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Stability conditions and moduli spaces for
Kuznetsov components of Gushel-Mukai varieties
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We prove the existence of Bridgeland stability conditions on the Kuznetsov com-
ponents of Gushel-Mukai varieties, and describe the structure of moduli spaces of
Bridgeland semistable objects in these categories in the even-dimensional case. As
applications, we construct a new infinite series of unirational locally complete families
of polarized hyperkahler varieties of K3 type, and characterize Hodge-theoretically
when the Kuznetsov component of an even-dimensional Gushel-Mukai variety is
equivalent to the derived category of a K3 surface.

14F08, 14J28, 14J45

1. Introduction 3055
2. Conic fibrations and Kuznetsov components of GM fourfolds 3064
3. A Bogomolov inequality for C{p—modules on Y 3080
4. Stability conditions on Ku(X) 3090
5. Applications 3102
References 3118

1 Introduction

The purpose of this paper is to prove the existence of stability conditions on a certain
family of noncommutative K3 surfaces, and to use this for applications to hyperkéhler
geometry, Hodge theory and the structure of the derived categories of an associated

family of Fano varieties.

1.1 Background on cubic fourfolds

The prototype for this line of thought is the example of cubic fourfolds, ie smooth cubic
hypersurfaces in the projective space IP>. For such a fourfold ¥ C P>, Kuznetsov [29]
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defined a subcategory Ku(Y') C DP(Y) of the bounded derived category of coherent
sheaves —now known as the Kuznetsov component of Y — by the semiorthogonal
decomposition

DP(Y) = (Ku(Y), Oy, Oy (1). Oy (2)).

Kuznetsov showed the category Ku(Y') can be thought of as a noncommutative K3
surface, in the sense that it has the same homological invariants (Serre functor and
Hochschild homology) as the derived category of a K3 surface. Moreover, he proved
that, for several families of rational cubic fourfolds, Ku(Y) is equivalent to the derived
category of a K3 surface and conjectured that this condition is equivalent to the
rationality of Y.

Stability conditions on triangulated categories were introduced by Bridgeland [11]
and have been extremely influential due to their applications in algebraic geometry
via moduli spaces and wall-crossing. In general, it is a very difficult problem to
construct stability conditions on a given triangulated category, but, recently, Bayer,
Lahoz, Macri and Stellari [4] made a breakthrough by solving this problem for the
Kuznetsov component Ku(Y) of a cubic fourfold (as well as Kuznetsov components
of many Fano threefolds). Motivated by the desire to study moduli spaces of stable
objects in Ku(Y') by deforming to the case of the derived category of a K3 surface, the
same authors with Nuer and Perry [3] developed a general theory of stability conditions
in families and used this to show that moduli spaces of semistable objects in Ku(Y)
are smooth projective hyperkéhler varieties of the expected dimension.

These moduli spaces have many applications. For instance, they give rise to uni-
rational locally complete families of polarized hyperkidhler varieties of arbitrarily large
dimension and degree. Before this, only several constructions of polarized hyperkéhler
varieties were known, the main ones being moduli spaces of stable objects in the
derived category of a K3 surface (which do not give locally complete families) and a
few celebrated examples constructed via the classical geometry of cubic fourfolds; see
Beauville and Donagi [8], Lehn, Lehn, Sorger and van Straten [37] and Laza, Sacca and
Voisin [36]. In [38; 39], Li, Pertusi and Zhao show the latter examples also arise via
moduli spaces of stable objects in Ku(Y); the category Ku(Y') thus unifies the above
two constructions and can be thought of as a primordial source of hyperkdhler varieties.
Moduli spaces of objects in Ku(Y') were also used in [3] to give a Hodge-theoretic
characterization of when Ku(Y) is equivalent to the derived category of a K3 surface,
extending a result by Addington and Thomas [1].
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1.2 Kuznetsov components of Gushel-Mukai varieties

Given the success of the example of cubic fourfolds, it is natural to look for other
situations where the above program can be carried out. The main properties of the
categories Ku(Y) needed for this can be abstracted as follows. We would like a family
of smooth projective varieties such that, for each member X in the family, there is a
semiorthogonal component Ku(X) C D?(X) with the following properties:

(1) Ku(X) is a noncommutative K3 surface, which is equivalent to the derived
category of a K3 surface for special X but not equivalent to such a category for
general X.

(2) Ku(X) admits a Bridgeland stability condition.

Several examples of varieties X with a noncommutative K3 surface Ku(X) C D°(X)
are described by Kuznetsov [30], but, besides the case of cubic fourfolds, so far only one
class of examples is known to satisfy condition (1): those coming from Gushel-Mukai
varieties.

Definition 1.1 A Gushel-Mukai (GM) variety is a smooth n—dimensional intersection
X = Cone(Gr(2,5)NQ with 2<n <6,

where Cone(Gr(2, 5)) C P19 is the projective cone over the Pliicker embedded Grass-
mannian Gr(2,5) C P° and Q C P10 is a quadric hypersurface in a linear subspace
Pn+4 C PIO.

The classification results of Gushel [21] and Mukai [40] show that (in characteristic 0)
these varieties coincide with the class of all smooth Fano varieties of Picard number 1,
coindex 3 and degree 10 (corresponding to n > 3), together with the Brill-Noether
general polarized K3 surfaces of degree 10 (corresponding to n = 2). Recently, GM
varieties have attracted attention because of the rich structure of their birational geometry,
Hodge theory and derived categories; see Debarre, Iliev and Manivel [15; 25; 16],
Debarre and Kuznetsov [17; 19; 18] and Kuznetsov and Perry [33].

In particular, in [33], for any GM variety a Kuznetsov component Ku(X) C DP(X) is
defined by the semiorthogonal decomposition

(1-1)  D°(X) = (Ku(X),Ox, Uy, ..., Ox(dim X —3), Uy (dim X — 3)),

where Uy and Ox (1) denote the pullbacks to X of the rank 2 tautological subbundle
and Pliicker line bundle on Gr(2, 5). The category Ku(X) is a noncommutative K3 or
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Enriques surface according to whether dim X is even or odd. Moreover, the results of
Kuznetsov and Perry [33; 34] show that the Kuznetsov components of GM fourfolds
and sixfolds satisfy property (1) above.

1.3 Results

We work over an algebraically closed field k of characteristic 0. Our first main result
verifies property (2) above.

Theorem 1.2 If X is a GM variety, then the category Ku(X') has a Bridgeland stability
condition.

The crucial case of this theorem, and our main contribution, is when dim X = 4. Indeed,
Bridgeland’s work [12] gives the dim X = 2 case, since then Ku(X) =D°(X) and X is
a K3 surface; the dim X = 3 case is proved in [4]; and, by the duality conjecture for GM
varieties proved in [34], the dim X = 5 and dim X = 6 cases reduce respectively to the
dim X = 3 and dim X = 4 cases. Our proof when dim X = 4 is inspired by the case of
cubic fourfolds treated in [4], and involves as the starting point an embedding of Ku (X))
as a semiorthogonal component in the derived category of sheaves of modules over a
Clifford algebra on a quadric threefold, associated to a conic fibration of X. We note
that, due to the more complicated geometric setup, there are a number of additional
difficulties that arise in the case of GM fourfolds versus the case of cubic fourfolds.

As a first consequence of Theorem 1.2, we deduce the following result:

Corollary 1.3 If X is a GM variety, then the category D°(X) has a Bridgeland
stability condition.

When Ku(X) is a noncommutative K3 surface or, equivalently, when X is even-
dimensional, we show that Theorem 1.2 has many applications parallel to those in [3]
for cubic fourfolds. One particularly interesting output is that moduli spaces of stable
objects in Ku(X) give rise to a new infinite series of unirational locally complete
families of hyperkihler varieties of K3 type (Theorem 1.7); this gives after [3] the
second known infinite series of such families, which have long been sought-after. For
this and the other results enumerated below, we assume k = C is the complex numbers,
as we use Hodge theory.

1.3.1 The stability manifold Following Addington and Thomas [1] (see Pertusi [46]
and the review in Section 4.3.1), for any even-dimensional GM variety X there is
an associated weight 2 Hodge structure H(Ku(X),Z), which is equipped with a
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natural pairing (—,—) and agrees with the usual Mukai Hodge structure H(S, Z)
when Ku(X) ~ DP(S) for a K3 surface S. Let Stab(Ku(X)) denote the space of
full numerical stability conditions on Ku(X), ie the space of stability conditions
which satisfy the support property with respect to the lattice of integral Hodge classes
HU!'(Ku(X),Z). The central charge of any o € Stab(Ku (X)) is given by pairing with
an element in the complexification H!! (Ku(X), C) of the lattice of Hodge classes;
this association gives a map 1: Stab(Ku(X)) — HY (Ku(X), C). Following [12], we
define P(Ku(X)) C a1 (Ku(X), C) as the open subset consisting of vectors whose
real and imaginary parts span positive-definite two-planes, and set

(1-2) Po(Ku(X)) = P(Ku(X)\ ] 6+,
_ SeA
where A = {§ e H'N(Ku(X), Z) | (8,8) = —2}.
We prove the following analog for the noncommutative K3 surfaces Ku(X) of a result
of Bridgeland [12] for K3 surfaces.

Theorem 1.4 Let X be a GM fourfold or sixfold. The stability conditions on
Ku(X) constructed in the proof of Theorem 1.2 are full numerical stability conditions.
Moreover, the connected component Stab’ (Ku (X)) C Stab(Ku (X)) containing these
stability conditions is mapped by n onto a connected component P(;r (Ku(X)) of
Po(Ku(X)), and the induced map Stab’ (Ku(X)) — P(T (Ku(X)) is a covering map.

1.3.2 Moduli spaces Our next result establishes the basic properties of moduli spaces
of o—semistable objects in the setting of Theorem 1.4.

Theorem 1.5 Let X be a GM fourfold or sixfold. Let v € ﬁl’l(lCu(X),Z) be a
nonzero primitive vector and let o € Stab' (Ku(X)) be a stability condition generic
with respect to v.

(1) There is a coarse moduli space My (Ku(X), v) parametrizing o—semistable
objects in Ku(X) of class v, which is nonempty if and only if (v,v) > =2.

(2) When nonempty, My (Ku(X), v) is a smooth projective hyperkéhler variety of
dimension (v, v) + 2, deformation equivalent to the Hilbert scheme of points on
a K3 surface.

(3) If (v,v) > 0, then there is a natural Hodge isometry

vt if (v,v) >0,

vt/Zv if (v,v) =0,

where the orthogonal is taken inside ﬁ(lCu (X), 7).

H?(My(Ku(X),v),Z) =>
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Remark 1.6 In [3], the cubic fourfold version of the nonemptiness result, Theorem
1.5(1), was used to reprove the integral Hodge conjecture for cubic fourfolds. Theorem
1.5(1) similarly implies the integral Hodge conjecture for GM fourfolds; however, as
demonstrated by Perry [45], this result already follows from a more basic “Mukai
theorem” on smoothness of moduli spaces of objects in CY2 categories, which does
not require the use of stability conditions and is in fact an important ingredient in the
proof of Theorem 1.5.

The proof of Theorem 1.5 is based on the construction of relative moduli spaces of stable
objects in the categories Ku(X) for a family of GM fourfolds, together with the fact
that moduli spaces of objects are well understood in the case where Ku(X) ~ D°(S)
for a K3 surface S (due to results of many authors, which culminated in Bayer and
Macri’s work [5]). We refer to Theorem 5.15 for the general statement on relative
moduli spaces, and record here one of its consequences.

Theorem 1.7 For any pair (a, b) of coprime integers, there is a unirational locally
complete family, over an open subset of the moduli space of GM fourfolds, of smooth
polarized hyperkihler varieties of dimension 2(a? 4+ b? + 1), degree 2(a® + b?) and
divisibility a® + b2.

Remark 1.8 Theorem 1.7 gives the second known construction of an infinite series of
unirational, locally complete families of hyperkihler varieties. Note that the dimensions
and degrees are indeed different than the ones arising from cubic fourfolds in [3,
Corollary 29.5].

The moduli spaces from Theorem 1.5 should be useful for further applications, some of
which we discuss in Section 5.4. We expect that in low dimensions these moduli spaces
are isomorphic to classically constructed hyperkihler varieties. Namely, we conjecture
the minimal dimension 4 hyperkihler varieties from Theorem 1.7 (a? + b2 = 1)
recover O’Grady’s famous double EPW sextics [42], and the 6—dimensional ones
(a? + b? = 2) recover the recently constructed EPW cubes; see Iliev, Kapustka,
Kapustka and Ranestad [24]. In fact, in Proposition 5.17 we prove this conjecture
for double EPW sextics in the very general case; we plan to remove the very general
assumption in future work. We also observe in Proposition 5.16 that the hyperkéhler
varieties in Theorem 1.7 are always equipped with an antisymplectic involution, which
in the 4—dimensional case corresponds to the canonical involution of a double EPW
sextic.
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Beyond dimension 6, the hyperkihler varieties in Theorem 1.7 appear to be completely
new. The 12—-dimensional case is already quite interesting: we expect that any GM
fourfold admits a (possibly only rationally defined) embedding into such a hyperkéhler.
This would give an analog of the embedding of a cubic fourfold into the associated
Lehn-Lehn—Sorger—van Straten hyperkihler 8—fold [37], and may lead to a solution to
the open problem of determining the image of the period map for GM fourfolds, along
the lines of the recent new proof by Bayer and Mongardi of the corresponding result
for cubic fourfolds (see Debarre [14, Proposition B.12]).

Finally, we note that our results for moduli spaces of objects in Ku(X) are confined to
the case of even-dimensional GM varieties. The odd-dimensional case is more subtle,
because then the category Ku(X) is never equivalent to the derived category of a
variety, so we cannot directly reduce the problem to a more geometric one. However,
using the relation between Kuznetsov components of even- and odd-dimensional GM
varieties from Kuznetsov and Perry [32], in future work we plan to use Theorem 1.5 to
analyze moduli spaces in the odd-dimensional case.

1.3.3 Associated K3 surfaces If X is an even-dimensional GM variety, we say that
X has a homological associated K3 surface if there exist a projective K3 surface S and
an equivalence Ku(X) ~ DP(S). The importance of this property stems from the GM
analog of Kuznetsov’s rationality conjecture, which predicts a GM fourfold is rational
if and only if it has a homological associated K3 surface. The following result, based
on Theorem 1.5, gives a Hodge-theoretic characterization of this property.

Theorem 1.9 Let X be a GM fourfold or sixfold. Then X has a homological associated
K3 surface if and only if the Iattice H"' (Ku(X ), Z) contains a hyperbolic plane. More
generally, there exists an equivalence Ku(X) ~ D"(S, «) for a projective K3 surface S

with a Brauer class a € Br(S) if and only if there exists a nonzero primitive vector
vE ﬁl’l(ICu(X), 7)) such that (v,v) = 0.

Remark 1.10 There is also a notion of a Hodge-theoretically associated K3 surface.
For simplicity, we explain the situation for a GM fourfold X. There is an embedding
of H*(Gr(2,5), Z) into H*(X, Z) whose image is a rank 2 sublattice, denoted by L.
We say a polarized K3 surface (S, f) is Hodge-theoretically associated to X if there is
a rank 3 saturated sublattice Lo, C L C H*(X, Z) such that there is a Hodge isometry

(1-3) H2(S.Z) D> f+=> Lt(1) cH*(X.Z)(Q),
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where (1) denotes a Tate twist. Debarre, Iliev and Manivel [16] showed the existence
of a Hodge-theoretic associated K3 cuts out a countable union of Noether—Lefschetz
divisors in the moduli space of GM fourfolds. The results of [46] combined with
Theorem 1.9 show that if X has a Hodge-theoretic associated K3 surface then it also
has a homological associated K3 surface, but the converse does not hold. There are
thus two competing conjectural conditions (existence of a homological versus Hodge-
theoretic K3) encoding the rationality of a GM fourfold. This should be contrasted with
the case of cubic fourfolds, where these conditions are known to be equivalent [1; 3]
(see Remark 5.14).

Following [1], we deduce from Theorem 1.9 the algebraicity of the Hodge isome-
tries (1-3) defining Hodge-theoretic associated K3s. Slightly more generally, we show
the following. For simplicity we state the result for GM fourfolds, but there is an
obvious analog for GM sixfolds.

Corollary 1.11 Let S be a projective K3 surface and let X be a GM fourfold. Let
K c HY1(S,Z) and L, C L C H*?(X, Z) be sublattices such that there is a Hodge
isometry ¢: K+ = L1(1). Then there is an algebraic cycle in CH3(S x X) which
induces ¢.

