
2. characterization of B0(d) through the polynomial complexes.

In the characterization of B0(d), we will use the di↵erential operator d to further split
B(d) into two subspaces (see Figure 1.1)

E0 := B(d) \ ker(d) and E
?
0 := B(d)/E0.

We then present a basis of (E?
0 )0 and E

0
0:
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FINITE ELEMENTS FOR SYMMETRIC TENSORS 1933

trd

E0 := ker(d)

\ ker(trd)

E
?
0

Fig. 1.1. Decomposition of a generic finite element space.

1. a basis of (E?
0 )0 is given by {( d·, p), p 2 dB(d) = dE?

0 };
2. on the other part E0

0, there are two approaches:
- the primary approach: E0 is the image of the previous bubble space;
- the dual approach: E0

0 is isomorphic to the null space of a Koszul operator.
The dual approach is simpler and more general. For example, for the elasticity

complex, the previous symmetric tensor space is related to the second order di↵erential
operator inc [3]. In the dual approach, we prove that a basis of E

0
0 is given by

N (ker(·x) \ Pk�2(K; S)). Here to simplify notation, we introduce operator N : U !
V

0 as N (p) := (·, p) with U ✓ V and (·, ·) is the inner product of space V which is
usually the L

2-inner product. Generalization of inc and its bubble function space to
R

d is unclear while E
0
0 = N (ker(·x) \ Pk�2(K; S)) holds in arbitrary dimension.

To show the main idea with easy examples, we first review the construction of
the Brezzi–Douglas–Marini (BDM) element [8, 7] and the Raviart–Thomas (RT) ele-
ment [27, 25] for H(div)-conforming elements. For the BDM element, the shape func-
tion space is Pk(K;Rd), and for the RT element, it is P

�
k+1(K;Rd) := Pk(K;Rd) �

Hk(K)x. We determine the trace space trdiv(Pk(K;Rd)) =
Q

F2@K
Pk(F ). By the

aid of the space decomposition Pk�1(K;Rd) = gradPk(K) � ker(·x) \ Pk�1(K;Rd)
derived from the dual complex, we can show E

0
0 = N (ker(·x) \ Pk�1(K;Rd)). BDM

and RT elements will share the same trace space and E0, while

(E?
0 )0 =

(
N (gradPk�1(K)) for BDM element,

N (gradPk(K)) for RT element.

The dual space B0
k
(div,K) ⇠= (E?

0 )0�E
0
0 for the BDM element can be further merged

as
B
0
k
(div,K) = N

�
NDk�2(K)

�
:= N

�
Pk�2(K;Rd)�Hk�2(K;K)x

�
.

We summarize DoFs for the BDM element as

(v · n, q)F 8 q 2 Pk(F ) for each F 2 @K,(1.1)

(v, q)K 8 q 2 NDk�2(K),(1.2)

and the interior moments (1.2) for B0
k
(div,K) can be further split as

(E?
0 )0 (v, q)K 8 q 2 gradPk�1(K),(1.3)

(E0)
0 (v, q)K 8 q 2 ker(·x) \ Pk�1(K;Rd).

Enriching (1.3) to N (gradPk(K)), we then get the RT element.
We then apply our approach to a more challenging problem: H(div)-conforming

finite elements for symmetric tensors, which are used in the mixed finite element
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1934 LONG CHEN AND XUEHAI HUANG

methods for the stress-displacement formulation of the elasticity system. Several
H(div)-conforming finite elements for symmetric tensors were designed in [6, 1, 3, 24,
21, 23] on simplices, but our elements are new and construction is more systematical.
Let ⇧F ⌧ be the projection of column vectors of ⌧ to the plane F , and let Fr(K) be
the set of subsimplexes of K with co-dimension r for r = 1, . . . , d � 1. The space of
shape functions is Pk(K; S), and DoFs are

⌧ (�) 8 � 2 V(K),(1.4)

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),(1.5)

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K),(1.6)

(⌧ , q)K 8 q 2 Pk�2(K; S).

The symmetry of the shape function and the trace ⌧n on (d � 1)-dimensional faces
lead to the DoFs (1.4)–(1.5), which will determine the normal-normal component
n

|
⌧n. The set of DoF (1.6) is for the face bubble part of the tangential-normal

component ⇧F ⌧n (cf. (1.2)), which di↵ers from that of Hu’s element in [21] for
d � 3. The bubble function space Bk(div,K; S) can be decomposed into two parts,
E0,k(S) := Bk(div,K; S) \ ker(div) and E

?
0,k(S) := Bk(div,K; S)/E0,k(S). We show

that

(1.7) E
0
0,k(S) = N (ker(·x) \ Pk�2(K; S)), (E?

0,k(S))
0 = N (def Pk�1(K,R

d)).

A new family of H(div; S)-conforming elements is devised with the shape function
space P�

k+1(K; S) := Pk(K; S)+E
?
0,k+1(S), and we enrich DoF (E?

0,k(S))
0 to (E?

0,k+1(S))
0

so that divP�
k+1(K; S) = Pk(K;Rd).

Motivated by the recent construction [22] in two and three dimensions, the pre-
vious H(div)-conforming finite elements for symmetric tensors are then revised to
acquire H(div div) \ H(div)-conforming finite elements for symmetric tensors in ar-
bitrary dimension. Using the building blocks in the BDM element and the H(div)-
conforming Pk(K; S) element, we construct the following DoFs:

⌧ (�) 8 � 2 V(K),

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K),

(n| div ⌧ , p)F 8 p 2 Pk�1(F ), F 2 F1(K),(1.8)

(⌧ , def q)K 8 q 2 NDk�3(K),(1.9)

(⌧ , q)K 8 q 2 ker(·x) \ Pk�2(K; S).(1.10)

The DoF (1.8) to enforce div ⌧ isH(div)-conforming and thus ⌧ 2 H(div div)\H(div).
DoF (1.10) is E

0
0,k(S) shown in (1.7) and (1.8)–(1.9) are a further decomposition of

divE?
0,k(S) by the trace-bubble decomposition of the BDM element; cf. (1.1)–(1.2).
We then modify this element slightly to get H(div div)-conforming symmetric

finite elements generalizing the H(div div)-conforming element in two and three di-
mensions [12, 11]. The DoFs are given by
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FINITE ELEMENTS FOR SYMMETRIC TENSORS 1935

⌧ (�) 8 � 2 V(K),(1.11)

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),(1.12)

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K),(1.13)

(n| div ⌧ + divF (⌧n), p)F 8 p 2 Pk�1(F ), F 2 F1(K),(1.14)

(⌧ , def q)K 8 q 2 NDk�3(K),(1.15)

(⌧ , q)K 8 q 2 ker(·x) \ Pk�2(K; S).

As we mentioned before, (1.11)–(1.13) will determine the trace ⌧n, and consequently
divF (⌧n). The only di↵erence is that (1.8) is replaced by (1.14), which agrees with
a trace operator of the div div operator derived in [11, 12]. Such modification is
from the requirement of H(div div)-conformity: n

|
⌧n and n

| div ⌧ + divF (⌧n) are
continuous. Therefore (1.13) for ⇧F ⌧n is considered as a local DoF to K, i.e., it is
not single-valued across simplices.

In our recent work [11, 12], we have constructed H(div div)-conforming sym-
metric finite elements for d = 2, 3. The dual space (trdiv div(Pk(K; S)))0 is given by
DoFs (1.11)–(1.14) but without (1.13) as ⇧F ⌧n is not part of the trace of div div
operator. Let E0(div div, S) := Bk(div div,K; S) \ ker(div div) and E

?
0 (div div, S) :=

Bk(div div,K; S)/E0(div div, S). Then the characterization

(E?
0 (div div, S))0 = N (r2

Pk�2(K))

is easy, but the identification of E0
0(div div, S) is very tricky in three dimensions. In

[12], we have used the primary approach to get

E
0
0(div div, S) = N (sym curlBk+1(sym curl,K;T)),

which is hard to generalize to an arbitrary dimension. When using the dual approach,
it turns out N (ker(x| · x) \ Pk�1(K; S)) is a strict subspace of E0

0(div div, S) as the
dimensions cannot match. An extra DoF on one face (⌧n,n⇥ xq)F1 , q 2 Pk�2(F1),
is introduced to fill the gap. Again such a fix in three dimensions seems not easy to
generalize to an arbitrary dimension. In (1.15), if we further decompose NDk�3(K) =
gradPk�2(K)� Pk�3(K;K)x, based on our new element, we can obtain a character-
ization

E
0
0(div div, S) = [F2F1(K)N (NDk�2(F ))

�N (ker(·x) \ Pk�2(K; S))�N (def Pk�3(K;K)x).

Furthermore, a new family of P�
k+1(K; S) type H(div div) \ H(div)-conforming

and H(div div)-conforming finite elements are developed. The shape function space
is enriched to P

�
k+1(K; S) := Pk(K; S)� xx

|
Hk�1(K). The range div divP�

k+1(K; S)

is enriched to Pk�1(K) and so is (E?
0 (div div, S))0 = N (r2

Pk�1(K)). But the trace
DoFs and E

0
0(div div, S) are unchanged. Such P

�
k+1(K; S) type div div-conforming

elements for symmetric tensors are new and not easy to construct without exploring
the decomposition of the dual spaces.

The rest of this paper is organized as follows. Preliminaries are given in sec-
tion 2. The construction of H(div)-conforming elements is presented in section 3. In
section 4, new H(div)-conforming elements for symmetric tensors are designed. And
construction of H(div div)-conforming elements is shown in section 5.
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1936 LONG CHEN AND XUEHAI HUANG

2. Preliminary.

2.1. Notation. Let K ⇢ R
d be a nondegenerated d-dimensional simplex. For

r = 1, 2, . . . , d, denote by Fr(K) the set of all (d � r)-dimensional faces of K. The
superscript r in Fr(K) represents the co-dimension of a (d � r)-dimensional face
f , where F is reserved for the (d � 1)-dimensional face and f for a generic lower-
dimensional face. Set V(K) := Fd(K) as the set of vertices. Similarly, for f 2 Fr(K),
define

F1(f) := {e 2 Fr+1(K) : e ⇢ @f}.

