2022 IEEE 40th International Conference on Computer Design (ICCD) | 978-1-6654-6186-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICCD56317.2022.00028

2022 IEEE 40th International Conference on Computer Design (ICCD)

Exploiting Quantum Assertions for Error Mitigation
and Quantum Program Debugging

Ji Liu
Dept. of ECE
NC State University
Raleigh, NC, USA
jliu45@ncsu.edu

Peiyi Li
Dept. of ECE
NC State University
Raleigh, NC, USA
plil1@ncsu.edu

Abstract—An assertion is a predicate that should be evaluated
true during program execution. In this paper, we present the
development of quantum assertion schemes and show how they
are used for hardware error mitigation and software debugging.
Compared to assertions in classical programs, quantum asser-
tions are challenging due to the no-cloning theorem and poten-
tially destructive measurement. We discuss how these challenges
can be circumvented such that certain properties of quantum
states can be verified non-destructively during program execu-
tion. Furthermore, we show that besides detecting program bugs,
dynamic assertion circuits can mitigate noise effects via post-
selection of the assertion results. Our case studies demonstrate
the use of quantum assertions in various quantum algorithms.

Index Terms—quantum computing, error mitigation, debug-
ging, assertion

[. INTRODUCTION

Quantum computing offers high speedup potentials over
classical computing in multiple important domains, includ-
ing quantum simulation, optimization, etc. To realize such
potentials, there are barriers in both quantum hardware and
software to be overcome. On the software side, developing
quantum programs is difficult. Based on the lessons learnt
from classical computing, program bugs can be common in
quantum programs given their conceptual complexity. On the
hardware side, quantum devices are sensitive to environment
and are error prone. Therefore, error mitigation and ultimately
error correction are required for quantum computing systems.
In this paper, we discuss quantum assertions as a way to help
debug quantum programs as well as to perform lightweight
error detection and correction.

An assertion is a program predicate that should always
be evaluated true during program execution. In classical
computing, assertions are commonly used to monitor some
intermediate program states so as to verify certain properties
of a program or to detect runtime anomalies. Assertion errors,
if any, would help to pinpoint the location of program bugs.

In quantum program execution, intermediate states are much
more difficult to monitor than in classical computation. There
are two reasons. First, direct measurement of some qubits may
collapse their superposition states and may affect other qubits

The NC State team is funded in part by NSF grants 1818914 (with
subcontract to NC State University from Duke University) and OMA-2120757
(with subcontract to NC State University from University of Maryland).

State Key Lab. of CS
Institute of Software

Yangjia Li Huiyang Zhou
Dept. of ECE
NC State University
Raleigh, NC, USA

hzhou@ncsu.edu

Beijing, China
yangjia@ios.ac.cn

if they are entangled with the qubits under measurement. For
example, in an entangled 2-qubit Bell state, %(\OO) +[11)),
the measurement of the first qubit would not only collapse
the first qubit to a classical state, |0) or |1), but also affects
the second qubit by forcing it to be in the same classical
state as a result of entanglement. In other words, direct
measurement of quantum states can be destructive and affect
subsequent program execution. Second, indirect measurement
is also limited by the non-cloning theorem, which states that
it is impossible to copy an arbitrary qubit state such that the
copied qubits and the original ones are not correlated.

To tackle these challenges, Li and Ying [1] proposed a
protocol to debug quantum processes, in which an error detec-
tor, that is a projection operator orthogonal to the anticipated
quantum system state, is used to check the quantum system at
a sequence of time points. The similar principle of projection
based monitoring is leveraged in later works on quantum
assertions with different assertion circuit implementations [3]—
[5]. On the other hand, statistical assertions, which rely on
multiple measurements of the quantum states to infer their
statistical properties, have been proposed [6]. Such statistical
approaches can be viewed as a limited form of quantum
tomography to characterize quantum system states.

In this paper, we present a detailed overview of these
quantum assertion techniques and discuss their trade offs.
Besides checking that intermediate quantum states are the
same as expected ones, assertions can be used to check certain
properties of the quantum states. State symmetry or bit-flip
invariance is one such example [7].

In classical computation, assertions can be used for de-
tecting both software bugs and/or hardware errors as they
both lead to unexpected program states. Similarly, quantum
assertions can be leveraged for detecting either software bugs
or hardware errors. Furthermore, as a consequence of mea-
surements, successful assertion checks may actually collapse
erroneous quantum states into the correct ones. In other
words, besides debugging, quantum assertions can achieve
error correction to a certain degree. In our case studies, we
present our experimental results of using quantum assertion
techniques for debugging as well as error mitigation.

The remainder of this paper is organized as follows. Section
II provides a brief background on quantum computation and

2576-6996/22/$31.00 ©2022 IEEE 124
DOI 10.1109/ICCD56317.2022.00028
Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

measurement. Section III discusses the different quantum
assertion techniques. Section IV and Section V present case
studies of using quantum assertions for software debugging
and hardware error mitigation, respectively. Section VI con-
cludes the paper and discusses the future directions.

