European Journal of Applied Mathematics (2023), 1-32

o
doi:10.1017/50956792522000390 CAMBRIDGE

UNIVERSITY PRESS

PAPER

Solving two-dimensional H(curl)-elliptic interface systems
with optimal convergence on unfitted meshes

Ruchi Guo!* @, Yanping Lin? and Jun Zou?

1De}c)a.rtrnent of Mathematics, University of California, Irvine, CA 92697, USA, 2Depa.rtment of Applied Mathematics, The
Hong Kong Polytechnic University, Kowloon, Hong Kong, China and 3Department of Mathematics, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong

*Correspondence author. Email: ruchig@uci.edu

Received: 19 February 2022; Revised: 09 October 2022; Accepted: 11 November 2022

Keywords: Maxwell equations, interface problems, H(curl)-elliptic equations, Nédélec elements, immersed finite element
methods, Petrov—Galerkin formulation, exact sequence

2020 Mathematics Subject Classification: 65N15 (Primary), 35R05,65N30 (Secondary)

Abstract

Finite element methods developed for unfitted meshes have been widely applied to various interface problems.
However, many of them resort to non-conforming spaces for approximation, which is a critical obstacle for the
extension to H(curl) equations. This essential issue stems from the underlying Sobolev space H’(curl; €2), and even
the widely used penalty methodology may not yield the optimal convergence rate. One promising approach to
circumvent this issue is to use a conforming test function space, which motivates us to develop a Petrov—Galerkin
immersed finite element (PG-IFE) method for H(curl)-elliptic interface problems. We establish the Nédélec-type
IFE spaces and develop some important properties including their edge degrees of freedom, an exact sequence
relating to the H' TIFE space and optimal approximation capabilities. We analyse the inf-sup condition under certain
assumptions and show the optimal convergence rate, which is also validated by numerical experiments.

1. Introduction

This article is devoted to solving a two-dimensional (2D) H(curl)-elliptic interface problem originating
from Maxwell equations on unfitted meshes. Let  C R? be a bounded domain, and let it contain two
subdomains Q* occupied by media with different electromagnetic properties. These two subdomains
are partitioned by a curve (interface) which is assumed to be a smooth simple Jordan curve and does
not touch the boundary as shown in Figure 1. The considered H(curl)-elliptic interface problem for an
electric field u: Q — R? is given by

curl p'curlu+ Bu=Ff NnQ=Q UQT, (1.1a)

with f € H(div; €2), subject to the Dirichlet boundary condition: u - t = 0 on 9€2, where the operator curl
is for vector functions v = [v, v,]' such that curl u = 9,, v, — 9,,v, while curl is for scalar functions v such
that curl v = [8X2V, —0y, v][ with “¢#” denoting the transpose. We consider the following jump conditions
at the interface:

[u-tlr:=u"-t—u -t=0, (1.1b)

[ curlu]y := icurl(u*) — Lcurl(u’) =0, (1.1¢)
u m-

[Bu-n]:= B*ut-n—Bu -n=0, (1.1d)
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Figure 1. The model domain.

where n and t denote the normal and tangential vectors to I', respectively, and u = u* and 8 = % in Q*
are assumed to be positive piecewise constant functions. The interface model (1.1) arises from each time
step in a stable time-marching scheme for the eddy current computation [4, 13, 27], which serves as a
magneto-quasistatic approximation by dropping the displacement current. It has been frequently used in
low frequency and high-conductivity applications. In this model, ;« denotes the magnetic permeability
and B ~ o/At is scaling of the conductivity o by the time-marching step size At. Note that the usual
variational weak formulation of (1.1) can naturally take care of the jump conditions in (1.1b) and (1.1c¢),
whereas (1.1d) comes from the underlying eddy current model [60]. We shall see that all the jump
conditions in (1.1b)—(1.1d) will be used in the construction of the IFE functions. For simplicity, we
only consider the homogeneous jump condition, and the non-homogeneous case can be handled by
introducing an enriched function, see [31, 38] and a recent work on theoretical analysis [1].

Interface problems widely appear in a large variety of science and engineering applications. The inter-
face problems related to Maxwell equations are of particular importance due to the omnipresent situation
of electromagnetic fields propagating through multiple materials/media, such as simulation of magnetic
actuators or design of nano/micro electric devices. In particular, we refer readers to the simulation of
plasma [59] in electromagnetic fields and non-destructive testing techniques such as electromagnetic
induction sensors [5] detecting buried low-metallic content.

Traditional finite element methods (FEMs) can be applied to solve interface problems based on
interface-fitted meshes [12, 52]. Particularly, many numerical methods have been developed to solve
Maxwell interface problems on fitted meshes. In [41], the authors analysed a standard FEM and estab-
lished an H'(curl; ©2)-extension theorem which is a very useful theoretical tool. In [49], the authors
explicitly specified the dependence of error bounds on material parameters. The study on precondition-
ers can be found in [65]. In addition, due to the potentially low regularity, there are many works focusing
on adaptive FEMs, see [18, 23, 29] and the reference therein. However, it is time-consuming to generate
fitted meshes in some applications, especially for complex interface geometry.

Alternatively, lots of research interests have been focussed on developing numerical methods with
less interface-fitted mesh requirements. One approach is to locally generate a fitted mesh to the interface
by further partitioning interface elements of a background unfitted mesh. But this approach requires
the refined triangularisation to satisfy a maximal angle condition [9], which needs some extra effort,
especially in 3D. Moreover, the resulting linear system could be more ill-conditioned since elements
may largely shrink. In contrast, designing special FEMs for unfitted meshes has gained more and more
attention. For instance, penalty-type methods [17, 50] employ two separate finite element (FE) spaces
discontinuous across the interface and enforce the jump conditions by Nitsche’s penalties on the inter-
face. Generalised FEMs [11] and multiscale FEMs [24, 45] construct some special non-polynomial
shape functions on interface elements by solving local problems.

Immersed FEMs (IFE methods) fall into the direction of constructing special shape functions.
Specifically, it constructs piecewise polynomials weakly satisfying jump conditions on interface ele-
ments [35, 54, 55]. In the past decades, IFE methods have been widely applied to different interface
problems, including elasticity [36, 57], fluid dynamics [2, 63] and so on. As a distinguishing feature of
the IFE method, there is certain isomorphism between the immersed finite element (IFE) and FE spaces
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such that the size and structure of stiffness and mass matrices depend purely on the mesh. Existing
works [33, 39, 56] show that it is particularly advantageous for moving interface problems. Our analysis
reveals that the isomorphism with its stability is also the key to circumventing the ill-conditioning issue
resulting from the shrinking subelements cut by the interface.

Despite their wide successful applications to various interface problems including fluid, elasticity
and wave propagation, e.g., [14, 32, 37], the aforementioned unfitted mesh methods are rarely applied to
H(curl)-elliptic interface problems. In fact, the H(curl) interface problem is significantly distinguished
from its H' counterpart due to the different underlying Sobolev space H'(curl; ) that has much lower
regularity than H?($2). For the H(curl) case, the expected optimal convergence of FEM computation
highly relies on the conformity of approximation spaces. Particularly, non-conforming methods demand
estimates on element boundary, but there only holds

—12
hK ”u - ﬂeu”Lz(e) S ”u”H'(curl;K)s (12)

where 7, is a projection to some polynomial space on one edge e of an element K, see Lemma 5.52
in [60]. Namely, curlu € H'(K) does not really help in enhancing the regularity and improving the
convergence order, which is the essential difference from the H' case. Thus, even for the regularity
assumption H'(curl; Q), the estimate in (1.2) indicates no convergence at all, which challenges many
non-conforming methods. The issue even causes troubles for the analysis of standard discontinuous
Galerkin (DG) methods on fitted meshes [46, 47], where the meta-framework of DG methods by directly
applying trace inequalities only yields suboptimal convergence rates due to (1.2). To avoid (1.2), the
approaches in [46, 47] rely on an H(curl)-conforming subspace of the broken DG space that has sufficient
approximation capabilities.

Indeed, almost all the unfitted mesh methods in the literature resort to non-conforming spaces, but
different from standard DG spaces, their broken spaces may not have the desired conforming subspaces.
Hence, the aforementioned non-conformity issue has become one big obstacle for these methods to
achieve optimal convergence. To our best knowledge, this issue was first observed and studied in [15]
for a mortar FEM on non-matching grids. In order to achieve the optimal convergence, the authors in
[15] assume the higher H? regularity and use the second family of Nédélec spaces. In fact, this setup
seems to be inevitable for non-conforming methods due to (1.2); for example, a recent work [58] carries
out the analysis for a Nitsche’s penalty method also under this setup. Otherwise, we refer readers to [19,
20] showing that a Nitsche’s penalty method can only lead to suboptimal results both computationally
and theoretically. The loss of convergence was then numerically studied in [62] with a realistic example.
For non-matching mesh methods, it is possible to circumvent the suboptimal result caused by (1.2).
For example, the authors in [48] improve the result in [15] by obtaining the optimal convergence with
only H'(curl; Q) regularity, but it needs the non-matching meshes to be nested at the interface such that
a certain conforming subspace exists. A similar approach is also used in [22] by assuming that non-
matching meshes are coupled in certain sense. In addition, we also refer readers to FDTD methods [66]
based on finite difference formulation for Maxwell equations.

In this work, we shall employ a completely different approach to attack the non-conformity issue,
based on one critical observation that the trouble is caused by non-conforming test spaces instead of
trial spaces. By this observation, we opt for an IFE method in a Petrov—Galerkin (PG) formulation
where the novel edge IFE functions are only used as the trial functions while the standard Nédélec
functions [13, 18, 23, 28, 29, 41] are used as the test functions. For this purpose, we need to construct
the Nédélec-type IFE functions according to the jump conditions (1.1b)—(1.1d), which have not appeared
in any literature. The proposed IFE functions also share some nice properties of the standard Nédélec
functions such as optimal approximation capabilities and a de Rham complex connecting to the H' IFE
functions. Moreover, the IFE spaces are isomorphic to the standard Nédélec spaces through the edge
interpolation operator, which is the key for the PG formulation. We show that the inf-sup condition can
be guaranteed regardless of interface location relative to the mesh, i.e., the optimal error bounds are
robust with respect to small-cut elements. Remarkably, we also show that the condition number of the
resulting linear system is bounded Ch~2 which is optimal with respect to mesh size, and the upper bound
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is also guaranteed independent of interface location. It is worthwhile to mention that even for standard
FEMs based on anisotropic meshes, the condition numbers may suffer from short edges.