Organization of the paper

In Section 2 we show that an ordinary Gushel-Mukai fourfold X is birational to
a conic fibration over a quadric threefold Y. Then, under an appropriate genericity
assumption on X (smoothness of a canonically associated quadric surface), we construct
in Theorem 2.11 a fully faithful embedding of Ku (X ) into the bounded derived category
DP(Y, Cly) of coherent sheaves of modules over the even part Cq of the sheaf of Clifford
algebras arising from the conic fibration.

Section 3 is devoted to proving a generalized Bogomolov inequality for slope-semistable
Clo—modules, which is necessary for the construction of weak stability conditions on
DP(Y,Clg). We first prove the inequality for a smooth linear section of Y, and then
deduce the statement for ¥ arguing by induction on the rank of the sheaf.

In Section 4, we prove Theorem 1.2 and Corollary 1.3, as well as the first part of
Theorem 1.4, asserting that in the even-dimensional case the constructed stability
conditions on Ku (X)) are full numerical stability conditions. Making use of the previous
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sections, we first prove the results for ordinary GM fourfolds with smooth canonical
quadric, and then use the duality conjecture for GM varieties to reduce the general case
to this one.

Section 5 is devoted to the applications. In particular, we prove the results in Sections
1.3.1-1.3.3 concerning the stability manifold of Ku(X), the hyperkéhler varieties
arising as moduli spaces of stable objects in Ku(X), and the existence of associated
K3 surfaces. We end with a discussion of the low-dimensional hyperkéhler varieties
from Theorem 1.7.

Notation and conventions

We work over an algebraically closed field k of characteristic 0. In fact, our proof of
Theorem 1.2 should also go through in large enough positive characteristic. Namely,
we need char k > 2 to apply Kuznetsov’s results [27] on derived categories of quadric
fibrations (see Auel, Bernardara and Bolognesi [2]), and we need char k sufficiently
large that coherent cohomology computations involving Gr(2, 5) work as in character-
istic 0; we leave the details to the interested reader. We assume k = C in Sections 4.3
and 5 because there we use Hodge theory.

A vector bundle £ on a variety X is a finite locally free Ox—module. The projective
bundle of such an £ is
P (&) = Proj(Sym*(£Y)) 2> X

with Op (g) (1) normalized so that 7, Opg)(1) = EV.

If X — Y is a morphism of varieties and F € DP(Y), then we often write Fy for the
pullback of F to X. By abuse of notation, if D is a divisor on a variety Y, we often
denote still by D its pullback to any variety mapping to Y.

As mentioned already, we use D°(X) to denote the bounded derived category of
coherent sheaves on a variety X. By convention, all functors are derived. In particular,
for a morphism f: X — Y of varieties we write fi and f* for the derived pushforward
and pullback functors and, for E, F € Db(X ), we write £ ® F for their derived tensor
product. All functors between triangulated categories in this paper will be given by
Fourier-Mukai functors. In particular, when we write Ku(X) ~ DP(S) for a K3
surface S, we mean that there is an equivalence given by a Fourier—Mukai kernel on
the product X x S. Finally, the term K3 surface means a smooth projective K3 surface.
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2 Conic fibrations and Kuznetsov components of
GM fourfolds

We fix a 5—dimensional vector space V5. Recall that a GM variety as in Definition 1.1
is called ordinary if P"*# does not intersect the vertex of Cone(Gr(2, Vs)), and special
otherwise. We consider an ordinary GM fourfold X, which by projection from the
vertex of Cone(Gr(2, V5)) can be expressed as an intersection

2-1) X =Gr(2,Vs)NP(W)N O,

where P(W)CP (/\2 Vs) is a hyperplane in the Pliicker space P ( N Vs) and Q CP(W)
is a quadric hypersurface. We denote by H the hyperplane class on the Pliicker space
P (/\2 Vs), and by U the tautological rank 2 subbundle on Gr(2, V5). Recall that the
Kuznetsov component Ku(X) of X is defined by the semiorthogonal decomposition

(2-2) DP(X) = (Ku(X), Ox. Uy, Ox (H),Uy (H)).

In this section, we start by showing that X is birationally a conic fibration over a quadric
threefold Y, by elaborating on a construction from [16, Section 3]. Associated to this
conic fibration is a sheaf C{( of even parts of the corresponding Clifford algebra on Y.
Under a suitable genericity hypothesis (smoothness of a canonical quadric surface
associated to X in Section 2.1), our main result expresses Ku (X ) as a semiorthogonal
component in the derived category DP(Y, Clg) of coherent sheaves of C{o—modules.
We prove a preliminary version of this result in Section 2.2, and then in Section 2.3
prove a refined version as Theorem 2.11.
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2.1 The conic fibration

The hyperplane P(W) C P (/\2 Vs) is defined by a skew-symmetric form o € NV,
which by the smoothness of X has a 1-dimensional kernel V; C Vs. Consider the
3—dimensional projective space

P3, = (V2 € Gr(2, Vs) | Vi C Va} = P(Vy A Vs) C P(NVs).
Note that we have an inclusion
Py, C P(W).

Linear projection from IP)I?V provides X with a conic bundle structure. To state this
result precisely, we first introduce some notation.

Let
(2-3) T=P,NQCX

be the quadric surface cut out by IP’SV in X, called the canonical quadric of X. Note that
T is indeed a surface as X does not contain 3—planes. As noted in [16, Section 3], 7 is
the unique quadric surface contained in X such that, when regarded as a subvariety of
Gr(2, V5), its points correspond to 2—dimensional subspaces of V5 that all contain a
fixed 1-dimensional subspace (namely V7).

Next, set
Va=Vs/V1
and let
W' c NVa=NVs/(Vi AVs)

be the hyperplane given as the image of W C NVs. Let Y C P(W') = P* be the
quadric threefold given by the smooth intersection

Y = Gr(2, Vo) NP(W').

Let /1 denote the hyperplane class on P (/\2 V4). Let S C V4 ® O denote the tautological
rank 2 subbundle on Gr(2, V4) and let S C Vs ® O denote its preimage under the
surjection Vs ® O — V4 ® O. Note that a choice of splitting V5 = V1 @ V4 induces an
isomorphism

S="ne0)es.
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Lemma 2.1 Let b: X — X be the blowup with center T C X. Then linear projection
from IP’I§V C P(W) induces a regular map r : X — Y, which is a conic fibration. More
precisely, consider the rank 3 vector bundle

£=N(8y) = (V1 ® Sy) ® O(—h)
on Y. Then:

(1) There is an inclusion £ — W ® O which induces a morphism Py (£) — P(W).
(2) There is an isomorphism Op,, (¢)(1) = O(H).

(3) X isadivisor in Py (€) cut out by a section of O(2H ), namely X is the preimage
of Q C P(W) under the morphism Py (§) — P(W).

(4) The discriminant locus of the conic fibration 7 : X — Y isadivisorin Y defined
by a section of O(4h).

This situation is summarized by the commutative diagram

E-,% 2 ppe)

(2-4) be / \ J,,
iT Y

T —X

where E is the exceptional divisor of b: X — X. We have the linear equivalences of
divisors

(2-5) h=H—-E and Kg=-2H+E=-H—h

on X. In particular, the restriction 7| : E — Y is flat and finite of degree 2. Finally,
if T is smooth, then so are all of the other varieties in the above diagram.

Proof Claims (1) and (2) follow directly from the definitions.

To see (3), we first consider the linear projection from IP’SV as a map from the entire
Grassmannian Gr(2, V5). This gives a diagram

Gr(2, Vs)

TN

Gr(2, Vs) Gr(2, Va)
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where the first morphism is the blowup in ]P’%, and the second is induced by linear
projection from IPI?V C ]P’(/\2 V5). It is easy to see there is an isomorphism

Gr(2, Vs) = Gigra,v,) (2, S)

under which the first morphism is induced by the inclusion S C Vs ® O and the second
is the tautological projection. Passing to the intersection with P (W), diagram (2-6)
induces an analogous diagram

Gr(2. Vs) NP(W)

@7) / \

Gr(2, Vs) NP(W) Y =Gr(2,Va) NP(W)

where the first morphism is the blowup in IP’I?V and the second is induced by linear
projection from IP’%, C P(W). Moreover, we have isomorphisms

Gr(2. Vs) NP(W) = Gry (2. 8y) = Py (N’8y) = Py (€),

under which the first morphism is induced by Py (£) — P (W) and the second is
the tautological projection. The blowup X—>Xis given by the proper transform of
X CGr(2, V5)NP (W) under the first morphism in (2-7). Since X C Gr(2, Vs)NP(W)
is the divisor defined by the quadric Q CP(W)and T = X N IP’?V is a surface, this
coincides with the preimage of Q C P(W) under Py (£) — P(W). This proves
claim (3).

The section of Op, (¢)(2H ) defining X corresponds to a morphism of vector bundles
& — &Y on Y. The discriminant locus of the conic fibration 7: X — Y is the vanishing
locus of the determinant of this morphism, ie is defined by a section of

det(EY)? = O(4h).
This proves claim (4).

The final claims about the equalities (2-5) and smoothness are straightforward. O
2.2 The embedding of KCu(X) into D" (Y, Clg)
From now on, we assume the canonical quadric of X is smooth.

Remark 2.2 The smoothness of the canonical quadric of X holds generically, namely
on the complement of a divisor in moduli. This is a consequence of [18, Lemma 2.1;
17, Proposition 4.5], as explained in the proof of Theorem 4.18.
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Recall from [27] that associated to the conic fibration 7 : XY , there are sheaves Cl
and Cl; of even and odd parts of the corresponding Clifford algebra on Y, which as
sheaves of Oy-modules are given by

(2-8) Cly = Oy & NE =~ Oy ® Oy (—h) ® Sy (—h),
(2-9) Cl=EDNE =Sy ® Oy (—h) ® Oy (=2h).

Note that Cly is a sheaf of Oy-algebras via Clifford multiplication, and C{; is
a Clp—module. Moreover, by Lemma 2.1(3), X is the zero locus of a section in
HO(Py (£), O2H) ® n*LY), where £ = Oy. As a consequence, the natural Clo—
bimodules introduced in [27, (15)] satisfy

(2-10) Clyi :==Clo®L ™ =Cly and Clyjpq:=Cli QL™ =Cl;.

Our goal is to realize u (X)) as a semiorthogonal component inside the derived category
DP(Y, Clo) of coherent sheaves of right C£g—modules. To state the result precisely, we
need some preliminary notation.

Again by [27], there is a fully faithful functor
®: D°(Y, Clo) — D°(X),
whose image fits into a semiorthogonal decomposition
D(X) = (®(D(Y, Cly)), 7*D°(Y)).

Since the quadric threefold Y C P(W’) is smooth by Lemma 2.1, the category D°(Y)
admits a standard decomposition, which can be written as

D°(Y) = (Oy (=h), Oy, Sy, Oy (h)).

Here, we have used that Sy is the spinor bundle on Y, being the restriction of the
spinor bundle S on the quadric Gr(2, Vy) C IP’(/\2 V4). All together, we obtain a
semiorthogonal decomposition

(2-11) D*(X) = (®(D"(Y, Clo)), Og(—h), 0%, S5, Ox(h)).
On the other hand, by Orlov’s blowup formula we have a semiorthogonal decomposition
DP(X) = (b*D°(X), ig.bD(T)),

where the morphisms b, bg and i g are as in (2-4). Since T C PI?V is a smooth quadric
surface, the category DP(7") admits a standard decomposition, which can be written as

D’(T) = (Or(—c), Or(—d), O, O (H)),
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where ¢ and d are the semiample generators of Pic(7T') such that
H|lr=c+d.

Plugging this and (2-2) into the blowup formula, we obtain

(2-12) Db(ff):(b*/Cu(X),Of,u§,0f(H),u§(H),
iExOE(—¢).ig+OEp(—d),igxOF . ipxOp (H)).

To realize Ku(X) as a semiorthogonal component inside of D?(Y, Cf), we will find a
sequence of mutations taking (2-12) into the form of (2-11). We freely use basic facts
about mutation functors, as reviewed for instance in [29, Section 2]. The precise result
we will prove is the following:

Proposition 2.3 Let X be an ordinary GM fourfold with smooth canonical quadric.
Then there is a semiorthogonal decomposition
®(DP(Y,Clo)) = (Ku(X) Uz, Fe. Fa.G).

where F., F4 and G are rank 2 vector bundles on X defined in Lemmas 2.8 and 2.9,
and Ku(X)' is the fully faithful image of Ku(X) under the functor

Lo (- ©b* oLyy : DP(X) - D°(X).

Proof The proof is divided into steps.
Step 1 Mutate Z/I)-\E(H ) to the far left of the decomposition (2-12).

Since this is a mutation in »*D°(X) and we have Kx = —2H and Uy (—H) = Uy,
the result is

D*(X) =
(U)?,b*/CM(X),Of,u}\é,Of(H),iE*OE(—C),iE*OE(—d),iE*OE,iE*OE(H».

Step 2 Left mutate the objects ig«Of(—c), ig«OE(—d), ig+Of and ig«Op (H)
through O 5 (H).
Lemma 2.4 We have

Log ) (iExOE(—¢)) = iE+OEp(—¢),

Lo o) (iExOE(=d)) =ig+Op(—d),

Lo ) (iExOF) = ig«OE,
Lo (iExOE (H)) = Og(h)[1].
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Proof For the first three equalities, we just need to check that there are no morphisms
(in any degree) from O (H) to the objects igxOg(—c), ig+Op(—d) and ig«OF.
But, for a divisor £ on T, we have

Hom*(Og(H),ig+Of (£)) = H(Or (£ — H)),
which vanishes for £ = —c, —d, 0. The final mutation follows from the exact triangle
Og(H) = ig«Op(H) — Og(h)[1],
obtained from the exact sequence
0> O0g%(—E)—> 05 —>ig«sOp —0

by twisting by H, using the equality # = H — E, and rotating. O

By the lemma, the result of the above mutation is
D*(X) =

(Ug. b*Ku(X), 0. Uz, iExOp (=), ig+Op(=d).ig+ O, O (h), O (H)).
Step 3 Mutate O 5(H) to the far left of the decomposition.

Since K = —H — h by Lemma 2.1, the result is

X
D°(X) =
(O (=h),Ug.b*Ku(X), 05, UZ.igxOp(—¢),igx O (=d), iExOp, O g (h)).

Step 4 Left mutate 5*KCu(X) through (O g (—h),Ug).
The result is
D°(X) =
(Ku(X)', Og(=h).Ug.O5.U%. ig+Op(—¢),iExOp (=d).ig+Op. Oz (h)).
where Ku(X)" = Lo (—n)b*Luy (Ku(X)).

Step 5 Right mutate L{;.;- through the objects i g« O (—c¢), ig«+Op(—d) and i g+ OF.
Lemma 2.5 Riip.or(=c)ip 0k (—d))uj\;” = uj(\/"

Proof The claim is equivalent to showing there are no morphisms (in any degree)
from Z/IXY to ig«Of(—c) and i g« OF (—d). This orthogonality follows from the split
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short exact sequence
(2-13) 0->1M®O0r >Ur > Or(—H) — 0,

which can easily be deduced from the definition of 7" [18, Lemma 3.7].

Lemma 2.6 There is an exact sequence
0—>S};~—>L{j\;~—> Y ®O0g —0
and an isomorphism R; ..o ; (Z’[jvz) ~ 8}.
Proof By the exact sequence (2-13) we have
Hom*(U%,ig+Og) = H (T, Ur) = V1[0].
Thus, we get the triangle
RiE*OEuXV“ - u}' — Vl\/ ® ZE*OE
Consider the surjective morphism

(2-14) Uy - V) ®ir«Or

3071

of sheaves on X given as the composition of the canonical surjection Uy — Uy ®iT+OT

with the pushforward along i : T — X of the canonical surjection U/;. —

VV(X)OT.

The morphlsm U Y — V)Y ® O we are interested in is the pullback of (2-14) along

b: X — X, and in partlcular is also surjective. We define sheaves K and K on X and X

by the exact sequences
(2-15) 0—>K—->Uf -V ®0r —0,
(2-16) o—>/E—>u5V(«—>V1V®0E—>o.
By the discussion above, we have

Riz,0:Uf =K,

so we must show there is an isomorphism C =~ S};«.

First we claim that K is a quotient of Vy®0 - For this, by the above exact sequences

it is enough to show the same for K. From (2-15) we find that HO(X, K) =

V,’, which

corresponds to a morphism V,” ® Ox — K. Working fiberwise, it is straightforward to

see that the sequence
Vy ®0x Uy - VY01 =0

is exact, ie V,” ® Ox — K is surjective.
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By the defining exact sequence (2-16), the sheaf K has rank 2 and is locally free since
E C X is a divisor. Hence by the above K induces a map g: X > Gr(2, V4) such that
K =~ g*SV. To prove K = S;%, it therefore suffices to show that g agrees with the map

X > Y < Gr(2, Va).