II. BACKGROUND

In a digital quantum computing system, information is
encoded in qubit (quantum bits) and the system state is
represented with its qubit states. A quantum program is
essentially a sequence quantum gates applied upon qubits. In
a way, a quantum program controls how the quantum system
state evolves over time by applying the instructions, i.e.,
quantum gates, at different times. During program execution,
the quantum system state can be in a pure or mixed state.

A pure quantum state can be represented with a vector of
complex numbers with norm one. For example, a single-qubit
pure state can be represented as |¢)) = a |[0)+b|1) where |a|*+
|b\2 = 1. An n-qubit quantum gate operation is represented by
a 2" x 2" unitary matrix U. A gate U operating on a pure
state [¢) results in the state |[¢') = U [¢).

A mixed quantum state means a mixture of more than one
pure state. A mixed state is described with a density matrix
p = >, Pi|¢i) (s, where P; are the probabilities of each
pure state |t;) and), P; = 1. Mixed states are more generic
than pure ones as a pure state i) can also be represented
with a density matrix: p = [¢) (¢»|. When a quantum gate U
operates on a mixed state with density matrix p, the resulting
state’s density matrix is p’ = UpUT.

For a quantum state, 1), a measurement will collapse it into
one of the basis states, |m;), associated with the measurement.
And the probability of the measurement outcome that the basis
state |m;) is observed is p; = (| M M;|¢) = | (¢|ms) |2,
where the measurement operator M; = |m;) (m;|. The state

after the measurement is A%) = % |ms) [11], which is

the same as |m;) except a non-distinguishable global phase.
For example, for the computational basis, My = |0) (0| and
My = |1) (1], the state |¢) = a |0) +b|1) has a probability of
|a|? (or |b|?) being measured as |0) (or |1)) and the state after
the measurement becomes |0) (or |1)). In the same way, when
the state |¥) = a|0) + b|1) is measured using the |+),|—)
basis, the state after measurement becomes the |+) or |—) state
with the probability of $|a+b|* and §|a—b|?, respectively. The
implication is that when being measured at a proper basis, the
state after measurement can be corrected to the expected state.
This property can be leveraged for hardware error mitigation
when assertion checks pass without any error.

The same property also holds for a mixed state with a den-
sity matrix p. Given a set of orthogonal measurement operators
M,,, the probability of observing |m;) is T'r(M; pMiT) and the

M;pM]
Tr(MipM])
if the state |m;) is observed [11]. As we can see, the density
matrix after measurement is a normalized form of M,»p]V[iT.
With M; = |m;) (m;| and p = >, Pr |tx) (Yr], we can
derive that M;pM] = Yok Pr Ima) (mi|) (hi|ms) (my] =

density matrix after measurement collapses to p’ =

125

CM; where C is a scaled factor. This means that the state
after the measurement is the same as the measured state |m;).

III. QUANTUM ASSERTION SCHEMES

In this section, we summarize the recently proposed quan-
tum assertion schemes and discuss their trade offs. We start
with assertions whose measurements may destruct the quan-
tum state under test and then present the ones that preserve or
correct to the expected states.

A. Statistical Assertions

Huang et al. [6] proposed to use statistical tests to im-
plement quantum assertions. In their approach, the assertion
points in a quantum program become breakpoints and the
measurements are directly performed upon the qubits under
test. Three types assertions are proposed.

o Classical assertions: asserting that a quantum variable
should take an expected integer value upon measurement.

« Superposition assertions: asserting that a quantum vari-
able should be in the uniform superposition state.

« Entanglement assertions: asserting that the control and
target quantum variables are entangled, which means that
they have correlated measurement outcomes.

Ensembles of measurements are needed to determine whether
an assertion passes or fails. Each measurement requires the
program to run from the beginning and stop at the assertion
point. After multiple measurements, the chi-square test is
used to check for classical and superposition quantum states.
Contingency table analysis coupled with the chi-square test is
used to check for entangled states.

Direct measurement of the quantum variables (or qubits)
using the computational basis limits the information to be col-
lected. For example, the phase information (e.g., |[+) vs. |—))
cannot be determined from the ensemble of measurements.
This limitation can be overcome adding a rotation gate before
measurement such that the measurement is done at a different
basis. This process would make statistical assertions similar
to quantum tomography, whose drawback is the number of
measurements can be exceedingly high when considering the
different bases.

B. Assertions using Swap Tests

Swap tests have been suggested as a way for quantum
assertions [8]. The swap test circuit, as shown in Fig. 1, can
be used to test two states, pure or mixed, are equal. Therefore,
it makes intuitive sense to use this circuit implement the
assertion check AssertEqual(|¢),|p)), which passes when
the two states are the same and fails otherwise.

Fig. 1: Swap-test circuit.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

With |¢) and |u) being pure states, the probability of the
measurement outcome being |0) is shown in Equation 1.
1 1 9
S+l P

As shown in Equation 1, if the two states are identical,
the probability of measuring |0) is 1. In other words, if
the two states are equal, the measured state is always |0)
and the assertion check always passes. If the two states |¢))
and |p) are different, the probability would be lower than 1.
The problem of using swap tests for assertions is that it is
possible for the measured state to be |0) when |¢)) and |u)
are different. This means that a single measured state being
|0) does not mean that the assertion passes since there is 50%
chance that the measured state is |0) even when [¢) and |p)
are orthogonal. Therefore, swap tests can only be used as a
statistical approach to check the difference between the two
input states. Furthermore, the swap test may entangle the two
output states even when the measured state is |0).

