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Abstract
Finite element methods developed for unfitted meshes have been widely applied to various interface problems.
However, many of them resort to non-conforming spaces for approximation, which is a critical obstacle for the
extension to H(curl) equations. This essential issue stems from the underlying Sobolev space Hs(curl; !), and even
the widely used penalty methodology may not yield the optimal convergence rate. One promising approach to
circumvent this issue is to use a conforming test function space, which motivates us to develop a Petrov–Galerkin
immersed finite element (PG-IFE) method for H(curl)-elliptic interface problems. We establish the Nédélec-type
IFE spaces and develop some important properties including their edge degrees of freedom, an exact sequence
relating to the H1 IFE space and optimal approximation capabilities. We analyse the inf-sup condition under certain
assumptions and show the optimal convergence rate, which is also validated by numerical experiments.

1. Introduction
This article is devoted to solving a two-dimensional (2D) H(curl)-elliptic interface problem originating
from Maxwell equations on unfitted meshes. Let ! ⊆R2 be a bounded domain, and let it contain two
subdomains !± occupied by media with different electromagnetic properties. These two subdomains
are partitioned by a curve (interface) which is assumed to be a smooth simple Jordan curve and does
not touch the boundary as shown in Figure 1. The considered H(curl)-elliptic interface problem for an
electric field u : ! →R2 is given by

curl µ−1curl u + βu = f in ! = !− ∪ !+, (1.1a)

with f ∈ H(div; !), subject to the Dirichlet boundary condition: u · t = 0 on ∂!, where the operator curl
is for vector functions v = [v1, v2]t such that curl u = ∂x1 v2 − ∂x2 v1 while curl is for scalar functions v such
that curl v =

[
∂x2 v, −∂x1 v

]t with “t” denoting the transpose. We consider the following jump conditions
at the interface:

[u · t]$ := u+ · t − u− · t = 0, (1.1b)

[µ−1curl u]$ := 1
µ+ curl(u+) − 1

µ− curl(u−) = 0, (1.1c)

[βu · n]$ := β+u+ · n − β−u− · n = 0, (1.1d)
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Figure 1. The model domain.

where n and t denote the normal and tangential vectors to $, respectively, and µ = µ± and β = β± in !±

are assumed to be positive piecewise constant functions. The interface model (1.1) arises from each time
step in a stable time-marching scheme for the eddy current computation [4, 13, 27], which serves as a
magneto-quasistatic approximation by dropping the displacement current. It has been frequently used in
low frequency and high-conductivity applications. In this model, µ denotes the magnetic permeability
and β ∼ σ/)t is scaling of the conductivity σ by the time-marching step size )t. Note that the usual
variational weak formulation of (1.1) can naturally take care of the jump conditions in (1.1b) and (1.1c),
whereas (1.1d) comes from the underlying eddy current model [60]. We shall see that all the jump
conditions in (1.1b)–(1.1d) will be used in the construction of the IFE functions. For simplicity, we
only consider the homogeneous jump condition, and the non-homogeneous case can be handled by
introducing an enriched function, see [31, 38] and a recent work on theoretical analysis [1].

Interface problems widely appear in a large variety of science and engineering applications. The inter-
face problems related to Maxwell equations are of particular importance due to the omnipresent situation
of electromagnetic fields propagating through multiple materials/media, such as simulation of magnetic
actuators or design of nano/micro electric devices. In particular, we refer readers to the simulation of
plasma [59] in electromagnetic fields and non-destructive testing techniques such as electromagnetic
induction sensors [5] detecting buried low-metallic content.

Traditional finite element methods (FEMs) can be applied to solve interface problems based on
interface-fitted meshes [12, 52]. Particularly, many numerical methods have been developed to solve
Maxwell interface problems on fitted meshes. In [41], the authors analysed a standard FEM and estab-
lished an H1(curl; !)-extension theorem which is a very useful theoretical tool. In [49], the authors
explicitly specified the dependence of error bounds on material parameters. The study on precondition-
ers can be found in [65]. In addition, due to the potentially low regularity, there are many works focusing
on adaptive FEMs, see [18, 23, 29] and the reference therein. However, it is time-consuming to generate
fitted meshes in some applications, especially for complex interface geometry.

Alternatively, lots of research interests have been focussed on developing numerical methods with
less interface-fitted mesh requirements. One approach is to locally generate a fitted mesh to the interface
by further partitioning interface elements of a background unfitted mesh. But this approach requires
the refined triangularisation to satisfy a maximal angle condition [9], which needs some extra effort,
especially in 3D. Moreover, the resulting linear system could be more ill-conditioned since elements
may largely shrink. In contrast, designing special FEMs for unfitted meshes has gained more and more
attention. For instance, penalty-type methods [17, 50] employ two separate finite element (FE) spaces
discontinuous across the interface and enforce the jump conditions by Nitsche’s penalties on the inter-
face. Generalised FEMs [11] and multiscale FEMs [24, 45] construct some special non-polynomial
shape functions on interface elements by solving local problems.

Immersed FEMs (IFE methods) fall into the direction of constructing special shape functions.
Specifically, it constructs piecewise polynomials weakly satisfying jump conditions on interface ele-
ments [35, 54, 55]. In the past decades, IFE methods have been widely applied to different interface
problems, including elasticity [36, 57], fluid dynamics [2, 63] and so on. As a distinguishing feature of
the IFE method, there is certain isomorphism between the immersed finite element (IFE) and FE spaces
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such that the size and structure of stiffness and mass matrices depend purely on the mesh. Existing
works [33, 39, 56] show that it is particularly advantageous for moving interface problems. Our analysis
reveals that the isomorphism with its stability is also the key to circumventing the ill-conditioning issue
resulting from the shrinking subelements cut by the interface.

Despite their wide successful applications to various interface problems including fluid, elasticity
and wave propagation, e.g., [14, 32, 37], the aforementioned unfitted mesh methods are rarely applied to
H(curl)-elliptic interface problems. In fact, the H(curl) interface problem is significantly distinguished
from its H1 counterpart due to the different underlying Sobolev space H1(curl; !) that has much lower
regularity than H2(!). For the H(curl) case, the expected optimal convergence of FEM computation
highly relies on the conformity of approximation spaces. Particularly, non-conforming methods demand
estimates on element boundary, but there only holds

h−1/2
K ‖u − πeu‖L2(e) ! ‖u‖H1(curl; K), (1.2)

where πe is a projection to some polynomial space on one edge e of an element K , see Lemma 5.52
in [60]. Namely, curlu ∈ H1(K) does not really help in enhancing the regularity and improving the
convergence order, which is the essential difference from the H1 case. Thus, even for the regularity
assumption H1(curl; !), the estimate in (1.2) indicates no convergence at all, which challenges many
non-conforming methods. The issue even causes troubles for the analysis of standard discontinuous
Galerkin (DG) methods on fitted meshes [46, 47], where the meta-framework of DG methods by directly
applying trace inequalities only yields suboptimal convergence rates due to (1.2). To avoid (1.2), the
approaches in [46, 47] rely on an H(curl)-conforming subspace of the broken DG space that has sufficient
approximation capabilities.

Indeed, almost all the unfitted mesh methods in the literature resort to non-conforming spaces, but
different from standard DG spaces, their broken spaces may not have the desired conforming subspaces.
Hence, the aforementioned non-conformity issue has become one big obstacle for these methods to
achieve optimal convergence. To our best knowledge, this issue was first observed and studied in [15]
for a mortar FEM on non-matching grids. In order to achieve the optimal convergence, the authors in
[15] assume the higher H2 regularity and use the second family of Nédélec spaces. In fact, this setup
seems to be inevitable for non-conforming methods due to (1.2); for example, a recent work [58] carries
out the analysis for a Nitsche’s penalty method also under this setup. Otherwise, we refer readers to [19,
20] showing that a Nitsche’s penalty method can only lead to suboptimal results both computationally
and theoretically. The loss of convergence was then numerically studied in [62] with a realistic example.
For non-matching mesh methods, it is possible to circumvent the suboptimal result caused by (1.2).
For example, the authors in [48] improve the result in [15] by obtaining the optimal convergence with
only H1(curl; !) regularity, but it needs the non-matching meshes to be nested at the interface such that
a certain conforming subspace exists. A similar approach is also used in [22] by assuming that non-
matching meshes are coupled in certain sense. In addition, we also refer readers to FDTD methods [66]
based on finite difference formulation for Maxwell equations.

In this work, we shall employ a completely different approach to attack the non-conformity issue,
based on one critical observation that the trouble is caused by non-conforming test spaces instead of
trial spaces. By this observation, we opt for an IFE method in a Petrov–Galerkin (PG) formulation
where the novel edge IFE functions are only used as the trial functions while the standard Nédélec
functions [13, 18, 23, 28, 29, 41] are used as the test functions. For this purpose, we need to construct
the Nédélec-type IFE functions according to the jump conditions (1.1b)–(1.1d), which have not appeared
in any literature. The proposed IFE functions also share some nice properties of the standard Nédélec
functions such as optimal approximation capabilities and a de Rham complex connecting to the H1 IFE
functions. Moreover, the IFE spaces are isomorphic to the standard Nédélec spaces through the edge
interpolation operator, which is the key for the PG formulation. We show that the inf-sup condition can
be guaranteed regardless of interface location relative to the mesh, i.e., the optimal error bounds are
robust with respect to small-cut elements. Remarkably, we also show that the condition number of the
resulting linear system is bounded Ch−2 which is optimal with respect to mesh size, and the upper bound
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is also guaranteed independent of interface location. It is worthwhile to mention that even for standard
FEMs based on anisotropic meshes, the condition numbers may suffer from short edges.

The underlying idea of using specially developed problem-oriented trial functions but keeping stan-
dard test functions can be traced back to the fundamental work of Babuška et al. [10]. The similar idea
was also adopted in [45] by Hou et al. for a multi-scale FEM through PG formulation to remove cell
resonance errors. As for PG-IFE methods, we refer readers to [44] for H1-elliptic interface problems.
Our research demonstrates that the PG formulation is particularly useful here for H1(curl; !)-elliptic
interface problems due to the failure of the widely used penalty methodology.

However, we highlight that the analysis of inf-sup stability for PG methods is not easy. In an early work
[10], the proof is based on the assumption that the PDE coefficient is only rough in one direction. The
argument in [45] relies on a certain approximation result between the specially constructed trial functions
and the standard test functions. We emphasise that there is no analysis available in the literature for PG-
IFE methods, except the 1D case [51]. In this work, we are able to show the inf-sup stability under certain
conditions. Our approach is based on a special regular discrete decomposition and the exact sequence for
IFE spaces. As an extra achievement, the inf-sup stability is established for the PG-IFE method solving
H1-elliptic interface problems [44]. Although this approach currently needs to assume a critical upper
bound on the jump of the conductivity discontinuity, we believe it still has theoretical importance and
may motivate the further analysis.

Although the present work only focuses on the 2D case, for which the proposed method may not be
of most practical interest, we think it is still able to shed some light on the more complicated 3D case.
Given the essential difficulty of unfitted mesh methods to H(curl) problems and the importance of the
problems, we believe the present study on the 2D case is still critical and fundamental. In fact, this is also
the first work among unfitted methods toward provable optimal convergence for the considered problem
with the H1(curl; !) regularity. In addition, although the analysis is complicated, the proposed scheme
itself is remarkably simple as no penalty is needed.

This article has additional six sections. In the next section, we describe some notations and assump-
tions frequently used in this article. In Section 3, we develop IFE functions and discuss their properties.
The PG-IFE method is also presented in this section. In Section 4, we prove the optimal approximation
capabilities. In Section 5, we analyse the inf-sup stability and the solution errors. In Section 6, we present
some numerical experiments to validate the theoretical analysis. Some technical results are presented in
the Appendix.