For any f 2 Fr(K) with 1  r  d�1, let nf,1, . . . ,nf,r be its mutually perpendicular
unit normal vectors, and let tf,1, . . . , tf,d�r be its mutually perpendicular unit tan-
gential vectors. We abbreviate nF,1 as nF or n when r = 1. We also abbreviate nF,i

and tF,i as ni and ti, respectively, if not causing any confusion. For any F 2 F1(K)
and e 2 F1(F ), denote by nF,e the unit outward normal to @F being parallel to F .

Given a face F 2 F1(K), and a vector v 2 R
d, define

⇧Fv = (nF ⇥ v)⇥ nF = (I � nFn
|
F
)v

as the projection of v onto the face F . For a matrix ⌧ 2 R
d⇥d, ⇧F ⌧ is applied to

each column vector of ⌧ . Given a scalar function v, define the surface gradient as

rF v := ⇧Frv = rv � @v

@nF

nF =
d�1X

i=1

@v

@tF,i

tF,i,

namely the projection of rv to the face F , which is independent of the choice of the
normal vectors. Denote by divF the corresponding surface divergence.

2.2. Polynomial spaces. We recall some results about polynomial spaces on
a bounded and topologically trivial domain D ⇢ R

d. Without loss of generality, we
assume 0 2 D. Given a nonnegative integer k, let Pk(D) stand for the set of all
polynomials in D with the total degree no more than k, and let Pk(D;X) denote the
tensor or vector version. Let Hk(D) := Pk(D)\Pk�1(D) be the space of homogeneous
polynomials of degree k. Recall that

dimPk(D) =

✓
k + d

d

◆
=

✓
k + d

k

◆
, dimHk(D) =

✓
k + d� 1

d� 1

◆
=

✓
k + d� 1

k

◆

for a d-dimensional domain D.
By Euler’s formula, we have

x ·rq = kq 8 q 2 Hk(D),(2.1)

div(xq) = (k + d)q 8 q 2 Hk(D)(2.2)

for integer k � 0.

2.3. Dual spaces. Consider a Hilbert space V with the inner product (·, ·). Let
U ✓ V , then define N : U ! V

0 as follows: for any p 2 U , N (p) 2 V
0 is given by

hN (p), ·i = (·, p).

When V is a subspace of an ambient Hilbert space W , we use the inclusion I :
V ,! W to denote the embedding of V into W . Then the dual operator I 0 : W 0 ! V

0

is onto. That is, for any N 2 W
0, I 0

N 2 V
0 is defined as hI 0

N, vi = hN, Ivi.
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FINITE ELEMENTS FOR SYMMETRIC TENSORS 1937

Consider the case of the finite-dimensional subspace V ✓ W and a subspace
P

0 ✓ W
0; then to prove V

0 = I 0
P

0, it su�ces to show

(2.3) for any v 2 V, if N(v) = 0, 8N 2 P
0
, then v = 0.

Note that it means I 0 is onto but may not be bijective. That is, dimP
0 might be

larger than dimV
0. It is less rigorous to write V

0 ✓ P
0 as those two dual spaces

consist of functionals with di↵erent domains. The mapping I 0 is introduced as a
bridge for comparison. When I 0 : P 0 ! V

0 is a bijection, we shall skip I 0 and simply
write V

0 = P
0. To prove V

0 = P
0, besides (2.3), dimension count is applied to verify

dimV
0 = dimP

0.
The art of designing conforming finite element spaces is indeed identifying ap-

propriate DoFs to enforce the continuity of the function across the boundary of the
elements. Take V = Pk(K) as an example. A naive choice is N (Pk(K)) = V

0 but
such basis enforces no continuity on @K. To be H

1-conforming we need a basis for
(tr(Pk(K)))0 to ensure the continuity of the trace on lower dimensional faces of an
element K. Note that as the shape function is a polynomial inside the element, the
trace is usually smoother than its Sobolev version, which is known as supersmooth-
ness [17, 28]. Choice of dual bases is not unique. For example, for H

1-conforming
finite elements, V = Pk(K), the Lagrange element, and the Hermite element will have
di↵erent bases for V 0.

When counting the dimensions, we often use the following simple fact: for a linear
operator T defined on a finite-dimensional linear space V , it holds

dimV = dimker(T ) + dim img(T ).

2.4. Simplex and barycentric coordinates. For i = 1, . . . , d, denote by ei 2
R

d the d-dimensional vector whose jth component is �ij for j = 1, . . . , d. Let K ⇢ R
d

be a nondegenerated simplex with vertices x0,x1, . . . ,xd. Let Fi 2 F1(K) be the
(d � 1)-dimensional face opposite to vertex xi and �i be the barycentric coordinate
of x corresponding to vertex xi for i = 0, 1, . . . , d. Then �i(x) is a linear polynomial
and �i|Fi = 0. For any subsimplex S not containing xi (and thus S ✓ Fi), �i|S = 0.
On the other hand, for a polynomial p 2 Pk(K), if p|Fi = 0, then p = �iq for
some q 2 Pk�1(K). As Fi is contained in the zero level set of �i, r�i is orthogonal
to Fi and a simple scaling calculation shows the relation r�i = �|r�i|ni, where
ni is the unit outward normal to the face Fi of the simplex K for i = 0, 1, . . . , d.
Clearly {n1,n2, . . . ,nd} spans Rd. We will identify its dual basis {l1, l2, . . . , ld}, i.e.,
(li,nj) = �ij for i, j = 1, 2, . . . , d. Here the index 0 is singled out for ease of notation.
We can set an arbitrary vertex as the origin.

Set ti,j := xj � xi for 0  i 6= j  d. By computing the constant directional
derivative ti,j ·r�` by values on the two vertices, we have

(2.4) ti,j ·r�` = �j` � �i` =

8
><

>:

1 if ` = j,

�1 if ` = i,

0 if ` 6= i, j.

Then it is straightforward to verify {li := |r�i|ti,0} is dual to {ni}. Note that
in general neither {ni} nor {li} is an orthonormal basis unless K is a scaling of the
reference simplex K̂ with vertices 0, e1, . . . , ed. By using the basis {ni, i = 1, 2, . . . , d},
we avoid the pull back from the reference simplex.
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1938 LONG CHEN AND XUEHAI HUANG

Following notation in [5], denote by N
d the set of all multi-indices ↵ = (↵1, . . . ,↵d)

with integer ↵i � 0 and by N
d

0 the set of all multi-indices ↵ = (↵0,↵1, . . . ,↵d) with
integer ↵i � 0. For x = (x1, . . . , xd) and ↵ 2 N

d, define x
↵ := x

↵1
1 · · ·x↵d

d
and |↵| :=P

d

i=1 ↵i. Similarly, for � = (�0,�1, . . . ,�d) and ↵ 2 N
d

0, define �
↵ := �

↵0
0 �

↵1
1 · · ·�↵d

d

and |↵| :=
P

d

i=0 ↵i. The Bernstein basis for the space Pk(K) consists of all monomials
of degree k in the variables �i, i.e., the basis functions are given by

{�↵ := �
↵0
0 �

↵1
1 · · ·�↵d

d
: ↵ 2 N

d

0, |↵| = k}.

Then Pk(K) = {
P

↵2Nd
0 ,|↵|=k

c↵�
↵ : c↵ 2 R}.

2.5. Tensors. Denote by S and K the subspace of symmetric matrices and skew-
symmetric matrices of R

d⇥d, respectively. The set of symmetric tensors {T i,j :=
ti,jt

|
i,j
}0i<jd is dual to {N i,j}0i<jd, where

N i,j :=
1

2(n|
i
ti,j)(n

|
j
ti,j)

(nin
|
j
+ njn

|
i
).

That is, by direct calculation [9, (3.2)],

T i,j : Nk,` = �ik�j`, 0  i < j  d, 0  k < `  d,

where : is the Frobenius inner product of matrices. Assuming
P

0i<jd
cijT i,j = 0,

then apply the Frobenius inner product with Nk,` to conclude ck` = 0 for all 0  k <

`  d. Therefore both {T i,j}0i<jd and {N i,j}0i<jd are bases of S. The basis
{T i,j}0i<jd is introduced in [15, 21] and {N i,j}0i<jd is in [15, 9].

2.6. Characterization of DoFs for bubble spaces. We give a characteriza-
tion of DoFs for bubble spaces and a decomposition of the bubble spaces through the
bubble complex.

Lemma 2.1. Assume finite-dimensional Hilbert spaces B1,B2, . . . ,Bn with the in-

ner product (·, ·) form an exact Hilbert complex

0
⇢�! B1

d1��! . . .Bi

di�! . . .Bn ! 0,

where Bi ✓ ker(tr di) for i = 1, 2, . . . , n � 1. Then the bubble space Bi, for i =
1, . . . , n� 1, is uniquely determined by the DoFs

(v, d⇤
i
q) 8 q 2 diBi,(2.5)

(v, q) 8 q 2 Q ⇠= (di�1Bi�1)
0
,(2.6)

where d⇤
i
is the adjoint of di : Bi ! Bi+1 with respect to the inner product (·, ·) and

the isomorphism Q ! ( di�1Bi�1)0 is given by p ! (p, ·) for p 2 Q.

Proof. By the splitting lemma in [20] (see also Theorem 2.2 in [10]),

(2.7) Bi = d⇤
i
diBi � di�1Bi�1.

Since d⇤
i
restricted to diBi is injective, the number of DoFs (2.5)–(2.6) is the same

as dimBi. Assume v 2 Bi and all the DoFs (2.5)–(2.6) vanish. By the decomposition
(2.7), there exist v1 2 Bi and v2 2 Bi�1 such that v = d⇤

i
div1+ di�1v2. The vanishing

(2.5) yields div = 0, that is, di d⇤i ( div1) = 0. Noting that di d⇤i : diBi ! diBi is
isomorphic, we get div1 = 0 and thus v = di�1v2. Now apply the vanishing (2.6) to
get v = 0.
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When the bubble function space B can be characterized precisely, we can simply
use N (B), i.e., (v, q), q 2 B as DoFs. When Q = di�1Bi�1, Lemma 2.1 is the same as
Proposition 5.44 for the finite element systems in [16]. However, Lemma 2.1 tells us
it su�ces to identify the dual space without knowing the explicit form of the bubble
functions. In the following, we present a way to identify B

0 by a decomposition of the
dual space.