But it is easy to see from the definitions that these maps agree on the complement of
E C X, and hence agree everywhere. O

By the lemmas, the result of the above mutations is
D°(X) =
(Ku(X)', 0g(=h), Uz, Og,igxOp (=), ig+Op(=d).ig+OF, S g, O (h)).
Step 6 Left mutate the objects ig+Op(—¢), iExOp(—d) and ig+OF through O 3.
Arguing as in Lemma 2.4, we find
Log(iExOE(—¢)) =ig+OE(—c),
Loy (iExOE(—=d)) = ig+Op(—d),

Lo (igxOF) = Og(h— H)[1],
so the result is

2-17) D°(X) = (Ku(X)", Og(~=h). Uz, ig«Op(=¢),ig+ O (=d),

Og(h— H),Of,S)-\::, Og(h)).
Step 7 Left mutate the objects U, ig+Og (—¢), ig+Og (—d) and O g (h— H ) through
Og(=h).
Lemma 2.7 Lojg(—h)(uf) =Uz.

Proof We must show that Hom*(O g (—h),Uy5) = H*(Ug(h)) vanishes. Note that
there is an isomorphism U/ () = M}%(—E) sinceh=H —E and Ug(H) = Z/{)%. From
the resolution of i g+ Of on X we obtain an exact sequence

O—>Z/{XV~(—E) —>Z/{XV— —ig«Uy — 0.

It follows from the exact sequence (2-13) that the morphism on cohomology induced
by the right arrow,

Vs H'(u)%) — H*(ig«U}) = H (Uy),

is an isomorphism, which implies the desired vanishing. O
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Lemma 2.8 We have

Loy(—h)iE*OE (—c) = F¢[1] and Lof(—h)l.E*OE (—d) = F4[1],
where F. and F, are rank 2 vector bundles on X defined by exact sequences
0— Fe— O0g(—h)®* - ig,Op(—c) =0,

(2-18) o2
0—Fqg = Og(=h)¥* - igxOp(=d) — 0.

Proof First we compute the pushforwards of ig+Ofg(—c) and ig+Ofg (—d) along
7: X — Y. Recall that the derived category of the quadric threefold Y decomposes as

D°(Y) = (Oy (=h), Oy, Sy, Oy (h)).

The decomposition (2-17) shows that m«ig«Ofg(—c) and 7w4«ig«Of (—d) are right
orthogonal to the objects Oy, Sy and Oy (h), and hence isomorphic to a sum of shifts
of Oy (—h). On the other hand, as m oig: E — Y is flat and finite of degree 2 by
Lemma 2.1, m«i g+« O (—c¢) and i g+« O (—d) are vector bundles of rank 2. Together
these observations prove that

(2-19)  74igxOp(—c) = Oy (=h)®? and 74ig+Of(—d) = Oy (—h)®2.
Thus, we obtain
Hom®*(Og(—h),ig+OF(—c)) = k2[0] = Hom®* (O (—h),ig+Op(=4d)),
and hence we have exact triangles
0% (=)®* > ig,Op(—c) —> Log(-n)iExOE(—c),
Oz ()% - i Op(—d) — Lo (-miE«OE(—=d).

It follows from the finiteness of 7| g : E — Y (see Lemma 2.1) that the above morphisms
Og(—h)®? - ig,Op(—c) and Og(—h)®? - i, O (—d) are surjective. This gives
the sequences in (2-18). m|

Lemma 2.9 We have Lo, (-n)Og (h— H) = G, where G is a rank 2 vector bundle
on X defined by an exact sequence

(2-20) 0—0gh—H)—G— Og(—h) —0.

Proof By the same argument as in Lemma 2.8, the object 7+Og(h — H) is a sum of

shifts of Oy (—/). On the other hand, the restriction of O g (h — H) to the general fiber
of 7 is isomorphic to Op1(—2). We deduce that

(2-21) 1O (h— H) = Oy (—=h)[~1].
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Thus, we obtain
Hom'((’)f(—h), Of(h — H)) = k[-1],

and hence there is an exact triangle

Og(=m)[-1]— Og(h—H) — L(’)g(—h)o)}'(h —H).
It follows that LOX‘ (—n)Ox (h — H) is isomorphic to the unique nontrivial extension
of Og(=h) by Og(h— H). a
Combining the above lemmas, we see that the result of our mutations is
(2-22) DP(X) = (Ku(X) .Uz, Fe. Fa. 6. Og(—h). 05.8%. O5(h)).
Comparing this decomposition with (2-11) completes the proof of Proposition 2.3. O
Remark 2.10 As pointed out by Kuznetsov, one can prove a similar statement for X

with singular canonical quadric 7, up to replacing (F,, F4) with D? (Cﬁg ), where CZ(Y;
is the even part of the Clifford algebra over k corresponding to 7.

2.3 Making explicit the embedding of KCu(X) into D" (Y, Cl,)

Proposition 2.3 shows that Ku(X) embeds into DP(Y,Cly) as the semiorthogonal
complement of four exceptional objects, corresponding to Uy, F¢, F4 and G. The goal
of this section is to explicitly describe (a mutation of) these exceptional objects as
Clop—modules on Y. More precisely, we prove the following:

Theorem 2.11 Let X be an ordinary GM fourfold with smooth canonical quadric.
Then there is a semiorthogonal decomposition

D°(Y,Clo) = (W(Ku(X)),Cly,Clo, Re, Ra),

where W: Ku(X) — DP(Y, Cly) is a fully faithful functor, defined in (2-26), and R
and R, are exceptional objects of DP(Y, Cly), defined in (2-25), which as Oy —modules
are locally free of rank 4.

Remark 2.12 As observed in (2-10), we have C{_; = C{1, which explains why C{
sits to the left of C{y in the above decomposition. Moreover, C{( and C{; are completely
orthogonal, so we can also write the decomposition as

DP(Y, Cly) = (U(Ku(X)),Cly,Cli, Re, Ry).
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To prove the theorem we first construct an explicit functor & : Db(}? ) — DP(Y, Clp)
in (2-24) which is the left inverse to ® up to twisting by a line bundle. Then we show
that the objects C¢1, Clo, R and Ry are given by the values of E on Uy, G, RgF,[1]
and RgF4[1].

Remark 2.13 The advantage of the mutated objects R, and R4 over E(F,) and E(F,)
is that their C£g—modified discriminant vanishes; see Lemma 4.8. This will be an
important point in our construction of stability conditions in Section 4.

Lemma 2.14 There is an isomorphism . Hom(G, G) = Clo of Oy —algebras, where
the left side is equipped with the natural algebra structure given by composition.
Proof Consider the sequence

(2-23) 0—>O};(h)—>gv—>0§(H—h)—>0

obtained by dualizing the sequence in Lemma 2.9. The decomposition (2-22) shows
that G (and hence also O (h) ® G) is right orthogonal to x*DP(Y) C D®(X), which
by adjunction implies 77+ (O(h) ® G) = 0. Thus,

m«Hom(G,G) = ﬂ*(gv ®G) = T[*(O)}'(H -h)®9).
Now consider the sequence
0>05g—>05gH—-NQ®G—>Of(H—-2h)—0

obtained by tensoring the sequence in Lemma 2.9 by O g (H —h). By Lemma 2.1, X is
a conic fibration over Y in the projective bundle Py (£), so we have an identification

1:Og(H) = &Y = Oy(h) ® Sy.
Thus, since Sy (—h) = Sy, we have
xOg(H —2h) = Oy (—h) & Sy (—h).
Therefore, we have an exact sequence
0 — Oy — mHom(G,G) — Oy (=h) ® Sy (—=h) — 0.
This extension splits because H! (Oy (h)) = H! (Sy (h)) = 0. This shows

wxHom(G,G) = Oy @ Oy (—h) @ Sy (—h),
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which together with (2-8) shows there is an isomorphism w«Hom(G, G) = Cly of
Oy-modules.

It remains to show that the algebra structures on 7« Hom(G, G) and C{q are compatible.
Note that since G has a C£p—module structure, there is a morphism of algebras

7T* C‘eo —> Hom(g7 g)’
which by adjunction induces a morphism of algebras
Clo — m«Hom(G, G).

This morphism is injective, since C{y is an Azumaya algebra away from the discrimi-
nant locus by [27, Proposition 3.13]. Moreover, ¢1(Cly) = c1(w+Hom(G, G)), so we
conclude that they are isomorphic. O

For any F € DP(X), the object 774 (GY ® F) naturally has the structure of a right module
over mxHom(G, G). By Lemma 2.14, we may regard this as a C{y—module structure,
and define a functor

(2-24) E = 74(GY ® —): D’(X) — D°(Y, Cly).

Lemma 2.15 There is an isomorphism of functors
Eod~ (—)®O(—h): D°(Y,Cly) — DP(Y, Cly).
In particular, E: DP (X) — DP(Y, Cly) restricts to an equivalence

®(DP(Y, Cly)) ~ D°(Y, Cly).

Proof Recall that the functor ®: D°(Y, Cfg) — DP (ff ) is given by
O(F) =7"(F) ®n*ce, £
where £’ is a certain sheaf of left C€o-modules denoted by £’ ; in [27]. Thus,
E(Q(F)) = ma(*(F) @ by €' ® G7) = F @cyy mx(£' ® GY),
so we must show (£’ ® GY) >~ Clo(—h). Recall that we have an exact sequence
0—0Mh)—GY—OH-—-h)—0.

Note that & = ®(Cl) is right orthogonal to 7 *DP(Y), so 74(£") = 0. Thus, we also
have 74 (£’ ® O(h)) = 7«(£") ® O(h) = 0, and so

T (£ ®GY) ~ 14 (' ® O(H — h)).
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In terms of the notation from (2-4) for the embedding of X into the projective bundle
Py (£), we can write this as

Using the exact sequence
0= O(2H)RCl_1 — O(—H)®Cly — j«& —0

on Py (&) from [27, equation (23)] (our & is &~ 1.0 in the notation there), we conclude
that
(€' ®GY) ~ Clo(—h).

As in Lemma 2.14, one can verify that it respects multiplication by C£ on each side. O
Next we compute the value of E on the objects Uy, RgF¢[1], RgF4[1].
Lemma 2.16 EUg) =Cty.
Proof As Uy is right orthogonal to 7*DP(Y) by (2-22), the same argument as in
Lemma 2.14 shows that
EUg) = m(GY ®Uz) = (O (H —h) ®Us).
Since Ug = Z/IXV. (—H), this can be written as
EUg) = Oy(—h) @ m« (u)%).

Pushing forward the exact sequence of Lemma 2.6 by &, we obtain an exact sequence

0— S}/ — n*(u)%) — mxig+«O — 0.
Pushing forward the exact sequence

0> O0g%(—E)—> 05 —>ig«sOp —0

by 7 and using —F = h — H and (2-21), we obtain an exact sequence

0—> Oy = axig«Op — Oy (—h) — 0.

This extension splits because H! (Oy (1)) = 0, and so the extension describing 74 (Z/I;%)
also splits because of the vanishings H! (Sy/) = H!(Sy (1)) = 0, which follow from the
exact sequence 0 > O(—h) - 8Y — Sy — 0 on Gr(2, V4). Thus, using Sy (—h) = Sy,
we conclude there is an isomorphism

EUg) = Sy ® Oy (—h) & Oy (—2h).
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Together with (2-9) this shows there is an isomorphism E (U ) = C; of Oy-modules.
Tracing through our construction of this isomorphism shows that it respects the C{o—
module structures on each side. a

We define objects

(2-25) Re = ERgF[l]) and Ry = ERgF[1])

in D°(Y, Cly).

Lemma 2.17 As sheaves of Oy —modules, we have isomorphisms
Re = 022 @ Oy (—)®? = Ry.

Remark 2.18 As sheaves of C{p—modules, R, and R, are of course different, since
they are orthogonal objects in DP(Y, Cly).

Before proving Lemma 2.17, we make a preliminary computation.

Lemma 2.19 Set F;, = RgF[l] and F, = RgF4[1]. Then F, and F), are sheaves,
given by extensions

0— Ogh—H)®* - F. - ig+Op(—c) =0,

0—> Ogh—H)®* > F) > ig«Op(—d) — 0.

Proof We have

Hom*(F,,G) @ Hom*(ig« O (—c), §)[1] (by (2-18) and (2-22))
=~ Hom*(ig+ O (—¢), Og(h—H))[1] (by (2-20) and (2-17))
~ Hom*(Ofg (—c), OF) (since i (F) = F(H —h)[-1])
~ H*(O7(c)) = k2[0],

where i ]'5 ) =ig()®wg 4 [—1] is the right adjoint to the pushforward functor i g «.
It follows that there is a commutative diagram

Fe Go? F.

| |

Og(—h)®2 ——— O g(—h)®2 —— 0

| l

iE+OF (—¢) —— Og(h— H)®?[1] — F[1]
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whose rows and columns are exact triangles, where the first column is given by (2-18)
and the second by a direct sum of two copies of (2-20); in fact, the top row is ob-
tained from the bottom row by applying Lo, - Indeed, the above computation of
Hom*(F;, G) implies the top left square is commutative, and then we can extend by
the octahedral axiom to the full diagram. In particular, we see that F,, is an extension
as claimed. The same argument applies to F él‘ O
Proof of Lemma 2.17 The same argument as in Lemma 2.14 shows that
Re = (G ® F.) = mu(F.(H — h)).
By Lemma 2.19, we have an exact sequence
0— o;éz — FL(H —h) = ig+Og(d —h) — 0.

We claim that
nsig«Op (d —h) = Oy (—h)®2.

This will complete the proof for R, since then the pushforward of the above exact
sequence by 7 gives an exact sequence

0— (’);‘,92 — Re = Oy (—=h)®%2 -0,
which splits since H! (Oy (h)) = 0.
To prove the claim, note that by (2-19) we have
Hom(nsig+OF (—d), Oy) = Oy (h)®2.

On the other hand, it is easy to compute that the relative canonical class of the morphism
woig: E —Y is h, so by Grothendieck duality the left side can also be written as

Hom(mxig« O (—d), Oy) = myig+Hom(Og(—d), Oy (h)) = n«ig+Op(d + h).
Thus, 74ig+OF (d + h) = Oy (h)®2, which is equivalent to our claim. This finishes
the proof for R., and the same argument applies for R . O
Proof of Theorem 2.11 Define
(2-26) W ==EoLog(-no° b* oLy : Ku(X) — D°(Y, Clyo).

Then, by Proposition 2.3 and Lemma 2.15, W is fully faithful and there is a semiorthog-
onal decomposition

D°(Y, Clo) = (¥(Ku(X)), EUyg), E(9), ERgFc[1]), E(RgF4[1])).
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By Lemmas 2.14 and 2.16, the first two exceptional objects in this decomposition are
Cly and Cly. By definition the last two are R, and R4, which by Lemma 2.17 are
locally free of rank 4 as Oy —modules. O

3 A Bogomolov inequality for C£,—modules on Y

Maintaining the notation of the previous section, the purpose of this section is to prove
a Bogomolov inequality for C{p—modules on Y. This will allow us to define weak
stability conditions on DP(Y,Clg) by tilting slope stability, which we need for our
construction of stability conditions on Ku(X) in the next section.

3.1 The main theorem

For an object E € D®(Y, Clo) we write Forg(E) for the underlying complex of Oy—
modules, and set
ch(E) = ch(Forg(E)) € CH*(Y) ® Q.

In particular, we can define the rank rk(E) = cho(E) of any object E € D°(Y, Cly)
and the associated slope function

B2
) = S

This gives rise as usual to a well-behaved notion of slope stability for objects of

Coh(Y, Cly). By definition, an object E € Coh(Y, Cly) is torsion free if Forg(F) is.

Theorem 3.1 Let E € Coh(Y, C{y) be a slope-semistable torsion-free sheaf. Then
Acgy(E) :=h-chi(E)* —21k(E)(h-chy(E) — 3 k(E)) > 0.

In order to prove the theorem, we first prove the corresponding inequality on a smooth

hyperplane section of Y. Then we deduce the result on Y by induction on the rank
of E, arguing as in [4, Section 8] (see also [35, Section 3]).

