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Finite element methods for Maxwell’s equations are highly sensitive to the conformity of
approximation spaces, and non-conforming methods may cause loss of convergence. This
fact leads to an essential obstacle for almost all the interface-unfitted mesh methods in the
literature regarding the application to Maxwell interface problems, as they are based on
non-conforming spaces. In this work, a novel immersed virtual element method for solving
a 3D Maxwell interface problems is developed, and the motivation is to combine the
conformity of virtual element spaces and robust approximation capabilities of immersed
finite element spaces. The proposed method is able to achieve optimal convergence for a
3D Maxwell interface problem. To develop a systematic framework, the H', H(curl) and
H(div) interface problems and their corresponding problem-orientated immersed virtual
element spaces are considered all together. In addition, the de Rham complex will be
established based on which the Hiptmair-Xu (HX) preconditioner can be used to develop
a fast solver for the H(curl) interface problem.
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1. Introduction

In this article, we shall develop a systematic framework to construct three-
dimensional (3D) H', H(curl), and H(div) virtual element spaces involving dis-
continuous coefficients, referred to as the immersed virtual element (IVE) spaces,
that can be used to solve the corresponding interface problems described in Section
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1.1 on unfitted meshes. The proposed method is particularly important for electro-
magnetic interface problems as the current unfitted-mesh methods in the literature
have essential difficulty in handling H(curl) problems, see the detailed discussion
in Section 1.2.

1.1. Model problems

Let © C R? denote an open and bounded modeling domain, and a subdomain
Q™ C Q contains the medium which has the physical property distinguished from
the background medium occupying the subdomain QF = Q\Q~. The surface I' =
0~ is called interface and assumed to be sufficiently smooth with the normal vector
n pointing from Q7 to Q7. We introduce two discontinuous piecewise constant
parameters representing the medium properties:

a{a‘ in Q7 ﬂ{ﬁ_ in Q7 (11

at in QF, Bt in QF,

where a® and B% are assumed to be positive constants.
The classic H'-elliptic interface problem reads as

V- (BVu)=f inQ uUQt, (1.2)

with f € L?(Q), subject to certain boundary conditions on 9 and jump conditions

[ulp == ut —u” =0, (1.3a)

[BVu-nlpr :=B"Vut -n—- " Vu -n=0, (1.3b)

where the parameter § may represent, for example, the conductivity in electrical
applications 134, or the dielectric constant in Poisson-Boltzmann equations 3°:88,

For electromagnetic interface problems, we consider the following curl curl-
elliptic model

curl(acurl u) + fu=f InQ=Q UQT, (1.4)

which is derived from discretizing a time-dependent Maxwell system in which the
magnetic field is eliminated. Here for simplicity we assume f € H(div;2). If pos-
itive piecewise constant parameters €, o and p represent the electric permeability,
conductivity and magnetic permeability of the medium respectively, then o = p~!
and 8 = eAt™2 4+ o At~!. Due to the interface, the following jump conditions are
imposed for the electrical field u® at the interface:

+

[uxnjr:=u""xXxn—u" xn=0, (1.5a)

[acurl u x n]p ;= atcurl u” xn—a  curl u™ x n =0, (1.5b)

[Bu-n]r :=pTut-n—B"u -n=0. (1.5¢)
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In the problem above, 3 has a similar physical meaning to that in the H' interface
problem, for example, to represent the electric conductivity. In addition, the con-
dition (1.5a) comes from the tangential continuity of electrical fields. As acurlu
describes the temporal change of magnetic fields, the condition (1.5b) is related
to the tangential continuity of magnetic fields. In fact, such physical relations are
naturally encoded in a de Rham complex, see the discussion in Section 3.

Electromagnetic interface problems are of great importance due to a large variety
of science and engineering applications. Typical examples include electromagnetic
motors and actuators involving metal-air or metal-metal interface 22:4®
magnetic inverse scattering *7° that use electromagnetic waves to detect objection.
Solving the H(curl) interface problem with optimal convergence is a challenging
goal that conventional unfitted-mesh methods fail to meet(e.g., see the discussion
in Section 1.2), and trying to overcome this difficulty is the main motivation for the
present research.

For only the purpose of completeness, the H(div) interface problem is given by

and electro-

—Vdiv(u)+au=f inQ uUQT, (1.6)
with £ € H(curl; Q), subject to a certain boundary condition on 92 and the jump
conditions

[u-njr:=u"-n—-u -n=0, (1.7a)

[cux n]r :=a"u’ xn—a u” xn=0, (1.7b)
[div(u)]r : = div(u™) — div(u™) = 0. (1.7¢)

The system comes from a mixed finite element method with a gradient formula-
tion 6. The related H(div) interface problem and H(div)-immersed element have
been discussed in Ref. 59, 68 and thus will not be the focus of this work. The
parameter « here is inherited from the H(curl) case.

1.2. Challenges of electromagnetic interface problems on unfitted
meshes

For conforming finite element methods (FEMSs) to perform optimally, the mesh
has to fit or approximate the interface geometry “well enough”. However, an effi-
cient high-quality 3D mesh generation itself remains a challenging problem, which is
particularly expensive for complicated geometries (see e.g., Chapter 5.6 in Ref. 73).
A promising solution, to alleviate the difficulty in mesh generation, is to generate
a cheap background unfitted mesh, and then to further triangulate those elements
cut by the interface *!. The modification is highly efficient since this extra proce-
dure only needs to be done locally around the interface. However, this approach in
general cannot yield shape-regular elements near the interface; instead the shape
regularity of triangulation is relaxed to the maximum angle condition. The interpo-
lation estimates based on the maximum angle condition have been widely studied
for Lagrange elements , Raviart-Thomas elements 17, and 3D Nédélec elements 2°.
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This approach is very successful in the two-dimensional (2D) case “° as an admissi-
ble local triangulation satisfying the maximum angle condition always exists for a
shape-regular background mesh, e.g., see Lemma 3.1 in Ref. 29 and Proposition 2.4
in Ref. 37. Nevertheless, in the 3D case, these locally re-meshed triangulations may
not form a globally admissible mesh, as it may not necessarily satisfy the Delaunay
property and/or the maximum angle condition due to the existence of slivers ™.

To overcome the difficulty of 3D mesh generation, Ref. 37 proposed a novel
method, which uses polyhedra as interface-fitted elements cut from a background
Cartesian mesh, rather than to further triangulate to obtain a tetrahedral mesh.
To handle the discretization on polyhedra, a virtual element method (VEM) '* is
used. In fact, H(curl) virtual element spaces have been constructed and applied
to Maxwell’s equations in Ref. 17, 15, 16, 19. However, the analysis for H(curl)
problems is quite a different story. Some more recent error analysis for VEM, e.g.,
the ones developed in Ref. 18, 23, 27, cannot be directly used to obtain even optimal
error estimates, and some more delicate techniques are needed on an ad hoc basis,
e.g.,Ref. 17, 30, 15. For interface problems, an extra layer of difficulty is to make
error bounds robust with respect to potential anisotropic element shapes. In Ref. 27,
a more rigorous analysis is given on anisotropic elements generated from Cartesian
meshes cut by the interface for the 2D H'! case.

Meanwhile, on unfitted meshes, another direction to circumvent the mesh gen-
eration issue is to modify finite element (FE) spaces such that the new spaces can
capture the jump behaviors in an optimal sense. There have been extensive works
in this direction including immersed finite element (IFE) methods *"*°2 CutFEM

21,26,77,67,72 ' multiscale FEMs %3 and so on, which are

or Nitsche’s penalty methods
widely applied to various interface problems. We also refer readers to FDTD meth-
ods 3 based on finite difference formulation for Maxwell’s equations with material
interfaces. For almost all the unfitted-mesh methods in the literature, the FE space
modification is usually applied element-wise or piecewise relative to the interface.
Thus, this practice results in discontinuities across interface elements’ non-interface
boundaries or at the interface. Such non-conformity can be handled by penalties
on element boundaries to impose continuity such as in the IFE methods °1:%%71
or on the interface itself to impose jump conditions such as the Nitsche’s meth-
ods 21:26.77.67.72 \ith suitable penalties, robust optimal convergence rates can be
indeed obtained for the H'-type interface problems (1.2), but to the authors’ best
knowledge, not the considered electromagnetic interface problem (1.4).

Compared with the analysis for H! problems, the most drastic difference
stems from the underlying Sobolev space H*(curl; ). In particular, for many non-
conforming and discontinuous Galerkin (dG)-type methods, one needs to estimate
the penalty term which, by the standard techniques (e.g., see Lemma 5.52 in Ref.
75), leads to estimates as follows

h 2 = wpullpary S ATl ewrt K) (1.8)

where 7 is a certain projection operator on a face F' of an element K. The order in
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(1.8) implies that even a moderate regularity s = 1 yields no approximation order
due to the presence of a penalty/stabilization term in the form of h~! / plun <
n| - [vy, x n]ds. For standard dG methods, the work in Ref. 63, 62 can circumvent
the suboptimality, and the analysis relies on a H(curl)-conforming subspace of the
broken dG space on tetrahedral meshes. However, for unfitted-mesh methods for
interface problems in the literature, this problem becomes more severe, since such a
conforming subspace may not exist. Numerically, the loss of convergence has been
observed and reported in a series of work 313257 for the H(curl) interface problem.
In Section 7.2, we also present one numerical example to show that a penalty-type
IFE method cannot achieve optimal convergence. So we believe that this difficulty
is essential rather than caused by the limitation of analysis techniques.

The scaling factor h~! in this essential issue is commonly used for stabilization
in dG methods, but shows to be too “strong” for the space H!(curl; ). In fact, for
a Lipschitz domain D, it is well-known that the trace of H'(D) is in H'Y/2(0D).
While for H(curl; D), the tangential trace is merely in H~'/2(div; 8D), which should
lead to different scaling factors for the stabilization terms on faces. Here we refer
readers to Ref. 24 for the analysis of the relation between the scaling factor of a
non-conforming method and function’s regularity, and more recently a weighted
Sobolev space treatment '2. In summary, the scaling factor, which is traditionally
viewed to be strong enough to ensure stability for H! problems, leads to suboptimal
convergence in non-conforming methods for H(curl) problems. On the contrary,
various conforming VEMs 13172919 "can use a correct scaling h in (1.8) to achieve
optimal convergence, but they are not easy to adapt to 3D anisotropic meshes. More
recently in Ref. 54, the virtual element method for the 3D H'-interface problem is
analyzed under the setting of anisotropic meshes near the interface.

In conclusion, developing unfitted-mesh methods for the H(curl) interface prob-
lem is much more challenging than its H' counterpart. For non-matching mesh
methods, some work can obtain optimal convergence under the usual H'(curl)-
regularity by making a certain assumption of meshes being coupled at the interface,
see Ref. 64, 39. For many unfitted-mesh methods, the meshes or spaces are generally
completely broken, then at least the H?-regularity has to be assumed to achieve
optimal convergence, e.g., see Ref. 20, 72. In Ref. 57 for the 2D case and Ref. 34
for the 3D case, Petrov-Galerkin methods are developed that can achieve optimal
convergence, but results in a non-symmetric scheme. A robust optimal convergence
for VEM is established in Ref. 29, but it relies on a “virtual” triangulation satisfy-
ing the maximum angle condition, which may not be available in 3D. Therefore, to
our best knowledge, currently there seems no satisfactory methodology for the 3D
H(curl) interface problem considered.

1.3. A Nowvel Method

To develop unfitted-mesh methods for the H(curl) interface problem, based on
the discussion above, it is preferable to use a conforming space. In the meantime,
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this space must admit sufficient approximation capabilities robust with respect to
the anisotropy of subelements. This consideration motivates us to combine the con-
formity of virtual element spaces and the approximation capabilities of IFE spaces.
In our recent work 3°, we have successfully realized this idea for the 2D case, which
is referred to as immersed virtual element (IVE) methods.

The fundamental idea is to impose local PDEs on interface elements to en-
force both conformity and jump condition of which the solutions are used as the
spaces for discretization. The IVE spaces can be understood as a special family of
H', H(curl) and H(div) virtual element spaces 141%:16:17
cients. For the H' case, it is also exactly the space of special FEMs by Babuska et
al. 1011 for a simple 1D case, and it becomes the multiscale FE space *® for higher
dimensional cases where the local PDEs are solved on sub-grids. The similar idea
was also employed in the enriched IFE method 2. The proposed IVE discretization
follows the meta-framework of VEM: the local PDEs need not be solved exactly,
certain projections are computed instead with sufficient approximation capability to
capture the jump conditions. It can successfully yield optimal convergence rates for
the H(curl) interface problem, which has been rigorously proved in the 2D case 3°.
In this work, we focus on the development of the IVE spaces, the scheme, and the
implementation in the 3D case. We leave the theoretical part to another upcoming
work as a rigorous error analysis involves much more technicalities in 3D and is not
a trivial generalization of that in 2D.

