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Finite element methods for Maxwell’s equations are highly sensitive to the conformity of

approximation spaces, and non-conforming methods may cause loss of convergence. This

fact leads to an essential obstacle for almost all the interface-unfitted mesh methods in the

literature regarding the application to Maxwell interface problems, as they are based on

non-conforming spaces. In this work, a novel immersed virtual element method for solving

a 3D Maxwell interface problems is developed, and the motivation is to combine the

conformity of virtual element spaces and robust approximation capabilities of immersed

finite element spaces. The proposed method is able to achieve optimal convergence for a

3D Maxwell interface problem. To develop a systematic framework, the H
1
, H(curl) and

H(div) interface problems and their corresponding problem-orientated immersed virtual

element spaces are considered all together. In addition, the de Rham complex will be

established based on which the Hiptmair-Xu (HX) preconditioner can be used to develop

a fast solver for the H(curl) interface problem.
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finite element methods; maximum angle conditions; de Rham complex; fast solvers
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1. Introduction

In this article, we shall develop a systematic framework to construct three-
dimensional (3D) H1, H(curl), and H(div) virtual element spaces involving dis-
continuous coe�cients, referred to as the immersed virtual element (IVE) spaces,
that can be used to solve the corresponding interface problems described in Section
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1.1 on unfitted meshes. The proposed method is particularly important for electro-
magnetic interface problems as the current unfitted-mesh methods in the literature
have essential di�culty in handling H(curl) problems, see the detailed discussion
in Section 1.2.

1.1. Model problems

Let ⌦ ✓ R3 denote an open and bounded modeling domain, and a subdomain
⌦� ✓ ⌦ contains the medium which has the physical property distinguished from
the background medium occupying the subdomain ⌦+ = ⌦\⌦�. The surface � =
@⌦� is called interface and assumed to be su�ciently smooth with the normal vector
n pointing from ⌦+ to ⌦�. We introduce two discontinuous piecewise constant
parameters representing the medium properties:

↵ =

(
↵� in ⌦�,

↵+ in ⌦+,
� =

(
�� in ⌦�,

�+ in ⌦+,
(1.1)

where ↵± and �± are assumed to be positive constants.
The classic H1-elliptic interface problem reads as

�r · (�ru) = f in ⌦� [ ⌦+, (1.2)

with f 2 L2(⌦), subject to certain boundary conditions on @⌦ and jump conditions

[u]� := u+
� u� = 0, (1.3a)

[�ru · n]� := �+
ru+

· n� ��ru� · n = 0, (1.3b)

where the parameter � may represent, for example, the conductivity in electrical
applications 61,84, or the dielectric constant in Poisson-Boltzmann equations 35,88.

For electromagnetic interface problems, we consider the following curl curl-
elliptic model

curl(↵ curl u) + �u = f in ⌦ = ⌦� [ ⌦+, (1.4)

which is derived from discretizing a time-dependent Maxwell system in which the
magnetic field is eliminated. Here for simplicity we assume f 2 H(div;⌦). If pos-
itive piecewise constant parameters ✏, � and µ represent the electric permeability,
conductivity and magnetic permeability of the medium respectively, then ↵ = µ�1

and � = ✏4t�2 + �4t�1. Due to the interface, the following jump conditions are
imposed for the electrical field u

± at the interface:

[u⇥ n]� := u
+
⇥ n� u

�
⇥ n = 0, (1.5a)

[↵ curl u⇥ n]� := ↵+ curl u+
⇥ n� ↵� curl u� ⇥ n = 0, (1.5b)

[�u · n]� := �+
u
+
· n� ��u� · n = 0. (1.5c)
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In the problem above, � has a similar physical meaning to that in the H1 interface
problem, for example, to represent the electric conductivity. In addition, the con-
dition (1.5a) comes from the tangential continuity of electrical fields. As ↵ curlu
describes the temporal change of magnetic fields, the condition (1.5b) is related
to the tangential continuity of magnetic fields. In fact, such physical relations are
naturally encoded in a de Rham complex, see the discussion in Section 3.

Electromagnetic interface problems are of great importance due to a large variety
of science and engineering applications. Typical examples include electromagnetic
motors and actuators involving metal-air or metal-metal interface 22,48 and electro-
magnetic inverse scattering 44,75 that use electromagnetic waves to detect objection.
Solving the H(curl) interface problem with optimal convergence is a challenging
goal that conventional unfitted-mesh methods fail to meet(e.g., see the discussion
in Section 1.2), and trying to overcome this di�culty is the main motivation for the
present research.

For only the purpose of completeness, the H(div) interface problem is given by

�r div(u) + ↵u = f in ⌦� [ ⌦+, (1.6)

with f 2 H(curl;⌦), subject to a certain boundary condition on @⌦ and the jump
conditions

[u · n]� := u
+
· n� u

�
· n = 0, (1.7a)

[↵u⇥ n]� := ↵+
u
+
⇥ n� ↵�u� ⇥ n = 0, (1.7b)

[div(u)]� : = div(u+)� div(u�) = 0. (1.7c)

The system comes from a mixed finite element method with a gradient formula-
tion 6. The related H(div) interface problem and H(div)-immersed element have
been discussed in Ref. 59, 68 and thus will not be the focus of this work. The
parameter ↵ here is inherited from the H(curl) case.

1.2. Challenges of electromagnetic interface problems on unfitted
meshes

For conforming finite element methods (FEMs) to perform optimally, the mesh
has to fit or approximate the interface geometry “well enough”. However, an e�-
cient high-quality 3D mesh generation itself remains a challenging problem, which is
particularly expensive for complicated geometries (see e.g., Chapter 5.6 in Ref. 73).
A promising solution, to alleviate the di�culty in mesh generation, is to generate
a cheap background unfitted mesh, and then to further triangulate those elements
cut by the interface 41. The modification is highly e�cient since this extra proce-
dure only needs to be done locally around the interface. However, this approach in
general cannot yield shape-regular elements near the interface; instead the shape
regularity of triangulation is relaxed to the maximum angle condition. The interpo-
lation estimates based on the maximum angle condition have been widely studied
for Lagrange elements 9, Raviart-Thomas elements 1,74, and 3D Nédélec elements 25.
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This approach is very successful in the two-dimensional (2D) case 40 as an admissi-
ble local triangulation satisfying the maximum angle condition always exists for a
shape-regular background mesh, e.g., see Lemma 3.1 in Ref. 29 and Proposition 2.4
in Ref. 37. Nevertheless, in the 3D case, these locally re-meshed triangulations may
not form a globally admissible mesh, as it may not necessarily satisfy the Delaunay
property and/or the maximum angle condition due to the existence of slivers 79.

To overcome the di�culty of 3D mesh generation, Ref. 37 proposed a novel
method, which uses polyhedra as interface-fitted elements cut from a background
Cartesian mesh, rather than to further triangulate to obtain a tetrahedral mesh.
To handle the discretization on polyhedra, a virtual element method (VEM) 14 is
used. In fact, H(curl) virtual element spaces have been constructed and applied
to Maxwell’s equations in Ref. 17, 15, 16, 19. However, the analysis for H(curl)
problems is quite a di↵erent story. Some more recent error analysis for VEM, e.g.,
the ones developed in Ref. 18, 23, 27, cannot be directly used to obtain even optimal
error estimates, and some more delicate techniques are needed on an ad hoc basis,
e.g.,Ref. 17, 30, 15. For interface problems, an extra layer of di�culty is to make
error bounds robust with respect to potential anisotropic element shapes. In Ref. 27,
a more rigorous analysis is given on anisotropic elements generated from Cartesian
meshes cut by the interface for the 2D H1 case.

Meanwhile, on unfitted meshes, another direction to circumvent the mesh gen-
eration issue is to modify finite element (FE) spaces such that the new spaces can
capture the jump behaviors in an optimal sense. There have been extensive works
in this direction including immersed finite element (IFE) methods 3,71,52, CutFEM
or Nitsche’s penalty methods 21,26,77,67,72, multiscale FEMs 43 and so on, which are
widely applied to various interface problems. We also refer readers to FDTD meth-
ods 89 based on finite di↵erence formulation for Maxwell’s equations with material
interfaces. For almost all the unfitted-mesh methods in the literature, the FE space
modification is usually applied element-wise or piecewise relative to the interface.
Thus, this practice results in discontinuities across interface elements’ non-interface
boundaries or at the interface. Such non-conformity can be handled by penalties
on element boundaries to impose continuity such as in the IFE methods 51,55,71,
or on the interface itself to impose jump conditions such as the Nitsche’s meth-
ods 21,26,77,67,72. With suitable penalties, robust optimal convergence rates can be
indeed obtained for the H1-type interface problems (1.2), but to the authors’ best
knowledge, not the considered electromagnetic interface problem (1.4).

Compared with the analysis for H1 problems, the most drastic di↵erence
stems from the underlying Sobolev space H

s(curl;⌦). In particular, for many non-
conforming and discontinuous Galerkin (dG)-type methods, one needs to estimate
the penalty term which, by the standard techniques (e.g., see Lemma 5.52 in Ref.
75), leads to estimates as follows

h�1/2ku� ⇡FukL2(F ) . hs�1
kukHs(curl;K), (1.8)

where ⇡F is a certain projection operator on a face F of an element K. The order in
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(1.8) implies that even a moderate regularity s = 1 yields no approximation order
due to the presence of a penalty/stabilization term in the form of h�1

R
F
[uh ⇥

n] · [vh ⇥ n] ds. For standard dG methods, the work in Ref. 63, 62 can circumvent
the suboptimality, and the analysis relies on a H(curl)-conforming subspace of the
broken dG space on tetrahedral meshes. However, for unfitted-mesh methods for
interface problems in the literature, this problem becomes more severe, since such a
conforming subspace may not exist. Numerically, the loss of convergence has been
observed and reported in a series of work 31,32,57 for the H(curl) interface problem.
In Section 7.2, we also present one numerical example to show that a penalty-type
IFE method cannot achieve optimal convergence. So we believe that this di�culty
is essential rather than caused by the limitation of analysis techniques.

The scaling factor h�1 in this essential issue is commonly used for stabilization
in dG methods, but shows to be too “strong” for the space H

1(curl;⌦). In fact, for
a Lipschitz domain D, it is well-known that the trace of H1(D) is in H1/2(@D).
While forH(curl;D), the tangential trace is merely inH

�1/2(div; @D), which should
lead to di↵erent scaling factors for the stabilization terms on faces. Here we refer
readers to Ref. 24 for the analysis of the relation between the scaling factor of a
non-conforming method and function’s regularity, and more recently a weighted
Sobolev space treatment 12. In summary, the scaling factor, which is traditionally
viewed to be strong enough to ensure stability for H1 problems, leads to suboptimal
convergence in non-conforming methods for H(curl) problems. On the contrary,
various conforming VEMs 13,17,29,19, can use a correct scaling h in (1.8) to achieve
optimal convergence, but they are not easy to adapt to 3D anisotropic meshes. More
recently in Ref. 54, the virtual element method for the 3D H1-interface problem is
analyzed under the setting of anisotropic meshes near the interface.

In conclusion, developing unfitted-mesh methods for the H(curl) interface prob-
lem is much more challenging than its H1 counterpart. For non-matching mesh
methods, some work can obtain optimal convergence under the usual H1(curl)-
regularity by making a certain assumption of meshes being coupled at the interface,
see Ref. 64, 39. For many unfitted-mesh methods, the meshes or spaces are generally
completely broken, then at least the H2-regularity has to be assumed to achieve
optimal convergence, e.g., see Ref. 20, 72. In Ref. 57 for the 2D case and Ref. 34
for the 3D case, Petrov-Galerkin methods are developed that can achieve optimal
convergence, but results in a non-symmetric scheme. A robust optimal convergence
for VEM is established in Ref. 29, but it relies on a “virtual” triangulation satisfy-
ing the maximum angle condition, which may not be available in 3D. Therefore, to
our best knowledge, currently there seems no satisfactory methodology for the 3D
H(curl) interface problem considered.

1.3. A Novel Method

To develop unfitted-mesh methods for the H(curl) interface problem, based on
the discussion above, it is preferable to use a conforming space. In the meantime,
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this space must admit su�cient approximation capabilities robust with respect to
the anisotropy of subelements. This consideration motivates us to combine the con-
formity of virtual element spaces and the approximation capabilities of IFE spaces.
In our recent work 30, we have successfully realized this idea for the 2D case, which
is referred to as immersed virtual element (IVE) methods.

The fundamental idea is to impose local PDEs on interface elements to en-
force both conformity and jump condition of which the solutions are used as the
spaces for discretization. The IVE spaces can be understood as a special family of
H1, H(curl) and H(div) virtual element spaces 14,15,16,17 with discontinuous coe�-
cients. For the H1 case, it is also exactly the space of special FEMs by Babuška et
al. 10,11 for a simple 1D case, and it becomes the multiscale FE space 43 for higher
dimensional cases where the local PDEs are solved on sub-grids. The similar idea
was also employed in the enriched IFE method 2. The proposed IVE discretization
follows the meta-framework of VEM: the local PDEs need not be solved exactly,
certain projections are computed instead with su�cient approximation capability to
capture the jump conditions. It can successfully yield optimal convergence rates for
the H(curl) interface problem, which has been rigorously proved in the 2D case 30.
In this work, we focus on the development of the IVE spaces, the scheme, and the
implementation in the 3D case. We leave the theoretical part to another upcoming
work as a rigorous error analysis involves much more technicalities in 3D and is not
a trivial generalization of that in 2D.

Developing 3D IVE spaces is significantly more complicated than the 2D case,
especially for the H(curl) space. An immediate question is how to design appro-
priate div-curl systems as local problems with discontinuous coe�cients that have
a rigorous well-posedness. Here, special attention must also be paid to designing
the local problems such that their solutions have computable projections to IFE
spaces. The key is to modify the source terms for the local problems and to con-
struct certain weighted projections with regard to the weights as Hodge star oper-
ators. The second issue is to design suitable trace spaces on element boundaries,
in which the functions serve as the boundary conditions for those local problems.
The trace spaces need to provide su�cient and robust approximation properties. In
the 2D case, the boundary space consists of piecewise constants or linear functions
on each edge, the simpleness of which attributes to the trivial geometry of the el-
ement boundaries, see Ref. 14, 27, 30. However, in the 3D case, it becomes much
more obscure. For the classical virtual spaces 14,15,16,17, the trace spaces are gener-
ally formulated by solutions of some extra 2D local problems defined on polygonal
faces. In this work, we propose a rather di↵erent yet simpler approach: to use the
standard FE spaces defined on a 2D triangulation satisfying the maximum angle
condition on each element face. Such a triangulation not only benefits the robust
approximation property due to the maximum angle condition, but also facilitates
the code development leading to an e�cient implementation with suitable data
structures. In summary, on the boundary faces, we opt for an interface-fitted 2D
triangulation and use local problems to extend the shape functions to the interior of
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each interface element. Hence, the present research is, in fact, a combination of the
three classical methodologies: VEM, IFE and FEM, towards solving the challenging
electromagnetic interface problem e�ciently.