Lemma 2.2. Consider linear map d : V ! P between two finite-dimensional

Hilbert spaces sharing the same inner product (·, ·). Let B = ker(tr d) \ V , E0 =
ker( d) \ B, and E

?
0 = B/E0. Assume

(B1) B
0 = I 0N (U) for some subspace U ✓ V ;

(B2) there exists an operator  : U ! U leading to the inclusion

(2.8) U ✓ d⇤(H( d⇤))� (ker() \ U),

where d⇤ is the adjoint of d : B ! dB with respect to the inner product (·, ·)
and can be continuously extended to the space H( d⇤).

Then

(E?
0 )0 = N ( d⇤( dB)),(2.9)

E
0
0 = I 0N (ker() \ U).(2.10)

Proof. The characterization (2.9) is straightforward as d : E?
0 ! dB is a bijec-

tion. To prove (2.10), it su�ces to show that for any u 2 E0, if (u, p) = 0 for all
p 2 ker() \ U , then u = 0. First of all, as u 2 E0, u ? d⇤(H( d⇤)), i.e.,

(u, d⇤p) = ( du, p) = 0 8 p 2 H( d⇤).

Combined with the assumption (B2), (2.8), we have (u, p) = 0 for all p 2 U and
conclude u = 0 by assumption (B1) B0 = I 0N (U).

As we mentioned before, in (2.10), I 0 could be onto. For example, one can choose
U = V . We want to choose the smallest subspace U to get E0

0 = N (ker()\U). One
guideline is the dimension count. On one hand, we have the following identity:

dimE0 = dimB� dimE
?
0 = dimV � dim(img(trd))� dimE

?
0 .

On the other hand, we have

dim(ker() \ U) = dimU � dim(U).

For specific examples, we only need to figure out the dimension, not exact identifica-
tion of subspaces.

Next we enrich space V to derive another finite element.

Lemma 2.3. Consider linear map d : V ! P between two finite-dimensional

Hilbert spaces sharing the same inner product (·, ·). Let B = ker(tr d) \ V , E0 =
ker( d) \ B, and E

?
0 = B/E0. With a finite-dimensional Hilbert space H, we enrich

the space V to V +H and let B
+ = ker(tr d) \ (V +H). Assume

(H1) V \H = {0} and dV \ dH = {0};
(H2) tr d(H) ✓ tr d(V );

(H3) d : H ! dH is bijective;
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1940 LONG CHEN AND XUEHAI HUANG

(H4) E0 = N (Q), (E?
0 )0 = N ( d⇤P);

(H5)
�
dB+

�0
= I 0N (P� dH),

where P and Q are finite-dimensional Hilbert spaces. Then

(2.11) (B+)0 = N (Q)�N
�
d⇤(P� dH)

�
,

i.e., a function v 2 B
+

is uniquely determined by DoFs

(v, d⇤q) 8 q 2 P,(2.12)

(v, d⇤q) 8 q 2 dH,(2.13)

(v, q) 8 q 2 Q.(2.14)

Proof. As tr d(H) ✓ tr d(V ), dimB
+ � dimB = dimH. On the other hand, since

d⇤ d : H ! d⇤ dH is bijective, the number of DoFs increased is also dimH. Thus
the dimensions in (2.11) are equal. Take a v 2 B

+ and assume all the DoFs (2.12)–
(2.14) vanish. Thanks to the vanishing DoFs (2.12) and (2.13), we get from (H5) that
dv = 0, which together with dV \ dH = {0} implies v 2 V . Finally v = 0 follows
from the vanishing DoFs (2.12) and (2.14).

Assumptions (H1)–(H3) are built into the construction of H. Assumption (H4)
can be verified from the characterization of B0 in Lemma 2.2. Only (H5) requires
some work. One can show the kernel of d in the bubble space remains unchanged
as E0 but its image is enriched. The dual space is enriched from ( dB)0 = N (P) to
( dB+)0 = N (P � dH). Note that the precise characterization of B+ is not easy and
H may not be in B

+.

3. H(div)-conforming finite elements. In this section we shall construct the
well-known H(div)-conforming finite elements: BDM [8, 7, 26] and RT elements [27,
25]. We start with this simple example to illustrate our approach and build some
elementary blocks.

3.1. Div operator. We begin with the following result on the div operator.

Lemma 3.1. Let integer k � 0. The mapping div : xHk(D) ! Hk(D) is bijective.
Consequently div : Pk+1(D;Rd) ! Pk(D) is surjective.

Proof. It is a simple consequence of the Euler’s formulae (2.1) and (2.2).

3.2. Trace space. The trace operator for H(div,K) space

trdiv : H(div,K) ! H
�1/2(@K)

is a continuous extension of trdivv = n · v|@K defined on smooth functions. We then
focus on the restriction of the trace operator to the polynomial space. Denote by
Pk(F1(K)) := {q 2 L

2(@K) : q|F 2 Pk(F ) for each F 2 F1(K)}, which is a Hilbert
space with inner product

P
F2F1(K)(·, ·)F . Obviously trdiv(Pk(K;Rd)) ✓ Pk(F1(K)).

We prove it is indeed surjective.

Lemma 3.2. For integer k � 1, the mapping trdiv : Pk(K;Rd) ! Pk(F1(K)) is

onto. Consequently

dim trdiv(Pk(K;Rd)) = dimPk(F1(K)) = (d+ 1)

✓
k + d� 1

k

◆
.
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Proof. By the linearity of the trace operator, it su�ces to prove that for any
Fi 2 F1(K) and any p 2 Pk(Fi), we can find a v 2 Pk(K;Rd) s.t. v · n|Fi = p and
v · n|Fj = 0 for other Fj 2 F1(K) with j 6= i. Without loss of generality, we can
assume i = 0.

For any p 2 Pk(F0), it can be expanded in Bernstein basis p =
P

↵2Nd,|↵|=k
c↵�

↵,
which can be naturally extended to the whole simplex by the definition of barycentric
coordinates. Again by the linearity, we only need to consider one generic term still
denoted by p = c↵�

↵ for a multi-index ↵ 2 N
d
, |↵| = k. As

P
d

i=1 ↵i = k > 0, there
exists an index 1  i  d s.t. ↵i 6= 0. Then we can write p = �iq with q 2 Pk�1(K).

Now we let v = �iq li/(li,n0). By construction,

v · n0 = �iq = p,

(v · nj)|Fj = �iq|Fj (li,nj)/(li,n0) = 0, j = 1, 2, . . . , d.

That is, we find v 2 Pk(K;Rd) s.t. (trdivv)|F0 = p and (trdivv)|Fj = 0 for j =
1, . . . , d.

With this identification of the trace space, we clearly have N (Pk(F1(K))) =
(trdiv(Pk(K;Rd)))0, and through (trdiv)0, we embed N (Pk(F1(K)) into P

0
k
(K;Rd).

Lemma 3.3. Let integer k � 1. For any v 2 Pk(K;Rd), if the DoFs

(v · n, p)F = 0 8 p 2 Pk(F ), F 2 F1(K),

vanish, then trdivv = 0.

Proof. Due to Lemma 3.2, the dual operator (trdiv)0 : P0
k
(F1(K)) ! P

0
k
(K;Rd)

is injective. Taking N = (p, ·)F 2 P
0
k
(F1(K)) for any F 2 F1(K) and p 2 Pk(F ), we

have
((trdiv)0N)(v) = N(trdivv) = (p, trdivv)F = (p,n · v)F .

By the assumption, we have v ? img((trdiv)0), which indicates v 2 ker(trdiv).

Another basis of (trdiv(Pk(K;Rd)))0 can be obtained by a geometric decomposi-
tion of vector Lagrange elements; see [13] for details.

3.3. Bubble space. After we characterize the range of the trace operator, we
focus on its null space. Define the polynomial bubble space

Bk(div,K) = ker(trdiv) \ Pk(K;Rd).

As {ni, i = 1, 2, . . . , d} is a basis of Rd, it is obvious that for k = 0, B0(div,K) = {0}.
As a direct consequence of dimension count (see Lemma 3.4 below), B1(div,K) is also
the zero space.

Lemma 3.4. Let integer k � 1. It holds that

dimBk(div,K) = d

✓
k + d

k

◆
� (d+ 1)

✓
k + d� 1

k

◆
= (k � 1)

✓
k + d� 1

k

◆
.

Proof. By the characterization of the trace space, we can count the dimension

dimBk(div,K) = dimPk(K;Rd)� dim trdiv(Pk(K;Rd)),

as required.
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Next we find di↵erent bases of B0
k
(div,K). The primary approach is to find a

basis for Bk(div,K), which induces a basis of N (Bk(div,K)). For example, one can
show

Bk(div,K) =
X

0i<jd

�i�jPk�2(K)ti,j for k � 2.

Verification �i�jPk�2(K)ti,j ✓ Bk(div,K) is from the fact

�i�jti,j · n`|F` = 0, ` = 0, 1, . . . , d.

Indeed if ` = i or ` = j, then �i�j |F` = 0. Otherwise ti,j · n` = 0 by (2.4). To
show every function in Bk(div,K) can be written as a linear combination of �i�jti,j
is tedious and will be skipped. Obviously dimBk(div,K) 6= d(d + 1)/2 dimPk�2(K)
as {�i�jPk�2(K)ti,j , 0  i < j  d} is linearly dependent. One can further expand
the polynomials in Pk�2(K) in the Bernstein basis and ti,j in terms of d� and add a
constraint on the multi-index to find a basis from this generating set; see [5]. Another
systematical way to identify Bk(div,K) is through a geometric decomposition of vector
Lagrange elements and a t � n basis decomposition at each subsimplex; see [13] for
details.

Fortunately we are interested in the dual space, which can let us find a basis of
B
0
k
(div,K) without knowing one for Bk(div,K). Following Lemma 2.2, we first find

a larger space containing B
0
k
(div,K).

Lemma 3.5. Let integer k � 1. We have

B
0
k
(div,K) = I 0N (Pk�1(K;Rd)),

where I : Bk(div,K) ! Pk(K;Rd) is the inclusion map.

