
Exploiting Quantum Assertions for Error Mitigation
and Quantum Program Debugging

Peiyi Li
Dept. of ECE

NC State University
Raleigh, NC, USA

pli11@ncsu.edu

Ji Liu
Dept. of ECE

NC State University
Raleigh, NC, USA

jliu45@ncsu.edu

Yangjia Li
State Key Lab. of CS
Institute of Software

Beijing, China

yangjia@ios.ac.cn

Huiyang Zhou
Dept. of ECE

NC State University
Raleigh, NC, USA

hzhou@ncsu.edu

Abstract—An assertion is a predicate that should be evaluated
true during program execution. In this paper, we present the
development of quantum assertion schemes and show how they
are used for hardware error mitigation and software debugging.
Compared to assertions in classical programs, quantum asser-
tions are challenging due to the no-cloning theorem and poten-
tially destructive measurement. We discuss how these challenges
can be circumvented such that certain properties of quantum
states can be verified non-destructively during program execu-
tion. Furthermore, we show that besides detecting program bugs,
dynamic assertion circuits can mitigate noise effects via post-
selection of the assertion results. Our case studies demonstrate
the use of quantum assertions in various quantum algorithms.

Index Terms—quantum computing, error mitigation, debug-
ging, assertion

I. INTRODUCTION

Quantum computing offers high speedup potentials over

classical computing in multiple important domains, includ-

ing quantum simulation, optimization, etc. To realize such

potentials, there are barriers in both quantum hardware and

software to be overcome. On the software side, developing

quantum programs is difficult. Based on the lessons learnt

from classical computing, program bugs can be common in

quantum programs given their conceptual complexity. On the

hardware side, quantum devices are sensitive to environment

and are error prone. Therefore, error mitigation and ultimately

error correction are required for quantum computing systems.

In this paper, we discuss quantum assertions as a way to help

debug quantum programs as well as to perform lightweight

error detection and correction.

An assertion is a program predicate that should always

be evaluated true during program execution. In classical

computing, assertions are commonly used to monitor some

intermediate program states so as to verify certain properties

of a program or to detect runtime anomalies. Assertion errors,

if any, would help to pinpoint the location of program bugs.

In quantum program execution, intermediate states are much

more difficult to monitor than in classical computation. There

are two reasons. First, direct measurement of some qubits may

collapse their superposition states and may affect other qubits

The NC State team is funded in part by NSF grants 1818914 (with
subcontract to NC State University from Duke University) and OMA-2120757
(with subcontract to NC State University from University of Maryland).

if they are entangled with the qubits under measurement. For

example, in an entangled 2-qubit Bell state, 1√
2
(|00〉+ |11〉),

the measurement of the first qubit would not only collapse

the first qubit to a classical state, |0〉 or |1〉, but also affects

the second qubit by forcing it to be in the same classical

state as a result of entanglement. In other words, direct

measurement of quantum states can be destructive and affect

subsequent program execution. Second, indirect measurement

is also limited by the non-cloning theorem, which states that

it is impossible to copy an arbitrary qubit state such that the

copied qubits and the original ones are not correlated.

To tackle these challenges, Li and Ying [1] proposed a

protocol to debug quantum processes, in which an error detec-

tor, that is a projection operator orthogonal to the anticipated

quantum system state, is used to check the quantum system at

a sequence of time points. The similar principle of projection

based monitoring is leveraged in later works on quantum

assertions with different assertion circuit implementations [3]–

[5]. On the other hand, statistical assertions, which rely on

multiple measurements of the quantum states to infer their

statistical properties, have been proposed [6]. Such statistical

approaches can be viewed as a limited form of quantum

tomography to characterize quantum system states.

In this paper, we present a detailed overview of these

quantum assertion techniques and discuss their trade offs.

Besides checking that intermediate quantum states are the

same as expected ones, assertions can be used to check certain

properties of the quantum states. State symmetry or bit-flip

invariance is one such example [7].

In classical computation, assertions can be used for de-

tecting both software bugs and/or hardware errors as they

both lead to unexpected program states. Similarly, quantum

assertions can be leveraged for detecting either software bugs

or hardware errors. Furthermore, as a consequence of mea-

surements, successful assertion checks may actually collapse

erroneous quantum states into the correct ones. In other

words, besides debugging, quantum assertions can achieve

error correction to a certain degree. In our case studies, we

present our experimental results of using quantum assertion

techniques for debugging as well as error mitigation.

The remainder of this paper is organized as follows. Section

II provides a brief background on quantum computation and

124

2022 IEEE 40th International Conference on Computer Design (ICCD)

2576-6996/22/$31.00 ©2022 IEEE
DOI 10.1109/ICCD56317.2022.00028

20
22

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r D
es

ig
n

(I
C

C
D

) |
 9

78
-1

-6
65

4-
61

86
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

D
56

31
7.

20
22

.0
00

28

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

measurement. Section III discusses the different quantum

assertion techniques. Section IV and Section V present case

studies of using quantum assertions for software debugging

and hardware error mitigation, respectively. Section VI con-

cludes the paper and discusses the future directions.

II. BACKGROUND

In a digital quantum computing system, information is

encoded in qubit (quantum bits) and the system state is

represented with its qubit states. A quantum program is

essentially a sequence quantum gates applied upon qubits. In

a way, a quantum program controls how the quantum system

state evolves over time by applying the instructions, i.e.,

quantum gates, at different times. During program execution,

the quantum system state can be in a pure or mixed state.