Although our focus is on electromagnetic interface problems, we shall develop a
systematic framework for all the H1, H(curl) and H(div) interface problems con-
tributing to a solid mathematical foundation. They are connected by the following
de Rham complex, and are shown to have the usual nodal, edge, and face degrees
of freedom (DoFs), through which both the exact sequence and the commutative
property can be established.

R H2(�; Th) H
1(curl,↵,�; Th) H

1(div,↵; Th) H1(Th) 0

R V n

h
V

e

h
V

f

h
Qh 0

,!

I
n
h

grad

I
e
h

curl

I
f
h

div

⇧0
h

,! grad curl div

(1.9)
Another major challenge for 3D interface problems is an appropriate fast solver.

Multigrid methods are widely used, and we refer readers to Ref. 86 for FEM and
Ref. 37 for VEM, both of which study the H1-interface problem. For H(curl) equa-
tions, the fast solvers are even more challenging 87,60 due to the non-trivial kernel
space of the curl operator, which is another motivation to lay out the de Rham com-
plex (1.9) for the proposed VEM spaces. In this work, we generalize multigrid-based
Hiptmair-Xu (HX) preconditioner 60,38 for regular H(curl) problem to the interface
case. Moreover, for fitted mesh methods, the condition numbers may still su↵er from
the possible anisotropic element shapes, even though the error bounds are robust.
In Ref. 86, the DoFs near the interface and in the background mesh are split to
form “fine-coarse” block matrices, thus an optimal two-level solver is developed. In
this paper, a block diagonal smoother is proposed to handle the anisotropic element
shape near the interface, similar to the practice in Ref. 86. To our best knowledge,
this is the first research towards applying the HX preconditioner to VEM, and also
the first fast solver for unfitted-mesh methods for solving electromagnetic interface
problems. Numerical results demonstrate that the solver is robust with respect to
both the mesh size and the shape of small-cutting elements.

This article has additional 6 sections. In the next section, we introduce the
meshes, focusing especially on the element boundary triangulation. In Section 3, we
describe the desired Sobolev spaces encoding jump conditions that are to be approx-
imated. In Sections 4 and 5, we introduce IFE spaces and IVE spaces, respectively.
In Section 6, we describe the computation scheme, fast solvers, and implementation
aspects. In the last section, we present a group of numerical experiments.

2. Meshes

In this article, we focus on a given interface-independent and shape-regular tetra-
hedral mesh of ⌦, but the proposed method can be also adapted to any Cartesian
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cubic meshes. This tetrahedral mesh is referred to as the background mesh, and
is denoted by Th. If an element in Th intersects the interface, then it is called an
interface element, or a non-interface element otherwise. The collection of interface
elements is denoted as T i

h
. For each K 2 T

i

h
, we denote �K = �\K. Let T n

h
be the

set of non-interface elements. All elements are considered as open sets.
One of the critical ingredients to formulate the H1, H(curl) and H(div) local

interface problems is to impose appropriate boundary conditions on element bound-
ary. Di↵erent from the prevailing approach in the literature, the authors in Ref. 37
proposes a novel approach by using exclusively square and triangular faces in in-
terface polyhedra. In Ref. 37, a Delaunay triangulation routine is called for the
nodes in the background mesh, interface nodes, and some added vertices near the
interface, then the triangular faces are extracted for their corresponding polyhedra.
In this work, similar to the practice in Ref. 37, standard FE functions on a 2D
triangulation of any given element face are used as the boundary conditions. Hence,
we make a fundamental assumption called interface fitted boundary triangulation:

(A) For each interface element K, each of its face admits a triangulation satis-
fying the maximum angle condition. The triangles are formed by only the
vertices of K and/or the cutting points of the original interface, i.e., there
are no newly-added interior vertices to form the edges. If a face is cut by the
interface, then this triangulation must be fitted to the interface in the sense
that the curve (the intersection of the face and interface) is approximated
by an edge of this triangulation with error in the order of O(h2

K
).

We illustrate the Assumption A in Figure 2.1: each face of an interface element
is partitioned into multiple triangles by the newly added edges including the one
connecting the cutting points (red points in the figure). It can be understood that
a local 2D fitted mesh satisfying the maximum angle condition is generated around
the interface but only on faces. Although, as aforementioned in the introduction,
generating a 3D interface-fitted mesh may be di�cult or even impossible in certain
situations, it is much easier to generate a 2D interface-fitted mesh. In particular,
since the considered original background tetrahedral meshes only have triangular
faces, the boundary triangulation with the maximum angle condition is always guar-
anteed by Lemma 3.1 in Ref. 29. See, for example, the left plot in Figure 2.1 if the
element is cut by the interface only once. If cubic meshes are used, then Proposition
2.4 in Ref. 37 guarantees an admissible boundary triangulation. But unlike Ref. 37
where the element is divided into two polyhedrons, here the cut tetrahedron is still
treated as one element with more than 4 triangular faces.

We highlight that the interface fitted boundary triangulation is able to link the
fitted 2D and unfitted 3D meshes, and also bridges the standard 2D FE spaces and
3D virtual element spaces. Our previous work in the 2D case 30 suggests that it is
also one of the keys to overcome suboptimal convergence caused by non-conforming
spaces for Maxwell’s equations, as well as help in anisotropic analysis for the virtual
spaces. In addition, the proposed boundary triangulation, in fact, greatly benefits the
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Fig. 2.1: Left: illustration of boundary triangulation of Assumption A. Middle: an
approximate plane �K

h
to �K . Right: 2D illustration of an element cut by the inter-

face with multiple times.

computation. One of the di�cult aspects of implementing polytopal finite element
approximation is the ever-changing number of DoFs in an element. In our approach,
since only triangular faces are present in every interface or non-interface element,
the assembling can be uniformly handled fixed-width matrices in the face-oriented
data structure, please refer to Section 6.4 for details, see also Ref. 37, 13 for a
face-based approach.

Another advantage of the proposed method is the flexibility to handle com-
plex interface element geometry. Specifically, on elements that are cut by interface
with multiple times, e.g., see the right plot in Figure 2.1, the proposed IVE spaces
can be easily constructed as long as an admissible boundary triangulation can be
constructed.

3. Some Sobolev Spaces and Well-posedness

In this section, we describe a group of modified Sobolev spaces that incorporate
the interface conditions. Let us first recall some standard spaces. Given an open
subdomain D ✓ ⌦, for s � 0, we let Hs(D) be the standard scalar Sobolev space
and H

s(D) := (Hs(D))3. Now introduce

H
s(curl;D) = {u 2 H

s(D) : curl u 2 H
s(D)}, (3.1a)

H
s(div;D) = {u 2 H

s(D) : div u 2 Hs(D)}. (3.1b)

If D \ � 6= ;, we let D± = ⌦±
\D, and further let Hs([D±), Hs(curl;[D±) and

H
s(div;[D±) consist of functions that belong to the corresponding spaces on each

D± but without any conditions on @D±.
Now, with the mesh Th we are ready to define the interface-encoded Sobolev

spaces:

H2(�; Th) =H1(⌦) \ {u 2 H2([K±) : �ru 2 H(div;K), 8K 2 Th},
(3.2a)

H
1(curl,↵,�; Th) =H(curl;⌦) \ {u 2 H

1(curl;[K±) : �u 2 H(div;K),
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↵ curl u 2 H(curl;K), 8K 2 Th}, (3.2b)

H
1(div,↵; Th) =H(div;⌦) \ {u 2 H

1(div;[K±) : ↵u 2 H(curl;K),

divu 2 H1(K), 8K 2 Th}, (3.2c)

H1(Th) =L2(⌦) \ {u 2 H1(K), 8K 2 Th}. (3.2d)

Note that, on a non-interface element K, the conditions are trivial since they are
just consequences of H2(K), H1(curl;K) and H

1(div;K). On an interface element
K those conditions exactly encode both the conformity and interface information.
To see the relation more clearly, we let H2(�;K), H1(curl,↵,�;K), H1(div,↵;K)
and H1(K) be the local spaces on K of their global counterparts in (3.2). The
spaces above are just constructed so that the following diagram is well-defined:

R H2(�;K) H
1(curl,↵,�;K) H

1(div,↵;K) H1(K) 0

0 L2(K) H(div;K) H(curl;K) H1(K) R

,!

I

r

�

curl

↵

div

I

div curl r  -

(3.3)
In Diagram (3.3), ↵ and � could be understood as Hodge star operators mapping
k-forms to (3 � k)-forms for k = 2, 1, respectively. Take � : H1(curl,↵,�;K) !
H(div;K) as an example. A function u in H

1(curl,↵,�;K) can be thought of as a
vector proxy of a 1-form. Then �u 2 H(div;K) is a 2-form. The jump conditions
(1.5) on the interface are from the continuity of the mapped forms. Construction of
the desired virtual spaces is to mimic this diagram in the discretized level.

In the following discussion, given any face F in the mesh, we shall denote the
tangential component of u by u

⌧
|F for admissible u defined in the bulk ! such that

F ✓ @!, and we will drop |F if there is no danger of causing confusion. In addition,
we will also frequently use the 2D rotation operator denoted by rotF on F . Let rF

denote the surface gradient. Then, for a function ' defined on F , rotF is defined in
the distributional sense such that

hrotF ', viF := (',rF v ⇥ n)F , 8v 2 H1
0 (F ). (3.4)

For each subdomain ! ✓ ⌦, and ' defined on @!, rot@! ' can be defined similarly,

hrot@! ', vi@! := (',rF v ⇥ n)@!, 8v 2 H1(!), (3.5)

while it can be verified that rot@! '|F = rotF ' when rot@! ' 2 L2(!). Here h·, ·i@!
denotes the usual pairing between H�1/2(@!)–H1/2(@!), and h·, ·iF is defined sim-
ilarly for F ⇢ @!. In particular, the well-known formula states

curlu · nF = rotF u, for u 2 H(curl;!), on F ⇢ @!, (3.6)

where nF is the exterior unit normal vector of F with respect to !.
Note that the proposed global problems as well as the local problems all in-

volve discontinuous coe�cients. In order to pursue a rigorous definition of the IVE
spaces, we discuss the well-posedness of some div-curl systems with discontinuous
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coe�cients. The systems with constant coe�cients are discussed in Ref. 5, and the
results with general coe�cients can be found in Ref. 81, 82, 49. But here we present
more detailed analysis to show that the constants in the a priori estimates are
independent of interface location.

Lemma 3.1. Let ! be a Lipschitz polyhedral domain which is simply-connected,
let an interface � separate ! into !±, and define a piecewise constant function
b = b± > 0 in !±. For the data functions f 2 H(div;!) \ ker(div), h 2 L2(!) and
g 2 H�1/2(@!) such that the compatibility condition holds:

Z

!

h dx = hg, 1i@!, (3.7)

then the following problem admits a unique solution ' 2 H(div;!) and b' 2
H(curl;!)

curl (b') = f , div(') = h in !, ' · n = g on @!. (3.8)

If additionally g 2 L2(@!), the stability result holds:

bmin(1 + bmax)
�1
k'kL2(!)  C!(kfkL2(!) + khkL2(!) + kgkL2(@!)), (3.9)

where bmin = min{b�, b+}, bmax = max{b�, b+} and the constant C! only depends
on the geometry of !. If ! is star-convex with respect to a ball of the radius ⇢!, then
C! = C(h!/⇢!) where h! is the diameter of !. Furthermore, if g 2 H1/2(@!), !
is convex, and � is a closed surface that is su�cient smooth and does not intersect
the boundary, then ' 2 H

1([!±).

Proof. Since ! is assumed to be simply-connected, by Theorem 1.1 in Ref. 82, we
know the solution ' to (3.8) admits the following decomposition

' = b�1rv + curlw (3.10)

where v is the solution to the equation

div(b�1rv) = h in !, b�1rv · n = g on @!,

Z

!

v dx = 0, (3.11)

and w is the solution to the equation

curl(b curlw) = f in !, div(w) = 0 in !, w ⇥ n = 0 on @!. (3.12)

Here (3.11) is a standard well-posed elliptic interface problem and the well-posedness
of (3.12) can be found in Ref. 81.

To show (3.9), based on (3.10), we show the a-priori estimates for both v and
w in terms of data. Testing (3.11) by v and using integration by parts we have

Z

!

b�1rv ·rv dx = �

Z

!

hv dx+

Z

@!

gv ds. (3.13)
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It implies, with Poincaré inequality and the trace inequality for v, that

kb�1/2rvk2
L2(!)  khkL2(!)kvkL2(!) + kgkL2(@!)kvkL2(@!)

. (khkL2(!) + kgkL2(@!))krvkL2(!).
(3.14)

Cancelling one krvkL2(!) in (3.14) yields the estimate: b�1maxkrvkL2(!) . khkL2(!)+
kgkL2(@!). As for w, we note that w 2 H(curl)\H(div) with div(w) = 0, and thus
we can apply Corollary 3.51 in Ref. 75 to obtain

kwkL2(!) . k curlwkL2(!) + kw ⇥ nkL2(@!) = k curlwkL2(!). (3.15)

Then, testing (3.12) with w, applying the integration by parts and using (3.15), we
have

bmink curlwkL2(!) . kfkL2(!). (3.16)

Combining the estimates above, we have (3.9), and the dependence of the generic
constants follows from the constants in the trace and Poincaré inequalities used
above, see Ref. 23.

For g 2 H1/2(@!), convex !, and closed smooth � not intersecting the boundary,
there certainly holds that v 2 H2([!±) and thus rv 2 H

1([!±) 65,66. As for w,
following the argument of Theorem 5.2 in Ref. 66, we construct w̃ 2 H

1(!) such
that curl(w̃) = f , div(w̃) = 0 and w̃ · n = 0 due to div(f) = 0, see Theorem 3.8 in
Ref. 50. Then, we have curl(b curlw � w̃) = 0 in ! and (b curlw � w̃) · n = 0 and
@!, and conclude by exact sequence that b curlw � w̃ = r� for some � 2 H1(!)
such that

8
>>>><

>>>>:

div(b�1r�) = � div(b�1w̃) in !±,

[�]� = 0 on �,

[b�1r� · n]� = �[b�1w̃ · n]� on �,

r� · n = 0, on @!.