The underlying idea of using specially developed problem-oriented trial functions but keeping stan-
dard test functions can be traced back to the fundamental work of Babuska et al. [10]. The similar idea
was also adopted in [45] by Hou et al. for a multi-scale FEM through PG formulation to remove cell
resonance errors. As for PG-IFE methods, we refer readers to [44] for H'-elliptic interface problems.
Our research demonstrates that the PG formulation is particularly useful here for H'(curl; )-elliptic
interface problems due to the failure of the widely used penalty methodology.

However, we highlight that the analysis of inf-sup stability for PG methods is not easy. In an early work
[10], the proof is based on the assumption that the PDE coefficient is only rough in one direction. The
argument in [45] relies on a certain approximation result between the specially constructed trial functions
and the standard test functions. We emphasise that there is no analysis available in the literature for PG-
IFE methods, except the 1D case [51]. In this work, we are able to show the inf-sup stability under certain
conditions. Our approach is based on a special regular discrete decomposition and the exact sequence for
IFE spaces. As an extra achievement, the inf-sup stability is established for the PG-IFE method solving
H'-elliptic interface problems [44]. Although this approach currently needs to assume a critical upper
bound on the jump of the conductivity discontinuity, we believe it still has theoretical importance and
may motivate the further analysis.

Although the present work only focuses on the 2D case, for which the proposed method may not be
of most practical interest, we think it is still able to shed some light on the more complicated 3D case.
Given the essential difficulty of unfitted mesh methods to H(curl) problems and the importance of the
problems, we believe the present study on the 2D case is still critical and fundamental. In fact, this is also
the first work among unfitted methods toward provable optimal convergence for the considered problem
with the H'(curl; ) regularity. In addition, although the analysis is complicated, the proposed scheme
itself is remarkably simple as no penalty is needed.

This article has additional six sections. In the next section, we describe some notations and assump-
tions frequently used in this article. In Section 3, we develop IFE functions and discuss their properties.
The PG-IFE method is also presented in this section. In Section 4, we prove the optimal approximation
capabilities. In Section 5, we analyse the inf-sup stability and the solution errors. In Section 6, we present
some numerical experiments to validate the theoretical analysis. Some technical results are presented in
the Appendix.

2. Notations and assumptions

In this section, we prepare some notations and assumptions. Let 7,, #> 0 be a family of interface-
independent and shape regular triangular meshes of the domain €2, and let &; be the diameter of an
element 7 € 7, and h = maxy.7, {hr} be the mesh size. Denote the sets of nodes and edges by NV, and &,,
respectively. In a mesh 7, the interface I' cuts some of its elements which are called interface elements
and their collection is denoted by 7,’, while the remaining elements are called non-interface elements
and their collection is 7;". Throughout this article, we write x < y for x < Cy for some generic constant
C that is independent of mesh size and interface location but may depend on the parameters w and 8. If
x < Cy and x 2 Cy hold simultaneously, we simply write x >~ y.
The analysis of this work is based on the following assumptions:

(A1) The mesh is generated such that the interface can only intersect each interface element 7 € 7, at
two distinct points which locate on two different edges of T'.

(A2) The triangular elements in the mesh do not have obtuse angles.

(A3) The contrast of the conductivity § is bounded by 10.65.

Assumption (A1) is fulfilled for a linear interface, and thus it should hold if a curved interface is
locally flat enough, i.e., the mesh is fine enough. By the assumption (A1), we define I'] as the line
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Figure 2. An unfitted mesh.

A:;

A

Figure 3. An interface element.

connecting the two intersection points of each interface element 7', let I'] cut T into two subelements
T, , T; and let T be the subregion sandwiched by I'7 and I' as shown in Figure 3. In addition, 7~ and
T* refer to the subelements partitioned by the interface curve itself instead of its linear approxima-
tion I'}. For Assumption (A2), IFE methods can be and are often used on simple triangular Cartesian
meshes as shown in Figure 2, especially for electromagnetic waves where computational domains are
often truncated as boxes. So we can generate Cartesian meshes for computation which certainly satisfy
Assumption (A2). In the following discussion, we shall focus on Cartesian meshes although most of
the results are applicable to general triangulation unless otherwise specified. Assumption (A3) is only
technically used for showing the inf-sup condition, see the details in Section 5.

Moreover, we assume the interface is well-resolved by the mesh, and it can be quantitatively described
in terms of the following lemma [34].

Lemma 1. Suppose the mesh is sufficiently fine such that h < hy, for some value hy, then on each interface
elementT € ,f,for every two points X, X, € I' N T with their normal vectors n(X,), n(X,) to I" and every
point X € U N T with its orthogonal projection X* onto T’

IX = X" $hy and [In(Xy) —nCO)| S Ay 2.1)

The explicit dependence of %, on the interface curvature can be found in [34].

Next we introduce some Sobolev spaces. For each subdomain w C 2, we let H*(w) and H'(w), k > 0,
be the standard scalar and R?-vector Hilbert spaces on w; in particular H(w) = L*(w) and H(w) =
L?*(w). In addition,

H'(curl; ) := {ve H'(w): curlv e H(w)} . (2.2)
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For simplicity, we shall drop “0" if k = 0; namely H(curl; ) = H’(curl; w). If [o N T'| # 0, we let o* =
Q* N w and further define the broken space for k > % as

H' (curl; 0) := {veLw):v|,: € H* (curl; 0*) , v satisfies the jump conditions in (1.1b)~(1.1d)} .

2.3)
For all these spaces, Hy(w), Hg(w), Hg(curl; w) and ﬁg(curl; ) denote the subspaces with the zero trace
on dw. The associated norms are denoted by | - || s, |l - ll12) (here we do not distinguish || - ||« and

Il - I, for standard Hilbert spaces for simplicity), || + llueur; ) a0d 1| - 5! curt: o)-
For discretisation, we shall employ the first family Nédélec element of the lowest degree [61]:

NDW(T)={a+b[x,,—x,] :a€R*, bR},
ND,(Q)={veH(curl; Q):v|, e ND,(T) YT € T} . 2.4)

Let N'D,,(2) denote the subspace of N'D,(2) with the zero trace on d2. On an element 7, the
space N'D,(T) can be equipped with the well-known edge interpolation operator [25, 60] denoted by
I, : H'(curl; T) —> N'D,(T). Then the global interpolation operator IT,, : H'(curl; ) — N'D,(R2) can
be defined in a usual piecewise manner. The following optimal approximation capabilities hold [25, 60]:

o — HT“”H(curl; T) ,S hT”u”H‘(curl; 7) and |lu— nhu”H(curl; Q) f, h”u”H‘(curl; Q). (2.5)

In addition, we let S,(2) C H'(2) be the continuous piecewise linear finite element space, and also
define I, : H*(R2) — S,(£2) as the standard nodal interpolation operator. Also let S, ,(£2) be the subspace
of S,(L2) with the zero trace on 9€2.

Following [41], we make a more practical assumption than most existing studies for the exact solution
to the interface problem (1), namely the piecewise smoothness u € ﬁé(curl; 2). Given a convex domain
2, such an assumption is satisfied when the interface is a smooth simple Jordan curve and does not
touch the boundary [3, 26, 49]. Even so, the estimate in (1.2) may make algorithms fail to converge.
In more practical situations, weaker regularities may be produced by less smooth geometries, such as
non-convex polygonal domains or non-smooth interfaces. In fact, with a Helmholtz decomposition, the
singular part of u can be expressed in the form of a gradient whose regularity may be worse due to the
interface. We refer readers to Section 4.3 in [15] and Theorem 2 in [19] for the discussion about how
the convergence of non-conforming methods can be affected by regularity. According to the tangen-
tial continuity jump condition, we note that ﬁé(curl; Q) C Hy(curl; 2), and in particular we can further
conclude ﬁ(l)(curl; ) C Hj(€2), 0 < s < 1/2, by Theorem 4.1 in [40].

We are now ready to state the variational formulation of the system (1.1): find u € Hy(curl; 2) such
that

a(a,v) = / f-vdX VveHy(curl; Q), (2.6)
Q
where the bilinear form is given by

a(u, v)=/ w'eurla - curl VdX-l—/ Bu - vdX. 2.7
Q Q

It naturally leads to an energy norm ||v||, = a(v, v)?, and itis easy tosee || - ||, is equivalent to || - || mecur: 2)-
We end this section by recalling an H'(curl; ©)-extension operator [41, Theorem 3.4 and
Corollary 3.5].

Theorem 2.1. There exist two bounded linear operators Eciurl :H' (curl; Q%) — H'(curl; ), such that
for each u € H' (curl; Q%):
1. Ei u=u ae.in Q%

2. ||Eciuﬂu||H1(cuﬂ; o < Cellullgi o, o+ With the constant Cy only depending on Q*.

Using these two special extension operators, we can define ui = E_ u* which are crucial to the
following analysis.
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3. IFE discretisation

In this section, we first develop the Nédélec-type IFE functions which are then used in a PG formulation
to solve the H(curl)-elliptic interface problem. In addition, we will present an exact sequence that will
be technically used in the stability analysis.

3.1. The edge IFE spaces

It is generally convenient and useful to consider an IFE function as an extension of one polynomial
component to another. So given each interface element 7 € 7,/, we let t and i be the tangential and normal
vectors to the segment I'7. Then we consider a linear operator C; : N'D,, (Th‘ ) — N'Dy(T,) satisfying:

Cr(v) -t=v, -t onl/, (3.1a)
1 1
—curl C;(v;,) = —curlv, inT, (3.1b)
ur m-
ﬁ+CT(Vh) : ﬁzﬁ_vh . ﬁ atXm’ (3]C)

where X,, = [%,,1, X,.2] is a middle point of I'Y. But the approximate jump conditions in (3.1) may be
imposed at any point at I}, and we choose the midpoint X,, for simplifying the derivation. This linear
operator is not only well defined but also bijective, which is valid for both 7, and 7, being of general
polygonal shape. It does not affect our subsequent analysis if C; is defined the other way around, i.e.,
from N'D,(T;") to N'D, (Th’ ) In particular, we can establish the explicit format for the operator C;. Let
us denote X = [x;, x,]' € R?, let D be one intersection point of I and 37 shown in Figure 3 and take the
rotation matrix R=1[0, 1; — 1, 0], then

CT(vll)ZVh+blR[X_D]+b2ﬁ» VvheNDh (Th_)’
1 + - b,|TT
with by == |1-— Ll curlv, and b, = 'B— —1)v,(X,) n— M (3.2)
2 w- B+ 2
One can immediately verify that the linear mapping in (3.2) satisfies (3.1) and is bijective. This mapping
will be useful in both the analysis of approximation capabilities and trace inequalities.
Furthermore, we have simple formulas for the IFE functions satisfying (3.1). Define a transformation

matrix
| BB O
My =[n,t n, tf',
r=[n,t] |: 0 | (n, t]
and a piecewise constant vector space C,(T) = {a|Th:: cR%: alyr = Mqal,- }. Then we can define the local
IFE space on each interface element as

INDIz(T) == {Zh 1z, = I'Lb[(-XZ - m,2)7 _(-xl - -xm,l)]t + a, Vb S I[DO(T)’ ac Ch(T)} (33)

Note that the format is close to the standard Nédélec functions in (2.4) where the only difference is on
the piecewise-defined constants (vectors). Also, there holds dim(ZND,(T)) = 3 which is identical to
the standard one. Besides, one can verify that z, in (3.3) satisfies z; = Cr(z; ). Hence, by (3.1a), we can
see ZN'D,(T) C H(curl; T), but ZND(T) ¢ H'(curl; T) due to (3.1b).