2. Notations and assumptions
In this section, we prepare some notations and assumptions. Let Th, h ≥ 0 be a family of interface-
independent and shape regular triangular meshes of the domain !, and let hT be the diameter of an
element T ∈ Th and h = maxT∈Th{hT} be the mesh size. Denote the sets of nodes and edges by Nh and Eh,
respectively. In a mesh Th, the interface $ cuts some of its elements which are called interface elements
and their collection is denoted by T i

h , while the remaining elements are called non-interface elements
and their collection is T n

h . Throughout this article, we write x ! y for x " Cy for some generic constant
C that is independent of mesh size and interface location but may depend on the parameters µ and β. If
x ! Cy and x # Cy hold simultaneously, we simply write x , y.

The analysis of this work is based on the following assumptions:

(A1) The mesh is generated such that the interface can only intersect each interface element T ∈ T i
h at

two distinct points which locate on two different edges of T .
(A2) The triangular elements in the mesh do not have obtuse angles.
(A3) The contrast of the conductivity β is bounded by 10.65.

Assumption (A1) is fulfilled for a linear interface, and thus it should hold if a curved interface is
locally flat enough, i.e., the mesh is fine enough. By the assumption (A1), we define $T

h as the line
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Figure 2. An unfitted mesh.

Figure 3. An interface element.

connecting the two intersection points of each interface element T , let $T
h cut T into two subelements

T−
h , T+

h and let T̃ be the subregion sandwiched by $T
h and $ as shown in Figure 3. In addition, T− and

T+ refer to the subelements partitioned by the interface curve itself instead of its linear approxima-
tion $T

h . For Assumption (A2), IFE methods can be and are often used on simple triangular Cartesian
meshes as shown in Figure 2, especially for electromagnetic waves where computational domains are
often truncated as boxes. So we can generate Cartesian meshes for computation which certainly satisfy
Assumption (A2). In the following discussion, we shall focus on Cartesian meshes although most of
the results are applicable to general triangulation unless otherwise specified. Assumption (A3) is only
technically used for showing the inf-sup condition, see the details in Section 5.

Moreover, we assume the interface is well-resolved by the mesh, and it can be quantitatively described
in terms of the following lemma [34].

Lemma 1. Suppose the mesh is sufficiently fine such that h < h0 for some value h0, then on each interface
element T ∈ T i

h , for every two points X1, X2 ∈ $ ∩ T with their normal vectors n(X1), n(X2) to $ and every
point X ∈ $ ∩ T with its orthogonal projection X⊥ onto $T

h ,

‖X − X⊥‖! h2
T and ‖n(X1) − n(X2)‖! hT . (2.1)

The explicit dependence of h0 on the interface curvature can be found in [34].
Next we introduce some Sobolev spaces. For each subdomain ω ⊆ !, we let Hk(ω) and Hk(ω), k ≥ 0,

be the standard scalar and R2-vector Hilbert spaces on ω; in particular H0(ω) = L2(ω) and H0(ω) =
L2(ω). In addition,

Hk(curl; ω) :=
{
v ∈ Hk(ω) : curl v ∈ Hk(ω)

}
. (2.2)
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For simplicity, we shall drop “0" if k = 0; namely H(curl; ω) = H0(curl; ω). If |ω ∩ $| /= 0, we let ω± =
!± ∩ ω and further define the broken space for k ≥ 1

2
as

H̃k
(curl; ω) :=

{
v ∈ L2(ω) : v|ω± ∈ Hk

(
curl; ω±) , v satisfies the jump conditions in (1.1b)–(1.1d)

}
.

(2.3)
For all these spaces, Hk

0(ω), Hk
0(ω), Hk

0(curl; ω) and H̃k

0(curl; ω) denote the subspaces with the zero trace
on ∂ω. The associated norms are denoted by ‖ · ‖Hk(ω), ‖ · ‖L2(ω) (here we do not distinguish ‖ · ‖Hk(ω) and
‖ · ‖Hk(ω) for standard Hilbert spaces for simplicity), ‖ · ‖H(curl; ω) and ‖ · ‖H1(curl; ω).

For discretisation, we shall employ the first family Nédélec element of the lowest degree [61]:
NDh(T) =

{
a + b[x2, −x1]t : a ∈R2, b ∈R

}
,

NDh(!) = {v ∈ H(curl; !) : v|T ∈NDh(T) ∀T ∈ Th} . (2.4)
Let NDh,0(!) denote the subspace of NDh(!) with the zero trace on ∂!. On an element T , the
space NDh(T) can be equipped with the well-known edge interpolation operator [25, 60] denoted by
(T : H1(curl; T) −→NDh(T). Then the global interpolation operator (h : H1(curl; !) →NDh(!) can
be defined in a usual piecewise manner. The following optimal approximation capabilities hold [25, 60]:

‖u − (Tu‖H(curl; T) ! hT‖u‖H1(curl; T) and ‖u − (hu‖H(curl; !) ! h‖u‖H1(curl; !). (2.5)
In addition, we let Sh(!) ⊂ H1(!) be the continuous piecewise linear finite element space, and also
define Ih : H2(!) → Sh(!) as the standard nodal interpolation operator. Also let Sh,0(!) be the subspace
of Sh(!) with the zero trace on ∂!.

Following [41], we make a more practical assumption than most existing studies for the exact solution
to the interface problem (1), namely the piecewise smoothness u ∈ H̃1

0(curl; !). Given a convex domain
!, such an assumption is satisfied when the interface is a smooth simple Jordan curve and does not
touch the boundary [3, 26, 49]. Even so, the estimate in (1.2) may make algorithms fail to converge.
In more practical situations, weaker regularities may be produced by less smooth geometries, such as
non-convex polygonal domains or non-smooth interfaces. In fact, with a Helmholtz decomposition, the
singular part of u can be expressed in the form of a gradient whose regularity may be worse due to the
interface. We refer readers to Section 4.3 in [15] and Theorem 2 in [19] for the discussion about how
the convergence of non-conforming methods can be affected by regularity. According to the tangen-
tial continuity jump condition, we note that H̃1

0(curl; !) ⊂ H0(curl; !), and in particular we can further
conclude H̃1

0(curl; !) ⊂ Hs
0(!), 0 " s < 1/2, by Theorem 4.1 in [40].

We are now ready to state the variational formulation of the system (1.1): find u ∈ H0(curl; !) such
that

a(u, v) =
∫

!

f · vdX ∀v ∈ H0(curl; !), (2.6)

where the bilinear form is given by

a(u, v) =
∫

!

µ−1curl u · curl vdX +
∫

!

βu · vdX. (2.7)

It naturally leads to an energy norm ‖v‖a = a(v, v)
1
2 , and it is easy to see ‖ · ‖a is equivalent to ‖ · ‖H(curl; !).

We end this section by recalling an H1(curl; !)-extension operator [41, Theorem 3.4 and
Corollary 3.5].

Theorem 2.1. There exist two bounded linear operators E±
curl : H1(curl; !±) → H1(curl; !), such that

for each u ∈ H1(curl; !±):
1. E±

curlu = u a.e. in !±.
2. ‖E±

curlu‖H1(curl; !) " CE‖u‖H1(curl; !±) with the constant CE only depending on !±.

Using these two special extension operators, we can define u±
E = E±

curlu± which are crucial to the
following analysis.
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3. IFE discretisation
In this section, we first develop the Nédélec-type IFE functions which are then used in a PG formulation
to solve the H(curl)-elliptic interface problem. In addition, we will present an exact sequence that will
be technically used in the stability analysis.

3.1. The edge IFE spaces
It is generally convenient and useful to consider an IFE function as an extension of one polynomial
component to another. So given each interface element T ∈ T i

h , we let t̄ and n̄ be the tangential and normal
vectors to the segment $T

h . Then we consider a linear operator CT : NDh

(
T−

h

)
→NDh(T+

h ) satisfying:

CT(vh) · t̄ = vh · t̄ on $T
h , (3.1a)

1
µ+ curl CT(vh) = 1

µ− curl vh in T , (3.1b)

β+CT(vh) · n̄ = β−vh · n̄ at Xm, (3.1c)

where Xm = [xm,1, xm,2]t is a middle point of $T
h . But the approximate jump conditions in (3.1) may be

imposed at any point at $T
h , and we choose the midpoint Xm for simplifying the derivation. This linear

operator is not only well defined but also bijective, which is valid for both T−
h and T+

h being of general
polygonal shape. It does not affect our subsequent analysis if CT is defined the other way around, i.e.,
from NDh(T+

h ) to NDh

(
T−

h

)
. In particular, we can establish the explicit format for the operator CT . Let

us denote X = [x1, x2]t ∈R2, let D be one intersection point of $ and ∂T shown in Figure 3 and take the
rotation matrix R = [0, 1; − 1, 0], then

CT(vh) = vh + b1R [X − D] + b2n̄, ∀vh ∈NDh

(
T−

h

)
,

with b1 = 1
2

(
1 − µ+

µ−

)
curl vh and b2 =

(
β−

β+ − 1
)

vh(Xm) · n̄ − b1|$T
h |

2
. (3.2)

One can immediately verify that the linear mapping in (3.2) satisfies (3.1) and is bijective. This mapping
will be useful in both the analysis of approximation capabilities and trace inequalities.

Furthermore, we have simple formulas for the IFE functions satisfying (3.1). Define a transformation
matrix

MT = [n̄, t̄]
[

β−/β+ 0

0 1

]

[n̄, t̄]t,

and a piecewise constant vector space Ch(T) = {a|T±
h

∈R2 : a|T+
h

= MTa|T−
h
}. Then we can define the local

IFE space on each interface element as

INDh(T) = {zh : zh = µb[(x2 − xm,2), −(x1 − xm,1)]t + a, ∀b ∈ P0(T), a ∈ Ch(T)}. (3.3)

Note that the format is close to the standard Nédélec functions in (2.4) where the only difference is on
the piecewise-defined constants (vectors). Also, there holds dim(INDh(T)) = 3 which is identical to
the standard one. Besides, one can verify that zh in (3.3) satisfies z+

h = CT(z−
h ). Hence, by (3.1a), we can

see INDh(T) ⊂ H(curl; T), but INDh(T) /⊂ H1(curl; T) due to (3.1b).

Remark 3.1. From (3.2), it is not hard to see that both b1 and b2 will vanish if µ− = µ+ and β− = β+.
In this case, CT reduces to an identity operator, and thus the proposed IFE functions are consistent with
standard Nédélec functions. This feature is particularly useful for moving interface problems.

Next, to construct suitable global IFE spaces, it is important to select local basis functions in
INDh(T) with the edge degrees of freedom (DoFs) since they can match the standard Nédélec spaces,
and thus the edge DoFs can glue the IFE functions on interface elements with the Nédélec functions
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Figure 4. IFE shape functions associated with each edge of an interface element.

on the surrouding non-interface elements. In particular, for an element T with the edges ei and the
corresponding tangential vectors ti, i = 1, 2, 3, we impose the DoFs for functions in INDh(T):

∫

ei

z · tids = vi, i = 1, 2, 3 (3.4)

with some values vi ∈R. The unisolvence is established in the following theorem.

Theorem 3.1. (Unisolvence) Suppose that T does not have an obtuse angle, then the DoFs (3.4) are
unisolvent on INDh(T) regardless of the interface location or the parameters µ and β.

Proof. See Appendix A.1

Theorem 3.1 guarantees the existence of local IFE shape functions by taking vi to be 0 or 1 in (3.4),
namely there exist ψT ,i ∈ INDh(T) such that

∫
ej
ψT ,i · tjds = δij, i, j = 1, 2, 3. Then the local IFE space

(3.3) can be rewritten as

INDh(T) = Span{ψT ,1,ψT ,2,ψT ,3}. (3.5)

We also provide the detailed construction approach of IFE shape functions in Appendix A.1.
Furthermore, we can prove the following properties of these shape functions.

