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Abstract. Several div-conforming and divdiv-conforming finite elements for symmetric ten-
sors on simplexes in arbitrary dimension are constructed in this work. The shape function space
is first split as the trace space and the bubble space. The later is further decomposed into the
null space of the differential operator and its orthogonal complement. Instead of characterizations
of these subspaces of the shape function space, characterizations of corresponding degrees of free-
dom in the dual spaces are provided. Vector div-conforming finite elements are first constructed
as an introductory example. Then new symmetric div-conforming finite elements are construc-
ted. The dual subspaces are then used as build blocks to construct new divdiv-conforming finite
elements.
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1. Introduction. In this paper we construct div-conforming finite elements and
divdiv-conforming finite elements for symmetric tensors on simplexes in arbitrary
dimension. A finite element on a geometric domain K is defined as a triple (X, V, DoF)
by Ciarlet in [18], where V is a finite-dimensional space consisting of the so-called
shape functions and the set of degrees of freedom (DoFs) is a basis of the dual space
V'. The shape functions are usually polynomials. The key is to identify an appropriate
basis of V' to enforce the continuity of the functions across the boundary of elements
so that the global finite element space is a subspace of some Sobolev space H(d, ),
where Q C R? is a domain andd is a generic differential operator.

Denote by trd the trace operator associated to d and the bubble function space
B(d) := ker(tr?) N V. We shall decompose V = B(d) @ &(img(tr?)), where & is an
injective extension operator &£ : img(tr?) — V, and find DoFs of each subspace by

1. characterization of (img(tr?))’ using the Green’s formula;

2. characterization of B’(d) through the polynomial complexes.
In the characterization of B’(d), we will use the differential operator d to further split
B(d) into two subspaces (see Figure 1.1)

Eo:=B(d)Nker(d) and Ej := B(d)/F,.
We then present a basis of (Ey)" and E}:
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Ey := ker(d) Ey
Nker(trd)

trd

Fic. 1.1. Decomposition of a generic finite element space.

1. a basis of (E) is given by {(d-,p), p € dB(d) = dEj };
2. on the other part Ej), there are two approaches:
- the primary approach: Ej is the image of the previous bubble space;
- the dual approach: E is isomorphic to the null space of a Koszul operator.

The dual approach is simpler and more general. For example, for the elasticity
complex, the previous symmetric tensor space is related to the second order differential
operator inc [3]. In the dual approach, we prove that a basis of E{ is given by
N(ker(-x) NPr_o(K;S)). Here to simplify notation, we introduce operator N : U —
V' as N(p) := (-,p) with U C V and (-,-) is the inner product of space V which is
usually the L2-inner product. Generalization of inc and its bubble function space to
R is unclear while E}y = N (ker(-x) NPj_2(K;S)) holds in arbitrary dimension.

To show the main idea with easy examples, we first review the construction of
the Brezzi-Douglas-Marini (BDM) element [8, 7] and the Raviart—-Thomas (RT) ele-
ment [27, 25] for H(div)-conforming elements. For the BDM element, the shape func-
tion space is Py(K;R?), and for the RT element, it is Py, (K;R?) := Pi(K;RY) @
Hy,(K)z. We determine the trace space tr'%(Py(K;R?)) = [[peox Pi(F). By the
aid of the space decomposition Pj,_;(K;R?%) = grad Py (K) @ ker(-z) N Py_; (K;RY)
derived from the dual complex, we can show Ej = N (ker(-x) N P;_;(K;R%)). BDM
and RT elements will share the same trace space and Ey, while

(LY = N(gradP,_1(K)) for BDM element,
07 T ) N(grad P (K)) for RT element.

The dual space B/, (div, K) & (Ey ) @ E}, for the BDM element can be further merged
as
B}, (div, K) = N (NDy_5(K)) := N (Pp—2(K; R?) & Hy_o(K; K)z).

We summarize DoFs for the BDM element as

(1.1) (v-n,q)r V q€Py(F) for each F € 0K,
('U, q)K v qc NDk—2(K)5

and the interior moments (1.2) for Bj (div, K') can be further split as

(1.3) (Ey) (v,@)k Vg € gradPy_1(K),
(Eo) (v,q@)x Y q € ker(-x) NPy_1 (K;RY).

Enriching (1.3) to M (grad Px(K)), we then get the RT element.
We then apply our approach to a more challenging problem: H (div)-conforming
finite elements for symmetric tensors, which are used in the mixed finite element
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methods for the stress-displacement formulation of the elasticity system. Several
H (div)-conforming finite elements for symmetric tensors were designed in [6, 1, 3, 24,
21, 23] on simplices, but our elements are new and construction is more systematical.
Let IIp7 be the projection of column vectors of T to the plane F, and let F"(K) be
the set of subsimplexes of K with co-dimension r for » = 1,...,d — 1. The space of
shape functions is P (K;S), and DoF's are

(1.4) 7(6) VieV(K),
(nitng,q)f YV q€Pria(f), feF(K),
i,j=1,...,r, andr=1,...,d—1,
(1.6) (IpTn,q)r YV q € NDy_o(F),F € FYK),
(T,9)k YV q € Pr_s(K;S).

The symmetry of the shape function and the trace 7n on (d — 1)-dimensional faces
lead to the DoF's (1.4)—(1.5), which will determine the normal-normal component
nTtn. The set of DoF (1.6) is for the face bubble part of the tangential-normal
component IIgprn (cf. (1.2)), which differs from that of Hu’s element in [21] for
d > 3. The bubble function space By (div, K;S) can be decomposed into two parts,
Eox(S) := By (div, K;S) Nker(div) and Eg(S) := By(div, K;S)/Eo x(S). We show
that

(L7)  E)4(S) = N(ker(-w) NPp_2(K;S)), (Eg(S)) =N (def Pp_y (K, R?)).

A new family of H(div;S)-conforming elements is devised with the shape function
space P, (K;S) := Pp(K; S)—l—E&kH(S), and we enrich DoF (E&k(S))' to (E()L,k-&-l(S))/
so that divP, | (K;S) = Py(K; RY).

Motivated by the recent construction [22] in two and three dimensions, the pre-
vious H (div)-conforming finite elements for symmetric tensors are then revised to
acquire H(divdiv) N H(div)-conforming finite elements for symmetric tensors in ar-
bitrary dimension. Using the building blocks in the BDM element and the H (div)-
conforming Py (K;S) element, we construct the following DoF's:

7(8) VieV(K),
(n;rT,n’jaQ)f vqepk‘H"*d*l(f)mfe]:r(K)’
t,j=1,...,r, andr=1,...,d—1,

(IpTn,q)r Y q € NDy_o(F), F € FYK),
(1.8) (nTdivr,p)r VpePy ((F),F < FYK),
(1.9) (r.defq)x ¥V q € NDy_3(K),
(1.10) (r,q@)x Y q € ker(-x) NPr_o(K;S).

The DoF (1.8) to enforce div 7 is H (div)-conforming and thus 7 € H(div div)NH (div).
DoF (1.10) is Ej ;(S) shown in (1.7) and (1.8)-(1.9) are a further decomposition of
div Ey,.(S) by the trace-bubble decomposition of the BDM element; cf. (1.1)—(1.2).

We then modify this element slightly to get H(div div)-conforming symmetric
finite elements generalizing the H(div div)-conforming element in two and three di-
mensions [12, 11]. The DoFs are given by
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(1.11) 7(0) VIeV(K),
(1.12) (nitn;,q); YV q€Prira(f),feF(K),
,j=1,...;,r,andr=1,...,d—1,
(1.13) (Ilptn,q)r Y q € NDy_o(F), F € F(K),
(1.14) (nTdivr +divp(tn),p)r VpePy (F), Fc F'(K),
(1.15) (t,defq)x ¥V q € NDy_3(K),
(1,q9)k ¥V q € ker(-x) NPr_o(K;S).

As we mentioned before, (1.11)—(1.13) will determine the trace 7n, and consequently
divg(7n). The only difference is that (1.8) is replaced by (1.14), which agrees with
a trace operator of the divdiv operator derived in [11, 12]. Such modification is
from the requirement of H(div div)-conformity: nTrn and nTdiv 7 4 divp(tn) are
continuous. Therefore (1.13) for IIp7n is considered as a local DoF to K, i.e., it is
not single-valued across simplices.

In our recent work [11, 12], we have constructed H (div div)-conforming sym-
metric finite elements for d = 2,3. The dual space (trdV4V(P,(K;S)))’ is given by
DoF's (1.11)—(1.14) but without (1.13) as IIpTn is not part of the trace of divdiv
operator. Let Fy(divdiv,S) := By (divdiv, K;S) N ker(divdiv) and Eg (divdiv,S) :=
B (divdiv, K;S)/Ey(div div,S). Then the characterization

(Eq-(divdiv,S))" = N (V?Py_o(K))

is easy, but the identification of E{(divdiv,S) is very tricky in three dimensions. In
[12], we have used the primary approach to get

E{(divdiv,S) = N (sym curl Bi 1 (sym curl, K; T)),

which is hard to generalize to an arbitrary dimension. When using the dual approach,
it turns out N (ker(xT - @) NPy_1(K;S)) is a strict subspace of E{(divdiv,S) as the
dimensions cannot match. An extra DoF on one face (tn,n X ©q)p,, q € Pr_o(F1),
is introduced to fill the gap. Again such a fix in three dimensions seems not easy to
generalize to an arbitrary dimension. In (1.15), if we further decompose NDy,_3(K) =
grad Py_o(K) & Pr_3(K; K)x, based on our new element, we can obtain a character-
ization

E(l)(le diV, S) = UFe}'l(K)N<NDk,2(F)>
@ N (ker(-x) NPr_2(K;S)) & N (def Pr_3(K; K)x).