One way to utilize the SWAP test for dynamic assertion
is to assert whether a multi-qubit superposition state satisfies
certain position equivalence. For example, for a 2-qubit state
[= ag|00) + ay |01) + a2 |10) + a3 |11), the swap test will
not raise an assertion error if a; is the same as a, and may
raise an error if a;! = as. In other words, the assertion passes
when switching the positions of the two qubits has no impact
on the quantum state.

P(measured_outcome = 0) =

C. Assertions in debugging quantum processes

Li and Ying [1] firstly studied the protocols for debugging
quantum processes in which assertions are defined as projec-
tive measurements that are successively taken to monitor a
quantum system until an error is detected. Consider a quantum
system that is initially in state |1)p) and then evolves according
to a computing process. Assume that the process is designed
to transform the quantum system into state [¢);) at any time
t > 0 during the evolution. A projection operator P # 0 of
the system can be introduced as an assertion for debugging
the process if the following condition holds:

« For a sequence of time points ¢1,%s,- -
P |y,) = 0 for all k.

The debugging protocol is as follows. The assertion P is
implemented by a projective measurement {M, = I —
P, M; = P} which is successively inserted into the process
at time tq,to,--- to check if the system state at time tj is
as anticipated |1}y,). There are two cases of the measurement
outcomes at time ty:

of the process,

1) The outcome is 0, then the system state is regarded as
correct and the process goes on after the measurement.
Note that if the system at time ¢; is correctly in state
|1,)» then the outcome is always 0, and the system state
keeps unchanged after the measurement.

The outcome is 1, which means that an error of the
system is detected at the time. In this case, one needs
to stop the process and then carefully checks the pro-
cess implementation to find the bugs. Note that if the

2)

126

system at time {j is in an incorrect state pj, then with
probability Tr(Ppy) the error would be detected at the
time.

Suppose a bug of the system will be involved in the process
at time ', then for time ¢ < ¢’ the system is correctly in state
|t¢) and for time ¢ > ¢’ the system might be in some incorrect
state. Using the debugging protocol for this process, an error
can only be detected after time . So an error detected at
time ¢ means that ¢’ € [0,¢x]. In practice, we can run the
debugging protocol many times, and get the smallest time ¢,
of detecting an error, then the bug is more likely located in
[tk—1,tx] and the relevant component (e.g, a quantum circuit
fragment or a quantum subprogram) of the process should be
carefully checked to find the bug.

A major advantage of this debugging approach is that the
external measurement will not disturb the original evolution of
the quantum system. So, the protocol is efficient, as the system
can be checked many times in a single run of the process;
moreover, the protocol is conclusive, i.e., no false positive
results would be reported when the process runs correctly.
The main problem of applying this approach in practice is
how to find a satisfying assertion P. In [1] this problem is
solved only for the simple case of time-independent evolution,
i.e., the discrete-time transformation of the quantum system
is achieved by a fixed unitary operation U; in this case, the
measurement should be periodically taken in the process with
some period p, and thus the assertion can be found according
to the invariant subspace of UP. The construction of assertions
for debugging general quantum computing processes is further
studied in following works, such as [2]-[5].

D. Dynamic Runtime Assertions

Zhou et al. [2] and Liu et al. [4] proposed to achieve
dynamic runtime assertions by collecting the quantum state
information through ancilla qubits. They define dynamic as-
sertion as assertion checks that are performed during program
execution and the program continues execution if there is no
assertion error. They also showcased that dynamic assertions
can be used for hardware error correction/mitigation. The
proposed assertion circuits implement the types of assertions
proposed by Huang et al [6]. And these circuits can be viewed
as assertion primitives as they test specific quantum states.
The later works [3], [5] generalize the design methodology
for assertion circuits.

E. Projection Based Assertions

Li et al. [3] proposed projection based quantum assertion
assert(q; P) for general quantum programs, where ¢
qi,---,qn 1s a collection of quantum variables of the quantum
program and P is a projection in the state space. The semantics
of the assertion is that based on the projection operator
P in the assertion, a projective measurement is constructed
such that when applied upon g, the assertion check passes
if the measurement outcome corresponds to P and fails if it
corresponds to [— P. With the projection operator, projection-

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

] /7(| L

B |

check if outcomes
of all qubits are 0

Fig. 2: Projection-based assertion circuit.

based assertion is a generic form and can be used to implement
the assertions proposed in [6] as well as others [5], [7].

Since only projective measurement that lie in the computa-
tional basis is supported on the quantum computers available
so far, additional unitary transformation is needed, as shown
in Fig. 2. The state under test, |¢)), first goes through a
unitary transformation Up, which is designed based on the
projection operator P. The key is the expected state will
be mapped to |0). This way, if |¢)) matches the expected
state, the measured state will be |0). An assertion failure is
signaled if the measured state is not |0) and the program
aborts execution. With the measurement property discussed in
Section II, the measured state being |0) would force the state
after measurement to be |0). Then, the inverse transformation
U ITD converts the |0) state back to the expected state, achieving
error correction/mitigation.