Proof. It su�ces to show that for any v 2 Bk(div,K) satisfying

(3.1) (v, q)K = 0 8 q 2 Pk�1(K;Rd),

then v = 0.
Expand v in terms of {li} as v =

P
d

i=1 vili. Then v · ni|Fi = 0 implies vi|Fi = 0

for i = 1, . . . , d, i.e., vi = �ipi for some pi 2 Pk�1(K). Choose q =
P

d

i=1 pini 2
Pk�1(K;Rd) in (3.1) to get

R
K
v · (

P
d

i=1 pini) dx =
R
K

P
d

i=1 �ip
2
i
dx = 0, which

implies pi = 0, i.e., vi = 0 for all i = 1, 2, . . . , d. Thus v = 0.

Again the dimension count dimBk(div,K) 6= dimPk�1(K;Rd) implies I 0 is not
injective. We need to further refine our characterization. We use the div operator to
decompose Bk(div,K) into

E0 := Bk(div,K) \ ker(div), E
?
0 := Bk(div,K)/E0.

We can characterize the dual space of E?
0 through div⇤, which is � grad restricted to

the bubble function space and can be continuously extended to H
1(K).

Lemma 3.6. Let integer k � 1. The mapping

div : E?
0 ! Pk�1(K)/R

is a bijection and consequently

dimE
?
0 = dimPk�1(K)� 1 =

✓
k � 1 + d

d

◆
� 1.
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Proof. The inclusion div(Bk(div,K)) ✓ Pk�1(K)/R is proved through integration
by parts

(div v, p)K = �(v, grad p)K = 0 8 p 2 R = ker(grad).

If div(Bk(div,K)) 6= Pk�1(K)/R, then there exists a p 2 Pk�1(K)/R and p ?
div(Bk(div,K)), which is equivalent to rp ? Bk(div,K). Expand the vector rp

in the basis {ni, i = 1, . . . , d} as rp =
P

d

i=1 qini with qi 2 Pk�2(K). Then set

vp =
P

d

i=1 qi�0�ili =
P

d

i=1 |r�i|qi�0�iti,0 2 Bk(div,K). We have

(grad p,vp)K =
dX

i=1

Z

K

q
2
i
�0�i dx = 0,

which implies qi = 0 for all i = 1, 2, . . . , d, i.e., grad p = 0 and p = 0 as p 2 Pk�1(K)/R.
We have proved div(Bk(div,K)) = Pk�1(K)/R, and thus div : E?

0 ! Pk�1(K)/R
is a bijection as E?

0 = Bk(div,K)/ ker(div).

As an example of (2.9), we have the following characterization of (E?
0 )0.

Corollary 3.7. Let integer k � 1. We have

(E?
0 )0 = N (gradPk�1(K)).

That is, a function v 2 E
?
0 is uniquely determined by DoFs

(v, q)K 8 q 2 gradPk�1(K).

After we know the dimensions of Bk(div,K) and E
?
0 , we can calculate the dimen-

sion of E0.

Corollary 3.8. Let integer k � 1. It holds that

(3.2) dimE0 = dimBk(div,K)� dimE
?
0 = d

✓
k + d� 1

d

◆
�
✓
k + d

d

◆
+ 1.

The most di�cult part is to characterize E0. Using the de Rham complex, we
can identify the null space of div : Bk(div,K) ! Pk�1(K)/R as the image of another
polynomial bubble space. For example,

E0 =

(
curl

�
Pk+1(K) \H

1
0 (K)

�
for d = 2,

curl
�
Pk+1(K;R3) \H0(curl,K)

�
for d = 3.

Generalization of the curl operator can be done for the de Rham complex, but it will
be hard for the elasticity complex and the divdiv complex.

Instead, we take the dual approach. To identify the dual space of E0, we resort
to a polynomial decomposition of Pk�1(K;Rd).

Lemma 3.9. Let integer k � 1. We have the polynomial space decomposition

Pk�1(K;Rd) = gradPk(K)� (ker(·x) \ Pk�1(K;Rd)).(3.3)

Proof. Clearly it holds that

gradPk(K)� (ker(·x) \ Pk�1(K;Rd)) ✓ Pk�1(K;Rd).

And the sum is direct as by Euler’s formula (2.1).
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The mapping ·x : Pk�1(K;Rd) ! Pk(K)\R is surjective, thus

dimPk�1(K;Rd) = dim(Pk(K)\R) + dim(ker(·x) \ Pk�1(K;Rd)).

As dim(Pk(K)\R) = dimgradPk(K), we obtain the decomposition (3.3) by dimension
count.

Corollary 3.10. Let integer k � 1. We have

E
0
0 = N (ker(·x) \ Pk�1(K;Rd)).

That is, a function v 2 E0 is uniquely determined by

(v, q)K 8 q 2 ker(·x) \ Pk�1(K;Rd).

Proof. We apply Lemma 2.2 with V = Pk(K;Rd), U = Pk�1(K;Rd), and  = ·x.
Lemmas 3.5 and 3.9 verify the assumptions (B1)–(B2), and we only need to count the
dimension

dim(ker(·x) \ Pk�1(K;Rd)) = dimPk�1(K;Rd)� dimPk(K) + 1

= d

✓
k + d� 1

d

◆
�
✓
k + d

d

◆
+ 1

= dimE0,

where the last step is based on (3.2). The desired result then follows.

An explicit characterization of ker(·x) \ Pk�1(K;Rd) is shown in [25, Proposi-
tion 1], that is, v 2 ker(·x) \ Hk�1(K;Rd) is equivalent to v 2 Hk�1(K;Rd) such
that the symmetric part of rk�1

v vanishes. We shall give another characterization
of ker(·x) \ Pk�1(K;Rd).

Lemma 3.11. Let integer k � 1. It holds that

(3.4) ker(·x) \ Pk�1(K;Rd) = Pk�2(K;K)x,

where recall K is the subspace of skew-symmetric matrices of R
d⇥d

, and

(3.5) Pk�1(K;Rd) = gradPk(K)� Pk�2(K;K)x.

Proof. Clearly we have Pk�2(K;K)x ✓ ker(·x)\Pk�1(K;Rd). By (3.3), it su�ces
to prove (3.5). Take q 2 Pk�1(K;Rd). Without loss of generality, by linearity, it is
su�cient to assume q = x

↵
e` with |↵| = k � 1 and 1  `  d. Let

p =
1

k
x · q =

1

k
x
↵+e` 2 Pk(K), ⌧ =

1

k

dX

i=1

↵ix
↵�ei(e`e

|
i
� eie

|
`
) 2 Pk�2(K;K).

Then

grad p+ ⌧x =
1

k

dX

i=1

(↵i + �i`)x
↵+e`�eiei +

1

k

dX

i=1

↵ix
↵�ei(e`xi � eix`)

=
1

k

dX

i=1

(↵i + �i`)x
↵+e`�eiei +

1

k

dX

i=1

↵ix
↵
e` �

1

k

dX

i=1

↵ix
↵+e`�eiei

=
1

k
x
↵
e` +

|↵|
k
x
↵
e` = x

↵
e`.
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Therefore it follows q = grad p+ ⌧x, i.e.,

Pk�1(K;Rd) ✓ gradPk(K)� Pk�2(K;K)x.

This combined with the fact gradPk(K)� Pk�2(K;K)x ✓ Pk�1(K;Rd) gives (3.5).

The decomposition (3.3) and characterization (3.4) can be summarized as the
following double-directional complex:

R
⇢ //

Pk(K)
r //

⇡0

oo Pk�1(K;Rd)
skwr //

v·x
oo Pk�2(K;K),

⌧x
oo

where the skew-symmetric operator skw : Rd⇥d ! K is defined by skw ⌧ := 1
2 (⌧�⌧

|).
Define, for an integer k � 0,

NDk(K) := Pk(K;Rd)�Hk(K;K)x,

which is the shape function space of the first kind of Nedéléc edge element in arbitrary
dimension [25, 4].

Corollary 3.12. Let integer k � 2. We have

(3.6) B
0
k
(div,K) = N (gradPk�1(K)� Pk�2(K;K)x) = N (NDk�2(K)).

Proof. The first identity is a direct consequence of Corollaries 3.7 and 3.10 and
Lemma 3.11. We then write Pk�2(K;K) = Pk�3(K;K) � Hk�2(K;K) and use the
decomposition (3.3) to conclude the second identity.

Remark 3.13. The space NDk�2(K) can be abbreviated as P
�
k�1⇤

1 in the ter-
minology of FEEC [4, 2]. The characterization of B0

k
(div,K) (3.6) can be written

as

(
�
Pk ⇤n�1(K))⇤ = P

�
k�1⇤

1(K),

which is well documented for the de Rham complex [5] but not easy for general
complexes. Therefore we still stick to the vector/matrix calculus notation.

We acquire the uni-solvence of BDM element from Lemma 3.3 and Corollary 3.12.

Theorem 3.14 (BDM element). Let integer k � 1. Choose the shape function

space V = Pk(K;Rd). We have the following set of DoFs for V :

(v · n, q)F 8 q 2 Pk(F ), F 2 F1(K),(3.7)

(v, q)K 8 q 2 NDk�2(K) = gradPk�1(K)� Pk�2(K;K)x.

Define the global BDM element space

V h := {v 2 L
2(⌦;Rd) :v|K 2 Pk(K;Rd) for each K 2 Th,

the DoF (3.7) is single-valued}.

Since v · n|F 2 Pk(F ), the single-valued DoF (3.7) implies v · n is continuous across
the boundary of elements, hence V h ⇢ H(div,⌦).
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1946 LONG CHEN AND XUEHAI HUANG

3.4. Raviart–Thomas element. In this subsection, we assume integer k � 0.
The space of shape functions for the RT element is enriched to

V
RT := Pk(K;Rd)�Hk(K)x.

The DoFs are

(v · n, q)F 8 q 2 Pk(F ), F 2 F1(K),(3.8)

(v, q)K 8 q 2 Pk�1(K,R
d) = gradPk(K)� Pk�2(K;K)x.(3.9)

Note that the DoFs to determine the trace remain the same and only the interior
moments are increased from NDk�2(K) to Pk�1(K;Rd). The range space is also
increased, i.e., div V RT = Pk(K), and therefore the approximation of divu will be
one order higher.

We follow our construction procedure to identify the dual spaces of each block.

Lemma 3.15. Let integer k � 0. It holds that

(3.10) trdiv(V RT) = Pk(F1(K)).