Furthermore, a new family of P, | (K;S) type H(divdiv) N H(div)-conforming
and H (div div)-conforming finite elements are developed. The shape function space
is enriched to P, | (K;S) := P(K;S) ® xxTHy 1 (K). The range divdiv P, ,(K;S)
is enriched to Py_;(K) and so is (Ey (divdiv,S)) = N(V2P;_1(K)). But the trace
DoFs and Ey(divdiv,S) are unchanged. Such P, ,(K;S) type divdiv-conforming
elements for symmetric tensors are new and not easy to construct without exploring
the decomposition of the dual spaces.

The rest of this paper is organized as follows. Preliminaries are given in sec-
tion 2. The construction of H(div)-conforming elements is presented in section 3. In
section 4, new H (div)-conforming elements for symmetric tensors are designed. And
construction of H(div div)-conforming elements is shown in section 5.
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2. Preliminary.

2.1. Notation. Let K C R? be a nondegenerated d-dimensional simplex. For
r=1,2,...,d, denote by F"(K) the set of all (d — r)-dimensional faces of K. The
superscript 7 in F"(K) represents the co-dimension of a (d — r)-dimensional face
f, where F' is reserved for the (d — 1)-dimensional face and f for a generic lower-
dimensional face. Set V(K) := F%(K) as the set of vertices. Similarly, for f € F"(K),
define

FUf) ={ec F"TYK):eCOf}.

Forany f € F7(K) with1 <r <d—1,let ng1,...,nys, beits mutually perpendicular

unit normal vectors, and let ¢ 1,...,%tf q—, be its mutually perpendicular unit tan-

gential vectors. We abbreviate ng; as ng or n when r = 1. We also abbreviate ng;

and tp; as n; and t;, respectively, if not causing any confusion. For any F € F!(K)

and e € F'(F), denote by mp, the unit outward normal to OF being parallel to F.
Given a face F € F!(K), and a vector v € R?, define

Hpv = (np xv)xnp =1 —npnL)v

as the projection of v onto the face F. For a matrix 7 € R¥*? Il is applied to
each column vector of 7. Given a scalar function v, define the surface gradient as

namely the projection of Vv to the face F', which is independent of the choice of the
normal vectors. Denote by divg the corresponding surface divergence.

2.2. Polynomial spaces. We recall some results about polynomial spaces on
a bounded and topologically trivial domain D C R?. Without loss of generality, we
assume 0 € D. Given a nonnegative integer k, let Pr(D) stand for the set of all
polynomials in D with the total degree no more than k, and let Px(D; X) denote the
tensor or vector version. Let Hy (D) := Px(D)\Px—1(D) be the space of homogeneous
polynomials of degree k. Recall that

GmPL(D) = (k—(;—d) _ <k—]|€—d>’ dim H (D) = (kxf) _ (k+:—1>

for a d-dimensional domain D.
By Euler’s formula, we have

(2.1) x-Vg=kq VqeHg(D),
(2.2) div(zq) = (k+d)g Y q € Hiy(D)
for integer k& > 0.

2.3. Dual spaces. Cousider a Hilbert space V' with the inner product (-,-). Let
U CV, then define N : U — V' as follows: for any p € U, N(p) € V' is given by

WN(p),) = (p)-

When V is a subspace of an ambient Hilbert space W, we use the inclusion 7 :
V < W to denote the embedding of V into W. Then the dual operator Z' : W/ — V'
is onto. That is, for any N € W', I'N € V' is defined as (Z'N,v) = (N, Zv).
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Consider the case of the finite-dimensional subspace V' C W and a subspace
P’ C W’; then to prove V/ = Z'P’, it suffices to show

(2.3) for any v € V, if N(v) = 0,VYN € P’, then v = 0.

Note that it means 7’ is onto but may not be bijective. That is, dim P’ might be
larger than dim V’. It is less rigorous to write V/ C P’ as those two dual spaces
consist of functionals with different domains. The mapping Z’ is introduced as a
bridge for comparison. When Z' : P/ — V"’ is a bijection, we shall skip Z’ and simply
write V' = P’. To prove V' = P’  besides (2.3), dimension count is applied to verify
dim V' = dim P’.

The art of designing conforming finite element spaces is indeed identifying ap-
propriate DoFs to enforce the continuity of the function across the boundary of the
elements. Take V = P (K) as an example. A naive choice is N (Px(K)) = V' but
such basis enforces no continuity on K. To be H'-conforming we need a basis for
(tr(Px(K)))’ to ensure the continuity of the trace on lower dimensional faces of an
element K. Note that as the shape function is a polynomial inside the element, the
trace is usually smoother than its Sobolev version, which is known as supersmooth-
ness [17, 28]. Choice of dual bases is not unique. For example, for H!-conforming
finite elements, V = P (K), the Lagrange element, and the Hermite element will have
different bases for V.

When counting the dimensions, we often use the following simple fact: for a linear
operator T defined on a finite-dimensional linear space V', it holds

dim V' = dimker(T) + dim img(7T).

2.4. Simplex and barycentric coordinates. For i =1,...,d, denote by e; €
R< the d-dimensional vector whose jth component is 6;; for j = 1,...,d. Let K C R?
be a nondegenerated simplex with vertices xg,x1,...,z4. Let F; € F1(K) be the
(d — 1)-dimensional face opposite to vertex x; and \; be the barycentric coordinate
of & corresponding to vertex x; for i =0,1,...,d. Then \;(x) is a linear polynomial
and \;|p, = 0. For any subsimplex S not containing @; (and thus S C F;), A;|s = 0.
On the other hand, for a polynomial p € Py(K), if p|r, = 0, then p = A;q for
some q € Pp_1(K). As F; is contained in the zero level set of A;, V\; is orthogonal
to F; and a simple scaling calculation shows the relation VA; = —|V\;|n;, where
n; is the unit outward normal to the face F; of the simplex K for ¢ = 0,1,...,d.
Clearly {ni,ns,...,ng} spans RY. We will identify its dual basis {l1,ls,...,14}, i.e.,
(l;,n;) =d;; for i, =1,2,...,d. Here the index 0 is singled out for ease of notation.
We can set an arbitrary vertex as the origin.

Set t;; := x; —x; for 0 < ¢ # j < d. By computing the constant directional
derivative t; ; - VA, by values on the two vertices, we have

1 if £ = j,
(2.4) ti;i - VAe=00—0i=<—-1 ifl=1,
0 if 0 #£4, 7.

Then it is straightforward to verify {l; := |VA;|tio} is dual to {n;}. Note that
in general neither {n;} nor {l;} is an orthonormal basis unless K is a scaling of the
reference simplex K with vertices 0, e1, . . ., eq. By using the basis {n;,i=1,2,...,d},
we avoid the pull back from the reference simplex.
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Following notation in [5], denote by N the set of all multi-indices o = (a1, ..., aq)
with integer a; > 0 and by N the set of all multi-indices a = (g, a1, ..., aq) with
integer a; > 0. For @ = (1,...,24) and a € N, define * := 2§* - 25* and |a| ==

Zle ;. Similarly, for A = (A, A1, ..., A\g) and o € N&, define A¥ := AJOAL - AG?
and |af := Z?:o a;. The Bernstein basis for the space Py (K) consists of all monomials
of degree k in the variables );, i.e., the basis functions are given by

A% = A50NM A s a € NG, o = k).
Then P(K) = {ZaENS',Ial:k oA ¢q € R}

2.5. Tensors. Denote by S and K the subspace of symmetric matrices and skew-
symmetric matrices of R4, respectively. The set of symmetric tensors {T;; :=
tthiT,j}ogiqu is dual to {Ni,j}0§i<j§d, where

1
2(nft; ;) (njti ;)

Ni,j = (nln]T +’I’lj’l’l2-)

That is, by direct calculation [9, (3.2)],
Tiyj:NkJ:(Sik(sjg, 0§Z<]§d,0§k<€§d,

where : is the Frobenius inner product of matrices. Assuming ;<4 ¢i;Ti; =0,
then apply the Frobenius inner product with N ¢ to conclude ¢, = 0 for all 0 < £k <
¢ < d. Therefore both {T'; ;}o<i<j<a and {IN; j}o<i<;j<a are bases of S. The basis
{T; j}o<i<j<a is introduced in [15, 21} and {IV; ; bo<i<j<a is in [15, 9].

2.6. Characterization of DoFs for bubble spaces. We give a characteriza-
tion of DoF's for bubble spaces and a decomposition of the bubble spaces through the
bubble complex.

LEMMA 2.1. Assume finite-dimensional Hilbert spaces By, Bo, ..., B, with the in-
ner product (-,-) form an exact Hilbert complex

0SB, 2% B, % .. B, >0,

where B; C ker(trdt) for i = 1,2,...,n — 1. Then the bubble space B;, for i =
1,...,n —1, is uniquely determined by the DoFs

(2.5) (v, diq) Vg€ diBi,
(2.6) (v,q) Vg€eQ=(di—1Bi-1),
where df is the adjoint of d; : B; — B, 1 with respect to the inner product (-,-) and
the isomorphism Q — (d;—1B;—1)" is given by p — (p,-) for p € Q.
Proof. By the splitting lemma in [20] (see also Theorem 2.2 in [10]),

(2.7) B; = dfd;B; @ d;_1B;_1.