Note that this is an interface problem with the non-homogeneous flux jump condi-
tion. As div(b�1w̃|!±) 2 L2(!±) and w̃ · n|� 2 H1/2(�), further by the assumption
that � does not intersect @!, we have � 2 H2([!±) and thus r� 2 H

1([!±)
by Ref. 42. Therefore, we conclude curlw 2 H

1([!±), and ' 2 H
1([!±) by the

decomposition (3.10).

Lemma 3.2. Given a simple-connected domain ! with Lipschitz boundary, let an
interface � separates ! into !± and define a piecewise constant function a = a± >
0 in !±. For the data functions f 2 H(div;!) \ ker(div), h 2 L2(!) and g 2

H
�1/2(@!) such that the compatibility condition holds:

hf · n, vi@! = hrot@!(n⇥ g), vi@! 8v 2 H1(!), (3.17)

then the following problem admits a solution ' 2 H(curl;!) and a' 2 H(div;!)

curl (') = f , div(a') = h in !, '⇥ n = g, on @!. (3.18)
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Furthermore, if g 2 L
2(@!), the following a-priori estimate holds:

amin(1 + amax)
�1
k'kL2(!) . kfkL2(!) + khkL2(!) + kgkL2(@!), (3.19)

where amin = min{a�, a+}, amax = max{a�, a+} and the constant C! only depends
the geometry of !. If ! is star-convex, then C! = C(h!/⇢!).

Proof. As ! is assumed to be simply-connected, by Theorem 1.2 in Ref. 82, the
solution ' to (3.18) has the following decomposition:

' = rv + a�1 curl(w), (3.20)

where v is the solution of

div(arv) = h in !, v = 0 on @!, (3.21)

and w is the solution of

curl(a�1 curlw) = f , div(w) = 0 in !,

a�1 curl(w)⇥ n = g, w · n = 0, on @!.
(3.22)

By the similar argument to Lemma 3.1 with the last remark in Ref. 45, we have

aminkrvkL2(!) . khkL2(!)

a�1maxk curl(w)kL2(!) . kfkL2(!) + kgkL2(@!),
(3.23)

which leads to the desired estimate by (3.20).

Remark 3.1. The key of the a priori estimates of (3.9) and (3.19) is the indepen-
dence with respect to the interface location. The result of Corollary 3.51 in Ref. 75
employs a compactness argument for curl-div systems on homogeneous media. One
may indeed use this technique to obtain the similar estimates for interface problems,
which, however, may lead to constants depending on the interface location.

Lemma 3.3. Given a simple-connected domain ! with Lipschitz boundary, let an
interface � separates ! into !± and define two piecewise constant functions a =
a± > 0 and b = b± > 0 in !±. For the data functions f 2 H(div;!) \ ker(div) and
g 2 H(rot; @!) such that

Z

@!

rot@! g ds = 0. (3.24)

Then, the equation

curl(a curl') = f , div(b') = 0, '
⌧ = g, (3.25)

admits a unique solution ' satisfying ' 2 H(curl;!), b' 2 H(div;!), a curl' 2
H(curl;!).
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Proof. We first consider a potential  such that

curl(a ) = f , div( ) = 0, in !,  · n = rot@! g, on @!. (3.26)

The condition (3.24) together with Lemma 3.1 shows the unique existence of  .
Then, it is easy to see that (3.25) can be equivalently written as

curl(') =  , div(b') = 0 in !, '
⌧ = g on @!. (3.27)

Note that the boundary condition in (3.27) is equivalent to ' ⇥ n = g ⇥ n. As
n⇥ (g ⇥ n) = g, with integration by parts, we have for any v 2 H1(!),

Z

@!

(n⇥ (g ⇥ n))(rv ⇥ n) ds =

Z

@!

g(rv ⇥ n) ds =

Z

@!

(rot@! g)v ds. (3.28)

Then, the boundary condition in (3.26) shows that the compatibility condition in
(3.17) indeed holds. Thus, the well-posedness follows from Lemma 3.2.

At last, we present the complex formed by the new globally-defined spaces
of (3.2).

Lemma 3.4. The following sequence is a complex:

R H2(�; Th) H
1(curl,↵,�; Th) H

1(div,↵; Th) H1(Th) 0.,! grad curl div

(3.29)
When ⌦ is a convex polyhedron, and the interface is also su�ciently smooth not
intersecting @⌦, it is also exact.

Proof.

We first verify that rH2(�; Th) ✓ ker(curl) \ H
1(curl,↵,�; Th). This is true

due to the jump conditions associated with rH2(�; Th), and curlrH2(�; Th) = 0.
Similarly, curlH1(curl,↵,�; Th) ✓ ker(div)\H(div,↵; Th) due to the jump condition
associated with H

1(curl,↵,�; Th), and the fact div curl = 0. Finally, it is trivial that
divH1(div,↵; Th) ✓ H1(Th). These results together finish the proof.

We then verify the exactness. We first show rH2(�; Th) = ker(curl) \
H

1(curl,↵,�; Th). Given each u 2 ker(curl)\H1(curl,↵,�; Th), by the classic exact
sequence, there exists u 2 H1(⌦) such that ru = u, and by the jump conditions
associated with H

1(curl,↵,�; Th) we have u also satisfies those of H2(�; Th). In ad-
dition, on each element K, ru = u 2 H

1([K±) implies u 2 H2([K±). Therefore,
u 2 H2(�; Th).

We then verify curlH1(curl,↵,�; Th) = ker(div) \H
1(div,↵; Th). Given a func-

tion u 2 ker(div) \H
1(div,↵; Th), we consider a function ' 2 H(div;⌦) satisfying

curl (��1') = u, div(') = 0 in ⌦, ' · n = 0 on @⌦. (3.30)

By Lemma 3.1 with ! = ⌦, � = � and b = ��1, we have this system being well-
defined with ��1' 2 H(curl;⌦) and ' 2 H0(div;⌦). Using Lemma 3.1 again, by the
geometric condition of ⌦ and �, we also have ' 2 H

1([⌦±). Thus, we obtain v :=
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��1' 2 H(curl;⌦) \H
1([⌦±) and �v 2 H(div;⌦). Furthermore, on each element

K, u 2 H
1(div;K±) implies v 2 H

1(curl;K±). In addition, [↵ curlv⇥ n]�K = 0 is
trivial by the property of u.

We next show divH1(div,↵; Th) = H1(Th). Given each f 2 H1(Th). We consider
a � satisfying

8
><

>:

div(↵�1r�) = f, in ⌦,

[�]� = 0, [↵�1r� · n]� = 0, on �

� = 0 on @⌦.

(3.31a)

(3.31b)

(3.31c)

By the elliptic regularity 8, we have � 2 H2([⌦±), and letw = ↵�1r� 2 H
1([⌦±).

On each element K, as f 2 H1([K±), we have w 2 H
1(div;K±). At last, (3.31b)

leads to [↵w ⇥ n]�K = 0 and [w · n]�K = 0.

Remark 3.2. The classic de Rham complex with higher smoothness is given by
Ref. 50, 83:

R H2(⌦) H
1(curl;⌦) H

1(⌦) L2(⌦) 0.,! grad curl div (3.32)

We note that this sequence can be simply revised to be

R H2(⌦) H
1(curl;⌦) H

1(div;⌦) H1(⌦) 0.,! grad curl div

(3.33)
The revision can be understood immediately from ker(div) \H

1(⌦) = ker(div) \
H

1(div;⌦). The proposed new sequence (3.29) is a further generalization of (3.33)
in which the jump information is incorporated. Finite element counterparts of (3.32)
and (3.33) can be found in Ref. 36. Virtual element discretization of (3.29) will be
discussed in Section 5.5.

4. Immersed Finite Element Spaces

In this section, we present H1, H(curl) and H(div) IFE functions. The basis
functions are some piecewise polynomials satisfying the jump conditions in certain
sense to ensure the local approximation property. Particularly, the H1 IFE space
has been developed in Ref. 69, but this is the first time that H(curl) and H(div) IFE
spaces are systematically developed. Di↵erent from all the IFE spaces in literature,
the spaces constructed here serve the purpose for approximation under the VEM
framework, thus are not limited by the constraint that DoFs need to be imposed
on their associated geometric objects. Instead, the DoFs are handled by the IVE
spaces discussed in Section 5. To facilitate a simple presentation, we shall focus
on the case that elements are only cut by the interface once, i.e., each edge has
at most one cutting point, which is a reasonable assumption employed by many
works in the literature 56,58,69. In fact, the interface elements may generally satisfy
this assumption if the background mesh is su�ciently fine, namely the interface is
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locally flat enough. We also remark that IFE spaces can be constructed for more
complicated interface element geometry violating this assumption, which we leave
to Appendix A for this general case.

We need a linear approximation to the interface portion �K , denoted by �K

h
. For

example, in Ref. 56 �K

h
is constructed as a plane passing through the three cutting

points forming a triangle satisfying the maximum angle condition, see the middle
plot in Figure 2.1 for an illustration. The following lemma essentially acknowledges
this setting. Another widely-used linear approximation approach is to use �h :
�h(x) = 0 with �h being the linearization of the sign-distance function � of � on
the same mesh. These choices indicate that the interface can be well-resolved by a
mesh that is su�ciently fine.

Lemma 4.1. Suppose the mesh is su�ciently fine such that h < h0 for a fixed
threshold h0 > 0, then on each interface element K 2 T

i

h
, there exist constants C�

independent of the interface location and mesh size hK such that for every point
X 2 �K with its orthogonal projection X? onto �K

h
,

kX �X?k  C�h
2
K
. (4.1)

As the Maxwell equations generally have low regularity near the interface, we
only consider the lowest order methods, and thus the O(h2) approximation geo-
metrical accuracy in (4.1) is su�cient. If high-order methods are desired, one needs
to either resolve the interface exactly by using the blending element techniques 53

or approximate the interface by polynomials of order at least 2p � 1 70. It is also
worthwhile to mention a recent work of VEM 47 for 2D elements with curved edges.

Let �K

h
partition K into K±

h
, and let ↵h and �h be the piecewise constant

functions whose jumps are now across �K

h
instead of �K ; namely

↵h =

(
↵� in K�

h
,

↵+ in K+
h
,

�h =

(
�� in K�

h
,

�+ in K+
h
.

(4.2)

But, here we shall postpone the specific parameters ↵h and �h in the PDEs to
a later discussion, and focus on a generic piecewise constant function denoted as
ch to present the IFE functions. In the following discussion, Pk(K) denotes the
polynomial space with degree k on K. Let n̄K be the normal vector to �K

h
that is

approximately in the same direction with nK to �K . Define two piecewise constant
vector spaces:

P
e

0(ch;K) = {c : c± = c|
K

±
h
2 [P0(K

±
h
)]3, c 2 H(curl;K), chc 2 H(div;K)},

(4.3a)

P
f

0 (ch;K) = {c : c± = c|
K

±
h
2 [P0(K

±
h
)]3, c 2 H(div;K), chc 2 H(curl;K)}.

(4.3b)

The super scripts e and f emphasize that the two spaces are, respectively, in the
edge and face spaces (1-form and 2-form in the language of di↵erential forms);
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namely

P
f

0 (ch;K) ⇢ H
1(div, ch;K)\ker(div) and P

e

0(ch;K) ⇢ H
1(curl, c0

h
, ch;K)\ker(curl),

where c0
h
may be any arbitrary piecewise constant due to the curl-free property of

P
e

0(ch;K). Hence, for the parameters ↵h and �h, there particularly holds

P
e

0(�h;K) ⇢ H
1(curl,↵h,�h;K) and P

f

0 (↵h;K) ⇢ H
1(div,↵h;K),

which give certain reasonable approximations to these two desired Sobolev spaces.
We shall see that these two spaces are the fundamental ingredients to construct all
the H1, H(curl) and H(div) IFE functions, as well as to construct and project the
IVE spaces.

Furthermore, from the definition, it is not hard to conclude the following relation

P
e

0(ch;K)
ch

������!
 ������

c
�1
h

P
f

0 (c
�1
h

;K). (4.4)

Here the discontinuous coe�cient ch can be viewed as a Hodge star operator. This
perspective is the key for computing the projection of the proposed IVE spaces, see
Section 5.4.

In order to derive explicit formulas for the functions in the spaces (4.3), we
further let t̄

1
K

and t̄
2
K

be the two orthonormal tangential unit vectors to �K

h
, and

denote the matrix TK = [n̄K , t̄1
K
, t̄2

K
]. Then, we define the matrices:

Mf,ch

K
= TK

2

4
1 0 0
0 c̃ 0
0 0 c̃

3

5 (TK)> and Me,ch

K
= TK

2

4
c̃ 0 0
0 1 0
0 0 1

3

5 (TK)>, (4.5)

where c̃ = c+
h
/c�

h
. Clearly, both Mf,ch

K
and Me,ch

K
are symmetric and positive defi-

nite. Thus, the spaces Pe

0(ch;K) and P
f

0 (ch;K) can be rewritten as

P
e

0(ch;K) =
n
c : c± = c|

K
±
h
, c
� = Me,ch

K
c
+, c

+
2 [P0(K

+
h
)]3
o
, (4.6a)

P
f

0 (ch;K) =
n
c : c± = c|

K
±
h
, c
� = Mf,ch

K
c
+, c

+
2 [P0(K

+
h
)]3
o
. (4.6b)

P
f

0 (ch;K) and P
e

0(ch;K) are subspaces of the piecewise constant vector functions
(dimension 6). With the jump conditions as the constraints, it can be easily verified
that the dimension of both P

f

0 (ch;K) and P
e

0(ch;K) is 3.
Now, we proceed to present the H1, H(curl) and H(div) IFE functions. We

consider P
f

0 (ah;K) and P
e

0(bh;K), formed by two general positive piecewise con-
stant functions ah and bh. Then, all the H1, H(curl) and H(div) IFE functions
with the general parameters ah and bh have simple formulas presented in Table 1
where xK is any point on �K . One can directly verify that they belong to the cor-
responding Sobolev spaces and satisfy the associated jump conditions in the table.
Note that the normal jump condition in the H(curl) case and the tangential jump
condition in the H(div) case only hold at the single point xK instead of the entire
�K

h
. This does not violate the necessary continuities for these two spaces to be in
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H(curl;K) andH(div;K). Of course, di↵erent choices of xK lead to di↵erent spaces.
In addition, compared with the standard Lagrange, Nédélec, and Raviart-Thomas
elements, the only di↵erence for their IFE counterparts is to replace the constant
vectors in [P0(K)]3 by the vectors in P

f

0 (ah;K) and P
e

0(bh;K), thus providing the
necessary piecewise constant approximation to �ru, ↵ curlu, and �u on interface
elements, respectively.