Theorem 3.2. Suppose that T does not have an obtuse angle and is shape regular, then for i = 1, 2, 3
there hold

‖ψT ,i‖L∞(T) ! h−1
T , (3.6a)

µ−1curlψT ,i = 2(|T−|µ− + |T+|µ+)−1 ! h−2
T . (3.6b)

Proof. See Appendix A.2.

Remark 3.2. Theorem 3.1 means that the unisolvence always holds regardless of interface location and
the parameters β, µ if the maximal angle is not greater than π/2. Besides, if the maximal angle is close
or equal to π/2, the constants in Theorem 3.2 do not blow up. But for an obtuse triangle, it is possible
to find some interface configuration and β, µ to violate the unisolvence, and in this case, the constants
in Theorem 3.2 may blow up.

Here, we plot some examples of IFE shape functions, i.e., ψT ,i constructed above, in Figure 4 where
the interface is the red line and the parameters for the media below and above the interface are (µ, β) =
(1/2, 1) and (1,10), respectively. We see that the vector fields are discontinuous across the interface.

As usual, the local IFE spaces on non-interface elements are simply defined as the standard Nédélec
spaces INDh(T) =NDh(T). Hence, we can define the global IFE space:

INDh(!) =
{

v ∈ L2(!) : v|T ∈ INDh(T) ∀T ∈ Th,
∫

e

[v · t]eds = 0 ∀e ∈
◦
E h

}
. (3.7)

3��9��  0����:2 ������
 ����	
������������� /5��310��75�71�/"�
.6/:�021��7�!1:���"��:1��

https://doi.org/10.1017/S0956792522000390


European Journal of Applied Mathematics 9

Let INDh,0(!) be the subspace with the zero trace on ∂!. In addition, we mimic the standard edge
interpolation to define a similar one for the IFE space INDh(!):

(̃h : H̃1
(curl; !) −→ INDh(!) with

∫

e

(̃hu · tds =
∫

e

u · tds, ∀e ∈ Eh. (3.8)

Again we have the local interpolation (̃T = (̃h|T for each element T .

3.2. A Petrov–Galerkin IFE scheme
The proposed PG-IFE scheme relies on the isomorphism between INDh(!) and NDh(!), as the
resulting linear system needs to be square. The isomorphism can be described by an operator
(h : INDh(!) −→NDh(!) defined in the same manner as the interpolation due to the edge DoFs.
We note that (h can be understood as the interpolation operator (h applied to the space INDh(!),
while (−1

h can be understood as (̃h in (3.8) applied to the space NDh(!). To show how IFE functions
are related to their FE counterparts through (h, here we plot an example of the vector field in Figure 5
where clearly they are identical except at the interface.

Then the PG-IFE scheme is to find uh ∈ INDh,0(!) such that

a(uh, vh) =
∫

!

f · vh dX ∀vh ∈NDh,0(!), (3.9)

where the bilinear form is defined in (2.7). Although the local IFE spaces INDh(T) are subspaces of
H(curl; T), the global space in (3.7) is not H(curl)-conforming. To see this, we note that

∫
e [vh · t]eds = 0

does not lead to [vh · t]e = 0 since vh · t is not a constant on e. As mentioned before, this non-conformity
widely appears in many interface-unfitted methods either on element boundary [34, 55] or on the inter-
face itself [17, 50]. Penalties are usually used to handle it for both consistency and stability such that
optimal convergence can be obtained. Due to the reason described in the introduction, the penalty is
troublesome for H(curl) problems. Indeed, for the IFE method, numerical results in Section 6 indicate
that solutions of the penalty-type scheme or the standard Galerkin scheme do not converge at all near
the interface.

3.3. Characterisation of immersed elements
In this subsection, we follow the spirit of the well-known de Rham complex [6] to derive some analogue
properties for the IFE spaces, which is the foundation in the analysis of the inf-sup stability in Section 5.

We first recall the H1 immersed elements in the literature [34, 53]. The scalar solution u± := u|!± of
the H1-elliptic interface problem should satisfy the jump conditions at the interface:

u+ = u− and β+∇u+ · n = β−∇u− · n on $, (3.10)

where β± are assumed to be the same as those in (1.1), i.e., conductivity in physics. We define the
Sobolev space

H̃2
0(!) =

{
v ∈ H1(!) : v|!± ∈ H2

0(!±) and v satisfies the jump conditions in (3.10)
}

.

Then the local H1 IFE space on each interface element, i.e., the one shown in Figure 3, is defined as

S̃h(T) = {zh : z±
h = zh|T±

h
∈ P1(T±

h ), z+
h = z−

h , β−∇z−
h · n̄ = β+∇z+

h · n̄ on $T
h }. (3.11)

Clearly there holds S̃h(T) ⊂ H1(T), and one can pick shape functions from S̃h(T) with the nodal value
DoFs. Then, we let S̃h(!) be a global IFE space continuous at the mesh nodes, and let S̃h,0(!) be the
zero-trace subspace. There generally holds S̃h(!) ! H1(!) due to the discontinuities across interface
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Figure 5. A global H(curl) IFE function and its FE isomorphic image.

edges, but the nodal DoFs still enable us to define the nodal interpolation Ĩh. We refer readers to [53] for
more details.

H2
0(!)

∇−→ H1
0(curl; !)1Ih

1(h

Sh,0(!)
∇−→ NDh,0(!)

H̃2
0(!)

∇−→ H̃1

0(curl; !)1Ĩh

1(̃h

S̃h,0(!)
∇−→ INDh,0(!)

(3.12)

According to the well-known de Rham complex [6, 7], we plot the diagram for H2
0 (!) and H1

0(curl; !)
spaces in the left of (3.12) which is commutative. The IFE spaces share the similar property shown by the
right plot in (3.12) where the gradient ∇ is understood element-wisely. Here, we note that functions in
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Figure 6. A global H1 IFE function and its FE isomorphic image.

∇H̃2
0 (!) satisfy the jump conditions (1.1b) and (1.1d) because of (3.10) and satisfy (1.1c) because they

are curl-free, and thus ∇H̃2
0 (!) ⊆ H̃1

0(curl; !). The next lemma shows this new diagram is well-defined.

Lemma 2. For IFE spaces, there holds ∇S̃h,0(!) ⊆ INDh,0(!).

Proof. The local results ∇S̃h(T) ⊂ INDh(T) are trivial due to the jump conditions. The global result
is non-trivial due to the discontinuities on interface edges. For each interface edge e ∈ Eh, we need to
show

∫
e [∇vh · te]ds = 0, vh ∈ S̃h(!). Let A1 and A2 be the two nodes of e, let te be oriented from A1 to A2

and let T1 and T2 be its neighbour elements. Then the continuity at the interface intersection point of e
yields

∫

e

∇vh|T1 · teds =
∫

e

∂te vh|T1 ds = vh|T1 (A1) − vh|T1 (A2). (3.13)

A similar identity also holds for T2. Therefore, the continuity at mesh nodes yields the desired result.

The next result is for the commuting property of IFE spaces.

Theorem 3.3. The diagram on the right of (3.12) is commutative, namely (̃h ◦ ∇ = ∇ ◦ Ĩh, on H̃2
0(!).

Proof. The result is trivial on non-interface elements, and, on interface elements, it follows from the
argument similar to (3.13) and the nodal continuity of Ĩhv and v ∈ H̃2

0(!).

To show the exactness, we also need the isomorphism Ih : Sh(!) → S̃h(!) that is defined in the same
manner as the usual nodal interpolation. Similarly, Ih can be understood as Ih applied to S̃h(!) and I−1

h

can be understood as Ĩh applied to Sh(!). The new notations Ih and (h are just used to emphasise the
isomorphism. Here, we also plot an H1 IFE function and its FE isomorphic image in Figure 6.

Remark 3.3. By similar arguments to Theorem 3.3, the following commuting properties also hold

(h ◦ ∇ = ∇ ◦ Ih on S̃h,0(!) and (−1
h ◦ ∇ = ∇ ◦ I−1

h on Sh,0(!). (3.14)
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Furthermore, we can show that (h yields an isomorphism between Ker(curl) ∩ INDh,0(!) and
Ker(curl) ∩NDh,0(!).

Theorem 3.4. (h is an isomorphism between Ker(curl) ∩ INDh,0(!) and Ker(curl) ∩NDh,0(!).

Proof. Let us focus on an interface element T , and recall that ψ i, i = 1, 2, 3, are the H(curl) IFE shape
functions. By the identity in (3.6b), we let τ = µ−1curlψ i, i = 1, 2, 3. For each zh ∈NDh,0(!), we note
that µ−1curl (−1

h zh is a constant, and then the integration by parts yields

µ−1curl (−1
h zh =

3∑

i=1

∫

ei

zh · tidsµ−1curlψ i =
∫

∂T

zh · tτds =
∫

T

curl zhdX τ = |T|τcurl zh. (3.15)

The identity above shows that curl zh = 0 if and only if curl (−1
h zh = 0, and similar results also hold on

non-interface elements. Thus, we have the desired result.

Remark 3.4. We note that Ker(curl) ∩NDh,0(!) and Ker(curl) ∩ INDh,0(!) consist of piecewise con-
stant vectors but functions of the latter one on interface elements are piecewise constant vectors on each
subelement. If β− = β+, then the piecewise constant vector on each interface element will reduce to a sin-
gle constant vector. Therefore, by the self-preserving property of (h, there holds (h|Ker(curl)∩INDh,0(!) = I
where I is the identity.

Theorem 3.5. For the IFE spaces, the sequence S̃h,0(!)
∇−→ INDh,0(!)

curl−→ Qh is exact, where Qh ⊂
L2(!) is a piecewise constant space, namely

∇S̃h,0(!) = Ker(curl) ∩ INDh,0(!) = {zh ∈ INDh,0(!) : curl zh = 0}. (3.16)

Proof. By Lemma 2, it is easy to see ∇S̃h,0(!) ⊂ Ker(curl) ∩ INDh,0(!). As for the reverse direction,
for each zh ∈ Ker(curl) ∩ INDh,0(!), Theorem 3.4 suggests (hzh ∈ Ker(curl) ∩NDh,0(!). Then, due
to the exact sequence for Sh,0(!) and NDh,0(!), there exists sh ∈ Sh,0(!) such that ∇sh = (hzh. Now we
take s̃h = I−1

h sh and use (3.14) to obtain ∇ s̃h = ∇I−1
h sh = (−1

h ∇sh = (−1
h (hzh = zh which has finished the

proof.

4. Approximation capabilities
In this section, we analyse approximation capabilities of the IFE space (3.7) through the interpolation (̃h

in (3.8). We shall first define a quasi interpolation to handle the jump condition, which will then be used
to estimate the edge interpolation. The main difficulty is on interface elements due to the insufficient
regularity of IFE functions.