Since df restricted to d;B; is injective, the number of DoF's (2.5)—(2.6) is the same
as dimB;. Assume v € B; and all the DoFs (2.5)—(2.6) vanish. By the decomposition
(2.7), there exist v; € B; and vo € B;_1 such that v = d} d;v1+ d;—1v2. The vanishing
(2.5) yields d;v = 0, that is, d;d}(d;v;) = 0. Noting that d;d} : d;B; — d;B; is
isomorphic, we get d;v; = 0 and thus v = d;_jvs. Now apply the vanishing (2.6) to
get v = 0. O
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When the bubble function space B can be characterized precisely, we can simply
use N'(B), i.e., (v,q),q € B as DoFs. When Q = d;_1B;_1, Lemma 2.1 is the same as
Proposition 5.44 for the finite element systems in [16]. However, Lemma 2.1 tells us
it suffices to identify the dual space without knowing the explicit form of the bubble
functions. In the following, we present a way to identify B’ by a decomposition of the
dual space.

LEMMA 2.2. Consider linear map d : V. — P between two finite-dimensional
Hilbert spaces sharing the same inner product (-,-). Let B = ker(trd) NV, Ey =
ker(d)NB, and Ef- = B/Ey. Assume

(Bl) B' =Z'N(U) for some subspace U C V;
(B2) there exists an operator k : U — kU leading to the inclusion

(2.8) UC d"(H(d")) @ (ker(k) NT),

where d* is the adjoint of d : B — dB with respect to the inner product (-,-)
and can be continuously extended to the space H(d*).

Then
(2.9) (Ey)' = N(d*(dB)),
(2.10) El, = T'N (ker(k) N U).

Proof. The characterization (2.9) is straightforward as d : Ej‘ — dB is a bijec-
tion. To prove (2.10), it suffices to show that for any u € Ey, if (u,p) = 0 for all
p € ker(k) NU, then u = 0. First of all, as u € Ey, w L d*(H(d*)), i.e.,

(u, d*p) = (du,p) =0 V¥V pe H(d").
Combined with the assumption (B2), (2.8), we have (u,p) = 0 for all p € U and
conclude u = 0 by assumption (B1) B’ = Z'N(U). O

As we mentioned before, in (2.10), Z’ could be onto. For example, one can choose
U = V. We want to choose the smallest subspace U to get E) = N (ker(x) NU). One
guideline is the dimension count. On one hand, we have the following identity:

dim By = dimB — dim Ey- = dim V' — dim(img(tr?)) — dim E7".
On the other hand, we have
dim(ker(k) NU) = dim U — dim(xkU).

For specific examples, we only need to figure out the dimension, not exact identifica-
tion of subspaces.
Next we enrich space V to derive another finite element.

LeEmMMA 2.3. Consider linear map d : V. — P between two finite-dimensional
Hilbert spaces sharing the same inner product (-,-). Let B = ker(trd) NV, Ey =
ker(d) N B, and Ef = B/Ey. With a finite-dimensional Hilbert space H, we enrich
the space V to V + H and let B* = ker(trd) N (V + H). Assume

(H1) VNH = {0} and dV n dH = {0};
(H2) trd(H) C trd(V);
(H3) d:H — dH is bijective;
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(H4) Eo = N(Q), (Bg)' = N(d"'P);
(H5) (dBY) =Z’N(P@ dH),

where P and Q are finite-dimensional Hilbert spaces. Then
(2.11) (BF) =N(Q eN(d'(Pe dH)),

i.e., a function v € BT is uniquely determined by DoF's

(2.12) (v,d*q) VYV qeP,
(2.13) (v,d*q) VY qe dH,
(2.14) (v,q) YqeQ

Proof. As trd(H) C tr4(V), dimB* — dimB = dimH. On the other hand, since
d*d : H — d*dH is bijective, the number of DoF's increased is also dimH. Thus
the dimensions in (2.11) are equal. Take a v € B* and assume all the DoFs (2.12)-
(2.14) vanish. Thanks to the vanishing DoF's (2.12) and (2.13), we get from (H5) that
dv = 0, which together with dV N dH = {0} implies v € V. Finally v = 0 follows
from the vanishing DoF's (2.12) and (2.14). O

Assumptions (H1)—(H3) are built into the construction of H. Assumption (H4)
can be verified from the characterization of B’ in Lemma 2.2. Ounly (H5) requires
some work. One can show the kernel of d in the bubble space remains unchanged
as Fy but its image is enriched. The dual space is enriched from (dB) = N(P) to
(dBT) = N(P @ dH). Note that the precise characterization of BT is not easy and
H may not be in B*.

3. H(div)-conforming finite elements. In this section we shall construct the
well-known H (div)-conforming finite elements: BDM [8, 7, 26] and RT elements [27,
25]. We start with this simple example to illustrate our approach and build some
elementary blocks.

3.1. Div operator. We begin with the following result on the div operator.
LEMMA 3.1. Let integer k > 0. The mapping div : xHy (D) — Hg (D) is bijective.
Consequently div : P41 (D;R?) — P(D) is surjective.

Proof. Tt is a simple consequence of the Euler’s formulae (2.1) and (2.2). o

3.2. Trace space. The trace operator for H(div, K) space

trd . H(div, K) - H '/?(9K)
is a continuous extension of triVeo = n - v|pxi defined on smooth functions. We then
focus on the restriction of the trace operator to the polynomial space. Denote by
Pp(FYK)) :={q € L?(OK) : q|r € Pi(F) for each F € F'(K)}, which is a Hilbert
space with inner product ZFE}_I(K) (-,-)p. Obviously trdiV (P, (K;R?)) C P (F(K)).
We prove it is indeed surjective.

LEMMA 3.2. For integer k > 1, the mapping trd : Py (K;R?) — Py (FH(K)) is
onto. Consequently

dim trdiv(Pk(K§ RY)) = dim Py (F(K)) = (d + 1) (k " Z : 1>.
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Proof. By the linearity of the trace operator, it suffices to prove that for any
F; € FY(K) and any p € Pi(F;), we can find a v € Pi(K;R?) s.t. v-n|r = p and
v -n|p, = 0 for other F; € FYK) with j # i. Without loss of generality, we can
assume ¢ = 0.

For any p € Py (Fp), it can be expanded in Bernstein basis p = ZaeNd,\a|:k Car?,
which can be naturally extended to the whole simplex by the definition of barycentric
coordinates. Again by the linearity, we only need to consider one generic term still
denoted by p = c,A® for a multi-index o € N% |a| = k. As Z?Zl o; =k > 0, there
exists an index 1 <4 < d s.t. o; # 0. Then we can write p = \;q with ¢ € Py (K).

Now we let v = \;ql;/(l;,n0). By construction,

v-ng = Aig = P,
(’U ’ n])|F7 - Aiq‘Fj (lmnj)/(llano) =0, j=12,...,d
That is, we find v € Py(K;R?) s.t. (r%v)|p, = p and (tr'%v)|p, = 0 for j =
1,....d.

With this identification of the trace space, we clearly have N (P(F'(K))) =
(trdV (P (K;RY)))’, and through (trdV)’, we embed N (P (F(K)) into P} (K;RY).

LEMMA 3.3. Let integer k > 1. For any v € Pr(K;RY), if the DoFs
(v-n,ppr=0 VpePy(F),FcFYK),

vanish, then trdvov = 0.

Proof. Due to Lemma 3.2, the dual operator (trdiv) : P (F1(K)) — P, (K;R?)
is injective. Taking N = (p,-)r € P} (F'(K)) for any F € F'(K) and p € Py (F), we
have

(™)' N)(v) = N (") = (p,tr™v)p = (p, 1 v) .

By the assumption, we have v L img((tr4")’), which indicates v € ker(trdV). |

Another basis of (trd"V (P (K;R?)))" can be obtained by a geometric decomposi-
tion of vector Lagrange elements; see [13] for details.

3.3. Bubble space. After we characterize the range of the trace operator, we
focus on its null space. Define the polynomial bubble space

By (div, K) = ker(tr¥V) NPy (K; R?).
As {n;,i=1,2,...,d} is a basis of RY, it is obvious that for k = 0, By(div, K) = {0}.

As a direct consequence of dimension count (see Lemma 3.4 below), B; (div, K) is also
the zero space.

LEMMA 3.4. Let integer k > 1. It holds that

dimBk(div,K):d(kzd> —(d+1)(k+z_1> :(k—l)(k+z_1>.

Proof. By the characterization of the trace space, we can count the dimension
dim By (div, K) = dim Py, (K; R?) — dim tr8 (P, (K; RY)),

as required. 0
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Next we find different bases of B} (div, K). The primary approach is to find a
basis for By (div, K), which induces a basis of N (Bg(div, K)). For example, one can
show

Bi(div,K) = > MNNPro(K)t;; for k> 2.

0<i<j<d

Verification A \;jPr_2(K)t; ; € By (div, K) is from the fact
/\i/\jt,’7j~ng|pl ZO, 420,1,...,61.