IFE spaces Sn

h
(bh;K) S

e

h
(ah, bh;K) S

f

h
(ah;K)

Dimension 4 6 4

Sobolev
spaces

H1(K) H(curl;K) H(div;K)

Function
format

b · (x� xK) + c
b 2 P

e

0(bh;K),
c 2 P0(K)

a⇥ (x� xK) + b

a 2 P
f

0 (ah;K),
b 2 P

e

0(bh;K)

c(x� xK) + a

c 2 P0(K),

a 2 P
f

0 (ah;K)

Jump
conditions

[vh]�K
h
= 0

[bhrvh · n̄]�K
h
= 0

[vh ⇥ n̄]�K
h
= 0

[ah curlvh ⇥ n̄]�K
h
= 0

[bhvh · n̄]xK = 0

[vh · n̄]�K
h
= 0

[ahvh ⇥ n̄]xK = 0

[divvh]�K
h
= 0

Table 1: IFE spaces, their dimensions, their function format, the corresponding
jump conditions and the Sobolev spaces to which they belong, where xK is any
point at �K

h
.

In addition, on each interface element, these spaces admit a local exact sequence
established in the following lemma.

Lemma 4.2. The following sequence is a complex and is exact:

R Sn

h
(bh;K) S

e

h
(ah, bh;K) S

f

h
(ah;K) P0(K) 0.,! grad curl div

(4.7)
Furthermore, the constant vector spaces Pf

0 (ah;K) and P
e

0(bh;K), respectively, are
the curl-free and div-free subspaces of Se

h
(ah, bh;K) and S

f

h
(ah;K):

P
e

0(bh;K) = gradSn

h
(bh;K) = S

e

h
(ah, bh;K) \ ker(curl), (4.8a)

P
f

0 (ah;K) = curlSe

h
(ah, bh;K) = S

f

h
(ah;K) \ ker(div). (4.8b)

Proof. It can be verified directly.

Remark 4.1. In computation, the IVE functions and their curls are projected
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to the constant spaces P
e

0(�h;K) and P
f

0 (↵h;K). To ensure an optimal first or-
der convergence, the projections need not be to the full IFE spaces Sn

h
(�h;K),

S
e

h
(↵h,�h;K) and S

f

h
(�h;K). But these spaces will be useful in the computation

procedure of the projections.

To end this section, we show trace inequalities for piecewise constant IFE func-
tions. The key is the generic constant is independent of the location of interface.

Lemma 4.3. Given each interface element K and one of its face F , for every
c 2 P

e

0(bh;K) or c 2 P
f

0 (ah;K), there holds that

kckL2(F ) . h�1/2
K
kckL2(K), (4.9)

where the generic constant is independent of the location of interface but depends
on ah or bh.

Proof. By (4.5) and (4.6), we know that there is a matrix M with kMk1 . 1 such
that

kc
�
k = kMc

+
k . kc+k. (4.10)

Without loss of generality, we only consider the case that F intersects with the
interface and assume F is cut into F±

h
. By geometry, it is not hard to see that

either there is a pyramid P ✓ K+
h

which has the base F+
h

and height O(hK) or this
is true for the “-” piece. Again, without loss of generality, we assume the former
case is true. Then, the standard trace inequality on P simply implies

kc
+
k
L2(F+

h ) . h�1/2
K
kc

+
k
L2(K+

h ). (4.11)

As for the “�” piece, we apply the trace inequality on the entire element K with
(4.10) to obtain

kc
�
k
L2(F�

h ) . h�1/2
K
kc
�
kL2(K) . h�1/2

K
(kc�k

L2(K�
h ) + kMc

+
k
L2(K+

h )) . kckL2(K).

(4.12)
Combining (4.11) and (4.12), we have the desired estimate.

5. Immersed Virtual Element Spaces

It is generally not possible to construct conforming piecewise polynomial spaces
to the Sobolev spaces in (3.2). Traditionally, Lagrange, Nédélec and Raviart-Thomas
elements are conforming to H1, H(curl) and H(div) spaces, yet they cannot provide
su�cient approximation when a mesh-cutting interface is present. The IFE spaces
introduced above can capture the jump information, but at the cost of losing the
conformity. In this section, we construct immersed virtual element (IVE) spaces
based on solutions to local interface problems. IVE spaces can be both conforming
and satisfy interface conditions perfectly. For a non-interface element K, the local
finite element space is simply defined as the linear polynomial space P1(K), the
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lowest order Nédélec space ND0(K) 76, and the lowest order Raviart-Thomas space
RT 0(K) 80.

Given an interface element K 2 T
i

h
, we let NK and EK be the collection of

all the nodes and edges in the triangulation of @K. Note that the nodes include
the vertices in the background mesh and cutting points, and the edges include all
the sub-edges cut by the interface and newly-added edges. Then FK denotes the
resulting triangular faces. Given a T which may be a cube, square, tetrahedron
or triangle, we let ND0(T ) and RT 0(T ) be the first family of Nédélec polynomial
space and the Raviart-Thomas polynomial space of the lowest degree on T . The
Lagrange space is simply the first-degree polynomial space P1(T ).

Next, we also need two weighted projections onto the piecewise constant vector
spaces P

f

0 (ch;K) and P
e

0(ch;K) which will be used in the definition of the IVE
spaces as well as the computation:

⇧
e,ch

K
: H(curl;K)! P

e

0(ch;K), satisfying (5.1a)
Z

K

ch⇧
e,ch

K
vh · ph dx =

Z

K

chvh · ph dx, 8ph 2 P
e

0(ch;K),

⇧
f,ch

K
: H(div;K)! P

f

0 (ch;K), satisfying (5.1b)
Z

K

ch⇧
f,ch

K
vh · ph dx =

Z

K

chvh · ph dx, 8ph 2 P
f

0 (ch;K).

The super-scripts, e and f , still emphasize the distinct Sobolev spaces, i.e., the
images of ⇧e,ch

K
and ⇧

f,ch

K
belong to H(curl;K) and H(div;K), respectively.

5.1. The H
1 IVE Space

We first consider the H1 case. Given the boundary triangulation, we define the
boundary function space:

B
n

h
(@K) = {vh 2 C(@K) : vh|T 2 P1(T ), 8T 2 FK}. (5.2)

Then, on an interface element K, the H1 IVE space involving the discontinuous
coe�cient � is defined as

V n

h
(K) =

�
vh : �rvh 2 H(div;K), r · (�rvh) = 0, vh|@K 2 B

n

h
(@K)

 
. (5.3)

Clearly V n

h
(K) ✓ H1(K). On the boundary @K we use the continuous P1 finite

element space on the body-fitted surface triangulation. In the interior we use �-
harmonic extension so that the shape functions satisfy the jump conditions on the
interface.

The property of the nodal DoFs is given by the following lemma.

Lemma 5.1. The space V n

h
(K) has nodal DoFs {vh(z), z 2 NK}.

Proof. First, vh 2 V n

h
(K) is uniquely determined by the boundary condition in

B
n

h
(@K). The space B

n

h
(@K) has the nodal DoFs associated with the nodes in NK .

So functions in V n

h
(K) are uniquely determined by their nodal values.
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On any non-interface element, the standard Lagrange FE space, i.e., P1(K), is
used. Thus, with the nodal DoFs, we are able to define the global H1-conforming
IVE space as

V n

h
= {vh 2 H1

0 (⌦) : vh|K 2 V n

h
(K), 8K 2 T

i

h
, and vh|K 2 P1(K), 8K 2 T

n

h
}.

(5.4)
Functions in V n

h
are piecewise linear on the element boundary triangulation and in

general non-polynomial inside interface element, which is the key to capture both
the jump conditions and conformity.

Similar to the standard VEMs, the function values in the interior are not needed,
projections to certain spaces with approximation properties are computed instead.
In the following paragraph, we show how to compute ⇧

e,�h

K
rvh for vh 2 V n

h
(K).

For every ph 2 P
e

0(�h;K), by (4.4) there holds �hph 2 P
f

0 (�
�1
h

;K) ⇢ H(div;K) \
ker(div). Then, the integration by parts shows

Z

K

�h⇧
e,�h

K
rvh · ph dx =

Z

K

rvh · (�hph) dx =

Z

@K

vh(�hph · n) ds, (5.5)

of which the right-hand side is computable. The L2 projection of vh to P0(K) is not
computable by the definition of the current space. However, this is not needed as vh
itself can be approximated by the formula in Table 1 using the gradient obtained
from (5.5). Denote this weighted H1 projection by v̄h, the constant c in Table 1
can be chosen such that

R
@K

v̄h =
R
@K

vh. This constraint gives compactness, thus
a su�cient approximation for computing the right-hand side term to guarantee the
first order optimal convergence.

5.2. The H(curl) IVE Space

For the H(curl) case, the boundary space is defined as

B
e

h
(@K) = {vh : vh|T 2 ND0(T ), 8T 2 FK , (vh·t)|e is continuous on each e 2 EK}.

(5.6)
EachND0(T ) contains the 2D vector polynomials tangentially defined on the planar
triangle T . By formulations from trace finite elements on triangulated surfaces 78,
B
e

h
(@K) is a well-defined finite element space on its own, and has the DoFs ofR

e
vh · t ds, e 2 EK . With this boundary space, we first introduce an auxiliary

H(curl) IVE space:

eVe

h
(K) = {vh 2 H(curl;K) : �vh 2 H(div;K), div(�vh) = 0,

↵ curl vh 2 H(curl;K), curl↵ curl vh 2 P
f

0 (�
�1
h

;K), v
⌧

h
2 B

e

h
(@K)}.

(5.7)

Here, ↵ and � can be also understood as Hodge star operators exactly mimicking
the second and the third vertical mappings in the desired diagram (3.3) between
di↵erent Sobolev spaces.

The following lemma gives the well-posedness and DoFs of eVe

h
(K).
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Lemma 5.2. eVe

h
(K) is unisolvent with respect to the DoFs {

R
e
vh · t ds, e 2 EK}

and {
R
K
�hvh · ph dx, ph 2 P

e

0(�h;K)}.

Proof. Let qh 2 P
f

0 (�
�1
h

;K) and rh 2 B
e

h
(@K) be some arbitrary data functions.

Let us formulate the following local interface problem arising from the definition in
(5.7):

curl↵ curl vh = qh, div(�vh) = 0, in K, v
⌧

h
= rh on @K. (5.8)

Note that the solutions vh of (5.8) form the space eVe

h
(K). The well-posedness of

(5.8) is given by Lemma 3.3. It implies that the dimension of the solution space is
equal to the (finite) dimension of the space of possible data functions: the boundary
data function rh which is uniquely determined by {

R
e
rh · t ds, e 2 EK} and the

right-hand side qh 2 P
f

0 (�
�1
h

;K) which has dimension 3. Therefore, the dimension
of solution space matches the DoFs count 3 + |EK | for this virtual space.

In the rest of the proof, it needs to be established that the given moments on
edges and element interior are indeed DoFs. To this end, it su�ces to show that
a function with vanishing DoFs is trivial in this space. Noticing curl↵ curl vh 2

P
f

0 (�
�1
h

;K) = �hPe

0(�h;K) by (4.4), thus from the interior DoFs in Lemma 5.2 we
have

0 =

Z

K

vh ·curl↵ curl vh dx =

Z

K

↵ curl vh ·curl vh dx�

Z

@K

v
⌧

h
· (↵ curlvh⇥n) ds,

(5.9)
where we have used integration by parts in the second equality. As the edge moments
are zero, we know v

⌧

h
= 0. So, we have

R
K
↵ curl vh · curl vh dx = 0 which implies

curlvh = 0 as ↵ is positive. In addition, by div(�vh) = 0 and the vanishing trace,
we derive from Lemma 3.2 that vh = 0.

Similar to the classical VEM, both vh and curlvh are not computable. But we
shall see that their weighted projections to the IFE spaces are computable. We first
address the projection of curlvh which will be then used to develop a new IVE
space as a subspace of eVe

h
that only has the edge DoFs.

By the Hodge star property (4.4), we argue that ⇧f,ah

K
curlvh defined in (5.1b)

is computable for any positive ah. In particular, for each ph 2 P
f

0 (ah;K) we know
ahph 2 H(curl;K)\ ker(curl). Then, applying the projection ⇧

f,ah

K
to curlvh with

the integration by parts, we obtain
Z

K

ah⇧
f,ah

K
curlvh · ph dx =

Z

K

curlvh · (ahph) dx =

Z

@K

(vh ⇥ n)(ahph)
⌧ ds.

(5.10)

The right-hand side above is computable through only the edge DoFs
R
e
vh · t ds,

e 2 EK , since the boundary triangulation is known. In computation, ⇧f,↵h

K
curlvh

provides a su�cient approximation order on elements intersecting the interface.
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Now, we let S
e

h
(ah, 0;K) be the subspace of Se

h
(ah, bh;K) that has the fixed

b = 0 in Table 1. Namely, the functions in S
e

h
(ah, 0;K) are just wh = a⇥ (x�xK),

a 2 P
f

0 (ah;K), and thus the space only has the dimension 3. Then, based on the
auxiliary space eVe

h
(K), we introduce its subspace:

V
e

h
(K) = {vh 2

eVe

h
(K) :

Z

K

curlvh ·wh dx = 0, 8wh 2 S
e

h
(��1

h
, 0;K)}. (5.11)

Clearly, Ve

h
(K) ⇢ eVe

h
(K), and the following lemma ensures that only the edge

DoFs are needed for the unisolvency of this subspace due to the extra constraint.

Lemma 5.3. V
e

h
(K) is unisolvent with respect to the edge DoFs {

R
e
vh · t ds, e 2

EK}.

Proof. It su�ces to show that this extra condition (5.11), in fact, makes the in-
terior DoFs

R
K
�hvh · ph dx, ph 2 P

e

0(�h;K) fixed thus not degrees of freedom

anymore. To see this, for each ph 2 P
e

0(�h;K), we have �hph 2 P
f

0 (�
�1
h

;K) and
div �hph = 0. Therefore, by the local exact sequence (4.7) and (4.4), there exists
wh 2 S

e

h
(��1

h
, 0;K) such that curlwh = �hph. Then, the integration by parts shows

Z

K

�hvh · ph dx =

Z

K

vh · curlwh dx =

Z

K

curlvh ·wh dx

| {z }
(I)

�

Z

@K

v
⌧

h
· (wh ⇥ n) ds

| {z }
(II)

.