A pure quantum state can be represented with a vector of

complex numbers with norm one. For example, a single-qubit

pure state can be represented as |ψ〉 = a |0〉+b |1〉 where |a|2+
|b|2 = 1. An n-qubit quantum gate operation is represented by

a 2n × 2n unitary matrix U . A gate U operating on a pure

state |ψ〉 results in the state |ψ′〉 = U |ψ〉.
A mixed quantum state means a mixture of more than one

pure state. A mixed state is described with a density matrix

ρ =
∑

i Pi |ψi〉 〈ψi|, where Pi are the probabilities of each

pure state |ψi〉 and
∑

i Pi = 1. Mixed states are more generic

than pure ones as a pure state |ψ〉 can also be represented

with a density matrix: ρ = |ψ〉 〈ψ|. When a quantum gate U
operates on a mixed state with density matrix ρ, the resulting

state’s density matrix is ρ′ = UρU†.

For a quantum state, |ψ〉, a measurement will collapse it into

one of the basis states, |mi〉, associated with the measurement.

And the probability of the measurement outcome that the basis

state |mi〉 is observed is pi = 〈ψ|M†
i Mi |ψ〉 = | 〈ψ|mi〉 |2,

where the measurement operator Mi = |mi〉 〈mi|. The state

after the measurement is
Mi|ψ〉√

pi
= 〈mi|ψ〉√

pi
|mi〉 [11], which is

the same as |mi〉 except a non-distinguishable global phase.

For example, for the computational basis, M0 = |0〉 〈0| and

M1 = |1〉 〈1|, the state |ψ〉 = a |0〉+ b |1〉 has a probability of

|a|2 (or |b|2) being measured as |0〉 (or |1〉) and the state after

the measurement becomes |0〉 (or |1〉). In the same way, when

the state |ψ〉 = a |0〉 + b |1〉 is measured using the |+〉 , |−〉
basis, the state after measurement becomes the |+〉 or |−〉 state

with the probability of 1
2 |a+b|2 and 1

2 |a−b|2, respectively. The

implication is that when being measured at a proper basis, the

state after measurement can be corrected to the expected state.

This property can be leveraged for hardware error mitigation

when assertion checks pass without any error.

The same property also holds for a mixed state with a den-

sity matrix ρ. Given a set of orthogonal measurement operators

Mn, the probability of observing |mi〉 is Tr(MiρM
†
i) and the

density matrix after measurement collapses to ρ′ = MiρM
†
i

Tr(MiρM
†
i)

if the state |mi〉 is observed [11]. As we can see, the density

matrix after measurement is a normalized form of MiρM
†
i .

With Mi = |mi〉 〈mi| and ρ =
∑

k Pk |ψk〉 〈ψk|, we can

derive that MiρM
†
i =

∑
k Pk |mi〉 〈mi|ψk〉 〈ψk|mi〉 〈mi| =

CMi where C is a scaled factor. This means that the state

after the measurement is the same as the measured state |mi〉.
III. QUANTUM ASSERTION SCHEMES

In this section, we summarize the recently proposed quan-

tum assertion schemes and discuss their trade offs. We start

with assertions whose measurements may destruct the quan-

tum state under test and then present the ones that preserve or

correct to the expected states.

A. Statistical Assertions

Huang et al. [6] proposed to use statistical tests to im-

plement quantum assertions. In their approach, the assertion

points in a quantum program become breakpoints and the

measurements are directly performed upon the qubits under

test. Three types assertions are proposed.

• Classical assertions: asserting that a quantum variable

should take an expected integer value upon measurement.

• Superposition assertions: asserting that a quantum vari-

able should be in the uniform superposition state.

• Entanglement assertions: asserting that the control and

target quantum variables are entangled, which means that

they have correlated measurement outcomes.

Ensembles of measurements are needed to determine whether

an assertion passes or fails. Each measurement requires the

program to run from the beginning and stop at the assertion

point. After multiple measurements, the chi-square test is

used to check for classical and superposition quantum states.

Contingency table analysis coupled with the chi-square test is

used to check for entangled states.

Direct measurement of the quantum variables (or qubits)

using the computational basis limits the information to be col-

lected. For example, the phase information (e.g., |+〉 vs. |−〉)
cannot be determined from the ensemble of measurements.

This limitation can be overcome adding a rotation gate before

measurement such that the measurement is done at a different

basis. This process would make statistical assertions similar

to quantum tomography, whose drawback is the number of

measurements can be exceedingly high when considering the

different bases.

B. Assertions using Swap Tests

Swap tests have been suggested as a way for quantum

assertions [8]. The swap test circuit, as shown in Fig. 1, can

be used to test two states, pure or mixed, are equal. Therefore,

it makes intuitive sense to use this circuit implement the

assertion check AssertEqual(|ψ〉 , |μ〉), which passes when

the two states are the same and fails otherwise.

|ψ〉

|μ〉

|0〉 H H

Fig. 1: Swap-test circuit.

125

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

With |ψ〉 and |μ〉 being pure states, the probability of the

measurement outcome being |0〉 is shown in Equation 1.

P (measured outcome = 0) =
1

2
+

1

2
| 〈ψ|μ〉 |2 (1)

As shown in Equation 1, if the two states are identical,

the probability of measuring |0〉 is 1. In other words, if

the two states are equal, the measured state is always |0〉
and the assertion check always passes. If the two states |ψ〉
and |μ〉 are different, the probability would be lower than 1.

