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1. Introduction

Moduli spaces of stable sheaves on a K3 surface provide the major examples of pro-

jective hyperkähler manifolds. These examples are deformation equivalent to Hilbert 

schemes of points on a K3 surface, by the seminal work of Mukai [50] and the contribu-

tion of many other authors, including Beauville [10], O’Grady [53], Yoshioka [59,60]. In 

[54], O’Grady considered the case when the moduli space contains also strictly semistable 

sheaves. In particular, he constructed a symplectic resolution of the singular moduli 

space of semistable torsion-free sheaves on a K3 surface with rank 2, trivial first Chern 

class and second Chern class equal to 4. This construction provides a new example of a 

hyperkähler manifold of dimension 10, not deformation equivalent to the previous con-

struction. O’Grady’s result was generalized by Lehn and Sorger in [46] to moduli spaces 

of semistable sheaves on a K3 surface having Mukai vector of the form v = 2v0 with 

v2
0 = 2. In addition, they showed that the symplectic resolution of the moduli space can 

be obtained by blowing up the singular locus with the reduced scheme structure.

In this paper we investigate the analogous situation of O’Grady’s example, in the case 

of moduli spaces of semistable complexes in the noncommutative K3 surface associated 

to a smooth cubic fourfold. By [38], the bounded derived category of a cubic fourfold Y

has a semiorthogonal decomposition of the form

Db(Y ) = 〈Ku(Y ), OY , OY (H), OY (2H)〉,

where H ⊂ Y is a hyperplane section and Ku(Y ) is a triangulated subcategory of K3 

type, in the sense that it has the same Serre functor and Hochschild homology as the 

derived category of a K3 surface [36, Corollary 4.3], [40, Proposition 4.1]. We call this 

category Ku(Y ) the Kuznetsov component of Y . One reason to study Ku(Y ) is related to 

the birational geometry of Y . For instance, there is a folklore conjecture [38, Conjecture 

1.1] that Y is rational if and only if Ku(Y ) is equivalent to the derived category of a K3 

surface.

Another interest in studying Ku(Y ) is to generalize Mukai’s construction to this non-

commutative K3 surface. Bayer, Lahoz, Macrì and Stellari construct Bridgeland stability 

conditions on Ku(Y ) in [13] (see Section 2 for a review of the construction). We denote 

by Stab†(Ku(Y )) the connected component of the stability manifold containing these 

stability conditions. In a second paper [12], joint also with Nuer and Perry, they develop 

the theory of families of stability conditions, which allows studying the properties of mod-

uli spaces of stable objects in Ku(Y ) by deforming to cubic fourfolds whose Kuznetsov 

components are equivalent to the derived category of a K3 surface. As a consequence, 

they produced infinite series of unirational, locally complete families of smooth polar-

ized hyperkähler manifolds, deformation equivalent to Hilbert schemes of points on a 

K3 surface. These hyperkähler manifolds are given as moduli spaces of stable objects in 

Ku(Y ) of primitive Mukai vector. It is worth to point out that the hyperkähler mani-

folds constructed from some Hilbert schemes of rational curves of low degree in Y can 
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be interpreted as moduli spaces of stable objects in Ku(Y ). Indeed, we gave in [45] a 

description of the Fano variety of lines in Y [9] and, when Y does not contain a plane, 

of the hyperkähler 8-fold constructed in [43] using twisted cubic curves in Y , as moduli 

spaces of stable objects in Ku(Y ) with primitive Mukai vector.

In analogy to the case of K3 surfaces, the Mukai lattice of Ku(Y ) has been defined 

in [7] and carries a weight two Hodge structure induced from that on the cohomology 

of Y . We denote by H∗
alg(Ku(Y ), Z) the sublattice of integral (1, 1) classes in the Mukai 

lattice of Ku(Y ) (see Section 3.1).

Consider now a vector v = 2v0 ∈ H∗
alg(Ku(Y ), Z) such that v0 is primitive with 

v2
0 = 2. Let τ be a stability condition in Stab†(Ku(Y )) which is generic with respect to 

v, in other words, the strictly τ -semistable objects with Mukai vector v are (S-equivalent 

to) direct sums of τ -stable objects with Mukai vector v0. Let M be the moduli space of 

τ -semistable objects with Mukai vector v. The first result of this paper is the following.

Theorem 1.1 (Theorem 3.1). The moduli space M has a symplectic resolution M̃ , which 

is a 10-dimensional smooth projective hyperkähler manifold, deformation equivalent to 

the O’Grady’s example constructed in [54].

In the second part we explain two main applications, which make a connection be-

tween the derived categorical viewpoint of Theorem 1.1 and the classical construction of 

hyperkähler manifolds from Y . Recall that by [7], the algebraic Mukai lattice of Ku(Y )

contains two classes λ1 and λ2 spanning an A2-lattice. Motivated by classical geometric 

constructions (as it will be clear later), we consider the case v0 = λ1 + λ2, v = 2v0 and 

we analyze the objects in M := Mσ(v) where σ is a stability condition as constructed in 

[13]. It is not difficult to see that by [45] the strictly semistable locus of M is identified 

with the symmetric square of the Fano variety of lines in Y , up to a perturbation of 

the stability condition (see Remark 4.1). On the other hand, stable objects are harder 

to describe. If X is a smooth hyperplane section of Y , in other words, X is a smooth 

cubic threefold, then the moduli space Minst parametrizing rank 2 instanton sheaves on 

X has been described by [21]. In particular, stable sheaves in Minst belong to one of the 

following classes: rank 2 stable vector bundles constructed from non-degenerate elliptic 

quintics in X, rank 2 stable torsion free sheaves associated to smooth conics in X. More-

over, the strictly semistable objects in Minst are direct sums of two ideal sheaves of lines 

in X (see Section 4.1 for a review). By [11,21] the moduli space Minst is birational to 

the translate J2(X) of the intermediate Jacobian, which parametrizes 1-cycles of degree 

2 on X.

Denote by σ a stability condition constructed in [13]. A key result for our applications 

is the following theorem, which provides a description of an open subset of the stable 

locus of M := Mσ(2λ1 + 2λ2).

Theorem 1.2 (Theorem 5.19). Let X be a smooth hyperplane section of Y . Then the 

projection in Ku(Y ) of the stable rank 2 instanton sheaves associated to non degenerate 
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quintic elliptic curves and smooth conics in X are σ-stable objects with Mukai vector 

2λ1 + 2λ2.

We apply Theorem 1.2 to show that, up to a perturbation of the stability condition σ

in Stab†(Ku(Y )) (see Section 6), the sympletic resolution M̃ , given by Theorem 1.1 has 

a connection to a classical construction of Jacobian fibration associated to Y . Consider 

the (P 5)∨-family of cubic threefolds obtained as hyperplane sections of Y and let P0 be 

the locus parametrizing the smooth hyperplane sections. Consider the twisted family of 

intermediate Jacobians p : J → P0, whose fibers are the twisted intermediate Jacobians 

of the smooth cubic threefolds parametrized by P0. It is known that there exists a 

holomorphic symplectic form on J by [20]. However, it remained a long standing question 

whether J can be compactified to a hyperkähler manifold J̄ and a Lagrangian fibration 

J̄ → (P 5)∨ extending p. This has been recently proved for very general cubic fourfolds 

in the beautiful works [47] for the untwisted family and [58] by Voisin for J . We mention 

that in the recent preprint [57], Saccà extended the result for the untwisted family in 

[47] to all smooth cubic fourfolds. The same argument applies to the twisted family and 

extends Voisin’s result to all smooth cubic fourfolds (see [57, Remark 1.10]).

Our main result is the following construction of a hyperkähler compactification of J

for every cubic fourfold Y , obtained combining Theorems 1.1, 1.2 and some techniques 

in birational geometry of hyperkähler varieties.

Theorem 1.3 (Propositions 6.1, 6.7). There exists a hyperkähler manifold N birational to 

M̃ , which admits a Lagrangian fibration structure compactifying the twisted intermediate 

Jacobian family J → P0.

It is worth to note that N and M̃ are birational, but not isomorphic if Y is very 

general. In Example 6.8 we describe an explicit flop between them, involving the locus 

of stable objects in Ku(Y ) coming from the projection of instanton sheaves associated to 

smooth conics in Y . In Remark 6.9, we explain how N is related to the compactification 

constructed by Voisin [58].

The next application arises from the following conjecture of Castravet. Note that the 

original conjecture involves rational quartics, but it can be equivalently stated for elliptic 

quintics by residuality (see Remark 7.3).

Conjecture 1.4 ([19, page 416]). Let C be the connected component of the Hilbert scheme 

Hilb5m(Y ) containing elliptic quintics in Y . Then the maximally rationally connected 

quotient of C is birationally equivalent to the twisted intermediate Jacobian of Y .

Using Theorems 1.1, 1.2 and 1.3 we are able to prove Conjecture 1.4.

Proposition 1.5 (Propositions 7.1, 7.2). The projection functor (see Definition 4.3) in-

duces a rational map C ��� M which is the maximally rationally connected fibration of 
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C. The maximally rationally connected quotient of C is birational to the twisted family J

of intermediate Jacobians of Y .

Plan of the paper. In Section 2 we review some definitions and results about (weak) stabil-

ity conditions on triangulated categories and semiorthogonal decompositions. Moreover, 

we recall the construction of stability conditions on the Kuznetsov component Ku(Y ) of 

a cubic fourfold Y as in [13].

Section 3 is devoted to the proof of Theorem 1.1. For an element v0 with square 

2 in the algebraic Mukai lattice of Ku(Y ), consider a stability condition τ on Ku(Y )

which is 2v0-generic. We show that the blow-up M̃ of the singular locus of the moduli 

space M := Mτ (2v0) with the reduced scheme structure is a symplectic resolution, by 

describing the local structure of M at the worst singularity, as done in [46] for singular 

moduli spaces on K3 surfaces.

In Section 4 we compute the projection in the Kuznetsov component of some objects 

related to elliptic quintics and smooth conic curves in a cubic fourfold. We explain their 

relation with stable instanton sheaves on smooth hyperplane sections of Y , which were 

previously studied in [21].