Indeed if ¢ = i or £ = j, then \Aj|p, = 0. Otherwise ¢, ; - ny = 0 by (2.4). To
show every function in By (div, K') can be written as a linear combination of A\;A;t; ;
is tedious and will be skipped. Obviously dim By (div, K) # d(d + 1)/2dim Py _2(K)
as {AAPr_2(K)t; ;j,0 < i < j < d} is linearly dependent. One can further expand
the polynomials in Px_»(K) in the Bernstein basis and ¢; ; in terms of d\ and add a
constraint on the multi-index to find a basis from this generating set; see [5]. Another
systematical way to identify By (div, K) is through a geometric decomposition of vector
Lagrange elements and a ¢ — n basis decomposition at each subsimplex; see [13] for
details.

Fortunately we are interested in the dual space, which can let us find a basis of
B} (div, K) without knowing one for By (div, K). Following Lemma 2.2, we first find
a larger space containing B (div, K).

LEMMA 3.5. Let integer k > 1. We have
B, (div, K) = TN (P_1 (K;RY)),
where T : By (div, K) — Py (K;R?) is the inclusion map.
Proof. Tt suffices to show that for any v € By(div, K) satisfying
(3.1) (v, @)k =0 V q€Pp_1(K;RY),

then v = 0.

Expand v in terms of {l;} as v = Z?:l vil;. Then v - n;|p, = 0 implies v;|p, =0
fori = 1,...,d, i.e., v; = A\;jp; for some p; € Pr_1(K). Choose q = Z?Zl pin; €
Pe—1(K;RY) in (3.1) to get [, v - (L, ping) de = Jx S Ap?de = 0, which
implies p; =0, i.e., v; =0 forallt=1,2,...,d. Thus v =0. ]

Again the dimension count dim By (div, K) # dim Py_;(K;R?) implies Z' is not
injective. We need to further refine our characterization. We use the div operator to
decompose By (div, K) into

Ey := Bi(div, K) Nker(div), FE; := By (div, K)/FEp.

We can characterize the dual space of Ey- through div*, which is — grad restricted to
the bubble function space and can be continuously extended to H'(K).

LEMMA 3.6. Let integer k > 1. The mapping
div: By — Pp_1(K)/R

is a bijection and consequently

dim B = dimPy_y (K) — 1 = (k —;+d> 1
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Proof. The inclusion div(By(div, K)) C Pr_1(K)/R is proved through integration
by parts
(divv,p)x = —(v,gradp)xk =0 V p € R = ker(grad).

If div(By(div, K)) # Pr_1(K)/R, then there exists a p € Pr_1(K)/R and p L
div(Bg(div, K)), which is equivalent to Vp L By(div, K). Expand the vector Vp
in the basis {n;,i = 1,...,d} as Vp = Eleqini with ¢; € Pr_o(K). Then set
v, =0 gidodili = X0 [V A]gidoAitio € By (div, K). We have

d
(gradp, 'Up)K = Z/ qf)\o)\i dz =0,
i=17K

which implies ¢; = 0foralli = 1,2,...,d,i.e.,gradp=0andp =0asp € Pr_1(K)/R.
We have proved div(By(div, K)) = Px_;(K)/R, and thus div : By — Px_1(K)/R
is a bijection as Ey = By(div, K)/ ker(div). 0

As an example of (2.9), we have the following characterization of (Eg)’.

COROLLARY 3.7. Let integer k > 1. We have
(By)' = N(grad Py_1 (K)).
That is, a function v € Ey- is uniquely determined by DoFs
(v,9)k VYV q€gradPy_1(K).
After we know the dimensions of By (div, K) and Eg, we can calculate the dimen-
sion of Ej.
COROLLARY 3.8. Let integer k > 1. It holds that

(3.2) dim Ey = dim By, (div, K) — dim Ey = d(k+3_ 1) - (k;rd> 1

The most difficult part is to characterize Ey. Using the de Rham complex, we
can identify the null space of div : Bg(div, K) — Py_1(K)/R as the image of another
polynomial bubble space. For example,

B - curl (Pr11 (K) N Hg(K)) for d = 2,
* 7 el (Pr41(K;R3) N Hy(curl, K))  for d = 3.

Generalization of the curl operator can be done for the de Rham complex, but it will
be hard for the elasticity complex and the divdiv complex.

Instead, we take the dual approach. To identify the dual space of Ey, we resort
to a polynomial decomposition of Pj,_; (K;R?).

LEMMA 3.9. Let integer k > 1. We have the polynomial space decomposition
(3.3) Pj_1(K;R?) = grad P (K) @ (ker(-x) N Py_1 (K;RY)).
Proof. Clearly it holds that
grad P (K) @ (ker(-x) NPp_1 (K;RY)) C Pp_y (K; RY).

And the sum is direct as by Euler’s formula (2.1).
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The mapping -x : P, (K;R?) — P (K)\R is surjective, thus
dim Py, _; (K;R?) = dim(Py,(K)\R) + dim(ker(-z) N Py_; (K;R)).

As dim (P (K)\R) = dim grad P, (K), we obtain the decomposition (3.3) by dimension
count. |

COROLLARY 3.10. Let integer k > 1. We have
Bl = N (ker(-z) NP;_1 (K;RY)).
That is, a function v € Ey is uniquely determined by
(v,q)k VY q € ker(-x) NP (K;RY).

Proof. We apply Lemma 2.2 with V = Py (K;R?),U = P;_1(K;R9), and x = -x.
Lemmas 3.5 and 3.9 verify the assumptions (B1)-(B2), and we only need to count the
dimension

dim(ker(-z) NPy_; (K;RY)) = dim Py, (K;R?) — dim Py (K) + 1

k+d-1 k+d
= - 1
:dimEo,

where the last step is based on (3.2). The desired result then follows. O

An explicit characterization of ker(-z) N Py_;(K;R?) is shown in [25, Proposi-
tion 1], that is, v € ker(-z) N Hj_1(K;R?) is equivalent to v € Hj_1(K;R?) such
that the symmetric part of V¥~!v vanishes. We shall give another characterization
of ker(-x) NP_1(K;RY).

LEMMA 3.11. Let integer k > 1. It holds that
(3.4) ker(-x) NPp_1 (K;R?Y) = Py _o(K; K)a,
where recall K is the subspace of skew-symmetric matrices of R¥*?, and
(3.5) P 1 (K;RY) = grad Py (K) @ Pp_o( K; K)x.

Proof. Clearly we have Py _o(K;K)x C ker(-z)NP;_1(K;RY). By (3.3), it suffices
to prove (3.5). Take q € P,_;(K;R?). Without loss of generality, by linearity, it is
sufficient to assume q = x*e; with |a] =k —1 and 1 < ¢ < d. Let

T =

d
1
p=-x-q= %a:(”e2 ePy(K), T= g a;x® % (ee] —e;e)) € Pr_o(K;K).
i=1

d d
1 1
gradp + T = T E (i + Gig) Tt e; + T E a;x % (epx; — e;jxy)
i=1 i=1

d d d
1 1 1
=7 E (i + 6i0) T T %e; + T E axep — % g izt e,
i=1 i=1 i=1
1 «
= Ew“eg + Lk' x%e) = x%ey.
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Therefore it follows g = gradp + 7, i.e.,
Py 1(K;R?) C grad Py (K) @ Pp_o( K; K)z.

This combined with the fact grad P (K) @ Py_o( K; K)x C Pr_1(K;RY) gives (3.5).0
The decomposition (3.3) and characterization (3.4) can be summarized as the

following double-directional complex:

C v d skw V
R =—=P}(K) =—= Pr1(K;R") =—= Py »(K; K),

where the skew-symmetric operator skw : R¥*? — K is defined by skw 7 := %(T—TT).
Define, for an integer k > 0,

NDy(K) := Pp(K;RY) @ Hy,(K; K)z,
which is the shape function space of the first kind of Nedéléc edge element in arbitrary
dimension [25, 4].

COROLLARY 3.12. Let integer k > 2. We have
(3.6) B (div, K) = N(grad Py_1(K) & Pr_o(K;K)x) = N (NDg_o(K)).

Proof. The first identity is a direct consequence of Corollaries 3.7 and 3.10 and
Lemma 3.11. We then write Py_o(K;K) = Pr_35(K;K) & Hi_o(K;K) and use the
decomposition (3.3) to conclude the second identity. 0

Remark 3.13. The space NDj_5(K) can be abbreviated as P,_,;A! in the ter-
minology of FEEC [4, 2]. The characterization of B (div, K) (3.6) can be written
as

(B, A"H(EK))" =P, AN (K),
which is well documented for the de Rham complex [5] but not easy for general
complexes. Therefore we still stick to the vector/matrix calculus notation. O
We acquire the uni-solvence of BDM element from Lemma 3.3 and Corollary 3.12.
THEOREM 3.14 (BDM element). Let integer k > 1. Choose the shape function
space V = Pp(K;R%). We have the following set of DoFs for V :

(3.7) (v-n,q)r V¥ qePy(F),FeF(K),
(U, q)K Vqc¢€ ND]C,Q(K> = gI‘adefl(K) (5] Pk,Q(K;K)m.

Define the global BDM element space

V), = {v e L*(Q;RY) :v|x € Pr(K;R?) for each K € Ty,
the DoF (3.7) is single-valued}.

Since v - n|p € Pi(F), the single-valued DoF (3.7) implies v - nn is continuous across
the boundary of elements, hence V;, C H(div, ).
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3.4. Raviart—Thomas element. In this subsection, we assume integer k£ > 0.
The space of shape functions for the RT element is enriched to

VR .= Py (K RY) @ Hy (K.
The DoF's are

(v'naQ)F quPk(F),FEfl(K),
(v, )k YV qeP,_1(K,R?) = grad Py (K) ® Pp_o( K; K)x.