4.1. A special quasi-interpolation
We introduce a patch ωT for an element T :

ωT = ∪{T ′ ∈ Th : T ′ ∩ T /= ∅}. (4.1)

Then for each T ∈ T i
h , we define its fictitious element:

Tε =
{

X ∈R2 : ∃Y ∈ T s.t. −−→OTX = ε
−−→
OTY

}
, (4.2)

where OT is the homothetic centre which can be simply chosen as the centroid of T , and ε ≥ 1 is a scaling
factor. In the following analysis, we assume there exists a fixed ε0 > 1 such that for each T there holds
Tε0 ⊆ ωT . It is easy to see that this assumption is fulfilled if the mesh is regular, see the illustration in
Figure 7. Without loss of generality, from now on we shall fix ε = ε0 for all fictitious elements. The reason
for using fictitious elements is that each subelement of Tε has a regular shape; namely, the inscribed ball
has a lower bounded radius. We refer readers to Lemma 3.2 in [35] for more details. This property is
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Figure 7. A fictitious element and a patch.

important for making those generic constants in error estimates independent of interface location. In
particular, we let $Tε

h be the extension of the straight line $T
h to Tε , see Figure 7 for an illustration, and

there holds for some uniform δ independent of interface location such that
|$Tε

h | ≥ δhT . (4.3)

Now we are ready to define the special interpolation operator

JT : H̃1
(curl; Tε) −→ INDh(Tε) with JTu =





J−

T u = (Tε
u−

E in T−
ε ,

J+
T u = CT

(
(Tε

u−
E

)
in T+

ε ,
(4.4)

where (Tε
u−

E is a polynomial on Tε but restricted onto T− to apply CT . In fact, since polynomials can
be naturally extended to everywhere, in the following analysis we always use (Tε

u−
E , CT

(
(Tε

u−
E

)
(those

polynomials defined on subelements) on the whole Tε . Here, it is worthwhile to mention that NDh(T±),
NDh(T±

ε ) and NDh(Tε) are the same polynomial spaces but defined on different region. We shall only
use NDh(Tε) to denote the Nédélec space associated with both T and Tε for simplicity. The motivation
behind the special interpolation operator (4.4) is a relation connecting different extension and interpo-
lation operators including E±

curl, CT , and (Tε
, illustrated by the diagram in Figure 8. It suggests a delicate

decomposition of the interpolation error JTu − u into the errors of (Tε
u±

E − u±
E and the error from CT

which is specifically denoted as
ηh := (Tε

u+
E − CT((Tε

u−
E ) ∈NDh(Tε). (4.5)

The error ηh will be the main concern in the analysis below. Its estimation relies on a specially designed
norm (4.6) that is constructed from the jump conditions:

|||vh|||2
Tε

= hT |vh(Xm) · n̄|2 + ‖vh · t̄‖2
L2($

Tε
h )

+ ‖curl vh‖2
L2($

Tε
h )

, ∀vh ∈NDh(Tε). (4.6)

Lemma 3. The norm equivalence h1/2
T ||| · |||Tε

, ‖ · ‖H(curl; Tε ) holds on NDh(Tε) where the constants in
the equivalence relation are independent of interface location.

Proof. Given each vh ∈NDh(Tε), since vh is simply a polynomial, using (4.3), the trace inequality and
the inverse inequality, we have

h1/2
T |vh(Xm) · n̄|" ‖vh · n̄‖L2($

Tε
h ) ! h−1/2

T ‖vh‖L2(Tε ),

‖vh · t̄‖L2($
Tε
h ) ! h−1/2

T ‖vh‖L2(Tε ), ‖curl vh‖L2($
Tε
h ) ! h−1/2

T ‖curl vh‖L2(Tε ).
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Figure 8. The diagram for interpolation errors.

This yields |||vh|||Tε
! h−1/2

T ‖vh‖H(curl; Tε ). For the reverse direction, by the Taylor expansion, we have

vh(X) = vh(Xm) + ∇vh(Xm)(X − Xm) = vh(Xm) · n̄ + vh(Xm) · t̄ − 1
2

curl vh R(X − Xm), (4.7)

where R = [0, 1; −1, 0] ∈R2×2, since curl vh is a constant. Then we have

‖vh‖L2(Tε ) ! hT |vh(Xm) · n̄ + hT |vh(Xm) · t̄ + h2
T |curl vh. (4.8)

We note that vh · t̄ can be understood as a polynomial defined on $Tε

h , and |curl vh| is a constant, and thus
they can be simply bounded by the standard trace inequality from $Tε

h to Tε . Therefore, we have

‖vh‖L2(Tε ) ! hT |vh(Xm) · n̄ + h1/2
T ‖vh · t̄‖L2($

Tε
h ) + h3/2

T ‖curl vh‖L2($
Tε
h ) ! h1/2

T |||vh|||Tε
. (4.9)

In addition, there also holds

‖curl vh‖L2(Tε ) =
(
|T|/|$Tε

h |
)1/2 ‖curl vh‖L2($

Tε
h ) ! h1/2

T ‖curl vh‖L2($
Tε
h )

because of the mesh regularity and (4.3), which has finished the proof.

Since a linear approximation of the interface is used for constructing IFE functions, we need to
estimate the jumps on this approximated interface.

Lemma 4. For u ∈ H̃1
(curl; !) and for each interface element T and the associated Tε , there hold

‖u+
E · t̄ − u−

E · t̄‖L2(Tε ) ! hT

(
‖u+

E ‖H1(Tε ) + ‖u−
E ‖H1(Tε )

)
, (4.10a)

‖β+u+
E · n̄ − β−u−

E · n̄‖L2(Tε ) ! hT

(
‖u+

E ‖H1(Tε ) + ‖u−
E ‖H1(Tε )), (4.10b)

‖(µ+)−1curl u+
E − (µ−)−1curl u−

E ‖L2(Tε ) ! hT

(
‖curl u+

E ‖H1(Tε ) + ‖curl u−
E ‖H1(Tε )

)
. (4.10c)

Proof. Since the proof is basically the same as Lemma 3.3 in [35], we omit it here.

Now we can estimate the error ηh (4.5) indicted by the dashed line of the diagram in Figure 8.

Lemma 5. Suppose u ∈ H̃1
(curl; !), then for each element T and the associated Tε

|||ηh|||Tε
! h1/2

T

(
‖u+

E ‖H1(curl; ωT ) + ‖u−
E ‖H1(curl; ωT )

)
. (4.11)
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Proof. We need to estimate each term in the definition (4.6). First, by (4.3) and the trace inequality, we
have

|ηh(Xm) · n̄| =
∣∣∣∣

(
(Tε

u+
E − β−

β+ (Tε
u−

E

)
(Xm) · n̄

∣∣∣∣! h−1/2
T

∥∥∥∥

(
(Tε

u+
E − β−

β+ (Tε
u−

E

)
· n̄
∥∥∥∥

L2($
Tε
h )

, (4.12)

where we have also used (3.1c) and
(
(Tε

u+
E − β−

β+ (Tε
u−

E

)
· n̄|$Tε

h
∈ P1

(
$Tε

h

)
. Since (Tε

u+
E − β−

β+ (Tε
u−

E is
a polynomial, applying the trace inequality for polynomials [64], we induce from (4.12) that

|ηh(Xm) · n̄|! h−1
T

∥∥∥∥

(
(Tε

u+
E − β−

β+ (Tε
u−

E

)
· n̄
∥∥∥∥

L2(Tε )

"h−1
T

(

‖
(
(Tε

u+
E − u+

E

)
· n̄‖L2(Tε ) +

∥∥∥∥

(
β−

β+ (Tε
u−

E − β−

β+ u−
E

)
· n̄
∥∥∥∥

L2(Tε )

+
∥∥∥∥

(
β−

β+ u−
E − u+

E

)
· n̄
∥∥∥∥

L2(Tε )

)

.

Applying the estimate (2.5) for (Tε
on Tε and (4.10b) to the estimate above, we have

|ηh(Xm) · n̄|!
(
‖u+

E ‖H1(curl; Tε ) + ‖u−
E ‖H1(curl; Tε )

)
. (4.13)

By similar arguments, using (4.10a) and (4.10c), we have the following estimates

‖ηh · t̄‖L2($
Tε
h ) + ‖curl ηh‖L2($

Tε
h ) ! h1/2

T

(
‖u+

E ‖H1(curl; Tε ) + ‖u−
E ‖H1(curl; Tε )

)
. (4.14)

Then the desired result follows from (4.13) to (4.14) together with the assumption that Tε ⊆ ωT .

Next, we use the idea of the diagram 8 to estimate the interpolation errors.

Theorem 4.1. Suppose u ∈ H̃1
(curl; !), then on each interface element T and Tε ,

‖J±
T u − u±

E ‖H(curl; Tε ) ! hT

(
‖u+

E ‖H1(curl; ωT ) + ‖u−
E ‖H1(curl; ωT )

)
. (4.15)

Proof. By the definition in (4.4), the estimate of J−
T u − u−

E = (Tε
u−

E − u−
E in T−

ε directly follows from
applying (2.5) to (Tε

which is simply the right-hand side of the diagram in Figure 8. So we only need
to estimate the error on T+

ε . By (4.5), we first have the following error decomposition

‖J+
T u − u+

E ‖H(curl; Tε ) " ‖ηh‖H(curl; Tε ) + ‖(Tε
u+

E − u+
E ‖H(curl; Tε ). (4.16)

Again the second term in the right-hand side of (4.16) follows from applying (2.5) to (Tε
. For the first

term, using the norm equivalence in Lemaa 3 together with the estimate in Lemaa 5, we have

‖ηh‖H(curl; Tε ) ! h1/2
T |||ηh|||Tε

! hT

(
‖u+

E ‖H1(curl; ωT ) + ‖u−
E ‖H1(curl; ωT )

)
, (4.17)

which has finished the proof by the assumption that Tε ⊆ ωT .

4.2. The edge interpolation
Theorem 4.1 already guarantees the local optimal approximation capabilities on interface elements.
However, in order to estimate the global results, we need to employ the interpolation operators (̃T and
(̃h in (3.8). For this purpose, recalling that T±

h is partitioned by $T
h , we introduce an auxiliary function

which is piecewise defined as
w = uE − JTu with w± = u±

E − J±
T u in T±

h , (4.18)
which will help in simplifying the discussion. Note that w only slightly differs from u − JTu in T̃ , the
subelement sandwiched by $T

h and $ shown in Figure 3, since u is defined with the interface $ itself.
Importantly, we have w|∂T = (u − JTu)|∂T .

Theorem 4.2. Suppose u ∈ H̃1
(curl; !), then for each interface element T

‖(̃Tu − u‖L2(T) ! hT

(
‖u+

E ‖H1(curl; ωT ) + ‖u−
E ‖H1(curl; ωT )

)
. (4.19)
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Proof. Given an interface element T with the edges ei, i = 1, 2, 3, the triangular inequality yields

‖(̃Tu − u‖L2(T) " ‖(̃Tu − JTu‖L2(T) + ‖JTu − u‖L2(T). (4.20)

The estimate of the second term in (4.20) directly follows from Theorem 4.1. So we only need to estimate
the first term. Note that (̃Tu − JTu = (̃T (u − JTu). Using the IFE shape functions, we can write

(̃T(u − JTu) =
3∑

i=1

∫

ei

(u − JTu) · tidsψ i =
3∑

i=1

∫

ei

w · tidsψ i. (4.21)

By Hölder’s inequality and the boundedness (3.6a), we have

‖(̃T(u − JTu)‖L2(T) "
3∑

i=1

∣∣∣∣

∫

ei

w · tids
∣∣∣∣‖ψ i‖L2(T) ! h1/2

T

3∑

i=1

(
‖w− · t‖L2(ei) + ‖w+ · t‖L2(ei)

)
. (4.22)

Then, by the scaling arguments for Nédélec elements in [25, Lemma 3.2], we have

‖w− · t‖L2(ei) = ‖((Tε
u−

E − u−
E ) · t‖L2(ei) ! h1/2

T

(
‖u+

E ‖H1(curl; Tε ) + ‖u−
E ‖H1(curl; Tε )

)
. (4.23)

In addition, the triangular inequality yields

‖w+ · t‖L2(ei) " ‖ηh · t‖L2(ei) + ‖((Tε
u+

E − u+
E ) · t‖L2(ei). (4.24)

Since ηh is a polynomial, by the trace inequality for polynomials [64], the estimate in Lemma 5 and the
norm equivalence in Lemma 3, we have

‖ηh · t‖L2(ei) ! h−1/2
T ‖ηh‖L2(T) ! |||ηh|||Tε

! h1/2
T

(
‖u+

E ‖H1(curl; Tε ) + ‖u−
E ‖H1(curl; Tε )

)
. (4.25)

The estimate for ‖((Tε
u+

E − u+
E ) · t‖L2(ei) in (4.24) is the same as (4.23). Putting these two estimates into

(4.24) and substituting (4.24) with (4.23) into (4.22), we have the estimate of ‖(̃T(u − JTu)‖L2(T). Then
the proof is finished by using Tε ⊆ ωT .