F. Swap Based Assertions

Liu et al. [5] proposed a way to accomplish the assertion
assertEqual(|y) , |p)) using swap gates, where the state [¢))
is an n-qubit state under test and |u) is the expected state. Both
states can be pure or mixed ones. Therefore, this assertion is
more expressive than the three assertions proposed in statistical
assertions [6]. The swap-based design can also be viewed as
a way to build the Up and UIT, gates in Fig. 2 from a different
perspective.

The circuit of swap-based assertions is shown in Fig. 3.
The key idea is that the unitary gate UT needs to transform
the n-qubit “correct” state |u) to the zero state |0)*", and
other “incorrect” states to the states in the computational basis
which contain at least one |1). This way, when we measure
the qubits after UT, if all the qubits are in the |0) state, the
circuit won’t raise an assertion error. If any of the qubit is in
|1) state, it means that the state |¢)) was not the same as the
|i2) state, and the circuit would raise an assertion error.

Assertion circuit

="))

(=]
(=]

Fig. 3: The idea of SWAP-based assertion circuits.

‘0)871.

.

The U or U’ gate can be generated as follows. First,
from the expected state |u), we find an orthonormal basis
{I%i) }icfo,2n—1) that includes state |u) as |¢)g) using the
Gram-Schmidt process [10]. Second, we generate an uni-
tary matrix U to transform the states in this orthonormal
basis to the states in the computational basis, and U =
100" (W0 +10)%" 7 1) (1] + .. [1)" (o 1. This way,
when applying UT to [¢), if |¢)) == |u), the output would
be |0). Otherwise, one or more of the measurement outcomes
would be 1.

Depending on where we place the U gate and U' gate w.r.t.
the SWAP gate in Fig. 3, there would be different circuit
designs. The design shown in Fig. 4 is typically preferred
as it enables more opportunities for transpiler optimization to
reduce the circuit complexity. From Fig. 2 and Fig. 4, we can
see similarity between the two approaches.

) { Ut U })
(=]

(UM {
ksl

Fig. 4: General scheme of SWAP based assertion circuit for
pure state assertions.

Another optimization proposed by Liu et al. [5] is based
on the observation that an assertion failure happens if any of
the state after UT is |1). Therefore, we can use a logical OR
operation to reduce the number of ancilla qubits, as shown in
Fig. 5.

OR gate

’

[4) { Ut

1) —

Fig. 5: Logical OR based assertion circuits.

When asserting a mixed state, the density matrix of the
expected state needs to be diagonalized. Then, depending on
the rank of the density matrix, different numbers of qubits need
to be measured for assertion checks [5]. A similar process is
also used in [3].

G. NDD/Stabilizer Based Assertions

Non Destructive Discrimination (NDD) is a protocol lever-
aged by Liu et al. [4], [5] for quantum assertions. As shown
in Fig. 6, the NDD-based design consists of a controlled-N
gate and two Hadamard (H) gates. When the input quantum
state [¢) is the eigenstate of the unitary matrix N with the
eigenvalue of 1, i.e., [¢)) = N |¢), the ancilla qubit’s output
state is |0). When the quantum state |¢)) is the eigenstate of
the unitary matrix U with the eigenvalue of -1, the ancilla
qubit’s output state is |1). When designing for the assertion
assertEqual(|y) , |p)), where |1) is the state under test and

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

|2) is the expected state, the key is to design the unitary N
such that N |u) = |u). From the description, we can see that
the NDD based assertion check is essentially the stabilizer
designed for the expected state. Compared to the stabilizers
that are widely used in quantum error correction (QEC), two
distinctions exist. (1) In QEC, the quantum states are encoded
such that the codespace satisfies the corresponding stabilizers.
For example, with 3-qubit repetition code, the qubit states are
encoded such that they pass the stabilizers, ZZI and 1ZZ, if
there is no single bit-flip error. In comparison, in assertions,
the qubits are not encoded on purpose. (2) As it is sufficient for
QEC to detect and correct X and Z Pauli errors, the stabilizers
are mainly Pauli Z and X stabilizers. In contrast, for assertions,
the stabilizers are specific for expected states.
N } [4)

|w>{
1

|0
Fig. 6: General scheme of NDD/Stabilizer-based assertion
circuits.

H

LH | H

The unitary gate or the stabilizer N can be designed
for assertion assertEqual(|y),|u)) as follows. First, based
on the expected state |u), we find an orthonormal basis
{I%i) }ic[o,2n—1) that includes state [u) as [1g). Second, we
can construct the unitary matrix N as N = [¢g) (¢o| —

2" —1
Dim1 %) (Wil

Similar to the projection-based assertions or swap-based
assertions, a passing assertion forces/stabilizes the state under
test to the same as the expected state. Therefore, we can abort
program execution if an assertion fails or use post-selection
to only consider the runs that pass the assertion checks to
mitigate hardware errors.