The problem of using swap tests for assertions is that it is

possible for the measured state to be |0〉 when |ψ〉 and |μ〉
are different. This means that a single measured state being

|0〉 does not mean that the assertion passes since there is 50%

chance that the measured state is |0〉 even when |ψ〉 and |μ〉
are orthogonal. Therefore, swap tests can only be used as a

statistical approach to check the difference between the two

input states. Furthermore, the swap test may entangle the two

output states even when the measured state is |0〉.
One way to utilize the SWAP test for dynamic assertion

is to assert whether a multi-qubit superposition state satisfies

certain position equivalence. For example, for a 2-qubit state

|ψ〉 = a0 |00〉+ a1 |01〉+ a2 |10〉+ a3 |11〉, the swap test will

not raise an assertion error if a1 is the same as a2 and may

raise an error if a1! = a2. In other words, the assertion passes

when switching the positions of the two qubits has no impact

on the quantum state.

C. Assertions in debugging quantum processes

Li and Ying [1] firstly studied the protocols for debugging

quantum processes in which assertions are defined as projec-

tive measurements that are successively taken to monitor a

quantum system until an error is detected. Consider a quantum

system that is initially in state |ψ0〉 and then evolves according

to a computing process. Assume that the process is designed

to transform the quantum system into state |ψt〉 at any time

t > 0 during the evolution. A projection operator P �= 0 of

the system can be introduced as an assertion for debugging

the process if the following condition holds:

• For a sequence of time points t1, t2, · · · of the process,

P |ψtk〉 = 0 for all k.

The debugging protocol is as follows. The assertion P is

implemented by a projective measurement {M0 = I −
P,M1 = P} which is successively inserted into the process

at time t1, t2, · · · to check if the system state at time tk is

as anticipated |ψtk〉. There are two cases of the measurement

outcomes at time tk:

1) The outcome is 0, then the system state is regarded as

correct and the process goes on after the measurement.

Note that if the system at time tk is correctly in state

|ψtk〉, then the outcome is always 0, and the system state

keeps unchanged after the measurement.

2) The outcome is 1, which means that an error of the

system is detected at the time. In this case, one needs

to stop the process and then carefully checks the pro-

cess implementation to find the bugs. Note that if the

system at time tk is in an incorrect state ρk, then with

probability Tr(Pρk) the error would be detected at the

time.

Suppose a bug of the system will be involved in the process

at time t′, then for time t < t′ the system is correctly in state

|ψt〉 and for time t ≥ t′ the system might be in some incorrect

state. Using the debugging protocol for this process, an error

can only be detected after time t′. So an error detected at

time tk means that t′ ∈ [0, tk]. In practice, we can run the

debugging protocol many times, and get the smallest time tk
of detecting an error, then the bug is more likely located in

[tk−1, tk] and the relevant component (e.g, a quantum circuit

fragment or a quantum subprogram) of the process should be

carefully checked to find the bug.

A major advantage of this debugging approach is that the

external measurement will not disturb the original evolution of

the quantum system. So, the protocol is efficient, as the system

can be checked many times in a single run of the process;

moreover, the protocol is conclusive, i.e., no false positive

results would be reported when the process runs correctly.

The main problem of applying this approach in practice is

how to find a satisfying assertion P . In [1] this problem is

solved only for the simple case of time-independent evolution,

i.e., the discrete-time transformation of the quantum system

is achieved by a fixed unitary operation U ; in this case, the

measurement should be periodically taken in the process with

some period p, and thus the assertion can be found according

to the invariant subspace of Up. The construction of assertions

for debugging general quantum computing processes is further

studied in following works, such as [2]–[5].

D. Dynamic Runtime Assertions

Zhou et al. [2] and Liu et al. [4] proposed to achieve

dynamic runtime assertions by collecting the quantum state

information through ancilla qubits. They define dynamic as-

sertion as assertion checks that are performed during program

execution and the program continues execution if there is no

assertion error. They also showcased that dynamic assertions

can be used for hardware error correction/mitigation. The

proposed assertion circuits implement the types of assertions

proposed by Huang et al [6]. And these circuits can be viewed

as assertion primitives as they test specific quantum states.

The later works [3], [5] generalize the design methodology

for assertion circuits.

E. Projection Based Assertions

Li et al. [3] proposed projection based quantum assertion

assert(q̄;P) for general quantum programs, where q̄ =
q1, ..., qn is a collection of quantum variables of the quantum

program and P is a projection in the state space. The semantics

of the assertion is that based on the projection operator

P in the assertion, a projective measurement is constructed

such that when applied upon q̄, the assertion check passes

if the measurement outcome corresponds to P and fails if it

corresponds to I−P . With the projection operator, projection-

126

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

|ψ〉 UP U†
P

|ψ〉

check if outcomes
of all qubits are 0

Fig. 2: Projection-based assertion circuit.

based assertion is a generic form and can be used to implement

the assertions proposed in [6] as well as others [5], [7].

Since only projective measurement that lie in the computa-

tional basis is supported on the quantum computers available

so far, additional unitary transformation is needed, as shown

in Fig. 2. The state under test, |ψ〉, first goes through a

unitary transformation UP , which is designed based on the

projection operator P . The key is the expected state will

be mapped to |0〉. This way, if |ψ〉 matches the expected

state, the measured state will be |0〉. An assertion failure is

signaled if the measured state is not |0〉 and the program

aborts execution. With the measurement property discussed in

Section II, the measured state being |0〉 would force the state

after measurement to be |0〉. Then, the inverse transformation

U †
P converts the |0〉 state back to the expected state, achieving

error correction/mitigation.