Remark 3.1. From (3.2), it is not hard to see that both b, and b, will vanish if u~ = u* and g~ = g".
In this case, C; reduces to an identity operator, and thus the proposed IFE functions are consistent with
standard Nédélec functions. This feature is particularly useful for moving interface problems.

Next, to construct suitable global IFE spaces, it is important to select local basis functions in
IND,(T) with the edge degrees of freedom (DoFs) since they can match the standard Nédélec spaces,
and thus the edge DoFs can glue the IFE functions on interface elements with the Nédélec functions
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Figure 4. IFE shape functions associated with each edge of an interface element.

on the surrouding non-interface elements. In particular, for an element 7" with the edges e; and the
corresponding tangential vectors t;, i = 1, 2, 3, we impose the DoFs for functions in ZN D, (T):

/z-t,-ds:v,-, i=1,2,3 (3.4)

with some values v; € R. The unisolvence is established in the following theorem.

Theorem 3.1. (Unisolvence) Suppose that T does not have an obtuse angle, then the DoFs (3.4) are
unisolvent on TN'D,(T) regardless of the interface location or the parameters y and B.

Proof. See Appendix A.1 O

Theorem 3.1 guarantees the existence of local IFE shape functions by taking v; to be 0 or 1 in (3.4),
namely there exist ¥, € ZN'D,(T) such that |, ; ¥, tds =34y, i,j=1,2,3. Then the local IFE space
(3.3) can be rewritten as

IND(T)=Span{¥;,, V75, V7). (3.5)

We also provide the detailed construction approach of IFE shape functions in Appendix A.l.
Furthermore, we can prove the following properties of these shape functions.

Theorem 3.2. Suppose that T does not have an obtuse angle and is shape regular, then fori=1,2,3

there hold
||'/’T,,'||L°°(T) 5 h;l, (3.6a)
wleurl ¥ =2(T |u™ + |TH )" Sh” (3.6b)
Proof. See Appendix A.2. U

Remark 3.2. Theorem 3.1 means that the unisolvence always holds regardless of interface location and
the parameters §, u if the maximal angle is not greater than 77 /2. Besides, if the maximal angle is close
or equal to /2, the constants in Theorem 3.2 do not blow up. But for an obtuse triangle, it is possible
to find some interface configuration and 8, u to violate the unisolvence, and in this case, the constants
in Theorem 3.2 may blow up.

Here, we plot some examples of IFE shape functions, i.e., ¥, constructed above, in Figure 4 where
the interface is the red line and the parameters for the media below and above the interface are (u, 8) =
(1/2, 1) and (1,10), respectively. We see that the vector fields are discontinuous across the interface.

As usual, the local IFE spaces on non-interface elements are simply defined as the standard Nédélec
spaces ZND,(T) = N'D,(T). Hence, we can define the global IFE space:

INDL(Q) = {veLz(Q):v|TeINDh(T) YT €T, /[v~t]gds=0 Veeéh}. 3.7)
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Let ZN'D,,((2) be the subspace with the zero trace on 9. In addition, we mimic the standard edge
interpolation to define a similar one for the IFE space ZN D, (R):

i1, : H'(curl; Q) —s ZN'D,(Q) with / Mu-tds = f u-tds, Vee&,. (3.8)

e e

Again we have the local interpolation ﬁT = ﬁh | for each element 7.

3.2. A Petrov-Galerkin IFE scheme

The proposed PG-IFE scheme relies on the isomorphism between ZN'D,(2) and N'D,(R2), as the
resulting linear system needs to be square. The isomorphism can be described by an operator
I, : INDy(2) —> N'D,(R2) defined in the same manner as the interpolation due to the edge DoFs.
We note that IT, can be understood as the interpolation operator I, applied to the space ZND,(R),
while H;l can be understood as ﬁh in (3.8) applied to the space N'D,(R2). To show how IFE functions
are related to their FE counterparts through IT,, here we plot an example of the vector field in Figure 5
where clearly they are identical except at the interface.
Then the PG-IFE scheme is to find u, € ZN'D,,((£2) such that

a(llh, Vh) = / f *Vp dX VV,, (S ./\/’D],Y()(Q), (39)
Q

where the bilinear form is defined in (2.7). Although the local IFE spaces ZAD,(T) are subspaces of
H(curl; T), the global space in (3.7) is not H(curl)-conforming. To see this, we note that fe [v,-t]l.ds=0
does not lead to [v,, - t], = 0 since v, - t is not a constant on e. As mentioned before, this non-conformity
widely appears in many interface-unfitted methods either on element boundary [34, 55] or on the inter-
face itself [17, 50]. Penalties are usually used to handle it for both consistency and stability such that
optimal convergence can be obtained. Due to the reason described in the introduction, the penalty is
troublesome for H(curl) problems. Indeed, for the IFE method, numerical results in Section 6 indicate
that solutions of the penalty-type scheme or the standard Galerkin scheme do not converge at all near
the interface.

3.3. Characterisation of immersed elements

In this subsection, we follow the spirit of the well-known de Rham complex [6] to derive some analogue
properties for the IFE spaces, which is the foundation in the analysis of the inf-sup stability in Section 5.

We first recall the H' immersed elements in the literature [34, 53]. The scalar solution u* := u|q+ of
the H'-elliptic interface problem should satisfy the jump conditions at the interface:

ut=u" and B*Vu"-n=B"Vu -n onT, (3.10)

where B* are assumed to be the same as those in (1.1), i.e., conductivity in physics. We define the
Sobolev space

HA(Q) = {ve H'(Q):v|o: € H}(Q¥) and v satisfies the jump conditions in (3.10)} .
Then the local H' IFE space on each interface element, i.e., the one shown in Figure 3, is defined as
SUD = {25 =2l €T, 5 =2, BV =BV - onT]). (3.11)

Clearly there holds S,,(T) C H'(T), and one can pick shape functions from S,,(T) with the nodal value
DoFs. Then, we let Sh(Q) be a global IFE space continuous at the mesh nodes, and let Sho(Q) be the
zero-trace subspace. There generally holds S,(22) C H'(2) due to the discontinuities across interface
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Figure 5. A global H(curl) IFE function and its FE isomorphic image.

edges, but the nodal DoFs still enable us to define the nodal interpolation 1,. We refer readers to [53] for
more details.

HA(Q) > Hcurl; Q) HA(Q) — Hy(curl; Q)
llh lnh Ji,, lﬁh (3.12)
$10() — NDy(2)  S,0(Q) —> IND, ()
According to the well-known de Rham complex [6, 7], we plot the diagram for HS(Q) and H(l)(curl; Q)

spaces in the left of (3.12) which is commutative. The IFE spaces share the similar property shown by the
right plot in (3.12) where the gradient V is understood element-wisely. Here, we note that functions in
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Figure 6. A global H' IFE function and its FE isomorphic image.

VI?I(%(SZ) satisfy the jump conditions (1.1b) and (1.1d) because of (3.10) and satisfy (1.1c) because they
are curl-free, and thus VITI§(§2) C ITI(I)(curl; 2). The next lemma shows this new diagram is well-defined.

Lemma 2. For IFE spaces, there holds VE,,,O(Q) CIND, ().

Proof. The local results Vgh(T) C IND,(T) are trivial due to the jump conditions. The global result
is non-trivial due to the discontinuities on interface edges. For each interface edge e € &, we need to
show fe [Vv, -t ]ds =0, v, € S,(2). Let A; and A, be the two nodes of ¢, let t, be oriented from A, to A,
and let 7, and T, be its neighbour elements. Then the continuity at the interface intersection point of e
yields

/ Voulr, - tuds = / B Vil ds = Vil (A1) = valr, (As). (3.13)

A similar identity also holds for 7,. Therefore, the continuity at mesh nodes yields the desired result. [J
The next result is for the commuting property of IFE spaces.
Theorem 3.3. The diagram on the right of (3.12) is commutative, namely M,oV=Vol,on 173(9).

Proof. The result is trivial on non-interface elements, and, on interface elements, it follows from the
argument similar to (3.13) and the nodal continuity of /,v and v € Hé(Q). O]

To show the exactness, we also need the isomorphism I, : S,(2) — g,,(SZ) that is deﬁnqg in the same
manner as the usual nodal interpolation. Similarly, I, can be understood as , applied to S,(2) and I,
can be understood as 1, applied to S,(£2). The new notations I, and IT, are just used to emphasise the
isomorphism. Here, we also plot an H' IFE function and its FE isomorphic image in Figure 6.

Remark 3.3. By similar arguments to Theorem 3.3, the following commuting properties also hold
M,oV=Vol, onS,,(Q) and I;'oV=Vol' onS,(Q). (3.14)
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Furthermore, we can show that IT, yields an isomorphism between Ker(curl) N ZN D, (£2) and
Ker(curl) " A'D,,0(S2).

Theorem 3.4. T1, is an isomorphism between Ker(curl) N ZN'D,,o(2) and Ker(curl) N N'D,,o(€2).

Proof. Let us focus on an interface element 7', and recall that ¥, i = 1, 2, 3, are the H(curl) IFE shape
functions. By the identity in (3.6b), we let T = p~'curl ¢, i = 1,2, 3. For each z, € ND,(2), we note
that i~ 'curl I, 'z, is a constant, and then the integration by parts yields

3
wcurl I, 'z, = Z f z, - tdsp'curl ¥, :/ z, -trds = / curlz,dX T = |T|rcurlz,.  (3.15)
i—1 ej aT T

The identity above shows that curl z, = 0 if and only if curl H;lzh =0, and similar results also hold on
non-interface elements. Thus, we have the desired result. O

Remark 3.4. We note that Ker(curl) N A'D,,,(2) and Ker(curl) N ZN D,,,(£2) consist of piecewise con-
stant vectors but functions of the latter one on interface elements are piecewise constant vectors on each
subelement. If 8~ = B, then the piecewise constant vector on each interface element will reduce to a sin-
gle constant vector. Therefore, by the self-preserving property of I, there holds I, |[kercurynzap, o) = L
where 7 is the identity.