Section 5 deals with the proof of Theorem 1.2. We show that the objects in the 

Kuznetsov component, constructed out of elliptic quintics and conics in Y , are σ-stable, 

where σ is any stability condition as constructed in [13]. Moreover, they describe an 

open subset of the moduli space Mσ(2λ1 +2λ2). Recall that σ is induced on Ku(Y ) from 

the restriction of (a tilt of) a weak stability condition σα,−1 on the bounded derived 

category of coherent B0-modules on P 3, depending on a real parameter α > 0. Here B0

is the even part of the sheaf of Clifford algebras associated to the conic fibration on P 3

obtained by blowing-up a line in Y (see Section 2.3, Proposition and Definition 2.15). 

In Section 5.2 we compute the expression of our objects as complexes of B0-modules on 

P
3. Then in Sections 5.4 and 5.5 we show they are σα,−1-stable for α sufficiently large. 

Finally in Section 5.6 we show they are σα,−1-stable for every α, proving there are no 

walls for stability.

In Section 6 we prove Theorem 1.3. Fix a stability condition σ0 which is generic with 

respect to 2λ1 + 2λ2 and with the same stable objects as σ. Applying Theorems 1.1 and 

1.2 to the moduli space M := Mσ0
(2λ1 +2λ2), we consider the open subvariety M0 of the 

symplectic resolution M̃ of M consisting of stable objects associated to elliptic quintics 

in Y , with support on smooth hyperplane sections of Y . We define a line bundle L on 

M̃ inducing a rational map from M̃ to (P 5)∨, which is defined on M0 by sending the 

object to its support. Using some results in birational geometry of hyperkähler varieties, 

we show that there is a birational model N of M̃ and a semiample line bundle L′ on 

N , such that a multiple of L′ induces a Lagrangian fibration structure on N which is a 

compactification of the twisted intermediate Jacobian J over P0.

We conclude with Section 7 where Conjecture 1.4 is proved as a consequence of The-

orems 1.1, 1.2 and 1.3.
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2. Preliminaries on stability conditions on Ku(Y )

In this section we review the definitions of (weak) stability conditions on a triangulated 

category, semiorthogonal decompositions, and Kuznetsov component Ku(Y ) of a cubic 

fourfold Y . Then we recall the construction of stability conditions on Ku(Y ) due to 

[13] and some useful properties. The new contributions are an easier expression for the 

central charge of these stability conditions in Proposition 2.15 and Lemma 2.16 which 

makes more clear how to check the stability of objects in Ku(Y ).

2.1. (Weak) stability conditions

It is in general a difficult task to construct stability conditions on a triangulated 

category. In the case of the Kuznetsov component Ku(Y ) of cubic fourfolds, it is proved 

in [13] that such stability conditions can be induced by ‘restricting’ certain weak stability 

conditions, which can be constructed via the tilting heart technique. In this section, we 

briefly recall the notion of weak stability conditions following the summary in [13, Section 

2].

Let T be a C-linear triangulated category. We denote by Knum(T ) the numerical 

Grothendieck group of T . Let Λ be a finite rank lattice with a surjective homomorphism 

v : Knum(T ) � Λ.

Definition 2.1. The heart of a bounded t-structure is a full subcategory A of T such that

(a) for any objects E and F in A and negative integer n, we have Hom(E, F [n]) = 0;

(b) for every E in T , there exists a sequence of morphisms

0 = E0
φ1
−→ E1

φ2
−→ . . .

φm−1

−−−→ Em−1
φm
−−→ Em = E
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such that the cone of φi is of the form Ai[ki], for some sequence k1 > k2 > · · · > km

of integers and objects Ai in A.

Recall that the heart of a bounded t-structure is an abelian category by [8].

Definition 2.2. Let A be an abelian category. A group homomorphism Z : Knum(A) → C

is a weak stability function (resp. a stability function) on A if, for E ∈ A, we have 

�Z(E) ≥ 0, and in the case that �Z(E) = 0, we have 	Z(E) ≤ 0 (resp. 	Z(E) < 0

when E �= 0).

For every object E in A, its slope with respect to Z is given by

μZ(E) =

{
−�Z(E)

�Z(E) if �Z(E) > 0,

+∞ otherwise.

An object E in A is semistable (resp. stable) with respect to Z if for every proper 

subobject F of E in A, we have μZ(F ) ≤ μZ(E) (resp. μZ(F ) < μZ(E/F )).

Definition 2.3. A weak stability condition (with respect to Λ) on T is a pair σ = (A, Z), 

where A is the heart of a bounded t-structure on T and Z is a group homomorphism 

from Λ to C, satisfying the following properties:

(a) The composition Knum(A) = Knum(T ) 
v
−→ Λ 

Z
−→ C is a weak stability function on 

A.1 We say that an object E in A[k] is σ-(semi)stable if E[−k] is (semi)stable with 

respect to Z.

(b) Every object of A has a Harder–Narasimhan filtration with σ-semistable factors.

(c) There exists a quadratic form Q on Λ ⊗ R such that the restriction of Q to ker Z is 

negative definite and Q(E) ≥ 0 for all σ-semistable objects E in A.

If Z is a stability function, then σ is a stability condition introduced by Bridgeland in 

[18]. In this situation, we will usually call Z the central charge of the stability condition. 

If the lattice Λ is the numerical Grothendieck group Knum(T ) and v is the identity map, 

then σ is called a full numerical stability condition.

Remark 2.4. There is usually a natural choice of the lattice v : Knum(T ) → Λ in each of 

triangulated categories considered in this paper.

1 We will write Z(−) instead of Z(v(−)) for simplicity.
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2.2. Semiorthogonal decompositions and Kuznetsov components

Definition 2.5. Let T be a triangulated category. A semiorthogonal decomposition

T = 〈D1, . . . , Dm〉

is a sequence of full triangulated subcategories D1, . . . , Dm of T such that:

(a) Hom(F, G) = 0, for any objects F in Di, G in Dj and i > j;

(b) For any object F in D, there is a unique sequence of morphisms

0 = Fm → Fm−1 → · · · → F1 → F0 = F,

with factors pri(F ) := Cone(Fi → Fi−1) ∈ Di for 1 ≤ i ≤ m.

The subcategories Di are called the components of the decomposition. We also have the 

functor pri from T to Di.

Definition 2.6. An object E in T is exceptional if Hom(E, E[p]) = 0 for all integers p �= 0, 

and Hom(E, E) ∼= C.

A sequence of objects {E1, . . . , Em} in T is an exceptional collection if Ei is an ex-

ceptional object for all i, and Hom(Ei, Ej [p]) = 0 for all p and all i > j.

By [17], an exceptional collection {E1, . . . , Em} in T provides a semiorthogonal de-

composition

T = 〈D, E1, . . . , Em〉. (2.1)

Here by abuse of notation, we write Ei also for the full triangulated subcategory of T

generated by Ei. The full subcategory D := 〈E1, . . . , Em〉⊥ consists of objects

{G ∈ Obj(T )| Hom(Ei, G[p]) = 0 for all p and i}. (2.2)

Let Y be a smooth cubic fourfold. Denote by H a hyperplane section of Y . There 

is an exceptional collection {OY , OY (H), OY (2H)}. The bounded derived category of 

coherent sheaves on Y admits a semiorthogonal decomposition of the form

Db(Y ) = 〈Ku(Y ), OY , OY (H), OY (2H)〉. (2.3)

The subcategory Ku(Y ) is studied in details in [38], and it is now commonly referred to 

as the Kuznetsov component.

This projection functor in Definition 2.5 can be expressed by compositions of left 

(right) mutation functors, depending on the explicit semiorthogonal decomposition.
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Definition 2.7. Let E be an exceptional object in T . The left (resp. right) mutation 

functors LE (resp. RE) are defined as follows:

LE(F ) := Cone

⎛
⎝⊕

p∈Z

Hom(E[p], F ) ⊗ E[p]
ev
−→ F

⎞
⎠ ;

RE(F ) := Cone

⎛
⎝F

ev∨
−−→

⊕

p∈Z

Hom(F, E[p])∨ ⊗ E[p]

⎞
⎠ [−1].

Remark 2.8. Note that since the Serre functor in Db(Y ) is given by

SY (−) = − ⊗ OY (−3H)[4],

the Kuznetsov component of Y can be also given by ⊥〈OY (−2H), OY (−H)〉 ∩ O⊥
Y . 

Namely, it appears in the semiorthogonal decomposition

〈OY (−2H), OY (−H), Ku(Y ), OY 〉. (2.4)

Note that the object LE(F ) (resp. RE(F )) is in E⊥ (resp. ⊥E). We denote by

pr : Db(Y ) → Ku(Y )

the functor in Definition 2.5(b) to the component Ku(Y ) with respect to the decompo-

sition (2.4). In particular, it is given as the composition of mutations:

pr = ROY (−H)ROY (−2H)LOY
= LOY

ROY (−H)ROY (−2H). (2.5)

We will use the functor pr to produce objects in Ku(Y ) in Section 4. Note that the functor 

pr in our paper is different from the more standard projection functor LOY
LOY (H)LOY (2H)

with respect to the decomposition (2.3), which is also the left adjoint functor of the 

natural embedding of Ku(Y ).

2.3. Kuznetsov components of Db(Y ) and Db(P 3, B0)

It is usually a highly non-trivial task to construct stability conditions on the Kuznetsov 

component. The only technique so far is to restrict weak stability conditions on the 

whole derived category to its Kuznetsov component. In the cubic fourfold case, such 

weak stability conditions on Db(Y ) require a Bogomolov type inequality involving the 

third Chern character. Unfortunately, such inequality is not known yet for any cubic 

fourfold.

To avoid this technical difficulty, the idea in [13] is to embed Ku(Y ) as a component 

in a bounded derived category of lower dimension. More precisely, the key observation in 
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[13, Section 7] is that Ku(Y ) is equivalent to the Kuznetsov component of Db(P 3, B0). 

We briefly summarize the construction of this equivalence in this section.

Let L ⊂ Y ⊂ P
5 be a line which is not on any plane in Y , and we denote by

ρL : Ỹ → Y

the blow-up of L in Y .