F. Swap Based Assertions

Liu et al. [5] proposed a way to accomplish the assertion

assertEqual(|ψ〉 , |μ〉) using swap gates, where the state |ψ〉
is an n-qubit state under test and |μ〉 is the expected state. Both

states can be pure or mixed ones. Therefore, this assertion is

more expressive than the three assertions proposed in statistical

assertions [6]. The swap-based design can also be viewed as

a way to build the UP and U †
P gates in Fig. 2 from a different

perspective.

The circuit of swap-based assertions is shown in Fig. 3.

The key idea is that the unitary gate U† needs to transform

the n-qubit “correct” state |μ〉 to the zero state |0〉⊗n
, and

other “incorrect” states to the states in the computational basis

which contain at least one |1〉. This way, when we measure

the qubits after U†, if all the qubits are in the |0〉 state, the

circuit won’t raise an assertion error. If any of the qubit is in

|1〉 state, it means that the state |ψ〉 was not the same as the

|μ〉 state, and the circuit would raise an assertion error.

Quantum Program Assertion circuit

. . .

. . .

· · ·

|0〉⊗n V1 Vn |ψ〉 U† |φ〉

|0〉⊗n
U |φ〉

Fig. 3: The idea of SWAP-based assertion circuits.

The U or U † gate can be generated as follows. First,

from the expected state |μ〉, we find an orthonormal basis

{|ψi〉}i∈[0,2n−1] that includes state |μ〉 as |ψ0〉 using the

Gram-Schmidt process [10]. Second, we generate an uni-

tary matrix U † to transform the states in this orthonormal

basis to the states in the computational basis, and U † =
|0〉⊗n 〈ψ0|+ |0〉⊗n−1 |1〉 〈ψ1|+ ...+ |1〉⊗n 〈ψ2n−1|. This way,

when applying U † to |ψ〉, if |ψ〉 == |μ〉, the output would

be |0〉. Otherwise, one or more of the measurement outcomes

would be 1.

Depending on where we place the U gate and U † gate w.r.t.

the SWAP gate in Fig. 3, there would be different circuit

designs. The design shown in Fig. 4 is typically preferred

as it enables more opportunities for transpiler optimization to

reduce the circuit complexity. From Fig. 2 and Fig. 4, we can

see similarity between the two approaches.

· · ·

|ψ〉 U† U |ψ〉

|0〉⊗n

Fig. 4: General scheme of SWAP based assertion circuit for

pure state assertions.
Another optimization proposed by Liu et al. [5] is based

on the observation that an assertion failure happens if any of

the state after U † is |1〉. Therefore, we can use a logical OR
operation to reduce the number of ancilla qubits, as shown in

Fig. 5.
OR gate

· · ·

|ψ〉 U† U |ψ〉

|1〉

Fig. 5: Logical OR based assertion circuits.

When asserting a mixed state, the density matrix of the

expected state needs to be diagonalized. Then, depending on

the rank of the density matrix, different numbers of qubits need

to be measured for assertion checks [5]. A similar process is

also used in [3].

G. NDD/Stabilizer Based Assertions

Non Destructive Discrimination (NDD) is a protocol lever-

aged by Liu et al. [4], [5] for quantum assertions. As shown

in Fig. 6, the NDD-based design consists of a controlled-N
gate and two Hadamard (H) gates. When the input quantum

state |ψ〉 is the eigenstate of the unitary matrix N with the

eigenvalue of 1, i.e., |ψ〉 = N |ψ〉, the ancilla qubit’s output

state is |0〉. When the quantum state |ψ〉 is the eigenstate of

the unitary matrix U with the eigenvalue of -1, the ancilla

qubit’s output state is |1〉. When designing for the assertion

assertEqual(|ψ〉 , |μ〉), where |ψ〉 is the state under test and

127

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

|μ〉 is the expected state, the key is to design the unitary N
such that N |μ〉 = |μ〉. From the description, we can see that

the NDD based assertion check is essentially the stabilizer

designed for the expected state. Compared to the stabilizers

that are widely used in quantum error correction (QEC), two

distinctions exist. (1) In QEC, the quantum states are encoded

such that the codespace satisfies the corresponding stabilizers.

For example, with 3-qubit repetition code, the qubit states are

encoded such that they pass the stabilizers, ZZI and IZZ, if

there is no single bit-flip error. In comparison, in assertions,

the qubits are not encoded on purpose. (2) As it is sufficient for

QEC to detect and correct X and Z Pauli errors, the stabilizers

are mainly Pauli Z and X stabilizers. In contrast, for assertions,

the stabilizers are specific for expected states.

· · ·

|ψ〉 N |ψ〉

|0〉 H H

Fig. 6: General scheme of NDD/Stabilizer-based assertion

circuits.

The unitary gate or the stabilizer N can be designed

for assertion assertEqual(|ψ〉 , |μ〉) as follows. First, based

on the expected state |μ〉, we find an orthonormal basis

{|ψi〉}i∈[0,2n−1] that includes state |μ〉 as |ψ0〉. Second, we

can construct the unitary matrix N as N = |ψ0〉 〈ψ0| −∑2n−1
i=1 |ψi〉 〈ψi|.
Similar to the projection-based assertions or swap-based

assertions, a passing assertion forces/stabilizes the state under

test to the same as the expected state. Therefore, we can abort

program execution if an assertion fails or use post-selection

to only consider the runs that pass the assertion checks to

mitigate hardware errors.