As for curl ((̃Tu − u), we need to employ the δ-strip argument for curved interface or domain
boundary [21, 41, 52]. For the readers’ sake, we recall the δ-strip:

Sδ := {x ∈ ! : dist(x, $) < δ}, and S±
δ := {x ∈ !± : dist(x, $) < δ}. (4.26)

Furthermore, it is possible to control the L2-norm in the δ-strip by the following result.

Lemma 6. (Lemmas 3.4 and 2.1 in [52]) It holds true for any z ∈ H1(!±) that

‖z‖L2(S±
δ ) !

√
δ‖z‖H1(!±). (4.27)

Theorem 4.3. Suppose u ∈ H̃1
(curl; !), then

‖curl((̃Tu − u)‖L2(T) !hT

(
‖u+

E ‖H1(curl; ωT ) + ‖u−
E ‖H1(curl; ωT )

)

+ h1/2
T

(
‖curl u+

E ‖L2(̃T) + ‖curl u−
E ‖L2(̃T)

)
.

Proof. Similar to (4.20), we have

‖curl((̃Tu − u)‖L2(T) " ‖curl((̃Tu − JTu)‖L2(T) + ‖curl(JTu − u)‖L2(T). (4.28)

The second term in (4.28) directly follows from Theorem 4.1. For the first term, we also consider the
piecewise-defined function w in (4.18). By the identity in (3.6b), we let τ = µ−1curlψ i, i = 1, 2, 3. Then
the similar derivation to (3.15), i.e., the integration by parts on T±

h , leads to
1
µ

curl (̃T(u − JTu) =
∫

∂T

(u − JTu) · tids τ =
∫

∂T

w · tids τ =
∫

$T
h

[w · t̄]$T
h
ds τ +

∫

T

curl wdX τ ,

(4.29)

3��9��  0����:2 ������
 ����	
������������� /5��310��75�71�/"�
.6/:�021��7�!1:���"��:1��

https://doi.org/10.1017/S0956792522000390


European Journal of Applied Mathematics 17

where t̄ denotes the unit tangential vector to $T
h in the clockwise orientation of T−

h . Then, applying the
integration by parts on the subregion T̃ , using the jump conditions (3.1a), (1.1b), Hölder’s inequality
and the first one in (2.1), we have

∣∣∣∣

∫

$T
h

[w · t̄]$T
h
ds
∣∣∣∣=

∣∣∣∣

∫

T̃

curl(u−
E − u+

E )dX
∣∣∣∣! h3/2

T

(
‖curl u−

E ‖L2(̃T) + ‖curl u+
E ‖L2(̃T)

)
. (4.30)

Also, by Hölder’s inequality and Theorem 4.1, we have
∣∣∣∣

∫

T

curl wdX
∣∣∣∣" ‖curl w‖L2(T)|T|1/2 ! h2

T

(
‖u+

E ‖H1(curl; ωT ) + ‖u−
E ‖H1(curl; ωT )

)
. (4.31)

Moreover, by (4.30) we have ‖τ‖L2(T) ! h−1
T . Now putting it together with (4.30) and (4.31) into (4.29),

we have the estimate of ‖µ−1curl (̃T(u − JTu)‖L2(T) which yields the desired result with (4.28).

Theorem 4.4. Suppose u ∈ H̃1
(curl; !), then

‖(̃hu − u‖H1(curl; !) ! h
(
‖u‖H1(curl; !−) + ‖u‖H1(curl; !+)

)
. (4.32)

Proof. By the first estimate in (2.1), there exists a δ-strip Sδ such that ∪T∈T i
h
T̃ ⊆ Sδ with δ ! h2. Then,

the desired result follows from Lemma 6, Theorems 4.2, 4.3 and the standard estimates (2.5) on non-
interface elements with the finite overlapping property of patches and the bounds of extensions by
Theorem 2.1.

5. Analysis of solution errors
In this section, we analyse the PG-IFE scheme (3.9). The most critical and difficult step is to establish the
inf-sup stability [8]. This refers to the following inequality between the spacesNDh,0(!) and INDh,0(!)
for the PG-IFE system (3.9):

sup
vh∈NDh,0(!)

a(uh, vh)
‖vh‖H(curl; !)

≥ Cs‖uh‖H(curl; !) ∀uh ∈ INDh,0(!), (5.1)

where Cs > 0 should be uniformly bounded away from 0 regardless of the mesh size h and interface
location.

With the inf-sup condition in (5.1), the estimation of the solution error follows from the standard
argument.

Theorem 5.1. Let uh be the solution to the scheme (3.9). Under the conditions of Theorem 5.5, there
holds

‖u − uh‖H(curl; !) ! h
(
‖u‖H1(curl; !−) + ‖u‖H1(curl; !+)

)
. (5.2)

Proof. Note that the boundedness is trivial for a constant C1 independent of interface location and mesh
size:

a(uh, vh) " C1‖uh‖H(curl; !)‖vh‖H(curl; !). (5.3)
Then, the desired result follows from the standard argument by the inf-sup stability with the interpolation
errors.

In the following discussion, we shall establish the inf-sup stability (5.1) for general discontinuous
magnetic permeability, but for the discontinuous conductivity whose jump is less than a critical constant.
The analysis is lengthy and we shall divide it into several lemmas and steps. Let us briefly explain the
main idea and structure of our argument. The key is to develop a special discrete decomposition for
functions uh ∈ INDh,0(!) such that their regular components are sufficiently small near the interface
(Subsection 5.2). This is done first for the standard Nédélec functions which are then applied to the IFE
functions through the isomorphism. So, it demands the stability of isomorphism (h in Subsection 5.1.
These results are put together to show the inf-sup stability in Subsection 5.3.
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Figure 9. Interface element configuration. Left: Case 1 and right: Case 2.

5.1. Stability of the isomorphism
The stability of the isomorphism relies on the stability of the linear operator CT used to construct IFE
functions in (3.1). Without loss of generality, in the following analysis, we only consider the interface ele-
ment configurations in Figure 9 where T−

h is assumed to be triangular. We first recall a norm equivalence
result from Lemma 3.6 in [35].

Lemma 7. For each interface element with the configuration shown in Figure 9, if |A1D| ≥ 1
2
|A1A2| and

|A1E| ≥ 1
2
|A1A3| (case 1),

‖ · ‖L2(T−
h ) , ‖ · ‖L2(T), on NDh(T), (5.4a)

and if |A1D|" 1
2
|A1A2| or |A1E|" 1

2
|A1A3| (case 2),

‖ · ‖L2(T+
h ) , ‖ · ‖L2(T), on NDh(T). (5.4b)

Then we can show the stability of the extension operator CT in the following.

Lemma 8. For each interface element T, if |A1D| ≥ 1
2
|A1A2| and |A1E| ≥ 1

2
|A1A3| (Case 1 in Figure 9),

‖CT(vh)‖L2(T−
h ) ! ‖vh‖L2(T−

h ), and ‖C−1
T (vh)‖L2(T−

h ) ! ‖vh‖L2(T−
h ), ∀vh ∈NDh(T); (5.5a)

if |A1D|" 1
2
|A1A2| or |A1E|" 1

2
|A1A3| (Case 2 in Figure 9),

‖CT(vh)‖L2(T+
h ) ! ‖vh‖L2(T+

h ) and ‖C−1
T (vh)‖L2(T+

h ) ! ‖vh‖L2(T+
h ), ∀vh ∈NDh(T). (5.5b)

Proof. For simplicity, we only prove the first one in (5.5a). Let D = [xD,1, xD,2]t in the explicit formula
in (3.2). Note that curl v is a constant. Then if |A1D| ≥ 1

2
|A1A2| and |A1E| ≥ 1

2
|A1A3|, the formula of b1

in (3.2) leads to
|b1|! |curl vh|! h−1

T ‖curl vh‖L2(T) ! h−2
T ‖vh‖L2(T) ! h−2

T ‖vh‖L2(T−
h ), (5.6)

where in the last two inequalities above we have used the inverse inequality and norm equivalence
(5.4a). In addition, we note that there exists a constant C such that |)A1DE|/|DE| ≥ Ch where C is
independent of interface location. So by the trace inequalities for polynomials [64] we have |vh(Xm) · n̄|!
h−1

T ‖vh‖L2()A1DE) , h−1
T ‖vh‖L2(T−

h ). Putting this estimate and (5.6) into the formula of b2 in (3.2), we obtain

|b2|! h−1
T ‖vh‖L2(T−

h ) + hT |b1|! h−1
T ‖vh‖L2(T−

h ). (5.7)
Now using the expression of CT(vh) in (3.2), we have

‖CT(vh)‖L2(T−
h ) ! ‖vh‖L2(T−

h ) + h2
T |b1| + hT |b2|! ‖vh‖L2(T−

h ), (5.8)
which has finished the proof of the first one in (5.5a). The argument for other estimates is similar.
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The stability enables us to prove a trace inequality of the IFE functions.

Theorem 5.2. For each interface element T and its edge e, there holds
‖zh‖L2(e) ! h−1/2

T ‖zh‖L2(T), ∀zh ∈ INDh(T). (5.9)

Proof. Without loss of generality, we only consider the case that |A1D| ≥ 1
2
|A1A2| and |A1E| ≥ 1

2
|A1A3|

as shown by Case 1 in Figure 9. On the interface edge A1A2, the standard trace inequality [64] yields
‖zh‖L2(A1D) ! h−1/2

T ‖zh‖L2()A1DE) and ‖zh‖L2(DA2) ! h−1/2
T ‖zh‖L2()DA2E), (5.10)

since the distance from the point E to A1A2 is bounded below regardless of interface location, which
yields the estimate on this edge. The argument for the interface edge A1A3 is similar. For the non-interface
edge A2A3, by the standard trace inequality and (5.5a), we obtain

‖z+
h ‖L2(A2A3) ! h−1/2

T ‖z+
h ‖L2(T) = h−1/2

T (‖C−1
T (z−

h )‖L2(T−
h ) + ‖z+

h ‖L2(T+
h ))

! h−1/2
T (‖z−

h ‖L2(T−
h ) + ‖z+

h ‖L2(T+
h )), (5.11)

which yields the desired result. The argument for the Case 2 in Figure 9 is similar and relies on (5.5b).

Now, with the trace inequality, we are able to show the stability of the isomorphism (h.

Theorem 5.3. These exist constants c2 and C2 independent of interface location such that, on each
element T,

c2‖zh‖L2(T) " ‖(hzh‖L2(T) " C2‖zh‖L2(T) ∀zh ∈ INDh(T), (5.12a)
c2‖curl zh‖L2(T) " ‖curl (hzh‖L2(T) " C2‖curl zh‖L2(T) ∀zh ∈ INDh(T). (5.12b)

Proof. These inequalities for non-interface elements are trivial, and we only consider the interface
elements here. For (5.12a), using the argument similar to (4.22) with (3.6a), we obtain

‖(hzh‖L2(T) =
∥∥∥∥

3∑

i=1

∫

ei

zh · tidsψ i

∥∥∥∥
L2(T)

!
3∑

i=1

h1/2
T ‖zh‖L2(ei). (5.13)

Applying the trace inequality in Theorem 5.2 to (5.13) yields the right inequality of (5.12a). The left
one can be obtained by applying this argument to (−1

h . In addition, (5.12b) is a direct consequence of
the identity in (3.15).

5.2. A special decomposition
We now establish a special discrete regular decomposition. For this purpose, we need a domain
decomposition. Recalling that T i

h is the collection of interface elements, we define
!i

h = ∪T∈T i
h
T . (5.14)

Furthermore, we need a region by expanding one more layer of elements from T i
h :

T $
h :=

{
T ∈ Th : ∃T ′ ∈ T i

h such that ∂T ∩ ∂T ′ /= ∅
}

,

!$
h := ∪T∈T $

h
T , and !$,±

h = !$
h ∩ !±. (5.15)

To illustrate the regions, here we show !$
h and T $

h in the middle plot in Figure 10 and show T $
h \T i

h and
!$

h \!i
h by the yellow-shaded region in the left plot in Figure 10. Furthermore, we let

γ = ∂!i
h ∩ !+, (5.16)

i.e., the part of the boundary of !i
h in !+, which is highlighted by the blue polyline in the middle plot

in Figure 10. In the following discussion, we shall employ NDh,0(D), INDh,0(D), Sh,0(D), S̃h,0(D) as the
subspaces with the zero trace on ∂D for a subdomain D formed by elements in Th contained in D.
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Figure 10. Left: T $
h \T i

h and !$
h \!i

h. Middle: T $
h , !$

h and γ . Right: a patch near the interface.