Developing 3D IVE spaces is significantly more complicated than the 2D case,
especially for the H(curl) space. An immediate question is how to design appro-

with discontinuous coeffi-

priate div-curl systems as local problems with discontinuous coefficients that have
a rigorous well-posedness. Here, special attention must also be paid to designing
the local problems such that their solutions have computable projections to IFE
spaces. The key is to modify the source terms for the local problems and to con-
struct certain weighted projections with regard to the weights as Hodge star oper-
ators. The second issue is to design suitable trace spaces on element boundaries,
in which the functions serve as the boundary conditions for those local problems.
The trace spaces need to provide sufficient and robust approximation properties. In
the 2D case, the boundary space consists of piecewise constants or linear functions
on each edge, the simpleness of which attributes to the trivial geometry of the el-
ement boundaries, see Ref. 14, 27, 30. However, in the 3D case, it becomes much
more obscure. For the classical virtual spaces 14151617 the trace spaces are gener-
ally formulated by solutions of some extra 2D local problems defined on polygonal
faces. In this work, we propose a rather different yet simpler approach: to use the
standard FE spaces defined on a 2D triangulation satisfying the maximum angle
condition on each element face. Such a triangulation not only benefits the robust
approximation property due to the maximum angle condition, but also facilitates
the code development leading to an efficient implementation with suitable data
structures. In summary, on the boundary faces, we opt for an interface-fitted 2D
triangulation and use local problems to extend the shape functions to the interior of
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each interface element. Hence, the present research is, in fact, a combination of the
three classical methodologies: VEM, IFE and FEM, towards solving the challenging
electromagnetic interface problem efficiently.

Although our focus is on electromagnetic interface problems, we shall develop a
systematic framework for all the H', H(curl) and H(div) interface problems con-
tributing to a solid mathematical foundation. They are connected by the following
de Rham complex, and are shown to have the usual nodal, edge, and face degrees
of freedom (DoF's), through which both the exact sequence and the commutative
property can be established.

R —=% H2(B;T) =24 H(curl, o, 8; T5) —<% H(div, o Tr) —2 HY(T,) —— 0

lf:: lfz lf,f ln%
R — v grad \' curl v ’]: div On 0
(1.9)
Another major challenge for 3D interface problems is an appropriate fast solver.
Multigrid methods are widely used, and we refer readers to Ref. 86 for FEM and
Ref. 37 for VEM, both of which study the H'-interface problem. For H(curl) equa-
tions, the fast solvers are even more challenging 8750 due to the non-trivial kernel
space of the curl operator, which is another motivation to lay out the de Rham com-
plex (1.9) for the proposed VEM spaces. In this work, we generalize multigrid-based
Hiptmair-Xu (HX) preconditioner 5938 for regular H(curl) problem to the interface
case. Moreover, for fitted mesh methods, the condition numbers may still suffer from
the possible anisotropic element shapes, even though the error bounds are robust.
In Ref. 86, the DoF's near the interface and in the background mesh are split to
form “fine-coarse” block matrices, thus an optimal two-level solver is developed. In
this paper, a block diagonal smoother is proposed to handle the anisotropic element
shape near the interface, similar to the practice in Ref. 86. To our best knowledge,
this is the first research towards applying the HX preconditioner to VEM, and also
the first fast solver for unfitted-mesh methods for solving electromagnetic interface
problems. Numerical results demonstrate that the solver is robust with respect to
both the mesh size and the shape of small-cutting elements.
This article has additional 6 sections. In the next section, we introduce the
meshes, focusing especially on the element boundary triangulation. In Section 3, we
describe the desired Sobolev spaces encoding jump conditions that are to be approx-

imated. In Sections 4 and 5, we introduce IFE spaces and IVE spaces, respectively.
In Section 6, we describe the computation scheme, fast solvers, and implementation
aspects. In the last section, we present a group of numerical experiments.

2. Meshes

In this article, we focus on a given interface-independent and shape-regular tetra-
hedral mesh of €2, but the proposed method can be also adapted to any Cartesian
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cubic meshes. This tetrahedral mesh is referred to as the background mesh, and
is denoted by 7. If an element in 7;, intersects the interface, then it is called an
interface element, or a non-interface element otherwise. The collection of interface
elements is denoted as 7,i. For each K € 7%, we denote ' = 'N K. Let T, be the
set of non-interface elements. All elements are considered as open sets.

One of the critical ingredients to formulate the H', H(curl) and H(div) local
interface problems is to impose appropriate boundary conditions on element bound-
ary. Different from the prevailing approach in the literature, the authors in Ref. 37
proposes a novel approach by using exclusively square and triangular faces in in-
terface polyhedra. In Ref. 37, a Delaunay triangulation routine is called for the
nodes in the background mesh, interface nodes, and some added vertices near the
interface, then the triangular faces are extracted for their corresponding polyhedra.
In this work, similar to the practice in Ref. 37, standard FE functions on a 2D
triangulation of any given element face are used as the boundary conditions. Hence,
we make a fundamental assumption called interface fitted boundary triangulation:

(A) For each interface element K, each of its face admits a triangulation satis-
fying the maximum angle condition. The triangles are formed by only the
vertices of K and/or the cutting points of the original interface, i.e., there
are no newly-added interior vertices to form the edges. If a face is cut by the
interface, then this triangulation must be fitted to the interface in the sense
that the curve (the intersection of the face and interface) is approximated
by an edge of this triangulation with error in the order of O(h%).

We illustrate the Assumption A in Figure 2.1: each face of an interface element
is partitioned into multiple triangles by the newly added edges including the one
connecting the cutting points (red points in the figure). It can be understood that
a local 2D fitted mesh satisfying the maximum angle condition is generated around
the interface but only on faces. Although, as aforementioned in the introduction,
generating a 3D interface-fitted mesh may be difficult or even impossible in certain
situations, it is much easier to generate a 2D interface-fitted mesh. In particular,
since the considered original background tetrahedral meshes only have triangular
faces, the boundary triangulation with the maximum angle condition is always guar-
anteed by Lemma 3.1 in Ref. 29. See, for example, the left plot in Figure 2.1 if the
element is cut by the interface only once. If cubic meshes are used, then Proposition
2.4 in Ref. 37 guarantees an admissible boundary triangulation. But unlike Ref. 37
where the element is divided into two polyhedrons, here the cut tetrahedron is still
treated as one element with more than 4 triangular faces.

We highlight that the interface fitted boundary triangulation is able to link the
fitted 2D and unfitted 3D meshes, and also bridges the standard 2D FE spaces and
3D virtual element spaces. Our previous work in the 2D case 2° suggests that it is
also one of the keys to overcome suboptimal convergence caused by non-conforming
spaces for Maxwell’s equations, as well as help in anisotropic analysis for the virtual
spaces. In addition, the proposed boundary triangulation, in fact, greatly benefits the
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Fig. 2.1: Left: illustration of boundary triangulation of Assumption A. Middle: an
approximate plane Ff to IT'K. Right: 2D illustration of an element cut by the inter-
face with multiple times.

computation. One of the difficult aspects of implementing polytopal finite element
approximation is the ever-changing number of DoF's in an element. In our approach,
since only triangular faces are present in every interface or non-interface element,
the assembling can be uniformly handled fixed-width matrices in the face-oriented
data structure, please refer to Section 6.4 for details, see also Ref. 37, 13 for a
face-based approach.

Another advantage of the proposed method is the flexibility to handle com-
plex interface element geometry. Specifically, on elements that are cut by interface
with multiple times, e.g., see the right plot in Figure 2.1, the proposed IVE spaces
can be easily constructed as long as an admissible boundary triangulation can be
constructed.

3. Some Sobolev Spaces and Well-posedness

In this section, we describe a group of modified Sobolev spaces that incorporate
the interface conditions. Let us first recall some standard spaces. Given an open
subdomain D C 2, for s > 0, we let H*(D) be the standard scalar Sobolev space
and H*(D) := (H*(D))3. Now introduce

H?(curl; D) = {u € H*(D) : curl u € H*(D)}, (3.1a)

H?(div; D) = {u e H*(D) : divu € H*(D)}. (3.1b)
If DNT # (), we let D* = QF N D, and further let H*(UD*), H*(curl; UD¥) and
H*(div; UD%) consist of functions that belong to the corresponding spaces on each
D¥ but without any conditions on dD*.

Now, with the mesh 7;, we are ready to define the interface-encoded Sobolev
spaces:

H%(B:;Th) =HY(Q) N {u e H*(UK®) : BVu € H(div; K), VK € T},
(3.2a)
H'(curl, a, 8; Tp) = H(curl; Q) N {u € H' (curl; UK®) : fu € H(div; K),
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acurl u € H(curl; K), VK € 7,}, (3.2b)

H'(div, o; T5) = H(div; Q) N {u € H'(div;UKF) : au € H(curl; K),
divu € HY(K), VK € T}, (3.2¢)
HYT,) =L*(Q)n{uec HYK), VK € Tp}. (3.2d)

Note that, on a non-interface element K, the conditions are trivial since they are
just consequences of H2(K), H!(curl; K) and H!(div; K). On an interface element
K those conditions exactly encode both the conformity and interface information.
To see the relation more clearly, we let H2(8; K), H! (curl, o, 8; K), H (div, o; K)
and H'(K) be the local spaces on K of their global counterparts in (3.2). The
spaces above are just constructed so that the following diagram is well-defined:

R —=— H2(8;K) —— H!(curl, o, 8; K) —2L H(div, a; K) 2% HY(K) —— 0
5 lﬁ [ s
0+—— L3(K) «  H(iv;K) « H(cuwh K) «+Y— HYK) <R
(3.3)
In Diagram (3.3), « and S could be understood as Hodge star operators mapping
k-forms to (3 — k)-forms for k = 2,1, respectively. Take 8 : H!(curl, o, 8; K) —
H(div; K) as an example. A function u in H!(curl, o, 8; K) can be thought of as a
vector proxy of a 1-form. Then fu € H(div; K) is a 2-form. The jump conditions
(1.5) on the interface are from the continuity of the mapped forms. Construction of
the desired virtual spaces is to mimic this diagram in the discretized level.

In the following discussion, given any face F' in the mesh, we shall denote the
tangential component of u by u”|p for admissible u defined in the bulk w such that
F C 0w, and we will drop | if there is no danger of causing confusion. In addition,
we will also frequently use the 2D rotation operator denoted by roty on F. Let Vg
denote the surface gradient. Then, for a function ¢ defined on F, rotp is defined in
the distributional sense such that

(rotr @, v)p := (p, Vrv x n)p, Yov e Hy(F). (3.4)
For each subdomain w C 2, and ¢ defined on dw, roty,, ¢ can be defined similarly,
(rotow @, V)ow = (¢, VEv X n)g,, Vv H'(w), (3.5)

while it can be verified that rots,, ¢|r = rotr ¢ when rotg,, ¢ € L?(w). Here (-, )5,
denotes the usual pairing between H~/2(0w)-H'/?(0w), and (-, ) is defined sim-
ilarly for F' C Ow. In particular, the well-known formula states

curlu-np =rotpu, forue H(cwl;w), on F C dw, (3.6)

where np is the exterior unit normal vector of F' with respect to w.

Note that the proposed global problems as well as the local problems all in-
volve discontinuous coefficients. In order to pursue a rigorous definition of the IVE
spaces, we discuss the well-posedness of some div-curl systems with discontinuous
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coefficients. The systems with constant coefficients are discussed in Ref. 5, and the
results with general coefficients can be found in Ref. 81, 82, 49. But here we present
more detailed analysis to show that the constants in the a priori estimates are
independent of interface location.