Note that the DoFs to determine the trace remain the same and only the interior
moments are increased from NDj_o(K) to P_;(K;R?). The range space is also
increased, i.e., divVET = Pp(K), and therefore the approximation of divu will be
one order higher.

We follow our construction procedure to identify the dual spaces of each block.

LEMMA 3.15. Let integer k > 0. It holds that
(3.10) trdV (VR = P (FY(K)).

Proof. When k > 1, by Lemma 3.2 and the fact that n - x|, is a constant, it
follows that . ‘
(V) = et (P (G RY)) = P (F (K)).

Consider the case k = 0. It is clear that trdV(VET) C Py(F!(K)). To prove
the other side, by the linearity, assume g € Po(F"(K)) such that ¢|r, = ¢ € R and
qlp, =0fori=1,...,d. Set v = (x — x0) € VET then triVo = ¢. d

Define the bubble space

___c
(x1—x0) M0

B, (div, K) := ker(trdV) 0 VET,

By (3.10), dim B, , (div, K) = dim VT — dim tr(VET) = ¢(**47") for k > 1 and
dim B (div, K') = 0. We show the intersection of the null space of div operator and
B, (div, K) remains unchanged.

LEMMA 3.16. Let integer k > 0. It holds that
(3.11) B, (div, K) Nker(div) = Ey,

where Ey := {0} for k=0.

Proof. For v € VET if dive = 0, then v € Py (K;R?) as div : Hy(K)x — H(K)
is bijective. Then the desired result follows. 0

Define Ey"~ = B, (div, K)/Ey. We give a characterization of (Ey ).
LEMMA 3.17. Let integer k > 0. It holds that

(3.12) (Ey ™) = N(grad P (K)).
Proof. We first prove, given a v € EOL’_7 ie., trd oy =0and v L Ey, if
(3.13) (v,gradp) =0 V p e Py(K),

then v = 0. Indeed integration by parts of (3.13) and the fact divw € Py (K) imply
divw =0, i.e., v € Fy. Then the only possibility to have v 1 Ej is v = 0.
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Then the dimension count gives

k+d

dim By~ = dim B, g

py1(div, K) — dim By = < > — 1 =dimgrad Py (K),

which indicates (3.12). d

Hence we acquire the uni-solvence of RT element from (3.10), (3.11), (3.12), and
Corollary 3.10. The global version of finite element space can be defined similarly.

THEOREM 3.18 (uni-solvence of RT element). Let integer k > 0. The DoFs
(3.8)—(3.9) are uni-solvent for VR,

When k£ > 1, the RT element can be enriched from the BDM element by applying
Lemma 2.3 with d = div, V = Pp(K;R?%), H = Hy(K)z, P = P,_;(K)/R, and
Q =Py—2(K;K)z.

4. Symmetric H(div)-conforming finite elements. In this section we shall
construct H (div)-conforming finite elements for symmetric matrices. For space V =
Pr(K,S), our element is slightly different from Hu’s element constructed in [21]. A
new family of P, , (K, S) type finite elements is also constructed. The trace space for
symmetric H (div)-conforming element seems hard to characterize; instead we identify
the bubble function space and then only need to work on the dual of the trace space.

4.1. Div operator.

LEMMA 4.1. Let k > 0. The operator div : sym(Hy(D; R?)xT) — Hy(D;RY) is
bijective and consequently div : Py, 1(D;S) — Pr(D;R?) is surjective.

Proof. Noting that
div(sym(Hy,(D; RY)2T)) C Hy(K;R?),
dim (sym(Hy (D; RY)2T)) = dim Hj, (K; R?),

it is sufficient to prove sym(Hj(D;R%)xT) Nker(div) = {0}. That is, for any q €
Hy,(D; R?) satisfying divsym(qzT) = 0, we are going to prove q = 0.
By (2.2), we have

2divsym(qxT) = div(qzT) + div(zqT) = (k + d)q + (grad x)q + (div q)x
=(k+d+1)g + (div q)x.

It follows from divsym(gaT) = 0 that

(4.1) (k+d+1)g+ (divg)z = 0.

Applying the divergence operator div on both side of (4.1), we get from (2.2) that
2(k+d)divg = 0.

Hence div g = 0, which together with (4.1) gives g = 0. |

4.2. Bubble space. Define an H(div, K; S) bubble function space of polynomi-
als of degree k as

B (div, K;S) := {1 € Pr(K;S) : Tn|ox = 0}.

It is easy to check that By (div, K;S) is merely the zero space. The following charac-
terization of By (div, K;S) is given in [21, Lemma 2.2].
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LEMMA 4.2. For k > 2, it holds that

(4.2) By (div, K;S) = Z NP _o(K)T; .
0<i<j<d

Consequently

d(d+1) (d+k—2
dim By (div, K;S) = dim P_o(K; S) = (H( + >

2 d
LEMMA 4.3. For k > 2, it holds that

B (div, K;S) = N(Bs_5(K:5)).
That is T € By (div, K;S) is uniquely determined by
(1.6)k V¢ €Pr_s(K;S).

Proof. Given T € By(div, K;S), by (4.2), there exist ¢;; € Pr_2(K) with 0 <1 <
7 < d such that
T = Z )\i/\jQijTi,j-
0<i<j<d
Note that symmetric tensors {IV; ;}o<i<j<a are dual to {T'; ;}o<i<j<a With respect
to the Frobenius inner product (cf. [9, section 3.1] and also section 2.5). Choosing
S = 20§i<j§d QijNi,j S Pk—2(K; S)a we get

(T:6)K = Z (NN, ¢3) ke = 0.

0<i<j<d

Hence ¢;; = 0 for all 4, j, and then 7 = 0. As the dimensions match, we conclude the
result. 0

Another characterization of By (div, K;S) and B} (div, K;S) is given in [13].

4.3. Trace spaces. The mapping trd"V : Py (K;S) — Pp(F'(K;RY1)) is not
onto due to the symmetry. Some compatible conditions should be imposed on lower-
dimensional simplexes. Fortunately, we only need its dimension.

LEMMA 4.4. Let integer k > 1. It holds that

dim tr" (P, (K S)) = dim Py (K;S) — dim By (div, K S)
= dim H (K;S) + dim Hy_ (K;S)

1 d+k—1 d+k—2
—gaarn| (T (25T

We show the supersmoothness induced by the symmetry for the H(div; S) element.
For a (d — r)-dimensional face e € F"(K) with » = 2,...,d shared by two (d — 1)-
dimensional faces F, F’ € F!(K), by the symmetry of 7, (nL,7ns)|. is concurrently
determined by (7np)|p and (7ng)|p. This implies the DoFs n]7n; on e for all
i, =1,...,r. In particular, for a 0-dimensional vertex 6, (7;;(6))axaq is taken as a
DoF.

The trace Tn restricted to a face F € F1(K) can be further split into two com-
ponents: (1) the normal-normal component nTrn will be determined by n]7n;; (2)
the tangential-normal component IIp7n will be determined by the interior moments
relative to F' after the trace trVr (Ilprn) = n}vern has been determined.
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LEMMA 4.5. A basis of
(tr®" (P (K S)))’

is given by the DoFs

(4.3) T(8) V6e€VK),

(4.4) (njtn;,q) YV q€Pryr—a(f), feF(K),
L,i=1,...,r, andr=1,...,d—1,

(4.5) (Mptn,q)r Y q € ND_o(F), F € F}(K).

Proof. We first prove that if all the DoFs (4.3)—(4.5) vanish, then 7 = 0. As
nltn;|y € Py(f), by the vanishing DoFs (4.3)—(4.4) and the uni-solvence of the
Lagrange element, we get

nltn;lf=0 VfeF(K), i,j=1,....,d—r,andr=1,...,d— 1.
This implies
(4.6) n'rn|r =0, ng | =0 VFecFYK),ec FY(F).

Notice that IIpTn|p € Py (F;R?1). Due to the uni-solvence of the BDM element on
F (cf. Theorem 3.14), we acquire from the second identity in (4.6) and the vanishing
DoFs (4.5) that IIpTn|r = 0, which together with the first identity in (4.6) yields
™n|r = 0.

We then count the dimension to finish the proof. By comparing DoFs of the Hu
element (cf. Remark 4.6) and DoF's (4.3)—(4.5), it follows from the DoFs of the first
kind of Nédélec element (cf. [25, 4]) that the number of DoFs (4.3)—(4.5) is equal to
the number of DoFs of the Hu element, thus equal to dim trdV (P, (K;S)). |

Remark 4.6. As a comparison, the DoFs of the Hu element on the boundary
in [21] are
7(6) VieVK),
(niTn;, @)y YV q€Prira(f). f€F(K),
t,j=1,...,r, andr=1,...,d—1,
(titn;,q)f Vq€Prraa(f) feF(K),
i=1,....,d—r,5=1,....,r, andr=1,...,d—1.

The difference is the way to impose the tangential-normal component. ]

4.4. Split of the bubble space. To construct H(div, K;S) elements, the
interior DoFs given by N (Py_2(K;S)) are enough. For the construction of the
H (div div, K;S) element, we use div operator to decompose By (div, K;S) into

Ep 1 (S) := By (div, K; S) N ker(div), Eé:k(S) = By (div, K;S)/E x(S).