The projection from L to a disjoint P 3 (in P 5) equips Ỹ with a natural conic fibration 

structure

π : Ỹ → P
3.

There is a rank three vector bundle F ∼= O⊕2
P 3 ⊕OP 3(−1) on P 3 such that Ỹ embeds into 

the P 2-bundle PP 3(F) as the zero locus of a section

sỸ ∈ H0(P 3, Sym2F∨ ⊗ OP 3(1)) ∼= H0(PP 3(F), OP
P3 (F)(2) ⊗ q∗OP 3(1)).

We have the following diagram of morphisms:

Ỹ

ρL
π

α
BlLP

5
PP 3(F)

q

Y P
5

P
3.

(2.6)

By [37, Section 3], we have an associated sheaf of Clifford algebras of π over P
3. 

Denote its even part (resp. odd part) by B0 (resp. B1). By [37, (12)], as a sheaf on P 3, 

the even part B0 is a rank four vector bundle:

OP 3 ⊕
(∧

2F ⊗ OP 3(−1)
)

∼= OP 3 ⊕ OP 3(−1) ⊕ OP 3(−2)⊕2. (2.7)

As for its algebra structure, the structure sheaf is central. The other relations are 

determined by

ei ∧ ek · ek ∧ ej = sỸ (ek ⊗ ek)ei ∧ ej , ei ∧ ek · ei ∧ ek = sỸ (ei ⊗ ei)sỸ (ek ⊗ ek), (2.8)

for an orthogonal basis (e1, e2, e3) of F and i �= j �= k �= i.

Definition 2.9. We denote by Coh(P 3, B0) the category of coherent sheaves on P 3 with a 

right B0-module structure, and denote its bounded derived category by Db(P 3, B0). The 

natural forgetful functor is denoted by Forg : Db(P 3, B0) → Db(P 3).

In particular, we have

HomDb(P 3,B0)(B0, G) ∼= HomDb(P 3)(OP 3 , Forg(G)) (2.9)
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for every G ∈ Db(P 3, B0).

By [37, (14)], the odd part B1 as a coherent sheaf is

Forg(B1) = Forg(F ⊕ (
∧

3F ⊗ OP 3(−1))) ∼= O⊕2
P 3 ⊕ OP 3(−1) ⊕ OP 3(−2). (2.10)

As in [37, (15)], we define the following B0-bimodules for j ∈ Z:

B2j := B0 ⊗ OP 3(j) and B2j+1 := B1 ⊗ OP 3(j). (2.11)

The Serre functor on Db(P 3, B0) (see [13, page 28]) is explicitly given as

SB0
(−) = (−) ⊗B0

B−3[3]. (2.12)

By [37, Lemma 3.8 and Corollary 3.9] and a direct computation using (2.9) and (2.12), 

the ordered set {B1, B2, B3} is an exceptional collection in Db(P 3, B0). By (2.1), there is 

a semiorthogonal decomposition of the form

Db(P 3, B0) = 〈Ku(P 3, B0), B1, B2, B3〉. (2.13)

One of the key observations in [13, Section 7] to construct stability conditions on Ku(Y )

is as follows.

Proposition 2.10 ([13, Lemma 7.6 and Proposition 7.7]). The Kuznetsov component 

Ku(Y ) is equivalent to Ku(P 3, B0).

Remark 2.11. The functor of this equivalence is given explicitly as

Ψ ◦ ρ∗
L : Ku(Y ) ↪→ Db(Y )

ρ∗
L−−→ Db(Ỹ )

Ψ
−→ Db(P 3, B0) ⊃ Ku(P 3, B0), (2.14)

where the functor Ψ is defined by

Ψ(−) = π∗(− ⊗ E [1]).

Here E is a sheaf of right π∗B0-modules on Ỹ defined in (5.2). We will only make essential 

use of this functor in Section 5.

2.4. Weak stability conditions on Db(P 3, B0)

We first review the notion of t-structure by tilting. Let σ = (A, Z) be a weak stability 

condition on T , and t ∈ R. We can form the following subcategories of A:

A>t
σ := {E| every Harder–Narasimhan factor F of E has μZ(F ) > t};

A≤t
σ := {E| every Harder–Narasimhan factor F of E has μZ(F ) ≤ t}.
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It follows from the existence of Harder–Narasimhan filtrations that (A>μ
σ , A≤μ

σ ) forms 

a torsion pair in A in the sense of [24]. In particular, we can obtain a new heart of a 

bounded t-structure by tilting.

Proposition and Definition 2.12 ([24]). Given a weak stability condition σ = (A, Z) on 

T and a choice of slope t ∈ R, there exists a heart of a bounded t-structure defined by:

At
σ := 〈A>t

σ , A≤t
σ [1]〉extension closure.

For an object F in Db(P 3, B0), we define its modified Chern character as

chB0
(F ) = ch(Forg(F ))(1 −

11

32
l), (2.15)

where l denotes the class of a line in P
3. Expand the formula, we have chB0,1(F ) =

ch1(Forg(F )) and chB0,2(F ) = ch2(Forg(F )) − 11
32 rk(F )l.

For every β ∈ R, we define the twisted Chern character as

chβ
B0

= e−βh chB0
= (rk, chB0,1 − rk βh, chB0,2 −βh · chB0,1 + rk

β2

2
h2, . . . ),

where h denotes the class of a plane in P 3.

We fix the lattice Λ of Knum(P 3, B0) in Definition 2.3 as:

v = chB0,≤2 : Knum(P 3, B0) → Λ

where Λ = {(rk(F ), l · ch1(Forg(F )), h · ch2(Forg(F )) − 11
32 rk(F )) : F ∈ Db(P 3, B0)}. To 

simplify the notation, we will also write ch1 (resp. ch2) for l · ch1 (resp. h · ch2) in the 

future when there is no ambiguity.

The discriminant of an object F in Db(P 3, B0) is defined as follows:

ΔB0
(F ) := (chB0,1(F ))2 − 2 rk(F ) chB0,2(F ) = (chβ

B0,1(F ))2 − 2 rk(F ) chβ
B0,2(F ). (2.16)

Setting Zslope = i rk − chB0,1, then the classical slope stability

σslope = (Coh(P 3, B0), Zslope)

is a weak stability condition in the sense of Definition 2.3. For β ∈ R, as in Proposition 

and Definition 2.12, we have the heart of bounded t-structure

Cohβ(P 3, B0) := 〈Coh>β
σslope

(P 3, B0), Coh≤β
σslope

(P 3, B0)[1]〉.

With this notation, we can state the following result.
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Proposition and Definition 2.13 ([13, Proposition 9.3]). Given α > 0 and β ∈ R, the 

pair σα,β = (Cohβ(P 3, B0), Zα,β) with

Zα,β(F ) = i chβ
B0,1(F ) +

1

2
α2 chβ

B0,0(F ) − chβ
B0,2(F )

defines a weak stability condition on Db(P 3, B0). These stability conditions vary contin-

uously as (α, β) ∈ R>0 × R varies. The quadratic form in Definition 2.3 can be taken 

as ΔB0
. In particular, if an object F is σα,β-semistable for some α > 0, β ∈ R, then we 

have

ΔB0
(F ) ≥ 0.

Remark 2.14.

(i) By ‘vary continuously’, we mean that if an object F is σα0,β0
-stable for some α0 > 0

and β0 ∈ R, then F is σα,β-stable for (α, β) in an open neighborhood of (α0, β0).

(ii) For all j ∈ Z, the object Bj is σα,β-stable for every α > 0 and β ∈ R by [13, Remark 

9.4].

2.5. Stability conditions on Ku(P 3, B0) and Ku(Y )

The weak stability conditions in Proposition 2.13 do not restrict to stability conditions 

on Ku(P 3, B0) directly. We need to modify them by one more tilting.

Fix some 0 < α < 1
4 and β = −1. Consider the tilting of σα,−1 with respect to the 

slope value 0 as in Proposition and Definition 2.12. We refurbish the main result for the 

stability conditions on Ku(P 3, B0) in [13, Theorem 1.2] as follows.

Proposition and Definition 2.15. Let α ∈ R with 0 < α < 1
4 . The pair

σα :=
((

Coh−1(P 3, B0)
)0

σα,−1

⋂
Ku(P 3, B0), Z = ch−1

B0,1 −i rk
)

(2.17)

is a stability condition on Ku(P 3, B0) with respect to the natural rank-2 lattice

chB0,≤1 : Knum(Ku(P 3, B0)) → Λ = {(rk(F ), ch1(Forg(F )) : F ∈ Ku(P 3, B0)}.

Moreover, the stability condition σα does not depend on the choice of α.

Proof. By Proposition 2.13 and [13, Proposition 2.15, Proposition 5.1 and Proof of The-

orem 1.2], if we replace the central charge in the pair (2.17) by −iZα,−1, then that will 

be a stability condition on Ku(P 3, B0). We only need to check that the central charge in 

(2.17) induces the same slope function as that induced by −iZα,−1.
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For any object E in Ku(P 3, B0), by (2.2) and (2.13), we have

χDb(P 3,B0)(B1, E) = χDb(P 3,B0)(B3, E) = 0. (2.18)

Recall that the Riemann–Roch formula for P 3 is given as

χP 3(F ) = ch3(F ) + 2 ch2(F ) +
11

6
ch1(F ) + rk(F ) (2.19)

for every object F in Db(P 3). Recall that to simplify the notation, we write ch1 (resp. 

ch2) for l · ch1 (resp. h · ch2) here.

Denote G = Forg(E ⊗B0
B−1). By (2.9), (2.18) and [37, Corollary 3.9], we have

0 =χDb(P 3,B0)(B1, E) = χP 3(G) = ch3(G) + 2 ch2(G) +
11

6
ch1(G) + rk(G), (2.20)

0 =χDb(P 3,B0)(B3, E) = χP 3(G(−H)) = ch3(G) + ch2(G) +
1

3
ch1(G). (2.21)

By [37, Corollary 3.9], for every Bi we have

ch2(Bi ⊗B0
B−1) = ch2(Bi−1) = ch2(Forg(Bi)) −

1

2
ch1(Forg(Bi)) +

1

8
rk(Bi)

Note that the Chern characters of Forg(Bi) can be computed using (2.7), (2.10) and 

(2.11). By [15, Proposition 2.12] and restricting to a general hyperplane, the character 

ch≤2(E) is spanned by ch≤2(Bi)’s. As the sheaf B−1 is a flat B0-module, the operation 

− ⊗B0
B−1 is linear on ch≤2, so we have

ch2(G) = ch2(Forg(E)) −
1

2
ch1(Forg(E)) +

1

8
rk(E) and

ch1(G) = ch1(Forg(E)) −
1

2
rk(E).