Lemma 3.1. Let w be a Lipschitz polyhedral domain which is simply-connected,
let an interface v separate w into wr, and define a piecewise constant function
b=0b* >0 in w*. For the data functions f € H(div;w) Nker(div), h € L?(w) and
g € H-Y2(dw) such that the compatibility condition holds:

/hdsc — (9. 1)00, (3.7)

then the following problem admits a unique solution ¢ € H(div;w) and bp €
H(curl;w)

curl(bp) =1, div(p)=h inw, ¢-n=g ondw. (3.8)
If additionally g € L?(0w), the stability result holds:
bunin (1 + bmax) ™ 1l 22 (@) < Coollfllz2(w) + 1Bl 22) + lgllz2(00)), (3.9)

where byin = min{b™, b}, bpax = max{b~,b"} and the constant C,, only depends
on the geometry of w. If w is star-convez with respect to a ball of the radius p,,, then
C = C(hy,/ps) where hy, is the diameter of w. Furthermore, if g € HY?(0w), w
is convez, and v is a closed surface that is sufficient smooth and does not intersect
the boundary, then ¢ € H' (Uw®).

Proof. Since w is assumed to be simply-connected, by Theorem 1.1 in Ref. 82, we
know the solution ¢ to (3.8) admits the following decomposition

@ =0b0"'Vu+ curlw (3.10)

where v is the solution to the equation
div(b™'Vv)=h inw, b 'Vu-n=g on dw, / vdz =0, (3.11)

and w is the solution to the equation
curllbcurlw) =f inw, diviw)=0 inw, wxn=0 on Jdw. (3.12)

Here (3.11) is a standard well-posed elliptic interface problem and the well-posedness
of (3.12) can be found in Ref. 81.

To show (3.9), based on (3.10), we show the a-priori estimates for both v and
w in terms of data. Testing (3.11) by v and using integration by parts we have

/b_1Vv-Vvdm:—/hvdx+/ guds. (3.13)
w w Ow
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It implies, with Poincaré inequality and the trace inequality for v, that

1672V 0)| 720y < Il 2y lIvll2w) + 9l L2 0w V]l 22 (o)

(3.14)
S Pllz2w) + llgllz2 @) VYl L2 (w) -

Cancelling one || V| 12(,) in (3.14) yields the estimate: byl | Vol 2wy S ||l 2 w)+
91|22 (o) As for w, we note that w € H(curl) N H(div) with div(w) = 0, and thus
we can apply Corollary 3.51 in Ref. 75 to obtain

W2y S || curl WLz + [[W X 0| 1290 = || curl W|| 2 (.- (3.15)

Then, testing (3.12) with w, applying the integration by parts and using (3.15), we
have

bmin” CU.I‘lW”Lz(w) S ||f||L2(w) (316)

Combining the estimates above, we have (3.9), and the dependence of the generic
constants follows from the constants in the trace and Poincaré inequalities used
above, see Ref. 23.

For g € H'/? (Ow), convex w, and closed smooth v not intersecting the boundary,
there certainly holds that v € H?(Uw®) and thus Vo € H!(Uw®) 6966, As for w,
following the argument of Theorem 5.2 in Ref. 66, we construct w € H'(w) such
that curl(w) = £, div(w) = 0 and W - n = 0 due to div(f) = 0, see Theorem 3.8 in
Ref. 50. Then, we have curl(bcurlw — w) = 0 in w and (bcurlw — w) -n = 0 and
Ow, and conclude by exact sequence that bcurlw — w = V¢ for some ¢ € H'(w)
such that

div(b"'V¢) = —div(b~'W) in wF,
[¢ly =0 on,
b~'Vg- nj, = [ tw- nj, on 1,
V¢ -n=0, ondw.
Note that this is an interface problem with the non-homogeneous flux jump condi-
tion. As div(b~'W|,+) € L?(w*) and W - n|, € H/?(v), further by the assumption
that v does not intersect dw, we have ¢ € H?(Uw*) and thus V¢ € H'(Uw?)

by Ref. 42. Therefore, we conclude curlw € H!(Uw?), and ¢ € H!(Uw™T) by the
decomposition (3.10). O

Lemma 3.2. Given a simple-connected domain w with Lipschitz boundary, let an
interface v separates w into w* and define a piecewise constant function a = a* >
0 in wr. For the data functions £ € H(div;w) Nker(div), h € L%(w) and g €
H~/2(0w) such that the compatibility condition holds:

(f-n,0)9, = (rotge(n x g),v)s. Vv € H (w), (3.17)
then the following problem admits a solution ¢ € H(curl;w) and ap € H(div;w)

curl(p) =f, div(ap) =h inw, @xn=g, ondw. (3.18)
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Furthermore, if g € L?(0w), the following a-priori estimate holds:

min(1 4 amax) " el 20w S €l L2(w) + 12l L2(0) + 18] L2(50)s (3.19)

where ayin = min{a™,a’}, amax = max{a~,a’} and the constant C,, only depends
the geometry of w. If w is star-convex, then Cy, = C(hy/pw)-

Proof. As w is assumed to be simply-connected, by Theorem 1.2 in Ref. 82, the
solution ¢ to (3.18) has the following decomposition:

¢ =Vu+a 'curl(w), (3.20)
where v is the solution of
div(eVv) =h inw, v=0 on dw, (3.21)
and w is the solution of
curl(a P curlw) = f, div(w) =0 inw,

-1

(3.22)
a curllw)xn=g, w-n=0, on Jw.

By the similar argument to Lemma 3.1 with the last remark in Ref. 45, we have
amin [ V0l 20y S 12|22 (@)

sl Ul (W) 1200y S 1€ £2(w0) + 1181 £2(00)

which leads to the desired estimate by (3.20). |

(3.23)

Remark 3.1. The key of the a priori estimates of (3.9) and (3.19) is the indepen-
dence with respect to the interface location. The result of Corollary 3.51 in Ref. 75
employs a compactness argument for curl-div systems on homogeneous media. One
may indeed use this technique to obtain the similar estimates for interface problems,
which, however, may lead to constants depending on the interface location.

Lemma 3.3. Given a simple-connected domain w with Lipschitz boundary, let an
interface v separates w into wt and define two piecewise constant functions a =
a*t >0 and b=0b* > 0 in w*. For the data functions £ € H(div;w) Nker(div) and
g € H(rot; 0w) such that

/ rotg, gds = 0. (3.24)
dw
Then, the equation

curl(acurlp) =f, div(bp) =0, ¢ =g, (3.25)

admits a unique solution ¢ satisfying ¢ € H(curl;w), bp € H(div;w), acurlp €
H(curl;w).
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Proof. We first consider a potential 1) such that
curl(ayp) =f, div(¢p) =0, inw, 1 -n=rotyg,g, on dw. (3.26)

The condition (3.24) together with Lemma 3.1 shows the unique existence of ).
Then, it is easy to see that (3.25) can be equivalently written as

curl(p) =1, div(bp) =0 inw, ¢ =g on dw. (3.27)

Note that the boundary condition in (3.27) is equivalent to ¢ X n = g x n. As
n x (g x n) = g, with integration by parts, we have for any v € H!(w),

[ (o as— [

g(Vu xn)ds = / (rota, g)vds.  (3.28)
ow

ow

Then, the boundary condition in (3.26) shows that the compatibility condition in
(3.17) indeed holds. Thus, the well-posedness follows from Lemma 3.2. O

At last, we present the complex formed by the new globally-defined spaces
of (3.2).

Lemma 3.4. The following sequence is a complex:

R = H2(3;Th) grad H!(curl, o, 3; Tn) curl, H(div, a; Tr) div, HY(T;) — 0.
(3.29)
When  is a convex polyhedron, and the interface is also sufficiently smooth not
intersecting 0L, it is also exact.

Proof.

We first verify that VH?(B;T;,) C ker(curl) N HY(curl, o, 3; 7). This is true
due to the jump conditions associated with VH?2(3;7), and curl VH?(5;T5,) = 0.
Similarly, curl H! (curl, o, 3; Tp,) C ker(div)NH(div, a; T3,) due to the jump condition
associated with H(curl, a, 3; Ty,), and the fact div curl = 0. Finally, it is trivial that
div H(div, o; ) € H*(T3). These results together finish the proof.

We then verify the exactness. We first show VH?2(8;7,) = ker(curl) N
H!(curl, o, B; Tp,). Given each u € ker(curl) "H!(curl, o, 8; T1,), by the classic exact
sequence, there exists u € H'(Q) such that Vu = u, and by the jump conditions
associated with H'(curl, o, 8; T ) we have u also satisfies those of H?(3;7,). In ad-
dition, on each element K, Vu = u € H'(UK®) implies u € H?(UK®). Therefore,
u € H*(B;Th).

We then verify curl H! (curl, o, 8; 75,) = ker(div) N H!(div, o; T3,). Given a func-
tion u € ker(div) N H!(div, o; Tp,), we consider a function ¢ € H(div; ) satisfying

curl (B7'p) =u, div(p) =0 inQ, ¢-n=0 on I (3.30)

By Lemma 3.1 with w = Q, vy =T and b = 7!, we have this system being well-
defined with 371 € H(curl; ) and ¢ € Hy(div; ). Using Lemma 3.1 again, by the
geometric condition of  and I', we also have ¢ € H'(UQ¥). Thus, we obtain v :=
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B~ € H(curl; Q) N HY(UQF) and Bv € H(div; Q). Furthermore, on each element
K, u € H!(div; K*) implies v € H!(curl; K*). In addition, [acurl v x n]px = 0 is
trivial by the property of u.

We next show div H! (div, a; 7,) = H(T). Given each f € H'(T},). We consider
a ¢ satisfying

div(a™'Ve) = f, in Q, (3.31a)
[¢lr =0, [a"'V¢-nlr=0, onT (3.31b)
¢ =0 on 9. (3.31c)

By the elliptic regularity ®, we have ¢ € H2(UQT), and let w = o~ 'V¢ € H (UQT).
On each element K, as f € H'(UK®), we have w € H!(div; K*). At last, (3.31b)
leads to [aw x n]px = 0 and [w - n]px = 0.

Remark 3.2. The classic de Rham complex with higher smoothness is given by
Ref. 50, 83:

grad
—_—

R —— H%(Q) H! (curl; Q) -5 HY(Q) % 12(Q) —— 0. (3.32)

We note that this sequence can be simply revised to be

R —= H2(Q) 2% H(curl; Q) — H(div; Q) —2V5 H1(Q) —— 0.
(3.33)
The revision can be understood immediately from ker(div) N H*(Q2) = ker(div) N
H!(div; Q). The proposed new sequence (3.29) is a further generalization of (3.33)
in which the jump information is incorporated. Finite element counterparts of (3.32)
and (3.33) can be found in Ref. 36. Virtual element discretization of (3.29) will be
discussed in Section 5.5.

4. Immersed Finite Element Spaces

In this section, we present H', H(curl) and H(div) IFE functions. The basis
functions are some piecewise polynomials satisfying the jump conditions in certain
sense to ensure the local approximation property. Particularly, the H! IFE space
has been developed in Ref. 69, but this is the first time that H(curl) and H(div) IFE
spaces are systematically developed. Different from all the IFE spaces in literature,
the spaces constructed here serve the purpose for approximation under the VEM
framework, thus are not limited by the constraint that DoFs need to be imposed
on their associated geometric objects. Instead, the DoF's are handled by the IVE
spaces discussed in Section 5. To facilitate a simple presentation, we shall focus
on the case that elements are only cut by the interface once, i.e., each edge has
at most one cutting point, which is a reasonable assumption employed by many
works in the literature °6:°8:69 In fact, the interface elements may generally satisfy
this assumption if the background mesh is sufficiently fine, namely the interface is
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locally flat enough. We also remark that IFE spaces can be constructed for more
complicated interface element geometry violating this assumption, which we leave
to Appendix A for this general case.

We need a linear approximation to the interface portion I', denoted by I'X. For
example, in Ref. 56 FhK is constructed as a plane passing through the three cutting
points forming a triangle satisfying the maximum angle condition, see the middle
plot in Figure 2.1 for an illustration. The following lemma essentially acknowledges
this setting. Another widely-used linear approximation approach is to use I'j, :
on(x) = 0 with ¢, being the linearization of the sign-distance function ¢ of I' on
the same mesh. These choices indicate that the interface can be well-resolved by a
mesh that is sufficiently fine.

Lemma 4.1. Suppose the mesh is sufficiently fine such that h < hg for a fixed
threshold ho > 0, then on each interface element K € T,!, there exist constants Cr
independent of the interface location and mesh size hx such that for every point
X € T'K with its orthogonal projection X+ onto F}If,

IX — X < Crh. (4.1)

As the Maxwell equations generally have low regularity near the interface, we
only consider the lowest order methods, and thus the O(h?) approximation geo-
metrical accuracy in (4.1) is sufficient. If high-order methods are desired, one needs
to either resolve the interface exactly by using the blending element techniques %3
or approximate the interface by polynomials of order at least 2p — 1 7. It is also
worthwhile to mention a recent work of VEM 47 for 2D elements with curved edges.