(5.12)
Note that (I) = 0 by the extra condition in the definition. For (II), v⌧

h
2 B

e

h
(@K)

is also solely determined by the edge DoFs. Therefore, under the extra constraint,
the right-hand side of (5.12) is computable for every pair of ph and wh, as long as
the edge DoFs {

R
e
vh · t ds, e 2 EK}, are given.

For the new space V
e

h
(K), the identity (5.12) also gives a simple formula for

computing ⇧
e,�h

K
vh:

Z

K

�h⇧
e,�h

K
vh · ph dx =

Z

K

�hvh · ph dx = �

Z

@K

v
⌧

h
· (wh ⇥ n) ds, (5.13)

with wh = (�hph/2)⇥ (x� xK) given by Table 1.
With the edge DoFs, we are able to define a globalH(curl)-conforming space that

uses (5.23) on interface elements and standard Nédélec elements on non-interface
elements:

V
e

h
= {vh 2 H(curl) : vh|K 2 V

e

h
(K), K 2 T

i

h
and vh|K 2 ND0(K), K 2 T

n

h
}.

(5.14)

5.3. The H(div) IVE Space

For the H(div) case, the boundary function space is defined as

B
f

h
(@K) = {vh : vh|T 2 P0(T ), 8T 2 FK}. (5.15)
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Similar to the H(curl) space, let us define the IVE space in the following:

V
f

h
(K) = {vh 2 H(div;K) : div(vh) 2 P0(K), vh · n|@K 2 B

f

h
(@K),

↵vh 2 H(curl;K), curl(↵vh) = 0}.
(5.16)

Again, the discontinuous coe�cient ↵ serves as a Hodge star operator that is to
mimic the third vertical mapping in Diagram 3.3. The well-posedness and DoFs of
this space is given by the following lemma.

Lemma 5.4. V
f

h
(K) is unisolvent with respect to the DoFs {vh|F · nF , F 2 FK}.

Proof. We let ch 2 P0(K) and rh 2 B
f

h
(@K) be some arbitrary data functions for

the definition (5.16) satisfying the compatibility condition
Z

K

ch dx =

Z

@K

rh ds. (5.17)

Then, we consider the following div-curl system:

div(vh) = ch, curl↵vh = 0 in K, and vh · n = rh on @K (5.18)

whose solutions vh form the spaceVf

h
(K). Due to the compatibility condition (5.17),

by Lemma 3.1 the system in (5.18) is well-posed and admits a unique solution vh 2

H(div;K) with ↵vh 2 H(curl;K). The dimension of Vf

h
(K) is just the dimension

of space of the independent data functions, |FK |, where we note that ch does not
count as it is determined by rh from (5.17).

Next, to show that the given moments are indeed DoFs, we suppose they all
vanish, and thus ch = rh = 0 in (5.18) which immediately implies vh = 0 by
Lemma 3.1.

Now, we discuss how to compute projections of the proposed H(div) IVE space.
The identity (5.17), in fact, yields a formula for computing div(vh):

div(vh) = |K|
�1

Z

@K

vh · n ds (5.19)

which is computable. As for vh itself, we then argue that ⇧f,ah

K
vh defined in (5.1b)

is always computable for any given positive ah. Similar to (5.10), given each ph 2

P
f

0 (ah;K), we have ahph 2 P
e

0(a
�1
h

;K). Then, there exists  h = (ahph)·(x�xK) 2
Sn

h
(a�1

h
;K) such that r h = ahph, and thus we can derive
Z

K

ah⇧
f,ah

K
vh · ph dx =

Z

K

ahvh · ph dx =

Z

K

vh ·r h dx

= �

Z

K

div(vh) h dx+

Z

@K

vh · n h ds
(5.20)

which is computable. In computation, ah in this space is set to ↵h as ↵hph 2

H(curl).
Thanks to the face DoFs, we can define a global H(div)-conforming space:

V
f

h
= {vh 2 H(div;⌦) : vh 2 V

f

h
(K), K 2 T

i

h
and vh|K 2 RT 0(K), K 2 T

n

h
}.

(5.21)
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5.4. Some Comments and Alternative Definitions

The proposed H(curl) and H(div) IVE spaces above are exactly the extension
of the classical virtual spaces in literature 14,15,16,13,17 to the case of discontinu-
ous coe�cients. The modification also includes the source terms and the boundary
conditions of the local interface problems, by which the weighted projections are
computable.

The face triangulation and the associated standard FE space is critical for the
appropriate definition of the IVE spaces. Note that the 2D IVE spaces in Ref. 30
may not be developed on faces intersection with the interface, as jump conditions
on faces are quite obscure. Take the H1 interface problem as example. Given a face
F , the desired jump information [�rF v · n̂�,F ]� cannot be derived from [v]� and
[�rv ·n]�, where rF is the surface gradient on F and n̂�,F is the normal vector to
� \ F but parallel to F . We refer readers to the derivation of the jump conditions
on interface edges in the 2D case 43 that has to introduce the derivative along the
normal direction of element boundary and thus adds much more complexity. Instead,
we use well-defined finite element spaces for an interface-fitted triangulation on the
boundary faces, which actually makes the theory and computation much simpler. In
addition, this approach can also provide su�cient approximation capabilities and
keep the DoFs. Furthermore, in the next section, we shall see that it can also benefit
implementation through the proposed data structure.

One may note that the definition of the IVE spaces above do not rely on the
assumption that the interface only cuts elements once. In fact, all the local problems
are automatically well-posed for almost arbitrary interface element configuration,
as long as the face triangulation exists. For example, they can be used on elements
shown in the right plot of Figure 2.1 (a 2D illustration). This very feature together
with the IFE spaces in Appendix A makes the proposed method much more flexible
than the traditional IFE methods in the literature.

Next, let us summarize the relation between the involved spaces and weights in
the computation of projections, which may be unified as

Z

K

ch⇧
s,ch

K
vh · ph dx =

Z

K

vh · (chph)| {z }
2Ps0

0 (c�1
h ;K)

dx,

where

(
(s, s0, ch) = (e, f,�h), if (vh,ph) 2 H(curl;K)⇥P

e

0(ch;K),

(s, s0, ch) = (f, e,↵h), if (vh,ph) 2 H(div;K)⇥P
f

0 (ch;K).

(5.22)

By the language of di↵erential forms, in order for the wedge product of a k-form
and l-form to be scalar, there needs k + l = 3 in the 3D case. Note that vh and
ph both belong to the k-form, k = 1, 2, so ch acts as a Hodge star operator (4.4)
mapping ph to the (3 � k)-form for the desired wedge product. Here, the value of
ch = ↵h or �h depends on the H(curl) or H(div) spaces matching the underlying
Maxwell’s equations.

At last, we provide an alternative definition of the H(curl) IVE spaces being
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a di↵erent subspace of eVe

h
(K), which has some nice mathematical properties. The

key is also to impose suitable conditions to assign the interior DoFs.
For the H(curl) space, we may consider

V
e

h
(K) = {vh 2

eVe

h
(K) :

Z

K

curlvh ·wh dx =

Z

K

⇧
f,�h

K
curlvh ·wh dx,

8wh 2 S
e

h
(��1

h
, 0;K)}.

(5.23)

Then, the interior DoFs can be determined also through integration by parts:
Z

K

�hvh · ph dx =

Z

K

curlvh ·wh dx�

Z

@K

v
⌧

h
· (wh ⇥ n) ds

=

Z

K

⇧
f,�h

K
curlvh ·wh dx�

Z

@K

v
⌧

h
· (wh ⇥ n) ds, 8ph 2 P

e

0(�h;K),

(5.24)

wherewh = (�hph/2)⇥(x�xK) from Table 1 makes the spaceVe

h
(K) only have the

edge DoFs. The identity (5.24) also gives the formula for computing ⇧
e,�h

K
vh. But,

compared with (5.13), (5.24) needs to compute the extra term
R
K
⇧

f,�h

K
curlvh ·

wh dx, which is slightly more expensive.
This approach to determine the subspaces is similar to the one in Ref. 4, 23 for

the classical H1 virtual spaces. Here, the benefit is to have the new spaces free of
the choice of xK . Note that the spaces in (5.11) depends on the choice of the point
xK 2 �K

h
which can be arbitrary on the plane �K

h
with a distance O(hK) to the

element K. However, the new space in (5.23) is invariant with respect to the various
xK 2 �K

h
, even though the underlying IFE spaces Se

h
(��1

h
, 0;K) are not.

5.5. A discrete de Rham Complex

The proposed IVE spaces inherit the de Rham complex properties of standard
finite element spaces including the exact sequence and commutativity.

Thanks to the nodal, edge and face DoFs of the proposed IVE spaces, let us
first define the corresponding interpolations:

In
h
: H2(�; Th)! V n

h
satisfying In

h
u(x) = u(x), 8x 2 Nh, (5.25a)

Ie
h
: H1(curl,↵,�; Th)! V

e

h
satisfying

Z

e

Ie
h
u · t ds =

Z

e

u · t ds, 8e 2 Eh,

(5.25b)

If
h
: H1(div,↵; Th)! V

f

h
satisfying

Z

F

If
h
u · n ds =

Z

F

u · n ds, 8F 2 Fh.

(5.25c)

We further need the standard L2 projection denoted by ⇧0
K

: L2(K)! P0(K), and
define the global one as ⇧0

h
such that ⇧0

h
|T = ⇧0

T
, i.e., ⇧0

h
: L2(⌦)! Qh where

Qh = {vh : vh 2 P0(K), 8K 2 Th(K)}. (5.26)
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These operators together with the IVE spaces will be used to formulate the con-
tinuous and discrete de Rham complex in (1.9). In fact, Lemma 3.4 already shows
that exactness in the continuous level. So our focus will be on the discrete one in
the lower part of (1.9).

Lemma 5.5. When ⌦ is topologically trivial, the following complex is exact

R V n

h
V

e

h
V

f

h
Qh 0.,! grad curl div (5.27)

Proof. The argument for showing the sequence being a complex is basically the
same as Lemma 3.4. To show the exactness, we can look at the DoFs which form a co-
chain exact complex on the cell-complex defined by the mesh. For the completeness,
we include a detailed proof below.

First verify rV n

h
= ker(curl) \ V

e

h
. By the classic exact sequence, given each

vh 2 ker(curl)\Ve

h
, there exists vh 2 H1(⌦) such thatrvh = vh. Given an interface

element K, the jump conditions associated with V
e

h
(K) imply that vh also satisfies

those of V n

h
(K). In addition, let F be one of its face in the boundary triangulation,

since rotF vh = 0 and v
⌧

h
|F 2 ND0(F ), we have rF vh = v

⌧

h
|F 2 [P0(F )]2, which

implies vh 2 P1(F ). Hence, vh 2 V n

h
(K). On each non-interface element K, vh is

just a constant vector, so vh 2 P1(K). Therefore, we conclude vh 2 V n

h
.

Second, we just, to the end, prove div(Vf

h
) = Qh. Given each q 2 Qh, there

exists a regular potential u 2 H
1(⌦) s.t. divu = q. Then, we define uh = If

h
u and

|K| q|K =

Z

K

div(u) dx =

Z

@K

u · n ds =

Z

@K

If
h
u · n ds =

Z

K

div(If
h
u) dx

which implies div(If
h
u|K) = q|K on each element K finishing the proof.

To verify curlVe

h
= V

f

h
\ ker(div), we can use a dimension count. Denote by

#Vh,#Eh, #Fh,#Th the number of vertices, edges, faces, and elements, respec-
tively. From the surjectivity, i.e., div(Vf

h
) = Qh, we know dim(Vf

h
\ ker(div)) =

dimV
f

h
� dimQh = #Fh � #Th. On the other hand, dim curlVe

h
= dimV

e

h
�

dim(ker(curl) \ V
e

h
) = dimV

e

h
� dim(rV n

h
) = #Eh � #Vh + 1. Then by Euler’s

formula, we get dim curlVe

h
= dim(Vf

h
\ ker(div)). As curlVe

h
✓ V

f

h
\ ker(div), we

conclude that they are equal.

6. The Immersed Virtual Element Schemes

Based on the previously established spaces and projections, in this section we
are ready to present the IVE schemes. With the exact sequence, we also develop fast
solvers for the H(curl) interface problem. At last, we present a data structure that
can facilitate an e�cient and vectorized implementation of the proposed method.

We shall focus on the H1 and H(curl) interface problems due to their vast
applications. For simplicity, we let (·, ·)D be the standard L2 inner product on D.
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6.1. The IVE Scheme for H
1 interface problem

For the H1 case, we define a local bilinear form as

bK(uh, vh) = (�h⇧
e,�h

K
ruh,⇧

e,�h

K
rvh)K + SK((I �⇧

e,�h

K
)ruh, (I �⇧

e,�h

K
)rvh),

(6.1)
where the projection ⇧

e,�h

K
is given in (5.1a) on interface elements K and simply

assumed to be the identity operator on non-interface elements as the standard
FE spaces are used and computable. The first term in (6.1) is a reasonable and
computable approximation to (�ruh,rvh), as ⇧

e,�h

K
will preserve the piecewise

constant spacePe

0(�h;K), but it alone does not lead to a stable method as⇧e,�h

K
r(·)

contains a non-trivial kernel. Namely, there exists a non-constant function vh 2
V n

h
s.t. ⇧e,�h

K
rvh = 0. In the VEM literature, two requirements are imposed for

the stabilization SK . One is the k-consistency, i.e., the stabilization vanishes for
polynomial spaces of degree k. As ⇧e,�h

K
can preserve the piecewise constant space

P
e

0(�h;K) and the slice operator I � ⇧
e,�h

K
is used, SK is 0-consistent. Another

consideration is the norm equivalence bK(vh, vh) h krvhk2. But we really need is
the coercivity; see Lemma 6.2 and Section 6.3 below for detailed discussion.