Proof. When k � 1, by Lemma 3.2 and the fact that n · x|Fi is a constant, it
follows that

trdiv(V RT) = trdiv(Pk(K;Rd)) = Pk(F1(K)).

Consider the case k = 0. It is clear that trdiv(V RT) ✓ P0(F1(K)). To prove
the other side, by the linearity, assume q 2 P0(F1(K)) such that q|F0 = c 2 R and
q|Fi = 0 for i = 1, . . . , d. Set v = c

(x1�x0)·n0
(x� x0) 2 V

RT, then trdivv = q.

Define the bubble space

B
�
k+1(div,K) := ker(trdiv) \ V

RT
.

By (3.10), dimB
�
k+1(div,K) = dimV

RT � dim trdiv(V RT) = d
�
k+d�1

d

�
for k � 1 and

dimB
�
1 (div,K) = 0. We show the intersection of the null space of div operator and

B
�
k+1(div,K) remains unchanged.

Lemma 3.16. Let integer k � 0. It holds that

(3.11) B
�
k+1(div,K) \ ker(div) = E0,

where E0 := {0} for k = 0.

Proof. For v 2 V
RT, if div v = 0, then v 2 Pk(K;Rd) as div : Hk(K)x ! Hk(K)

is bijective. Then the desired result follows.

Define E
?,�
0 := B

�
k+1(div,K)/E0. We give a characterization of (E?,�

0 )0.

Lemma 3.17. Let integer k � 0. It holds that

(3.12) (E?,�
0 )0 = N (gradPk(K)).

Proof. We first prove, given a v 2 E
?,�
0 , i.e., trdiv v = 0 and v ? E0, if

(3.13) (v, grad p) = 0 8 p 2 Pk(K),

then v = 0. Indeed integration by parts of (3.13) and the fact div v 2 Pk(K) imply
div v = 0, i.e., v 2 E0. Then the only possibility to have v ? E0 is v = 0.
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Then the dimension count gives

dimE
?,�
0 = dimB

�
k+1(div,K)� dimE0 =

✓
k + d

d

◆
� 1 = dimgradPk(K),

which indicates (3.12).

Hence we acquire the uni-solvence of RT element from (3.10), (3.11), (3.12), and
Corollary 3.10. The global version of finite element space can be defined similarly.

Theorem 3.18 (uni-solvence of RT element). Let integer k � 0. The DoFs

(3.8)–(3.9) are uni-solvent for V
RT

.

When k � 1, the RT element can be enriched from the BDM element by applying
Lemma 2.3 with d = div, V = Pk(K;Rd), H = Hk(K)x, P = Pk�1(K)/R, and
Q = Pk�2(K;K)x.

4. Symmetric H(div)-conforming finite elements. In this section we shall
construct H(div)-conforming finite elements for symmetric matrices. For space V =
Pk(K, S), our element is slightly di↵erent from Hu’s element constructed in [21]. A
new family of P�

k+1(K, S) type finite elements is also constructed. The trace space for
symmetric H(div)-conforming element seems hard to characterize; instead we identify
the bubble function space and then only need to work on the dual of the trace space.

4.1. Div operator.

Lemma 4.1. Let k � 0. The operator div : sym(Hk(D;Rd)x|) ! Hk(D;Rd) is

bijective and consequently div : Pk+1(D; S) ! Pk(D;Rd) is surjective.

Proof. Noting that

div(sym(Hk(D;Rd)x|)) ✓ Hk(K;Rd),

dim(sym(Hk(D;Rd)x|)) = dimHk(K;Rd),

it is su�cient to prove sym(Hk(D;Rd)x|) \ ker(div) = {0}. That is, for any q 2
Hk(D;Rd) satisfying div sym(qx|) = 0, we are going to prove q = 0.

By (2.2), we have

2 div sym(qx|) = div(qx|) + div(xq|) = (k + d)q + (gradx)q + (div q)x

= (k + d+ 1)q + (div q)x.

It follows from div sym(qx|) = 0 that

(4.1) (k + d+ 1)q + (div q)x = 0.

Applying the divergence operator div on both side of (4.1), we get from (2.2) that

2(k + d) div q = 0.

Hence div q = 0, which together with (4.1) gives q = 0.

4.2. Bubble space. Define an H(div,K; S) bubble function space of polynomi-
als of degree k as

Bk(div,K; S) := {⌧ 2 Pk(K; S) : ⌧n|@K = 0} .

It is easy to check that B1(div,K; S) is merely the zero space. The following charac-
terization of Bk(div,K; S) is given in [21, Lemma 2.2].
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1948 LONG CHEN AND XUEHAI HUANG

Lemma 4.2. For k � 2, it holds that

(4.2) Bk(div,K; S) =
X

0i<jd

�i�jPk�2(K)T i,j .

Consequently

dimBk(div,K; S) = dimPk�2(K; S) =
d(d+ 1)

2

✓
d+ k � 2

d

◆
.

Lemma 4.3. For k � 2, it holds that

B
0
k
(div,K; S) = N (Pk�2(K; S)).

That is ⌧ 2 Bk(div,K; S) is uniquely determined by

(⌧ , &)K 8 & 2 Pk�2(K; S).

Proof. Given ⌧ 2 Bk(div,K; S), by (4.2), there exist qij 2 Pk�2(K) with 0  i <

j  d such that

⌧ =
X

0i<jd

�i�jqijT i,j .

Note that symmetric tensors {N i,j}0i<jd are dual to {T i,j}0i<jd with respect
to the Frobenius inner product (cf. [9, section 3.1] and also section 2.5). Choosing
& =

P
0i<jd

qijN i,j 2 Pk�2(K; S), we get

(⌧ , &)K =
X

0i<jd

(�i�j , q
2
ij
)K = 0.

Hence qij = 0 for all i, j, and then ⌧ = 0. As the dimensions match, we conclude the
result.

Another characterization of Bk(div,K; S) and B
0
k
(div,K; S) is given in [13].

4.3. Trace spaces. The mapping trdiv : Pk(K; S) ! Pk(F1(K;Rd�1)) is not
onto due to the symmetry. Some compatible conditions should be imposed on lower-
dimensional simplexes. Fortunately, we only need its dimension.

Lemma 4.4. Let integer k � 1. It holds that

dim trdiv(Pk(K; S)) = dimPk(K; S)� dimBk(div,K; S)

= dimHk(K; S) + dimHk�1(K; S)

=
1

2
d(d+ 1)

✓
d+ k � 1

d� 1

◆
+

✓
d+ k � 2

d� 1

◆�
.

We show the supersmoothness induced by the symmetry for theH(div; S) element.
For a (d � r)-dimensional face e 2 Fr(K) with r = 2, . . . , d shared by two (d � 1)-
dimensional faces F, F 0 2 F1(K), by the symmetry of ⌧ , (n|

F
⌧nF 0)|e is concurrently

determined by (⌧nF )|F and (⌧nF 0)|F 0 . This implies the DoFs n
|
i
⌧nj on e for all

i, j = 1, . . . , r. In particular, for a 0-dimensional vertex �, (⌧ ij(�))d⇥d is taken as a
DoF.

The trace ⌧n restricted to a face F 2 F1(K) can be further split into two com-
ponents: (1) the normal-normal component n|

⌧n will be determined by n
|
i
⌧nj ; (2)

the tangential-normal component ⇧F ⌧n will be determined by the interior moments
relative to F after the trace trdivF (⇧F ⌧n) = n

|
F,e

⌧n has been determined.
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Lemma 4.5. A basis of

(trdiv(Pk(K; S)))0

is given by the DoFs

⌧ (�) 8 � 2 V(K),(4.3)

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),(4.4)

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K).(4.5)

Proof. We first prove that if all the DoFs (4.3)–(4.5) vanish, then ⌧ = 0. As
n

|
i
⌧nj |f 2 Pk(f), by the vanishing DoFs (4.3)–(4.4) and the uni-solvence of the

Lagrange element, we get

n
|
i
⌧nj |f = 0 8 f 2 Fr(K), i, j = 1, . . . , d� r, and r = 1, . . . , d� 1.

This implies

(4.6) n
|
⌧n|F = 0, n|

F,e
⌧n|e = 0 8 F 2 F1(K), e 2 F1(F ).

Notice that ⇧F ⌧n|F 2 Pk(F ;Rd�1). Due to the uni-solvence of the BDM element on
F (cf. Theorem 3.14), we acquire from the second identity in (4.6) and the vanishing
DoFs (4.5) that ⇧F ⌧n|F = 0, which together with the first identity in (4.6) yields
⌧n|F = 0.

We then count the dimension to finish the proof. By comparing DoFs of the Hu
element (cf. Remark 4.6) and DoFs (4.3)–(4.5), it follows from the DoFs of the first
kind of Nédélec element (cf. [25, 4]) that the number of DoFs (4.3)–(4.5) is equal to
the number of DoFs of the Hu element, thus equal to dim trdiv(Pk(K; S)).

Remark 4.6. As a comparison, the DoFs of the Hu element on the boundary
in [21] are

⌧ (�) 8 � 2 V(K),

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(t|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),

i = 1, . . . , d� r, j = 1, . . . , r, and r = 1, . . . , d� 1.

The di↵erence is the way to impose the tangential-normal component.

4.4. Split of the bubble space. To construct H(div,K; S) elements, the
interior DoFs given by N (Pk�2(K; S)) are enough. For the construction of the
H(div div,K; S) element, we use div operator to decompose Bk(div,K; S) into

E0,k(S) := Bk(div,K; S) \ ker(div), E
?
0,k(S) := Bk(div,K; S)/E0,k(S).

We will abbreviate E0,k(S) and E
?
0,k(S) as E0(S) and E

?
0 (S), respectively, if this will

not cause any confusion. As before we can characterize the dual space of E?
0,k(S)

through div⇤, which is � def := � symgrad restricted to the bubble space and can be
extended to H

1(K;Rd).
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Lemma 4.7. Let integer k � 2. The mapping

div : E?
0,k(S) ! P

?
k�1,RM := Pk�1(K,R

d)/ ker(def)

is a bijection and consequently

(E?
0,k(S))

0 = N (def Pk�1(K,R
d)),

dimE
?
0,k(S) = d

✓
k + d� 1

k � 1

◆
� 1

2
(d2 + d).