We will abbreviate Eg ,(S) and EOL,,C(S) as Eo(S) and Ef-(S), respectively, if this will
not cause any confusion. As before we can characterize the dual space of Eo%k(S)

through div*, which is — def := — sym grad restricted to the bubble space and can be
extended to H'(K;R?).
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LEMMA 4.7. Let integer k > 2. The mapping
div : By (S) = Pi_y g i= Pr—1 (K, R%)/ ker(def)
is a bijection and consequently
(E&k(s))/ = N(def Py_;(K,R%)),

~1\ 1
brd >—2(d2+d).

dim Eg(S) = d( L1

Proof. The fact divBy(div, K;S) = Py | gy Was proved in [21, Theorem 2.2].
Here we recall it for completeness. 7

The inclusion div(Bg(div, K;S)) C ]P’é-_LRM can be proved through integration
by parts,

(divr,v)g = —(7,defv)g =0 V v € ker(def).

If div(By(div, K;S)) # IP%_LRM, then there exists a function v € Pﬁ_LRM satisfying
v L div(Bg(div, K;S)), which is equivalent to def v | B(div, K;S). Expand the sym-
metric matrix defv in the basis {IN;;,0 <i < j<d}asdefv =31, ;;¢;Ni;
with ¢;; € Pr_o(K). Then set 7, = ZO§i<j§d gij AN T € By(div, K;S). We have

(defo,7)k = 3 / SN de =0,
o<i<j<d’ K

which implies ¢;; =0 for all 0 <i < j < d,ie.,defv =0andv=0asv € ]P’ﬁ_LRM.
Since div Ei,(S) = divBg(div, K;S), the mapping div : E()L,k(S) — Pi—l,RM is a
bijection. ,

For v € E(J):k(S), (v,defq)x = 0 for all ¢ € Pp_1(K,RY) implies divv =
0, ie., v € Epp(S). Then v € Epi(S) N E&k(S) = {0}. Hence (E()L,k(S))’ =
T'N(def P,_1(K,R9)). As the dimensions match, Z’ is a bijection. 0

We then move to the space Eyx(S). Using the primary approach, we need the
bubble space in the previous space and the differential operator. For example, we
have g (S) = curl curl(Py42(K) N HZ(K)) in two dimensions [6], and in three di-
mensions [3, 14]

Ey ;(S) = incBgyo(inc, K;S)

with

Bji2(ine, K;S) = {7 € P 2(K;S):nx T xn =0,
2defp(n - 7p) —pd, 71l =0 V F € FY(K)}.

Such characterization is hard to generalize to arbitrary dimension.
Instead we use the dual approach to identify E(’)k(S) To this end, denote the

space of rigid motions by RM := NDy(K) = {c+ Nz : ¢ € RY N € K}. Define
operator wprys : CH(D;R?) — RM as

7 rmv = v(0) + (skw(Vv))(0)x.

Clearly it holds that wryv = v for all v € RM. We denote by ‘@ : Px(D;S) —
P 1(D;R%) the mapping T — 7@ as the matrix-vector product T2 is applying row-
wise inner product with vector «.
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We shall establish the short exact sequence
C def
RM —="P; 1 (D;R?) ——=def P, 1(D;RY) =—=0
TRM -x

and derive a space decomposition from it.

LEMMA 4.8. Let integer k > 0. If q € Py11(D;R?) satisfying (def q)x = 0, then
q< RM.

Proof. Since 7 (z - V)q = zT(Vq)x = xT(def q)x = 0, we get
(x-V)(xTqg)=2T(x-V)g+xTqg=2"q.
By (2.1), this indicates zTq € P;(D). Noting that (Vq)x = V(xTq) — q, we obtain
(- V)g+ (V(zTq) — q) = (V@) 'z + (Vg)z = 2(def g)z = 0,

which implies (x - V)g — g = —V(xTq) € Po(D;R?). Hence q € P;(D;RY). Assume
g = Nz + C with N € M and C € R?. Then

T (sym N)x +a2'C =x"Nx+2"C = xTq € P1(D),

which implies sym IN = 0. Therefore N € K and g € RM. ]
LEMMA 4.9. Let integer k > 0. We have

(4.7) (def Pyi1 (D;RY)) & = Py(D; S)x = Pjiq (D; RY) N ker(m gas).
Proof. For any T € P(D;S), it follows that
wry(Tx) = (skw(V(72)))(0)z = skw(7(0))z = 0.

Thus Pi(D;S)x C Pri1(D;RY) Nker(mwgas). On the other hand, we obtain from
Lemma 4.8 that

dim ((def P11 (D;R?)) ) = dim Py (D; RY) — dim RM,

which equals the dimension of Py ;(D;R%) Nker(mwgas). Thus (4.7) follows. |

COROLLARY 4.10. Let integer k > 0. We have the space decomposition
(4.8) P(D;S) = def Py 1 (D; R?) @ (ker(-x) NP(D;S)).

Proof. Tt follows from Lemma 4.8 that def Py (D;R?) N (ker(-z) NPy (D;S)) =
{0}. Due to (4.7),

dim def Py 1 (D; R?) + dim(ker(-z) N Py(D;S))
= dim def P 1(D; R?) + dim Py, (D;S) — dim(P(D;S)x)
= dim Py (D; R?) — dim RM + dim Py (D;S) — dim(Py(D;S)x)
= dim Py (D;S),

which means (4.8). d
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LEMMA 4.11. Let integer k > 2. We have
(4.9) Ep 1(S) = N(ker(-@) NP2 (K S)).
That is, a function T € Ey 1 (S) is uniquely determined by
(r,@)x VY q € ker(-x) NPr_2(K;S).

dimEO’k(S):d(d"&_l)(k_2+d) _d<d+k—1> L dd+1)

And

2 d d 2

Proof. We apply Lemma 2.2 with V = Pi(K;S),U = Pr_5(K;S), and £ = -x.
Lemma 4.3 and (4.7)—(4.8) verify the assumptions (B1)-(B2), and we only need to
count the dimension.

By the space decomposition (4.8), Lemma 4.3, and Lemma 4.7,

dim(ker(-x) NPy_o(K;S)) = dimPy_o(K;S) — dimdef P,_; (K;R?)
= dim By (div, K;S) — dim Eg;,(S) = dim Eq x(S),
as required. 0

Remark 4.12. In two and three dimensions, we have (cf. [11, 14])

xt(x1) TPy _o(D) for d =2,

ker(-x) NPL(D:S) =
er(-x) x(D;8) {wkaz(D§S)Xw for d = 3,

where 1 := (72, ), but generalization to arbitrary dimension is not easy and not
necessary. A computation approach to find an explicit basis of ker(-x) NP_1 (K;S) is
as follows. Find a basis for P,_;(K;S) and one for P (K;R?). Then form the matrix
representation X of the operator -@. Afterward the null space ker(X) can be found

algebraically.

4.5. H(div;S)-conforming elements. Combining Lemmas 4.5, 4.7, and 4.11
and space decomposition (4.8) yields the DoF's of H(div;S)-conforming elements.

THEOREM 4.13 (P (K;S)-type H(div;S)-conforming elements). Take the shape
function space V(S) = Pr(K;S) with k > d+ 1. The DoF's

(4.10) T(0) VdeV(K),

(4.11) (n]mnj.q)y YV q€Prir—ai(f),f€F(K),
t,j=1,...;r, andr=1,...,d—1,

(4.12) (p7n,q)r V¥ q€NDy_o(F),F € F(K),

(4.13) (r,@)x YV q €Pr_2K;S)

are uni-solvent for Pr(K;S). The last DoF (4.13) can be replaced by

(4.14) (divr,q)x YV q€Pp1(K;RY)/RM,

(4.15) (Ty@)xk VYV q € ker(-x) NPr_o(K;S).

The global finite element space V,(div;S) C H(div,;S), where

Viu(div;S) := {T € L*(;S) : 7|k € Px(K;S) for each K € Ty,
the DoFs (4.10)—(4.12) are single-valued}.

Clearly V', (div;S) C H(div,;S) follows from the proof of Lemma 4.5.
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For the most important three dimensional case, the DoFs (4.10)—(4.13) become

T(6) VieVK),

(n]tn;,q)e YV q€Praole),ec FAK),i,j=1,2,

(nTrn,q)r VqeP, 3(F),FcFYK),

(Mptn,q)r Y q € NDy_o(F),F € FY(K),

(T.@)x ¥V q €Prs(K;S),
which are slightly different from the Hu—Zhang element in three dimensions [23].
Uni-solvence holds for & > 1. The requirement & > d + 1 contains the DoF's

(tn,q)r for all g € Py(F;R?1) on each face F' € F'(K), by which the divergence of
the global H(div;S)-conforming element space will include the piecewise RM space
and combining with div By (div, K;S) = ]P’é;l)RM will imply the following discrete
inf-sup condition.

LEMMA 4.14. Let k > d+ 1. The inf-sup condition

divry,p
Ioale < sup  \AVTHPa)

Y p;, € Pr_1(Th; RY)
rreVa(divs) ITrllm(div)

holds, where Py_1(Th; RY) == {p, € L*(GRY) : p,|x € Pr_1(K;RY) for each K €
7).
Proof. For p;, € Pr_1(Tr;RY), there exists 7 € H'(€;S) such that [19]
divr =py, |7l < llPpllo:

Let 7, € Vi (div;S) such that all the DoFs (4.10)—(4.12) and (4.14)—(4.15) vanish
except

(N"TEn,q)F = (nTTn,q)r Y q€Pi(F),F e FY(K),
Mprim,q)r = Mptn,q)r ¥ q € P1(F;RYY), F € FY(K),
(divrh, @)x = (divT, @)x = (P, @)k ¥ g € Pr1(K;R?)/RM

for all K € T,. By the scaling argument, we have
(4.16) Inllo < I7ll < llpallo-
Applying the integration by parts,
(divry, @)k = (divr.q@)x = (Pr. @)k ¥V q € RM.