H. Assertions for Symmetry States

Besides checking whether a quantum state is the same as an

expected one using assertEqual(|ψ〉 , |μ〉), other properties

can be checked during program execution. One such example

is symmetry assertion [7], [9]. In some application domains,

such as finding max cuts in graphs, the information encoding

is inherently symmetric. For example, a bi-partition of nodes

in a graph encoded with ’110001’ is the same as ’001110’ as

one can label the partition 0 and partition 1 interchangeably.

This symmetry is referred to bit-flip symmetry [9]. Similarly,

the location of a node in the graph does not alter the partition,

which is referred to as permutation symmetry [9].

The assertion circuits to verify the symmetric property are

very similar to the NDD/stabilizer assertion circuit. A simple

example is the circuit asserting the |+〉 state, for which the

N gate in Fig. 6 becomes an X gate as shown in [4]. The

|+〉 state satisfies bit-flip symmetry as flipping the bit has no

effect. The X gate is the stabilizer of the |+〉 state, i.e., passing

the assertion means that the output state is the |+〉 state.

I. Assertions for Memberships / Approximate Assertions

Liu et al. [5] proposed assertions to check whether a

quantum state under test belongs to a given set of states

or a superposition of the states in the set. Such assertions

are referred to as approximate assertions in [5]. Approxi-

mate assertions can be implemented using the swap-based

or NDD/stabilizer-based approach. It is similar to asserting

for mixed states. Compared to pure state precise assertions,

the difference is that there would be multiple correct states

rather than a single correct state. For example, to check a

2-qubit state |ψ〉 ∈ {|01〉 , |10〉 , |11〉}, the unitary matrix of

the N gate in Fig. 6 can be constructed as N = |01〉 〈01| +
|10〉 〈10| + |11〉 〈11| − |00〉 〈00|. Or it can be implemented

using N = |00〉 〈00| − |01〉 〈01| − |10〉 〈10| − |11〉 〈11| with

the ancilla qubit input as |1〉, as shown in Fig. 7.

· · ·

|ψ〉 N =|0〉〈0|-|1〉〈1|-|2〉〈2|-|3〉〈3| |ψ〉

|1〉 H H

Fig. 7: Approximate Assertion for |ψ〉 ∈ {|01〉 , |10〉 , |11〉} or

|ψ〉! = |00〉.
Note that for a 2-qubit state, the assertion |ψ〉 ∈

{|01〉 , |10〉 , |11〉} is essentially checking |ψ〉 �= |00〉. Such

assertions are common for applications where some bit en-

coding are known to be impossible/forbidden. For example,

in a graph 3-coloring problem, if three colors are encoded

with |01〉 , |10〉 , |11〉, for any node, the color encoding |00〉
would be impossible, i.e., we can assert that |q1q2〉 �= |00〉,
where q1 and q2 are the qubits encoding the color of a node.

In general, assertion assertNotEqual(|ψ〉 , |μ〉), i.e., |ψ〉 �=
|μ〉, where |ψ〉 is the n-qubit state under test and |μ〉 is a

known impossible state, can be constructed as approximate

assertion |ψ〉 ∈{space orthogonal to |μ〉}. When |μ〉 is a

pure state, the assertion circuit can be designed as follows.

First, based on the known state |μ〉, we find an orthonormal

basis {|ψi〉}i∈[0,2n−1] that includes state |μ〉 as |ψ0〉. Second,

we can construct the unitary matrix N as N = |ψ0〉 〈ψ0| −∑2n−1
i=1 |ψi〉 〈ψi|. Then, we can use this stabilizer with the

ancilla qubit input as |1〉, similar to Fig. 7, for assertion checks.

When |μ〉 is specified as a density matrix or a mixed state,

the design process is similar except that N would have more

components with eigenvalues of 1.

For assertion assertNotEqual(|ψ〉 , |μ〉), where both |ψ〉
and |μ〉 are states under test and cannot be known stat-

ically, we need to construct the combined qubit-state set

by listing all the states that do not violate the condition

and then use approximate assertion to ensure that the com-

bined state |ψ ⊗ μ〉 satisfies the membership check of the

set. For example, in the graph 3-coloring problem, one

can assert that for each pair of nodes that are connected

with an edge, their color encoding should be different, e.g.,

|q1q2〉 �= |q3q4〉, which can be implemented with |q1q2q3q4〉 ∈

128

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

{|0110〉 , |0111〉 , |1001〉 , |1011〉 , |1101〉 , |1110〉} when the

color is encoded with |01〉,|10〉, and |11〉.
J. A Comparison Among the Assertions

Among the assertion schemes discussed above, the statis-

tical assertions [6] and the ones using swap-tests [8] need

numerous measurements to infer the statistical significance.

Between the two, the statistical assertions require measure-

ments of multiple qubits whereas swap-tests need to measure

a single ancilla qubit to compare the difference between the

state under test and the expected state.

Assertion primitives [2], [4], Projection-based assertions [3],

Swap-based assertions [5], NDD/stabilizer-based assertions

[5], symmetry assertions [9], and approximate assertions [5]

won’t affect subsequent program execution when there is no

assertion error. They can also be used for error correction/miti-

gation. The projection-based assertion does not involve ancilla

qubits but require mid-circuit measurement. The complexity

of these assertion circuits varies for different scenarios and

one may explore different assertion approaches to select the

one with lowest implementation complexity, e.g., in terms of

circuit depth or the number of gates.