Proof. The fact divBk(div,K; S) = P
?
k�1,RM was proved in [21, Theorem 2.2].

Here we recall it for completeness.
The inclusion div(Bk(div,K; S)) ✓ P

?
k�1,RM can be proved through integration

by parts,
(div ⌧ ,v)K = �(⌧ , def v)K = 0 8 v 2 ker(def).

If div(Bk(div,K; S)) 6= P
?
k�1,RM, then there exists a function v 2 P

?
k�1,RM satisfying

v ? div(Bk(div,K; S)), which is equivalent to def v ? Bk(div,K; S). Expand the sym-
metric matrix def v in the basis {N i,j , 0  i < j  d} as def v =

P
0i<jd

qijN i,j

with qij 2 Pk�2(K). Then set ⌧ v =
P

0i<jd
qij�i�jT i,j 2 Bk(div,K; S). We have

(def v, ⌧ v)K =
X

0i<jd

Z

K

q
2
ij
�i�j dx = 0,

which implies qij = 0 for all 0  i < j  d, i.e., def v = 0 and v = 0 as v 2 P
?
k�1,RM.

Since divE?
0,k(S) = divBk(div,K; S), the mapping div : E

?
0,k(S) ! P

?
k�1,RM is a

bijection.
For v 2 E

?
0,k(S), (v, def q)K = 0 for all q 2 Pk�1(K,R

d) implies div v =

0, i.e., v 2 E0,k(S). Then v 2 E0,k(S) \ E
?
0,k(S) = {0}. Hence (E?

0,k(S))
0 =

I 0N (def Pk�1(K,R
d)). As the dimensions match, I 0 is a bijection.

We then move to the space E0,k(S). Using the primary approach, we need the
bubble space in the previous space and the di↵erential operator. For example, we
have E0,k(S) = curl curl(Pk+2(K) \ H

2
0 (K)) in two dimensions [6], and in three di-

mensions [3, 14]
E0,k(S) = incBk+2(inc,K; S)

with

Bk+2(inc,K; S) := {⌧ 2 Pk+2(K; S) : n⇥ ⌧ ⇥ n = 0,

2 defF (n · ⌧⇧F )�⇧F@n⌧⇧F = 0 8 F 2 F1(K)}.

Such characterization is hard to generalize to arbitrary dimension.
Instead we use the dual approach to identify E

0
0,k(S). To this end, denote the

space of rigid motions by RM := ND0(K) = {c + Nx : c 2 R
d
, N 2 K}. Define

operator ⇡RM : C1(D;Rd) ! RM as

⇡RMv := v(0) + (skw(rv))(0)x.

Clearly it holds that ⇡RMv = v for all v 2 RM . We denote by ·x : Pk(D; S) !
Pk+1(D;Rd) the mapping ⌧ ! ⌧x as the matrix-vector product ⌧x is applying row-
wise inner product with vector x.
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We shall establish the short exact sequence

RM
⇢ //

Pk+1(D;Rd)
def //

⇡RM

oo def Pk+1(D;Rd)
·x
oo //

0oo

and derive a space decomposition from it.

Lemma 4.8. Let integer k � 0. If q 2 Pk+1(D;Rd) satisfying (def q)x = 0, then

q 2 RM .

Proof. Since x
|(x ·r)q = x

|(rq)x = x
|(def q)x = 0, we get

(x ·r)(x|
q) = x

|(x ·r)q + x
|
q = x

|
q.

By (2.1), this indicates x|
q 2 P1(D). Noting that (rq)x = r(x|

q)� q, we obtain

(x ·r)q + (r(x|
q)� q) = (rq)|x+ (rq)x = 2(def q)x = 0,

which implies (x ·r)q � q = �r(x|
q) 2 P0(D;Rd). Hence q 2 P1(D;Rd). Assume

q = Nx+C with N 2 M and C 2 R
d. Then

x
|(symN)x+ x

|
C = x

|
Nx+ x

|
C = x

|
q 2 P1(D),

which implies symN = 0. Therefore N 2 K and q 2 RM .

Lemma 4.9. Let integer k � 0. We have

(4.7)
�
def Pk+1(D;Rd)

�
x = Pk(D; S)x = Pk+1(D;Rd) \ ker(⇡RM ).

Proof. For any ⌧ 2 Pk(D; S), it follows that

⇡RM (⌧x) = (skw(r(⌧x)))(0)x = skw(⌧ (0))x = 0.

Thus Pk(D; S)x ✓ Pk+1(D;Rd) \ ker(⇡RM ). On the other hand, we obtain from
Lemma 4.8 that

dim
��
def Pk+1(D;Rd)

�
x
�
= dimPk+1(D;Rd)� dimRM ,

which equals the dimension of Pk+1(D;Rd) \ ker(⇡RM ). Thus (4.7) follows.

Corollary 4.10. Let integer k � 0. We have the space decomposition

(4.8) Pk(D; S) = def Pk+1(D;Rd)� (ker(·x) \ Pk(D; S)).

Proof. It follows from Lemma 4.8 that def Pk+1(D;Rd) \ (ker(·x) \ Pk(D; S)) =
{0}. Due to (4.7),

dimdef Pk+1(D;Rd) + dim(ker(·x) \ Pk(D; S))

= dimdef Pk+1(D;Rd) + dimPk(D; S)� dim(Pk(D; S)x)

= dimPk+1(D;Rd)� dimRM + dimPk(D; S)� dim(Pk(D; S)x)

= dimPk(D; S),

which means (4.8).
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1952 LONG CHEN AND XUEHAI HUANG

Lemma 4.11. Let integer k � 2. We have

(4.9) E
0
0,k(S) = N (ker(·x) \ Pk�2(K; S)).

That is, a function ⌧ 2 E0,k(S) is uniquely determined by

(⌧ , q)K 8 q 2 ker(·x) \ Pk�2(K; S).

And

dimE0,k(S) =
d(d+ 1)

2

✓
k � 2 + d

d

◆
� d

✓
d+ k � 1

d

◆
+

d(d+ 1)

2
.

Proof. We apply Lemma 2.2 with V = Pk(K; S), U = Pk�2(K; S), and  = ·x.
Lemma 4.3 and (4.7)–(4.8) verify the assumptions (B1)–(B2), and we only need to
count the dimension.

By the space decomposition (4.8), Lemma 4.3, and Lemma 4.7,

dim(ker(·x) \ Pk�2(K; S)) = dimPk�2(K; S)� dimdef Pk�1(K;Rd)

= dimBk(div,K; S)� dimE
?
0,k(S) = dimE0,k(S),

as required.

Remark 4.12. In two and three dimensions, we have (cf. [11, 14])

ker(·x) \ Pk(D; S) =

(
x
?(x?)|Pk�2(D) for d = 2,

x⇥ Pk�2(D; S)⇥ x for d = 3,

where x
? := ( x2

�x1
), but generalization to arbitrary dimension is not easy and not

necessary. A computation approach to find an explicit basis of ker(·x)\Pk�1(K; S) is
as follows. Find a basis for Pk�1(K; S) and one for Pk(K;Rd). Then form the matrix
representation X of the operator ·x. Afterward the null space ker(X) can be found
algebraically.

4.5. H(div; S)-conforming elements. Combining Lemmas 4.5, 4.7, and 4.11
and space decomposition (4.8) yields the DoFs of H(div; S)-conforming elements.

Theorem 4.13 (Pk(K; S)-type H(div; S)-conforming elements). Take the shape

function space V (S) = Pk(K; S) with k � d+ 1. The DoFs

⌧ (�) 8 � 2 V(K),(4.10)

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),(4.11)

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K),(4.12)

(⌧ , q)K 8 q 2 Pk�2(K; S)(4.13)

are uni-solvent for Pk(K; S). The last DoF (4.13) can be replaced by

(div ⌧ , q)K 8 q 2 Pk�1(K;Rd)/RM ,(4.14)

(⌧ , q)K 8 q 2 ker(·x) \ Pk�2(K; S).(4.15)

The global finite element space V h(div; S) ⇢ H(div,⌦; S), where

V h(div; S) := {⌧ 2 L
2(⌦; S) : ⌧ |K 2 Pk(K; S) for each K 2 Th,

the DoFs (4.10)–(4.12) are single-valued}.

Clearly V h(div; S) ⇢ H(div,⌦; S) follows from the proof of Lemma 4.5.
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For the most important three dimensional case, the DoFs (4.10)–(4.13) become

⌧ (�) 8 � 2 V(K),

(n|
i
⌧nj , q)e 8 q 2 Pk�2(e), e 2 F2(K), i, j = 1, 2,

(n|
⌧n, q)F 8 q 2 Pk�3(F ), F 2 F1(K),

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K),

(⌧ , q)K 8 q 2 Pk�2(K; S),

which are slightly di↵erent from the Hu–Zhang element in three dimensions [23].
Uni-solvence holds for k � 1. The requirement k � d + 1 contains the DoFs

(⌧n, q)F for all q 2 P1(F ;Rd�1) on each face F 2 F1(K), by which the divergence of
the global H(div; S)-conforming element space will include the piecewise RM space
and combining with divBk(div,K; S) = P

?
k�1,RM will imply the following discrete

inf-sup condition.

Lemma 4.14. Let k � d+ 1. The inf-sup condition

kp
h
k0 . sup

⌧h2V h(div;S)

(div ⌧h,ph
)

k⌧hkH(div)
8 p

h
2 Pk�1(Th;Rd)

holds, where Pk�1(Th;Rd) := {p
h
2 L

2(⌦;Rd) : p
h
|K 2 Pk�1(K;Rd) for each K 2

Th}.
Proof. For p

h
2 Pk�1(Th;Rd), there exists ⌧ 2 H

1(⌦; S) such that [19]

div ⌧ = p
h
, k⌧k1 . kp

h
k0.

Let ⌧h 2 V h(div; S) such that all the DoFs (4.10)–(4.12) and (4.14)–(4.15) vanish
except

(n|
⌧hn, q)F = (n|

⌧n, q)F 8 q 2 P1(F ), F 2 F1(K),

(⇧F ⌧hn, q)F = (⇧F ⌧n, q)F 8 q 2 P1(F ;Rd�1), F 2 F1(K),

(div ⌧h, q)K = (div ⌧ , q)K = (p
h
, q)K 8 q 2 Pk�1(K;Rd)/RM

for all K 2 Th. By the scaling argument, we have

(4.16) k⌧hk0 . k⌧k1 . kp
h
k0.