Hence
(divry, @)k = (divr, @)k = (Pr. @)k V q € Pp_1(K;R?),

which implies div 7, = p;,. Therefore we derive the inf-sup condition from (4.16). 0O

4.6. IP’,:_H(K; S)-type elements. Let k > d + 1. The space of shape functions
is taken as
PEH(K? S) :=P(K;S) + EOL,k:+1(S)'

Since Egy 41 (S) C Brya(div, K;S) and div Ey ., (S) = P gy, we have

trVP, (K S) = 1™ (Pe(K;S)),  divPy, (K;S) = Pe(K;RY).
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By applying Lemma 2.3 with d = div, V = Px(K;S), H = E&k+1(S)\Ed:k(S), P =
Py_1(K,R%), and Q = ker(-z) NPy_2(K;S), we get the uni-solvent DoFs

(4.17) T(5) V& e€V(K),
(4.18) (nlmn;,q)y YV q€Prpr_a1(f), feF(K),

t,j=1,...,r, and r=1,...,d—1,
(4.19) (Iprn,q)r V¥ q€NDy_o(F),F € F'(K),

(r,q9)x VYV q € ker(-x) NPr_o(K;S),
(divr,q)x ¥ q € Py(K;RY)/RM.

Since divP;, | (K;S) = Pi(K;R?) and divP(K;S) = Pr_1(K;RY), it is expected
that using ]P’,;_H(K ;S) to discretize the mixed elasticity problem will possess one-
order higher convergence rate of the divergence of the discrete stress than that of
Py (K;S) symmetric element.

Remark 4.15. By the DoF's (4.10)—(4.13), we can find a basis {¢; } ", of the bubble
function space By (div, K;S). Let {1;}12 be a basis of P, (K; R)\RM. Then form
the matrix ((div ®i, ;) K) Ny XNy whose kernel space combined with {gbi}i-vzll yields
the basis of Ey (S). Finally, a basis of E&k(S) is achieved by finding the orthogonal
complement of the basis of Ej ;(S) under the inner product (-,-)x-.

The global finite element space V', (div;S) C H(div,2;S), where

V,, (div;S) := {7 € L*(Q;S) : 7| € Py, ,(K;S) for each K € Ty,
the DoFs (4.17)—(4.19) are single-valued}.

Similarly as Lemma 4.14, we have the following inf-sup condition.

LEMMA 4.16. Let k > d+ 1. The inf-sup condition

divTy,p
lonle < sup  (AVTmPa)

V¥ py, € Py(Th; RY)
THEV ), (div;S) HTh”H(div)

holds.

As with the RT element, it is natural to enrich Py (K;S) to Py (K; S) ®sym (Hj (K;
R4)xT). Unfortunately, trd" (sym(Hy (K;RY)xT)) € tr4V (P, (K;S)), i.e., assumption
(H2) in Lemma 2.3 does not hold, which ruins the discrete inf-sup condition.

5. Symmetric H (div div)-conforming finite elements. We use the previ-
ous building blocks to construct H(divdiv)-conforming finite elements in arbitrary
dimension. Motivated by the recent construction [22] in two and three dimensions,
we first construct H (div div) N H(div)-conforming finite elements for symmetric ten-
sors and then apply a simple modification to construct H(div div)-conforming finite
elements. We then extend the construction to obtain a new family of P, , (S)-type
elements.

5.1. Divdiv operator and Green’s identity.

LEMMA 5.1. For integer k > 1, the operator
divdiv : zx"Hy_1 (D) — Hi_1(D)

is bijective. Consequently divdiv : Pi11(D;S) — Pr_1(D) is surjective.
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RM RM
Fy(S) div. | Bi_1(div, K) NDj,_3(K)/RM
Eo(S) o ] o~
— N RM
Fu(S) | =5 [0 B pa)
trdiV(Py (K, S))

F1G. 5.1. Decomposition of Py (K,S) for an H(divdiv) N H(div)-conforming finite element.

Proof. By (2.2), it follows that
divdiv(zaTq) = div((k+ d)zq) = (k+d)(k+d—1)g V q € Hi_1(D),

which ends the proof. ]
Next recall the Green’s identity for operator divdiv in [12].
LEMMA 5.2. We have for any T € C*(K;S) and v € H*(K) that

(divdivT,v)g = (7, V) Z Z (N} TN, )
FeF'(K)eceF(F)
(5.1) - Z [(nTTn,0,v)F — (NTdivr + divp(Tn),v)F].
FeFY(K)

Proof. We start from the standard integration by parts

(divdivT,v)g = —(divr, Vo) g + Z (nTdivT,v)p

FeFY(K)
= (7, V2U)K - Z (tm,Vu)p + Z (nTdivT,v)p.
FeFL(K) FeFL(K)

We then decompose Vv = 0,vn + Vv and apply the Stokes theorem to get
(tm,Vo)p = (T, 0pvn + Vo) p

= (n"rn,0,v)F — (divp(Tn),v)r + Z (N TN, V)e.
eeF1(F)

Thus the Green’s identity (5.1) follows from the last two identities. |

5.2. H(divdiv;S) N H(div;S)-conforming elements. Based on (5.1), it suf-
fices to enforce the continuity of both 7n and nT divT so that the constructed fi-
nite element space is H(div,S) N H(divdiv,S)-conforming. Such an approach has
been recently proposed in [22] to construct two- and three-dimensional H(div,S) N
H(div div, S)-conforming finite elements. The readers are referred to Figure 5.1 for
an illustration of the space decomposition.

The subspaces trdV (P (K,S)) and Ey(S) are unchanged. The space div Ey (S) =
Pi_1 gy Will be further split by the trace operator. Define

Fo(S) C Ex(S), satistying div Fo(S) = Bj,_; (div, K) N RM*,
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and Fy,.(S) C Ef(S) with trdV (div F,.(S)) = trdV(div Ef") = trdiV(Pé‘fl’RM), which is
well defined as div restricted to Ej (S) is a bijection. Here

Bi_1(div, K) N RM™* := {v € Bj,_y(div,K) : (v,q)x =0V g € RM}.
LEMMA 5.3. For integer k > 3, it holds that
trdV (div Fi. (S)) = tr (Py_ 1 (K; RY)).

Consequently (tr4V(div Fi(S))) = N (Pr_1(FH(K))).
Proof. By definition, trdV(div F,(S)) = trdi"(IE”ir_l,RM) C trdV(P,_y (K;RY)).
On the other hand, given a trace p € tr"V(P_;(K;R?)), by the uni-solvence of the

BDM element (cf. Theorem 3.14), we can find a v € Py_1(K;R?) such that v-n =p
on OK and v L RM as RM = ND((K) C ND;_3(K) when k > 3. |

LEMMA 5.4. For integer k > 3, we have
F5(S) = N (def(NDy_3(K))).
Proof. We pick a T € Fy(S), i.e., T satisfies
(tm)lax =0, nTdivr|sx =0, T L Ey(S).
Assume
(r,defq)xk =0 V g € ND,_5(K).

Note that v = divr € Bj_1(div, K), and (v,q)x = 0 for all ¢ € NDj_3(K); then
v = 0 by Theorem 3.14. Therefore divrT = 0, i.e., 7 € Ey(S). As 7 L Ey(S), the only
possibility is 7 = 0.

Then the dimension count

dim Fy(S) = dim By (div, K) — dim RM = dim NDy,_3(K) — dim ker(def)

will finish the proof. 0

We summarize the construction in the following theorem.

THEOREM 5.5. Let V(divdiv';S) := Py (K,S) with k > max{d,3}. Then the fol-
lowing set of DoF's determines an H(divdiv;S) N H(div;S)-conforming finite element
(5.2) T(6) VéeV(K),

(5.3) (n]mnj,.q)y YV q€Prirai(f), f€F(K),
wj=1,....,7, andr=1,...,d—1,

(5.4) (IlpTn,q)r V q € NDy_o(F), F € F'(K),

(5.5) (nTdivr,q)r VYV q€P,_(F),F e FY(K),

(5.6) (divdivr,q)x  V q € Pyp_a(K)/P1(K),

(5.7) (divr,q)xk VYV qc¢€ (]P’k,g(K;K)/IP’O(K;K))w,

(5.8) K

(1,9) YV q € ker(-x) NPr_o(K;S).

Proof. By Lemma 4.5, the vanishing DoF's (5.2)—(5.4) imply 7n|sx = 0. Then
applying Lemmas 5.3-5.4, we get from the vanishing DoFs (5.5)—(5.7) that 7 € Ey(S).
Finally combining (4.9) and (5.8) implies 7 = 0.
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We then count the dimensions. Compared to the DoF's of the BDM-type H(div,S)
element (cf. Theorem 4.13), the difference is (4.14) versus (5.5)—(5.7). Then from the
uni-solvence of the BDM H (div)-conforming element (cf. Theorem 3.14), we have

dimPy_1 (K;R?) = dimNDy_3(K) + > dimPy_1(F),
FeF(K)
and consequently the number of DoFs (5.2)—(5.8) is dim Py (K;S). ad

The global finite element space V,(divdiv’;S) ¢ H(divdiv, Q;S) N H(div,Q;S)
is defined as follows:

Vi (divdivT;S) := {T € L*(Q;S) : 7|k € Pr(K,S) for each K € Ty,
the DoFs (5.2)—(5.5) are single-valued}.