Lemma 9. (A Special Discrete Decomposition) For each uh ∈NDh,0(!) (or INDh,0(!)), there exists
a u∗

h ∈NDh,0(!) (or INDh,0(!)) and ◦uh ∈NDh,0(!) ∩ Ker(curl) (or INDh,0(!) ∩ Ker(curl)) such
that

uh = u∗
h + ◦uh (5.17)

satisfying that, for a constant C3 independent of interface location and mesh size

‖u∗
h‖L2(!$

h ) " C3h‖curl uh‖L2(!). (5.18)

Proof. The proof is lengthy, and we decompose it into several steps.
Step 1. We first focus on uh ∈NDh,0(!). We need to construct a function vh ∈NDh,0(!$,+

h ∪ !i
h) ∩

Ker(curl) such that its trace on γ matches uh except one edge denoted by e∗ of the polyline γ in (5.16).
Note that vh should have vanishing trace on ∂(!$,+

h ∪ !i
h), i.e., the two polyline near γ .

Let us denote the edges on γ by e1, e2, . . ., eN with the clockwise orientation with the nodes X1, X2,. . .,
XN . Without loss of generality, we assume e∗ = eN , as shown in the right plot in Figure 10. We consider
a linear finite element function vh such that vh(X1) = 0, vh(Xn+1) =∑n

j=1

∫
ej

uh · tds, n = 1, 2, ..., N − 1,
and it vanishes at all other nodes. Then, vh ∈ Sh,0(!$,+

h ∪ !i
h), and vh = ∇vh ∈NDh,0(!$,+

h ∪ !i
h). Thus,

we clearly have
∫

en
vh · tds =

∫
en

uh · tds, n = 1, 2, ..., N − 1. Note that
∫

γ
vh · tds = 0 but uh may not have

this property, so
∫

e∗ vh · tds may not equal
∫

e∗ uh · tds.
Step 2. Let us assume that the closed polyline γ partitions the whole domain ! into !h,+ and !h,−

where we have !h,+ ⊆ !+ and !− ⊆ !h,−. Since the triangulation is regular, γ is a Lipschitz curve, and
thus both !h,± have Lipschitz boundary. Denote kh = uh − vh and k±

h = (uh − vh)|!h,± . By the discussion
in Step 1, k+

h has the zero trace on ∂! and γ \e∗, and k−
h simply has the zero trace on γ \e∗. Then,

we apply the discrete regular decomposition of Theorem 11 in [43] (also see the related discussion in
[40, 42]) to k±

h on !h,± which gives

k±
h = R∗

±z±
h + r±

h + h±
h , on !h,±,

where the regular components z±
h ∈

[
Sh(!h,±)

]2, the curl-free components h±
h ∈NDh(!h,±) ∩ Ker(curl),

the reminders r±
h ∈NDh(!h,±) and R∗

± : Sh(!h,±) →NDh(!h,±) are special local projection operators
preserving zero boundary conditions. Moreover, these components inherit the zero traces of k±

h , namely,
z+

h , r+
h and h+

h also have the corresponding zero traces on ∂! ∪ (γ \e∗) and the “−” components have
the zero traces on γ \e∗. Furthermore, since e∗ is a single edge, the continuity suggests that z±

h and h±
h

must have the zero traces on the whole γ . Then we have r+
h · t = kh · t = r−

h · t on every edge of γ . So
all these three decomposed components must be tangentially continuous on γ . Therefore, we can put
these components together to define zh = z±

h in !h,± belonging to
[
Sh,0(!)

]2, hh = h±
h in !h,± belonging

to NDh,0(!) ∩ Ker(curl) and rh = r±
h in !h,± belonging to NDh,0(!) which satisfy

uh − vh = kh = R∗zh + rh + hh (5.19)
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with R∗ = R∗
± in !h,±. By this definition, using the estimates of the components z±

h , h±
h and r±

h in in [43,
Theorem 11], and noticing that vh is curl-free, we have

‖∇zh‖L2(!) ! ‖curl uh‖L2(!), ‖rh‖L2(!) ! h‖curl uh‖L2(!) and ‖hh‖L2(!) ! ‖curl uh‖L2(!), (5.20a)

and for each patch ωT of an element T , there holds

‖R∗zh‖L2(T) ! ‖zh‖L2(ωT ) + hT‖curl zh‖L2(ωT ). (5.20b)

Step 3. We estimate R∗zh on !$
h , i.e., the subdomain given in (5.15). By (5.20b), we obtain

‖R∗zh‖2
L2(!$

h )
=
∑

T∈T $
h

‖R∗zh‖2
L2(T) !

∑

T∈T $
h

(
‖zh‖L2(ωT ) + hT‖curl zh‖L2(ωT )

)2
. (5.21)

For each patch ωT , T ∈ T $
h , without loss of generality we assume T /∈ T i

h , i.e., it is not an interface
element, and thus there is at least one interface element denoted by T ’ such that T ’ and T share at
least one node denoted by A as shown in the right plot in Figure 10. Since T ’ has one node on γ and
zh must vanish at this node, then the estimate of zh on T ’ is straightforward through the Poincaré-type
inequality:

‖zh‖L2(T ′) ! hT ′ ‖∇zh‖L2(T ′). (5.22)

Then, we also have the estimate for |zh(A)| through the trace inequality and (5.22)

|zh(A)|! h−1
T ′ ‖zh‖L2(T ′) ! ‖∇zh‖L2(T ′). (5.23)

In addition, on T we can write zh as zh(X) = zh(A) + ∇zh(X − A) where ∇zh is a 2-by-2 constant matrix.
Thus (5.23) together with the continuity at A leads to

‖zh‖L2(T) ! hT(|zh(A)| + ‖∇zh‖L2(T)) ! hT‖∇zh‖L2(T ′∪T) ! h‖∇zh‖L2(ωT ). (5.24)

Furthermore, we note that any element T” in ωT must share at least one node with T denoted by B as
shown in the right plot in Figure 10 for an example. Then the similar argument to (5.23) and (5.24)
gives the estimate for ‖zh‖L2(T ′′). The results above give the estimate of zh on ωT . Applying it to (5.21)
and using the finite overlapping property together with the first estimate in (5.20a), we obtain

‖R∗zh‖L2(!$
h ) !

∑

T∈T $
h

h
(
‖∇zh‖L2(ωT ) + ‖curl zh‖L2(ωT )

)
! h‖curl zh‖L2(!). (5.25)

Therefore, by (5.25) and the second estimate in (5.20a), setting u∗
h = R∗

hzh + rh and ◦uh = vh + hh fulfills
the decomposition (5.17) and (5.18) for the case uh ∈NDh,0(!).

Step 4. Finally, if uh ∈ INDh,0(!), we have (huh ∈NDh,0(!), and then the previous analysis shows
the existence of functions w∗

h ∈NDh,0(!) and ◦wh ∈NDh,0(!) ∩ Ker(curl) such that (huh = w∗
h + ◦wh.

So we obtain uh = u∗
h + ◦uh with u∗

h = (−1
h w∗

h and ◦uh = (−1
h

◦wh. Here, u∗
h satisfies (5.18) thanks to

Theorem 5.3 and ◦uh ∈ INDh,0(!) thanks to the curl-free-preserving property of the isomorphism in
Theorem 3.4.

5.3. The inf-sup stability
We now combine the estimates above to show the inf-sup stability. The first theorem is to handle the curl
term, and it suggests that the stiffness matrix of the PG-IFE method is actually the same as the standard
IFE method which uses the IFE functions as the test functions.

Theorem 5.4. On each element T, there holds
∫

T

µ−1curl zh curl (hzhdX =
∫

T

µ−1curl zh curl zhdX, ∀zh ∈ INDh(T). (5.26)
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Proof. It is trivial on non-interface elements. On an interface element, we note that µ−1curl zh is a
constant, and then the integration by part yields

µ−1curl zh

∫

∂T

(hzh · t ds = µ−1curl zh

∫

∂T

zh · t ds =
∫

T

µ−1curl zh curl zhdX, (5.27)

where we have also used the continuous tangential jump condition (3.1a).

The next step is to establish an inf-sup stability specially for the curl-free subspaces near the interface
elements.

Lemma 10. For the Cartesian mesh, assume the contrast of the conductivity satisfies max{β+/β−,
β−/β+} < 10.65, then there holds, for a constant C4 independent of interface location and mesh size,

(βuh, (huh)L2(!$
h ) ≥ C4‖uh‖2

L2(!$
h )

, ∀uh ∈ INDh,0(!) ∩ Ker(curl). (5.28)

Proof. The argument is technical based on direct calculation, so we put it in Appendix B.

Now we are ready to show the inf-sup condition in (5.1).

Theorem 5.5. Under the conditions of Lemma 10 and for h sufficiently small, the inf-sup condition (5.1)
holds regardless of the mesh size and interface location relative to the mesh.

Proof. First of all, Theorem 5.4 directly yields

(µ−1 curl uh, curl (huh)L2(!) = (µ−1 curl uh, curl uh)L2(!) ≥ 1/ min{µ−, µ+}‖curl uh‖2
L2(!). (5.29)

Since (huh = uh on !\!$
h , we certainly have

(β uh, (huh)L2(!\!$
h ) ≥ min{β−, β+}‖uh‖2

L2(!\!$
h )

. (5.30)

As for !$
h , applying the decomposition in Lemma 9, the estimate in Lemma 10 and the stability in

Theorem 5.3 together with the arithmetic inequality, for h sufficiently small we have

(β (u∗
h + ◦uh), (h(u∗

h + ◦uh))L2(!$
h )

= (βu∗
h, u∗

h)L2(!$
h ) + (β

◦uh, (h
◦uh)L2(!$

h )

+ (βu∗
h, (hu∗

h − u∗
h)L2(!$

h ) + (β u∗
h, (h

◦uh)L2(!$
h ) + (β

◦uh, (hu∗
h)L2(!$

h )

≥ min{β−, β+}‖u∗
h‖2

L2(!$
h )

+ C4‖
◦uh‖2

L2(!$
h )

− max{β−, β+}
(

2C2
3C2h2‖curl uh‖2

L2(!) + C2C3h‖curl uh‖2
L2(!) + C2C3h‖ ◦uh‖2

L2(!$
h )

)

≥ min{β−, β+}‖u∗
h‖2

L2(!$
h )

+ (C4 − hC2C3 max{β−, β+})‖ ◦uh‖2
L2(!$

h )

− max{β−, β+}C2C3(2C3h + 1)h‖curl uh‖2
L2(!)

≥ min{β−, β+, C4}/2‖uh‖2
L2(!$

h )
− max{β−, β+}C2C3(2C3h + 1)h‖curl uh‖2

L2(!), (5.31)

where C2, C3 and C4 inherit from Theorem 5.3, Lemmas 9 and 10, respectively. Let C5 = max{β−, β+}
C2C3(2C3h + 1). Noticing that ◦uh is curl-free, we finally obtain from Theorem 5.4 and (5.29)–(5.31)
that

ah(uh, (huh) = (µ curl uh, curl (huh)L2(!) + (β uh, (huh)L2(!\!$
h ) + (β uh, (huh)L2(!$

h )

≥ (1/ min{µ−, µ+} − C5h)‖curl uh‖2
L2(!)