Various choices of the stabilization have been proposed in the literature 14,23,28

based on di↵erent norms on the boundary. In this work, we will employ the following
surface H1 stabilization:

SK(wh, zh) := �hK

X

F2FK

(w⌧

h
, z⌧

h
)F , (6.2)

where w
⌧

h
|F and z

⌧

h
|F are the tangential components on the face F . In particular,

we note that (rvh)⌧ |F = rvh� (rvh ·nF )nF = rF vh is the surface gradient of vh,
and it is computable since the trace of vh on @K belongs to the standard FE space
and is known. As the standard FE spaces are defined on the boundary triangulation,
the stabilization in (6.2) must be piecewisely computed. Then, the global bilinear
form is defined as

bh(uh, vh) =
X

K2Th

bK(uh, vh). (6.3)

The proposed IVE scheme is to find uh 2 V n

h
such that

bh(uh, vh) =
X

K2Th

Z

K

f e⇧e,�h

K
vh dx, 8vh 2 V n

h
. (6.4)

Note that the projection of vh itself is not computable for the current space, and
thus we simply employ the approximated gradient ⇧

e,�h

K
rvh and the formula in

Table 1 to form

e⇧e,�h

K
vh = (⇧e,�h

K
rvh) · (x� xK) + c (6.5)

with the constant c chosen such that
R
@K

e⇧e,�h

K
vh ds =

R
@K

vh ds. Clearly, there
holds

re⇧e,�h

K
vh = ⇧

e,�h

K
rvh. (6.6)
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In fact, the H1 interface problem is not our focus. Only the sti↵ness matrix for the
H1 interface problem is needed for the auxiliary space preconditioner in the fast
solver for the H(curl) interface problems.

The stabilization in (6.2) indeed leads to a stable method which is given by the
following results.

Lemma 6.1. For each interface element K, there exists a constant depending only
on the shape regularity of K, the coe�cient � and the parameter � s.t.

k

p
�rvhkL2(K) . |vh|H1/2(@K) . h1/2

K
|vh|H1(@K) vh 2 V n

h
(K). (6.7)

Proof. We use the energy minimization argument. Given each vh 2 V n

h
(K), con-

sider an arbitrary function wh 2 H1(K) such that wh � vh = 0 on @K. Then,
integration by parts on K± with the flux jump condition [�rvh · n]|�K = 0 and
r · (�rvh) = 0 yields

Z

K

�rvh ·r(vh � wh) dx =

Z

@K

�rvh · n(vh � wh) ds = 0.

On one hand, with the Hölder’s inequality, it implies that vh minimizes the k
p
�r ·

kL2(K) energy norm, i.e.,

k

p
�rvhkL2(K)  k

p
�rwhkL2(K). (6.8)

On the other hand, by the inverse trace theorem given in Section 27 in Ref. 23, we
have a function zh such that zh = vh on @K and |zh|H1(K) . |vh|H1/2(@K). Hence,
using (6.8) with wh = zh we arrive at

k

p
�rvhkL2(K) . krzhkL2(K) . |vh|H1/2(@K), (6.9)

which gives the first inequality in (6.7). The second inequality in (6.7) simply follows
from (2.16) in Ref. 23.

Lemma 6.2. There holds that

k

p
�rvhk

2
L2(K) . bK(vh, vh), 8vh 2 V n

h
(K), (6.10)

where the constant depends only on the shape regularity of K, �, and �.

Proof. We will use the projection e⇧e,�h

K
and the relation (6.6). By Lemma 6.1, the

triangular inequality and the trace inequality by Lemma 4.3, we have

k

p
�rvhkL2(K) . h1/2

K
|vh|H1(@K) . h1/2

K
|e⇧e,�h

K
vh|H1(@K) + h1/2

K
|vh � e⇧e,�h

K
vh|H1(@K)

. k⇧e,�h

K
rvhkL2(K) + h1/2

K
krF (vh � e⇧e,�h

K
vh)kL2(@K) . bK(vh, vh),

(6.11)

which finishes the proof.
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6.2. The IVE scheme for the H(curl) interface problem

In this case, we need to deal with the terms of curl curlu and u separately. For
the same reason discussed above, we need to project both curluh and uh and then
add their associated stabilization terms to enforce coercivity. For the curl curl term,
we introduce

a1
K
(uh,vh) =(↵h⇧

f,↵h

K
curluh,⇧

f,↵h

K
curlvh)K

+ S1
K
((I �⇧

f,↵h

K
) curluh, (I �⇧

f,↵h

K
) curlvh),

(6.12)

where, similarly,⇧f,↵h

K
is chosen as (5.1b) on interface elements but just the identity

operator on non-interface elements. As curlVe

h
⇢ V

f

h
, the stabilization term is

defined as

S1
K
(wh, zh) = �1h

X

F2FK

(wh · nF , zh · nF )F , (6.13)

where we note that curluh ·n = rotF uh for uh 2 V
e

h
can be computed through the

formula in (3.6) with rotF uh = |F |
�1 R

@F
uh · t ds on each triangular face F .

The bilinear form for the weighted L2 inner product is defined as

a0
K
(uh,vh) =(�h⇧

e,�h

K
uh,⇧

e,�h

K
vh)K + S0

K
((I �⇧

e,�h

K
)uh, (I �⇧

e,�h

K
)vh),

(6.14)

where ⇧
e,�h

K
is defined in (5.13) on interface elements and the identity on non-

interface elements. The stabilization is given by

S0
K
(wh, zh) = �0

X

F2FK

(w⌧

h
, z⌧

h
)F , (6.15)

where w⌧

h
and z

⌧

h
still denote the tangential components onto each face F . With the

triangulation on faces,w⌧

h
2 V

e

h
is computable through the edge DoFs. We highlight

that the scaling h0 = 1 in the stabilization S0
K
(wh, zh) is di↵erent from the usual

h in classical VEM in Ref. 17, 15, 16, 19, and this is also the key for the proposed
method to produce optimal convergent solutions. Changing the scaling from O(h) to
O(1) may increase the consistency error locally. More precisely S0

K
(vh,vh) = O(h2

K
)

while (�h⇧
e,�h

K
vh,⇧

e,�h

K
vh)K = O(h3

K
). But such a loss of order h is restricted to

the interface elements only whose number is O(h) fraction of the total number of
elements. So overall the L2-norm is still possible of optimal order. The theoretical
justification has been given for the 2D case in Ref. 30 and will be explored in a
forthcoming paper for the 3D case.

Then, we can define the global bilinear form

ah(uh,vh) =
X

K2Th

a1
K
(uh,vh) + a0

K
(uh,vh). (6.16)

The proposed IVE scheme for the H(curl) interface problem is to find uh 2 V
e

h

such that

ah(uh,vh) =
X

K2Th

Z

K

f ·⇧
e,�h

K
vh dx, 8vh 2 V

e

h
. (6.17)
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Next, we show that the proposed stabilization can indeed make the bilinear form
coercive.

Lemma 6.3. There exists a constant depending only on the shape regularity of K
s.t.

kvhkL2(K) . h1/2
K
kvh · nkL2(@K) vh 2 V

f

h
(K). (6.18)

Proof. As curl(↵vh) = 0, by (3.9), we only need to estimate div(vh). Noticing
div(vh) is a constant, we can write down

k div(vh)kL2(K) = |K|
�1/2

����
Z

K

div(vh) dx

����

= |K|
�1/2

����
Z

@K

vh · n ds

���� . h�1/2
K
kvh · nkL2(@K),

(6.19)

where we have used that |K|/|@K| ⇡ hK .

Lemma 6.4. For every function vh 2 V
e

h
, there holds

k curlvhk
2
L2(K) . a1

K
(vh,vh), (6.20a)

kvhk
2
L2(K) . a0

K
(vh,vh), (6.20b)

where the constants depend only on the shape regularity of K, �, and �1, �2.

Proof. Let us first show (6.20a). By Lemma 6.3 and the de Rham complex, we
have

k curlvhkL2(K) . h1/2
K
k curlvh · nkL2(@K). (6.21)

Then, we apply the trace inequality for the H(div) functions by Lemma 4.3 to
obtain

k curlvh · nkL2(@K) . k⇧f,↵h

K
curlvh · nkL2(@K)

+ k curlvh · n�⇧
f,↵h

K
curlvh · nkL2(@K)

. h�1/2
K
k⇧

f,↵h

K
curlvhkL2(K)

+ k curlvh · n�⇧
f,↵h

K
curlvh · nkL2(@K).

(6.22)

Substituting (6.22) into (6.21) yields (6.20a). As for (6.20b), applying (3.19) with
the appropriate scaling, we have

kvhkL2(K) . hKk curlvhkL2(K) + h1/2
K
kvh ⇥ nkL2(@K). (6.23)

For the second term, we apply the trace inequality for the H(curl) functions by
Lemma 4.3 to obtain

kvh ⇥ nkL2(@K) . k⇧e,�h

K
vh ⇥ nkL2(@K) + k(vh �⇧

e,�h

K
vh)⇥ nkL2(@K)

. h�1/2
K
k⇧

e,�h

K
vhkL2(K) + k(vh �⇧

e,�h

K
vh)

⌧
kL2(@K).

(6.24)
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Putting (6.22) and (6.24) into (6.23), we have the desired estimate.

We emphasize that the coercivity constants depend only on the shape regularity
of the underlying triangulation, the coe�cient �, and the parameter �, but most
importantly, not on the location of the intersection points, i.e., robust to the cut of
the interface.

Remark 6.1. Lemmas 6.2 and 6.4 immediately imply that bh(·, ·) and ah(·, ·) are
norms on V n

h
and V

e

h
, respectively. These two lemmas hold regardless of the choice

of � > 0, �1 > 0 and �2 > 0, i.e., the method does not need those parameters
to be large enough required by many traditional unfitted-mesh methods 26,71, and
thus the resulting linear systems are always positive-definite. Roughly speaking, it
can be understood that the proposed IVE scheme is “more conforming” such that
weaker weights are needed in the stabilization. This is particularly important for the
H(curl) problem, as we do not need to use h�1 scaling in the stabilization, which
can avoid the suboptimal convergence in (1.8). Instead, O(1) and O(h) scaling
are used for the stabilization associated with uh and curluh terms, which is key
to achieve optimal convergence by our numerical experiments. Nevertheless, the
rigorous analysis is still very involved, and in the next subsection we shall briefly
describe the challenges.

6.3. Comments on the norm equivalence and error analysis

In the vast VEM literature 14,19,23, the norm equivalence results are desired for
error and stability analysis:

krvhk
2
L2(K) . bK(vh, vh) . krvhk2L2(K) 8vh 2 V n

h
(K), (6.25a)

kvhk
2
H(curl;K) . aK(vh,vh) . kvhk

2
H(curl;K) 8vh 2 V

e

h
(K). (6.25b)

The left inequalities in (6.25), i.e., the coercivity, are given by Lemmas 6.2 and 6.4,
respectively, in which the constants are independent of interface location. Although
the right two inequalities in (6.25) indeed hold, their constants may depend on
the interface location, as the inverse inequalities on the boundary triangulation are
needed in the analysis.

Let us take the H1 case as an illustration example. By the boundedness property
of the projection ⇧

e,�h

K
, we trivially have

k⇧
e,�h

K
rvhkL2(K)  CPrkrvhkL2(K),

where the constant CPr only depends on the geometry of K. The problem is on the
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stabilization term. We may prove

h1/2
K
krF (I � e⇧e,�h

K
)vhkL2(@K)

 Cinvk(I � e⇧e,�h

K
)vhkL2(@K)

 CinvCt

⇣
h�1/2
K
k(I � e⇧e,�h

K
)vhkL2(K) + h1/2

K
|(I � e⇧e,�h

K
)vh|H1(K)

⌘

 CinvCt(CPc + 1)h1/2
K

|(I � e⇧e,�h

K
)vh|H1(K)

 CinvCt(CPc + 1)(CPr + 1)h1/2
K
k⇧

e,�h

K
rvhkL2(K),

where the first inequality is an inverse inequality on the surface triangulation with
the constant Cinv, and the second and the third ones are the trace and Poincaré
inequalities with the constants Ct and CPc. Note that Ct, CPr and CPc only depend
on the geometry of K; but Cinv depends on the element boundary triangulation
which contain anisotropic triangles, and shrinking elements may make Cinv blow
up. Indeed, restricting to the boundary (I � e⇧e,�h

K
)vh|F is linear, and its surface

gradient can be computed exactly using the cot formulae. The existence of small
angles in the boundary triangulation will make the corresponding entry large, and
thus robust norm equivalence may not hold. The similar issue applies to the H(curl)
case.

In fact, for 3D VEM, to our best knowledge, almost all the analysis in the lit-
erature require shape regularity of both the elements and faces such that the norm
equivalence above can hold. In our case, however, the boundary triangulation does
not satisfy the shape regularity causing essential di�culties for analysis. An alter-
native approach is to use the “error equation” approach 27,29,30 that may overcome
the shape regularity issue. Careful study of the robustness to the shape of boundary
triangulations is needed.

6.4. Implementation

Inherited from the classical VEM, implementation of the proposed algorithm
is highly vectorized. Computing the projections from IVE spaces and assembly of
matrices significantly outperform the classical IFE methods. To see this, following
Ref. 37, we describe a face2elem and a face data structure that can greatly facilitate
the implementation. face2elem is a vector mapping from each (local) face’s index
to its mother element’s index. face is a matrix containing each face’s DoFs (node
or edge) on its rows. Here, we use the tetrahedral interface elements in Figure
6.1 to illustrate the data structures. In Figure 6.1, the red and blue segments are,
respectively, cutting edges by the interface and newly added edges for the surface
triangulation. The indices are shown on the two plots for all the vertices and edges.
Suppose the index of this element is 1, and then the desired data structures of
face2elem and face are shown in (6.26).
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Fig. 6.1: Indices of nodes (left) and edges (right) of an interface element.

face2elem :

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

face(nodes) :

1
2
3
4
5
6
7
8
9
10

1 5 6

1 6 7

1 7 5

2 3 5

3 6 5

3 4 7

7 6 3

4 5 7

2 4 5

2 3 4

face(edges) :

1
2
3
4
5
6
7
8
9
10

1 10 2

2 11 3

3 12 1

7 13 4

13 5 10

8 6 14

5 14 11

6 12 15

4 9 15

7 8 9

(6.26)

The key feature of VEM in implementation is to compute the projections
through the DoFs. Let us use ⇧

f,↵h

K
curlvh and the formula in (5.10) as an ex-

ample to describe the procedure. Given an element K with the global index i,
i = 1, 2, ..., |Th|, we need to compute ⇧

f,↵h

K
curl'e

h,k
for a local edge index k, k =

1, 2, ..., |EK |. Here ⇧
f,↵h

K
curl'e

h,k
is a constant vector denoted as ck 2 P

f

0 (↵h;K)

with c
±
k

:= (⇧f,↵h

K
curl'e

h,k
)|
K

±
h
, where 'e

h,k
is the edge shape function with re-

spect to the k-th edge. Now, we let the test function ph in (5.10) be the three unit
vectors: p+

h,l
= el, l = 1, 2, 3, with p

�
h,l

= Mf,↵h

K
p
+
h,l

with Mf,↵h

K
given by (4.5).