Theorem 3.5. For the IFE spaces, the sequence E,,YO(Q) Y IND, () o Q,, is exact, where Q;, C
L*(Q2) is a piecewise constant space, namely

Vgh’O(Q) = Ker(curl) N ZND,,o(Q) = {z, € IN'D,,,(2) : curl z, = 0}. (3.16)

Proof. By Lemma 2, it is easy to see VE,LO(Q) C Ker(curl) N ZN'D,,,(2). As for the reverse direction,
for each z, € Ker(curl) N ZN'D,,,(£2), Theorem 3.4 suggests I1,z, € Ker(curl) N N'D,((2). Then, due
to the exact sequence for S,,((2) and N'D,,((£2), there exists s;, € S;,o(2) such that Vs, = IT,z,. Now we
take 5, = I"'s, and use (3.14) to obtain V5, = VI, 's, = I1, ' Vs, = I1; 'I1,z, = z, which has finished the
proof. O

4. Approximation capabilities

In this section, we analyse approximation capabilities of the IFE space (3.7) through the interpolation I:Ih
in (3.8). We shall first define a quasi interpolation to handle the jump condition, which will then be used
to estimate the edge interpolation. The main difficulty is on interface elements due to the insufficient
regularity of IFE functions.

4.1. A special quasi-interpolation
We introduce a patch w; for an element 7"
wr=U{T €T,: T NT #0}. 4.1
Then foreach T € 7? , we define its fictitious element:
) — —
T, = {XeR .Y e Tsit. OTX=GOTY}, 4.2)

where O7 is the homothetic centre which can be simply chosen as the centroid of 7', and € > 1 is a scaling
factor. In the following analysis, we assume there exists a fixed €, > 1 such that for each T there holds
T,, € wy. It is easy to see that this assumption is fulfilled if the mesh is regular, see the illustration in
Figure 7. Without loss of generality, from now on we shall fix € = ¢, for all fictitious elements. The reason
for using fictitious elements is that each subelement of 7T, has a regular shape; namely, the inscribed ball
has a lower bounded radius. We refer readers to Lemma 3.2 in [35] for more details. This property is
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Figure 7. A fictitious element and a patch.

important for making those generic constants in error estimates independent of interface location. In
particular, we let ', be the extension of the straight line I' to T., see Figure 7 for an illustration, and
there holds for some uniform § independent of interface location such that

L7 | > 8hy. (4.3)

Now we are ready to define the special interpolation operator

~1 Jru=TIIru; inT_,
Jr:H (curl; T,) — INDW(T.) with Jru= (4.4)
J;-—u:CT (HTEUE) in T:—,

where I17,u; is a polynomial on 7, but restricted onto 7~ to apply Cr. In fact, since polynomials can
be naturally extended to everywhere, in the following analysis we always use Iy, u;, Cr (I'ITE ug) (those
polynomials defined on subelements) on the whole T.. Here, it is worthwhile to mention that N'D,(T%),
N D,(T*) and ND,(T.) are the same polynomial spaces but defined on different region. We shall only
use N'D,(T,) to denote the Nédélec space associated with both T and T, for simplicity. The motivation
behind the special interpolation operator (4.4) is a relation connecting different extension and interpo-
lation operators including Eciurl, Cr, and Iy, illustrated by the diagram in Figure 8. It suggests a delicate
decomposition of the interpolation error Jru — u into the errors of I1;, uf — ui and the error from Cr
which is specifically denoted as

N, = Hnuz —Cr(Ipuy) € ND(T,). 4.5)

The error 5, will be the main concern in the analysis below. Its estimation relies on a specially designed
norm (4.6) that is constructed from the jump conditions:

IValll7, = hrlva(X,) - 0> + v, - i”iz(rhTe) + [lcurl v, ”iz(l—}?)v Vv, € ND(To). (4.6)

Lemma 3. The norm equivalence th/2||| Mz = I+ a7,y holds on N'Dy(T.) where the constants in
the equivalence relation are independent of interface location.

Proof. Given each v, € N'D,(T.), since v, is simply a polynomial, using (4.3), the trace inequality and
the inverse inequality, we have

1/2 _ _ —12
hr/ [vi(X) - 1| < ||V, - n”LZ(rhTf) Shr / Vil 2y

z —1/2 —1/2
(Vs 't||L2(rhTf) Shy / Va2, llcurl Vh“LZ(I‘,‘T‘) Shy / lcurl v, || 2,
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uj Ug
Jru %
HTFUE \ IIrug
. inT* / Tug
Cr(Ilzug)

Figure 8. The diagram for interpolation errors.

This yields |[|v,lllz, < h;l/ vl Heu: 7,)- FOI the reverse direction, by the Taylor expansion, we have
|
Vh(X) == Vh(Xm) + Vvh(Xm)(X - Xm) - Vh(Xm) : ﬁ + Vh(Xm) -t— Ecurl Vi R(X - Xm)’ (47)
where R = [0, 1; —1, 0] € R*>*?, since curl v, is a constant. Then we have

1, ||L2(T€) f, hr|vi(X,,) - m+ hr|v,(X,,) - t + h§|curl V. (4.8)

We note that v, - t can be understood as a polynomial defined on I'}, and |curl v, | is a constant, and thus
they can be simply bounded by the standard trace inequality from I'/* to T.. Therefore, we have

IVallzo S hrlVaG) - B+ A1V Ell o ey + B leutd Vil aorey ShValllz. (4.9)
In addition, there also holds
172
lleurl Villiiry = (1T1/IT5 1) el vill o prey < by lleurd vl ooy
because of the mesh regularity and (4.3), which has finished the proof. O

Since a linear approximation of the interface is used for constructing IFE functions, we need to
estimate the jumps on this approximated interface.

Lemmad. Foruce ﬁl(curl; Q) and for each interface element T and the associated T, there hold

I €= g By (10l + 10 ) (4.102)

||ﬂ+uz ‘N — ,37“; : ﬁ”LZ(Tg) S hr(”“é”ﬂl(n) + ||u; ||H1(T€))s (4.10b)

It "curluf — (o) eurl wg [l < hT(chrl i, + llcurl ug||H1<T€)>. (4.10¢)

Proof. Since the proof is basically the same as Lemma 3.3 in [35], we omit it here. ]

Now we can estimate the error p,, (4.5) indicted by the dashed line of the diagram in Figure 8.
Lemma 5. Suppose u e ﬁl(curl; Q), then for each element T and the associated T,

1/2 —
|||nh|||T€ 5 hT (”ug”l{l(cur];wr) + ”uE ”H'(curl;wr)) . (411)
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Proof. We need to estimate each term in the definition (4.6). First, by (4.3) and the trace inequality, we

have
In,(X,) -n|=|{II u+—ﬂ;n u; | (X, -n| <k 1T u+—ﬂ;H u |-n
LAS = ety gy e T ety gyl
ug) -0z € Py (T';). Since My, uj — g—;l’[reug is
g

a polynomial, applying the trace inequality for polynomials [64], we induce from (4.12) that
B~ > _
Myu; — =T, u, |-n

< E ﬂ+ e L2(Te)
B _
+ H <—u —uf )-n .
LA(Te) A : LA(Te)
Applying the estimate (2.5) for I1;, on 7, and (4.10b) to the estimate above, we have
[7,(X,) -n| S < (”uE “Hl(curl )+ ||UE “Hl(curl TE)) (4.13)

B~ _
<h;' (||(HTJIE —u;) A2, + H( [Myu; ———u, )-n
By similar arguments, using (4.10a) and (4.10c), we have the following estimates

,  (4.12)

L2(r;)

where we have also used (3.1c) and (HTE u) — %HT

€

n,(X,) - 0| < hy'

- 82 ey + leurd a2 ey S R (10 Nt o + 10 Dt un 7)) - (4.14)
Then the desired result follows from (4.13) to (4.14) together with the assumption that 7, C w;. ]
Next, we use the idea of the diagram 8 to estimate the interpolation errors.
Theorem 4.1. Suppose u € ﬁl(curl; Q), then on each interface element T and T,

||J$u - u;”H(curl Te) hT (”uE ”Hl(curl P ||uE ||H]((.url (ur)) (4.15)

Proof. By the definition in (4.4), the estimate of J-u —u, = Iy u; —u; in 7 directly follows from
applying (2.5) to I1;, which is simply the right-hand side of the dlagram in Figure 8. So we only need
to estimate the error on 7.". By (4.5), we first have the following error decomposition

||];'u - “Z”H(cml;n) < Iyl 7o) + ||HTJ12r - ug”H(curl;TE)~ (4.16)

Again the second term in the right-hand side of (4.16) follows from applying (2.5) to I1;,. For the first
term, using the norm equivalence in Lemaa 3 together with the estimate in Lemaa 5, we have

12 _
”nh”H(curl Te) ~o < h |||7’h|||TE 5 hT (”ug”H](curl;mr) + ”uE ”Hl(curl;mT)) s (417)

which has finished the proof by the assumption that 7, C w;. O

4.2. The edge interpolation

Theorem 4.1 already guarantees the local optimal approximation capabilities on interface elements.
However, in order to estimate the global results, we need to employ the interpolation operators M, and
I, in (3.8). For this purpose, recalling that 7;" is partitioned by I/, we introduce an auxiliary function
which is piecewise defined as

w=u; —Jru with w* =u; —J;u inT;, (4.18)

which will help in simplifying the discussion. Note that w only slightly differs from u — Jru in T, the
subelement sandwiched by I'] and I" shown in Figure 3, since u is defined with the interface I itself.
Importantly, we have w|;r = (u — Jru)|;7.