+ min{β−, β+, C4}/2‖uh‖2
L2(!$

h )
+ min{β−, β+}‖uh‖2

L2(!\!$
h )

≥ Cs‖uh‖2
H(curl; !), (5.32)

which yields the desired result for h sufficiently small.
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Remark 5.1. (Comments on the analysis of the inf-sup stability.) If β− = β+, Remark 3.4 indicates the
curl-free subspaces of FE and IFE spaces are identical. So we have a Poincaré-type inequality:

‖uh − (huh‖L2(T) ! hT‖curl uh‖L2(T), uh ∈ INDh(T). (5.33)

Then the analysis of the inf-sup stability is straightforward by using (5.33) to estimate the term
(βuh, (huh)L2(!). However, the estimate (5.33) is only true for continuous conductivity. In fact, INDh(T)
cannot recover the local spaces of constant vectors when the conductivity is discontinuous.

By inspecting the proof of Theorem 5.5, one critical ingredient is the inf-sup stability on the curl-
free subspace, i.e., Lemma 10. In this lemma, the Cartesian-mesh assumption is for relatively easy
calculation, and we expect that some other bounds can be also obtained for various-shaped elements
through a similar derivation, but we note that the critical upper bound value should depend on the mesh
geometry. In fact, from (B.4) and the related calculation, the constant C4 in Lemma 10 can be specified
as C4 = C′

4(10.65 − max{β−/β+, β+/β−}) where C′
4 is independent of the mesh size, interface location

and parameters. So C4 may be close to 0 if the contrast of β gets close to this critical upper bound, which
causes the loss of coercivity. Indeed, numerical results suggest that (βuh, (huh)L2(!) fails to satisfy the
inf-sup condition when the contrast is beyond this bound.

Nevertheless, in numerical experiments, we have not observed any instability issue for large contrast
of conductivity. So for analysis, (h may not be a suitable operator to generate the test function, and
some more appropriate test functions are demanded. Due to the exact sequence in Theorem 3.5, this is
highly related to the inf-sup stability for the PG-IFE method for the H1-elliptic interface problems [44]
which remains open for years. Lemma 10 gives the estimate under some conditions.

Furthermore, we note that the condition of h being sufficiently small seems to be rather essential
not just for analysis, as the matrix A + At may have negative eigenvalues on coarse meshes for certain
interface shape where A is the resulting matrix given by (5.34). But again, this does not mean the original
inf-sup condition needs the requirement of fine meshes, as a more appropriate test function may be
chosen, see the discussion above.

5.4. Condition number estimation
Thanks to the isomorphism (h, the estimation of the condition number for the proposed method becomes
quite straightforward. In fact, our analysis reveals that its robustness with respect to small-cut elements
essentially relies on the stability of the isomorphism in Theorem 5.3. Let us denote the resulting linear
system as

Aū = f̄, (5.34)

where A is not symmetric due to the PG formulation unless µ+ = µ− and β+ = β−.
We first recall some estimates for standard Nédélec functions. For each vh ∈NDh,0(!) or INDh,0(!),

we define Ivh as the coefficients of the global shape functions associated with each edge. Then, there
holds that

m1‖Ivh‖2 " ‖vh‖L2(!) " M1‖Ivh‖2, ∀vh ∈NDh,0(!), (5.35a)

m2‖vh‖L2(!) " ‖vh‖H(curl; !) " h−1M2‖vh‖L2(!), ∀vh ∈NDh,0(!), (5.35b)

where mi and Mi, i = 1, 2, only depend on the shape regularity. Then, the isomorphism (h with
Theorem 5.3 immediately shows that these results should be also true for the IFE functions:

m1C−1
2 c2‖Ivh‖2 " ‖vh‖L2(!) " M1c−1

2 C2‖Ivh‖2, ∀vh ∈ INDh,0(!), (5.36a)

m2C−2
2 c2

2‖vh‖L2(!) " ‖vh‖H(curl; !) " h−1M2c−2
2 C2

2‖vh‖L2(!), ∀vh ∈ INDh,0(!). (5.36b)

where c2 and C2 are the constants from Theorem 5.3.

3��9��  0����:2 ������
 ����	
������������� /5��310��75�71�/"�
.6/:�021��7�!1:���"��:1��

https://doi.org/10.1017/S0956792522000390


24 R. Guo et al.

Lemma 11. Let κ2(·) be the spectral condition number of a matrix. Then κ2(A) ! h−2.

Proof. Based on (5.1) and (5.3), we use (5.35b) and (5.36b) to obtain

inf
uh∈INDh,0(!)

sup
vh∈NDh,0(!)

a(uh, vh)
‖uh‖L2(!)‖vh‖L2(!)

≥ Csm2
2C−2

2 c2
2, a(uh, vh) " C1M2

2c−2
2 C2

2h−2‖uh‖L2(!)‖vh‖L2(!).

(5.37)
Then, applying Theorem 3.1 in [30] together with (5.35a) and (5.36a), we arrive at

κ2(A) "
(
C1M2

1M2
2C5

2

) (
Csm2

1m
2
2c5

2

)−1
h−2. (5.38)

Remarkably, the constant in (5.38) only depends on parameters µ, β and the shape regularity of the
mesh.

6. Numerical examples
In this section, we present a group of numerical experiments to validate the previous analysis. We also
compare the numerical performance of the proposed PG-IFE method with a classic IFE (C-IFE) method
and a penalty-type IFE method, referred to as the partially penalised IFE method (PP-IFE) method in
the literature. The latter two use the Galerkin formulation, namely the IFE functions are used as both
the trial functions and test functions. More specifically, they are to find uh ∈ INDh(!) such that

a(i)
h (uh, vh) =

∫

!

f · vhdX ∀vh ∈ INDh(!), (6.1)

where i = 1, 2 and the bilinear form for the PP-IFE method is given by

a(1)
h (uh, vh) =

∫

!

µ−1curl uh · curl vhdX +
∫

!

βuh · vhdX −
∫

E i
h

{µ−1curl uh}e[vh · t]eds

−
∫

E i
h

{µ−1curl vh}e[uh · t]eds + c0 max{β−, β+}
hr

∫

E i
h

[uh · t]e · [vh · t]eds, (6.2)

in which E i
h denotes the collection of interface edges, c0 is a positive constant parameter indepen-

dent of the mesh size, r is a real number parameter, [wh · t]e = wh|T1 · t − wh|T2 · t, and {µ−1curl wh}e =
1
2

(
µ−1curl wh|T1 + µ−1curl wh|T2

)
, and the bilinear form for the classic IFE method is

a(2)
h (uh, vh) =

∫

!

µ−1curl uh · curl vhdX +
∫

!

βuh · vhdX. (6.3)

The penalty-type unfitted mesh methods can generally produce optimally convergent solutions for many
interface problems, but not for the H(curl) problem. See the numerical results below for the IFE method
and [19, 20] for the Nitsche’s penalty methods.

We consider a domain ! = (−1, 1) × (−1, 1) which is partitioned into N × N squares and each square
is then cut into two triangles along the diagonal, i.e., the triangular Cartesian mesh shown in the right plot
in Figure 10. Our first example is borrowed from [41]. We consider a circular interface $ : x2 + y2 = r2

1

that cuts ! into the inside subdomain !− and the outside one !+. On ! the exact solution is given by

u =









µ− (−k1(r2

1 − x2 − y2)y
)

µ− (−k1(r2
1 − x2 − y2)x

)



 in !−,




µ+ (−k2(r2

2 − x2 − y2)(r2
1 − x2 − y2)y

)

µ+ (−k2(r2
2 − x2 − y2)(r2

1 − x2 − y2)x
)



 in !+,

(6.4)
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Figure 11. The convergence rates for the errors e0 of PG-IFE, PPIFE and C-IFE methods. From left
to right: (µ+, β+) = (0.1, 10), (0.1, 100), (0.01, 10), (0.01, 100).

for which the boundary conditions and the right hand side f are calculated accordingly, and k2 = 20,
k1 = k2(r2

2 − r2
1) with r1 = π/5 and r2 = 1. We focus the numerical experiments on four groups of param-

eters: fixing µ− = β− = 1 and varying µ+ = 1/10 or 1/100 and β+ = 10 or 100. Here, we emphasise
that the analysis is though only for small contrast of conductivity (less than 10.56), there is no issue in
computation for larger contrast. Moreover, we choose the stability parameters in (6.2) to be c0 = 10 and
r = 1, and other choices such as c0 = −10, 0, 100 and r = −1, −1/2, 0, 1/2, 1 can give similar subopti-
mal results. Furthermore, we let e0 = ‖u − uh‖H(curl; !), and in order to study the convergence behaviour
around the interface, we also define the error

e1 = |!i
h|−1/2‖u − uh‖H(curl; !i

h), (6.5)

where !i
h is given by (5.14). A similar indicator was also used in [52] to study the error near the interface

for the H1-elliptic interface problems.
The results for the error e0 are presented in Figure 11 where the convergence behaviour of PG-IFE,

PP-IFE and C-IFE methods are indicated by black, red and blue curves, respectively. In addition, there
are three dashed lines with the corresponding colour indicating the expected convergence rate O(h) for
the PG-IFE method and the approximate rate O(h1/2) for the PP-IFE and C-IFE methods. The black
error curve almost overlaps with the corresponding dashed line for the PG-IFE method, namely its
convergence rate is certainly optimal. However, for the PP-IFE and C-IFE methods, the errors asymp-
totically have the suboptimal O(h1/2) convergence rates. Moreover, as the contrast of β becomes larger,
the advantages of the PG-IFE method over the other two are more evident.

It is worthwhile to point out that straightforwardly applying the argument of Theorem 2 in [19] actu-
ally suggests that the PP-IFE method should not converge at all near the interface. So we expect the loss
of O(h1/2) may be due to the pollution of the error near the interface over the whole domain. To further
study this issue, we compute and plot the error e1 defined in (6.5) for PG-IFE, PP-IFE and C-IFE meth-
ods in Figure 12. Still, the black dashed line indicates the expected optimal O(h) convergence rate for
the PG-IFE method which matches the true error curve quite well. So the method has optimal accuracy
even near the interface. But the numerical results clearly suggest that both the PP-IFE and the C-IFE
methods completely fail to converge near the interface. From the numerical experiments here and in
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Figure 12. The convergence rates for the errors e1 of PG-IFE, PPIFE and C-IFE methods. From left
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Figure 13. Left: a star-shaped interface. Right: the errors for (µ−, µ+) = (1, 0.01) and (β−, β+) =
(1, 100), (100, 1).

[19], we actually think this issue seems to be very difficult to overcome for penalty-type methods for the
proposed method. We believe it clearly shows advantages for the proposed PG formulation.