The requirement k > d ensures the DoFs (nTrn,q)r for all ¢ € Po(F) on each
face F € F(K), by which space divdiv V,(divdiv';S) will include all the piecewise
linear functions.

LEMMA 5.6. Let k > max{d,3}. The inf-sup condition

divdiv Ty,

[pnllo < sup S
~ TREV, (divdivT;S) ||"'h||H(div) + || divdivTh o

holds, where Py_o(Ty,) = {pn € L*(Q) : pr|x € Pr_2(K) for each K € Tp,}.
Proof. For py, € P,_o(Tp), there exists 7 € H?(Q;S) such that [19]

divr =pn, |I7ll2 < lpallo-

Let 74, € V,(divdiv';S) such that all the DoFs (5.2)—(5.8) vanish except

(nTTpn,Q)r = (RN, q)F VY qePy(F), F e FY(K),

(pThan, q)r = (pTn, q)F Vg €Po(F;RT ), F e FY(K),
(nTdivTy,q)r = (nTdivT,q)r VY qeP (F;RY), F e FYK),
(divdivry,q)x = (divdivT, )k = (pr, @)k V q € Pr_ao(K)/P1(K)

for all K € 7T;. By the scaling argument, we have
(5.9) ITrllz@iv) S I7ll2 < llpallo-
Applying the integration by parts,

(divdiv Ty, q)x = (divdivr,q)x = (pr,q)x ¥V q € P1(K).

Hence

(divdiv Ty, q)x = (divdivr,q)x = (pr, @)k V q € Pr_2(K),
which implies divdivT, = pp. Therefore we derive the inf-sup condition from
(5.9). d
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5.3. P ,(S)-type H(divdiv;S) N H(div;S)-conforming elements. The
space of shape functions is taken as
V= (divdiv';S) := Pp(K;S) @ xxTH;_ (K)
with k > max{d, 3}. The DoFs are
(5.10) T(6) VoeV(K),

(5.11) (n]tn;,q)y Vq€Pryr_a(f),feF(K),
i,j=1,...,r,andr=1,...,d -1,

(5.12) (Iptn,q)r V q € NDy_o(F),F € FY(K),
(5.13) mTdivr,p)r Vp€Pr_(F),Fec FY(K),
(5.14) (divdivr,q)xk V¢ € Py_1(K)/P1(K),

(5.15) (divr,q)x YV q € (Pe—3(K;K)/Po(K;K))w,
(5.16) (1,9)k ¥V q € ker(-x) NPr_o(K;S).

We can see that P, (S)-type H(divdiv;S) N H(div;S)-conforming elements fol-
low from Lemma 2.3 with d = divdiv, V = Pi(K;S), H = za™H;_1(K), P =
Pr_1(K)/P1(K), and Q = ker(-z) NP_2(K;S). The assumption (H5) holds from the
fact divdivBt = Pj,_1(K)/P(K) and V(P + dH) = V?P;_,(K).

Due to the added component xaxTHj_;(K), the range of divdiv operator is in-
creased to Pp_1(K) instead of Pr_2(K). The DoF (divT,q)k is increased from
q € NDj,_3(K) = gradP;_o(K) ® Pj_3(K;K)x to Py_o(K;RY) = grad Py (K) @
Pj._3(K;K)x. Hence the number of DoFs (5.10)—(5.16) equals to dim V= (div div';S).
The boundary DoFs, however, remain the same as (zzTHj_1(K))n|r € P (F;R?).

It is expected that using the [P, _H(S)—type symmetric element to discretize the
biharmonic problem will possess one-order higher convergence rate of the divdiv of
the discrete bending moment than that of the Py (S)-type symmetric element while
the computational cost is not increased significantly; see [11, section 4]. When solving
the linear algebraic equation, all interior DoF's can be eliminated element-wise.

LEMMA 5.7. Let 7 € V~(divdiv';S). If the DoFs (5.10)~(5.15) vanish, then
T E E()(S)

Proof. Since x - n is constant on each (d — 1)-dimensional face, the trace ™n|p €
Py (F;R?) and (nT div 7)|r € Pr_1(F) remain unchanged. Then we conclude tréiVs =
0 and tr¥(divr) = 0 from Theorem 5.5.

Applying the Green’s identity (5.1), we get

(divdivT,v)g = (1, V20)gk =0 Vv e P(K).

Hence it follows from the vanishing DoF (5.14) that divdivT = 0, which combined
with Lemma 5.1 implies 7 € P (K;S). Finally we achieve from Lemma 5.4 and the
vanishing DoF (5.15) that 7 € Ey(S). ad

Combining Lemma 5.7, (4.9), and the DoF (5.16) shows the uni-solvence of the

P, (S)-type H(divdiv;S) N H(div;S)-conforming elements.

k1
THEOREM 5.8. The DoF's (5.10)~(5.16) are uni-solvent for the space V~ (div div™;
S) = Pk(K; S) 5) SC.’BTHk_l(K).

The finite element space V', (divdivt;S) C H(divdiv, Q;S) N H(div, ;S) is then
defined as follows:
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V; (divdivt;S) := {r € L*(%S) : 7|k € Px(K,S) ® zxTHj,_, (K) for each
K € Ty, the DoFs (5.10)—(5.13) are single-valued}.

Similarly as Lemma 5.6, we have the following inf-sup condition.
LEMMA 5.9. Let k > max{d,3}. It holds that

divdiv 1y,

lenllo S sup > Ph.
Y v (divdivs) I TrllE) 1 [ divdiv Tl

5.4. H(div div)-conforming elements. The requirement that both rn and
nT div 7 are continuous is sufficient but not necessary for a function to be in H (div div,
Q;S). In addition to nTrn, the combination nT divt 4 divg(7n) to be continuous is
enough due to the Green’s identity (5.1).

THEOREM 5.10. Take V(divdiv;S) := Py (K;S) with k > max{d, 3}, as the space
of shape functions. The DoFs are given by

(5.17) () V6eV(K),
(5.18) (njtn;,q)r YV q€Pryr_a(f), feF(K),
hL,j=1,...,m andr=1,...,d—1,
(5.19) (MpTn,q)r Y q € NDy_o(F), F € FY(K),
(5.20) (mTdivr +divp(tn),p)r VpePr_(F),F € FY(K),
(t,defq)x V q € NDy_3(K),
(T,q9)k ¥V q € ker(-x) NPr_o(K;S).

The DoF (5.19) is considered as interior to K, i.e., it is not single-valued across
elements.

Proof. By Lemma 4.5, the divg(7n) can be determined by (5.17), (5.18), and
(5.19). A linear combination with (5.20), the trace nT div T can be determined. Then
the uni-solvence is obtained from Theorem 5.5. d

The finite element space V' (divdiv) is defined as follows:

Vi(divdiv, Q;S) := {T € L*(;S) : 7|k € Px(K;S) for each K € Ty, the
DoFs (5.17)—(5.18) and (5.20) are single-valued}.

As nTrn and nTdivT + divp(Tn) are continuous, Vi (divdiv) C H(divdiv,;S);
see [12, Lemma 4.4].
Finally we present a P, | (S)-type H(div div;S)-conforming element.

THEOREM 5.11. Let integer k > max{d, 3}. Take the space of shape functions as
V= (divdiv;S) := Pr(K;S) & zaTHy_1 (K).

The DoF's are

(5.21) 7(0) VoeVK),

(5.22) (nimn;,q); V¥ q€Prir—a1(f),f€F(K),
L,ij=1,...,r andr=1,...,d—1,

(5.23) (lprn,q)r YV q € NDy_o(F),F € F(K),
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(5.24) (nTdivr +divp(tn),p)r Vp <Py (F),F e FYK),
(1,def @)V q € Pp_o(K;RY),
(r,9)k ¥V q € ker(-@) NPr_o(K;S).

Again the DoF' (5.23) is considered as interior to K, i.e., it is not single-valued
across elements.

Proof. By Lemma 4.5, the divp(7n) can be determined by (5.21), (5.22), and
(5.23). A linear combination with (5.24), the trace nT div T can be determined. Then
the uni-solvence is obtained from Theorem 5.8. |

The global finite element space V', (divdiv) C H(divdiv,2;S), where

V;, (divdiv, ;S) := {1 € L*(;S) : 7|k € V™~ (divdiv;S) for each K € Ty, the
DoF's (5.21)-(5.22) and (5.24) are single-valued}.

Finally we list inf-sup conditions for divdiv conforming elements.

LEMMA 5.12. Let k > max{d,3}. We have

(divdivTp, pr)
(5.25) prllo S sup — V pn € Pr_2(Th),
I Th €V (div div,;S) I Tnllo + [ divdiv 74lo

div di ,
(5.26)  loalo S swp (div div 71, pr)
ThEV, (divdiv,Q;S)

P Y ePr_1(Th).
ITrllo + || divdiv Ty llo Pn k—1(Th)

Proof. Since ||Thllo < |Thllmiv) and Vi (divdiv';S) € Vi(divdiv, €;S), the

inf-sup condition (5.25) follows from Lemma 5.6. Similarly, the inf-sup condition
(5.26) follows from Lemma 5.9 and V', (divdiv';S) C V; (divdiv, Q;S). |
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