IV. CASE STUDY: ASSERTIONS FOR SOFTWARE

DEBUGGING

Assertions are useful for software debugging. To facilitate

programmers, the tket framework [13] has implemented two

types of assertions: the projection-based assertion [3], and

the stabilizer-based assertion. Moreover, Liu et al. [5] have

augmented the Qiskit [12] to incorporate the SWAP-based

assertion and NDD/stabilizer-based assertion so that program-

mers can use these two types of assertions conveniently. In this

section, we study how to leverage these assertion methods and

compare these methods available in tket and Qiskit.

The circuit of this case study is a 3-qubit cluster state

circuit. The cluster state can be prepared by firstly applying

the Hadamard gate to each qubit, then applying the controlled-

Z gate between all the adjacent qubits. Listing 1 and Listing 2

show the Qiskit code and the tket code for generating the

cluster state with the assertions, respectively.

Listing 1 illustrates how to insert NDD/stabilizer-based

assertion in Qiskit code. Two assertions are inserted in line

21 and line 30. The assertion in line 21 is at the location after

the circuit applies the H gate to all the qubits, so the correct

state at this location should be |+++〉. We save this state

vector into the stateList as state0 in line 13, and use it for

assertion in line 21. The second assertion located in line 30

asserts the final state of the circuit, which should be the cluster

state 1√
2
(|+0+〉+ |−1−〉). We save this cluster state as state1

in line 13 and use it for asserting the final output state in line

30.

Listing 2 illustrates how to insert stabilizer-based assertion

in tket code. Although the stabilizer-based assertion in tket

generates the assertion circuit shown in Fig. 6 just as the

NDD/stabilizer-based assertion implemented in Qiksit, these

two assertion schemes are different in creating the unitary N

in the assertion circuit. For the stabilizer-based assertion in

tket, the unitary gate in the assertion circuit must be composed

of Pauli gates, while the NDD/stabilizer-based assertion in

Qiskit can use any kind of gates to create the unitary N in

Fig. 6, which means the NDD/stabilizer-based assertion has

more flexibility. Moreover, for the stabilizer-based assertion

in tket, users need to provide a set of Pauli operators which

will be used to create the unitary gate in the assertion circuit.

And if users make some mistakes and provide non-ideal

Pauli operators, the assertion can be inefficient/ineffective in

detecting errors.

We didn’t list the code for using SWAP-based assertion and

Projection-based assertion. The reason is that the usage of

these two types of assertions is very similar to Listing 1 and

Listing 2. For SWAP-based assertion, users can also specify

the design type to choose between the SWAP-based assertion

and the logical-OR-based assertion. For the Projection-based

assertion, users need to provide the matrix of the projector.

The circuits with assertions generated from the Qiskit code

and the tket code are all sent to Aer Simulator from Qiskit to

run without noise. The number of shots is set to be 1000. If

all the 1000 shots do not raise an error for an assertion, then

this assertion succeeds. Otherwise, it fails. Table I shows the

assertion results for the circuits which contain different bugs.

The assertion results for the bug-free circuit are not included in

the table since there is no assertion failure for bug-free circuits.

Two kinds of bugs are considered. Bug 1 misses the H gate on

the third qubit of the circuit, and bug 2 mistakenly replaces all

the controlled-Z gates of the circuit with controlled-X gates.

Using the Qiskit code in Listing 1 as an example, bug 1 can

happen when we incorrectly set the iteration number of the

first For loop to be nqubits − 1 in line 17, and bug 2 can

happen when we wrongly apply CX gate instead of CZ gate

in line 27.

In Table I, the first two lines of results correspond to

stabilizer-based assertion 1 and 2, the difference between these

two assertions is the user-defined Pauli operator sets. For

stabilizer-based assertion 1, we set the two Pauli operator sets

just as line 15 and line 26 of Listing 2. For stabilizer-based

assertion 2, we set the first Pauli operator sets to be {XXI}
and the second to be {XIX}. From Table I, we can see for

bug 1, stabilizer-based assertion 1 on both of the two locations

fails, because bug 1 happens before these two locations; for

bug 2, stabilizer-based assertion 1 on location 2 fails because

bug 2 happens after location 1 and before location 2. However,

for the stabilizer-based assertion 2, when the circuit has bug

1, assertion succeeds in location 1 as it doesn’t identify the

incorrect state of |++ 0〉. The reason is that the Pauli operator

XXI does not only stabilize the correct state |+++〉 but

also stabilizes the incorrect state of |++ 0〉 as both of these

two states have +1 eigenvalue corresponding to this Pauli

operator XXI. The same happens for the circuit with bug 2, the

stabilizer-based assertion 2 at location 2 succeeds because it

doesn’t distinguish between the incorrect state and the correct

state. Therefore, it is important that the user defines the proper

Pauli operators to make an effective stabilizer-based assertion

129

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

in tket. Compared to the stabilizer-based assertion in tket,

NDD/stabilizer-based assertion in Qiskit is more user-friendly

since the unitary gate of the stabilizer circuit is generated

by Qiskit’s function UnitaryGate and users don’t need to

define the gate using Pauli operators.