Let F,If partition K into K}:Lt, and let o, and B be the piecewise constant

functions whose jumps are now across F,If instead of I'; namely

oy — {a— in K, g — {5— in K-, 42)

. + . +
at in K}, Bt in K.

But, here we shall postpone the specific parameters «j and 5 in the PDEs to
a later discussion, and focus on a generic piecewise constant function denoted as
¢, to present the IFE functions. In the following discussion, Pj(K) denotes the
polynomial space with degree k on K. Let fix be the normal vector to I'KX that is
approximately in the same direction with ng to I'. Define two piecewise constant
vector spaces:

Pi(cn; K) ={c:c* = C|Khi € [Po(KE)?, ¢ € H(curl; K), cne € H(div; K)},
(4.3a)

Pg(ch;K) ={c:ct = C|K’i € [Po(KE)?, ¢ € H(div; K), che € H(curl; K)}.
(4.3b)

The super scripts e and f emphasize that the two spaces are, respectively, in the
edge and face spaces (1-form and 2-form in the language of differential forms);
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namely
P! (cp; K) € HY(div, ¢p; K)Nker(div) and P§(cp; K) € H (curl, ¢}, ¢p; K )Nker(curl),

where ¢}, may be any arbitrary piecewise constant due to the curl-free property of
P§(cp; K). Hence, for the parameters oy, and 5, there particularly holds

Pi(Bn; K) C Hl(curl, ap, Br; K)  and P(J;(ah;K) - Hl(div,ozh;K)7

which give certain reasonable approximations to these two desired Sobolev spaces.
We shall see that these two spaces are the fundamental ingredients to construct all
the H', H(curl) and H(div) IFE functions, as well as to construct and project the
IVE spaces.

Furthermore, from the definition, it is not hard to conclude the following relation

P (cn; K) ———= P} (c; 11 K). (4.4)
c}:l
Here the discontinuous coefficient ¢;, can be viewed as a Hodge star operator. This
perspective is the key for computing the projection of the proposed IVE spaces, see
Section 5.4.
In order to derive explicit formulas for the functions in the spaces (4.3), we
further let t}; and t% be the two orthonormal tangential unit vectors to ', and
denote the matrix T = [, tk, t%]. Then, we define the matrices:

100 00
ML =Tg 00| (Tx)" and ME™ =Tk [010| (Tx)T,  (4.5)
00¢ 001

where ¢ = ¢} /c; . Clearly, both M If(’ch and Mg“" are symmetric and positive defi-
nite. Thus, the spaces P§(cp; K) and P(J;(ch; K) can be rewritten as

Pi(cn; K) = {c et = c|K§7 ¢ =Mg®ct, ct e [PO(K}T)]B}, (4.6a)
Pl(cn; K) = {c et = c|K$, c” = MI"et, ¢t e [PO(K}J{)]B}. (4.6Db)

P(}; (cn; K) and P§(cp; K) are subspaces of the piecewise constant vector functions
(dimension 6). With the jump conditions as the constraints, it can be easily verified
that the dimension of both P(’; (cn; K) and P§(cp; K) is 3.

Now, we proceed to present the H', H(curl) and H(div) IFE functions. We
consider Pg (ap; K) and P§(bp; K), formed by two general positive piecewise con-
stant functions aj and by,. Then, all the H', H(curl) and H(div) IFE functions
with the general parameters a, and b, have simple formulas presented in Table 1
where X is any point on I'. One can directly verify that they belong to the cor-
responding Sobolev spaces and satisfy the associated jump conditions in the table.
Note that the normal jump condition in the H(curl) case and the tangential jump
condition in the H(div) case only hold at the single point xj instead of the entire
I‘hK . This does not violate the necessary continuities for these two spaces to be in
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H(curl; K) and H(div; K). Of course, different choices of xx lead to different spaces.
In addition, compared with the standard Lagrange, Nédélec, and Raviart-Thomas
elements, the only difference for their IFE counterparts is to replace the constant
vectors in [Py (K)]? by the vectors in Pg(ah; K) and P§(by; K), thus providing the
necessary piecewise constant approximation to fSVu, a curlu, and Su on interface
elements, respectively.

IFE spaces S (bn; K) S§ (an, by; K) Si(ah; K)
Dimension 4 6 A
Sobolev HY(K) H(curl; K) H(div; K)
spaces
Function b (x —xp) +¢ ax(x—xg)+b c(x—xK)+a
format b & P§(bn; K), aEPg(aMK), c € Po(K),
¢ € Po(K) b € P§(bn; K) a € P} (an; K)
[Vh Xﬁ]FK =0 [Vh'ﬁh"K =0
=0 ; K
Jump [vn]rx fan curl v, x Al =0 [anvi X Al = 0

conditions  [b,Vvy, - D]px =0 bV - Alx, =0 [divva]px =0

Table 1: IFE spaces, their dimensions, their function format, the corresponding
jump conditions and the Sobolev spaces to which they belong, where xx is any
point at FhK .

In addition, on each interface element, these spaces admit a local exact sequence
established in the following lemma.

Lemma 4.2. The following sequence is a complex and is exact:

R —= 8P (bp; K) 220 8¢ (ap, b K) — ST (a1 K) —3s Py(K) — 0.

(4.7)
Furthermore, the constant vector spaces Pg (ap; K) and P§(by; K), respectively, are
the curl-free and div-free subspaces of S (ap, bn; K) and S{L(ah; K):

P§(by; K) = grad S} (bp; K) = S§ (ap, bp; K) Nker(curl), (4.8a)
Pl (an; K) = curl S5, (an, by; K) = SI (an; K) Nker(div). (4.8b)
Proof. It can be verified directly. O

Remark 4.1. In computation, the IVE functions and their curls are projected
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to the constant spaces P§(8h; K) and PJ(cy; K). To ensure an optimal first or-
der convergence, the projections need not be to the full IFE spaces S} (8; K),
S¢ (an, Br; K) and Si(ﬁh; K). But these spaces will be useful in the computation
procedure of the projections.

To end this section, we show trace inequalities for piecewise constant IFE func-
tions. The key is the generic constant is independent of the location of interface.

Lemma 4.3. Given each interface element K and one of its face F, for every
ceP5(by; K) orce Pg(ah; K), there holds that

—1/2
lellzemy S P lel 2o, (4.9)

where the generic constant is independent of the location of interface but depends
on ap, or by.

Proof. By (4.5) and (4.6), we know that there is a matrix M with || M| < 1 such
that

le™ I = I Me*|| < lle*]. (4.10)

Without loss of generality, we only consider the case that F' intersects with the
interface and assume F' is cut into Fhi By geometry, it is not hard to see that
either there is a pyramid P C K,J{ which has the base F,j and height O(hg) or this

W

is true for the piece. Again, without loss of generality, we assume the former

case is true. Then, the standard trace inequality on P simply implies
—-1/2
et ey S A2 lIe N aer - (4.11)

As for the “—” piece, we apply the trace inequality on the entire element K with
(4.10) to obtain

_ —1/2) - —1/2 —

e lemy S hi e ey S b (e lz2qr-y + IMeTllagr) S lellza )
(4.12)

Combining (4.11) and (4.12), we have the desired estimate. ]

5. Immersed Virtual Element Spaces

It is generally not possible to construct conforming piecewise polynomial spaces
to the Sobolev spaces in (3.2). Traditionally, Lagrange, Nédélec and Raviart-Thomas
elements are conforming to H', H(curl) and H(div) spaces, yet they cannot provide
sufficient approximation when a mesh-cutting interface is present. The IFE spaces
introduced above can capture the jump information, but at the cost of losing the
conformity. In this section, we construct immersed virtual element (IVE) spaces
based on solutions to local interface problems. IVE spaces can be both conforming
and satisfy interface conditions perfectly. For a non-interface element K, the local
finite element space is simply defined as the linear polynomial space P;(K), the
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lowest order Nédélec space N'Do(K) 7, and the lowest order Raviart-Thomas space
RTo(K) 8.

Given an interface element K € 77f, we let Nx and £k be the collection of
all the nodes and edges in the triangulation of K. Note that the nodes include
the vertices in the background mesh and cutting points, and the edges include all
the sub-edges cut by the interface and newly-added edges. Then Fg denotes the
resulting triangular faces. Given a T" which may be a cube, square, tetrahedron
or triangle, we let N'Do(T') and RTo(T) be the first family of Nédélec polynomial
space and the Raviart-Thomas polynomial space of the lowest degree on T'. The
Lagrange space is simply the first-degree polynomial space P; (7).

Next, we also need two weighted projections onto the piecewise constant vector
spaces Pg(ch;K) and P§(cp; K) which will be used in the definition of the IVE
spaces as well as the computation:

I H(cwrl; K) — P§(cp; K), satisfying (5.1a)
/K cp I vy, - ppdx = /K chvh - Prdx,  Vpu € PG(en; K),

5 H(div; K) — PJ(cn; K), satisfying (5.1b)
/K cp IR vy, - pp dx = /K cnvh - prdx, Vpi € Pl(en; K).

The super-scripts, e and f, still emphasize the distinct Sobolev spaces, i.e., the
images of TIZ™ and TIL“ belong to H(curl; K) and H(div; K), respectively.

5.1. The H' IVE Space

We first consider the H' case. Given the boundary triangulation, we define the
boundary function space:

BZ(@K) = {’Uh S C(aK) : 'Uh|T S Pl(T), VT € .FK} (52)

Then, on an interface element K, the H' IVE space involving the discontinuous
coefficient S is defined as

th(K) = {Uh : BV € H(diV;K), V- (ﬁVvh) =0, 'Uh‘aK S BZ(BK)} (53)

Clearly V*(K) C H'(K). On the boundary 0K we use the continuous P; finite
element space on the body-fitted surface triangulation. In the interior we use -
harmonic extension so that the shape functions satisfy the jump conditions on the
interface.

The property of the nodal DoFs is given by the following lemma.

Lemma 5.1. The space V;*(K) has nodal DoFs {vy(z), z € Nk }.
Proof. First, v, € V;*(K) is uniquely determined by the boundary condition in

B;'(0K). The space Bj'(0K) has the nodal DoF's associated with the nodes in N .
So functions in V;*(K') are uniquely determined by their nodal values. O
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On any non-interface element, the standard Lagrange FE space, i.e., Py (K), is
used. Thus, with the nodal DoFs, we are able to define the global H!-conforming
IVE space as

Vit ={v, € H}(Q) : vl € VVI(K), VK € T}, and vp|x € P1(K), VK € T;"}.
(5.4)
Functions in V" are piecewise linear on the element boundary triangulation and in
general non-polynomial inside interface element, which is the key to capture both
the jump conditions and conformity.

Similar to the standard VEMs, the function values in the interior are not needed,
projections to certain spaces with approximation properties are computed instead.
In the following paragraph, we show how to compute H;ﬁh Vuy, for v, € VM(K).
For every py, € P§(B; K), by (4.4) there holds Srps € Pg(ﬁ;l; K) Cc H(div; K)n
ker(div). Then, the integration by parts shows

/ BhH%Bthh cppdx = / Voup - (Brpnr) dx = / vp(Brpn - n) ds, (5.5)
K K oK

of which the right-hand side is computable. The L? projection of v;, to Po(K) is not
computable by the definition of the current space. However, this is not needed as vy,
itself can be approximated by the formula in Table 1 using the gradient obtained
from (5.5). Denote this weighted H! projection by oy, the constant ¢ in Table 1
can be chosen such that f oK Uh = f ok Un- This constraint gives compactness, thus
a sufficient approximation for computing the right-hand side term to guarantee the
first order optimal convergence.

5.2. The H(curl) IVE Space
For the H(curl) case, the boundary space is defined as

B (0K) = {vy : vialr e NDo(T), VT € Fk, (vi-t)|c is continuous on each e € Ex }.
(5.6)

Each N'Dy(T) contains the 2D vector polynomials tangentially defined on the planar
78

)

B;,(0K) is a well-defined finite element space on its own, and has the DoFs of
fe vy - tds, e € Ex. With this boundary space, we first introduce an auxiliary
H(curl) IVE space:

triangle T'. By formulations from trace finite elements on triangulated surfaces

V§(K) = {v, € H(cul; K) : Bv;, € H(div; K), div(8vy) =0,
acurl vy, € H(curl; K), curlacurl vy, € Pg(ﬂ;l;K), v; € B (0K)}.
(5.7)

Here, o and 8 can be also understood as Hodge star operators exactly mimicking
the second and the third vertical mappings in the desired diagram (3.3) between
different Sobolev spaces.