By subtracting the equations (2.20) and (2.21), we have

ch2(Forg(E)) = − ch1(Forg(E)) −
3

8
rk(E). (2.22)

Note that

�(−iZα,−1(E)) = ch−1
2 (Forg E) −

11

32
rk(E) −

1

2
α2 rk(E)

= ch2(Forg E) + ch1(Forg E) +
1

2
rk(E) −

11

32
rk(E) −

1

2
α2 rk(E)

= − (
7

32
+

1

2
α2) rk(E) by (2.22).

We have
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Z(E) = ch−1
B0,1(E) − i rk(E) = 	(−iZα,−1(E)) +

i
7

32 + 1
2α2

�(−iZα,−1(E)).

Therefore, the slope function induced by −iZα,−1 is the same up to a constant scalar as 

that of Z = ch−1
B0,1 −i rk. So the pair (2.17) is a stability condition on Ku(P 3, B0). Note 

that the stability conditions σα’s vary continuously when α varies. Since they have the 

same central charge, all of them are the same stability condition. �

It is worth pointing out that to check the stability of an object in Ku(P 3, B0), we 

usually only need to work in the heart Coh−1(P 3, B0). The following simple lemma 

makes this more precise.

Lemma 2.16. Let E be a σα,−1-stable object such that

(a) E is an object in 
(
Coh−1(P 3, B0)

)0

σα,−1

⋂
Ku(P 3, B0);

(b) HomB0
(T, E) = 0 for every T ∈ Coh(P 3, B0) of zero dimensional support.

Then E is σα-stable.

Proof. We only need to show that E is stable with respect to the weak stability condition ((
Coh−1(P 3, B0)

)0

σα,−1
, −iZα,−1

)
. Denote A = Coh−1(P 3, B0). Let F be a non-zero 

proper subobject of E in 
(
Coh−1(P 3, B0)

)0

σα,−1
, then we have the exact sequence of 

objects in A:

0 → H−1
A (F ) → H−1

A (E) → H−1
A (E/F ) → H0

A(F ) → H0
A(E) → H0

A(E/F ) → 0. (2.23)

Since E is σα,−1-stable, either H−1
A (E) or H0

A(E) = 0. When H0
A(E) �= 0, we have 

H−1
A (F ) = H−1

A (E) = 0. Since E = H0
A(E) is σα,−1-stable, we have

μZα,−1
(H0

A(E/F )) ≥ μZα,−1
(E) > 0. (2.24)

By condition (b), we have Zα,−1(F ) �= 0. Since μZα,−1
(H−1

A (E/F )) < 0 or H−1
A (E/F ) =

0, it is clear that

μZα,−1
(E) ≥ μZα,−1

(F ) > 0. (2.25)

The equality in (2.25) can hold only when H−1
A (E/F ) = 0 and Zα,−1(E/F ) = 0. In 

particular, E/F = H0
A(E/F ) in this case. By Definition 2.2, we always have

μZα,−1
(E/F )) > μZα,−1

(F ) > 0.

Therefore,

μ−iZα,−1
(E/F ) > μ−iZα,−1

(F ) > 0.
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By Definition 2.2, the object E is μ−iZα,−1
-stable. A similar argument also holds for the 

case when H−1
A (E) �= 0. �

Another issue is that the Clifford structure and the embedding of Ku(Y ) in Db(P 3, B0)

depend on the choice of the line L to blow up, see Remark 2.11. However, for the induced 

stability conditions on the Kuznetsov component, we have the following result.

Proposition 2.17 ([45, Proposition 2.6]). If σ is a stability condition as defined in (2.17), 

then the induced stability condition (Ψ ◦ ρ∗
L)−1σ on Ku(Y ) is independent of the choice 

of L.

Remark 2.18. As we are only interested in the stability of objects in Ku(Y ), we will omit 

L in all the morphisms and functors that rely on L in what follows. For simplicity, we 

will also write σ instead of (Ψ ◦ ρ∗
L)−1σ for the stability condition on Ku(Y ).

The stability condition σ is also a full numerical stability condition. The whole con-

nected component Stab†(Ku(Y )) containing σ is described in [12, Theorem 29.1].

3. Symplectic resolution of the moduli space Mτ (2v0) with v2

0
= 2

This section is devoted to the proof of Theorem 1.1. After recalling the definition 

of algebraic Mukai lattice of Ku(Y ) and stating the main result, we describe the local 

structure of the moduli space Mτ (2v0) at the worst singular points. This is used to 

construct the symplectic resolution M̃ by blowing up the singular locus with the reduced 

scheme structure as in [46]. Finally, we obtain the projectivity and the deformation 

class of M̃ by specializing to Kuznetsov components equivalent to the bounded derived 

category of a K3 surface.

3.1. Algebraic Mukai lattice of Ku(Y )

Let Y be a cubic fourfold over C and Ku(Y ) be its Kuznetsov component. The al-

gebraic Mukai lattice H∗
alg(Ku(Y ), Z) of Ku(Y ) is introduced in [13, Proposition and 

Definition 9.5]. It consists of algebraic cohomology classes of Y which are orthogonal to 

the classes of OY , OY (H), OY (2H) with respect to the Euler pairing.

As for an alternative description, the algebraic Mukai lattice is Knum(Ku(Y )) equipped 

with a Mukai pairing:

([E], [F ]) := −χ(E, F ) = −χ(F, E) (3.1)

for objects E and F in Ku(Y ). The signature of the Mukai pairing is (2, ρ), where 

0 ≤ ρ ≤ 20.

We will be only interested in a sub-lattice in Knum(Ku(Y )) generated by two special 

classes
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λi := [LOY
LOY (H)LOY (2H)(OL(iH))] for i = 1 and 2, (3.2)

where L is a line on Y and LOY
LOY (H)LOY (2H) : Db(Y ) → Ku(Y ) is the projection func-

tor with respect to the semiorthogonal decomposition 〈Ku(Y ), OY , OY (H), OY (2H)〉 of 

Db(Y ). The Mukai pairing of them can be computed as:

(λ1, λ1) = (λ2, λ2) = 2, (λ1, λ2) = −1. (3.3)

In particular, when Y is a very general cubic fourfold, the Mukai lattice is spanned by 

λ1 and λ2.

3.2. The main theorem

Fix a primitive element v0 in the algebraic Mukai lattice of Ku(Y ) such that 

(v0, v0) = 2 and set v := 2v0. Let Stab†(Ku(Y )) be the connected component of full 

numerical stability conditions on Ku(Y ) containing σ. By [12, Theorem 21.24] (which 

makes use of the main result in [1]), for every τ ∈ Stab†(Ku(Y )), the moduli stack Mτ (v)

parametrizing τ -semistable objects in Ku(Y ) admits a good moduli space Mτ (v), which 

is a proper algebraic space.

In this section, we fix a stability condition τ ∈ Stab†(Ku(Y )) which is generic with 

respect to v. In other words, the strictly τ -semistable objects in Mτ (v) are S-equivalent 

to the direct sum of two τ -stable objects with Mukai vector v0. Note that v-generic 

stability conditions exist as Stab†(Ku(Y )) is a connected component of full numerical 

stability conditions. Also note that this stability condition may be different as that in 

Remark 2.18, which was denoted by σ, when Y is not very general. Set M := Mτ (v), 

then by [12, Theorem 29.2 and Remark 29.3], M is an irreducible proper algebraic space, 

and there is a holomorphic symplectic form on the smooth locus of M . The aim of this 

section is to prove the following result.

Theorem 3.1. The moduli space M has a symplectic resolution M̃ , which is a 10-

dimensional smooth projective hyperkähler manifold, deformation equivalent to the O’-

Grady’s example constructed in [54].

The construction of the symplectic resolution is done in [46] in the case of the moduli 

space of semistable sheaves having Mukai vector 2v0 with (v0, v0) = 2 over a polarized 

K3 surface. A large part of their argument applies to our more general setup without 

much change. For this reason, we only sketch the proof, referring to [46] for a complete 

discussion. The main difference is that in the case of moduli of sheaves, the moduli are 

constructed as a GIT quotient. To study the local structure, it is enough to take an étale 

slice. In our case, we instead use the result on étale slice of algebraic stacks [2], and we 

give the details for this part of the proof.

The strategy is to study the local structure of the moduli space at the worst singularity 

and prove that its normal cone is isomorphic to an affine model obtained as a nilpotent 
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orbit in the symplectic Lie algebra sp(4). It turns out that the singularity is formally 

isomorphic to its normal cone. Since the singularity at the generic point of the singular 

locus of M is of type A1, one can conclude that the blow up M̃ of M at its singular locus 

endowed with the reduced scheme structure is a symplectic resolution of M . The other 

properties of M̃ (projectivity, deformation type) will be obtained by degeneration to the 

locus of cubic fourfolds with Kuznetsov component equivalent to the bounded derived 

category of a K3 surface, as in [12].

3.3. Local structure of M

We have the following possibilities for E ∈ M :

(1) E is τ -stable. Its automorphism group is Aut(E) ∼= C
∗.

(2) E is S-equivalent to F ⊕ F ′ with non-isomorphic F, F ′ ∈ Mτ (v0). In this case, we 

have Aut(E) ∼= C
∗ × C

∗.

(3) E is S-equivalent to F ⊕2 for F ∈ Mτ (v0). Then, Aut(E) ∼= GL(2, C).

In this section, we investigate the structure of M in a formal neighborhood of a semistable 

point as in item (3).