Then, we can rewrite (5.10) into a matrix-vector equation only about c�
k
:

(↵�|K�
h
|+ ↵+

|K+
h
|(Mf,↵h

K
)>Mf,↵h

K
)c�

k

=

Z

@K

('e

h,k
⇥ n) [(↵hph,1)

⌧ , (↵hph,2)
⌧ , (↵hph,3)

⌧ ]> ds,
(6.27)

where 'e

h,k
⇥n is a rotation of ('e

h,k
)⌧ . ('e

h,k
)⌧ is a 2D Nédélec polynomial function

tangentially defined on each face, and the integration of this function associated
with the k-th edge can be determined by the two nodes retrieved from the face data
structure. Particularly, if the k-th edge does not belong to the boundary of a face
F , then there is no contribution of this face to the right-hand side of (6.27).
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With (6.27), we highlight that the geometric information needed in the compu-
tation has been automatically encoded in the data structures face2elem and face,
which is the key for the e�cient vectorized code. We report the CPU time for
computing the projections and generate matrices in Table 2 to demonstrate the
e�ciency. This very feature makes the proposed method distinguished from all the
classical IFE methods in the literature that have to use more detailed geometric
information to compute the IFE functions.

6.5. Preconditioning

Solving the resulting linear system from Maxwell’s equations is one of the central
challenges in computational electromagnetism, and the interface may make it even
more di�cult. With a slight abuse of notation, we denote the linear system from
the proposed IVE discretization of the H(curl) interface problem as

Auh = fh, (6.28)

where uh 2 R#edge denotes the vector representation in DoFs. This system is solved
by the preconditioned conjugate gradient (PCG) method. To our best knowledge,
the development of fast solvers of VEM specifically for H(curl)-equations has not
been discussed in any literature. Without suitable preconditioners, the PCG solver
can be extremely slow, see the comparison in Table 4. In this work, we develop a
fast solver for IVE discretization of the H(curl) interface problem that involves two
techniques. Thanks to the de Rham complex, the first one is the auxiliary space
preconditioner for the H(curl) equation which is developed by Hiptmair and Xu
in Ref. 60 (HX preconditioner) based on the auxiliary space framework in Ref. 85.
The second one is a block diagonal smoother to handle the anisotropic element
shape near the interface. In the experiments, both are used the implementation in
iFEM 33.

The resulting HX-preconditioner for the H(curl) systems is in the form

Bcurl = Rcurl +⇧B
grad⇧> +G BgradG>, (6.29)

which consists of the following three components:

• a smoother Rcurl of the H(curl) matrix A,
• an algebraic multigrid (AMG) solver Bgrad for a scalar Laplacian matrix,
• an AMG solver Bgrad for a vector Laplacian matrix.

We simply employ the incidence matrix associated with the operator r : Vn

h
! V

e

h

as the discrete gradient matrixG which resembles that from the lowest order Nédélec
element on simplicial meshes. G maps the nodal DoFs (columns) to edge DoFs
(rows). There are two nonzero entry, ±1, on each row. The columns of these entries
correspond to the nodes of the edge. The sign is determined by the global orientation
of an edge. The node-to-edge transfer matrix is denoted by ⇧ :

Q3
i=1 R#node

!

R#edge. Note that these two matrices being well-defined are based on the node and
edge DoFs of the H1 and H(curl) IVE spaces.
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For H(curl) problems, it is known that a multigrid solver for Poisson-type equa-
tions is not su�cient since the discrete operator corresponding to curl(↵ curl) + �I
behaves di↵erently for a gradient field and a solenoidal field (see e.g., Ref. 7). When
su�cient piecewise regularity is assumed, we have by Ref. 46

k↵ graduk2 h k↵ curluk2 + k↵ divuk2.

Hence, if u = curlw 2 (ker(curl))?, for some suitable w, such that divu = 0, then

(↵ curlu, curlu) + (�u,u) h (↵ gradu, gradu) + (�u,u),

which corresponds to the following operator:

B
grad

u := � div(↵ru) + �u (6.30)

that will be assembled as an auxiliary matrix and can be solved by an AMG solver
for the vector H1-interface problem. On the other hand, if u,v 2 ker(curl), i.e.,
u = rp and v = rq, for some suitable p, q, then

(↵ curlu, curlv) + (�u,v) = (�rp,rq),

thus we can formulate the matrix problem for the gradient part of the solution by
Bgrad = G>AG, which corresponds to the following operator:

Bgradp := � div(�rp) (6.31)

that can be again solved e�ciently by an AMG solver for the H1-interface problem.
Next, we present a block diagonal smoother (preconditioner). A block matrix

is formed by the edge DoFs in the neighborhood expanding from the interface. We
begin with the collection of the DoFs that is near the interface:

D1 = {e 2 Eh : 9K 2 T
i

h
such that e 2 EK}. (6.32)

Then, starting from D1 we iteratively define

Dl = {e 2 Eh : e has at least one node belonging to the edges of Dl�1}. (6.33)

Let Al be the matrix of the entries in A associated with the DoFs in Dl. Then, we
rewrite (6.28) into

Au :=

✓
AN ANl

AlN Al

◆✓
uN

ul

◆
=

✓
fN

fl

◆
(6.34)

Here, the key is to solve the Al block by a direct solver, which is indeed the price
to be paid by the proposed method. However, since the size of Al, i.e., #Dl, is in
the order of O(#total DoF2/3) for reasonably small l, this direct solver is gener-
ally e�cient. The expanding width can reduce the number of iterations required
for the resulting solver, see Table 3 for the comparison. Meanwhile, our numeri-
cal experience suggests that the increased cost is negligible for small l’s, e.g., the
expanding width l = 1 or 2 is enough. It is almost equivalent to directly solving
a 2D linear system which can be e�ciently handled by “backslash” (mldivide) in
Matlab. Furthermore, since the direct solver will be called multiple times, we opt



January 3, 2023 19:12 WSPC/INSTRUCTION FILE Hcurl˙3d˙m3as

Immersed VEM for electromagnetic interface problems in 3D 37

to store the LU -factorization of Al in the inner iteration (preconditioning) to be
more e�cient. The residual equation of the AN block can be e�ciently solved using
a block or point-wise Gauss-Seidel smoother. At last, we summarize the algorithm
in the following for a fixed l, and denote AI := Al.

Algorithm 1 An HX preconditioned CG

Require: u
(0), tol, M , l, block form of A.

Ensure: u
MG.

1: k = 0.
2: rI  fI �AIu

(0)

3: while True do

4: rI  LUSolve(AI , rI)
5: rN  Smoother(AN , rN )
6: r [rN , rI ]
7: r r+⇧(AuxSolve(Aaux,⇧>r))
8: rc  G(AuxSolve(A,G>r))
9: r r+ rc

10: u
MG
 CG(A, r)

11: if k > M or norm(r) < tol then

12: Break
13: end if

14: k  k + 1
15: end while

7. Numerical Examples

In this section, we present a class of numerical examples to validate the afore-
mentioned advantages of the proposed method. The background unfitted mesh is
generated by cutting ⌦ into N3 cubes and each cube is then cut into several tetra-
hedra with the mesh size be h = 1/N .

7.1. The H
1-interface problem

We first consider the H1-interface problem given by (1.2) for a spheric interface
shown in Figure 7.1 on the domain ⌦ = (�1, 1)3. The exact solution is constructed
as

u(x) =

(
exp((kxk2 � r2)/��), if x 2 ⌦�,

sin((kxk2 � r2)/�+) + 1, if x 2 ⌦+,
(7.1)

where the source term of (1.2) as well as the boundary conditions are com-
puted accordingly. The numerical experiment is carried on the meshes of N =
10, 20, 30, ..., 160. We first report the CPU time to compute the projections of IVE
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Fig. 7.1: Plots of interface and triangulation: sphere (left) and two twisted tori
(right). For the spherical interface, the boundary triangulation of interface element
is plotted in blue on the left half of the sphere.

functions and the related matrix assembling in Table 2 for the meshes N = 60
to 160. Note that at the finest level, there are approximately 153600 interface ele-
ments, and based on the proposed data structure, computing the IVE projections is
highly e�cient. As for the matrix assembling, we observe that the majority of time
is devoted to the stabilization term, and we believe this is due to a larger number of
triangular faces from the boundary triangulation. Certainly, these computations are
highly parallelizable. In addition, we show the numerical errors for �� = 1, �+ = 10
and �� = 1, �+ = 100 in the left two plots of Figure 7.2. Due to the geometric
errors caused by coarse meshes, the convergence orders indicated on the graph are
computed by incorporating only the errors from N = 60 to 160, but it clearly shows
the asymptotic optimal convergence. Remarkably, the optimal convergence is even
achieved for the L1 norm which is a demanding property for interface problems.

Total # DoFs 1367631 1771561 2248091 2803221 3442951 4173281

Interface # DoFs 160926 191322 224682 259818 298866 339774

Time(s) for projection 2.96 4.00 4.88 37.92 5.65 7.13

Time(s) for matrix assembling 14.21 18.14 21.14 30.47 37.58 42.61

Table 2: CPU time for computing the projections of IFE functions and the genera-
tion of sti↵ness matrices including the stabilization terms.

The second example concerns a more complicated interface shape that has two
tori twisted with each other, see the right plot in Figure 7.1. The level-set functions
of the two tori are �1 = (((x1 + 0.3)2 + x2

2)
1/2
� 0.2)2 + x2

3 � (⇡/5)2 and �2 =
(((x1 � 0.3)2 + x2

3)
1/2
� 0.2)2 + x2

2 � (⇡/5)2, and then the level-set function of this
interface is given by �(x) = min (�1(x),�2(x)). The domain inside the two tori is
⌦� = {x : �(x) < 0} and the outside one is ⌦+ = {x : �(x) > 0}. The exact
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Fig. 7.2: Numerical errors and convergence order for the H1 interface problem. The
top two plots are for the spherical interface: (��,�+) = (1, 10) and (��,�+) =
(1, 100), and bottom two plots are for the toroidal interface: (��,�+) = (1, 10) and
(��,�+) = (1, 100). The black dashed lines indicate the expectedO(h2) convergence
for the L1 and L2 errors and O(h) for the H1 errors.

solution is given by

u(x) =

(
1, if x 2 ⌦�,

cos(�1(x)�2(x)), if x 2 ⌦+.
(7.2)

In this case, the computational domain is ⌦ = (�1.3, 1.3)3. The numerical solutions
and errors are reported in the right two plots of Figure 7.2. As the interface has
much larger curvature which requires the finer mesh to resolve. The convergence
orders are estimated from the mesh size N = 60 to 160 which indicate the optimal
convergence even for the L1 errors.

7.2. The H(curl) interface problem

Now, let us consider the H(curl) interface problem. It is known that solving
the linear system from the Maxwell’s equations is much more challenging. So here
we first test the fast solver developed in Section 6.5 for an extreme case that each
interface element has small-cut subelements. For this purpose, we consider the do-
main ⌦ = (�1, 1)3 with a flat interface x1 = 5 ⇥ 10�2�r. Fix the mesh size as
N = 20 and the parameters as (↵�,↵+) = (1, 10) and (��,�+) = (1, 10). If r = 0,
i.e., x1 = 0.05, the interface plane cuts all the interface elements exactly through
the center and thus, each subelement has regular shape. In computation, we let
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r = 1, 2, 3, 4, i.e., the subelements on the left-side of the interface will become small
accordingly. We report the condition numbers, the number of iterations and CPU
time in Table 3. We can see that small-cut interface elements can indeed make the
conditioning worse, which may significantly increase the iteration numbers, see the
results for l = 0. However, the e↵ect of small-cut interface elements can be suc-
cessfully eliminated by the proposed block diagonal smoother Al in (6.34). For this
extreme case, l = 2 seems su�cient to make the convergence completely indepen-
dent of small subelements, but our numerical experience suggests that l = 1 is good
enough in general.

Interface location r 0 1 2 3 4

Condition numbers 6.4⇥ 105 1.7⇥ 107 1.7⇥ 109 1.7⇥ 1011 1.7⇥ 1013

l = 0
# iteration 44 53 107 327 842
Time(s) 12 16 27 84 220

l = 1
# iteration 43 44 43 73 91
Time(s) 11 11 11 21 24

l = 2
# iteration 43 44 43 43 42
Time(s) 11 12 12 11 12

Table 3: Condition numbers of the H(curl) linear system with various interface
location, and the related CPU time (in seconds) and # iterations for the expanding
width l = 0, 1, 2, where l = 0 means no block matrix used.

Next, we consider the spherical interface and slightly modify the benchmark
example from Ref. 57 of which the analytical solution is given by

u =

(
1
��x+ 1

↵�n1R1(x)[(x2 � x3), (x3 � x1), (x1 � x2)]> in ⌦�,
1
�+x+ 1

↵+n2R1(x)R2(x)[(x2 � x3), (x3 � x1), (x1 � x2)]> in ⌦+,

(7.3)
where x = [x1, x2, x3]> and R1(x) = r21 � kxk

2, R2(x) = r22 � kxk
2. The numerical

experiment is carried on the meshes of N = 10, 20, 30, ..., 80. In particular, the com-
putational time and number of iterations are presented in Table 4. From the table,
we can conclude that both the block-diagonal smoother and the HX preconditioner
are important for reducing the iteration number for convergence. The results also
show that the direct solver at each iteration does not cost significant computational
time compared with the total cost of the iterative solver. Next, we report the nu-
merical errors in both the L2 and H(curl) norms in the left two plots of Figure 7.3,
and the estimated convergence orders are also indicated in the plots which clearly
demonstrate the optimality.
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Total # DoFs 80554 244424 547074 1028452 1734626 2703384 3980338

BD-PCG
# iteration 962 1465 1932 2385 2828 3238 3661
Time(s) 42.72 166.46 427.70 905.39 1693.95 2871.83 4542.63

BD-HX
l = 0

# iteration 144 142 146 140 148 142 145
Time(s) 38.89 69.09 117.97 214.89 401.81 533.28 808.19

BD-HX
l = 1

# iteration 75 76 81 77 80 83 90
Time(s) 22.16 41.14 70.12 132.54 241.93 321.93 529.66

Table 4: CPU time and number of iterations for solving the H(curl) linear sys-
tem with the spherical interface and (↵�,��) = (1, 1) and (↵+,�+) = (100, 200):
block-diagonal HX (BD-HX) with l = 0 and 1 and the simple block-diagonal PCG
(BD-PCG). The CPU time with respect to DoFs are approximatly O((#DoF)1.19),
O((#DoF)0.80), O((#DoF)0.82) for BD-PCG, BD-HX(l = 0) and BD-HX(l = 1),
respectively.
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Fig. 7.3: Numerical errors and convergence order for the H(curl) interface problem
by the IVE method. Top two: the first example. Bottom two: the second example.