The following lemma gives the well-posedness and DoF's of \foL(K ).
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Lemma 5.2. \N/'i(K) is unisolvent with respect to the DoFs { [ vy -tds, e € Ex}
and { [ Buvh - Prdx, pn € P§(Bn; K)}.

Proof. Let q; € Pg(ﬁ;l; K) and r, € Bf(0K) be some arbitrary data functions.
Let us formulate the following local interface problem arising from the definition in
(5.7):

curlacurl v, = qp, div(Bvy) =0, in K, v} =ry on JK. (5.8)

Note that the solutions v, of (5.8) form the space \foL(K) The well-posedness of
(5.8) is given by Lemma 3.3. It implies that the dimension of the solution space is
equal to the (finite) dimension of the space of possible data functions: the boundary
data function r;, which is uniquely determined by {fe ry -tds, e € Ex} and the
right-hand side qy € Pg (,6’;1; K) which has dimension 3. Therefore, the dimension
of solution space matches the DoFs count 3 4 |Ex| for this virtual space.

In the rest of the proof, it needs to be established that the given moments on
edges and element interior are indeed DoFs. To this end, it suffices to show that
a function with vanishing DoF's is trivial in this space. Noticing curl acurl vy €
Pg(ﬁ;l; K) = BnP5(Br; K) by (4.4), thus from the interior DoF's in Lemma 5.2 we
have

O:/ vy, -curl a curl vth:/ acurl vy, - curl vhdx—/ v}, - (acurl vy, x n)ds,
K K

oK
(5.9)
where we have used integration by parts in the second equality. As the edge moments
are zero, we know v; = 0. So, we have fK acurl vy, - curl v, dx = 0 which implies
curl v, = 0 as « is positive. In addition, by div(Svy) = 0 and the vanishing trace,
we derive from Lemma 3.2 that v, = 0. O

Similar to the classical VEM, both v; and curl v}, are not computable. But we
shall see that their weighted projections to the IFE spaces are computable. We first
address the projection of curlvj, which will be then used to develop a new IVE
space as a subspace of \72 that only has the edge DoF's.

By the Hodge star property (4.4), we argue that H{(’ah curl vy, defined in (5.1b)
is computable for any positive a. In particular, for each p;, € Pg(ah; K) we know
appn € H(curl; K) Nker(curl). Then, applying the projection H};’ah to curl vy, with
the integration by parts, we obtain

/ ahH{(’ah curlvy, - ppdx = / curlvy, - (appp) dx = / (v, x n)(appn)” ds.
K K oK

(5.10)
The right-hand side above is computable through only the edge DoFs fe vy - tds,

e € &k, since the boundary triangulation is known. In computation, HJ;{’O”L curl v,
provides a sufficient approximation order on elements intersecting the interface.



January 3, 2023 19:12 WSPC/INSTRUCTION FILE Hcurl 3d'm3as

Immersed VEM for electromagnetic interface problems in 3D 23

Now, we let S¢(ap,0; K) be the subspace of S¢(ap,bp; K) that has the fixed
b = 0 in Table 1. Namely, the functions in S¢ (as, 0; K) are just wj, = ax (x —xg),
a€ Pg (ap; K), and thus the space only has the dimension 3. Then, based on the
auxiliary space v;(K ), we introduce its subspace:

V§(K) = {v), € V§(K) :/ curl vy, - wy, dx = 0, Ywy, € S5(8, 1,0, K)}.  (5.11)
K

Clearly, V§(K) C vZ(K ), and the following lemma ensures that only the edge
DoF's are needed for the unisolvency of this subspace due to the extra constraint.

Lemma 5.3. V7§ (K) is unisolvent with respect to the edge DoFs { [ vy, -tds, e €
Ex}.

Proof. It suffices to show that this extra condition (5.11), in fact, makes the in-
terior DoF's fK Brvh - Prdx, pr € P§(Br; K) fixed thus not degrees of freedom
anymore. To see this, for each p, € P§(8n; K), we have Bypp, € Pg(ﬁ;l;K) and
div By, pr, = 0. Therefore, by the local exact sequence (4.7) and (4.4), there exists
wj, € Si(,@;l, 0; K) such that curl wy, = 8),pp,. Then, the integration by parts shows

/Bhvh'phdx:/Vh~cur1whdx:/Curlvh~whdxf/ vy - (wp xn)ds.
K K K 0K

@ (ID)

(5.12)
Note that (I) = 0 by the extra condition in the definition. For (II), v} € B (9K)
is also solely determined by the edge DoFs. Therefore, under the extra constraint,
the right-hand side of (5.12) is computable for every pair of p; and wy, as long as
the edge DoFs { [ v, - tds, e € Ex}, are given. O

For the new space V7, (K), the identity (5.12) also gives a simple formula for

computing H%’Bhvh:

/ ﬂhH;ﬁhvh cprdx = / Buvy - prdx = 7/ vi - (wy x n)ds, (5.13)
K K 0K

with wj, = (Brpr/2) X (X — xk) given by Table 1.

With the edge DoF's, we are able to define a global H(curl)-conforming space that
uses (5.23) on interface elements and standard Nédélec elements on non-interface
elements:

V§ = {v;, € H(curl) : vi,|x € VE(K), K € T and vy,|g € NDo(K), K € T;"}.
(5.14)

5.3. The H(div) IVE Space
For the H(div) case, the boundary function space is defined as

Bl (0K) = {vy : vn|r € Po(T), VT € Fx}. (5.15)
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Similar to the H(curl) space, let us define the IVE space in the following:
VI(K) = {vy € H(div; K) :div(vy) € Po(K), vy, -n|ox € Bl (OK),
avy, € H(ewrl; K), curl(avy,) = 0}.
Again, the discontinuous coefficient « serves as a Hodge star operator that is to

mimic the third vertical mapping in Diagram 3.3. The well-posedness and DoFs of
this space is given by the following lemma.

(5.16)

Lemma 5.4. V,]:(K) is unisolvent with respect to the DoF's {vy|p -np, F € Fi}.

Proof. We let ¢}, € Po(K) and 7y, € B£ (0K) be some arbitrary data functions for
the definition (5.16) satisfying the compatibility condition

/chdx:/ rp, ds. (5.17)
K 0K

Then, we consider the following div-curl system:
div(vy) =¢p, curlavy, =0 in K, and vp-n=r, on 0K (5.18)

whose solutions v}, form the space VZL (K). Due to the compatibility condition (5.17),
by Lemma 3.1 the system in (5.18) is well-posed and admits a unique solution v;, €
H(div; K) with avy, € H(curl; K). The dimension of Vﬁ(K) is just the dimension
of space of the independent data functions, |Fx|, where we note that ¢, does not
count as it is determined by 7y, from (5.17).

Next, to show that the given moments are indeed DoF's, we suppose they all
vanish, and thus ¢, = 7, = 0 in (5.18) which immediately implies v;, = 0 by
Lemma 3.1. D

Now, we discuss how to compute projections of the proposed H(div) IVE space.
The identity (5.17), in fact, yields a formula for computing div(vy):
div(vy) = |K|7! / vp, -nds (5.19)
oK
which is computable. As for v, itself, we then argue that Hf(’ahvh defined in (5.1b)
is always computable for any given positive ap,. Similar to (5.10), given each py €
Pg(ah; K), we have appy, € PS(agl; K). Then, there exists ¥, = (appn)-(x—xx) €
Sy (a,:l; K) such that Vi, = appp, and thus we can derive

/ ahl_,[];{’ahvh cppdx = / apvy - prdx = / vy, - Vb, dx
K K

K (5.20)
= —/ div(vy)vn dx+/ vy, -y ds
K oK
which is computable. In computation, a; in this space is set to a; as appn €

H(curl).
Thanks to the face DoFs, we can define a global H(div)-conforming space:
VI = {v) e H(div; Q) : vi, € VI(K), K € 7} and vi|x € RTo(K), K € T;"}.
(5.21)
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5.4. Some Comments and Alternative Definitions

The proposed H(curl) and H(div) IVE spaces above are exactly the extension
of the classical virtual spaces in literature '%15:16:13:17 t5 the case of discontinu-
ous coefficients. The modification also includes the source terms and the boundary
conditions of the local interface problems, by which the weighted projections are
computable.

The face triangulation and the associated standard FE space is critical for the
appropriate definition of the IVE spaces. Note that the 2D IVE spaces in Ref. 30
may not be developed on faces intersection with the interface, as jump conditions
on faces are quite obscure. Take the H! interface problem as example. Given a face
F, the desired jump information [V v - Ar g|r cannot be derived from [v]r and
[BVv - n|r, where V is the surface gradient on F' and Ar g is the normal vector to
I'N F but parallel to F. We refer readers to the derivation of the jump conditions
on interface edges in the 2D case 43 that has to introduce the derivative along the
normal direction of element boundary and thus adds much more complexity. Instead,
we use well-defined finite element spaces for an interface-fitted triangulation on the
boundary faces, which actually makes the theory and computation much simpler. In
addition, this approach can also provide sufficient approximation capabilities and
keep the DoF's. Furthermore, in the next section, we shall see that it can also benefit
implementation through the proposed data structure.

One may note that the definition of the IVE spaces above do not rely on the
assumption that the interface only cuts elements once. In fact, all the local problems
are automatically well-posed for almost arbitrary interface element configuration,
as long as the face triangulation exists. For example, they can be used on elements
shown in the right plot of Figure 2.1 (a 2D illustration). This very feature together
with the IFE spaces in Appendix A makes the proposed method much more flexible
than the traditional IFE methods in the literature.

Next, let us summarize the relation between the involved spaces and weights in
the computation of projections, which may be unified as

/ ch I vy - ph dXZ/ vi - (enpn)  dx,
K K SN——
€P (c;, 1K)

where (s,8',en) = (e, f,Br), if (vi,pn) € H(curl; K) x P§(cp; K),
(s,8,¢en) = (f,e,an), if (vi,pr) € H(div; K) X Pg(ch;K).

(5.22)

By the language of differential forms, in order for the wedge product of a k-form
and [-form to be scalar, there needs k + [ = 3 in the 3D case. Note that v and
pr. both belong to the k-form, k = 1,2, so ¢, acts as a Hodge star operator (4.4)
mapping py, to the (3 — k)-form for the desired wedge product. Here, the value of
¢, = ay, or By depends on the H(curl) or H(div) spaces matching the underlying
Maxwell’s equations.

At last, we provide an alternative definition of the H(curl) IVE spaces being



January 3, 2023 19:12 WSPC/INSTRUCTION FILE Hcurl 3d'm3as

26 S. Cao, L. Chen & R. Guo

a different subspace of \NIZ (K), which has some nice mathematical properties. The
key is also to impose suitable conditions to assign the interior DoFs.
For the H(curl) space, we may consider

V§(K) = {v, € V§(K) :/ curl vy, - wp, dx = / H];{’Bh curl v, - wy, dx,
K K (5.23)

vwi, € S5 (8, 1,0, K)}.
Then, the interior DoFs can be determined also through integration by parts:

/Bhvh-phd)(:/curlvh-whdx—/ v - (wp, x n)ds
K K oK

= / H{(’ﬁh curl vy, - wy, dx 7/8 vi - (wp xn)ds, Vpp € P§(6n; K),
K K
(5.24)

where wj, = (8,pn/2) X (x—X i) from Table 1 makes the space V§ (K') only have the
edge DoFs. The identity (5.24) also gives the formula for computing H;‘ﬂ "vy. But,
compared with (5.13), (5.24) needs to compute the extra term [ H{(’Bh curlvy, -
wy, dx, which is slightly more expensive.

This approach to determine the subspaces is similar to the one in Ref. 4, 23 for
the classical H! virtual spaces. Here, the benefit is to have the new spaces free of
the choice of xj. Note that the spaces in (5.11) depends on the choice of the point
xx € ') which can be arbitrary on the plane I'' with a distance O(hg) to the
element K. However, the new space in (5.23) is invariant with respect to the various
xg € 'K, even though the underlying IFE spaces SZ(B,:l, 0; K) are not.

5.5. A discrete de Rham Complex

The proposed IVE spaces inherit the de Rham complex properties of standard
finite element spaces including the exact sequence and commutativity.