Theorem 4.2. Suppose u H (curl; 2), then for each interface element T

” HTu u||L2(T) ~ (”u;”HI(curl;a)T) + ”ug ”Hl(cur];wr)) . (419)
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Proof. Given an interface element 7" with the edges e;, i = 1, 2, 3, the triangular inequality yields
T — 2y < 117w — Jrull 2y + 170 — ull2. (4.20)

The estimate of the second term in (4.20) directly follows from Theorem 4.1. So we only need to estimate
the first term. Note that IT;u — Jru = I1; (u — Jyu). Using the IFE shape functions, we can write

3 3
Mr(u—Jruy=>" / (—Jru) - tds, =Y / w - tdsy,. 4.21)
i=1 v i=1 Ye

By Holder’s inequality and the boundedness (3.6a), we have

/ W t,-ds

Then, by the scaling arguments for Nédélec elements in [25, Lemma 3.2], we have

3

1Willoa Sh® Y (W - tloe + IW - tlee) . (422)

i=1

3
(TIr(u — Jrw) |l 2 <

i=1

W™ -tz = 1M uy —w) - tlzey S A (105 ey + 105 e unir) - (4.23)
In addition, the triangular inequality yields
||VV+ tllen < my, - tllze) + ||(HTFUE - u;f) “tll2en- (4.24)

Since 5, is a polynomial, by the trace inequality for polynomials [64], the estimate in Lemma 5 and the
norm equivalence in Lemma 3, we have

Y 12 _
7, - tlle) 5 hy 17,1l 27 5 [, Il 7. 5 hy (”uz‘r”H'(curl;Tg) + ||llE ”Hl(curl;Ts)) . (4.25)

The estimate for ||(TT7, u} —u}) - t]l;2(, in (4.24) is the same as (4.23). Putting these two estimates into
(4.24) and substituting (4.24) with (4.23) into (4.22), we have the estimate of ||IT(u — Jru)|;2¢y. Then
the proof is finished by using T, C wy. 0

As for curl (ﬁTu —u), we need to employ the §-strip argument for curved interface or domain
boundary [21, 41, 52]. For the readers’ sake, we recall the §-strip:

Sy = {xe Q:dist(x,') < 8}, and S;:= {xe Q*:dist(x,I") < §}. (4.26)
Furthermore, it is possible to control the L*-norm in the §-strip by the following result.
Lemma 6. (Lemmas 3.4 and 2.1 in [52]) It holds true for any z € H'(2F) that

lzll 25y S V82l @s)- 4.27)
Theorem 4.3. Suppose u € ﬁl(curl; Q), then
leurl(TTu — wll2ry Shr (105 i o 10 it curi o)
+ iy (leurl ug |2 + llcurl ug |2 -

Proof. Similar to (4.20), we have

||cur1(ﬁ7u —Wle2m < ||Cur1(ﬁrll = Jrw)l 2@y + [[curl(Jru — w) | 2. (4.28)

The second term in (4.28) directly follows from Theorem 4.1. For the first term, we also consider the
piecewise-defined function w in (4.18). By the identity in (3.6b), we let T = u~'curl ¢, i = 1, 2, 3. Then
the similar derivation to (3.15), i.e., the integration by parts on T;", leads to

1 ~ _
—curl IT;(u — Jru) =/ (u—Jyu)-tdst =/ w-tdst =/ [w- t]r]rds T+ / curl wdX t,
n ar aT rf ' T
(4.29)
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where t denotes the unit tangential vector to I'T" in the clockwise orientation of 7, . Then, applying the
integration by parts on the subregion 7, using the jump conditions (3.1a), (1.1b), Holder’s inequality
and the first one in (2.1), we have

[w- f]r[ds

T
1-‘h

/ curl(u; — u;)dx‘ S hy (lleurlug |l 2@ + leurl uf [l 2) - (4.30)
T

Also, by Holder’s inequality and Theorem 4.1, we have

1/2 2 _
/curl WdX‘ < [leurl Wl 2| T / Shy (”uz”H‘(curl;wT) + [lug ”Hl(curl;wr)) . (4.31)
T

Moreover, by (4.30) we have |7 ||;2r) < h;'. Now putting it together with (4.30) and (4.31) into (4.29),
we have the estimate of ||~ curl IT;(u — Jyw)|| 2., which yields the desired result with (4.28). L]

Theorem 4.4. Suppose u € fll (curl; ), then
ITTu =l o) S 2 (Il 0 + 10 ) - (4.32)

Proof. By the first estimate in (2.1), there exists a §-strip S; such that UreTﬁ" C S; with § < k% Then,
the desired result follows from Lemma 6, Theorems 4.2, 4.3 and the standard estimates (2.5) on non-

interface elements with the finite overlapping property of patches and the bounds of extensions by
Theorem 2.1. O

5. Analysis of solution errors

In this section, we analyse the PG-IFE scheme (3.9). The most critical and difficult step is to establish the
inf-sup stability [8]. This refers to the following inequality between the spaces N'D,,o(R2) and ZN D, o(£2)
for the PG-IFE system (3.9):

a(uy,, v,)

VAEN Dp () 1V T aeur; 2

> Cllwllaeut o) YU, € INDh,o(Q)’ G.1

where C; > 0 should be uniformly bounded away from O regardless of the mesh size & and interface
location.

With the inf-sup condition in (5.1), the estimation of the solution error follows from the standard
argument.

Theorem 5.1. Let u,, be the solution to the scheme (3.9). Under the conditions of Theorem 5.5, there
holds

”u - uh”l-l(curl;Q) 5 h (”u”HI(cur];Q’) + ”u”HI(cur];Q*)) . (52)

Proof. Note that the boundedness is trivial for a constant C, independent of interface location and mesh
size:

a(uy, v,) < Cillw, lacun: o 112 T 2)- (5.3)

Then, the desired result follows from the standard argument by the inf-sup stability with the interpolation
errors. O

In the following discussion, we shall establish the inf-sup stability (5.1) for general discontinuous
magnetic permeability, but for the discontinuous conductivity whose jump is less than a critical constant.
The analysis is lengthy and we shall divide it into several lemmas and steps. Let us briefly explain the
main idea and structure of our argument. The key is to develop a special discrete decomposition for
functions w, € ZN'D;,,(2) such that their regular components are sufficiently small near the interface
(Subsection 5.2). This is done first for the standard Nédélec functions which are then applied to the IFE
functions through the isomorphism. So, it demands the stability of isomorphism IT, in Subsection 5.1.
These results are put together to show the inf-sup stability in Subsection 5.3.
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Ao

Figure 9. Interface element configuration. Left: Case 1 and right: Case 2.

5.1. Stability of the isomorphism

The stability of the isomorphism relies on the stability of the linear operator C; used to construct IFE
functions in (3.1). Without loss of generality, in the following analysis, we only consider the interface ele-
ment configurations in Figure 9 where 7 is assumed to be triangular. We first recall a norm equivalence
result from Lemma 3.6 in [35].

Lemma 7. For each interface element with the configuration shown in Figure 9, if |A|D| > %|A.A2| and
IAE| = LA A (case 1),

Il @y 2N llzay,  on NDy(T), (5.4a)
and if |A,D| < }1AA;| or |AE| < 1A A;] (case 2),
I lza 2= 1 iz, on NDy(T). (5.4b)
Then we can show the stability of the extension operator C; in the following.

Lemma 8. For each interface element T, if |A;D| > %|A1A2| and |A\E| > %|A]A3| (Case 1 in Figure 9),
ICr gy S WVillegry: and 1C ' Ollary S WWillery. YWa e NDLT: (5.50)

if |A|D| < %|A,A2| or |AJE| < %|A,A3| (Case 2 in Figure 9),
||CT(Vh)||L2(Th+) 5 ||Vh||L2(Th+) and ||C;1(Vh)||L2(Th+> 5 ||Vh||L2(Th+)’ Vv, GND,,(T). (5.5b)

Proof. For simplicity, we only prove the first one in (5.5a). Let D = [xp, xp,]' in the explicit formula
in (3.2). Note that curl v is a constant. Then if |A;D| > 1|A,A,| and |A,E| > 1|A;A;], the formula of b,
in (3.2) leads to

61| < leurl v, | S Ayt lleurl vyll e S b2 IVilleay S h;ZHVh”LZ(T;), (5.6)

where in the last two inequalities above we have used the inverse inequality and norm equivalence
(5.4a). In addition, we note that there exists a constant C such that |AA,DE|/|DE| > Ch where C is
independent of interface location. So by the trace inequalities for polynomials [64] we have |v,(X,,) - n| <
e 1Vl 2can 08 = B |V ||Lz(T;). Putting this estimate and (5.6) into the formula of b, in (3.2), we obtain

1bal S B WValliz ) + el S B Il - &)
Now using the expression of Cr(v;,) in (3.2), we have
||CT(Vh)||L2(T,;) < ||Vh||L2(T,;) + h§|b1| + hrlby| S ”Vh”Lz(Th’)» (5.8)

which has finished the proof of the first one in (5.5a). The argument for other estimates is similar. [
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The stability enables us to prove a trace inequality of the IFE functions.
Theorem 5.2. For each interface element T and its edge e, there holds
Izll2e S by 12allizery, Y2, € INDY(T). (5.9)

Proof. Without loss of generality, we only consider the case that |A,D| > %|A1A2| and |A\E| > %|A1A3|
as shown by Case 1 in Figure 9. On the interface edge A;A,, the standard trace inequality [64] yields
”zh”Lz(AlD) S h;l/ZHZhHLZ(AAlDE) and ||Zh||L2(DA2) § h;l/znzlz”Lz(ADAzE)» (5.10)

since the distance from the point £ to A;A, is bounded below regardless of interface location, which
yields the estimate on this edge. The argument for the interface edge A, A; is similar. For the non-interface
edge A,A;, by the standard trace inequality and (5.5a), we obtain

-1,2 12, =1 e
||Z/,+||L2(A2A3) shr ||Z;,+||L2(T> =h; (||Cr (Z/,)||L2(T,j) + ||Z;||L2<T,j))

S he 1z e oy A 125 2, (5.11)
which yields the desired result. The argument for the Case 2 in Figure 9 is similar and relies on (5.5b).
O

Now, with the trace inequality, we are able to show the stability of the isomorphism IT,,.