H. Assertions for Symmetry States

Besides checking whether a quantum state is the same as an
expected one using assertEqual(|1),|u)), other properties
can be checked during program execution. One such example
is symmetry assertion [7], [9]. In some application domains,
such as finding max cuts in graphs, the information encoding
is inherently symmetric. For example, a bi-partition of nodes
in a graph encoded with 110001’ is the same as 001110’ as
one can label the partition 0 and partition 1 interchangeably.
This symmetry is referred to bit-flip symmetry [9]. Similarly,
the location of a node in the graph does not alter the partition,
which is referred to as permutation symmetry [9].

The assertion circuits to verify the symmetric property are
very similar to the NDD/stabilizer assertion circuit. A simple
example is the circuit asserting the |+) state, for which the
N gate in Fig. 6 becomes an X gate as shown in [4]. The
|+) state satisfies bit-flip symmetry as flipping the bit has no
effect. The X gate is the stabilizer of the |+) state, i.e., passing
the assertion means that the output state is the |+) state.

128

L. Assertions for Memberships / Approximate Assertions

Liu et al. [S] proposed assertions to check whether a
quantum state under test belongs to a given set of states
or a superposition of the states in the set. Such assertions
are referred to as approximate assertions in [5]. Approxi-
mate assertions can be implemented using the swap-based
or NDD/stabilizer-based approach. It is similar to asserting
for mixed states. Compared to pure state precise assertions,
the difference is that there would be multiple correct states
rather than a single correct state. For example, to check a
2-qubit state |¢) € {|01),]|10),|11)}, the unitary matrix of
the N gate in Fig. 6 can be constructed as N = |01) (01| +
[10) (10] + |11) (11| — |00) (00|. Or it can be implemented
using N = |00) (00| — |01) (01] — |10) (10| — |11) (11| with
the ancilla qubit input as |1), as shown in Fig. 7.

N =[O} 01 (1-2)2-3)3]

Fig. 7: Approximate Assertion for |¢) € {|01),]10),|11)} or
|¥)! = 100).

Note that for a 2-qubit state, the assertion [¢)) €
{|01),]10),|11)} is essentially checking |¢)) # |00). Such
assertions are common for applications where some bit en-
coding are known to be impossible/forbidden. For example,
in a graph 3-coloring problem, if three colors are encoded
with |01),]10),|11), for any node, the color encoding |00)
would be impossible, i.e., we can assert that |g1g2) # |00),
where ¢; and g2 are the qubits encoding the color of a node.

In general, assertion assert Not Equal(|Y) , 1)), i.e., |) #
|1), where |¢) is the n-qubit state under test and |u) is a
known impossible state, can be constructed as approximate
assertion |1)) €{space orthogonal to |u)}. When |u) is a
pure state, the assertion circuit can be designed as follows.
First, based on the known state |u), we find an orthonormal
basis {|1;) }ic[o,2n—1) that includes state [1) as [¢)g). Second,
we can construct the unitary matrix N as N = |¢g) (o] —
Zifl [1;) (1;|. Then, we can use this stabilizer with the
ancilla qubit input as |1), similar to Fig. 7, for assertion checks.
When |p) is specified as a density matrix or a mixed state,
the design process is similar except that N would have more
components with eigenvalues of 1.

For assertion assertNotEqual(|v),|p)), where both |4)
and |p) are states under test and cannot be known stat-
ically, we need to construct the combined qubit-state set
by listing all the states that do not violate the condition
and then use approximate assertion to ensure that the com-
bined state |¢) ® p) satisfies the membership check of the
set. For example, in the graph 3-coloring problem, one
can assert that for each pair of nodes that are connected
with an edge, their color encoding should be different, e.g.,
|g192) # |¢3ga), which can be implemented with |¢1¢2¢3q4) €

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

{|0110),|0111),|1001),|1011),|1101),|1110)} when the
color is encoded with |01),|10), and |11).

J. A Comparison Among the Assertions

Among the assertion schemes discussed above, the statis-
tical assertions [6] and the ones using swap-tests [8] need
numerous measurements to infer the statistical significance.
Between the two, the statistical assertions require measure-
ments of multiple qubits whereas swap-tests need to measure
a single ancilla qubit to compare the difference between the
state under test and the expected state.

Assertion primitives [2], [4], Projection-based assertions [3],
Swap-based assertions [5], NDD/stabilizer-based assertions
[5], symmetry assertions [9], and approximate assertions [5]
won’t affect subsequent program execution when there is no
assertion error. They can also be used for error correction/miti-
gation. The projection-based assertion does not involve ancilla
qubits but require mid-circuit measurement. The complexity
of these assertion circuits varies for different scenarios and
one may explore different assertion approaches to select the
one with lowest implementation complexity, e.g., in terms of
circuit depth or the number of gates.

IV. CASE STUDY: ASSERTIONS FOR SOFTWARE
DEBUGGING

Assertions are useful for software debugging. To facilitate
programmers, the tket framework [13] has implemented two
types of assertions: the projection-based assertion [3], and
the stabilizer-based assertion. Moreover, Liu et al. [5] have
augmented the Qiskit [12] to incorporate the SWAP-based
assertion and NDD/stabilizer-based assertion so that program-
mers can use these two types of assertions conveniently. In this
section, we study how to leverage these assertion methods and
compare these methods available in tket and Qiskit.