3.2 The case of a hyperplane section

Let ¥ C Y be a generic hyperplane section of Y, which is a quadric surface. Let /1
and /i, be the two generators of Pic(X) such that

h=hy+hs.
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Consider the restriction of the conic fibration 7 to ¥, sitting in the diagram

772, %
(3-1) Tz l Jn

scE Ly
Note that, by Bertini’s theorem, Z is smooth. The sheaves of the even and odd parts
of the Clifford algebra on X associated to the conic fibration w7 are the restrictions
to X of the corresponding sheaves on Y'; in order to simplify notation, we denote these
restrictions by the same symbols C{(p and C{;. Note that the restriction to X of the
spinor bundle S on Y splits as Sy =~ Ox(—h1) ® Ox(—h3). Thus, by (2-8) and (2-9),
as sheaves of Oxz—modules we have isomorphisms
(3-2) Clo = Oy @ Ox(—h1 —h3) ® Ox(=2h1 —h2) ® Ox(=h1 —2h3),
(3-3) Cly = Ox(—h1) ® Ox(—h2) ® Ox(—h1 —h2) ® Ox(=2h1 —2h3).
As in the case of (Y, Clg) discussed above, for an object E € D°(X, Clg) we define its
Chern character as that of the underlying complex of @g—modules Forg(E) € DP(X).

The aim of this section is to prove the following Bogomolov inequality for C£o—modules
on X:

Proposition 3.2 Let E € Coh(X, Cy) be a slope-semistable torsion-free sheaf. Then
Acgy(E) := chy(E)* —21k(E)(cha(E) — 3 tk(E)) > 0.
We give the proof at the end of this section, after some preliminary results. First we

discuss the structure of the derived category of the conic fibration 7z : Z — X, which
is parallel to that of 7 : X Y.

Lemma 3.3 (1) There is a fully faithful functor ®x: D*(2,Clo) — DP(Z) such
that there is a semiorthogonal decomposition
D*(Z) = (@x(D°(E.Clo)), 7;D°()).
(2) Let Gz be the restriction to Z of the vector bundle G on X defined in Lemma 2.9.

Then there is an isomorphism of Ox—algebras wz+«Hom(Gz,Gz) >~ CLy and the
resulting functor

Ex = nz«(G) ® —):D°(Z) — D°(Z, Cly)

satisfies Ex, 0 Oy, ~ (=) ® Ox(—h). In particular, Ex,: D’(Z) — DP(Z, Cly)
restricts to an equivalence ®x(DP(Z, Cly)) ~ DP(Z, Cly).
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Proof (1) holds by [27]. Base change gives an isomorphism
nz«Hom(Gz.Gz) = iswsHom(G, G)

of Ox—algebras, so Lemma 2.14 then gives the first claim in (2). Then the isomorphism
of functors Ex 0 &y >~ (—) @ Ox(—h) follows as in Lemma 2.15; alternatively, this
is a formal consequence of Lemma 2.15 and the fact that Ex and ®yx are the base
changes of the D°(Y, Cfo)-linear functors E and ® along (X, Clg) — (Y, Cly). ad

Remark 3.4 Note that Z is a resolution of singularities (in fact the blowup in 7T')
of a nodal GM threefold X’ C X containing 7. Define Ku(X’) C DP(Z) by the
semiorthogonal decomposition

D°(Z) = (Ku(X'), Oz, Uy).

It would be interesting to study /’@(X ') as a categorical resolution of singularities of
Ku(X’) (defined by the same semiorthogonal decomposition as in the smooth case), in
the spirit of [28].

We consider the Euler form on the Grothendieck group of DP(X, Cfy), defined by

Xeto(E. F) = (=1)' dimHom(, (E. F)
i

for E, F € D*(Z, Cly), where Homéeo (—, —) denotes the degree i morphism space
in the category D°(X, Clp). Let N(Z, Clo) be the numerical Grothendieck group of

DP(X, Cly), ie the quotient of the Grothendieck group of DP(X, Clg) by the kernel of
the Euler form y ¢y, .

If E €DP(Z,Cly) and F € DP(X), then we write £ ® F for the usual tensor product
E ®0, F, which carries a natural C{p—action from the first factor, and hence can be
regarded as an object of D*(X, Clg). In case F = O(D) for a divisor D, we write as
usual E(D) = E ® O(D).

Lemma 3.5 The classes of the objects

(3-4) Cly, Clo(=h1), Clo(—=hz), Clo(—h)

form a Q-basis for N'(2,Cly) ® Q.

Proof The numerical Grothendieck group is additive under semiorthogonal decompo-
sitions, so by Lemma 3.3(1) we have

N(Z) = N(Z,Clo) ®N (D),
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where A (Z) and N'(X) denote the numerical Grothendieck groups of D°(Z) and
DP(X). By Hirzebruch-Riemann—-Roch, the numerical Grothendieck group of a smooth
projective variety is rationally isomorphic to its numerical Chow ring, so A/(X) has
rank 4. Similarly, since, by Lemma 3.6 below, the Picard rank of Z is 3, it follows that
N (Z) has rank 8. Thus from the above direct sum decomposition we conclude that
N (X, Clp) has rank 4.

Therefore, to prove the lemma it suffices to show that objects (3-4) give linearly
independent elements of A/ (X, Clp). For this, we compute the intersection matrix for
these elements with respect to ycy,. Since these are exceptional objects of DP(Z, Cly),
their self-pairing equals 1. The other pairings can easily be computed using that the
functor Forg: DP(Z, Cly) — DP(X) is right adjoint to — ® Clo: DP(Z) — DP(Z, Cly);
for instance, using (3-3) we find

Xcto(Clo(=h1),Clo(—h2))
= xct, (Clo, Clo(h1 — h2))
= x(Ox,O0x(hy —hy) ® O (—2h3) & Ox(—h1 —2hy) ® Ox(—3h3))
— 3.

In this way, we find that the matrix representing ycg, on the collection (3-4) is

This matrix has determinant 256, which implies the linear independence of the classes
of the objects (3-4) in N (X2, Cly). O

The rank of the Picard group of Z was used in the above proof; for later use in this
section, we prove the following more precise statement:

Lemma 3.6 Pic(Z) =~ Zh, ® Zh, ® Z H.

Proof First we claim that the Picard rank of Z is indeed 3. Equivalently, the relative
Picard rank of mz: Z — X is 1, or, equivalently still, every irreducible divisor D
in X has irreducible preimage in Z. If D is not contained in the discriminant divisor
of mz, then 7[21 (D) — D is a flat morphism with irreducible generic fiber, and hence
ngl (D) is irreducible. It remains to show that the same holds if D is a component
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of the discriminant divisor D(;rz) C ¥ of wz. Note that D(wz) = D(;wr) N X, where
D(x) C Y is the discriminant divisor of 7 : X — Y. On the other hand, it follows
from the description of X as the blowup of X that & has relative Picard rank 1, so
in particular every component of D () has irreducible preimage in X By Bertini’s
theorem and the genericity of X, the same statement for D(;rz) follows.

It follows from the previous paragraph that Pic(Z) ® Q is spanned by %1, h, and H.
To show that this holds integrally, let D € Pic(Z) and write

D =ahy+bhy+cH
for rational numbers a, b, ¢ € Q. Note that

L, H

shiha, ihiH, 3

are the classes of curves on Z: the first is represented by an irreducible component
of a degenerate fiber of 7 that is a union of two lines; the second is represented by
a section of the restriction of 7z to a line of class /; in X; and the third is similarly
represented by a section of the restriction to a line of class /5. Therefore, the following
intersection numbers are integers:

shihy-D =c, $hiH-D=b+thiH?c, JhyH-D=a+ ShyH?c.
The coefficients of ¢ in the second two equations are similarly integers (in fact, both

equal 2), so we conclude that a, b and ¢ are integers. a

Next we prove a Hirzebruch—Riemann—Roch formula for C£¢p—modules on X, which
gives a topological formula for the Euler form.

Lemma 3.7 For E, F e D°(X, Clo) we have

Xeeo(E, F) = /E ch(E)Y ch(F)- (% — &hih2).
In particular, we have
(3-5) Keto(E. E) = =15 1k(E)? + 7 (21k(E) cha (E) — ch1 (E)?).
Proof By Lemma 3.5, it suffices to check the formula for £ and F among the
objects (3-4), which can be verified by a direct computation. Alternatively, we can

argue more conceptually as follows. By Lemma 3.5, it suffices to prove the formula
for E of the form E = Clo ® E’ for E' e D’(X) (even E’ a line bundle would suffice).
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The functor —® E’: D°(X, Cly) — DP(Z, Clp) has a right adjoint given by — ® (E’)V
and, as mentioned above, — ® Cly: D’(Z) — DP(Z, Clp) has as a right adjoint the
forgetful functor Forg; thus, we have

xeto(E.F) = ey (Clo. (E")Y ® F) = x(Ox, (E')Y ® Forg(F)).

Note that

ch(E)Y
h((E)Y) = ———,
ch((E")") ch(Clo)”
so, by the usual Hirzebruch—-Riemann—Roch theorem, the right side is given by
td(X)
h((E")Y) ch(F) td(Z :/ h(E)Y ch(F)————.
[ BN Py = [ en(E)” en(r) i
Finally, a direct computation shows that
td(X) 11
——— = 1 — 1chiha,
ch(Clo)y 4 16 172
which finishes the proof. O

Remark 3.8 The proof of Lemma 3.7 applies more generally to give a Hirzebruch—
Riemann—Roch theorem in the case of a pair (M, .A) where M is a smooth projective
variety and A is a coherent sheaf of algebras on M, such that N'(M, A) ® Q is spanned
by classes of objects of the form E = A® E’ for E’ € D*(M). Namely, if y 4 denotes
the Euler form for DP(M, A), then

td(X)
ch(A)V"
Of course, the above assumption that N'(M, A) ® Q is spanned by objects of the form
A® E’ is not always satisfied, as for example in the case of (¥, Cly).

JA(E. F) = /M ¢h(E)" ch(F)

The following result concerns Serre duality on (X, Clg):

Lemma 3.9 (1) The category D’(X,Cly) has Serre functor given by
Scto (=) = — ®c C1[2].
(2) The abelian category Coh(X, Cfo) has homological dimension 2.
(3) IfE € D*(Z,Cly), then ch(E ¢y, Cl1) = ch(E).

(4) Let E € Coh(X,Cly). Then E is a slope (semi)stable torsion-free sheaf if and
only if the same is true of E ®¢y, Cl1.
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Proof By the discussion in the beginning of [4, Section 7], the category D°(X, Clo)
has Serre functor given by S¢y, (—) = 0z Qo5 (—) Qct, Cly 2], where Cly denotes the
dual of C{y as a coherent sheaf, with its natural C{yp—bimodule structure. Using (3-2)
and (3-3), it is easy to compute
wy ® CZE)/ >~ (Clq,

which proves (1). Then (2) follows from (1), because C¢; is a flat C{y—module by [27,
Corollary 3.9]. By (3-2) and (3-3), we have ch(C{o) = ch(C¢y), from which (3) follows
from Lemma 3.5. Finally, note that the functor — ®cg, Cf1 gives an involutive exact
autoequivalence of Coh(X, Cfy); involutivity is a consequence of the isomorphism
Cly ®cg, CL1 = Clp, which holds by [27, Corollary 3.9]. From this observation,
(4) follows from (3). O

Finally, we prove some numerical constraints on objects in DP(Z, Cly).
Lemma 3.10 The rank of any object of DP(X, Cly) is divisible by 4.

Proof By Lemma 3.3(2) it suffices to show that for £ € D®(Z) the rank of 7 zx(GZ®F)
is divisible by 4. If ic : C — Z denotes a generic fiber of the conic fibration 7z : Z — %,
then by base change this rank can be computed as

X(C.i8(Gy ® E)) =1k(G7 ® E) +¢1(G7 ® E) - C = 41k(E) +2c1(E) - C,

where for the equality we used that rk(GY) =2 and ¢1(G") = H, as follows from (2-20).
It remains to observe that the intersection number of any integral divisor on Z with C
is even, which follows from Lemma 3.6. O

Lemma 3.11 If E € Coh(X, Cly) is a slope-stable torsion-free sheaf, then
Xeeo(ELE) < 2.
Proof By Lemma 3.9(2), we have
Xcto(E, E) = dim Homey, (E, E) — dimHomgy, (E, E) 4 dim Hom, (E, E).
By stability the first term is 1. On the other hand, by Lemma 3.9(1), we have
Hom(zjeo (E, E) = Homgy, (E, E ®cy, Cly).

By parts (3) and (4) of Lemma 3.9, the object E ®¢g, C{1 is a stable torsion-free sheaf
of the same slope as E, so Homgy, (E, E ®cg,CL1) is either 1-dimensional or vanishes,
according to whether £ ®¢y, C{; is isomorphic to E or not. In either case, the third
term in the above sum is at most 1. O
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Lemma 3.12 There are no objects E ¢ DP(Z, Cly) withtk(E) = 4 and Xeeo(E,E)=2.

Proof Suppose for sake of contradiction that we have such an object E, with
ch(E) =44 b1hy +brhy +chihs.

Note that by, by and c¢ are integers, because on X the second Chern character of any
object is always integral. By (3-5), x¢¢,(E, E) = 2 implies that 8¢ —2b1by = 12.
Thus, b1 b, is divisible by 2 but not divisible by 4, and hence b and b, are of different
parities.

On the other hand, by Lemma 2.17, the object R.|x € D®(Z, Clp) has
ch(Re|g)=4—2h+c'hih,
for some ¢’ € Z. By Lemma 3.7, we have
Xcto(E.Relz) = —14c+c' + (b1 + by),
which is not an integer because by and b, are of different parities. This contradiction
finishes the proof. |
Proof of Proposition 3.2 First assume that E is stable. Using (3-5), we get
i8¢0 (E) = 15 1k(E)® — yego (E. E).

By Lemma 3.10, the first term on the right is an integer satisfying % tk(E)? > 1, and
by Lemma 3.11 we have y¢¢,(E, E) <2. Now Lemma 3.12 implies that the equalities
cannot be achieved at the same time, so we conclude that Agg (E) > 0.

If E is strictly semistable, then we consider its Jordan—Holder stable factors Eq, ..., Ey,.
By the previous part, we have Agy (E;) >0foreveryi =0,...,m. By [6, Lemma A.6],
this implies Agg, (E) > 0. ad

3.3 Induction argument

Let us come back to the case of the threefold Y. Before proving Theorem 3.1, we need
the following lemma:

Lemma 3.13 Let g: Y — Y be the blowup of Y in a conic C C Y. Assume that, for
every up—semistable CLo—module F € Coh(Y, Cly), we have Acy,(F) > 0. Then, for
every E € Coh(?, g™ Clo) which is ju4+p—semistable, we have Ay« g, (E) > 0.
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Proof By [20, pages 608-609], we have that
a¥)=g"a1(Y)—e and c(¥) =q"(2Y) +[C)—g*c1(Y) e,

where e denotes the class of the exceptional divisor of ¢ and [C] € H*(Y,Z) is the
class of the conic C. The relative Todd class of g is

W(Ty) = 1-3¢+35(* +4"IC)).
If f is the class of a fiber of ¢|g: E — C, by [26, Lemma 2.2.14] we have
? = —¢*[C] + deg(N¢/x) [ = —¢*[C] + 2.
In particular, it follows that
W(Ty) =1-ze+5f
Now consider a j1,4+j—semistable ¢* Clo—module E on Y. We can write
chi(E)=q*l +ae and chy(E)=q*m+bf,

where [ € HU1(Y,Z) and m € H*2(Y, Z). Using Grothendieck—-Riemann—Roch and
gxe =g« f =0, we get

ch(¢*qxE) <2 = ¢* g+ (ch(E) <2 td(T4)) = (tk(E). ¢*.¢*m + aq*[C]).
In particular, since ¢*h - ¢*[C] = 2, we have
Agcty (@ g« E) =q*h -q*1? —2rk(E)(q*h q*m+a— % rk(E)).

Up to twisting by a power of Oy (e), we may assume that 0 < a <rk(E). Then we
have

Agecto(@*q+E) < q*h-q*1* —2a*> —21k(E)(¢*h-q*m — L 1k(E)) = Agx ¢ (E),
since ¢*h-e? = —q*h-q*[C].
On the other hand, by hypothesis and [4, Lemma 8.5], we deduce that

Ag+ cto(@" g+ E) = Acgg (RO E) = 0. O
Now we have all the ingredients to apply the argument in [4, Section 8] to prove

Theorem 3.1 in this setting. We explain here only the parts that differ from the cubic
fourfolds case, for sake of completeness.

Consider the following statement:
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Theorem 3.14 (tk(E) =r) Let E € Coh(Y,Cly) be a rank r jup—slope-semistable
torsion-free sheaf. Assume that the restriction E |y € Coh(D, Cly |x) of E to a general
divisor X € |h| is not slope-semistable with respect to h|x. Then
2> rir (i — 1j)* < Acgy (E).
i<j
where the p; (resp. r;) denote the slopes (resp. the ranks) of the Harder—Narasimhan
factors of E|x.