Thanks to the nodal, edge and face DoFs of the proposed IVE spaces, let us
first define the corresponding interpolations:

I H*(B;Th) — Vi satisfying I'u(x) = u(x), Vx € Ny, (5.25a)
If - H'(curl, o, B;Tp,) — V9§ satisfying /Iﬁu “tds = /u -tds, Veecé&y,
‘ ’ (5.25D)
I,{ :Hl(div,a;'ﬂ) —>V,{ satisfying / I,{u-nds:/ u-nds, VF € F.
! ) (5.25¢)

We further need the standard L? projection denoted by 1%, : L?(K) — Py(K), and
define the global one as I19 such that II) |7 = 119, i.e., IIY : L?(Q) — Q) where

Qn = {vn 1 vp € Po(K), VK € Tp(K)}. (5.26)
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These operators together with the IVE spaces will be used to formulate the con-
tinuous and discrete de Rham complex in (1.9). In fact, Lemma 3.4 already shows
that exactness in the continuous level. So our focus will be on the discrete one in
the lower part of (1.9).

Lemma 5.5. When ) is topologically trivial, the following complex is exact

Ry B, ye _owl o/ _div gL, (5.27)

Proof. The argument for showing the sequence being a complex is basically the
same as Lemma 3.4. To show the exactness, we can look at the DoFs which form a co-
chain exact complex on the cell-complex defined by the mesh. For the completeness,
we include a detailed proof below.

First verify VV;* = ker(curl) N V§. By the classic exact sequence, given each
v, € ker(curl)NV¢, there exists vy, € H'(2) such that Vo, = vj,. Given an interface
element K, the jump conditions associated with V¥ (K) imply that vy, also satisfies
those of V;*(K). In addition, let F' be one of its face in the boundary triangulation,
since rotp vy, = 0 and v} |r € N'Do(F), we have Vpv, = vi|p € [Po(F)]?, which
implies vy, € P1(F). Hence, vy, € V;*(K). On each non-interface element K, vy, is
just a constant vector, so vy, € P1(K). Therefore, we conclude vy, € V.

Second, we just, to the end, prove div(V}{) = @p. Given each ¢ € @y, there
exists a regular potential u € H*(2) s.t. divu = ¢. Then, we define u;, = I,{u and

K| qlx = div(u)dx = u-nds= IHu-nds = div(I{u) dx
h h
K oK oK K

which implies div(I,{u|K) = ¢|k on each element K finishing the proof.

To verify curl V§ = V£ N ker(div), we can use a dimension count. Denote by
H#Vh, #En, #Fn,#Tr the number of vertices, edges, faces, and elements, respec-
tively. From the surjectivity, i.e., div(Vﬁ) = Qp, we know dim(V}{ N ker(div)) =
dimV,{ —dim @y = #Fn — #7Tp. On the other hand, dimcurl Vi = dimVj —
dim(ker(curl) N V§) = dim V§ — dim(VV}") = #&, — #V, + 1. Then by Euler’s
formula, we get dimcurl V§ = dim(V,]: Nker(div)). As curl V§ C V,{ Nker(div), we
conclude that they are equal. O

6. The Immersed Virtual Element Schemes

Based on the previously established spaces and projections, in this section we
are ready to present the IVE schemes. With the exact sequence, we also develop fast
solvers for the H(curl) interface problem. At last, we present a data structure that
can facilitate an efficient and vectorized implementation of the proposed method.

We shall focus on the H! and H(curl) interface problems due to their vast
applications. For simplicity, we let (-,-)p be the standard L? inner product on D.
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6.1. The IVE Scheme for H' interface problem
For the H! case, we define a local bilinear form as

brc (un, vn) = (BRI " Vup, TSP oy ) i + Sk (I — TS\, (I — TISP)Voy,),
(6.1)
where the projection H;B " is given in (5.1a) on interface elements K and simply
assumed to be the identity operator on non-interface elements as the standard
FE spaces are used and computable. The first term in (6.1) is a reasonable and
computable approximation to (8Vup, Vo), as H;&ﬁ " will preserve the piecewise
constant space P§(0y; K), but it alone does not lead to a stable method as H?}Bh V()
contains a non-trivial kernel. Namely, there exists a non-constant function v, €
Vit s.t. H;&B "Vup, = 0. In the VEM literature, two requirements are imposed for
the stabilization Sk . One is the k-consistency, i.e., the stabilization vanishes for
polynomial spaces of degree k. As H;&ﬂ " can preserve the piecewise constant space
P&(Br; K) and the slice operator I — Higgh is used, Sk is O-consistent. Another
consideration is the norm equivalence by (vp,,vs) = ||[Vop||?. But we really need is
the coercivity; see Lemma 6.2 and Section 6.3 below for detailed discussion.
Various choices of the stabilization have been proposed in the literature 423,28
based on different norms on the boundary. In this work, we will employ the following
surface H' stabilization:

Sk (Wh,2zp) := vhi Z (W}, z7,)F, (6.2)
FeFg

where w} | and z] | are the tangential components on the face F. In particular,
we note that (Voup,)"|p = Vo, — (Vo -np)ngp = Vpuy, is the surface gradient of vy,
and it is computable since the trace of v, on 0K belongs to the standard FE space
and is known. As the standard FE spaces are defined on the boundary triangulation,
the stabilization in (6.2) must be piecewisely computed. Then, the global bilinear
form is defined as

bh(uh,vh) = Z bK(uh,vh). (6.3)
KeT,
The proposed IVE scheme is to find u; € V' such that
bh(uh,vh) = Z / fﬁ;}ﬁh’uh dx, Vv, €V (6.4)
KeT, 7K

Note that the projection of vy, itself is not computable for the current space, and
thus we simply employ the approximated gradient H;’B "Vup, and the formula in
Table 1 to form

5P, = (IS Vop) - (x — xx) + ¢ (6.5)

with the constant ¢ chosen such that faK ﬁ;&ﬂhvh ds = faK vp ds. Clearly, there
holds

VIS o, = TGP Vo, (6.6)
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In fact, the H! interface problem is not our focus. Only the stiffness matrix for the
H' interface problem is needed for the auxiliary space preconditioner in the fast
solver for the H(curl) interface problems.

The stabilization in (6.2) indeed leads to a stable method which is given by the
following results.

Lemma 6.1. For each interface element K, there exists a constant depending only
on the shape regularity of K, the coefficient B and the parameter v s.t.

VBVl L2y S [onl e ory S P lonlaory vn € VI(K).  (6.7)

Proof. We use the energy minimization argument. Given each v;, € V;*(K), con-
sider an arbitrary function w, € H!(K) such that wy, — vy = 0 on K. Then,
integration by parts on K* with the flux jump condition [8Vuwy, - n]|px = 0 and
V - (BVuy) = 0 yields

/ BV, - V(vp, —wp) dx = BV, - n(vy —wp)ds = 0.
K oK

On one hand, with the Holder’s inequality, it implies that vj, minimizes the ||\/3V -
|2 (k) energy norm, i.e.,

IV/BVonllze(rey < IVBVwn| 2k (6.8)

On the other hand, by the inverse trace theorem given in Section 27 in Ref. 23, we
have a function zj, such that z;, = v, on 9K and |zpn|u1 (k) S |vn|gi/2(9k)- Hence,
using (6.8) with wy, = 2, we arrive at

IVBVnllzz ey S IVl S [onlmire o), (6.9)
which gives the first inequality in (6.7). The second inequality in (6.7) simply follows
from (2.16) in Ref. 23. O

Lemma 6.2. There holds that
IV BV onll7z k) S b (vn,on), Vo € ViH(K), (6.10)
where the constant depends only on the shape regqularity of K, B, and .

Proof. We will use the projection ﬁ;ﬁh and the relation (6.6). By Lemma 6.1, the
triangular inequality and the trace inequality by Lemma 4.3, we have

VBV onll L2y S Ryt lonl i ory S byl IS vnl oy + R lon — T op | v o)

SIS Von 2y + LNV e (o — T 0n) | 1200) S i (05 0n),
(6.11)

which finishes the proof. O
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6.2. The IVE scheme for the H(curl) interface problem

In this case, we need to deal with the terms of curl curlu and u separately. For
the same reason discussed above, we need to project both curl u;, and u; and then
add their associated stabilization terms to enforce coercivity. For the curl curl term,
we introduce

ak(up,vy) :(ahﬂfgah curluy, H{(’ah curl vi) g

P f (6.12)
+ S (I = TIE™) curluy, (I — TIE™) curl vy,),

where, similarly, H{éa“ is chosen as (5.1b) on interface elements but just the identity
operator on non-interface elements. As curl Vi, C V,]:, the stabilization term is
defined as

St (wn,zn) =1h Z (Wp, -np, 2z, -0p)p, (6.13)
FEFxk
where we note that curluy, -n = rotg uy, for u, € V§ can be computed through the
formula in (3.6) with rotz uy = |F|~1 f(,)F uy, - tds on each triangular face F.
The bilinear form for the weighted L? inner product is defined as

ale (un, Vi) =(Bp TR wn, TI v ) i+ S (1 = TR Yug, (T = TR v),
(6.14)

where H}B " is defined in (5.13) on interface elements and the identity on non-
interface elements. The stabilization is given by

S?{(Whazh) =7 Z (W;’ZZ)FV (615)

FEFg
where w} and zj, still denote the tangential components onto each face F. With the
triangulation on faces, wj, € V7§, is computable through the edge DoF's. We highlight
that the scaling h° = 1 in the stabilization S%(wy,zy,) is different from the usual
h in classical VEM in Ref. 17, 15, 16, 19, and this is also the key for the proposed
method to produce optimal convergent solutions. Changing the scaling from O(h) to
O(1) may increase the consistency error locally. More precisely S% (v, vy) = O(h%)
while (ﬁhﬂiéﬁhvh, H;&ﬁ"vh);{ = O(h3%;). But such a loss of order h is restricted to
the interface elements only whose number is O(h) fraction of the total number of
elements. So overall the L2-norm is still possible of optimal order. The theoretical
justification has been given for the 2D case in Ref. 30 and will be explored in a

forthcoming paper for the 3D case.
Then, we can define the global bilinear form

ap(up, vy) = Z age(ap, vi) + a% (up, vi). (6.16)
KeTh

The proposed IVE scheme for the H(curl) interface problem is to find u, € V§
such that

ah(uh,vh) = Z / f- H;&ﬁhvh dx, Vv, € Vz (617)
KeT, 7K
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Next, we show that the proposed stabilization can indeed make the bilinear form
coercive.

Lemma 6.3. There exists a constant depending only on the shape regularity of K
ERA

IVallzie) S iV - nllzox)  vi € VE(EK). (6.18)

Proof. As curl(avy) = 0, by (3.9), we only need to estimate div(vy). Noticing
div(vy) is a constant, we can write down

| div(v) |l L2 x) = |K|7Y? / div(vy,) dz
K

(6.19)
=|K|7'? /ath-nds S hi|vi - n| 205,
where we have used that |K|/|0K| ~ hk. |
Lemma 6.4. For every function vy, € V7§, there holds
|| curl VhH%Q(K) < ak(vh,vn), (6.20a)
IValZa(x) S ak (Va, Vi), (6.20b)

where the constants depend only on the shape regularity of K, B, and 1, V2.

Proof. Let us first show (6.20a). By Lemma 6.3 and the de Rham complex, we
have

| eurlval 2y S B2l curl v, -0l L2 (ox)- (6.21)
Then, we apply the trace inequality for the H(div) functions by Lemma 4.3 to
obtain
| curlvy, - n| 201y S ||H;(’O”L curl vy, - nf[12(sk)

+ | curlvy -n— H};’O‘h curl vy, - 0|12k (6.22)

< h}1/2||1_[§(’ah curl v L2 (k) '

+ | curlvy -n— H};’ah curl vy, - nf[ 729k

Substituting (6.22) into (6.21) yields (6.20a). As for (6.20b), applying (3.19) with
the appropriate scaling, we have

IVillLz (k) S bl curl vi || L2 k) + h}K/ZHVh x 0| r29K)- (6.23)

For the second term, we apply the trace inequality for the H(curl) functions by
Lemma 4.3 to obtain

Vi x 02 ory S 1T vi x 0l 2oy + | (v — T Vi) x nl| 205 (6.24)

—-1/2 €,0h €, T
S h IS v ey + (i = T2 ) (|2 o) -
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Putting (6.22) and (6.24) into (6.23), we have the desired estimate. O

We emphasize that the coercivity constants depend only on the shape regularity
of the underlying triangulation, the coefficient 3, and the parameter -y, but most
importantly, not on the location of the intersection points, i.e., robust to the cut of
the interface.