Applying the integration by parts,

(div ⌧h, q)K = (div ⌧ , q)K = (p
h
, q)K 8 q 2 RM .

Hence
(div ⌧h, q)K = (div ⌧ , q)K = (p

h
, q)K 8 q 2 Pk�1(K;Rd),

which implies div ⌧h = p
h
. Therefore we derive the inf-sup condition from (4.16).

4.6. P
�
k+1(K; S)-type elements. Let k � d+ 1. The space of shape functions

is taken as
P
�
k+1(K; S) := Pk(K; S) + E

?
0,k+1(S).

Since E
?
0,k+1(S) ✓ Bk+1(div,K; S) and divE?

0,k+1(S) = P
?
k,RM, we have

trdivP�
k+1(K; S) = trdiv(Pk(K; S)), divP�

k+1(K; S) = Pk(K;Rd).
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1954 LONG CHEN AND XUEHAI HUANG

By applying Lemma 2.3 with d = div, V = Pk(K; S), H = E
?
0,k+1(S)\E?

0,k(S), P =

Pk�1(K,R
d), and Q = ker(·x) \ Pk�2(K; S), we get the uni-solvent DoFs

⌧ (�) 8 � 2 V(K),(4.17)

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),(4.18)

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K),(4.19)

(⌧ , q)K 8 q 2 ker(·x) \ Pk�2(K; S),

(div ⌧ , q)K 8 q 2 Pk(K;Rd)/RM .

Since divP�
k+1(K; S) = Pk(K;Rd) and divPk(K; S) = Pk�1(K;Rd), it is expected

that using P
�
k+1(K; S) to discretize the mixed elasticity problem will possess one-

order higher convergence rate of the divergence of the discrete stress than that of
Pk(K; S) symmetric element.

Remark 4.15. By the DoFs (4.10)–(4.13), we can find a basis {�i}N1
i=1 of the bubble

function space Bk(div,K; S). Let { i}N2
i=1 be a basis of Pk�1(K;Rd)\RM . Then form

the matrix
�
(div �i, j)K

�
N1⇥N2

, whose kernel space combined with {�i}N1
i=1 yields

the basis of E0,k(S). Finally, a basis of E?
0,k(S) is achieved by finding the orthogonal

complement of the basis of E0,k(S) under the inner product (·, ·)K .

The global finite element space V
�
h
(div; S) ⇢ H(div,⌦; S), where

V
�
h
(div; S) := {⌧ 2 L

2(⌦; S) : ⌧ |K 2 P
�
k+1(K; S) for each K 2 Th,

the DoFs (4.17)–(4.19) are single-valued}.

Similarly as Lemma 4.14, we have the following inf-sup condition.

Lemma 4.16. Let k � d+ 1. The inf-sup condition

kp
h
k0 . sup

⌧h2V �
h (div;S)

(div ⌧h,ph
)

k⌧hkH(div)
8 p

h
2 Pk(Th;Rd)

holds.
As with the RT element, it is natural to enrich Pk(K; S) to Pk(K; S)�sym(Hk(K;

R
d)x|). Unfortunately, trdiv(sym(Hk(K;Rd)x|)) 6✓ trdiv(Pk(K; S)), i.e., assumption

(H2) in Lemma 2.3 does not hold, which ruins the discrete inf-sup condition.

5. Symmetric H(div div)-conforming finite elements. We use the previ-
ous building blocks to construct H(div div)-conforming finite elements in arbitrary
dimension. Motivated by the recent construction [22] in two and three dimensions,
we first construct H(div div) \H(div)-conforming finite elements for symmetric ten-
sors and then apply a simple modification to construct H(div div)-conforming finite
elements. We then extend the construction to obtain a new family of P�

k+1(S)-type
elements.

5.1. Divdiv operator and Green’s identity.

Lemma 5.1. For integer k � 1, the operator

div div : xx|
Hk�1(D) ! Hk�1(D)

is bijective. Consequently div div : Pk+1(D; S) ! Pk�1(D) is surjective.
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trdiv(Pk(K, S))

E0(S)
F0(S)

Ftr(S)

div�!
def �
div�! trdiv(P?

k�1,RM)

RM

Bk�1(div,K)

\ RM
?

⇠=

RM

NDk�3(K)/RM

Fig. 5.1. Decomposition of Pk(K, S) for an H(div div) \H(div)-conforming finite element.

Proof. By (2.2), it follows that

div div(xx|
q) = div((k + d)xq) = (k + d)(k + d� 1)q 8 q 2 Hk�1(D),

which ends the proof.

Next recall the Green’s identity for operator divdiv in [12].

Lemma 5.2. We have for any ⌧ 2 C2(K; S) and v 2 H
2(K) that

(div div ⌧ , v)K = (⌧ ,r2
v)K �

X

F2F1(K)

X

e2F1(F )

(n|
F,e

⌧n, v)e

�
X

F2F1(K)

[(n|
⌧n, @nv)F � (n| div ⌧ + divF (⌧n), v)F ] .(5.1)

Proof. We start from the standard integration by parts

(div div ⌧ , v)K = �(div ⌧ ,rv)K +
X

F2F1(K)

(n| div ⌧ , v)F

=
�
⌧ ,r2

v
�
K
�

X

F2F1(K)

(⌧n,rv)F +
X

F2F1(K)

(n| div ⌧ , v)F .

We then decompose rv = @nvn+rF v and apply the Stokes theorem to get

(⌧n,rv)F = (⌧n, @nvn+rF v)F

= (n|
⌧n, @nv)F � (divF (⌧n), v)F +

X

e2F1(F )

(n|
F,e

⌧n, v)e.

Thus the Green’s identity (5.1) follows from the last two identities.

5.2. H(div div; S)\H(div; S)-conforming elements. Based on (5.1), it suf-
fices to enforce the continuity of both ⌧n and n

| div ⌧ so that the constructed fi-
nite element space is H(div, S) \ H(div div, S)-conforming. Such an approach has
been recently proposed in [22] to construct two- and three-dimensional H(div, S) \
H(div div, S)-conforming finite elements. The readers are referred to Figure 5.1 for
an illustration of the space decomposition.

The subspaces trdiv(Pk(K, S)) and E0(S) are unchanged. The space divE?
0 (S) =

P
?
k�1,RM will be further split by the trace operator. Define

F0(S) ✓ E
?
0 (S), satisfying divF0(S) = Bk�1(div,K) \RM

?
,
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1956 LONG CHEN AND XUEHAI HUANG

and Ftr(S) ✓ E
?
0 (S) with trdiv(divFtr(S)) = trdiv(divE?

0 ) = trdiv(P?
k�1,RM), which is

well defined as div restricted to E
?
0 (S) is a bijection. Here

Bk�1(div,K) \RM
? := {v 2 Bk�1(div,K) : (v, q)K = 0 8 q 2 RM}.

Lemma 5.3. For integer k � 3, it holds that

trdiv(divFtr(S)) = trdiv(Pk�1(K;Rd)).

Consequently (trdiv(divFtr(S)))0 = N (Pk�1(F1(K))).

Proof. By definition, trdiv(divFtr(S)) = trdiv(P?
k�1,RM) ✓ trdiv(Pk�1(K;Rd)).

On the other hand, given a trace p 2 trdiv(Pk�1(K;Rd)), by the uni-solvence of the
BDM element (cf. Theorem 3.14), we can find a v 2 Pk�1(K;Rd) such that v ·n = p

on @K and v ? RM as RM = ND0(K) ✓ NDk�3(K) when k � 3.

Lemma 5.4. For integer k � 3, we have

F
0
0(S) = N (def(NDk�3(K))).

Proof. We pick a ⌧ 2 F0(S), i.e., ⌧ satisfies

(⌧n)|@K = 0, n
| div ⌧ |@K = 0, ⌧ ? E0(S).

Assume
(⌧ , def q)K = 0 8 q 2 NDk�3(K).

Note that v = div ⌧ 2 Bk�1(div,K), and (v, q)K = 0 for all q 2 NDk�3(K); then
v = 0 by Theorem 3.14. Therefore div ⌧ = 0, i.e., ⌧ 2 E0(S). As ⌧ ? E0(S), the only
possibility is ⌧ = 0.

Then the dimension count

dimF0(S) = dimBk�1(div,K)� dimRM = dimNDk�3(K)� dimker(def)

will finish the proof.

We summarize the construction in the following theorem.

Theorem 5.5. Let V (div div+; S) := Pk(K, S) with k � max{d, 3}. Then the fol-

lowing set of DoFs determines an H(div div; S)\H(div; S)-conforming finite element

⌧ (�) 8 � 2 V(K),(5.2)

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),(5.3)

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K),(5.4)

(n| div ⌧ , q)F 8 q 2 Pk�1(F ), F 2 F1(K),(5.5)

(div div ⌧ , q)K 8 q 2 Pk�2(K)/P1(K),(5.6)

(div ⌧ , q)K 8 q 2
�
Pk�3(K;K)/P0(K;K)

�
x,(5.7)

(⌧ , q)K 8 q 2 ker(·x) \ Pk�2(K; S).(5.8)

Proof. By Lemma 4.5, the vanishing DoFs (5.2)–(5.4) imply ⌧n|@K = 0. Then
applying Lemmas 5.3–5.4, we get from the vanishing DoFs (5.5)–(5.7) that ⌧ 2 E0(S).
Finally combining (4.9) and (5.8) implies ⌧ = 0.
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We then count the dimensions. Compared to the DoFs of the BDM-typeH(div, S)
element (cf. Theorem 4.13), the di↵erence is (4.14) versus (5.5)–(5.7). Then from the
uni-solvence of the BDM H(div)-conforming element (cf. Theorem 3.14), we have

dimPk�1(K;Rd) = dimNDk�3(K) +
X

F2F1(K)

dimPk�1(F ),

and consequently the number of DoFs (5.2)–(5.8) is dimPk(K; S).