Similar to the proof of [4, Theorem 8.10], we argue by induction on the rank; in partic-
ular, we prove that Theorem 3.14(r) implies Theorem 3.1(r) and Theorem 3.1(r —4)
implies Theorem 3.14(r). Note that Theorem 3.14(r = 4) holds since 4 is the minimal
rank by Lemma 3.10, giving the base step of the induction.

Theorem 3.14(r) implies Theorem 3.1(r) Assume that £ € Coh(Y,Cly) is pup—
semistable of rank r with Agg,(E) < 0. Then Theorem 3.14(r) implies that E|x is
semistable for any general divisor ¥ € |A|, in contradiction with Proposition 3.2. This
implies the statement. ad

Theorem 3.1(r — 4) implies Theorem 3.14(r) Let IT C |k be a general pencil of
hypersurfaces and consider the incidence variety

Y:={=,y)ellxY:yeX}

Denote by p: Y — I and q: Y — Y the standard projections, where ¢ is the blowup
of the base locus of IT, which is a smooth conic curve in Y. We denote by f the class
of a fiber of p.

Assume that E is as in the statement. The fact that E|x is not yt5,|;,—semistable implies
that g* E is not p s—semistable. Then consider the Harder-Narasimhan filtration
of ¢* E with respect to up, f,

OCE,C---CEn=q"E.

The quotients F; := E;/E;_1 are juj s—semistable of rank < r —4. By Theorem
3.1(<r —4), Lemma 3.13 and [4, Proposition 8.9], we deduce that Aq*cgo(Fi) > 0.
On the other hand, we have chy (F;) = ¢*I; +a;e, with [; € HV'(Y,Z) and a; € Z.
Since f =h—e, g*h-e?> = —2 and h> = 2, we deduce that

h%.1; +2a;

3-6 ;= F) =
(3-6) Mi Mh,f( i) 2
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By [4, Lemma 8.5], as Roq* E; C E, we obtain that

Yi h2-;
(3-7) ﬁ < pun(E).
By (3-6) and (3-7), we deduce that
> i —un(E) <Y aj.
J=<i J<i
Following the same computation of [35, Section 3.9] and of [4, page 37], we deduce
the desired statement. |

4 Stability conditions on KCu(X)

In this section, we prove the first main result of this paper, Theorem 1.2, asserting the
existence of stability conditions on the Kuznetsov component of any GM variety, as
well as Corollary 1.3, giving stability conditions on the derived category of any GM
variety. We also prove Theorem 1.4, which asserts that for a GM fourfold or sixfold
over C our construction gives full numerical stability conditions.

First we prove the theorems in the case of an ordinary GM fourfold with smooth
canonical quadric, in Sections 4.2 and 4.3. Then, in Section 4.4, we handle the general
case, by using the duality conjecture proved in [34] to reduce it to the known cases.

4.1 Stability conditions

We refer to [4, Section 2] for background on the notions of tilting and (weak) stability
conditions. For the reader’s convenience, we briefly recall here the definition of a
(weak) stability condition on a triangulated category 7.

Definition 4.1 The heart of a bounded t—structure on T is a full additive subcategory
A C T such that:
(1) For E, F € Aand n <0, we have Hom(E, F[n]) = 0.

(2) For every E € T, there exists a sequence of morphisms
0=Ey L5 E L tob g, I E, —E

such that the cone of f; is contained in the subcategory A[k;] C T for some
sequence of integers k1 > ko > --- > kyy,.
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It is easy to see that the heart of a bounded 7—structure is in fact an abelian category.
For an abelian category A or a triangulated category 7, we write K(.A) or K(7") for the
Grothendieck group.

Definition 4.2 A weak stability function on an abelian category A is a group homomor-
phism Z : K(A) — C such that for all £ € A the complex number Z(E) is contained in
the set {z € C | Iz > 0, or Iz =0 and RNz < 0}. We say Z is a stability function if for
all E € A, Z(FE) is contained in the smaller set {z € C | Iz >0, or Iz =0 and Rz < 0}.

Definition 4.3 Let A be a finite-rank free abelian group with a surjective group
homomorphism v: K(7) — A. A weak stability condition on T with respect to A is
the data of a pair 0 = (A, Z), where A is the heart of a bounded ¢—structure on 7 and
Z: A — C is a group homomorphism, satisfying the following properties:

(1) The composition K(A) = K(7) = A Z, C is a weak stability function on A.
We write Z(—) instead of Z(v(—)) for simplicity, and for any object E € A
define the slope with respect to Z by

—NZ(E)/IZ(E) if3IZ(E)>0,

Ko (E) = .

+o00 otherwise.

An object E € A is o—semistable (resp. o—stable) if, for every proper subobject F'
of E, we have g (F) < g (E) (resp. g (F) < ug(E/F)).
(2) Any object of A has a Harder—Narasimhan filtration with o—semistable factors.

(3) Support property There exists a quadratic form Q on A ® R such that the
restriction of Q to ker Z is negative definite and Q(E) > 0 for all c—semistable
objects E in A.

If in addition Z is a stability function, then o is called a Bridgeland stability condition
with respect to A.

Below, we shall often give references to results in the literature that are stated for
stability conditions on derived categories of varieties, but whose proof works the same
in the setting of the derived category of C{o—modules on Y.

4.2 Theorem 1.2 for ordinary fourfolds with smooth canonical quadric

In this section, X denotes an ordinary GM fourfold with smooth canonical quadric; we
use the notation in this setting from Sections 2 and 3. Recall that, by Theorem 2.11, the
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Kuznetsov component Ku(X') embeds into the derived category of a noncommutative
quadric threefold (Y, C{y) as the orthogonal to four exceptional objects. The methods
of [4] show that, if we can produce a suitable weak stability condition on Db(Y, Cly),
then there is an induced stability condition on the semiorthogonal component Ku (X).
Thus, most of this section is dedicated to constructing such a stability condition on
DP(Y, Cly), as a double tilt of slope stability.

We define a modified Chern character for objects in E € D°(Y, Clg) by
cheg(E) = ch(E) - (1— 5h?),

so that the discriminant appearing in the Bogomolov inequality of Theorem 3.1 can be
written in the familiar form

(4-1) Acto(E) = h-(chZy, | (E) = 21k(E) cheg, 5(E)).
Here chgy,, ; (E) denotes the term of degree i of chey, (E).
We define Agy, as the rank 3 lattice generated by the vectors

(h? - chegy0(E), h? - chegy 1 (E), h - chegy 2(E)) € Q3

for E € DP(Y,Cly). Note that by definition this lattice receives a surjective homomor-
phism
K(Y, CZ()) —> ACZ()

from the Grothendieck group of D°(Y, Cly).

For 8 € R, we denote by Coh? (Y, Clp) the heart of a bounded ¢—structure obtained by
tilting Coh(Y, Clo) with respect to slope stability at the slope 1 = 8 (see [22]). We
consider the twisted Chern character

Chge0 = €_ﬂh Chcgo,

: B . .
and write Chceo,i for its degree i term.

Lemma 4.4 For any («, ) € R~o xR, the pair

Oa,p = (COhB (Y, CEO)’ Z(X,ﬂ)
with

Zap(E) = Ya?chly (E)h®—h-chl) ,(E)+~=1h?-chl, (E)
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defines a weak stability condition on D2 (Y, Cly) with respect to Agy,. The qua-
dratic form on A¢y, ® Q required by the support property can be given by the
discriminant A¢y,. Moreover, these weak stability conditions vary continuously as
(o, B) € Rog X R varies.

Proof This follows from the Bogomolov inequality of Theorem 3.1 by standard
arguments; cf [4, Proposition 2.12] O

To induce a stability condition on Ku(X) from one on (Y, Clg), we will need stability
properties of the exceptional objects Cly, C£1, R, and R, appearing in Theorem 2.11
and of their Serre duals; we prove the required result in Lemma 4.9 below after some
preliminaries.

Lemma 4.5 The category D®(Y, Clo) has a Serre functor given by
Scey (=) = — cy, CL1(—=h)[3].
Proof This follows by the same argument as in Lemma 3.9(1). a

Remark 4.6 The isomorphism Cl1 ®¢y, Cl1 = Cly, given by [27, Corollary 3.9], is
sometimes useful for computing the action of S¢y,, eg Scg, (CL1) = Clo(—h)[3].

Lemma 4.7 The rank of any object of D®(Y, Cly) is divisible by 4.

Proof This follows from Lemma 3.10 by considering the restriction of objects to a
generic hyperplane section. a

We will only be concerned with the terms of chgg, of degree at most 2; we denote by
chegy,<2 = chegg,0 + chegg,1 + cheg, 2 the sum of these terms.
Lemma 4.8 The objects
Clo, Re, Cli(—h), Re®cy,Cli(—h),
Cly, Rgq., Clo(=h), Rg®cg,Cli(—h)
are slope-stable C{o—modules, with truncated Chern characters given by
chegy,<2(Clo) = chegy <2 (CL1) = 4 — 4h + 2k,
chegy,<2(Re) = chegy,<2(Rg) = 4= 2h + 3h?,
chegy,<2(Cly(—h)) = chegy <2(Clo(—h)) = 4 — 8h + 8h?,
chegg,<2(Re ®cty Cli(—=h)) = chery <2 (Ra ®cty Cl1(—h)) = 4 —6h + 31>,

In particular, the discriminant Ay, vanishes on all of these objects.

(4-2)
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Proof A direct computation gives the truncated Chern characters of all the objects
except for Re ®cy, CL1(—h) and Ry ®cy, CL1(—h). For these, we note that, for any
object E € D°(Y, Cly), the truncated Chern character cheg,,<2(E) is determined by
the Chern character of the derived restriction of £ to X, where ¥ C Y is a smooth
hyperplane section; in particular, by Lemma 4.5(3), we find

chegy, <2 (E ®cg, CL1(—h)) = chegy <2 (E(—h)).

Using this observation, the computation for R¢ ®cy, CL1(—h) and Ry ®cy, CL1(—h)
is straightforward.

Finally, the stability of the objects (4-2) follows because they are torsion free and, by
Lemma 4.7, of minimal rank. O

Lemma 4.9 For —% < B < —1 the objects
43) Clo, Re,  Scey(Clo)[-2],  Seey(Re)[—2],
Cli, Ra, Sceo(Cl)[-2], Scey(Ra)l-2]

are contained in Coh? (Y, Clo), and for a > 0 they are o, g—stable.

Proof Note that, by Lemma 4.5, the last four objects in (4-3) are the sheaves
Cli(=m[].  Clo(=m[1].  Re ®cto Cli(=M)[1].  Ra ®cg, Cl1(=h)[1]
and, by Lemma 4.8, we have
—2 = pp(Cli(=h)) = pp(Clo(=h)) < up(Re Qcy, CL1(—h))

= up(Rg ®ce, Cli(—h)) = —3
and

—1 = pp(Clo) = pp(Cly) < pn(Re) = pn(Ra) = —3.
Therefore, by the slope stability of the objects (4-2) from Lemma 4.8, the objects (4-3)
are contained in Coh? (Y, Cly), as claimed.

Note that the Oy-modules underlying the objects Clo, C{1, R¢, Rg, C€1(—h) and
CLo(—h) are vector bundles, by the definitions (2-8) and (2-9) and Lemma 2.17. Since by
Lemma 4.8 they also have discriminant Az, = 0, we conclude by [7, Proposition 7.4.1]
that the objects Clo, Cl1, Re, Rg, Cl1(—h)[1] and CLo(—h)[1] are 04, g—stable for a >0,
as claimed.

By the same argument, to show that R ®cy, Cl1(—h)[1] and Rz ®cy, CL1(—h)[1] are
0q,g—stable for o > 0, it suffices to show that the Oy —modules underlying R, ®c¢¢, Cl1
and R4 ®cy, Cl1 are vector bundles. In fact, we claim that tensoring by C{; over Cly
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either fixes R, and R, or swaps them. Indeed, tensoring by C{; the semiorthogonal
decomposition of Theorem 2.11, we get

D(Y, Clo) = (W(Ku(X)), Clo,Cl1, Re ®cy CL1, Ra ®cyy Cla).

Since Clp and C{; are completely orthogonal, comparing the two semiorthogonal
decompositions, we get (R¢, Rgq) = (Re ®cr, Cl1, Ra ®cr, CL1). This implies our
claim and finishes the proof of the lemma. |

We need one further tilt of the weak stability condition o, g. Let Cohg B (Y,Cly) be
the heart of a bounded 7—structure obtained by tilting Coh? (Y, Cly) with respect to
0y, p—stability at the slope p = 0.

Lemma 4.10 [4, Proposition 2.15] For any (&, B) € R~ x R, the pair
04 g = (Cohy 5(Y,Clo), Z7 5)

with Z° , = —+/—1-Z, g defines a weak stability condition on D®(Y, Cly) with respect
a,B B Y P
to Acg,-

Lemma 4.11 For ff = —% and 0 <a < %, the weak stability condition 03 8 satisfies

the following properties:
(1) Cly,Cli,Re, Ry € Cohg’ﬂ(Y, Clo).

(2) Sce() (CEO)v SC@() (Cel)a SC(Q (RC)a SC(Q (Rd) € COhg’ﬂ (Y’ CEO)[I]
3) z2° 5(Clo), z9 5(Cly), z) s(Re), z9 3(Raq) are all nonzero.

Proof A direct computation using Lemma 4.8 shows
o, (Sceo Clo[—2]) = pa,p(Sceo CL1[-2]) < ta,p(SceoRe[—2])

= Ha,p(SceeRal—2]) <0
and

0 < p1g,8(Clo) = pa,p(Cl1) < pa,p(Re) = ta,p(Ra).
In particular (3) holds, and (1) and (2) follow from Lemma 4.9. m|

Finally, we are ready to produce stability conditions on Ku(X). Note that there is a

homomorphism
K(Ku(X)) — K(Y,Clo) — Acy,,

where the first arrow is the injection on Grothendieck groups induced by the embedding
W: Ku(X) — D°(Y,Clg) from Theorem 2.11 and the second arrow is the canonical
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surjection. We define A¢y, xcu(x) to be the image of this homomorphism, so that there
is a surjection

(4-4) K(Ku(X)) = Aceo,cu(x)-

Theorem 4.12 Let X be an ordinary GM fourfold with smooth canonical quadric.
Then Ku(X') has a Bridgeland stability condition with respect to the lattice Acg,, jcu(x)-

Proof By Theorem 2.11, we have a semiorthogonal decomposition

DP(Y, Cly) = (W(Ku(X)),Cl1,Cly, Re, Ry).

We claim that any weak stability condition 0'8

condition on KCu (X)) with respect to Ay, xcu(x), With heart given by

p as in Lemma 4.11 induces a stability

W (Ku(X) N Cohg 4(Y, Clo))

and central charge Zg 8 oW:K(Ku(X))— C. Indeed, it suffices to apply Proposition 5.1
of [4]. The hypotheses of the cited proposition are satisfied due to Lemma 4.11 and the
following observation: if 0 # F € Cohg B (Y,Clp) and Zg 8 (F) =0, then Forg(F) is
a torsion sheaf with O—dimensional support, hence

Homgy, (Clo, F) = Hom(Oy , Forg(F)) # 0

and, in particular, F ¢ W(Ku(X)). ad
4.3 Full numerical stability conditions

In this section, we show the stability conditions constructed in Theorem 4.12 satisfy
the support property with respect to a larger lattice, the numerical Grothendieck group
of Ku(X). This can be formulated in terms of the Mukai Hodge structure of Ku(X),
which we review first. For this section, we work over k = C.

4.3.1 The Mukai Hodge structure Following Addington and Thomas [1], for any
GM fourfold or sixfold X we define the abelian subgroup
H(Ku(X),Z) :=

{k € Kiop(X) | x([0Ox ()], k) = x(Uy].k) =0 fori =0,...,dim X — 3}

of the topological K—theory K,,(X) of X, where y denotes the Euler pairing. It is
equipped with a nondegenerate symmetric pairing (—, —) := —y(—, —) and there is a
canonical homomorphism

v: K(Ku(X)) — H(Ku(X), Z),
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called the Mukai vector. By pulling back the Hodge structure on the cohomology
ring of X, H(Ku(X), Z) can be endowed with a weight 2 Hodge structure with Hodge

numbers
W0 =1, hb' =22, %2 = 1.

If Ku(X) ~ D"(S) for a K3 surface S, then ﬁ(ICu (X), Z) is isomorphic to the usual
Mukai Hodge structure of S. The Mukai Hodge structure H(Ku (X), Z) was defined
and studied for a GM fourfold in [46]; more generally, in [45] a Hodge structure is
associated to any (suitably enhanced) category, which agrees with the Mukai Hodge
structure in the case of Ku(X).

The Mukai vector v factors through the lattice of integral Hodge classes
HYY(Ku(X),Z) c H(Ku(X), Z).