Theorem 5.3. These exist constants ¢, and C, independent of interface location such that, on each
element T,
llznlleza < IMhzullza < Collzullizay Vzn € INDKT), (5.12a)
o llcurl zy|l 2y < lleurl Thzy |l 2y < Golleurl zll 2y Vzu € INDL(T). (5.12b)

Proof. These inequalities for non-interface elements are trivial, and we only consider the interface
elements here. For (5.12a), using the argument similar to (4.22) with (3.6a), we obtain

3
Z/Zh’tidﬁﬁi
i=1 Y€

Applying the trace inequality in Theorem 5.2 to (5.13) yields the right inequality of (5.12a). The left
one can be obtained by applying this argument to IT,". In addition, (5.12b) is a direct consequence of
the identity in (3.15). O

3
S Zhlr/2||lh||L2(e,-)~ (5.13)

L0 =

T4zl 2y =

5.2. A special decomposition

We now establish a special discrete regular decomposition. For this purpose, we need a domain
decomposition. Recalling that 7, is the collection of interface elements, we define

Q= Ureri T. (5.14)
Furthermore, we need a region by expanding one more layer of elements from 7,':
T, = {T €7,:3T €7, such that 0T N T # 0},
Qy i= Urerr T, and QF =Q) NQ* (5.15)

To illustrate the regions, here we show 2} and 7," in the middle plot in Figure 10 and show 7,"\ 7, and
Q7'\Q; by the yellow-shaded region in the left plot in Figure 10. Furthermore, we let
y =09 NQt, (5.16)

i.e., the part of the boundary of Q] in 7, which is highlighted by the blue polyline in the middle plot
in Figure 10. In the following discussion, we shall employ ND,,¢(D), ZN D,,o(D), S,.o(D), S;0(D) as the
subspaces with the zero trace on dD for a subdomain D formed by elements in 7, contained in D.
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IS

S KNS

\:\\ \

Figure 10. Left: T\T; and QI\QL. Middle: T,', 2} and y. Right: a patch near the interface.

Lemma 9. (A Special Discrete Decomposition) For each u, € N'D,o(Q) (or IN'D,o(R2)), there exists

a W e ND,o(Q) (or IND,,o(2)) and w, € N'D,o(2) NKer(curl) (or TN'D,,0(S2) N Ker(curl)) such
that

w,=u +u, (5.17)
satisfying that, for a constant Cs independent of interface location and mesh size
||uZ||Lz(Q£) < Gsh||curl wy || 2. (5.18)

Proof. The proof is lengthy, and we decompose it into several steps.

Step 1. We first focus on u;, € N'D;,(2). We need to construct a function v, € N'D,,o(2, " U Q)N
Ker(curl) such that its trace on y matches u,, except one edge denoted by ¢* of the polyline y in (5.16).
Note that v, should have vanishing trace on 3(£2,"" U Q!), i.e., the two polyline near y.

Let us denote the edges on y by ey, e,, . . ., ey With the clockwise orientation with the nodes X, X>.. . .,
Xy. Without loss of generality, we assume e* = ey, as shown in the right plot in Figure 10. We consider
a linear finite element function v, such that v,(X;) =0, v,(X,;,) = Z}'.'Zl fe/_ w,-tds, n=1,2,...N—1,

and it vanishes at all other nodes. Then, v, € S,,o(2," U Q1), and v, = Vv, € N'D,,o(2,* U Q!). Thus,
we clearly have [, v, -tds= [, w,-tds,n=1,2,..,N — 1. Note that [ v, - tds = 0 but u, may not have
this property, so [ . v; - tds may not equal [, w,, - tds.

Step 2. Let us assume that the closed polyline y partitions the whole domain 2 into €2, and €2, _
where we have ©,, C Q* and Q- C Q,,_. Since the triangulation is regular, y is a Lipschitz curve, and
thus both €2, ;. have Lipschitz boundary. Denote k, = u;, — v, and k,,i = (u, — Vj)|g,. - By the discussion
in Step 1, k; has the zero trace on 32 and y\e*, and Kk, simply has the zero trace on y\e*. Then,
we apply the discrete regular decomposition of Theorem 11 in [43] (also see the related discussion in
[40, 42]) to k; on €, which gives

+ + + +
k;, =Riz;+r;+h , onQ,,,

where the regular components z; € [Sh(th)]z, the curl-free components h;” € "D, (2,.) N Ker(curl),
the reminders rf e NDy(,.+) and R} :S,(2,4) — NDy(R,.+) are special local projection operators
preserving zero boundary conditions. Moreover, these components inherit the zero traces of kj, namely,
z;, r; and h; also have the corresponding zero traces on 92 U (y\e*) and the “—" components have
the zero traces on y \e*. Furthermore, since e* is a single edge, the continuity suggests that z;" and h;’
must have the zero traces on the whole y. Then we have rj - t=Kk, - t=r} -t on every edge of y. So
all these three decomposed components must be tangentially continuous on y. Therefore, we can put
these components together to define z, = z{ in Q. belonging to [S,IYO(Q)]Z, h, =h; in ©,. belonging
to N'D,,o(Q) N Ker(curl) and r, =r} in §,,; belonging to N'D,,o(2) which satisfy

u, _Vh:kth*Z;l+rh+hh (519)
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with R* = R%, in ,... By this definition, using the estimates of the components z;, h; and r; in in [43,
Theorem 11], and noticing that v,, is curl-free, we have

1VZill 2@ S llcurl wyll 20y, Xl S Allcurl wy |l 2@ and Iy [l2@) < llcurl wyll2)s (5.20a)
and for each patch w; of an element 7', there holds
IRz, ll 2y < 1120l 20y + hrllcur] Zy]] 2,y (5.20b)
Step 3. We estimate R*z, on €], i.e., the subdomain given in (5.15). By (5.20b), we obtain
IR %I} oy = D IR Gl S Y (120l + hrllcurl 2, 2p) (5.21)
TeTy TeT,"

For each patch wy, T € 7,7, without loss of generality we assume 7 ¢ 7/, i.e., it is not an interface
element, and thus there is at least one interface element denoted by 7” such that 7° and 7T share at
least one node denoted by A as shown in the right plot in Figure 10. Since 7~ has one node on y and
z, must vanish at this node, then the estimate of z, on 7’ is straightforward through the Poincaré-type
inequality:

1zl 2y S hr I VZall 2, (5.22)
Then, we also have the estimate for |z,(A)| through the trace inequality and (5.22)
12(A)| S byt zall ey S IVEll 2. (5.23)
In addition, on T we can write z, as z,(X) = z,(A) + Vz,(X — A) where Vz, is a 2-by-2 constant matrix.
Thus (5.23) together with the continuity at A leads to
IZull 2y S hr(1Z(A)] + 1VZ4ll2) S bl V2l 2oy S PNV 24l 20 (5.24)

Furthermore, we note that any element 7" in w; must share at least one node with 7 denoted by B as
shown in the right plot in Figure 10 for an example. Then the similar argument to (5.23) and (5.24)
gives the estimate for ||z, |/;2¢». The results above give the estimate of z, on wr. Applying it to (5.21)
and using the finite overlapping property together with the first estimate in (5.20a), we obtain

”R*Zh”LZ(Q}:) S Z h (||Vzh”L2(w7) + [lcurl zh”Lz(wr)) < hlcurl z, || 2. (5.25)

TeTr

Therefore, by (5.25) and the second estimate in (5.20a), setting u; = R}z, + r, and 101,, =v, + h, fulfills
the decomposition (5.17) and (5.18) for the case u, € N'D,, ().
Step 4. Finally, if u, € ZN'D,,,(2), we have IT,u;, € N'D,(2), and then the previous analysis shows

the existence of functions w; € N'D,,(2) and W, € N'D;,,(€2) N Ker(curl) such that TT,u;, = w; + w,.
So we obtain u;, =uj +1°1,, with u; = H;lwz and lolh = H;I‘?vh. Here, u; satisfies (5.18) thanks to

Theorem 5.3 and u, € ZA'D,,((£2) thanks to the curl-free-preserving property of the isomorphism in
Theorem 3.4. O

5.3. The inf-sup stability

We now combine the estimates above to show the inf-sup stability. The first theorem is to handle the curl
term, and it suggests that the stiffness matrix of the PG-IFE method is actually the same as the standard
IFE method which uses the IFE functions as the test functions.

Theorem 5.4. On each element T, there holds

/ w'curl z, curl T1,z,dX = / utcurlz, curl z,dX, Vz, € IND(T). (5.26)
T

T
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Proof. It is trivial on non-interface elements. On an interface element, we note that u~'curl z, is a
constant, and then the integration by part yields

u’lcurlzh/ l'[,,z,,~tds=,u’lcurlzh/ z,,-tds:/u’lcurlz,, curl z,dX, (5.27)
aT aT T

where we have also used the continuous tangential jump condition (3.1a). O

The next step is to establish an inf-sup stability specially for the curl-free subspaces near the interface
elements.

Lemma 10. For the Cartesian mesh, assume the contrast of the conductivity satisfies max{8*/8",
B~/B1} < 10.65, then there holds, for a constant C, independent of interface location and mesh size,

(Buy, Thw) 2 (ory = Cullw, ”22(9{)’ Yu, € ZN'D,(R2) N Ker(curl). (5.28)
Proof. The argument is technical based on direct calculation, so we put it in Appendix B. O

Now we are ready to show the inf-sup condition in (5.1).

Theorem 5.5. Under the conditions of Lemma 10 and for h sufficiently small, the inf-sup condition (5.1)
holds regardless of the mesh size and interface location relative to the mesh.

Proof. First of all, Theorem 5.4 directly yields

(" curl w, curl TTyuw,) o) = (" curlw, curl )2 > 1/ min{u™, w*}lcurl w17, (5.29)
Since IT,u;, = u, on Q\Q], we certainly have
(B, Hhuh)Lz(Q\SZ}:) > min{f", ﬂ+}||uh||iz(9\QD- (5.30)

As for ], applying the decomposition in Lemma 9, the estimate in Lemma 10 and the stability in
Theorem 5.3 together with the arithmetic inequality, for & sufficiently small we have

(B (u; + wy), T(u; + W) (o)
= (B}, W)z ary + (B W TLW) 2 (ar)
+ (B, TL, — ) (gr) + (B 5, THW)a (gry + (B Wy T2 ar)
= min{B™, BT I (o) + Call Wil or)
— max{g", ) (2c§c2h2||cur1 W2, + CCshllcur w120, + CoCahlli 1% (QD)
= min(B", B Y10} 12 op) + (Co = hC2Cy max(B, B DI o
—max{B", B7}C,C3(2Csh + Dh|curl u, |7, o,
= min{B, B%, C}/ 2wl % gp) — max{B™, BIC:C(2Csh+ Dhfleurl w o, (5.31)

where C,, C; and C, inherit from Theorem 5.3, Lemmas 9 and 10, respectively. Let Cs = max{8~, 8}

C,C53(2C5h + 1). Noticing that 101,, is curl-free, we finally obtain from Theorem 5.4 and (5.29)—(5.31)
that

a,(uy, ITw,) = (u curl wy, curl Hhuh)LZ(Q) +(Buy, Hhuh)Lz(Q\QD +(Bu,, Hhuh)Lz(QD
> (1/ min{”, ) — Cshlleurl w2,
+min(87, B, Cu) /21w gy + min(8™, B o) = ColWliay (5:32)

which yields the desired result for 4 sufficiently small. O
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Remark 5.1. (Comments on the analysis of the inf-sup stability.) If 8~ = 8%, Remark 3.4 indicates the
curl-free subspaces of FE and IFE spaces are identical. So we have a Poincaré-type inequality:

o, — TTw, |l 20 < hrllcurl w2y, W€ IND(T). (5.33)

Then the analysis of the inf-sup stability is straightforward by using (5.33) to estimate the term
(Buy, TT,0,)2()- However, the estimate (5.33) is only true for continuous conductivity. In fact, ZN D, (T)
cannot recover the local spaces of constant vectors when the conductivity is discontinuous.