Let E be a τ -semistable object in M . As in [46], the first ingredient for the proof is the 

description of the infinitesimal deformation of E. In the case of polystable sheaves on a 

K3 surface a good summary of the results is provided in [6, Sections 2 and 4], which we 

follow in our case. The deformation theory for perfect complexes in the derived category 

has been studied in [42]. In our setting, we consider the functor

DefE : Art → Sets

from the category of local Artinian C-algebras to the category of sets, which assigns 

to an object A in Art, the set DefE(A) of equivalence classes of deformations of E

to YA := Y × Spec A. Explicitly, objects in DefE(A) are equivalence classes of pairs 

(EA, ϕ), where EA is a complex on YA together with an isomorphism ϕ : EA ⊗L
A C ∼= E

(see [42, Definition 3.2.1]). Two pairs (EA, ϕ) and (E′
A, ϕ′) are equivalent if there is an 

isomorphism ψ : EA
∼= E′

A such that ϕ′ ◦ ψ = ϕ.

Note that by [42, Lemma 3.2.4], EA is an object in Db(YA). By base change and the 

definition of EA, if p is the closed point of Spec A, then

RHom(OYA
(iH), EA)p

∼= RHom(OYA
(iH)p, EA p) ∼= RHom(OY (iH), E) = 0

for i = 0, 1, 2. So the property of being in Ku(Y ) is an open condition, and we may 

assume EA is an object in Ku(YA) := 〈OYA
, OYA

(H), OYA
(2H)〉⊥, where OYA

(H) is the 

trivial deformation of OY (H) to YA. By [42, Theorem 3.1.1 and Proposition 3.5.1], the 

functor DefE is a deformation functor and its tangent space DefE(C[ε]) is Ext1(E, E), 

where C[ε] := C[t]/(t2).
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As proved in [35], the definition of the trace map requires an additional step. Denote 

by εE the linkage class of E (see [35, Proposition 3.1]) and consider the composition

tr : Ext2(E, E)
εE◦−
−−−→ Ext4(E, E ⊗ Ω4

Y )
Tr
−→ H4(Ω4

Y ) ∼= C,

where the first map is given by the composition with εE and the second map is the usual 

trace map. We set Ext2(E, E)0 := ker(tr), which is the obstructions space.

As noted at the beginning of the Appendix in [46], every polystable sheaf E on a 

smooth projective surface admits an injective resolution which is equivariant with respect 

to the canonical action of the automorphism group Aut(E) of E. The same argument 

applies to a polystable object E ∈ M . In fact, every E ∈ Db(Y ) has an injective resolution 

(see for instance [29, Proposition 2.35]). If E is stable, then Aut(E) ∼= C
∗, thus any 

injective resolution is Aut(E)-equivariant. If E = F ⊕ F ′, where F and F ′ are non-

isomorphic τ -stable objects, then consider two injective resolutions F → I, F ′ → I ′

and define the injective resolution E → I ⊕ I ′ which is Aut(E) ∼= C
∗ × C

∗-equivariant. 

Similarly, if E = F ⊕2, then E → I⊕2 is an injective resolution which is equivariant with 

respect to Aut(E) ∼= GL(2, C).

Then the argument in [46, Appendix] allows to construct a formal map

κ = κ2 + κ3 + · · · : Ext1(E, E) → Ext2(E, E)0

known as the Kuranishi map, defined inductively on the order, with the following prop-

erties:

(1) The map κ is equivariant with respect to the conjugation action of Aut(E).

(2) The second order term κ2 : Ext1(E, E) → Ext2(E, E)0 is given by the Yoneda 

product κ2(e) = e � e for e ∈ Ext1(E, E).

(3) By [56] there exists an Aut(E)-equivariant formal deformation (Ê, ϕ̂) of E having 

the versality property, parametrized by the formal scheme Dκ := κ−1(0).

Denote by A := C[Ext1(E, E)] the polynomial ring on Ext1(E, E). Let Â be the comple-

tion of the ring A with respect to the maximal ideal m of polynomial functions vanishing 

at 0. The Kuranishi map can be also written dually as

κ∗ : Ext2(E, E)∗
0 → m2Â.

If a ⊂ Â is the ideal generated by the image of κ∗, then by definition we have

Dκ = Spf(Â/a) = colimn Spec((Â/a)/mn),

where m is the maximal ideal of Â/a by abuse of notation.

On the other hand, the object E defines a closed point x in the moduli stack M :=

Mτ (v) and the S-equivalence class of E determines a point π(x) ∈ M , where π : M → M
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is the good moduli space. The stabilizer Gx of x is identified with Aut(E). If n is the 

maximal ideal defining the inclusion of the residual gerbe BGx ↪→ M, we denote by 

Mn ↪→ M the n-th nilpotent thickening of M at x defined by nn+1 for n ≥ 0. By [2, 

Theorem 4.16] there exists the coherent completion of M at x, which is a complete local 

stack (M̂x, ̂x) and a morphism (M̂x, ̂x) → (M, x) inducing isomorphisms on the n-th 

nilpotent thickenings of x̂ and x. Moreover, since M has a good moduli space M , by 

[2, Theorem 4.16(3)] we have M̂x = M ×M Spec(ÔM,π(x)) and M̂x → Spec(ÔM,π(x))

is a good moduli space. Note that M̂x → M is formally versal at x, i.e. for every 

commutative diagram

(M̂x)0 Z M̂x

Z ′ M

where Z ↪→ Z ′ is an inclusion of local artinian stacks, there is a lift Z ′ → M̂x filling the 

above diagram (see [2, Definition A.13]).

The next lemma is a generalization of a well-known result for moduli spaces of sheaves 

on a K3 surface (see [30, Section 2.6] or [46, Proposition 4.1(3)]). In that case the proof 

relies on the description of the moduli space as a GIT quotient of an open subset of a 

Quot scheme and on the Luna slice Theorem. In our case of moduli spaces of complexes, 

we apply the results in [2], which among other things imply that the stack M is étale-

locally a GIT quotient.

Lemma 3.2. Assume E = F ⊕ F where F is τ -stable of Mukai vector v0. Adopt the 

notation of π(x), A and a as above, then

ÔM,π(x)
∼= (Â/a)Aut(E) ∼= ÂAut(E)/(a ∩ ÂAut(E)).

Proof. Consider the quotient stack T := [Spec(Sym•(TM,x))/Gx], where TM,x is the 

tangent space to M at x. By definition TM,x = DefE(C[ε]) ∼= Ext1(E, E), so in this case

T = [Spec A/ Aut(E)] → T := Spec A � Aut(E) = Spec AAut(E),

which is a good moduli space. We denote by Tn the n-th thickening of T at the point 0. 

As computed in the proof of [2, Theorem 1.1], since Gx = Aut(E) is linearly reductive 

and smooth, the isomorphisms M0 = BGx
∼= T0 and M1

∼= T1 lift to closed immersions 

Mn ↪→ Tn which effectivize to a closed immersion M̂x ↪→ T̂ , where T̂ := T ×T Spec ÔT,0. 

Note that ÔT,0
∼= ((AAut(E))m)̂ ∼= (ÂAut(E))m ∼= ÂAut(E) ∼= ÂAut(E), as localization and 

completion with respect to a maximal ideal commute.

On the other hand, note that Gx acts on the quotient Â/a. Indeed, as κ is Gx-

equivariant, we have Gx(a) ⊂ a, so the action on the quotient is well-defined.
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We claim that (Â/a)Gx is a complete local ring. In order to prove this, we firstly 

show that there is an isomorphism of rings (Â/a)Gx ∼= ÂGx/(a ∩ ÂGx). Indeed, note 

that the surjection Â � (Â/a) induces surjections Â/mn
� (Â/a)/mn for every n. Now 

recall that Gx is linearly reductive, so every surjection B � C of Gx-rings induces a 

surjection BGx
� CGx on the invariant rings. As a consequence, we have the surjections 

(Â/mn)Gx
� ((Â/a)/mn)Gx for every n. Passing to the completions, it follows that there 

is a surjection ÂGx
� (Â/a)Gx . An easy computation shows that this surjection induces 

a surjection ÂGx/(a ∩ ÂGx) � (Â/a)Gx , which is injective.

Now note that ÂGx/(a ∩ ÂGx) is a local ring. Indeed, ÂGx ∼= ÂGx is a local ring, and 

the quotient of a local ring is a local ring. Moreover, by [46, Equation (4.7)] we have the 

explicit description of ÂGx/(a ∩ ÂGx) as the quotient of the ring of formal power series, 

i.e.

ÂGx/(a ∩ ÂGx) ∼= C[[X1, . . . , X4, Y11, Y12, . . . , Y44]]/I,

where I is an ideal of C[[X1, . . . , X4, Y11, Y12, . . . , Y44] ] (for the precise definition see [46, 

Section 4, page 762]). Indeed, the same computation as in [46] with respect to a fixed 

symplectic basis on V := Ext1(F, F ) can be performed using Gx
∼= GL2, Ext1(E, E) ∼=

gl2 ⊗ V , Ext2(E, E)0
∼= sl2 and the description of the generators of ASL2 in terms of 

the traces of the coordinate functions on A. Since the quotient of a Noetherian complete 

local ring is complete, we deduce the desired properties for (Â/a)Gx .

Define the stack K := [Spec (Â/a)/Gx], whose good moduli space is K → Spec(Â/a)Gx

(see [3, Example 8.3]). By the above computation and [2, Theorem 1.3] we have that 

K is coherently complete along x. Let Kn be the n-th thickening of K at 0. The Gx-

equivariant versal family (Ê, ϕ̂) constructed out of κ defines a collection of equivariant 

compatible objects (En, ϕn) ∈ DefE((Â/a)/mn+1) for every n. Equivalently we have the 

compatible collection Kn → M. Since K is coherently complete, by [2, Corollary 2.6]

these morphisms effectivize to K → M. Also K satisfies the versality property as (Ê, ϕ̂)

does.

Now note that K0
∼= T0 and K1

∼= T1 as a ⊂ m2Â. Thus we have the commutative 

diagram

M1

∼=

M̂x

K1 M

K

f

.