In fact, we have the following result, which should be thought of as asserting a version
of the integral Hodge conjecture for Ku(X):
Theorem 4.13 [45] Let X be a GM fourfold or sixfold. Then the Mukai vector
v: K(Ku(X)) — H(Ku(X), Z) induces an isomorphism of lattices

N(Ku(X))(-1) = B (Ku(X), Z),
where N'(Ku(X))(—1) denotes the numerical Grothendieck group of Ku(X) equipped

with the pairing given by the negative of the Euler form.

Now let X be a GM fourfold. We recall a relation which we will need between
ﬁ(lCu (X), Z) and the usual Hodge structure on X. By [33, Lemma 2.27], there are two
classes A1 and A in H'! (Ku(X), Z) generating a canonical sublattice with intersection

20
02 _
A= (39).

By [46, equation (4)], the Chern characters of A; and A, in CH(X) ® Q are

form

(4-5) ch(A{) = —2+ygo1,1—5 and ch(l) =—4+2H —{H”,

where y;ol,l is the pullback to X of the Schubert cycle 01,1 along the canoni-
cal morphism yy: X — Gr(2,Vs5). We denote by ﬁ(ICu(X ), Z)¢ the orthogonal
to the sublattice A?Z C ﬁ(lCu(X ),Z). There is also a related Hodge structure,
the vanishing cohomology H*(X, Z)o, defined as the orthogonal to the sublattice
yyH*(Gr(2,5), Z) C H*(X, Z) with respect to the intersection pairing.
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Proposition 4.14 [46, Proposition 3.1] There is an isometry of weight 2 Hodge

Structures
H(Ku(X), Z)o = H*(X, Z)o(1),

where (1) on the right side denotes a Tate twist. The isometry is induced by the second
Chern class c3: ﬁ(/Cu(X), 7Z) — H*(X,Z), which is also equal to the full Chern
character ch on ﬁ(lCu (X),Z)o.

4.3.2 The support property Now we turn to the support property for the stability
conditions constructed in Theorem 4.12.

Definition 4.15 Let X be a GM fourfold or sixfold. A full numerical stability condition
on Ku(X) is a Bridgeland stability condition on Ku(X) with respect to the lattice
HY!(Ku(X),Z) and the surjective morphism v: K(Ku(X)) — AU (Ku(X), Z) in-
duced by the Mukai vector.

Let X be a GM fourfold with smooth canonical quadric. Note that the homomor-
phism (4-4) factors as

K(Ku(X)) = N(Ku(X)) = Acty.xcu(x):

where u is the surjection given by the map induced by W: Ku(X) — D°(Y, Clp) on
numerical Grothendieck groups followed by the projection to Acg,,.

Proposition 4.16 The stability conditions constructed in Theorem 4.12 are full numer-
ical stability conditions on Ku(X).

Let o be a stability condition on Ku(X) constructed in Theorem 4.12, with central
charge Z: A¢y, ku(x) — C. Define n(o) € At (Ku(X), C) to be the element in the
complexification of the Mukai Hodge structure such that

(Zou)(=) = (n(0), —).

Recall the subsets Po(Ku (X)) C P(Ku(X)) c H! (Ku(X), C) defined in (1-2). By
[4, Lemma 9.7] (or rather its direct analog in our setup), if (o) is in Po(Ku(X)), then
o is a full numerical stability condition on Ku(X). Therefore, Proposition 4.16 is a
consequence of the next lemma, similar to [4, Proposition 9.10].

Lemma 4.17 If o is a stability condition on Ku(X) as constructed in Theorem 4.12,
then
n(0) € (AP? ® C) NP(Ku(X)) C Po(Ku(X)).
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Proof Let V c H1(X,R) be the subspace generated by the real and imaginary parts
of n(o). We will show that V = A®2, which in particular means 7(c’) € P(Ku(X)).

First we claim that V' has real dimension 2. By the construction of Theorem 4.12, the

0

1 )
w,—5/4° W for some 0 < ¢ < I A computation

central charge of o is given by Zy :=Z
using (4-5) shows

chegy <a(U(A1)) =8+2h—8h% and  chegy <o(V(A2)) = —8 —4h + h?,
and therefore

Za(M) =24+ V=1(-8a*+3) and Zy(A2) = 28+ V—1(82* - 2).
Since Zy(A1) and Zy (A7) are linearly independent, we deduce our claim.

To show V = A?z, it remains to show n(o) € (A?z)(c. This is equivalent to showing
that, for any F € Ku(X) with v(F) € (A?Z)J- C H(Ku(X), Z), we have Zg(F) = 0.
By definition, Z, only depends on ch; (W (F)) for 0 <i <2, so0,if ix: X < Y denotes a
smooth hyperplane section, it suffices to show the Chern classes of ix«i5W(F') vanish.
Recall that by definition (2-26) we have
W=EoLo,(nob*olyy: Ku(X)—D"(Y,Cl).
Asin (3-1), letiz: Z < X be the preimage of X under the conic fibration r: X Y.
Then, using the definition (2-24) of &: Db(f ) — DP(Y, Cly), base change and the
projection formula, we find
inx0in08 >~ Eoizyoiy,
and thus
in«inW(F) = E (iZ*l;Lof(—h)b*Lux (F)).

Therefore, to prove the Chern classes of ix«isW(F) vanish, it suffices to show the
class

(4-6) iZ*izLoy(—h)b*LuX (F)
vanishes in the numerical Grothendieck group of X.

First we claim that the product of the ch(b* F)) with any positive power of the classes
H, yyo1,1, h and E vanishes, where ygo7,; is the pullback of the Schubert cycle 01,1
via the canonical map yx: X — Gr(2, V5). Indeed, by Proposition 4.14 we have
ch(b*F) = b* chy(F) and chy(F) is orthogonal to any power of H,yyo1,1. Since
h = H — E, it remains to show that »* ch, (F) is orthogonal to any power of E. We have

E-b*chy(F) = ig«(bli% chy(F)),
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where ig, bg and it are as in diagram (2-4); this vanishes because i 7. chy(F) = 0, as
the class of T is a combination of H? and y;ol,l. Similarly, we have

E?.b*chy(F) = b« E?-chy(F) = 2yyo1,1 — H?) -chy(F) = 0.

Next we claim that Lo ;. (—n)b0* Loy (F) = Lo o (—nyLug b™ F has the same class as b* F
in the Grothendieck group of X. Indeed, it is enough to show that

§ Uz b*F) = 1(Og(~h).b*F) =0,

which follows from Hirzebruch-Riemann—Roch and the previous paragraph, because all
of ch(Ug), ch(O (—h)) and td(f ) are combinations of powers of H, yyo1,1, h and E.

Now we can prove (4-6) vanishes in the numerical Grothendieck. By the above, it is
enough to show the class of iz.i7b* F, which equals b* F — b* F (—h), vanishes; this
holds because ch(b* F) = ch(b* F(—h)) by the orthogonality of ch(b* F) to powers
of h.

Finally, by [44, Theorem 1.3; 18, Theorem 5.1], the image of the period map of smooth
GM fourfolds does not intersect the divisor Dg, ie there do not exist classes of square —2
in H*(X, Z)o(1). We conclude that (A?z)c NP C Py, as stated. O

4.4 The general case

The key ingredient in reducing Theorem 1.2 for arbitrary GM varieties to the case of
GM fourfolds considered above is the duality conjecture proved in [34], which gives
equivalences between Kuznetsov components of GM varieties of varying dimensions.
In particular, we have the following:

Theorem 4.18 (1) If X is a GM fourfold or sixfold, there exists an ordinary GM
fourfold X' with smooth canonical quadric and an equivalence Ku(X) >~ Ku(X").

(2) If X is a GM fivefold, then there exists an ordinary GM threefold X' and an
equivalence Ku(X) ~ Ku(X').

Proof The description of generalized partners and duals in [33, Lemma 3.8] together
with the duality conjecture [33, Conjecture 3.7] proved in [34, Theorem 1.6] shows that
claim (2) holds, and that (1) holds modulo the condition that X’ has smooth canonical

quadric.
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We will prove the full claim (1) by a careful choice of a generalized partner X’ for X. To
explain this, we freely use the notation and terminology on EPW sextics introduced in
[17, Section 3] (see also [33, Section 3]). First we observe that, by [17, Proposition 4.5]
a smooth ordinary GM fourfold X as in (2-1) has smooth canonical quadric if and only
if the point X (X) := P (V1) € P(V5) (where V; is as defined in Section 2.1) lies in
the EPW stratum YAI( X)- In turn, by [18, Lemma 2.1, Remark B.4 and equation (3) of
Section 2.3], this condition on X1 (X) holds if the Pliicker point px of X does not lie

in the projective dual (Y AZ&))V of the EPW stratum Y’ AZ&).

Now let X be any GM fourfold or sixfold. Choose a point p € YAI( X)L in the top
stratum of the dual EPW sextic which does not lie in (YAZ&,))V. Let X’ be the ordinary
GM fourfold corresponding to the pair (A(X), p) (see [17, Theorem 3.10] or [33,
Theorem 3.1]). Then by construction X’ is a period partner of X whose Pliicker
point px’ does not lie in (YAZ&,))V, and hence X’ has smooth canonical quadric
by the previous paragraph. This finishes the proof, since there is an equivalence
Ku(X) >~ Ku(X’) by the duality conjecture [34, Theorem 1.6]. a

Proof of Theorem 1.2 By Theorem 4.18, Theorem 1.2 is an immediate consequence
of Theorem 4.12 and the construction of stability conditions on Kuznetsov components
of GM threefolds [4, Theorem 6.9]. Similarly, it follows from Proposition 4.16 that,
over C, this gives full numerical stability conditions on the Kuznetsov components of
GM sixfolds. O

Finally, we note that as a consequence of these results and [13], similarly to [4,
Proposition 5.13], we obtain Corollary 1.3:

Corollary 4.19 Let X be a GM variety over k. Then the category DP(X) has a
Bridgeland stability condition. Moreover, if k = C, then Bridgeland stability conditions
exist which satisfy the support property with respect to the image of the Chern character
inH*(X, Q).

Proof Let 0 = (A, Z) be a stability condition on Ku(X). By [13, Proposition 3.3],
as explained for instance in [10, Corollary 3.8], if for every exceptional object E in the
semiorthogonal decomposition (1-1) there exists an index j such that Hom=/ (4, E) =0
for every A € A, then a stability condition exists on DP(X). In order to check this
condition, we denote by i : Ku(X) — D°(X) the inclusion functor of Ku(X) in D(X)
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and by i' its right adjoint, which exists since Ku(X) is admissible. By adjunction, we
have
Hom* (A4, E) = Hom* (i (A). E) = Homf,,y,(4.i'E).

Since A is the heart of a bounded ¢—structure, i' E has a finite number of cohomology
objects Aq[k1],..., Amlkm] with Aglks] € Alks] for 1 <s <m and k1 > --- > ky,.
Then we can choose j < —k1, so that Hom(A, As[ks + k]) =0 forevery 1 <s <m
and k < j. This gives the desired vanishing and implies the statement. |

S Applications

In this section, we prove the results stated in Sections 1.3.1, 1.3.2 and 1.3.3. The proofs
are deformation-theoretic and require understanding Kuznetsov components of GM
varieties and stability conditions on them in families. Thus, we start in Section 5.1
by defining a version of the Kuznetsov component for a family of GM varieties, and
proving a relative version of the key derived category result, Theorem 2.11, from our
construction of stability conditions on a fixed Kuznetsov component. In Section 5.2,
which contains the bulk of our work, we construct well-behaved relative stability
conditions on the Kuznetsov components of GM fourfolds over a curve, where a special
fiber is equivalent to the derived category of a twisted K3 surface. In Section 5.3, we
combine this with the arguments of [3, Part VI] to prove the promised applications.
Finally, in Section 5.4 we discuss some low-dimensional examples of the hyperkéhler
varieties given by Theorem 1.7.

We assume k = C is the complex numbers throughout this section.

5.1 Families of Kuznetsov components

In this section, we discuss a family version of Theorem 2.11, which gave an embedding
of the Kuznetsov component of an ordinary GM fourfold with smooth canonical quadric
into the derived category of Clifford modules on a quadric threefold.

First, we need to define the Kuznetsov component in families. By a family of GM
varieties over a base scheme S, we mean a smooth proper morphism f: X — S
equipped with a line bundle on Ox (1) on X such that, for every geometric point s € S,
the pair (Xs, Ox, (1)) is a polarized GM variety, ie X is isomorphic to an intersection
as in Definition 1.1 and Oy (1) corresponds to the Pliicker line bundle.
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Remark 5.1 There is a slightly more general notion of a family of GM varieties, where
instead of a line bundle Ox (1) one considers an element of Picy/s(S). This definition
is better suited for defining the moduli stack of GM varieties — see [33; 19] —but in
practice there is little difference, since étale locally on S any element of Picy,s(S) is
a line bundle.

The results of [17] show that, for any family of GM varieties, there is a canonically
determined rank 5 vector bundle V5 on S and a morphism X — Grg (2, Vs) which
fiberwise recovers the usual map from X; to Gr(2, 5). We denote by Uy the pullback
to X of the tautological rank 2 subbundle on Grg (2, Vs).

In the following result we use the notion of a strong S-linear semiorthogonal decompo-
sition of finite cohomological amplitude, and the base change of such a decomposition
along a point s € S; see [3, Section 3]. Note that, for any integer i € Z, the objects
Ox (i) and Uy (i) are relative exceptional objects on X, ie they are fiberwise exceptional
objects. In general, if E € D°(X) is a perfect complex which is relatively exceptional,
then the functor D(S) — DP(X) given by F — f*(F) ® E is fully faithful with
image f*(D°(S)) ® E C D°(X) an admissible S—linear subcategory [3, Lemma 3.23].

Lemma 5.2 Let f: X — S be a family of n—dimensional GM varieties over a
noetherian base scheme S. Then there is an admissible S —linear subcategory
Ku(X) c DP(X)

and a strong S —linear semiorthogonal decomposition of finite cohomological amplitude
D°(X) = (Ku(X), f*(D"(S)) ® Ox, [*(D°(S)) @ Uy,

o [ED(S) ® Ox(n —3), f*(D(S) @ Uy (n—3)).
Moreover, if S has affine diagonal, then for any point s € S the base change of Ku(X)
satisfies Ku(X)s ~ Ku(Xy), where the right side is defined by (1-1).

Proof This follows from the semiorthogonal decomposition (1-1) on fibers together
with [3, Lemma 3.25 and Theorem 3.17]. m|

The results of [19] give a precise description of families of GM varieties in terms of
certain collections of vector bundles and morphisms, called GM data. In the case of a
family of ordinary GM fourfolds f: X — S, there is a canonically associated collection
WV, Vs, L, i, q), where

e W, V5 and L are vector bundles of ranks 9,5 and 1 on S;
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e u:W— (/\2V5) ® L is an embedding of vector bundles; and
o g eH(My, Opgw)(2) ® det(Vs) ® L), where

My = Grg(2,Vs) x Ps(W),

Ps(A*Vs)
such that X is isomorphic to the zero locus of ¢ in My and Ox(1) is the restriction of

Opg () (1). This is a relative version of the description (2-1) of a fixed GM fourfold.
Using this, the results of Section 2 can be upgraded to the family setting as follows.

Let Q be the line bundle defined by the exact sequence
0—>W— (/\2V5)®E—> Q0 —0.

The surjective arrow corresponds to a morphism Vs — V' ® LY ® Q. It follows from
the smoothness of f: X — S that the kernel of this morphism is a line subbundle
V1 CVs. Let IP’SV =Pg(Vs/V1), and note that there is a natural embedding IP’SV > My.
Let

T=P3 xp, X — S

be the family of quadric surfaces over S cut out by the restriction to IP’SV of the section ¢
defining X’ in My. We call T — S the family of canonical quadrics of X — S. Further,
let V4 = Vs5/Vq, let W C (/\2V4) ® L be the subbundle given by the image of W, and
let

g =GCrs(2, V) Xp(p2y,) BsOV) > S,

which is a family of quadric threefolds over S. Let b: X — X be the blowup of X in 7.
Then, as in Lemma 2.1, linear projection from Pv3v C Ps (W) induces a conic fibration
7w: X — Y and if T — S is smooth then so are ¥ — S and ) — S.

As in Section 2.2, there are sheaves C{p and C£1 on Y of the even and odd parts of the
Clifford algebra associated to the conic fibration 7 : X — Y. We note that C{y and Cl;
are relative exceptional objects in the S—linear category D®()),Clg). Repeating the
proof of Theorem 2.11 in this setting shows the following:

Proposition 5.3 Let f: X — S be a family of ordinary GM fourfolds over a noetherian
base S with affine diagonal. Assume:

(1) The family of canonical quadrics T — S is smooth.