By inspecting the proof of Theorem 5.5, one critical ingredient is the inf-sup stability on the curl-
free subspace, i.e., Lemma 10. In this lemma, the Cartesian-mesh assumption is for relatively easy
calculation, and we expect that some other bounds can be also obtained for various-shaped elements
through a similar derivation, but we note that the critical upper bound value should depend on the mesh
geometry. In fact, from (B.4) and the related calculation, the constant C, in Lemma 10 can be specified
as C, = C,(10.65 — max{f~/B*, B*/B~}) where C, is independent of the mesh size, interface location
and parameters. So C, may be close to 0 if the contrast of 8 gets close to this critical upper bound, which
causes the loss of coercivity. Indeed, numerical results suggest that (Bu,, [T,u,)2q, fails to satisfy the
inf-sup condition when the contrast is beyond this bound.

Nevertheless, in numerical experiments, we have not observed any instability issue for large contrast
of conductivity. So for analysis, I1, may not be a suitable operator to generate the test function, and
some more appropriate test functions are demanded. Due to the exact sequence in Theorem 3.5, this is
highly related to the inf-sup stability for the PG-IFE method for the H'-elliptic interface problems [44]
which remains open for years. Lemma 10 gives the estimate under some conditions.

Furthermore, we note that the condition of /& being sufficiently small seems to be rather essential
not just for analysis, as the matrix A + A’ may have negative eigenvalues on coarse meshes for certain
interface shape where A is the resulting matrix given by (5.34). But again, this does not mean the original
inf-sup condition needs the requirement of fine meshes, as a more appropriate test function may be
chosen, see the discussion above.

5.4. Condition number estimation

Thanks to the isomorphism IT,, the estimation of the condition number for the proposed method becomes
quite straightforward. In fact, our analysis reveals that its robustness with respect to small-cut elements
essentially relies on the stability of the isomorphism in Theorem 5.3. Let us denote the resulting linear
system as

Aa=f, (5.34)

where A is not symmetric due to the PG formulation unless u* =~ and 7 ="

We first recall some estimates for standard Nédélec functions. For each v, € N'D,,o(2) or ZN D, (),
we define Jv, as the coefficients of the global shape functions associated with each edge. Then, there
holds that

my || Iv 2 < Vil 2@ < M, 13Vill, Vv, € NDh,O(Q)’ (5.35a)
m2||Vh||L2(Q) < ”Vh”H(curl; o < h71M2||Vh||L2(Q)7 Vv, GNDh,o(Q), (5.35b)

where m; and M;, i=1,2, only depend on the shape regularity. Then, the isomorphism I, with
Theorem 5.3 immediately shows that these results should be also true for the IFE functions:

m|C2_lcz||th||2 < ||Vh||L2(Q) < Mlc;'Czlljvhllz, Vv, € I-/V"Dh,o(Q)7 (5.36a)
m2C2_ZC§||Vh||L2(Q) < ”Vh”H(curl;Q) < h_]Mzc;2C§||Vh||L2(Q)» Vv, € INDh,O(Q)~ (5.36b)

where ¢, and C, are the constants from Theorem 5.3.

https://doi.org/10.1017/50956792522000390 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792522000390

24 R. Guo et al.

Lemma 11. Ler k,(-) be the spectral condition number of a matrix. Then i,(A) S h™2.

Proof. Based on (5.1) and (5.3), we use (5.35b) and (5.36b) to obtain

inf sup M > Com;C, 265, a(uy, v,) < CiM5 ¢, Coh72 w2 Vil 2c)-
uEINDio@ v, e N Do @ W ll22@) 1 Vall 20
(5.37)
Then, applying Theorem 3.1 in [30] together with (5.35a) and (5.36a), we arrive at
1a(A) < (CMMEC) (Comimcy) ™ 2. (5.38)
O

Remarkably, the constant in (5.38) only depends on parameters u, B8 and the shape regularity of the
mesh.

6. Numerical examples

In this section, we present a group of numerical experiments to validate the previous analysis. We also
compare the numerical performance of the proposed PG-IFE method with a classic IFE (C-IFE) method
and a penalty-type IFE method, referred to as the partially penalised IFE method (PP-IFE) method in
the literature. The latter two use the Galerkin formulation, namely the IFE functions are used as both
the trial functions and test functions. More specifically, they are to find u, € ZN D, (2) such that

ay (, v,) = / f-v,dX Vv, e INDL(Q), (6.1)
Q
where i = 1, 2 and the bilinear form for the PP-IFE method is given by

aﬁ,])(u,,,vh)z/. u*'curlu,,-curlvth—i—/ Bu, - v, dX — | {nw'curlw,),[v, - t].ds
Q Q i

g;l
comax{B~, BT
[ curt v, s + PP [y g s, (6.2)
e h’ ’
in which & denotes the collection of interface edges, ¢, is a positive constant parameter indepen-
dent of the mesh size, r is a real number parameter, [W;, - t], = W |7, -t — W, |7, - t, and {u ™ curl w,}, =
% (u"curl W lr, + n ' curl wh|Tz), and the bilinear form for the classic IFE method is

aﬁf)(u,,, v,) = / w ' curl vy, - curl v,dX +f pu, - v,dX. (6.3)
Q Q

The penalty-type unfitted mesh methods can generally produce optimally convergent solutions for many
interface problems, but not for the H(curl) problem. See the numerical results below for the IFE method
and [19, 20] for the Nitsche’s penalty methods.

We consider adomain 2 = (—1, 1) x (—1, 1) which is partitioned into N x N squares and each square
is then cut into two triangles along the diagonal, i.e., the triangular Cartesian mesh shown in the right plot
in Figure 10. Our first example is borrowed from [41]. We consider a circular interface I' : x* 4+ y* = r?
that cuts €2 into the inside subdomain €2~ and the outside one *. On 2 the exact solution is given by

o (=ki(rf —x* = y*)y)
k(rr —x* — yz)x)

in 2,

m
6.4)

in QF,
N

(_
W (ka2 =22 =)0 = 22 = y)y)
w (—ha(3 = 2 =y = = y)x)
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—PG-IFE
——PP-IFE
—CHIFE

10' 10°

Figure 11. The convergence rates for the errors ey of PG-IFE, PPIFE and C-IFE methods. From left
to right: (u*, p*)=1(0.1, 10), (0.1, 100), (0.01, 10), (0.01, 100).

for which the boundary conditions and the right hand side f are calculated accordingly, and k, = 20,
ky = ky(r} — r}) with r; = /5 and r, = 1. We focus the numerical experiments on four groups of param-
eters: fixing 4~ =8~ =1 and varying u* =1/10 or 1/100 and B+ =10 or 100. Here, we emphasise
that the analysis is though only for small contrast of conductivity (less than 10.56), there is no issue in
computation for larger contrast. Moreover, we choose the stability parameters in (6.2) to be ¢, = 10 and
r =1, and other choices such as ¢, = —10,0, 100 and r = —1, —1/2,0, 1/2, 1 can give similar subopti-
mal results. Furthermore, we let ¢y = ||u — u, || g o) and in order to study the convergence behaviour
around the interface, we also define the error

i1—1/2
€= |Q;,| / ”u - uh”H(curl;QZ)’ (65)

where ! is given by (5.14). A similar indicator was also used in [52] to study the error near the interface
for the H'-elliptic interface problems.

The results for the error ¢, are presented in Figure 11 where the convergence behaviour of PG-IFE,
PP-IFE and C-IFE methods are indicated by black, red and blue curves, respectively. In addition, there
are three dashed lines with the corresponding colour indicating the expected convergence rate O(h) for
the PG-IFE method and the approximate rate O(h'/?) for the PP-IFE and C-IFE methods. The black
error curve almost overlaps with the corresponding dashed line for the PG-IFE method, namely its
convergence rate is certainly optimal. However, for the PP-IFE and C-IFE methods, the errors asymp-
totically have the suboptimal O(h'/?) convergence rates. Moreover, as the contrast of 8 becomes larger,
the advantages of the PG-IFE method over the other two are more evident.

It is worthwhile to point out that straightforwardly applying the argument of Theorem 2 in [19] actu-
ally suggests that the PP-IFE method should not converge at all near the interface. So we expect the loss
of O(h'?) may be due to the pollution of the error near the interface over the whole domain. To further
study this issue, we compute and plot the error e, defined in (6.5) for PG-IFE, PP-IFE and C-IFE meth-
ods in Figure 12. Still, the black dashed line indicates the expected optimal O(%) convergence rate for
the PG-IFE method which matches the true error curve quite well. So the method has optimal accuracy
even near the interface. But the numerical results clearly suggest that both the PP-IFE and the C-IFE
methods completely fail to converge near the interface. From the numerical experiments here and in
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10°

—— PG-IFE]
——PP-IFE
—CHIFE

——PG-IFE| ——PG-IFE|
——PP-IFE —+—PP-IFE
——C-IFE —C-IFE

10! 10

10 10° 10 10°

10°
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——PG-IFE
—+—PP-IFE
—CIFE

10 10°

1072

Figure 12. The convergence rates for the errors e, of PG-IFE, PPIFE and C-IFE methods. From left
to right: (u*, B) = (0.1, 10), (0.1, 100), (0.01, 10), (0.01, 100).

0.8} | 10°
0.6
041

0.2} i 107

04} . 107

-0.61 1 ——F =1, 3*=100 RN
08| ] —F=100, §*=1

= . R \ 10-¢ L
-1 -05 0 0.5 1 10' 10?

10°

Figure 13. Left: a star-shaped interface. Right: the errors for (u=, ut)=(1,0.01) and (B~, ") =
(1, 100), (100, 1).

[19], we actually think this issue seems to be very difficult to overcome for penalty-type methods for the
proposed method. We believe it clearly shows advantages for the proposed PG formulation.