By the universal property of M̂x, there exists a lifting f : K → M̂x filling the above 

diagram and inducing a collection of morphisms fn : Kn → M̂x for every n ≥ 0. Since 
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K1
∼= M1 ↪→ M̂x is a closed immersion, by [2, Proposition A.8] we have that fn and f

are closed immersions. So we have the commutative diagram

K
id

f

K

M̂x

g

M.

The versality property of K implies that there exists a lifting g : M̂x → K filling the 

above diagram. This implies that f is an isomorphism.

Now consider the maps A : K ∼=f M̂x → Spec(ÔM,π(x)) and B : M̂x
∼=f−1

K →

Spec(Â/a)Gx . By [3, Theorem 6.6] we have the bijections

Hom(K, Spec(ÔM,π(x))) ∼= Hom(Spec(Â/a)Gx , Spec(ÔM,π(x)))

and

Hom(M̂x, Spec(Â/a)Gx) ∼= Hom(Spec(ÔM,π(x)), Spec(Â/a)Gx).

Thus A and B factor through a : Spec(Â/a)Gx →Spec(ÔM,π(x)) and b : Spec(ÔM,π(x)) →

Spec(Â/a)Gx , respectively. By construction, we have that b is the inverse of a. This 

implies an isomorphism (Â/a)Aut(E) ∼= ÔM,π(x) of local rings as we wanted. �

Note that since the tangent space to the moduli space at a polystable object E is 

identified with Ext1(E, E)Aut(E), the singular part M sing of M corresponds to the locus 

where the dimension of the tangent space jumps, i.e. the locus of polystable objects. In 

particular, we have a stratification

Δ ⊂ M sing ⊂ M,

where

Δ ∼= Mτ (v0) and M sing ∼= Sym2(Mτ (v0)).

3.4. Affine model

The affine model Z for the local structure at the worst singularities of M is described 

in [46, Section 2]. Here we recall the definition for sake of completeness referring to [46]

for the details.

Let V be a 4-dimensional C-vector space with a symplectic form ω. Denote by sp(V )

the associated symplectic Lie algebra which has dimension 10. Consider the set Z ⊂ sp(v)

defined as
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Z = {B ∈ sp(V )|B2 = 0}.

The ideal I0 ⊂ C[sp(V )] defining Z is generated by the coefficients of the matrix B2, 

which are linearly dependent, and Z has dimension 6. The singular locus Zsing of Z is

Zsing = {B ∈ Z| rk(B) ≤ 1}

and it is defined by the ideal L0 generated by the 2 × 2-minors of B. Note that Zsing has 

dimension 4 and is singular in the origin.

On the other hand, consider the Grassmannian G parametrizing maximal isotropic 

subspaces U ⊂ V . Define the incidence subvariety

Z̃ = {(B, U) ∈ Z × G|B(U) = 0} ⊂ Z × G.

The canonical projection π : Z̃ → G to the second factor is identified with the canonical 

projection T ∗G → G. Moreover, the first projection σ : Z̃ → Z is a semi-small resolution. 

Indeed, over matrices B ∈ Zsing with rk(B) = 1, the fiber of σ is P ((kerB/imB)∗) ∼= P
1, 

while over B = 0 the fiber is G.

Proposition 3.3 ([46], Théorème 2.1). The resolution σ : Z̃ → Z is isomorphic to the 

blow-up of Z along Zsing ⊂ Z.

A key property of Z is that its singularity is rigid with respect to deformations, 

meaning that a deformation of Z which does not change the singularities of Z around 

the origin cannot change the singularity at the origin [46, Théorème 3.1].

3.5. Symplectic resolution of M

The main result of this section is the following.

Theorem 3.4. The blow-up M̃ of the singular locus of M with the structure of reduced 

algebraic space is a symplectic resolution of M .

Here M is an irreducible proper algebraic space by [12, Theorem 29.2 and Remark 

29.3]. For the definition of blow-up of an algebraic space and reduced algebraic space 

consult Stacks Project, Sections 69.17 and 64.7, respectively. The argument is due to 

[46] and we summarize it for the interested reader.

Theorem 3.4 is a consequence of the following result.

Proposition 3.5 ([46, Théorème 4.5]). Let E := F ⊕2 where F ∈ Mτ (v0). Then there is 

an isomorphism of germs of analytic spaces

(M, [E]) ∼= (C4 × Z, 0).
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Proof. We use the notation introduced in Sections 3.3 and 3.4. By Lemma 3.2 we have 

the isomorphism ÔM,π(x)
∼= ÂAut(E)/(a ∩ ÂAut(E)).

Set V = Ext1(F, F ); then Ext1(E, E) ∼= gl2 ⊗ V ∼= gl⊕4
2 and Ext2(E, E)0

∼= sl2. By 

[46, Proposition 4.3], we have ÂAut(E)/(a ∩ ÂAut(E)) ∼= R̂/I, where R = C[C4 ×sp(4)], R̂

is the completion of R at 0 and I is an ideal of R̂. Moreover, by [46, Proposition 4.3(3)]

the ideal I0 corresponds to the locus of strictly semistable objects via the isomorphism 

above and by [46, Lemma 4.4] the ideal of initial terms of I satisfies in(I) = I0R.

In order to prove (M, [E]) ∼= (C4 × Z, 0) by Artin’s Theorem [5, Corollary 1.6] and 

the above observations, it is enough to show R̂/I ∼= R̂/I0R̂. By the computation in [46, 

Section 5] the deformation of R̂/I towards its normal cone is trivial. This implies the 

statement. �

Proof of Theorem 3.4. The same computation as in [54, (2.2.4), Claim (1.8.8)] shows 

that the singularity of a point in M sing \Δ is of type A1 transversally to M sing. Thus the 

blow-up of M \ Δ in M sing \ Δ is a resolution of these singularities and the symplectic 

form over the smooth part of M extends to the exceptional divisor of this blow-up. By 

Propositions 3.5 and 3.3 applied to the points in Δ, we have that the blow-up σ of M

in M sing is a resolution of singularities. Note that the fiber of σ over a point in Δ is a 

3-dimensional quadric. Thus the symplectic form extends to M by Hartog’s Theorem. �

Remark 3.6. Note that the moduli space M is normal, as it is locally described by Z.

3.6. Relative version

In order to complete the proof of Theorem 3.1, we need to apply the theory introduced 

in [12] about families of stability conditions and relative moduli spaces.

Recall that given a family of cubic fourfolds Y → S over a smooth quasi-projective 

variety S with relative ample class OY(1), by [12, Lemma 30.1] there exists an admissi-

ble subcategory Ku(Y) ⊂ Db(Y) which defines a family of Kuznetsov components over 

S, obtained from the relative exceptional collection OY , OY(1), OY(2). For every point 

s ∈ S the base change category Ku(Y)s to Spec(κ(s)) is the right orthogonal to the 

exceptional collection OYs
, OYs

(1), OYs
(2). In particular, Ku(Y)s is the Kuznetsov com-

ponent Ku(Ys) of Ys for every s ∈ S. A stability condition on Ku(Y) is a collection 

τ = (τs)s∈S of stability conditions τs on Ku(Ys) for s ∈ S, satisfying the compatibility 

conditions of [12, Definitions 20.5 and 21.15].

The next result is the relative version of Theorem 3.4 over a 1-dimensional base and 

is the generalization of [12, Corollary 32.1] to the case of a non-primitive Mukai vector.

Proposition 3.7. Let Y be a cubic fourfold, let v = 2v0 be a Mukai vector in 

H∗
alg(Ku(Y ), Z) with (v0, v0) = 2 and let τ ∈ Stab†(Ku(Y )) be v-generic. Let Y ′ be 

another cubic fourfold such that there is smooth family of cubic fourfolds over a con-

nected quasi-projective base with fibers Y and Y ′ along which v0 remains a Hodge class. 
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Then there exist a family g : Y → C of cubic fourfolds over a smooth connected quasi-

projective curve, complex points 0, 1 ∈ C(C) and a stability condition τ on Ku(Y) over 

C such that:

(1) Y0 = Y and Y1 = Y ′.

(2) v0 is a primitive vector in H∗
alg(Ku(Yc), Z) for all c ∈ C.

(3) τc is v-generic for all c ∈ C and τ0 is a small deformation of τ so that Mτ0
(v) =

Mτ (v).

(4) There exist an algebraic space Mτ (v) and a proper morphism Mτ (v) → C such that 

every fiber is the connected component containing the singular locus Sym2(Mτc
(v0))

of the good moduli space Mτc
(v) of semistable objects in Ku(Yc).

(5) There exist an algebraic space M̃τ (v) and a proper morphism M̃τ (v) → C making 

M̃τ (v) a relative symplectic resolution of Mτ (v): its fiber over any point c ∈ C is a 

symplectic resolution of the fiber of Mτ (v) over c, obtained by blowing up the singular 

locus Sym2(Mτc
(v0)).

Proof. Properties (1)-(3) are a consequence of the assumptions and [12, Proposition 

30.8] (in loc. cit. the authors assume v is primitive, but the same proof adapts to the 

non-primitive case).

In order to prove (4), note that by [12, Theorem 21.24(3)] the moduli stack Mτ (v), 

parametrizing τ -semistable objects in Ku(Y), admits a good moduli space Mτ (v) which 

is a proper algebraic space over C. By Remark 3.6, the fiber Mτc
(v) is normal for every 

c ∈ C. Thus Mτc
(v) is a finite disjoint union of normal irreducible components. Denote by 

Mτc
(v)′ the irreducible component of Mτc

(v) containing Sym2(Mτc
(v0)). Then consider 

the irreducible component of Mτ (v) with fiber Mτc
(v)′ at a point c ∈ C. By abuse of 

notation, we denote this component by Mτ (v) and this defines the proper algebraic space 

of item (4).

Part (5) follows from the fact that the relative symmetric product Sym2(Mτ (v0)) over 

C is proper over C and satisfies Sym2(Mτ (v0))c = Sym2(Mτc
(v0)) for every c ∈ C, by 

[12, Corollary 32.1] applied to v0. Thus we define M̃τ (v) as the blow up of Mτ (v) in 

Sym2(Mτ (v0)) and we have that M̃τ (v)c is the blow up of Mτc
(v)′ in Sym2(Mτc

(v0)). 