Remark 6.1. Lemmas 6.2 and 6.4 immediately imply that b, (-,-) and ax(-,-) are
norms on V;* and V7§, respectively. These two lemmas hold regardless of the choice
of v >0,y > 0 and 72 > 0, i.e., the method does not need those parameters

26,71 and

to be large enough required by many traditional unfitted-mesh methods
thus the resulting linear systems are always positive-definite. Roughly speaking, it
can be understood that the proposed IVE scheme is “more conforming” such that
weaker weights are needed in the stabilization. This is particularly important for the
H(curl) problem, as we do not need to use h~! scaling in the stabilization, which
can avoid the suboptimal convergence in (1.8). Instead, O(1) and O(h) scaling
are used for the stabilization associated with u; and curluy, terms, which is key
to achieve optimal convergence by our numerical experiments. Nevertheless, the
rigorous analysis is still very involved, and in the next subsection we shall briefly
describe the challenges.

6.3. Comments on the norm equivalence and error analysis

In the vast VEM literature 41923 the norm equivalence results are desired for
error and stability analysis:

IVUnllZ2(ry S 0 (0n,vn) SIVORlT2(r) Von € ViH(E), (6.25a)

||Vh‘|%-l(curl;K) 5 a’K(V]"HVh) 5 ||VhH%-I(curl;K) Vvy € erL(K) (625b)

The left inequalities in (6.25), i.e., the coercivity, are given by Lemmas 6.2 and 6.4,
respectively, in which the constants are independent of interface location. Although
the right two inequalities in (6.25) indeed hold, their constants may depend on
the interface location, as the inverse inequalities on the boundary triangulation are
needed in the analysis.

Let us take the H! case as an illustration example. By the boundedness property

of the projection I, we trivially have

IS Vonl 216) < Crrl| Vonll 20,

where the constant C'p, only depends on the geometry of K. The problem is on the
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stabilization term. We may prove

W2 VeI - ﬁiéﬁh')vhﬂm(am
< Chne|(I = T Yvn | 22 ox0)
< Cin O (RPN =T Yonl 2 + i1 = T yon s ) )
< CinyCi(Cpe + DIGP|(I = T Yon | (1)
< CinCy(Cpe + 1)(Cpr + DIy I Vo | 12 (10

where the first inequality is an inverse inequality on the surface triangulation with
the constant Cj,,, and the second and the third ones are the trace and Poincaré
inequalities with the constants C; and Cp.. Note that C;, Cp, and Cp, only depend
on the geometry of K; but Cj,, depends on the element boundary triangulation
which contain anisotropic triangles, and shrinking elements may make Cj,, blow
up. Indeed, restricting to the boundary (I — ﬁ;ﬁ ")up|F is linear, and its surface
gradient can be computed exactly using the cot formulae. The existence of small
angles in the boundary triangulation will make the corresponding entry large, and
thus robust norm equivalence may not hold. The similar issue applies to the H(curl)
case.

In fact, for 3D VEM, to our best knowledge, almost all the analysis in the lit-
erature require shape regularity of both the elements and faces such that the norm
equivalence above can hold. In our case, however, the boundary triangulation does
not satisfy the shape regularity causing essential difficulties for analysis. An alter-
native approach is to use the “error equation” approach 272?30 that may overcome
the shape regularity issue. Careful study of the robustness to the shape of boundary
triangulations is needed.

6.4. Implementation

Inherited from the classical VEM, implementation of the proposed algorithm
is highly vectorized. Computing the projections from IVE spaces and assembly of
matrices significantly outperform the classical IFE methods. To see this, following
Ref. 37, we describe a face2elem and a face data structure that can greatly facilitate
the implementation. face2elem is a vector mapping from each (local) face’s index
to its mother element’s index. face is a matrix containing each face’s DoFs (node
or edge) on its rows. Here, we use the tetrahedral interface elements in Figure
6.1 to illustrate the data structures. In Figure 6.1, the red and blue segments are,
respectively, cutting edges by the interface and newly added edges for the surface
triangulation. The indices are shown on the two plots for all the vertices and edges.
Suppose the index of this element is 1, and then the desired data structures of
face2elem and face are shown in (6.26).
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Fig. 6.1: Indices of nodes (left) and edges (right) of an interface element.
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The key feature of VEM in implementation is to compute the projections
through the DoFs. Let us use H{f‘" curl v, and the formula in (5.10) as an ex-
ample to describe the procedure. Given an element K with the global index 4,

i=1,2,...,|Ts|, we need to compute Hféah curl f ;. for a local edge index k, k =
1,2,...,|Ek|- Here H{éah curl pf, ;. is a constant vector denoted as ci € Pg(ah;K)
with ¢ = (IR curl @Z’k)|K§, where ¢j, ;. is the edge shape function with re-

spect to the k-th edge. Now, we let the test function pp, in (5.10) be the three unit
vectors: pf, = e, | = 1,2,3, with p,, = M}fg“"p;l with M{(’“" given by (4.5).
Then, we can rewrite (5.10) into a matrix-vector equation only about c, :

(o7 | Ky, |+ o |G |(ME) T M ey
(6.27)
:/ (Phx xm) [(anPr1)7, (@nPh2)T, (anpn3)7] " ds,
oK

where @}, ; xn is a rotation of (¢f, ;). (4}, )7 is a 2D Nédélec polynomial function
tangentially defined on each face, and the integration of this function associated
with the k-th edge can be determined by the two nodes retrieved from the face data
structure. Particularly, if the k-th edge does not belong to the boundary of a face
F', then there is no contribution of this face to the right-hand side of (6.27).
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With (6.27), we highlight that the geometric information needed in the compu-
tation has been automatically encoded in the data structures face2elem and face,
which is the key for the efficient vectorized code. We report the CPU time for
computing the projections and generate matrices in Table 2 to demonstrate the
efficiency. This very feature makes the proposed method distinguished from all the
classical IFE methods in the literature that have to use more detailed geometric
information to compute the IFE functions.

6.5. Preconditioning

Solving the resulting linear system from Maxwell’s equations is one of the central
challenges in computational electromagnetism, and the interface may make it even
more difficult. With a slight abuse of notation, we denote the linear system from
the proposed IVE discretization of the H(curl) interface problem as

Allh = fh, (628)

where u;, € R#¢%° denotes the vector representation in DoFs. This system is solved
by the preconditioned conjugate gradient (PCG) method. To our best knowledge,
the development of fast solvers of VEM specifically for H (curl)-equations has not
been discussed in any literature. Without suitable preconditioners, the PCG solver
can be extremely slow, see the comparison in Table 4. In this work, we develop a
fast solver for IVE discretization of the H(curl) interface problem that involves two
techniques. Thanks to the de Rham complex, the first one is the auziliary space
preconditioner for the H(curl) equation which is developed by Hiptmair and Xu
in Ref. 60 (HX preconditioner) based on the auxiliary space framework in Ref. 85.
The second one is a block diagonal smoother to handle the anisotropic element
shape near the interface. In the experiments, both are used the implementation in
iFEM 33,
The resulting HX-preconditioner for the H(curl) systems is in the form

B! = R BT + G BEIGT, (6.29)

which consists of the following three components:

e a smoother R°"! of the H(curl) matrix A,
e an algebraic multigrid (AMG) solver B&"4 for a scalar Laplacian matrix,
e an AMG solver B8 for a vector Laplacian matrix.

We simply employ the incidence matrix associated with the operator V : Vi’ — V7§
as the discrete gradient matrix G which resembles that from the lowest order Nédélec
element on simplicial meshes. G maps the nodal DoFs (columns) to edge DoFs
(rows). There are two nonzero entry, 1, on each row. The columns of these entries
correspond to the nodes of the edge. The sign is determined by the global orientation
of an edge. The node-to-edge transfer matrix is denoted by II : Hf’zl R#fnode _,
R#edee Note that these two matrices being well-defined are based on the node and
edge DoFs of the H! and H(curl) IVE spaces.
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For H(curl) problems, it is known that a multigrid solver for Poisson-type equa-
tions is not sufficient since the discrete operator corresponding to curl(« curl) + 51
behaves differently for a gradient field and a solenoidal field (see e.g., Ref. 7). When
sufficient piecewise regularity is assumed, we have by Ref. 46

lagradul|? = || curlul|? + || div ul|?.
Hence, if u = curlw € (ker(curl))*, for some suitable w, such that divu = 0, then
(acurlu, curlu) + (fu,u) =~ (agrad u, gradu) + (fu, u),
which corresponds to the following operator:
By .= —div(aVu) + Su (6.30)

that will be assembled as an auxiliary matrix and can be solved by an AMG solver
for the vector H'-interface problem. On the other hand, if u,v € ker(curl), i.e.,
u = Vp and v = Vg, for some suitable p, g, then

(acurlu, curl v) + (Bu,v) = (8Vp, Vq),

thus we can formulate the matrix problem for the gradient part of the solution by
Berad — T AG, which corresponds to the following operator:

B&ady — _ div(BVp) (6.31)

that can be again solved efficiently by an AMG solver for the H!-interface problem.

Next, we present a block diagonal smoother (preconditioner). A block matrix
is formed by the edge DoF's in the neighborhood expanding from the interface. We
begin with the collection of the DoF's that is near the interface:

Dy ={e€&,: 3K € T} such that e € Ex}. (6.32)

Then, starting from D; we iteratively define
D; = {e € &, : e has at least one node belonging to the edges of D;_1}.  (6.33)
Let A; be the matrix of the entries in A associated with the DoFs in D;. Then, we

rewrite (6.28) into
An ANl) (UN> <fN)
Au = = 6.34
" (AZN A w fi (6:34)

Here, the key is to solve the A; block by a direct solver, which is indeed the price
to be paid by the proposed method. However, since the size of A;, i.e., #D;, is in
the order of O(#total DoF?/ 3) for reasonably small [, this direct solver is gener-
ally efficient. The expanding width can reduce the number of iterations required
for the resulting solver, see Table 3 for the comparison. Meanwhile, our numeri-
cal experience suggests that the increased cost is negligible for small I’s, e.g., the
expanding width [ = 1 or 2 is enough. It is almost equivalent to directly solving
a 2D linear system which can be efficiently handled by “backslash” (mldivide) in
Matlab. Furthermore, since the direct solver will be called multiple times, we opt
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to store the LU-factorization of A; in the inner iteration (preconditioning) to be
more efficient. The residual equation of the Ay block can be efficiently solved using
a block or point-wise Gauss-Seidel smoother. At last, we summarize the algorithm
in the following for a fixed [, and denote A; := A;.

Algorithm 1 An HX preconditioned CG

Require: u®, tol, M, I, block form of A.
MG

Ensure: u
1: k=0.
2: ry + fr — AIu(O)
3: while True do
4 r; < LUSolve(Ay,ry)

5: ry < Smoother(Ay,ry)
6: r < [rn,r]]
7 r + 1 + [I(AuxSolve(A*"™* TI r))
8 r. + G(AuxSolve(4,G 'r))
9

: r<r+r,
10:  uM¢«+ CG(A,r)
11: if k> M or norm(r) < tol then
12: Break
13: end if

14: k+—k+1
15: end while

7. Numerical Examples

In this section, we present a class of numerical examples to validate the afore-
mentioned advantages of the proposed method. The background unfitted mesh is

generated by cutting  into N3 cubes and each cube is then cut into several tetra-
hedra with the mesh size be h = 1/N.

7.1. The H'-interface problem

We first consider the H!-interface problem given by (1.2) for a spheric interface
shown in Figure 7.1 on the domain €2 = (—1,1)3. The exact solution is constructed
as

u&){ exp(([x|? ~12)/87),  ifxeq, -

sin((Ix[2 = r2)/84) +1,  ifx € Q¥
where the source term of (1.2) as well as the boundary conditions are com-

puted accordingly. The numerical experiment is carried on the meshes of N =
10, 20, 30, ..., 160. We first report the CPU time to compute the projections of IVE
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Fig. 7.1: Plots of interface and triangulation: sphere (left) and two twisted tori
(right). For the spherical interface, the boundary triangulation of interface element
is plotted in blue on the left half of the sphere.

functions and the related matrix assembling in Table 2 for the meshes N = 60
to 160. Note that at the finest level, there are approximately 153600 interface ele-
ments, and based on the proposed data structure, computing the IVE projections is
highly efficient. As for the matrix assembling, we observe that the majority of time
is devoted to the stabilization term, and we believe this is due to a larger number of
triangular faces from the boundary triangulation. Certainly, these computations are
highly parallelizable. In addition, we show the numerical errors for 3~ =1, 87 = 10
and 8~ = 1, 87 = 100 in the left two plots of Figure 7.2. Due to the geometric
errors caused by coarse meshes, the convergence orders indicated on the graph are
computed by incorporating only the errors from N = 60 to 160, but it clearly shows
the asymptotic optimal convergence. Remarkably, the optimal convergence is even
achieved for the L°° norm which is a demanding property for interface problems.