In the second example, we consider more complex interface geometry that has a star shape,
shown in the left plot in Figure 13. The interface has a level-set function: f (x, y) =

(
x2

1 + x2
2

)2
(1 +

0.6 sin (5θ (x1, x2)) − 0.2, where θ (x1, x2) is the angle of the point [x1, x2]t. We consider the exact solution
u(x1, x2) = (β±)−1∇f (x1, x2) in !±. The errors of numerical solutions are presented in the right plot in
Figure 13 which clearly indicate the optimal convergence rate.
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A. Construction of IFE Shape Functions
We present the detailed construction procedure for shape functions in (3.4). Without loss of generality,
we consider an element with the vertices Ai and edges ei, i = 1, 2, 3, with e1 = A2A3, e2 = A3A1 and
e3 = A1A2, see the left plot in Figure A1, where A1 locates at the origin (0,0), A1A2 aligns with the
x1 axis, and the interface $ cuts the edges A1A2 and A1A3 with two points D and E, i.e., $T

h = DE.
Let d = |A1D|/|A1A2| ∈ (0, 1] and e = |A1E|/|A1A3| ∈ (0, 1]. Consider a reference element T̂ shown in
the right plot in Figure A1 with the vertices Â1 = (0, 0), Â2 = (1, 0), Â3 = (0, 1) and the corresponding
edges êi, i = 1, 2, 3 with the tangential vectors t̂i. Then the affine mapping is given by FT = BTX̂ with
the Jacobian matrix BT . By this set-up, we have D̂ = F−1

T (D) = (d, 0), Ê = F−1
T (E) = (0, e) and X̂m =

[d/2, e/2]t. Moreover, we let ˆ̄t = [t̂1, t̂2]t and ˆ̄n = [n̂1, n̂2]t be the images of t̄ and n̄ under F−1
T . Here,

ˆ̄t is also the tangential vector of ÊD̂ but ˆ̄n may not be normal to ÊD̂ anymore, and they all may not
be unit vectors due to scaling. We further let ˆ̄n′ = [e, d]t be the normal vector to ÊD̂. By the Piola
transformation [16], an IFE function z can be represented as: z(X) = B−t

T (ẑ ◦ F−1
T )(X), where ẑ should

satisfy the following jump conditions on the reference element
[
ẑ · ˆ̄t

]

$̂T
h

= 0,
[
µ−1curl ẑ

]
$̂T

h
= 0,

[
β ẑ · ˆ̄n

]

X̂m

= 0. (A.1)

Let φ̂i be the local basis functions of NDh(T̂) associated with the edge êi, i = 1, 2, 3. Thus, using the
first condition in (A.1) together with (3.4) for i = 1, we have the following expression for ẑ:

ẑ =





ẑ− = v1φ̂1 + c2φ̂2 + c3φ̂3, in T−

h ,

ẑ+ = ẑ− + b1[x̂2, −(x̂1 − d)]t + b2[e, d]t, in T+
h ,

(A.2)

where the vectors [x̂2, −(x̂1 − d)]t and [e, d]t are orthogonal to ÊD̂, and c = [c2, c3]t and b = [b1, b2]t

are unknown coefficients to be determined. Using the rest two in (A.1), we can rewrite the following
equation for b and c

Ab = γ v1 + Bc (A.3)

where A =
[

1 0
α 2α

]
, γ =

[
κ

−λφ̂1(X̂m) · ˆ̄n

]

, B =
[

κ κ

−λφ̂2(X̂m) · ˆ̄n −λφ̂3(X̂m) · ˆ̄n

]

, with α =
1
2
(en̂1 + dn̂2) = 1

2
ˆ̄n′ · ˆ̄n, κ = 1 − µ+

µ− and λ = 1 − β−

β+ . Furthermore, we can use (3.4) for i = 2, 3 to obtain

I2c + Rb = v, (A.4)

where I2 is the 2 × 2 identity matrix, R = de[−1, −1;0, 1] and v = [v2, v3]t. Solving the linear systems
(A.3) and (A.4), we can compute all the unknown coefficients in (A.2).

A.1. Proof of Theorem 3.1
Under the notations above, by the assumption that T does not have obtuse angles, we can verify that

ˆ̄n′ · ˆ̄n > 0 and
de(n̂1 + n̂2)

ˆ̄n′ · ˆ̄n
∈ [0, 1]. (A.5)
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Figure A1. The affine mapping between the physical element and the reference element.

Since the derivation is quite technical and elementary, we postpone it to the end of this subsection.
By the first inequality above, we know that α = 1

2
ˆ̄n′ · ˆ̄n > 0 and thus A is invertible. So (A.3) gives the

formula to compute b in terms of c. Putting it into (A.4), we have the following linear system

(I + RA−1B)c = v − A−1γ v1. (A.6)

We only need to show the non-singularity of the matrix in I + RA−1B for the reference element. Direct
computation shows that the matrix I + RA−1B has two eigenvalues 1 − deκ and 1 − de(n̂1+n̂2)λ

en̂1+dn̂2
. Because

d, e ∈ [0, 1], using the second inequality in (A.5), we have

1 − deκ ≥ min
{

1,
µ+

µ−

}
> 0 and 1 − de(n̂1 + n̂2)λ

en̂1 + dn̂2
≥ min

{
1,

β−

β+

}
> 0,

which finishes the proof.
Now, let us go back to (A.5). First of all, we let l2 = |e2|, l3 = |e3| and θ =∠A3A1A2 as shown by the

left plot in Figure A1. Let δ be the angle between the normal vector n̄ and the x1 axis, and it is easy to
see δ ∈ [θ − π/2, π/2]. Then we can express BT and ˆ̄n as

BT =
[

l3 l2 cos (θ )

0 l2 sin (θ )

]

, and ˆ̄n = 1
l2l2 sin (θ )

[
l2 sin (θ − δ)

l3 sin (δ)

]

. (A.7)

For the first term in (A.5), by direct calculation, we have 2α = ˆ̄n′ · ˆ̄n = |$T
h |

l2l3 sin (θ)
> 0. For the second term

in (A.5), by direct computation we have.

n̂1 + n̂2 = l2 sin (θ − δ) + l3 sin (δ)
l2l3 sin (θ )

= cos (δ)
sin (θ )

(
sin (θ ) − cos (θ ) tan (δ)

l3
+ tan (δ)

l2

)
,

en̂1 + dn̂2 − de(n̂1 + n̂2) = l2l3 cos (θ )
(

e2(1 − d)
l2

l3 cos (θ )
+ d2(1 − e)

l3

l2 cos (θ )
− (2de − d2e − e2d)

)
.

It can be verified that both these two terms are non-negative since θ " π/2 and d, e ∈ [0, 1].

A.2. Proof of Theorem 3.2
We first give the explicit expression of the matrix in (A.6):

I + RA−1B =





1 + de
2

(
−κ + λs2

α

)
de
2

(
−κ + λs3

α

)

de
2

(
−κ − λs2

α

)
1 + de

2

(
−κ − λs3

α

)




, (A.8)
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Figure B1. Interface element configuration: Case 1(left) and Case 2(right).

where s2 = φ̂2(Xm) · ˆ̄n = − e
2
n̂1 +

(
d
2
− 1

)
n̂2 and s3 = φ̂3(Xm) · ˆ̄n =

(
1 − e

2

)
n̂1 + d

2
n̂2. Using (A.7), |$T

h | ≥
max{dl3, el2} sin (θ ) and the shape regularity of T and d, e " 1, we have | des2

α
! 1 and | des3

α
! 1. Therefore,

by (A.1) we have ‖(I + RA−1B)−1‖∞ ! 1. Furthermore, we note that

A−1γ =
[

κ

− 1
2
(κ + λ

α
s1)

]

, (A.9)

where s1 = φ̂1(Xm) · n̂ = (en̂1 − dn̂2)/2. Using (A.7), the shape regularity and d, e " 1, we have | s1
α
! 1,

and thus obtain ‖A−1γ ‖∞ ! 1. Putting the estimates above into the formula (A.6), we have ‖c‖∞ ! 1.
Next, we note that

A−1B =




κ κ

(
−κ − λ

s2

α

) (
−κ − λ

s3

α

)



 . (A.10)

Therefore, putting (A.9) and (A.10) into the formula for b in (A.3), we have |b1|! 1, and |b2|! 1 where
we have used the estimates for si/α, i = 1, 2, 3. Besides, the estimate |$T

h | ≥ max{dl3, el2} sin (θ ) yields
|b2|e, |b2|d ! 1. Finally, the estimates above together with (A.1) yield ‖ẑ‖L∞(T) ! 1. Hence, the desired
result (3.6a) follows from the Piola transformation. At last, (3.6b) can be derived by integration by parts.

B. Proof of Lemma 10
We let n̄ = [n1, n2] and t̄ = [−n2, n1] be the normal and tangential vectors to linearly-approximate inter-

face $T
h . Define a transmission orthogonal matrix Q = [t̄, n̄]t and a diagonal matrix %=

[
1 0
0 ρ

]
with

ρ = β−/β+. By the exact sequence for IFE functions, we know INDh(T) ∩ Ker(curl) consists of piece-
wise constant vectors on T , and thus, without loss of generality, we assume u−

h = uh|T−
h

is a constant unit
vector. Then we write u+

h = Qt%Qu−
h . So our object is to show

(uh, (huh)D ≥ Ch2 (B.1)

with some constant C independent of interface location. If D is just each interface element, the
desired estimate (B.1) may only hold with a more restrictive bound for ρ. Here, we shall include one
neighbourhood non-interface element T ’, i.e., let D = T ∪ T ′ for each T , to obtain a better bound for ρ.

To avoid redundancy, we only discuss the case that the interface cuts the two adjacent edges of a
non-right angle as shown in the right plot in Figure B1. The discussion for the case that the interface
cuts the two adjacent edges of the right angle, i.e., the left plot in Figure B1, is similar and actually easier
due to symmetry. Without loss of generality, we consider the element of the configuration shown by the
right plot in Figure B1, with the vertices A1 = (0, 0), A2 = (h, 0) and A3 = (h, h).
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In the following discussion, we shall employ (Tuh := (huh|T . We denote the unit normal and tangen-
tial vectors to the non-interface edge e1 connecting (h,0) and (h,h) by n1 and t1, and let u−

h = an1 + bt1

with a2 + b2 = 1. Without loss of generality, we assume a ≥ 0. Due to the continuity of uh along
the tangential direction of the non-interface edge, we have uh|T ′ = a′n1 + bt1 on T ’, and then obtain
uh · (T ′uh = a′2 + b2 on T ’. Therefore,
(βuh, (Tuh)L2(T) + (β−uh, (T ′uh)L2(T ′) = β−(u−

h · (Tuh + b2)|T−
h | + β+(u+

h · (Tuh + ρb2)|T+
h | + a′2|T ′|

(B.2)
where we have implicitly used |T ′| = |T|. We shall proceed to estimate each one of the first two terms
above.

Let the interface-intersection points be D = (dh, 0) and E = (eh, eh), d, e ∈ [0, 1]. Then, we can
express n1 = e/

√
(d − e)2 + e2 and n2 = (d − e)/

√
(d − e)2 + e2. By the direct calculation, we obtain

(Tuh = u−
h + (ρ − 1)

(d − e)2 + e2

[
de2 de(d − e)

0 0

]

u−
h = (I2 + (ρ − 1)B1)u−

h , (B.3)

which is a constant vector as (Tuh ∈ ∇Sh(T). Let α1 = nt
1B1n1 and α2 = nt

1B1t1, and notice tt
1B1 = 0.

Then,

u−
h · (Tuh = 1 + (ρ − 1)

(
a2α1 + abα2

)
. (B.4)

The direct calculation yields the following estimates

α1 = de2

(d − e)2 + e2
∈ [0, 1], α2 = de(d − e)

(d − e)2 + e2
∈
[
(1 −

√
2)/2, 0.5

]
and α2

1 + α2
2 " 1. (B.5)

Then if ρ " 1, using the estimate a2α1 + abα2 " a
√

a2 + b2
√

α2
1 + α2

2 " a, we have

u−
h |T · (Tuh ≥ 1 − a + ρa ≥ ρ. (B.6)

It remains to show the estimate for ρ > 1. If a2α1 + abα2 ≥ 0, then u−
h · (Tuh ≥ C. In addition, if a2α1 +

abα2 < 0, the direct calculation yields

−(1 + b2)
a2α1 + abα2

≥ 2
√

2

√
((d2 − 2de + 2e2)2(d2 − 2de + 3e2))

(d2(d − e)4e2)
+ 4((d − e)2 + e2)

d(d − e)2
≥ 2(4 + 2

√
2). (B.7)

Hence, the following estimate is true for ρ = β−/β+ ∈ (1, 9 + 4
√

2) where 9 + 4
√

2 ≈ 14.65

u−
h · (Tuh + b2 ≥ 1 + b2 + (ρ − 1)

(
a2α1 + abα2

)
≥ C. (B.8)

As for u+
h , the similar derivation yields

u+
h · (Tuh ≥ C if ρ−1 " 1 and u+

h · (Tuh + ρb2 ≥ C if ρ−1 " 10.655. (B.9)

Substituting (B.8) and (B.9) into (B.4) yields the desired result.
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