In the second example, we consider more complex interface geometry that has a star shape,
shown in the left plot in Figure 13. The interface has a level-set function: f(x,y) = (xf —i—x%)z 1+
0.6 sin (56(xy, x,)) — 0.2, where 6(x, x,) is the angle of the point [x;, x,]’. We consider the exact solution
u(x;, x;) = (B5)'Vf(xy, x,) in Q*. The errors of numerical solutions are presented in the right plot in
Figure 13 which clearly indicate the optimal convergence rate.
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A. Construction of IFE Shape Functions

We present the detailed construction procedure for shape functions in (3.4). Without loss of generality,
we consider an element with the vertices A; and edges ¢;, i =1, 2, 3, with ¢, =A,A;, e; =A3A, and
e; = A A,, see the left plot in Figure A1, where A, locates at the origin (0,0), A;A, aligns with the
x, axis, and the interface I" cuts the edges A;A, and A;A; with two points D and E, i.e., FT DE.
Let d=1|A,D|/|A 1A, € (0,1] and e = |A, E|/|A A;| € (0, 1] Con51der a reference element 7" shown in
the rlght plot in Figure A1 with the vertices Al =(0,0), Az =(1,0), A; =(0, 1) and the correspondlng
edges ¢;, i = 1,2, 3 with the tangential vectors t.. Then the affine mapping is given by Fr = = B;X with
the Jacobian matrix B;. By this set-up, we have D = F;'(D)=(d,0), E =F;"(E)=(0,e) and X, =
[d/2 e/2]". Moreover, we let t_ [7,, %] and n= [, 12]" be the images of t and n under F . Here,

t is also the tangential vector of ED but n may not be normal to ED anymore, and they all may not
be unit vectors due to scaling. We further let n’ = [e, d] be the normal vector to ED. By the Piola
transformation [16], an IFE function z can be represented as: z(X) = B;'(Z o F;')(X), where Z should
satisfy the following jump conditions on the reference element

[i-i]ﬁrzo, [ curl ], =0, [ﬁzn]x —0. (A1)

Let (;Sl. be the local basis functions of Dh(f‘) associated with the edge ¢;, i = 1, 2, 3. Thus, using the
first condition in (A.1) together with (3.4) for i = 1, we have the following expression for Z:

z =, +cp, + 3, inTy,

(A.2)
i =2 +bi[%, —(X) — )] + byle, dY, in T;r7

N>
I

where the vectors [X,, —(X; — d)]" and [e, d]' are orthogonal to ED, and ¢ = [c2, 3] and b= [by, b,]"
are unknown coefficients to be determined. Using the rest two in (A.1), we can rewrite the following
equation for b and ¢

Ab=yv,+Bc (A.3)
1 0 K K K
where A = , Y= A ~ |, B=  a A A ~ |, with o=
o 2a —A¢,(X,,)-m —AP,(X,)-m —APy(X,)-m
Heny +dny) = %ﬁ mk=1— “+ and A = 1 — £__ Furthermore, we can use (3.4) for i = 2, 3 to obtain
Le+Rb=v, (A4)

where I, is the 2 x 2 identity matrix, R =de[—1, —1;0, 1] and v = [v,, v;]'. Solving the linear systems
(A.3) and (A.4), we can compute all the unknown coefficients in (A.2).

A.l. Proof of Theorem 3.1

Under the notations above, by the assumption that T does not have obtuse angles, we can verify that

. . d
R0 and PMER) gy (A.5)
n-n
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) a

_ Py

Ay D A

Figure Al. The affine mapping between the physical element and the reference element.

Since the derivation is quite technical and elementary, we postpone it to the end of this subsection.
By the first inequality above, we know that o = —n -n > 0 and thus A is invertible. So (A.3) gives the
formula to compute b in terms of ¢. Putting it mto (A.4), we have the following linear system

I+RA'B)e=v—A'yv,. (A.6)
We only need to show the non-singularity of the matrix in I+ RA~'B for the reference element. Direct
computation shows that the matrix I + RA~'B has two eigenvalues 1 — dex and 1 — %. Because

d, e € [0, 1], using the second inequality in (A.5), we have

de(it, + i) r B~

4
1—de1<2min{1,“—}>0 and 1 — m1n{1,—}>0,
w- eny, +dn, Br

which finishes the proof.

Now, let us go back to (A.5). First of all, we let [, = |e,|, [; = |e;| and 6 = LA3A A, as shown by the
left plot in Figure A1l. Let § be the angle between the normal vector n and the x; axis, and it is easy to
see § € [0 — /2, w/2]. Then we can express Br and nas

I; Lycos(0) R 1 l, sin (6 — §)
B = ) , and n=——— ) . (A7)
0 Lsin(@) Llsin(0) | I;sin (8)
For the first term in (A.5), by direct calculation, we have 2« = n-n= o h“;an ‘ &> 0. For the second term

in (A.5), by direct computation we have.

. . L, sin (0 — 8) + [5 sin (8) cos (8) [sin(0) —cos(f)tan(§) tan(5)
n +n,= + )
L 15 sin (0) "~ sin(8) L L
l I3
ey + di, — de(iiy + 11,) = L1 cos (0) | €*(1 — d)—2 +d*( - )— (2de — d*e — €*d) | .
L; cos (0) L, cos (0)

It can be verified that both these two terms are non-negative since 6 < /2 and d, e € [0, 1].

A.2. Proof of Theorem 3.2

We first give the explicit expression of the matrix in (A.6):

de Asy de A3
1+ — (—«+= — (- +=
2 o 2 o

I+RA'B= ; (A-8)
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(hyh)grammmmmmcaeeeacaaaaaa -»

(eh, eh), 0
T, o

+
1, Th‘ 0

(0,0) (dh,0)  (h,0) (0,0) (dh.0) (h,0)

Figure Bl. Interface element configuration: Case I(left) and Case 2(right).

where s, = ¢,(X,) - = —%, + (¢ — 1) i, and 53 = ¢5(X,,) -0 = (1 — £) i1, + <7,. Using (A7), |T7| >
max{dls, el,} sin (9) and the shape regularity of T and d, e < 1, we have |”% <land |df% < 1. Therefore,
by (A.1) we have |I+ RA'B)™!|, < 1. Furthermore, we note that

~

K
Aly = , A9
=) 7

where s; = $I(X,,,) -n = (en, — dn,)/2. Using (A.7), the shape regularity and d, e < 1, we have [t <,
and thus obtain |A™'y|l. < 1. Putting the estimates above into the formula (A.6), we have ||c|l. < 1.
Next, we note that

K K

—1
AT B= (—K—AS—2> (—K—)\.S—3> . (A.10)
o o
Therefore, putting (A.9) and (A.10) into the formula for b in (A.3), we have |b,| < 1, and |b,| < 1 where
we have used the estimates for s;/«, i = 1, 2, 3. Besides, the estimate |I'] | > max{dl, el,} sin (9) yields
|bs e, |by|d < 1. Finally, the estimates above together with (A.1) yield ||Z| ;= < 1. Hence, the desired
result (3.6a) follows from the Piola transformation. At last, (3.6b) can be derived by integration by parts.

B. Proof of Lemma 10
We let n = [n,, n,] and t = [—n,, n,] be the normal and tangential vectors to linearly-approximate inter-
face I'}. Define a transmission orthogonal matrix Q = [t,n]’ and a diagonal matrix A = (1) 2i| with

o = B~/B*. By the exact sequence for IFE functions, we know ZND,(T) N Ker(curl) consists of piece-
wise constant vectors on T, and thus, without loss of generality, we assume u;,, = uh|T,— is a constant unit
vector. Then we write u;” = Q' AQu;, . So our object is to show

(uh, Hhuh)D > Ch2 (Bl)

with some constant C independent of interface location. If D is just each interface element, the
desired estimate (B.1) may only hold with a more restrictive bound for p. Here, we shall include one
neighbourhood non-interface element 7°, i.e., let D =T U T" for each T, to obtain a better bound for p.

To avoid redundancy, we only discuss the case that the interface cuts the two adjacent edges of a
non-right angle as shown in the right plot in Figure B1. The discussion for the case that the interface
cuts the two adjacent edges of the right angle, i.e., the left plot in Figure B1, is similar and actually easier
due to symmetry. Without loss of generality, we consider the element of the configuration shown by the
right plot in Figure B1, with the vertices A; = (0, 0), A, = (h, 0) and A; = (h, h).
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In the following discussion, we shall employ I[1;u;, := I1,u,|7. We denote the unit normal and tangen-
tial vectors to the non-interface edge e; connecting (4,0) and (h,h) by n, and t;, and let u, = an, + bt,
with a® 4+ b* = 1. Without loss of generality, we assume a > 0. Due to the continuity of w, along
the tangential direction of the non-interface edge, we have w,|;» =a'm; 4+ bt; on T7°, and then obtain
u, - [1u, =a? + b? on T°. Therefore,

(B, TTrw,) 2 + (B7wy, Ipwy) 2y = B~ (w;, - Ipuy, + b2)|Th_| + ﬂ+(UZ I, + Pb2)|T;—| + a/2|T/|
(B.2)

where we have implicitly used |T'| = |T|. We shall proceed to estimate each one of the first two terms
above.

Let the interface-intersection points be D = (dh,0) and E = (eh, eh), d, e € [0, 1]. Then, we can
express n, =e//(d —e)> + ¢> and n, = (d — e)//(d — e)*> + €*. By the direct calculation, we obtain

— (p—1) de* de(d — e) L B -
,=u;, + —(d—e)2+e2 |: 0 0 j|uh =L+ (p - 1DB)u,, (B.3)
which is a constant vector as ITyu, € VS,(T). Let o; =n Bn, and o, =n!B,t,, and notice t|B, =0.
Then,
u, T, =14 (o — 1) (o) +abas) . (B.4)
The direct calculation yields the following estimates
= % c[0,1], = % e [(1 —V2)2, 0.5] and & +a2<1.  (BS)
Then if p < 1, using the estimate a*a;, + aba, < amm < a, we have
w, |- Ilyw, > 1 —a+ pa>p. (B.6)

It remains to show the estimate for p > 1. If @’ + aba, > 0, then u, - [T;u, > C. In addition, if a’a, +
aba, < 0, the direct calculation yields

>2(4+2+2). (B.7)

az—a(ll :CZZZ > 22 \/ ((d* — 2de z:l 22(22)_2(5)246_2)2[16 + 3e2)) . 4(([; (:l e_)ze—)l; &)
Hence, the following estimate is true for p =~ /8% € (1,9 + 44/2) where 9 + 4+/2 ~ 14.65
u, - pu, +b° > 140"+ (p — 1) (P; + abay) > C. (B.8)
As for u/, the similar derivation yields
u! - Tlyu,>C ifp ' <1 and u/ - [yu, + pb* > C if p~' < 10.655. (B.9)
Substituting (B.8) and (B.9) into (B.4) yields the desired result.
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