1 #Create a QuantumRegister with 3 qubits
2 nqubits=3
3 qr = QuantumRegister(nqubits, ’q’)
4

5 #ancilla qubit for assertions
6 nqubits_ancilla=2
7 ar = QuantumRegister(nqubits_ancilla, ’a’)
8

9 #classical bit to save the measurement result
10 cr = ClassicalRegister(nqubits+nqubits_ancilla, ’c’)
11

12 #a list of state vectors that we are asserting for
13 stateList=[state0, state1]
14

15 circuit = QuantumCircuit(qr,ar,cr)
16 #apply H gate to all the qubits
17 for q in range(nqubits):
18 circuit.h(q)
19

20 #insert an NDD/stabilizer assertion
21 assertion_NDD(circuit, qr[0:3], [ar[0]], [stateList

[0]])
22 #measure the ancilla qubit ar[0]
23 circuit.measure(ar[0],cr[nqubits:nqubits+1])
24

25 #apply CZ gate to adjacent qubit
26 for q in range(nqubits-1):
27 circuit.cz(q,q+1)
28

29 #insert an NDD/stabilizer assertion
30 assertion_NDD(circuit, qr[0:3], [ar[1]], [stateList

[1]])
31 #measure the ancilla qubit ar[1]
32 circuit.measure(ar[1],cr[nqubits+1:nqubits+2])
33

34 #measure the circuit output
35 circuit.measure(qr,cr[0:nqubits])

Listing 1: The Qiskit code of generating the cluster state with

assertions.

1 #create a Quantum circuit with 3 qubits
2 nqubits=3
3 circuit = Circuit(nqubits)
4

5 #specify a qubit list which will be used for
assertion

6 qubit_list=[]
7 for i in range(nqubits):
8 qubit_list.append(i)
9

10 #apply H gate to all the qubits
11 for i in range(nqubits):
12 circuit.H(i)
13

14 #define a set of Pauli operators for generating the
stabilizer

15 stabilizer1 = [’XXX’]
16 # add an ancilla qubit for this stabilizer-based

assertion
17 circuit.add_qubit(Qubit(nqubits+1))
18 #insert the stabilizer-based assertion
19 circuit.add_assertion(stabilizerAssertionBox(

stabilizer1), qubit_list, ancilla=nqubits+1,
name="|assertion1>")

20

21 #apply CZ gate to all the adjacent qubits

TABLE I: Assertion results for different types of assertions

Assertion type
Bug 1 Bug 2

Location1 Location2 Location1 Location2
Stabilizer-based asser-
tion 1

Fail Fail Succeed Fail

Stabilizer-based asser-
tion 2

Succeed Fail Succeed Succeed

NDD/stabilizer-based
assertion

Fail Fail Succeed Fail

Projector-based asser-
tion

Fail Fail Succeed Fail

SWAP-based assertion Fail Fail Succeed Fail
Logical-OR-based as-
sertion

Fail Fail Succeed Fail

22 for i in range(nqubits-1):
23 circuit.CZ(i,i+1)
24

25 #define a set of Pauli operators for generating the
stabilizer

26 stabilizer2 = [’XZI’,’ZXZ’,’IZX’]
27 # add an ancilla qubit for this stabilizer-based

assertion
28 circuit.add_qubit(Qubit(nqubits+2))
29 #insert the stabilizer-based assertion
30 circuit.add_assertion(stabilizerAssertionBox(

stabilizer2), qubit_list, ancilla=nqubits+2,
name="|assertion2>")

Listing 2: The tket code of generating the cluster state with

assertions.

V. CASE STUDY: ASSERTIONS FOR HARDWARE ERROR

MITIGATION

In this section, we study the error mitigation effects when

adding the NDD/stabilizer-based assertion into a quantum

circuit. The circuit under study is an Iterative Phase Estimation

(IPE) circuit. The IPE circuit is used to estimate the phase of a

unitary operator and realizes the same function as the Quantum

Phase Estimation (QPE) circuit. Compared to the QPE circuit

which may suffer severely from circuit noise when the circuit

size grows, IPE circuits utilize reset gates and conditioned

gates to reduce the circuit noise effects. Fig. 8 shows the circuit

for a 2-qubit IPE circuit. This circuit estimates the phase of a

single-qubit Z-rotation gate, and the rotation angle is set to 6π
4 .

Therefore, we can see the phase ϕ of this gate is 3
4 because

2πϕ = 6π
4 . If we use a binary number to represent the decimal

part of this phase, it is ϕ = 0.ϕ1ϕ2 = 0.11, so the precision

of this gate phase is 2 and we can use the circuit containing

2 iterations to estimate this phase. The first iteration estimates

the value of ϕ2 by performing mid-circuit measurement of the

ancilla qubit q0, then in the second iteration, the ancilla qubit

q0 will be reset and will be used to estimate the value of ϕ1.

From the IPE circuits in Fig. 8, we can see the second

qubit q1 first goes through an X gate, and after the X gate or

after the first grey dotted line in Fig. 8, the state of q1 should

remain |1〉 no matter how many controlled-phase gates are

applied. This creates an opportunity for inserting assertions on

q1 because we can actually insert the assertions at any location

we want, and the state to be asserted is |1〉. The assertion

type we used in the IPE circuit is the NDD/stabilizer-based

130

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: 2-qubit IPE circuit with two iterations

assertion. By using post-selection to filter out the results with

assertion errors, we can realize error mitigation effects. Since

we want to precisely assert qubit q1, and the state we want to

assert is |1〉, we can easily know that the Pauli operator −Z
can be used to stabilize the state |1〉, and the circuit cost of

the CNOT gate number for inserting such one NDD/stabilizer-

based assertion is just 1, which means our assertion will not

adding too much gate noise to the IPE circuit.