The circuit of this case study is a 3-qubit cluster state
circuit. The cluster state can be prepared by firstly applying
the Hadamard gate to each qubit, then applying the controlled-
Z gate between all the adjacent qubits. Listing 1 and Listing 2
show the Qiskit code and the tket code for generating the
cluster state with the assertions, respectively.

Listing 1 illustrates how to insert NDD/stabilizer-based
assertion in Qiskit code. Two assertions are inserted in line
21 and line 30. The assertion in line 21 is at the location after
the circuit applies the H gate to all the qubits, so the correct
state at this location should be |+ + +). We save this state
vector into the stateList as stateQ in line 13, and use it for
assertion in line 21. The second assertion located in line 30
asserts the final state of the circuit, which should be the cluster
state %(H—O—i—) +|—1—)). We save this cluster state as statel
in line 13 and use it for asserting the final output state in line
30.

Listing 2 illustrates how to insert stabilizer-based assertion
in tket code. Although the stabilizer-based assertion in tket
generates the assertion circuit shown in Fig. 6 just as the
NDDy/stabilizer-based assertion implemented in Qiksit, these
two assertion schemes are different in creating the unitary N

129

in the assertion circuit. For the stabilizer-based assertion in
tket, the unitary gate in the assertion circuit must be composed
of Pauli gates, while the NDD/stabilizer-based assertion in
Qiskit can use any kind of gates to create the unitary N in
Fig. 6, which means the NDD/stabilizer-based assertion has
more flexibility. Moreover, for the stabilizer-based assertion
in tket, users need to provide a set of Pauli operators which
will be used to create the unitary gate in the assertion circuit.
And if users make some mistakes and provide non-ideal
Pauli operators, the assertion can be inefficient/ineffective in
detecting errors.

We didn’t list the code for using SWAP-based assertion and
Projection-based assertion. The reason is that the usage of
these two types of assertions is very similar to Listing 1 and
Listing 2. For SWAP-based assertion, users can also specify
the design type to choose between the SWAP-based assertion
and the logical-OR-based assertion. For the Projection-based
assertion, users need to provide the matrix of the projector.

The circuits with assertions generated from the Qiskit code
and the tket code are all sent to Aer Simulator from Qiskit to
run without noise. The number of shots is set to be 1000. If
all the 1000 shots do not raise an error for an assertion, then
this assertion succeeds. Otherwise, it fails. Table I shows the
assertion results for the circuits which contain different bugs.
The assertion results for the bug-free circuit are not included in
the table since there is no assertion failure for bug-free circuits.
Two kinds of bugs are considered. Bug 1 misses the H gate on
the third qubit of the circuit, and bug 2 mistakenly replaces all
the controlled-Z gates of the circuit with controlled-X gates.
Using the Qiskit code in Listing 1 as an example, bug 1 can
happen when we incorrectly set the iteration number of the
first For loop to be nqubits — 1 in line 17, and bug 2 can
happen when we wrongly apply CX gate instead of CZ gate
in line 27.

In Table I, the first two lines of results correspond to
stabilizer-based assertion 1 and 2, the difference between these
two assertions is the user-defined Pauli operator sets. For
stabilizer-based assertion 1, we set the two Pauli operator sets
just as line 15 and line 26 of Listing 2. For stabilizer-based
assertion 2, we set the first Pauli operator sets to be {X XTI}
and the second to be {XIX}. From Table I, we can see for
bug 1, stabilizer-based assertion 1 on both of the two locations
fails, because bug 1 happens before these two locations; for
bug 2, stabilizer-based assertion 1 on location 2 fails because
bug 2 happens after location 1 and before location 2. However,
for the stabilizer-based assertion 2, when the circuit has bug
1, assertion succeeds in location 1 as it doesn’t identify the
incorrect state of |+ + 0). The reason is that the Pauli operator
XXI does not only stabilize the correct state |4+ + +) but
also stabilizes the incorrect state of |+ 4 0) as both of these
two states have +1 eigenvalue corresponding to this Pauli
operator XXI. The same happens for the circuit with bug 2, the
stabilizer-based assertion 2 at location 2 succeeds because it
doesn’t distinguish between the incorrect state and the correct
state. Therefore, it is important that the user defines the proper
Pauli operators to make an effective stabilizer-based assertion

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

in tket. Compared to the stabilizer-based assertion in tket,
NDD/stabilizer-based assertion in Qiskit is more user-friendly
since the unitary gate of the stabilizer circuit is generated
by Qiskit’s function UnitaryGate and users don’t need to
define the gate using Pauli operators.