(2) The relative Picard group of T — S is a trivial rank 2 local system.
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Then there is a fully faithful S—linear functor ¥: Ku(X) — D®(),Clg) and rela-
tive exceptional objects R.,Rg € DP(),Clo) such that there is a strong S—linear
semiorthogonal decomposition of finite cohomological amplitude,

DP(V,Clo) = (¥ (Ku(X)), g*(D"(S)) ® Cly, g*(D°(S)) ® Clo,
g*(D(5)) ® Re, g*(D°(S)) ® Ry ),

whose base change along any point s € S recovers the decomposition of D°(V, Clo s)
given by Theorem 2.11.

Remark 5.4 If f: X — S is a family of ordinary GM fourfolds for which assump-
tion (1) in Proposition 5.3 holds, then the relative Picard group of 7 — S is a rank 2
local system on S. In general, this local system may not be trivial, but there always
exists a degree 2 étale cover S’ — S such that the base changed family X’ — S’
satisfies assumptions (1) and (2).

5.2 Stability conditions over a curve

This section contains the key technical ingredient for the proofs of the applications: a
specialization over a curve from any GM fourfold to one whose Kuznetsov component
is geometric, and the construction of a relative stability condition on the Kuznetsov
component over the curve with well-behaved relative moduli spaces of stable objects.

For an ordinary GM fourfold X with smooth canonical quadric, we consider stability
conditions on u(X) contained in an open subset Stab (Ku(X)) C Stab(Ku (X)) of
the space of full numerical stability conditions on Ku(X), defined as follows. In the
notation of Section 1.3.1, the map

n: 1~ (Po(Ku(X))) C Stab(Ku(X)) — Po(Ku(X))

is a covering map, by the argument of [12, Proposition 8.3]. By Lemma 4.17, the stability
conditions on Ku (X ) constructed in the proof of Theorem 4.12 lie in ! (770 (Ku(X )));
we let Stab' (Ku(X)) be the connected component of 7! (Po(Ku(X))) containing
them. In the proof of Theorem 1.4 in the next section, we will see that Stab! (Ku (X))
actually forms a connected component of Stab(Ku(X)).

Given a family of categories D over a base S (eg D = Ku(X) for ¥ — S a family of
GM fourfolds), the notion of a stability condition on D over S was introduced in [3].
This consists of a collection 0 = (05)ses of stability conditions o5 on the fibers Dy for
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s € § satisfying certain axioms, and comes with a notion of relative moduli spaces of
stable objects. We emphasize that in the case where the base is a point S = Spec(C), a
stability condition on D over S is specified by a usual stability condition on D satisfying
certain properties — roughly, the existence of bounded moduli spaces — which a priori
may not be satisfied by an arbitrary stability condition on D. On the other hand, the
results of [3] show that the known constructions of stability conditions via tilting
actually give stability conditions over Spec(C). In particular, we have the following
result (which is actually a special case of Proposition 5.6, proved below, but which we
state first for psychological reasons):

Lemma 5.5 Let X be an ordinary GM fourfold X with smooth canonical quadric.
Then any o € StabT (Ku (X)) is a stability condition on Ku(X) over Spec(C). In partic-
ular, if v € H!-! (Ku(X), Z), then the moduli stack of o—semistable objects in Ku(X)
of class v (see [3, Definition 21.11]) admits a good moduli space My (Ku(X), v), which
is a proper algebraic space over C. If o is v—generic, then My (Ku(X), v) is a coarse
moduli space which is smooth and proper over C.

Proof The claim that any o € StabT (Ku(X)) is a stability condition on Ku(X) over
Spec(C) follows from our construction of stability conditions in Stab' (Ku (X)) from
Section 4 and the results of [3, Parts IV and V]; see the proof of [3, Proposition 30.4]
and [3, Remark 30.5]. Then [3, Theorem 21.24] gives the rest of the lemma, except the
smoothness of My (Ku(X),v) in the case o is v—generic. For smoothness, we use the
algebraic space s M, (Ku(X)) parametrizing simple universally glueable objects in
Ku(X) (see [3, Section 9.3] for the precise definition). By Mukai’s theorem in the form
proved in [45], the space s Mpue(Ku (X)) is smooth. Since o is a stability condition on
Ku(X) over C, we have that My (Ku(X), v) is an open subspace of s Mpue(Ku (X)),
and so smooth as well. O

Next we prove a 1-parameter version of Lemma 5.5. In Theorem 5.15 of the next
section, we will discuss the case of higher-dimensional bases.

Proposition 5.6 Let X be an ordinary GM fourfold with smooth canonical quadric, let
v be a primitive vector in H!! (Ku(X),Z) and let o € Stab' (Ku(X)) be a v—generic
stability condition. Let X' be another ordinary GM fourfold with smooth canonical
quadric which is deformation equivalent to X within the Hodge locus for v, ie there is
smooth family of GM fourfolds over a connected quasiprojective base with fibers X
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and X’ along which v remains a Hodge class. Then there exists a family X — C of
ordinary GM fourfolds over a smooth connected quasiprojective curve C along which
v remains a Hodge class, complex points 0, 1 € C(C) and a stability condition o on
Ku(X) over C such that:

(1) X%p=Xand X; =X
(2) v is a primitive vector in H"Y (Ku(X,), Z) for all ¢ € C.

(3) o. € Stab' (Ku(X,)) is v—generic for all ¢ € C, and oy is a small deformation
of o such that My, (Ku(X),v) = Ms(Ku(X),v).

(4) The relative moduli space My (Ku(X),v) (given as the good moduli space
for the moduli stack of o—semistable objects in Ku(X) of class v; see [3,
Theorem 21.24]) is a smooth and proper algebraic space over C.

Proof By assumption, there exists a family X — C of smooth GM fourfolds over
a smooth connected quasiprojective curve C such that Xy = X and &; = X' for
some points 0, 1 € C(C) and v remains a Hodge class along C. We may assume all
fibers of X — C are ordinary with smooth canonical quadric, since these properties
are open in families of GM fourfolds. Thus, our construction from Section 4 gives
stability conditions on any fiber of X — C. Using this and Proposition 5.3, up to
possibly replacing C by a finite cover we obtain a family of stability conditions o
on Ku(X') over C satistfying properties (1)—(4), by the same argument as in the proof
of [3, Corollary 32.1] with the following modification: instead of [3, Theorem 31.1]
we appeal to the general Mukai theorem on smoothness of moduli spaces of simple
universally gluable objects for families of CY2 categories proved in [45]. O

Proposition 5.6 shows that to prove deformation invariant properties about the moduli
space My (Ku(X), v), we may specialize the GM fourfold X within the Hodge locus
for v. We will use this observation by specializing to the case where Ku (X) is equivalent
to the derived category of a twisted K3 surface (.S, o), where many results about moduli
spaces of stable objects are already known [5]. There is a subtlety that moduli spaces
of o—stable objects in (S, ) are only well understood when o lies in the connected
component Stab' (S, «) containing geometric stability conditions, ie those for which
skyscraper sheaves of points are stable of the same phase.

Definition 5.7 Let X be an ordinary GM fourfold with smooth canonical quadric and
let (S, o) be a twisted K3 surface. Then a f—equivalence Ku(X) ~ DP(S,a) is an
equivalence under which Stab' (Ku(X)) maps to StabT(S ,0).
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The following result thus gives a specialization of GM fourfolds of the type we require:

Proposition 5.8 Let X be an ordinary GM fourfold and let v € H! (Ku(X), Z) be
a Hodge class. Then there exists an ordinary GM fourfold X' with smooth canonical
quadric such that:

(1) X is deformation equivalent to X’ within the Hodge locus for v.

(2) There exists a twisted K3 surface (S’, a’) with a f—equivalence

Ku(X") ~DP(S’, o).
We will prove Proposition 5.8 at the end of this section, after some preliminary results.

Lemma 5.9 Let X be an ordinary GM fourfold with smooth canonical quadric.
Assume there exists a primitive vector v € H'(Ku(X),Z) with (v,v) = 0. Let
o €StabT (Ku(X)) be a v—generic stability condition, and assume there exists a o —stable
object in Ku(X) of class v. Then S = My(Ku(X),v) is a smooth K3 surface and
there is a Brauer class « € Br(S) such that there is a t—equivalence Ku(X) ~ D°(S, a).

Proof By Lemma 5.5, S is a smooth proper algebraic space. Because Ku(X) is a
CY2 category, standard arguments (see [31, Section 2]) show that S has dimension
(v,v) +2 = 2 and is equipped with a symplectic form. Being a smooth proper
2—-dimensional algebraic space, we conclude that S is in fact a smooth projective
surface. By [4, Proposition A.7], it follows that S is also connected. The existence of a
symplectic form on S then implies it is either a K3 or an abelian surface. Let £ be a
quasiuniversal family over S x X and o € Br(S) the associated Brauer class. Standard
arguments (see [3, Lemma 32.3]) then show that the corresponding Fourier—Mukai
functor ®¢: D°(S, ) — DP(X) factors through an equivalence D°(S, &) ~ Ku(X).
Then, since Ku(X) has the same Hochschild homology as a K3 surface, so does
DP(S, @). It follows that S is not an abelian surface, and hence is a K3 surface. |

Next we show that the existence of an t—equivalence as in Proposition 5.8(2) deforms
along Hodge loci for square zero classes.

Lemma 5.10 Let X and X’ be ordinary GM fourfolds with smooth canonical quadrics,
which are deformation equivalent within the Hodge locus for a v € ! (Ku(X),7Z)
with (v,v) = 0. Then Ku(X) is T—equivalent to the derived category of a twisted K3
surface if and only if Ku(X') is.
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Proof If o € StabT (Ku (X)) is v—generic, then My (Ku(X), v) is a smooth K3 surface.
Indeed, this holds by our assumption and the analogous statement for twisted K3
surfaces [5]. By Proposition 5.6, it follows that, for any v—generic o’ € StabT (Ku(X")),
the moduli space My (Ku(X’), v) is also a smooth K3 surface. Then we conclude by
Lemma 5.9. O

The following result roughly says that, given an equivalence Ku (X ) ~DP(S, «), we can
modify it (possibly by replacing (S, o) with a different twisted K3) to a t—equivalence
provided that X admits deformations with suitable Hodge-theoretic properties.

Lemma 5.11 Let X be an ordinary GM fourfold with smooth canonical quadric such
that:

(1) There is an equivalence Ku(X) ~ D(S, o) for some twisted K3 surface (S, «).

(2) There exists a class v € H!*1 (Ku(X), Z) with (v,v) = 0 such that X is deforma-
tion equivalent within the Hodge locus for v to another ordinary GM fourfold X'
with smooth canonical quadric, with the property that HY'(Ku(X’), Z) contains
no elements § with (8,68) = —2.

Then there exists a twisted K3 surface (T, B), possibly ditferent from (S, «), with a
+—equivalence Ku(X) ~ DP(T, B).

Proof Let X — C be a smooth family of ordinary GM fourfolds with smooth canon-
ical quadrics over a smooth connected quasiprojective curve C such that Xy = X
and X7 = X' for some points 0,1 € C(C), and v remains a Hodge class along C.
For a v—generic o € StabT(S, a), the moduli space M, (D°(S, @), v) is a K3 surface
by [5]. In particular, it follows that there exists a simple object £ € Ku(X) of class
v(E) = v € HY1(Ku(X), Z) with Ext=°(E, E) = 0. By Mukai’s theorem for the
family of CY?2 categories Ku(X) over C [45], it follows that there exists a Zariski
open subset U C C such that, for any ¢ € U, there is a simple object E, € Ku(X;)
of class v(E.) = v € H1(Ku(X,), Z) with Ext=°(E,, E;) = 0, and, in particular,
Ext!(E., E;) = C2.

The condition that H! (Ku(X,), Z) contains no elements § with (§,8) = —2 holds
for a very general point ¢ € C, since it holds for ¢ = 1. Therefore, up to replacing X’
with a different fiber of X — C, we may assume there exists an object £/ € Ku(X’)
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such that Ext! (E’, E’) = C2. By [4, Lemma A.4], it follows that E’ is o—stable for
any o € Stab(Ku(X")). Thus, by Lemma 5.9, there exists a twisted K3 surface (S, ')
and a f—equivalence Ku(X’) ~ DP(S’, «’). From this, the result follows by applying
Lemma 5.10. ]

Now we can explain the idea of the proof of Proposition 5.8. The closure of the locus of
GM fourfolds containing a quintic del Pezzo surface forms a divisor in the moduli space
of GM fourfolds such that any GM fourfold can be specialized along any Hodge locus
into this divisor [16], and Ku(X) is equivalent to the derived category of a K3 surface
on (a Zariski open subset of) this divisor [33]. We will use Lemma 5.11 to modify the
equivalence to a t—equivalence with a twisted K3 surface. To verify condition (2) of
Lemma 5.11 in this situation, we will need some input from the period morphism for
GM fourfolds, which we review now.

Let M denote the moduli stack of GM fourfolds. This is a smooth, irreducible Deligne—
Mumford stack of dimension 24 [33, Proposition A.2] (see also [17]). We denote by

p:M—>D

the period morphism, where the period domain D is the 20—dimensional quasiprojective
variety classifying Hodge structures on the middle cohomology H*(X,, Z) of a fixed
GM fourfold X for which the canonical sublattice H*(Gr(2, 5), Z) C H*(Xy,Z)
consists of Hodge classes (see [16] for details). Note that, by Section 4.3.1, the period
domain D can also be thought of as classifying Hodge structures on H(Ku(X), Z) for
which the canonical sublattice A?Z C ﬁ(/Cu (X0), Z) consists of Hodge classes. We
consider inside D the locus parametrizing Hodge structures on H(Ku(Xo), Z) for which
there are “extra” Hodge classes, ie nonzero ones orthogonal to A?z. By [16], this locus
is the union of divisors Dz C D over positive integers d satisfying d =0, 4 or 2 (mod 8),
where Dy is irreducible for d = 0 or 4 (mod 8) and Dy = D/, U D} is the union of
two irreducible divisors D/, and D); for d =2 (mod 8).

Let M°Y C M denote the open subspace parametrizing ordinary GM fourfolds, and

let p°d: M4 — D denote the restriction of the period morphism to this subspace.

Lemma 5.12 (1) The morphism p°9: MY — D is smooth and dominant.

(2) For any irreducible closed subscheme Z C D, the preimage (p®4)~1(Z) is
irreducible.
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(3) Let Mgps C M be the locus parametrizing GM fourfolds containing a quintic
del Pezzo surtace. Then Mgps is irreducible, and the restriction of the period
morphism to Mgyps factors through a dominant morphism Mgps — D’l’ 0

(4) There exists a vector v € H(Ku(Xo), Z) with (v, v) = 0 which is a Hodge class
for all of the Hodge structures parametrized by DY ,.

(5) There are infinitely many divisors Z among D, D;, and DZ for which the
following conditions are satisfied:
e There existsav € ﬁ(lCu (Xo), Z) with (v, v) = 0 which is a Hodge class for
all of the Hodge structures parametrized by Z.
e The Hodge structure on H(Ku(Xy), Z) corresponding to a very general point
of Z contains no Hodge classes § with (8,8) = —2.

(6) The intersections Z N'DY, for Z as in (5) give infinitely many distinct divisors
in DY,.

Proof Part (1) follows from [16, Theorem 4.4]. For (2), first we observe that the
fibers of the morphism p°9: M°4 — D over closed points of D are irreducible;
indeed, the combined results of [17; 18] show the any fiber is the smooth locus of an
EPW sextic. Thus, if Z C D is an irreducible closed subscheme, then the morphism
(p°)~1(Z) — Z is smooth and in particular open by (1), and has irreducible fibers
over closed points. It follows that (p°4)~1(Z) is irreducible; see [9, Tag 004Z].

Part (3) is [16, Proposition 7.7]. Part (4) follows from (3) combined with either [46,
Theorem 1.2] or [33, Theorem 4.1 and Lemma 4.4].

In order to prove (5), recall that, by [46, Theorem 1.1], the existence of an isotropic
class in the Mukai lattice of Ku(Xp) is equivalent to the fact that X has period point
in a divisor D; with d having prime factorization of the form

(x*") d = Hp?i with n; =0 (mod 2) for p; =3 (mod 4).
i

Now assume that d satisfies (') and 32|d. We claim that very general points of
Z := D, parametrize Hodge structures on the Mukai lattice not containing square —2
Hodge classes. The proof of this claim is analogous to that of [23, Proposition 2.15].
Indeed, assume there is a class § € H! (Ku(Xo), Z) with §2 = —2. As 32 |d, we have
d =0 (mod 8). Thus, we can write § = w + kv, with w € A?Z and v € (A?Z)J- such
that v2 = —8s. Then —2 = w? — 8k2s, which implies w? = 6 (mod 8). But we would
have %wz = 3 (mod 4), in contradiction with (xx"). This implies (5).
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It remains to prove (6). Assume Z := Dy with d = —32s for an integer s > 0. On the
other hand, consider the rank 4 lattice with intersection form given by

20 0 0
02 0 1
Ls“oo-ss 0
01 0 =2

By [41, Corollary 1.12.3], the lattice L has a primitive embedding in the Mukai lattice
of Ku(Xo). Denote by Ly C Dg N DY, the locus in D parametrizing Hodge structures
on the Mukai lattice for which L consists of Hodge classes.