IPE circuit is a dynamic circuit that contains conditioned

gates which perform operations conditioned by the classical

information generated from previous measurements. In order

to run a dynamic circuit with conditioned gates on a real

IBM machine, the circuit is converted into the OpenQASM3

program and then sent to the machine which supports Open-

QASM3 to run. The IBM machine ibm_perth which sup-

ports OpenQASM3 is selected to run the experiments and the

result is shown in Table II. All of these three IPE circuits in

the table estimate the phase for a 1-qubit unitary gate with

different numbers of iterations 2, 3, and 4, which compute the

phase with different precision, 2, 3, and 4, respectively. In this

case study, We run the experiments with one assertion inserted

in one of the iterations or with multiple assertions inserted in

each of the iterations. We choose the assertion location to be

right before the first controlled-phase gate of each of the circuit

iterations, and the location is marked with the grey dotted line

in Fig. 8.

We run the circuit and calculate the success rate based on

the output distributions, and the success rate is calculated as

the ratio of the number of shots of getting the correct output

over the total number of shots, and the total number of shots

is set to be 1000 in our experiments. For the circuit with

assertions, we first drop all the output results which have

assertion errors, then calculate the success rate using the output

results which don’t have assertion errors. From the results

shown in Table II, we can see that without the NDD/stabilizer-

based assertions, the successful rate decreases quickly as the

number of iterations increases. After we add the assertions,

almost all the circuits have a great improvement in success

rate and the largest success rate improved can be 3.19 times

compared with the original circuit without assertion, except

for the IPE with 2 iterations and with assertions inserted into

both iterations. It indicates that when the circuit size is small,

it is better to not include too many assertions in the circuit at

the same time, which incurs too much noise.

VI. CONCLUSION

In this paper, we present a detailed overview of different

quantum assertion techniques proposed recently and discuss

different types of assertion checks that can be supported with

TABLE II: Success rates of the IPE circuit with/without

assertions

no as-
sertion

assertion
in iter-
ation1

assertion
in iter-
ation2

assertion
in iter-
ation3

assertion
in iter-
ation4

assertions
in all
the

itera-
tions

IPE with 2
iteration

0.731 0.731 0.918 0.301

IPE with 3
iteration

0.371 0.604 0.752 0.828 0.777

IPE with 4
iteration

0.192 0.495 0.663 0.805 0.661 0.533

them. We highlight that with non-destructive measurement,

i.e., the stabilizer designed specific to the expected states,

assertions can be effective in either software debugging or

hardware error correction/mitigation. Case studies are pre-

sented to illustrate the usage of assertions in different quantum

algorithms.

Our future research directions on quantum assertion include

(a) expanding the scope of assertions such that they can check

more invariants in quantum programs, and (b) reducing the

cost of assertion circuits such that they can be more effective

in error mitigation. One possible way is to break down a

mixed state assertion into a combination of a few approximate

assertions.

REFERENCES

[1] Y. Li and M. Ying. Debugging quantum processes using mon-
itoring measurements. Phys. Rev. A, 89 (2014), Apr, 042338.
https://doi.org/10.1103/PhysRevA.89.042338.

[2] H. Zhou and G. T. Byrd. Quantum Circuits for Dynamic Runtime
Assertions in Quantum Computation. Comput. Archit. Lett. 2019.

[3] G. S. Li, L. Zhou, N. K. Yu, Y. F. Ding, M. S. Ying and Y. Xie,
Projection-Based Runtime Assertions for Testing and Debugging Quan-
tum Programs, Proceedings of the ACM on Programming Languages,
4.OOPSLA(2020): 1-29.

[4] J. Liu, G. Byrd and H. Zhou, Quantum Circuits for Dynamic Runtime
Assertions in Quantum Computation, In:Proceedings of the 25th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2020), 1017-1030.

[5] J. Liu and H. Zhou, Systematic Approaches for Precise and Approximate
Quantum State Runtime Assertion, In:Proceedings of the 27th IEEE
International Symposium on High-Performance Computer Architecture
(HPCA 2021), 179-193..

[6] Y. P. Huang and M. Martonosi, Statistical assertions for validating
patterns and finding bugs in quantum programs, In: Proceedings of the
46th International Symposium on Computer Architecture (ISCA 2019),
ACM, 541-553.

[7] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O’Brien. Low-
cost error mitigation by symmetry verification. Phys. Rev. A, 98:062339,
Dec 2018.

[8] Yongshan Ding and Frederic T. Chong. Quantum Computer Systems:
Research for Noisy Intermediate-Scale Quantum Computers, Synthesis
Lectures on Computer Architecture, Morgan Claypool Publishers, 2020.

[9] Ruslan Shaydulin and Alexey Galda. Error mitigation for deep quantum
optimization circuits by leveraging problem symmetries. arXiv preprint
arXiv:2106.04410, 2021

[10] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press,
2012, vol. 3.

[11] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[12] ANIS, M., et al., Qiskit: An Open-source Framework for Quantum
Computing. (2021)

[13] Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington,
A. & Duncan, R. t|ket〉: a retargetable compiler for NISQ de-
vices. Quantum Science And Technology. 6, 014003 (2020,11),
https://doi.org/10.1088/2058-9565/ab8e92

131

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 16,2023 at 21:49:44 UTC from IEEE Xplore. Restrictions apply.