#Create a QuantumRegister with 3 qubits
nqubits=3

3 gr = QuantumRegister (nqubits, "qg’)

£ o

#ancilla qubit for assertions

s nqubits_ancilla=2

ar = QuantumRegister (nqubits_ancilla, ’a’)

#classical bit to save the measurement result

cr = ClassicalRegister (nqubits+nqubits_ancilla, '

c’)

» #a list of state vectors that we are asserting for
; stateList=[state0, statel]

circuit = QuantumCircuit (gr,ar,cr)

s #apply H gate to all the qubits

for g in range (nqubits) :
circuit.h(q)

#insert an NDD/stabilizer assertion
assertion_NDD (circuit, qgr[0:3], [ar[0]], [statelList

(011

2 #measure the ancilla qubit ar[0]
3 circuit.measure(ar[0],cr[nqubits:nqubits+1])

#apply CZ gate to adjacent qubit

s for g in range (nqubits-1):

circuit.cz(q,g+l)

#insert an NDD/stabilizer assertion

assertion_NDD (circuit, qgqr[0:3], [ar[l]], [statelist
[111)

#measure the ancilla qubit ar[1]

circuit.measure(ar([1l],cr[nqubits+l:nqubits+2])

#measure the circuit output
circuit.measure (qr,cr[0:nqubits])

Listing 1: The Qiskit code of generating the cluster state with
assertions.

#create a Quantum circuit with 3 qubits
nqubits=3

3 circuit = Circuit (nqubits)

#specify a qubit list which will be used for
assertion

» qubit_list=[]

for i in range (nqubits) :
qubit_list.append (i)

#apply H gate to all the qubits
for i in range (nqubits) :
circuit.H (1)

#define a set of Pauli operators for generating the
stabilizer
stabilizerl = [’XXX']

s # add an ancilla qubit for this stabilizer-based

assertion

circuit.add_qubit (Qubit (nqubits+1)

#insert the stabilizer-based assertion

circuit.add_assertion(stabilizerAssertionBox (
stabilizerl), qubit_list, ancilla=nqubits+1l,
name="|assertionl>")

#apply CZ gate to all the adjacent qubits

130

TABLE I: Assertion results for different types of assertions

Assertion type Locati(l)grlllg iocationZ Locati(])?'nulg I%ocationZ
subilizerbased asser- gy Fail ~ Succeed Fail
gganbiéizer-based 4SSC Succeed Fail Succeed Succeed
NDD/stabilizer-based Fail Fail ~ Succeed Fail
Projectorbased asser- gy Fail ~ Succeed Fail
SWAP-based assertion Fail Fail Succeed Fail
Logical-OR-based ~ as- Fail Fail Succeed Fail

sertion

for i in range (nqubits-1):
23 circuit.Cz (i,1i+1)

25 #define a set of Pauli operators for generating the
stabilizer

26 stabilizer2 = ['XZI’,’'ZXZ',’IZX']

27 # add an ancilla qubit for this stabilizer-based
assertion

2% circuit.add_qubit (Qubit (nqubits+2))

29 #insert the stabilizer-based assertion

30 circuit.add_assertion(stabilizerAssertionBox (
stabilizer2), qubit_list, ancilla=nqubits+2,
name="|assertion2>")

Listing 2: The tket code of generating the cluster state with
assertions.

V. CASE STUDY: ASSERTIONS FOR HARDWARE ERROR
MITIGATION

In this section, we study the error mitigation effects when
adding the NDD/stabilizer-based assertion into a quantum
circuit. The circuit under study is an Iterative Phase Estimation
(IPE) circuit. The IPE circuit is used to estimate the phase of a
unitary operator and realizes the same function as the Quantum
Phase Estimation (QPE) circuit. Compared to the QPE circuit
which may suffer severely from circuit noise when the circuit
size grows, IPE circuits utilize reset gates and conditioned
gates to reduce the circuit noise effects. Fig. 8 shows the circuit
for a 2-qubit IPE circuit. This circuit estimates the phase of a
single-qubit Z-rotation gate, and the rotation angle is set to %7’.
Therefore, we can see the phase ¢ of this gate is % because
2mp = %’r. If we use a binary number to represent the decimal
part of this phase, it is ¢ = 0.¢1¢2 = 0.11, so the precision
of this gate phase is 2 and we can use the circuit containing
2 iterations to estimate this phase. The first iteration estimates
the value of @9 by performing mid-circuit measurement of the
ancilla qubit g0, then in the second iteration, the ancilla qubit
q0 will be reset and will be used to estimate the value of ¢;.

From the IPE circuits in Fig. 8, we can see the second
qubit g1 first goes through an X gate, and after the X gate or
after the first grey dotted line in Fig. 8, the state of g1 should
remain |1) no matter how many controlled-phase gates are
applied. This creates an opportunity for inserting assertions on
g1 because we can actually insert the assertions at any location
we want, and the state to be asserted is |1). The assertion
type we used in the IPE circuit is the NDD/stabilizer-based

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

ol of -1, B Ha

P an2) P (3m2) P Ew2)

Fig. 8: 2-qubit IPE circuit with two iterations

assertion. By using post-selection to filter out the results with
assertion errors, we can realize error mitigation effects. Since
we want to precisely assert qubit ¢1, and the state we want to
assert is |1), we can easily know that the Pauli operator —Z
can be used to stabilize the state |1), and the circuit cost of
the CNOT gate number for inserting such one NDD/stabilizer-
based assertion is just 1, which means our assertion will not
adding too much gate noise to the IPE circuit.