We claim that a very general element of £; does not belong to Ly for every s’ # s.
Indeed, denote by {A1, A2, 71, T2} the basis for L representing the intersection form
as above. Then a simple computation shows that there is not a class T € L such that

T A =T A=1-15=0, 12=-85

for every s” # 5. As a consequence, we have £; € Ly, which implies Dy N DY, is not
contained in Dy, N DY, for every d’ = —32s’ # d. In particular, we can consider the
union | J,; (D4 NDY,), where d satisfies (%) and 32|d, of countably many infinite
divisors in DY, as required. ]

Finally, we can prove Proposition 5.8.

Proof of Proposition 5.8 The Hodge class v € H"! (Ku(X), Z) determines an irre-
ducible closed subscheme Z C D (equal to one of the irreducible divisors discussed
above, or the whole period domain D in the case v € A?z) such that p(X) € Z and
v is a Hodge class for the Hodge structures parametrized by Z. By Lemma 5.12(2),
the locus (p°9)~1(Z) is irreducible, and thus consists of those ordinary GM fourfolds
which are deformation equivalent to X within the Hodge locus for v. It follows from
the construction of GM fourfolds in the proof of [16, Theorem 8.1] that (p°)~1(Z)
contains an ordinary GM fourfold X’ containing a so-called o—plane. Further, up to
changing X’ in the fiber of the period map p°¢: M°9¢ — D, we may assume that X’
has smooth canonical quadric. Indeed, the proof of Theorem 4.18 shows that X’ admits
a period partner X” which is an ordinary GM fourfold with smooth canonical quadric,
and then the results of [18] show that X’ and X" are contained in the same fiber of the
period map p°: MY — D,

By [16, Proposition 7.7], X’ is contained in the closure of Mgps C M. Hence, by
Lemmas 5.10 and 5.12(4), to finish the proof it suffices to show there exists an ordinary
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GM fourfold Y in Mgps with smooth canonical quadric such that Ku(Y') is T—equivalent
to the derived category of a twisted K3 surface.

Let M° C M be the open subspace parametrizing ordinary GM fourfolds with smooth
canonical quadric. By [33, Theorem 4.1 and Lemma 4.4], the subspace

M(CI’PS = MdPS N Mo

parametrizes Y such that Ku(Y) is equivalent to the derived category of a K3 surface.
Consider the divisors Z C D from Lemma 5.12(5). By parts (6) and (3) of Lemma 5.12,
there are infinitely many such Z for which Mg, meets p~Y(Z). Moreover, among
these Z, by Lemma 5.12(1) there are infinitely many for which M° N p~1(Z) — Z is
dominant. Fix such a Z, let Y be a GM fourfold in Mgps N p~1(Z), and choose Y’
in M° N p~1(Z) very general so that H'(Ku(Y’), Z) contains no elements § with
(6,8) = —2. By construction, Y and Y’ are deformation equivalent within the Hodge
locus fora v € ﬁl’l(lCu(Y), Z) with (v, v) = 0. Thus, by Lemma 5.11, we conclude
that Y is T—equivalent to the derived category of a twisted K3 surface, finishing the
proof. |

5.3 Proofs of the applications

Using Propositions 5.6 and 5.8, we can now prove the promised applications.

Proof of Theorem 1.9 By Theorem 4.18, it suffices to consider the case of an
ordinary GM fourfold X with smooth canonical quadric. In this case, by Lemma 32.3
of [3] and Lemma 5.9, it suffices to show that if there exists a nonzero primitive
v E ﬁl’l(ICu(X),Z) with (v,v) = 0 and o € StabT(ICu(X)) is v—generic, then
My (Ku(X),v) is a K3 surface (or even just nonempty). By combining Propositions 5.8
and 5.6, this reduces to showing the analogous statement for a twisted K3 surface,
which holds by [5]. O

Remark 5.13 The above argument is similar to the proof of the analogous result [3,
Proposition 32.2] for cubic fourfolds. In [3], however, there is a gap in the argument:
the equivalences Ku(Y) ~ DP(S, ) for the special cubic fourfolds ¥ used in the proof
are not checked to be T—equivalences, which is necessary to invoke [5]. It is easy to
see that our arguments in the proof of Proposition 5.6 also apply in the case of cubic
fourfolds to fill this gap.
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Remark 5.14 1In [46, Section 3.3], it is proved that there are examples of GM four-
folds X with a hyperbolic plane primitively embedded in H!-! (Ku(X), Z), but which
cannot have a Hodge-theoretically associated K3 surface in the sense of (1-3). On the
other hand, by Theorem 1.9 we have that X has a homological associated K3 surface S,
ie Ku(X) ~ DP(S). These examples show a difference of GM fourfolds from cubic
fourfolds, where having a Hodge-theoretic associated K3 surface and a homological
associated K3 surface are equivalent conditions by [1; 3]. This makes particularly
interesting the question of the relation between the two notions of an associated K3
surface and the rationality of a GM fourfold.

Proof of Theorem 1.5 Theorem 1.5 also follows by a deformation argument. The
proof is the same as the analogous result [3, Theorem 29.2] for cubic fourfolds (with the
same caveat as in Remark 5.13), so we omit it. Using this, Theorem 1.4 then follows
as in the proof of the analogous result [3, Theorem 29.1] for cubic fourfolds. O

Corollary 1.11 can be proved similarly to [1, Theorem 1.2], but using Theorem 1.9 we
can give a slightly more direct argument:

Proof of Corollary 1.11 As in the proof of [1, Proposition 5.1], we can extend the given
Hodge isometry ¢: K+ = L1(1) to a Hodge isometry : H(S,Z) = H(Ku(X), Z).
Since H'"! (S, Z) contains a hyperbolic plane, Theorem 1.9 shows Ku(X) ~ D°(S’)
for a K3 surface S’ Using the derived Torelli theorem for K3 surfaces as in [1,
Proposition 5.1], it follows that there is an equivalence D°(S) ~ Ku(X) which induces
the Hodge isometry ¢. This implies that ¢, and hence also ¢, is algebraic. |

The proof of Theorem 1.7 relies on the following general existence result for relative
moduli spaces. To formulate this precisely, note that if X — S is a family of GM
fourfolds over a complex variety, then the Mukai lattices of the fibers ﬁ(lCu (Xs), Z)
for s € S(C) form the fibers of a local system ﬁ(lCu (X)/S,7Z) on S (see [45] for the
construction of this local system for general families of CY2 categories).

Theorem 5.15 Let X — S be a family of ordinary GM fourfolds over a connected
complex quasiprojective variety S whose associated family of canonical quadrics is
smooth. Let v be a primitive section of the local system H(Ku(x) /S, 7Z.) whose fibers
are Hodge classes. Assume that, for a very general point sg € S, there exists a stability
condition ty, € Stab' (Ku(Xs,)) that is generic with respect to v, and whose central
charge Zs,: H!! (Ku(Xs,), Z) — C is invariant under the monodromy action.
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(1) If § = C is a curve, then there exists an algebraic space M (v) and a smooth
proper morphism M (v) — C that makes M (v) a relative moduli space over C,
ie the fiber over any point ¢ € C is a coarse moduli space My, (Ku(X;), v¢) of
stable objects in the Kuznetsov component of the corresponding GM fourfold
for some stability condition o.

(2) There exist a nonempty open subset S° C S, a quasiprojective variety M °(v) and
a smooth projective morphism M °(v) — S° making M °(v) a relative moduli
space over S°.

(3) There exist an algebraic space M(v) and a proper morphism M (v) — S such
that every fiber is a good moduli space My (Ku(Xs), vs) of semistable objects.

In all cases, we can choose the stability conditions (0s)ses on the fiber categories
Ku(Xs) so that Mo, (Ku(Xso), vso) = M, (Ku(Xsg), sg)-

Proof Using the results we have already proven, the same argument as for [3, Theorem
29.4] works, except again instead of [3, Theorem 31.1] we appeal to the general form
of Mukai’s theorem from [45]. O

Proof of Theorem 1.7 The proof is analogous to that of [3, Corollary 29.5].

Let X — S be a family of ordinary GM fourfolds with smooth canonical quadric
over an open subset S of the 24—dimensional coarse moduli space of GM fourfolds
constructed in [19]; such a family exists because generically GM fourfolds have trivial
automorphism group. By [33, Proposition 2.25], for a very general point so € S
we have NV (Ku(X;,)) = A?z . We observe that this lattice is monodromy invariant.
Indeed, this follows from the fact that, for any GM fourfold X, the canonical sublattice
A?z C N (Ku(X)) is identified with the projection into A'(Ku(X)) of the image of
the pullback map K(Gr(2, 5)) — K(X) on Grothendieck groups.

For any pair (a, b) of coprime pair of integers, let v =aA + bA,, where A1 and A, are
the generators for A?z. Let 7y, € Stab' (Ku(Xs,)) be a v—generic stability condition.
By Lemma 4.17, we have 1(ty,) € A?z ® C, which implies the central charge of t,
is monodromy invariant.

Thus, Theorem 5.15(2) gives a smooth projective relative moduli space g: M °(v) — S°
over an open subset S° C S. The base S° of this family is unirational, because this
is true for the moduli space of ordinary GM fourfolds. By Theorem 1.5(2), the
fibers of g: M°(v) — S° are smooth polarized hyperkihler varieties of dimension
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(v,v)+2=2(a®>+b%+1). The local completeness of this family follows by combining
Lemma 5.12(1) and Theorem 1.5(3).

By Theorem 1.5(3), the polarization class / on a fiber of g is orthogonal to v and, over a
very general point, is a combination of A1 and A,. Thus, we have h = bA1 —al,, which
has degree (h, h) = 2(a®+ b?). It remains to compute the divisibility of 4 in H>(M, Z),
where M is a fiber of g, which is the positive generator y € Z of h-H?(M, Z). Consider
the sequence

0 — H*(M, Z)psim ® Zh — H*(M, Z) — Z./kZ — 0.

Since H?(M, L) prim = (A1, A2)1 in the Mukai lattice by Theorem 1.5(3), the dis-
criminant group of HZ(M, Z)prim has order 4. As the discriminant groups of Zh and
H?(M, Z) have order 2(a? + b?), it follows that k = 2. As a consequence, there exists
an element of the form A = %h + %‘[, with € H>(M, Z)prim» such that A € H2(M, Z).
Since h? = 2(a? + b?) and h - A = a® + b2, we deduce that y = a? + b>. O

We end this section by observing an interesting property of the families constructed in
Theorem 1.7.

Proposition 5.16 Let M be a very general polarized hyperkahler variety in a family
as in Theorem 1.7. Then Aut(M) = Bir(M ) = Z /27, where Aut(M) is the group of
automorphisms of M and Bir(M) is the group of birational automorphisms of M. The
corresponding involution of M is antisymplectic.

Proof By [14, Proposition 4.3], we just need to check that —1 is a square modulo
a® 4 b?. For this, note that a and b are coprime, and hence they are invertible in the
group Z/(a* + b?)Z. So we have that —1 = a~2b? (mod a? + b?). i

5.4 Examples of Theorem 1.7 in low dimensions

It is interesting to interpret the hyperkihler varieties from Theorem 1.7 in terms of the
geometry of GM fourfolds and classically known hyperkihler varieties, in analogy to
[38; 39] for cubic fourfolds. Here we sketch this relation for some small values of a
and b, leaving a more detailed treatment to future studies.

5.4.1 Double EPW sextics (a2 +5% =1) An EPW sextic is a special type of degree 6
hypersurface Y4 C P(Ve) constructed from a Lagrangian subspace A C A Ve, where
Ve is a 6—dimensional vector space and A Ve is equipped with the natural det(Vg)—
valued symplectic form. O’Grady [42] showed that there is a canonical double cover
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fA — Y4, called a double EPW sextic, which when smooth (as is true for generic A) is
a polarized hyperkéhler fourfold of degree 2 and divisibility 1, deformation equivalent
to the Hilbert square of a K3 surface. The resulting family of polarized hyperkihler
varieties is locally complete. We note that there is also a natural duality operation on
these hyperkihlers: the orthogonal AL C N Ve similarly gives rise to the dual double
EPW sextic YAJ_ — Y 1.

Iliev and Manivel [25], and in a more general setting Debarre and Kuznetsov [17],
showed that to any GM fourfold X there is a naturally associated Lagrangian A C A Ve
as above, and that a generic A C N Ve arises in this way. There is a close relationship
between X and the double EPW sextics associated to 4. Indeed, the Hilbert scheme
of conics on a general X is birational to a P 1_bundle over YAJ_ [25]. From a derived
categorical viewpoint, by [46, Remark 2.5] the Mukai vector of the projection into
Ku(X) of a twist of the structure sheaf of a general conic in X is A1. For this reason, we
expect that there are isomorphisms ?AJ_ =~ Mg (Ku(X), A1) and Y4~ M, (Ku(X), A2)
for generic X and suitable o € StabT(Ku(X)). Here we only prove the following
weaker statement, based on an identification of period points from [18]:

Proposition 5.17 If X is a very general GM fourfold with associated Lagrangian
AC NV and o € Stab (Ku (X)) is generic with respect to A1 and A, then either
My (Ku(X), A1) = Y4 or Mg(Ku(X), A1) = Yyu.

Proof We assume the reader is familiar with the notation used in [18, Section 5.4].
By Theorem 1.5(3), there is a Hodge isometry
H? (My(Ku(X), 21), Z) = A1

moreover, A, is identified with the polarization class on My (Ku(X), A1). In particular,
we have a Hodge isometry

H? (Mg (Ku(X), 1), Z) 2 (A1, A2) ™"
Therefore, by Proposition 4.14 we obtain a Hodge isometry
H? (Mo (Ku(X). A1), Z), = H*(X., Z)o(1).

By [18, Theorem 5.1 and Remark 5.25], we can assume that X and ?A have the same
period point. Thus, composing with the Hodge isometry H*(X, Z)o(1) 2 H2()7A, 7)o,
we get

[ H* (Mo (Ku(X). 11). Z), = H*(Y4, Z)o.
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Set

A= Es(-D)®? @ U @ 4, (-1
and fix two markings ¢;: HZ(M(,(ICM(X),M), Z)O >~ A and ¢;: HZ(YA, Z)o = A.
Consider the composition g := ¢p 0 f o ¢1_1. If g acts trivially on the discriminant
group d(A) = (Z/27)? of A, then My (Ku(X), A1) and Y4 have the same period
point. By Verbitsky’s Torelli theorem [47], we deduce that My (Ku(X), A1) and Y4
are birational. Moreover, since X is very general, we deduce that they are isomorphic.

In the other case, g acts on the discriminant group by exchanging the generators of the
two copies of Z/27. Then My (Ku(X), A1) has the same period point of YAL by [43].
Arguing as before, we conclude that My (Ku(X), A1) = YAL. ad

5.4.2 EPW cubes (a? 4+ b% = 2) Given a (suitably generic) Lagrangian subspace
AC /\3 Ve as in Section 5.4.1 above, Iliev, Kapustka, Kapustka and Ranestad [24]
constructed a polarized hyperkihler sixfold Z4 as a double cover of an associated
subvariety of the Grassmannian Gr(3, V). These hyperkihlers, called EPW cubes,
are deformation equivalent to the Hilbert cube of a K3 surface, have degree 4 and
divisibility 2, and form a locally complete family.

If X is a GM fourfold, then the moduli space My (Ku(X), £(A1 £ A3)) is a hyperkéhler
variety with the same numerical invariants as an EPW cube. If X is generic with
associated Lagrangian A C N Ve, then we expect that Z4 can be realized as a moduli
space My (Ku(X), £(A1 £ A2)). We note that, if an identification of the period points
of X and Z4 were known, then this would follow in the very general case as in
Proposition 5.17.

5.4.3 Projections of points (a2 + b2 = 5) The Mukai vector of the projection into
Ku(X) of skyscraper sheaves of points in X is v = A1 + 21,. We expect these objects
(at least for a generic point of X)) are stable for the stability conditions o we have
constructed, and give rise to a (possibly only rationally defined) embedding of X into
the hyperkahler 12—fold My (Ku(X), v).
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