Total # DoFs 1367631 | 1771561 | 2248091 | 2803221 | 3442951 | 4173281

Interface # DoF's 160926 191322 224682 259818 298866 | 339774
Time(s) for projection 2.96 4.00 4.88 37.92 5.65 7.13
Time(s) for matrix assembling 14.21 18.14 21.14 30.47 37.58 42.61

Table 2: CPU time for computing the projections of IFE functions and the genera-
tion of stiffness matrices including the stabilization terms.

The second example concerns a more complicated interface shape that has two
tori twisted with each other, see the right plot in Figure 7.1. The level-set functions
of the two tori are ¢1 = (((x1 + 0.3)% + 23)1/2 — 0.2)2 + 22 — (7/5)? and ¢y =
(((z1 —0.3)% +22)1/2 - 0.2)2 + 22 — (7/5)?, and then the level-set function of this
interface is given by ¢(x) = min (¢1(x), ¢2(x)). The domain inside the two tori is
07 = {x: ¢(x) < 0} and the outside one is Q" = {x : ¢#(x) > 0}. The exact
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——L error
—— L2 eror

—*H' error

Fig. 7.2: Numerical errors and convergence order for the H' interface problem. The
top two plots are for the spherical interface: (87,8%7) = (1,10) and (87, 87") =
(1,100), and bottom two plots are for the toroidal interface: (37, 3%) = (1,10) and
(87, B%) = (1,100). The black dashed lines indicate the expected O(h?) convergence
for the L® and L? errors and O(h) for the H! errors.

solution is given by

u(x) = (7.2)

cos(¢1(x)p2(x)), if x € Q.
In this case, the computational domain is Q2 = (—1.3,1.3)3. The numerical solutions
and errors are reported in the right two plots of Figure 7.2. As the interface has
much larger curvature which requires the finer mesh to resolve. The convergence
orders are estimated from the mesh size N = 60 to 160 which indicate the optimal
convergence even for the L errors.

{ 1 ifxeQ,

7.2. The H(curl) interface problem

Now, let us consider the H(curl) interface problem. It is known that solving
the linear system from the Maxwell’s equations is much more challenging. So here
we first test the fast solver developed in Section 6.5 for an extreme case that each
interface element has small-cut subelements. For this purpose, we consider the do-
main = (—1,1)® with a flat interface z; = 5 x 10727". Fix the mesh size as
N = 20 and the parameters as (a~,a™) = (1,10) and (8, 81) = (1,10). If » = 0,
i.e., 1 = 0.05, the interface plane cuts all the interface elements exactly through
the center and thus, each subelement has regular shape. In computation, we let
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r=1,2,3,4, i.e., the subelements on the left-side of the interface will become small
accordingly. We report the condition numbers, the number of iterations and CPU
time in Table 3. We can see that small-cut interface elements can indeed make the
conditioning worse, which may significantly increase the iteration numbers, see the
results for [ = 0. However, the effect of small-cut interface elements can be suc-
cessfully eliminated by the proposed block diagonal smoother A; in (6.34). For this
extreme case, | = 2 seems sufficient to make the convergence completely indepen-
dent of small subelements, but our numerical experience suggests that [ = 1 is good
enough in general.

Interface location r 0 1 2 3 4
Condition numbers | 6.4 x 10° | 1.7 x 107 | 1.7 x 10° | 1.7 x 10! | 1.7 x 10'3
I—0 # iteration 44 53 107 327 842
Time(s) 12 16 27 84 220
=1 # iteration 43 44 43 73 91
Time(s) 11 11 11 21 24
1—9 # iteration 43 44 43 43 42
Time(s) 11 12 12 11 12

Table 3: Condition numbers of the H(curl) linear system with various interface
location, and the related CPU time (in seconds) and # iterations for the expanding
width [ = 0,1,2, where [ = 0 means no block matrix used.

Next, we consider the spherical interface and slightly modify the benchmark
example from Ref. 57 of which the analytical solution is given by

u { ﬁ%X + LRy (x)[(z2 — x3), (x5 — 21), (1 — 32)] " in Q7
%x + LnoRy (x)Ro(x)[(z2 — 23), (23 — 21), (z1 — 22)] T in QF,
(7.3)
where x = [r1, 22, 73] T and Ry (x) = r? — ||x||?, Ra2(x) = rZ — ||x||?. The numerical
experiment is carried on the meshes of N = 10, 20, 30, ..., 80. In particular, the com-
putational time and number of iterations are presented in Table 4. From the table,
we can conclude that both the block-diagonal smoother and the HX preconditioner
are important for reducing the iteration number for convergence. The results also
show that the direct solver at each iteration does not cost significant computational
time compared with the total cost of the iterative solver. Next, we report the nu-
merical errors in both the L? and H(curl) norms in the left two plots of Figure 7.3,
and the estimated convergence orders are also indicated in the plots which clearly
demonstrate the optimality.
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Total # DoFs | 80554 | 244424 | 547074 | 1028452 | 1734626 | 2703384 | 3980338

BD-PCC # iteration 962 1465 1932 2385 2828 3238 3661
Time(s) 42.72 | 166.46 | 427.70 | 905.39 1693.95 | 2871.83 | 4542.63

BD-HX # iteration 144 142 146 140 148 142 145
=0 Time(s) 38.89 | 69.09 117.97 | 214.89 401.81 533.28 808.19

BD-HX # iteration 75 76 81 7 80 83 90
=1 Time(s) 22.16 | 41.14 70.12 132.54 241.93 321.93 529.66

Table 4: CPU time and number of iterations for solving the H(curl) linear sys-
tem with the spherical interface and (o, 37) = (1,1) and (a™, 3%) = (100, 200):
block-diagonal HX (BD-HX) with { = 0 and 1 and the simple block-diagonal PCG
(BD-PCG). The CPU time with respect to DoFs are approximatly O((#DoF)!-19),
O((#DoF)*30), O((#DoF)%%2) for BD-PCG, BD-HX(I = 0) and BD-HX(l = 1),
respectively.

ot
—2error —— L2 error
—+— H(curl) error| ——Heurl) error]

Fig. 7.3: Numerical errors and convergence order for the H(curl) interface problem
by the IVE method. Top two: the first example. Bottom two: the second example.

IFE spaces can be also used in a dG-type scheme, i.e., penalties are used to
handle the discontinuities across faces. This scheme works very well for H! interface
problems 6% but results in only suboptimal convergence for H(curl) problems.
For the H(curl) case, let us recall the scheme below. Let F} be the collection of
the interface faces. Let Sj, be a space containing IFE functions which may not be
continuous on faces in fﬁ. Note that IFE functions can main tangential continuity
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on non-interface faces, and thus penalties are only needed on interface faces. Then,
the scheme is to find u, € S, such that

dh(uh,vh) = / f-v,ds (7.4)
Q

where

ap(up, vi) = (ap curluy, curl vy + (Bruan, vi)a

- Z /F{curl up} - [vp X n]ds

FeF}
- Z /{curlvh}'[uh x n|ds (7
FeF;} E
#h S0 [l v xnlds, v €S,
FeF} E

where 7 is a stabilization parameter which should be large enough and generally
depends on a. We present the numerical results in Figure 7.4. For the semi-H(curl)
norm, we can clearly observe the sub-optimal convergence. The convergence under
the L? norm deteriorates a little as the mesh becomes finer. In some other setting,
we can also observe much worse behavior for the L? norm.

Fig. 7.4: Numerical errors and convergence order for the H(curl) interface problem
by the penalty-type IFE method. Left two: the first example. Right two: the second
example.

In the second example, we also consider the twisted tori in the right plot of
Figure 7.1 on the domain Q = (—1.3,1.3)3. To construct a function that satisfies the
corresponding jump condition on the torus surface, we let f(x) = ¢1(x)p2(x)((z1 +
0.3)% + 22)((z1 — 0.3)% + 2%). Then, the exact solution is then defined as

u= %Vf(x) + écos(f(x))vo7 with vo = [0,0,1] T, (7.6)

where the boundary conditions and the source term are computed accordingly. The
numerical results are reported in the right two plots of Figure 7.3 which also shows
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the clear optimal convergence rate. These results demonstrate that the IVE method
works well for complex surfaces.

At last, we note that the penalty-type method cannot achieve optimal con-
vergence numerically including both the IFE method 5” and the interface-penalty
method 3231, Therefore, we believe the present method has distinguishing advan-
tages in computational electromagnetism.

Appendix A IFE Spaces on Complicated Geometry

Here, we describe the IFE spaces for complicated interface element geometry,
i.e., I' may have multiple components. Let us assume that I'® consists of the
multiple components T5™, m =1,2,..., M — 1, each of which is a simply-connected
smooth surface. As I is supposed not to intersect itself, I'"™’s then do not intersect
with one another. Without loss of generality, we assume the subelement containing
Ay is K7 and 5! = 9K \OK. Then, K,, is the subelement bounded by 0K, T'5:™
and TK™+1 m =2 .. M — 1, and the remaining one is denoted by Kj;. We show
a 2D illustration of the geometry by the right plot in Figure 2.1. The parameters
associated with the subelement K, are denoted as o and ™, which should take
the values of = and o™ alternatively.

For each T5™  we let I‘hK’m be its planar approximation. Similarly, define the
subelement containing A; as Kp, 1, and the others, i.e., K}, ,...,Kp a1, are defined in
a similar manner as their counterparts Ki,...,K ;. Note that each of Kp, 1,...,Kp ar
is a polyhedron. Let «p and B, be the piecewise constant functions defined on
these polyhedral subelements, and denote aj.m = anlk, ., and Bnm, = 5h|Kh,m7
m=1,...M.

Similar to (4.6), we are able to derive explicit formulas for the functions in
the spaces (4.3). For each linear interface component 'Y, we further let tl, and
t2, be the two orthogonal tangential unit vectors to F,If’m, and denote the matrix
T = [Am, t),,t2]. Then define the transformation matrices:

10 0 Cm 00
M =T 0&, 0 | (T)" and Mg =T|0 10| (Tw)", (A1)
00 & 001

where ¢, = ¢pm/Chm+1, Wwith m =1,2, ..., M — 1, and define the spaces P¢ (cp; K)
and Pi(ch;K) as

Pj(ch; K) ={c:cm =c|k, . € Po(Knm), m=1,...,M,

Cmt1 = Mg cpm, m=1,..,M —1}, (A.2a)
P{L‘(ch;K) ={c:cm=clk,,, € Po(Kpm), m=1,..,M,
Cms1 =M, m=1,...,M—1}. (A.2b)

Again, the constant vectors at different cut regions are related by the jump condi-
tions and thus the dimension of both P, (cs; K) and P{L(ch; K) is also 3. In this case,
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the formulas of IFE functions are slightly more complicated which are presented in
the following lemma.

Lemma A.l. Let Xk, be an arbitrary point at I‘hK’m. Let a=a,, and b =b,, be
two arbitrary vectors in P{L(ah; K) and P§ (by; K), and let ¢ be an arbitrary constant.
Then, the formulas for the functions in Sj(by; K), S§(an,by; K) and S‘,’z(ah;K),
respectively, are

o — bvrz'(X_XK,1)+C m K}L,Y?’M m=1,2,
" by - (X — Xgm-1)+c+ Zﬁ;l b; - (xx; —XK,1-1), i Kpm, m =3,
(A.3)
a, X (x—x + b, m Kpm, m=1,2,
Vi, = e = i) o (A.4)
ay, X (X —Xgm-1)+bm +&,, in Kpm, m =3,
with
m—1

€= D (MG M) [ x (i = X)),
=2

and
X —x +am in Knm, m=1,2,
vf = O oo (A.5)
(X = XK m—1) + &m + My 10 Kpy oy, m >3,
with
m—1
N, =C¢C Z (M{(”%71 - Mljgjh)(XK,l . XK,l—l)
=2
-1 l

The formed IFE spaces also have the dimension 4,6, and 4 for the H', H(curl) and
H(div) cases, respectively.

Proof. One can directly verify that these piecewisely-defined functions satisfy the
corresponding jump conditions shown in Table 1 but on each FhK’m. The dimension
can be simply counted by the number of free variables of a, b and ¢ in the formulas
above. O

Note that in Lemma A.1, the points {Xs ,,}»=] should be chosen and fixed.
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