IPE circuit is a dynamic circuit that contains conditioned
gates which perform operations conditioned by the classical
information generated from previous measurements. In order
to run a dynamic circuit with conditioned gates on a real
IBM machine, the circuit is converted into the OpenQASM3
program and then sent to the machine which supports Open-
QASM3 to run. The IBM machine ibm_perth which sup-
ports OpenQASM3 is selected to run the experiments and the
result is shown in Table II. All of these three IPE circuits in
the table estimate the phase for a 1-qubit unitary gate with
different numbers of iterations 2, 3, and 4, which compute the
phase with different precision, 2, 3, and 4, respectively. In this
case study, We run the experiments with one assertion inserted
in one of the iterations or with multiple assertions inserted in
each of the iterations. We choose the assertion location to be
right before the first controlled-phase gate of each of the circuit
iterations, and the location is marked with the grey dotted line
in Fig. 8.

We run the circuit and calculate the success rate based on
the output distributions, and the success rate is calculated as
the ratio of the number of shots of getting the correct output
over the total number of shots, and the total number of shots
is set to be 1000 in our experiments. For the circuit with
assertions, we first drop all the output results which have
assertion errors, then calculate the success rate using the output
results which don’t have assertion errors. From the results
shown in Table II, we can see that without the NDD/stabilizer-
based assertions, the successful rate decreases quickly as the
number of iterations increases. After we add the assertions,
almost all the circuits have a great improvement in success
rate and the largest success rate improved can be 3.19 times
compared with the original circuit without assertion, except
for the IPE with 2 iterations and with assertions inserted into
both iterations. It indicates that when the circuit size is small,
it is better to not include too many assertions in the circuit at
the same time, which incurs too much noise.

VI. CONCLUSION

In this paper, we present a detailed overview of different
quantum assertion techniques proposed recently and discuss
different types of assertion checks that can be supported with

131

TABLE 1II: Success rates of the IPE circuit with/without
assertions
assertions
00 as assertion assertion assertion assertion in all
rt"_ in iter- in iter- in iter- in iter- the
sertion ationl ation2 ation3 ation4 itera-
tions
IPE with 2731 0731 0918 0.301
iteration
IPE with 3, 37 0.604 0.752 0.828 0.777
1teration
IPE with 4 190 0405 0663 0805 0661 0533

iteration

them. We highlight that with non-destructive measurement,
i.e., the stabilizer designed specific to the expected states,
assertions can be effective in either software debugging or
hardware error correction/mitigation. Case studies are pre-
sented to illustrate the usage of assertions in different quantum
algorithms.

Our future research directions on quantum assertion include
(a) expanding the scope of assertions such that they can check
more invariants in quantum programs, and (b) reducing the
cost of assertion circuits such that they can be more effective
in error mitigation. One possible way is to break down a
mixed state assertion into a combination of a few approximate
assertions.

REFERENCES

[1]1 Y. Li and M. Ying. Debugging quantum processes using mon-
itoring measurements. Phys. Rev. A, 89 (2014), Apr, 042338.
https://doi.org/10.1103/PhysRevA.89.042338.

H. Zhou and G. T. Byrd. Quantum Circuits for Dynamic Runtime
Assertions in Quantum Computation. Comput. Archit. Lett. 2019.

G. S. Li, L. Zhou, N. K. Yu, Y. F. Ding, M. S. Ying and Y. Xie,
Projection-Based Runtime Assertions for Testing and Debugging Quan-
tum Programs, Proceedings of the ACM on Programming Languages,
4.00PSLA(2020): 1-29.

J. Liu, G. Byrd and H. Zhou, Quantum Circuits for Dynamic Runtime
Assertions in Quantum Computation, In:Proceedings of the 25th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2020), 1017-1030.

J. Liu and H. Zhou, Systematic Approaches for Precise and Approximate
Quantum State Runtime Assertion, In:Proceedings of the 27th IEEE
International Symposium on High-Performance Computer Architecture
(HPCA 2021), 179-193..

Y. P. Huang and M. Martonosi, Statistical assertions for validating
patterns and finding bugs in quantum programs, In: Proceedings of the
46th International Symposium on Computer Architecture (ISCA 2019),
ACM, 541-553.

X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O’Brien. Low-
cost error mitigation by symmetry verification. Phys. Rev. A, 98:062339,
Dec 2018.

Yongshan Ding and Frederic T. Chong. Quantum Computer Systems:
Research for Noisy Intermediate-Scale Quantum Computers, Synthesis
Lectures on Computer Architecture, Morgan Claypool Publishers, 2020.
Ruslan Shaydulin and Alexey Galda. Error mitigation for deep quantum
optimization circuits by leveraging problem symmetries. arXiv preprint
arXiv:2106.04410, 2021

G. H. Golub and C. F. Van Loan, Matrix computations.
2012, vol. 3.

M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

ANIS, M., et al., Qiskit: An Open-source Framework for Quantum
Computing. (2021)

Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington,
A. & Duncan, R. t|ket): a retargetable compiler for NISQ de-
vices. Quantum Science And Technology. 6, 014003 (2020,11),
https://doi.org/10.1088/2058-9565/ab8e92

[2]
[3]

[4

=

[5

—

[6]

[7

—

[8

—

[9

—

[10] JHU press,
[11]
[12]

[13]

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