This implies (5). �

3.7. Proof of Theorem 3.1

By Theorem 3.4, we know M̃ is smooth, connected, proper and symplectic of dimen-

sion 10. In this paragraph, we end the proof of Theorem 3.1. In particular, we show that 

M and M̃ are projective, by proving that they carry an ample divisor, and that M̃ is 

deformation equivalent to the O’Grady’s 10-dimensional example.

Consider the irreducible component M ′ ⊂ M containing M sing. By abuse of notation, 

we still denote by M̃ the blow up of M ′ in the reduced singular locus. By Proposi-
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tion 3.7(3) we have that M ′ is a limit (in the sense of [55, Definition 1.12]) of moduli 

spaces Mn of semistable objects in the derived category of a K3 surface with Mukai 

vector v with respect to a v-generic stability condition which is geometric. Indeed, it is 

enough to choose a curve C in the moduli space of cubic fourfolds, such that its inter-

section with the loci of cubic fourfolds having Kuznetsov component equivalent to the 

bounded derived category of a K3 surface is dense in C. Such a choice of C is possible 

since the locus of cubic fourfolds with Kuznetsov component equivalent to the bounded 

derived category of a K3 surface is a countable union of divisors in the quasi-projective 

moduli space of cubic fourfolds [7], [12, Corollary 29.7], thus it is dense in the moduli 

space of cubic fourfolds. By [12, Proposition 32.4] and [52, Proposition 2.2, Corollary 

3.16], the moduli space Mn admits a symplectic resolution M̃n which is deformation 

equivalent to the irreducible holomorphic symplectic manifold constructed by O’Grady 

in [54]. Then by Proposition 3.7(4) the blow-up M̃ is the limit of the smooth irreducible 

holomorphic symplectic varieties M̃n.

By the same argument used in [12, version 1, page 125], there is a non-degenerate 

quadratic form q defined over H2(M̃, Z), which is the Beauville–Bogomolov–Fujiki form. 

By [55, Theorem 1.14], there is a bimeromorphic map f : M̃ ��� M̃ ′′, where M̃ ′′ is 

a projective irreducible holomorphic symplectic manifold. Moreover, the bimeromor-

phic map f induces an isometry H2(M̃, Z) ∼= H2(M̃ ′′, Z) respecting the Beauville–

Bogomolov–Fujiki forms, arguing as in [22, Section 27.1].

Now denote by l the divisor class on M ′ constructed in [14]. By [14, Theorem 1.1], 

the class l is strictly nef, i.e. l · C > 0 for every curve C ⊂ M ′. On the other hand, if l̃ is 

the pullback via the blow-up σ of l, then q(l̃) > 0. Indeed, the same statement is true for 

the desingularized moduli spaces of semistable objects on K3 surfaces, and the divisor 

class l behaves well with respect to deformations by [12, Theorem 21.25].

Let l̃′′ be the line bundle of M̃ ′′ such that l̃ = f∗ l̃′′; note that q(l̃′′) = q(l̃) > 0. By 

[27, Corollary 3.10] [28], l̃′′ is big. Since f is an isomorphism out of codimension 2, it 

follows l̃ is big too. Since M̃ has trivial canonical bundle, the Base Point Free Theorem 

(see [34], or [4] for algebraic spaces) implies that ml̃ is globally generated for a certain 

integer m � 0. Since by Theorem 3.4, the moduli space M has rational singularities, we 

deduce that also ml is globally generated. Together with the fact that ml is strictly nef, 

we conclude that ml is ample. This implies the projectivity of M ′, and then of M̃ .

Finally note that since M ′ is normal and projective, we can apply the same argument 

in [33, Theorem 4.4] to deduce that M ′ = M , namely that M is irreducible, as explained 

in Lemma 3.8 below. The deformation type of M̃ is obtained by degeneration to the loci 

of cubic fourfolds with associated K3 surface. This ends the proof of Theorem 3.1.

Lemma 3.8. The moduli space M and its symplectic resolution M̃ are irreducible.

Proof. Since M is normal, we have that M is a finite disjoint union of normal irreducible 

components. The singular locus of M is Sym2(Mτ (v0)) which is connected, so it is 

contained in only one component of M which we denote by M ′. The symplectic resolution 
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M̃ is then a finite disjoint union of irreducible components where one is the blowup M̃ ′

of M ′ in Sym2(Mτ (v0)).

Assume that M ′ has a universal family U ; let Ũ be the pullback of U to M̃ ′. Assume 

there exists a point in M̃ which is not in M̃ ′. Note that this point determines the (S-

equivalence) class of a τ -stable object G. Fix a τ -stable object F ∈ M ′ which defines 

a point of M̃ ′. Consider the projections p : M̃ ′ × Y → M̃ ′ and q : M̃ ′ × Y → Y . We 

consider the following objects of Db(M̃ ′): p∗ Hom(q∗F, Ũ) and p∗ Hom(q∗G, Ũ). Arguing 

as in the proof of [33, Theorem 4.1, item 3] (see also [13, Proposition A.7]), since M̃ ′ and 

Y are smooth and projective, it is possible to show that p∗ Hom(q∗G, Ũ)[−1] is a locally 

free sheaf on M̃ ′, while p∗ Hom(q∗F, Ũ) is quasi-isomorphic to a complex of locally free 

sheaves on M̃ ′ supported in the degrees 0, 1, 2. On the other hand, the numerical classes 

of F and G are equal, then by Grothendieck-Riemann-Roch the same is true for the 

relative objects p∗ Hom(q∗F, Ũ) and p∗ Hom(q∗G, Ũ). This leads to a contradiction with 

the previous computation as explained in [33]. We deduce that M̃ is irreducible and so 

is M .

In general, we only have the existence of a quasi-universal family. In this case, it is 

enough to use the construction in [33, Lemma 4.2] and argue as before to conclude the 

proof of the statement. �

4. Stable objects in the moduli space Mσ(2λ1 + 2λ2)

In this section, we introduce the objects which form an open subset of Mσ(2λ1 +2λ2). 

After recalling the definition of instanton sheaves on a smooth cubic threefold from [21], 

we compute the projection of the push-forward of the stable instanton sheaves to Ku(Y ).

Remark 4.1. Comparing with σ-stable objects, strictly semistable objects are easier to 

describe. Note that we may vary the stability condition σ to σ0 in Stab†(Ku(Y )) such 

that

(a) Ms
σ(2λ1 + 2λ2) = Ms

σ0
(2λ1 + 2λ2) and Ms

σ(λ1 + λ2) = Ms
σ0

(λ1 + λ2);

(b) σ0 is generic with respect to 2λ1 + 2λ2.

By condition (b), as the character λ1 + λ2 is primitive, the Jordan–Hölder factors of 

strictly σ0-semistable objects are all with character λ1 + λ2. By [45, Theorem 1.1], such 

a factor is always of the form

P� := pr(O�[−1]) = Cone(I�[−1]
ev
−→ OY (−H)[1]), (4.1)

where � is a line in Y ⊂ P
5, I� denotes the ideal sheaf of �. Let F (Y ) be the Fano 

variety of lines on Y ; then the strictly semistable locus in Mσ0
(2λ1 + 2λ2) is isomorphic 

to Sym2F (Y ).
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4.1. Moduli space of semistable instanton sheaves on a smooth cubic threefold

Recall the definition of λ1 and λ2 in (3.2). By a direct computation, their Chern 

characters are

ch(λ1) = (3, −H, −
H2

2
,

H3

6
,

3

8
) and ch(λ2) = (−3, 2H, 0, −

H3

3
, 0). (4.2)

In particular, we have

ch(2λ1 + 2λ2) = (0, 2H, −H2, −
H3

3
,

3

4
). (4.3)

On the other hand, in [21] Druel studies the moduli space of semistable sheaves F on 

a smooth cubic threefold X with Chern classes (note that these are the classes on the 

threefold X)

rk(F ) = 2, c1(F ) = 0, c2(F ) =
2H2

X

3
and c3(F ) = 0.

We follow the definition in [44,39], and call such sheaves rank 2 instanton sheaves on 

cubic threefolds. Let X = H ∩ Y be a smooth cubic threefold and denote by ι : X → Y

the closed embedding. For such an instanton sheaf F , by a direct computation, we have

ch(ι∗F ) = ch(2λ1 + 2λ2).

We summarize the results about rank 2 instanton sheaves in [11,21] as follows.

Remark 4.2. Let X be a smooth cubic threefold. The moduli space Minst of rank 2

instanton sheaves on X consists of the following objects, see [21, Theorem 3.5].

(i) FΓ: For every stable rank 2 instanton bundle F , the zero locus of a non-zero section 

of F (H) is a non-degenerate elliptic quintic curve Γ. Recall that a quintic elliptic 

curve is a locally complete intersection quintic curve with trivial canonical bundle 

and h0(OΓ) = 1, and the curve is called non-degenerate if it spans P 4. Conversely, 

for a generic section, the curve Γ is smooth.

For every non-degenerate quintic elliptic curve Γ, one can produce the vector bundle 

FΓ by the Serre construction. For a more categorical description,

FΓ := Cone
(

IΓ(H)[−1]
ev
−→ OX(−H)

)
. (4.4)

All these stable bundles form a dense affine open subset M s
inst in Minst, see [11, 

Corollary 6.6].
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(ii) FC : Stable non-locally-free rank 2 instanton sheaves are one-to-one corresponding 

to smooth conic curves C. For each smooth conic C, one can define a stable sheaf 

FC as the kernel of

OX ⊗ Hom(OX , θC(H))
ev
−→ θC(H). (4.5)

Here we write θC for the theta-characteristic of C so that θC(H) ∼= OP 1(1) is a 

degree 1 line bundle on C.

The locus A in Minst that parametrizes these sheaves is of dimension 4.

(iii) I�1
⊕ I�2

: Every strictly semistable rank 2 instanton sheaves is S-equivalent to this 

direct sum. Here �1 and �2 are lines (possibly the same) on X.

The locus B in Minst that parametrizes these sheaves is isomorphic to Sym2F (X), 

where F (X) stands for the Fano surface of lines on X.