The global finite element space V h(div div
+; S) ⇢ H(div div,⌦; S) \H(div,⌦; S)

is defined as follows:

V h(div div
+; S) := {⌧ 2 L

2(⌦; S) : ⌧ |K 2 Pk(K, S) for each K 2 Th,
the DoFs (5.2)–(5.5) are single-valued}.

The requirement k � d ensures the DoFs (n|
⌧n, q)F for all q 2 P0(F ) on each

face F 2 F1(K), by which space div divV h(div div
+; S) will include all the piecewise

linear functions.

Lemma 5.6. Let k � max{d, 3}. The inf-sup condition

kphk0 . sup
⌧h2V h(div div+;S)

(div div ⌧h, ph)

k⌧hkH(div) + k div div ⌧hk0
8 ph 2 Pk�2(Th)

holds, where Pk�2(Th) := {ph 2 L
2(⌦) : ph|K 2 Pk�2(K) for each K 2 Th}.

Proof. For ph 2 Pk�2(Th), there exists ⌧ 2 H
2(⌦; S) such that [19]

div ⌧ = ph, k⌧k2 . kphk0.

Let ⌧h 2 V h(div div
+; S) such that all the DoFs (5.2)–(5.8) vanish except

(n|
⌧hn, q)F = (n|

⌧n, q)F 8 q 2 P0(F ), F 2 F1(K),

(⇧F ⌧hn, q)F = (⇧F ⌧n, q)F 8 q 2 P0(F ;Rd�1), F 2 F1(K),

(n| div ⌧h, q)F = (n| div ⌧ , q)F 8 q 2 P1(F ;Rd), F 2 F1(K),

(div div ⌧h, q)K = (div div ⌧ , q)K = (ph, q)K 8 q 2 Pk�2(K)/P1(K)

for all K 2 Th. By the scaling argument, we have

(5.9) k⌧hkH(div) . k⌧k2 . kphk0.

Applying the integration by parts,

(div div ⌧h, q)K = (div div ⌧ , q)K = (ph, q)K 8 q 2 P1(K).

Hence

(div div ⌧h, q)K = (div div ⌧ , q)K = (ph, q)K 8 q 2 Pk�2(K),

which implies div div ⌧h = ph. Therefore we derive the inf-sup condition from
(5.9).
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5.3. P
�
k+1(S)-type H(div div; S) \ H(div; S)-conforming elements. The

space of shape functions is taken as

V
�(div div+; S) := Pk(K; S)� xx

|
Hk�1(K)

with k � max{d, 3}. The DoFs are

⌧ (�) 8 � 2 V(K),(5.10)

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),(5.11)

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K),(5.12)

(n| div ⌧ , p)F 8 p 2 Pk�1(F ), F 2 F1(K),(5.13)

(div div ⌧ , q)K 8 q 2 Pk�1(K)/P1(K),(5.14)

(div ⌧ , q)K 8 q 2
�
Pk�3(K;K)/P0(K;K)

�
x,(5.15)

(⌧ , q)K 8 q 2 ker(·x) \ Pk�2(K; S).(5.16)

We can see that P�
k+1(S)-type H(div div; S) \H(div; S)-conforming elements fol-

low from Lemma 2.3 with d = div div, V = Pk(K; S), H = xx
|
Hk�1(K), P =

Pk�1(K)/P1(K), and Q = ker(·x)\Pk�2(K; S). The assumption (H5) holds from the
fact div divB+ = Pk�1(K)/P1(K) and r2(P+ dH) = r2

Pk�1(K).
Due to the added component xx

|
Hk�1(K), the range of div div operator is in-

creased to Pk�1(K) instead of Pk�2(K). The DoF (div ⌧ , q)K is increased from
q 2 NDk�3(K) = gradPk�2(K) � Pk�3(K;K)x to Pk�2(K;Rd) = gradPk�1(K) �
Pk�3(K;K)x. Hence the number of DoFs (5.10)–(5.16) equals to dimV

�(div div+; S).
The boundary DoFs, however, remain the same as (xx|

Hk�1(K))n|F 2 Pk(F ;Rd).
It is expected that using the P

�
k+1(S)-type symmetric element to discretize the

biharmonic problem will possess one-order higher convergence rate of the div div of
the discrete bending moment than that of the Pk(S)-type symmetric element while
the computational cost is not increased significantly; see [11, section 4]. When solving
the linear algebraic equation, all interior DoFs can be eliminated element-wise.

Lemma 5.7. Let ⌧ 2 V
�(div div+; S). If the DoFs (5.10)–(5.15) vanish, then

⌧ 2 E0(S).

Proof. Since x ·n is constant on each (d� 1)-dimensional face, the trace ⌧n|F 2
Pk(F ;Rd) and (n| div ⌧ )|F 2 Pk�1(F ) remain unchanged. Then we conclude trdiv⌧ =
0 and trdiv(div ⌧ ) = 0 from Theorem 5.5.

Applying the Green’s identity (5.1), we get

(div div ⌧ , v)K = (⌧ ,r2
v)K = 0 8 v 2 P1(K).

Hence it follows from the vanishing DoF (5.14) that div div ⌧ = 0, which combined
with Lemma 5.1 implies ⌧ 2 Pk(K; S). Finally we achieve from Lemma 5.4 and the
vanishing DoF (5.15) that ⌧ 2 E0(S).

Combining Lemma 5.7, (4.9), and the DoF (5.16) shows the uni-solvence of the
P
�
k+1(S)-type H(div div; S) \H(div; S)-conforming elements.

Theorem 5.8. The DoFs (5.10)–(5.16) are uni-solvent for the space V �(div div+;
S) = Pk(K; S)� xx

|
Hk�1(K).

The finite element space V �
h
(div div+; S) ⇢ H(div div,⌦; S)\H(div,⌦; S) is then

defined as follows:
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V
�
h
(div div+; S) := {⌧ 2 L

2(⌦; S) : ⌧ |K 2 Pk(K, S)� xx
|
Hk�1(K) for each

K 2 Th, the DoFs (5.10)–(5.13) are single-valued}.

Similarly as Lemma 5.6, we have the following inf-sup condition.

Lemma 5.9. Let k � max{d, 3}. It holds that

kphk0 . sup
⌧h2V �

h (div div+;S)

(div div ⌧h, ph)

k⌧hkH(div) + k div div ⌧hk0
8 ph 2 Pk�1(Th).

5.4. H(div div)-conforming elements. The requirement that both ⌧n and
n

| div ⌧ are continuous is su�cient but not necessary for a function to be inH(div div,
⌦; S). In addition to n

|
⌧n, the combination n

| div ⌧ +divF (⌧n) to be continuous is
enough due to the Green’s identity (5.1).

Theorem 5.10. Take V (div div; S) := Pk(K; S) with k � max{d, 3}, as the space

of shape functions. The DoFs are given by

⌧ (�) 8 � 2 V(K),(5.17)

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),(5.18)

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K),(5.19)

(n| div ⌧ + divF (⌧n), p)F 8 p 2 Pk�1(F ), F 2 F1(K),(5.20)

(⌧ , def q)K 8 q 2 NDk�3(K),

(⌧ , q)K 8 q 2 ker(·x) \ Pk�2(K; S).

The DoF (5.19) is considered as interior to K, i.e., it is not single-valued across

elements.

Proof. By Lemma 4.5, the divF (⌧n) can be determined by (5.17), (5.18), and
(5.19). A linear combination with (5.20), the trace n| div ⌧ can be determined. Then
the uni-solvence is obtained from Theorem 5.5.

The finite element space V h(div div) is defined as follows:

V h(div div,⌦; S) := {⌧ 2 L
2(⌦; S) : ⌧ |K 2 Pk(K; S) for each K 2 Th, the

DoFs (5.17)–(5.18) and (5.20) are single-valued}.

As n
|
⌧n and n

| div ⌧ + divF (⌧n) are continuous, V h(div div) ⇢ H(div div,⌦; S);
see [12, Lemma 4.4].

Finally we present a P
�
k+1(S)-type H(div div; S)-conforming element.

Theorem 5.11. Let integer k � max{d, 3}. Take the space of shape functions as

V
�(div div; S) := Pk(K; S)� xx

|
Hk�1(K).

The DoFs are

⌧ (�) 8 � 2 V(K),(5.21)

(n|
i
⌧nj , q)f 8 q 2 Pk+r�d�1(f), f 2 Fr(K),(5.22)

i, j = 1, . . . , r, and r = 1, . . . , d� 1,

(⇧F ⌧n, q)F 8 q 2 NDk�2(F ), F 2 F1(K),(5.23)
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(n| div ⌧ + divF (⌧n), p)F 8 p 2 Pk�1(F ), F 2 F1(K),(5.24)

(⌧ , def q)K 8 q 2 Pk�2(K;Rd),

(⌧ , q)K 8 q 2 ker(·x) \ Pk�2(K; S).

Again the DoF (5.23) is considered as interior to K, i.e., it is not single-valued

across elements.

Proof. By Lemma 4.5, the divF (⌧n) can be determined by (5.21), (5.22), and
(5.23). A linear combination with (5.24), the trace n| div ⌧ can be determined. Then
the uni-solvence is obtained from Theorem 5.8.

The global finite element space V
�
h
(div div) ⇢ H(div div,⌦; S), where

V
�
h
(div div,⌦; S) := {⌧ 2 L

2(⌦; S) : ⌧ |K 2 V
�(div div; S) for each K 2 Th, the

DoFs (5.21)–(5.22) and (5.24) are single-valued}.

Finally we list inf-sup conditions for divdiv conforming elements.

Lemma 5.12. Let k � max{d, 3}. We have

(5.25) kphk0 . sup
⌧h2V h(div div,⌦;S)

(div div ⌧h, ph)

k⌧hk0 + k div div ⌧hk0
8 ph 2 Pk�2(Th),

(5.26) kphk0 . sup
⌧h2V �

h (div div,⌦;S)

(div div ⌧h, ph)

k⌧hk0 + k div div ⌧hk0
8 ph 2 Pk�1(Th).

Proof. Since k⌧hk0  k⌧hkH(div) and V h(div div
+; S) ✓ V h(div div,⌦; S), the

inf-sup condition (5.25) follows from Lemma 5.6. Similarly, the inf-sup condition
(5.26) follows from Lemma 5.9 and V

�
h
(div div+; S) ✓ V

�
h
(div div,⌦; S).
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