IFE spaces can be also used in a dG-type scheme, i.e., penalties are used to
handle the discontinuities across faces. This scheme works very well for H1 interface
problems 56,58, but results in only suboptimal convergence for H(curl) problems.
For the H(curl) case, let us recall the scheme below. Let F

i

h
be the collection of

the interface faces. Let Sh be a space containing IFE functions which may not be
continuous on faces in F

i

h
. Note that IFE functions can main tangential continuity
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on non-interface faces, and thus penalties are only needed on interface faces. Then,
the scheme is to find uh 2 Sh such that

ãh(uh,vh) =

Z

⌦
f · vh ds (7.4)

where

ãh(uh,vh) := (↵h curluh, curlvh)⌦ + (�huh,vh)⌦

�

X

F2Fi
h

Z

F

{curluh} · [vh ⇥ n] ds

�

X

F2Fi
h

Z

F

{curlvh} · [uh ⇥ n] ds

+ �h�1
X

F2Fi
h

Z

F

[uh ⇥ n][vh ⇥ n] ds, 8vh 2 Sh,

(7.5)

where � is a stabilization parameter which should be large enough and generally
depends on ↵. We present the numerical results in Figure 7.4. For the semi-H(curl)
norm, we can clearly observe the sub-optimal convergence. The convergence under
the L2 norm deteriorates a little as the mesh becomes finer. In some other setting,
we can also observe much worse behavior for the L2 norm.
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Fig. 7.4: Numerical errors and convergence order for the H(curl) interface problem
by the penalty-type IFE method. Left two: the first example. Right two: the second
example.

In the second example, we also consider the twisted tori in the right plot of
Figure 7.1 on the domain ⌦ = (�1.3, 1.3)3. To construct a function that satisfies the
corresponding jump condition on the torus surface, we let f(x) = �1(x)�2(x)((x1+
0.3)2 + x2

2)((x1 � 0.3)2 + x2
3). Then, the exact solution is then defined as

u =
1

�
rf(x) +

1

↵
cos(f(x))v0, with v0 = [0, 0, 1]>, (7.6)

where the boundary conditions and the source term are computed accordingly. The
numerical results are reported in the right two plots of Figure 7.3 which also shows
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the clear optimal convergence rate. These results demonstrate that the IVE method
works well for complex surfaces.

At last, we note that the penalty-type method cannot achieve optimal con-
vergence numerically including both the IFE method 57 and the interface-penalty
method 32,31. Therefore, we believe the present method has distinguishing advan-
tages in computational electromagnetism.

Appendix A IFE Spaces on Complicated Geometry

Here, we describe the IFE spaces for complicated interface element geometry,
i.e., �K may have multiple components. Let us assume that �K consists of the
multiple components �K,m, m = 1, 2, ...,M�1, each of which is a simply-connected
smooth surface. As � is supposed not to intersect itself, �K,m’s then do not intersect
with one another. Without loss of generality, we assume the subelement containing
A1 is K1 and �K,1 = @K1\@K. Then, Km is the subelement bounded by @K, �K,m

and �K,m+1, m = 2, ...,M � 1, and the remaining one is denoted by KM . We show
a 2D illustration of the geometry by the right plot in Figure 2.1. The parameters
associated with the subelement Km are denoted as ↵m and �m, which should take
the values of ↵� and ↵+ alternatively.

For each �K,m, we let �K,m

h
be its planar approximation. Similarly, define the

subelement containing A1 as Kh,1, and the others, i.e., Kh,2,...,Kh,M , are defined in
a similar manner as their counterparts K1,...,KM . Note that each of Kh,1,...,Kh,M

is a polyhedron. Let ↵h and �h be the piecewise constant functions defined on
these polyhedral subelements, and denote ↵h,m = ↵h|Kh,m and �h,m = �h|Kh,m ,
m = 1, ...,M .

Similar to (4.6), we are able to derive explicit formulas for the functions in
the spaces (4.3). For each linear interface component �K

h
, we further let t̄

1
m

and
t̄
2
m

be the two orthogonal tangential unit vectors to �K,m

h
, and denote the matrix

Tm = [n̄m, t̄1
m
, t̄2

m
]. Then define the transformation matrices:

Mf,ch

K,m
= T

2

4
1 0 0
0 c̃m 0
0 0 c̃m

3

5 (Tm)> and Me,ch

K,m
= T

2

4
c̃m 0 0
0 1 0
0 0 1

3

5 (Tm)>, (A.1)

where c̃m = ch,m/ch,m+1, with m = 1, 2, ...,M � 1, and define the spaces Pe

h
(ch;K)

and P
f

h
(ch;K) as

P
e

h
(ch;K) = {c : cm = c|Kh,m 2 P0(Kh,m), m = 1, ...,M,

cm+1 = Me,ch

K,m
cm, m = 1, ...,M � 1}, (A.2a)

P
f

h
(ch;K) = {c : cm = c|Kh,m 2 P0(Kh,m), m = 1, ...,M,

cm+1 = Mf,ch

K,m
cm, m = 1, ...,M � 1}. (A.2b)

Again, the constant vectors at di↵erent cut regions are related by the jump condi-
tions and thus the dimension of both P

e

h
(ch;K) and P

f

h
(ch;K) is also 3. In this case,
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the formulas of IFE functions are slightly more complicated which are presented in
the following lemma.

Lemma A.1. Let xK,m be an arbitrary point at �K,m

h
. Let a = am and b = bm be

two arbitrary vectors in P
f

h
(ah;K) and P

e

h
(bh;K), and let c be an arbitrary constant.

Then, the formulas for the functions in Sn

h
(bh;K), S

e

h
(ah, bh;K) and S

f

h
(ah;K),

respectively, are

vn
h
=

(
bm · (x� xK,1) + c in Kh,m, m = 1, 2,

bm · (x� xK,m�1) + c+
P

m�1
l=2 bl · (xK,l � xK,l�1), in Kh,m, m > 3,

(A.3)

v
e

h
=

(
am ⇥ (x� xK,1) + bm in Kh,m, m = 1, 2,

am ⇥ (x� xK,m�1) + bm + ⇠
m
, in Kh,m, m > 3,

(A.4)

with

⇠
m

:=
m�1X

l=2

(Me,bh

K,m�1 · · ·M
e,bh

K,l
) [al ⇥ (xK,l � xK,l�1)] ,

and

v
f

h
=

(
c(x� xK,1) + am in Kh,m, m = 1, 2,

c(x� xK,m�1) + am + ⌘
m
, in Kh,m, m > 3,

(A.5)

with

⌘
m

:= c
m�1X

l=2

(Mf,ah

K,m�1 · · ·M
f,ah

K,l
)(xK,l � xK,l�1)

= c
m�1X

l=2

(
lY

n=m�1
Mf,ah

K,n
)(xK,l � xK,l�1).

The formed IFE spaces also have the dimension 4, 6, and 4 for the H1, H(curl) and
H(div) cases, respectively.

Proof. One can directly verify that these piecewisely-defined functions satisfy the
corresponding jump conditions shown in Table 1 but on each �K,m

h
. The dimension

can be simply counted by the number of free variables of a, b and c in the formulas
above.

Note that in Lemma A.1, the points {xK,m}
M�1
m=1 should be chosen and fixed.
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11. I. Babuška and J. E. Osborn, Generalized finite element methods: their performance
and their relation to mixed methods, SIAM J. Numer. Anal. 20 (1983) 510–536. 6

12. M. Barker, S. Cao and A. Stern, A nonconforming primal hybrid finite element method
for the two-dimensional vector Laplacian, arXiv preprint arXiv:2206.10567 . 5

13. L. Beirão da Veiga, F. Brezzi, F. Dassi, L. Marini and A. Russo, Lowest order vir-
tual element approximation of magnetostatic problems, Comput. Methods Appl. Mech.
Engrg. 332 (2018) 343–362. 5, 25

14. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini and A. Russo,
Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23
(2013) 199–214. 4, 6, 25, 28, 32

15. L. Beirão da Veiga, F. Brezzi, F. Dassi, L. Marini and A. Russo, Virtual Element
approximation of 2D magnetostatic problems, Comput. Methods Appl. Mech. Engrg.
327 (2017) 173–195. 6, 25

16. L. Beirão da Veiga, F. Brezzi, L. D. Marini and A. Russo, H(div) and H(curl)-
conforming virtual element methods, Numer. Math. 133 (2016) 303–332. 6, 25

17. L. Beirão da Veiga, F. Dassi, G. Manzini and L. Mascotto, Virtual elements for
Maxwell’s equations, Comput. Math. Appl. (2021) 82–99. 5, 6, 25

18. L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element
method, Math. Models Methods Appl. Sci. 27 (2017) 2557–2594.

19. L. Beirão da Veiga and L. Mascotto, Interpolation and stability properties of low order
face and edge virtual element spaces, IMA J. Numer. Anal. drac008. 5, 32

20. F. Ben Belgacem, A. Bu↵a and Y. Maday, The mortar finite element method for 3D
Maxwell equations: First results, SIAM J. Numer. Anal. 39 (2001) 880–901.

21. S. Borda, E. Burman, M. Larson and M. O. (Editors), Geometrically Unfitted Finite
Element Methods and Applications, Proceedings of the UCL Workshop 2016, volume



January 3, 2023 19:12 WSPC/INSTRUCTION FILE Hcurl˙3d˙m3as

46 S. Cao, L. Chen & R. Guo

121 of Lecture Notes in Computational Science and Engineering (Springer, 2017). 4
22. J. R. Brauer, J. J. Ruehl, M. A. Juds, M. J. V. Heiden and A. A. Arkadan, Dynamic

stress in magnetic actuator computed by coupled structural and electromagnetic finite
elements, IEEE Trans. Magn. 32 (1996) 1046 – 1049. 3

23. S. Brenner and L.-Y. Sung, Virtual element methods on meshes with small edges or
faces, Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. 28, 32

24. S. C. Brenner, J. Cui, F. Li and L. Y. Sung, A nonconforming finite element method
for a two-dimensional curl–curl and grad-div problem, Numer. Math. 109 (2008) 509–
533.

25. A. Bu↵a, M. Costabel and M. Dauge, Algebraic convergence for anisotropic edge
elements in polyhedral domains, Numer. Math. 101 (2005) 29–65. 3

26. E. Burman, S. Claus, P. Hansbo, M. G. Larson and A. Massing, CutFEM: Discretizing
geometry and partial di↵erential equations, Internat. J. Numer. Methods Engrg. 104
(2015) 472–501. 4, 32

27. S. Cao and L. Chen, Anisotropic error estimates of the linear virtual element method
on polygonal meshes, SIAM J. Math. Anal. 56 (2018) 2913–2939. 33

28. S. Cao and L. Chen, Anisotropic error estimates of the linear nonconforming virtual
element methods, SIAM J. Numer. Anal. 57 (2019) 1058–1081. 28

29. S. Cao, L. Chen and R. Guo, A virtual finite element method for two dimensional
Maxwell interface problems with a background unfitted mesh, Math. Models Methods
Appl. Sci. (2021) 2907–2936. 5, 33

30. S. Cao, L. Chen, R. Guo and F. Lin, Immersed virtual element methods for elliptic
interface problems, J. Sci. Comput. 93 (2022) 1–41. 6, 8, 33

31. R. Casagrande, R. Hiptmair and J. Ostrowski, An a priori error estimate for interior
penalty discretizations of the Curl-Curl operator on non-conforming meshes, J. Math.
Ind. 6 (2016) 4. 5, 43

32. R. Casagrande, C. Winkelmann, R. Hiptmair and J. Ostrowski, DG Treatment of Non-
conforming Interfaces in 3D Curl-Curl Problems, in Scientific Computing in Electrical
Engineering (Springer International Publishing, Cham, 2016), pp. 53–61. 5, 43

33. L. Chen, iFEM: an integrated finite element methods package in MATLAB, Technical
report, University of California at Irvine, 2009. 35

34. L. Chen, R. Guo and J. Zou, A family of immersed finite element spaces
and applications to three dimensional H(curl) interface problems, arXiv preprint
arXiv:2205.14127 .

35. L. Chen, M. Holst and J. Xu, The finite element approximation of the nonlinear
Poisson–Boltzmann equation, SIAM J. Numer. Anal. 45 (2007) 2298–2320. 2

36. L. Chen and X. Huang, Finite element de Rham and Stokes complexes in three di-
mensions, arXiv preprint arXiv:2206.09525 .

37. L. Chen, H. Wei and M. Wen, An interface-fitted mesh generator and virtual element
methods for elliptic interface problems, J. Comput. Phys. 334 (2017) 327–348.

38. L. Chen, Y. Wu, L. Zhong and J. Zhou, Multigrid preconditioners for mixed finite
element methods of the vector Laplacian, J. Sci. Comput. 77 (2018) 101–128. 7

39. Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching
meshes for Maxwell equations with discontinuous coe�cients, SIAM J. Numer. Anal.
37 (2000) 1542–1570.

40. Z. Chen, Z. Wu and Y. Xiao, An adaptive immersed finite element method with arbi-
trary Lagrangian-Eulerian scheme for parabolic equations in time variable domains,
Int. J. Numer. Anal. Mod. (2015) 567–591. 4

41. Z. Chen, Y. Xiao and L. Zhang, The adaptive immersed interface finite element
method for elliptic and Maxwell interface problems, J. Comput. Phys. 228 (2009)



January 3, 2023 19:12 WSPC/INSTRUCTION FILE Hcurl˙3d˙m3as

Immersed VEM for electromagnetic interface problems in 3D 47

5000–5019. 3
42. Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and

parabolic interface problems, Numer. Math. 79 (1998) 175–202.
43. C.-C. Chu, I. G. Graham and T.-Y. Hou, A new multiscale finite element method for

high-contrast elliptic interface problems, Math. Comp. 79 (2010) 1915–1955. 4, 6, 25
44. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory

(Springer, NY, 1996). 3
45. M. Costabel, A remark on the regularity of solutions of maxwell’s equations on lips-

chitz domains, Mathematical Methods in the Applied Sciences 12 (1990) 365–368.
46. M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems,

ESAIM: Mathematical Modelling and Numerical Analysis 33 (1999) 627–649.
47. F. Dassi, A. Fumagalli, D. Losapio, S. Scialò, A. Scotti and G. Vacca, The mixed
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