The following properties of Minst are summarized from [21, Section 4] and [11, Section 

6]. Let J2(X) be the translate of the intermediate Jacobian which parametrizes 1-cycles 

of degree 2 on X. Consider the morphism

c2 : Minst → J2(X) : F �→ c̃2(F ), (4.6)

where c̃2(F ) is the Abel–Jacobi invariant of c2(F ) and where c2(F ) is the second Chern 

class in the Chow group of 1-cycle Y .

(1) The moduli space Minst is smooth and connected. The morphism c2 induces an 

isomorphism of M s
inst onto its image in J2(X).

(2) The morphism c2 contracts the locus A to Fconic(X) ⊂ J2(X), where Fconic(X) is 

the image of the variety of conics and is isomorphic to F (X). In particular, the 

morphism c2 is isomorphic to the blowing up of J2(X) along Fconic(X).

(3) The morphism c2 maps B onto an ample divisor which we denote by DF +F in J2(X).

We will make use of these further details on Minst in Section 6.

4.2. Formulas of EΓ and EC

The classification of semistable rank 2 instanton sheaves summarized in the pre-

vious section inspires us the construction of some objects in Ku(Y ) with character 

2λ1 + 2λ2. Recall the definition of the projection functor pr = ROY (−H)ROY (−2H)LOY
=

LOY
ROY (−H)ROY (−2H) as in (2.5).

Definition 4.3. Let Y be a smooth cubic fourfold. Let Γ be a quintic elliptic curve on Y . 

We define the object EΓ as:

EΓ := pr(IΓ(H)). (4.7)
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Let C be a smooth conic curve on Y . We define the object EC as:

EC := pr(θC(H))[−1]. (4.8)

We will need a more explicit expression of EC , as computed in the following lemma.

Lemma 4.4. The object EC can be written as

Cone
(

LOY
(θC(H))[−2]

ev
−→ OY (−H)[1] ⊗ (Hom(LOY

(θC(H)), OY (−H)[3]))∗
)

. (4.9)

Proof. Note that

HomDb(Y )(OY , θC(H)[i]) = HomOC
(OC , θC(H)[i]) =

{
C

2, when i = 0;

0, when i �= 0.
(4.10)

In particular, the object LOY
(θC(H))[−1] is a coherent sheaf on Y . Note that

θC(H), OY ∈ OY (H)⊥ = ⊥OY (−2H),

therefore the object LOY
(θC(H)) is also in ⊥OY (−2H), in other words,

ROY (−2H)LOY
(θC(H)) = LOY

(θC(H)).

Since OY ∈ ⊥OY (−H), by Serre duality we have

HomDb(Y )(LOY
(θC(H)), OY (−H)[i]) ∼= HomDb(Y )(θC(H), OY (−H)[i]) (4.11)

∼=(HomDb(Y )(OY (−H), θC(−2H)[4 − i]))∗ =

{
C

2, when i = 3;

0, when i �= 3.
(4.12)

By Definition 2.7, the formula (4.9) for EC holds. �

Proposition 4.5. Let Y be a smooth cubic fourfold and X be a smooth hyperplane section 

of Y and ι : X → Y be the embedding morphism. We have the following statements for 

objects of the form EC and EΓ.

(1) If C is a smooth conic contained in X, then

EC
∼= pr(ι∗FC),

where FC is defined in (4.5).
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(2) If Γ is a non-degenerate quintic elliptic curve contained in X, then EΓ
∼= ι∗FΓ which 

is defined in (4.4). In particular, the object EΓ sits in the short exact sequence in 

Coh(Y ):

0 → OX(−H) → EΓ → IΓ/X(H) → 0. (4.13)

(3) Let � be a line on X; then P�
∼= pr(I�/X).

(4) Both EΓ and EC are in Ku(Y ) with character 2λ1 + 2λ2.

Remark 4.6. Note that the objects EΓ are exactly i∗E in P (Y ) as that considered in [35, 

Theorem 7.3].

Proof of Proposition 4.5. (1). When C is contained in a smooth cubic threefold X, 

note that FC is stable on X, so we have Hom(OY , ι∗FC) = 0. Note that ι∗FC =

Cone(ι∗O⊕2
X → θC(H))[−1] and Hom(OY , ι∗OX [i]) = 0 when i �= 0. Together with 

(4.10), this implies that ι∗FC ∈ O⊥
Y . Since both OC , OX ∈ OY (H)⊥, we have

pr(ι∗FC) = ROY (−H)(ι∗FC).

By Serre duality

HomDb(Y )(ι∗OX , OY (−H)[i]) = HomOX
(OX , OX(−2H)[4 − i])

=

{
C, when i = 1;

0, when i �= 1.

(4.14)

The unique extension gives the obvious triangle ι∗OX → OY (−H)[1] → OY [1] 
+
−→. 

Therefore, we have the natural commutative diagram of distinguished triangles:

ι∗O⊕2
X [−1]

ev

OY (−H)⊕2 O⊕2
Y

ev

+

θC(H)[−1] 0 θC(H)
+

ι∗FC
ev

OY (−H)[1]⊕2 LOY
(θC(H))

+
.

The morphism ev at the bottom line is ι∗FC → OY (−H)[1] ⊗(Hom(ι∗FC , OY (−H)[1]))∗. 

By (4.12) and (4.14), the object ROY (−H)(ι∗FC) is

Cone
(

ι∗FC
ev
−→ OY (−H)⊕2[1]

⊕
OY (−H)[2] ⊗ (Hom(LOY

(θC(H)), OY (−H)[2]))∗
)

× [−1],
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which is isomorphic to the object in (4.9).

(2). Consider the short exact sequence

0 → IΓ(H) → OY (H) → OΓ(H) → 0.

As h1(OΓ(H)) = h0(OΓ(−H)) = 0 and χ(OΓ(mH)) = 5m as Γ is a non-degenerate 

quintic elliptic curve, we have h0(OΓ(H)) = 5. Note that h0(OY (H)) = 6 and the 

induced map

H0(OY (H)) → H0(OΓ(H))

is surjective, since the linear span of Γ is a P 4. We conclude that

LOY
(IΓ(H)) = Cone

(
OY

ev
−→ IΓ/Y (H)

)
= IΓ/X(H).

Consider on the category O⊥
Y the following semiorthogonal decomposition with two com-

ponents:

〈〈OY (−2H), OY (−H)〉, Ku(Y )〉. (4.15)

Consider the expression of IΓ/X(H) in Definition 2.5 (b):

0 = F0 → F1 = ι∗FΓ
ev
−→ F2 = IΓ/X(H). (4.16)

Here Cone(F1 → F2) is OX(−H)[1] by (4.4). Note that

OX(−H)[1] = Cone(OY (−2H) → OY (−H))[1] ∈ 〈OY (−2H), OY (−H)〉.

By [39, Lemma 3.1],

HomOY
(OY (jH), ι∗FΓ[i]) = HomOX

(OX(jH), FΓ[i]) = 0 (4.17)

for j = 0, 1, 2 and all i ∈ Z. Therefore, ι∗FΓ ∈ Ku(Y ). By Remark 2.8, the functor 

prKu(Y ) with respect to (4.15) maps LOY
(IΓ(H)) to ι∗FΓ.

(3). Since I�/X ∈ 〈OY , OY (H)〉⊥, we have pr(I�/X) = ROY (−H)(I�/X). By the same 

argument as that for the conic case, the statement holds.

(4). By (4.10) and (4.9), the character of EC is

ch(EC) = ch(LOY
(θC(H))[−1]) − 2 ch(OY (−H))

= 2 ch(OY ) − ch(θC(H)) − 2 ch(OY (−H)) = ch(2λ1 + 2λ2).

The Chern character of EΓ is ch(ι∗FΓ) which is the same as ch(2λ1 + 2λ2). �
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5. Stability of EΓ and EC

In this technical section, we prove Theorem 5.19, namely, Theorem 1.2 in the intro-

duction. In particular, we study the essential image of the objects EΓ and EC defined 

in Section 4 via the equivalence between Ku(Y ) and Ku(P 3, B0) of Proposition 2.10. We 

show that these objects are stable with respect to tilt-stability σα,−1 on Db(P 3, B0) by 

a wall-crossing argument.

For this purpose, we will inevitably work with details about the category Db(P 3, B0)

and we will prove some additional properties used for the computation, which are also of 

independent interest. This is the only section where Db(P 3, B0) is involved. For readers 

not familiar with this setting, there is no harm to skip the whole section, since the only 

result that we will use in the rest of the paper is Theorem 5.19.

5.1. More on the equivalence between Ku(Y ) and Ku(P 3, B0)

Recall that the construction of the stability condition σ on Ku(Y ) is via pull-back 

of the stability condition induced on Ku(P 3, B0). In particular, in order to prove the 

stability of an object E in Ku(Y ), we need to show that Ψ(ρ∗E) in Ku(P 3, B0) is stable. 

In this section, we recall some properties of the functor Ψ which we will use in the next.

Recall from (2.6) and Remark 2.11 that ρ : Ỹ → Y is the blow-up morphism. The 

functor Ψ is defined in [13, Section 7, page 32] by

Ψ(−) = π∗(− ⊗ E [1]) : Db(Ỹ ) → Db(P 3, B0). (5.1)

Here E is the sheaf of right π∗B0-modules on Ỹ defined by the short exact sequence of 

right q∗B0-modules

0 → OP
P3 (F)/P 3(−2) ⊗ q∗B1

δ−1,2

−−−→ OP
P3 (F)/P 3(−1) ⊗ q∗B2 → α∗E → 0, (5.2)

where the morphism δ−1,2 is defined in [37, Section 3.1 and 3.4]. We would not use 

further details about δ−1,2 here, but the following fact will be important for us.

Lemma 5.1 ([37, Lemma 4.7]). The OỸ -coherent sheaf Forg(E) is locally free with rank 

2.

By [37, Lemma 4.12] and [13, Proposition 7.7], the image of some objects under Ψ ◦ρ∗

is as follows:

Ψ(ρ∗OY ) = 0; Ψ(ρ∗OY (−H)) = B−1; Ψ(ρ∗OY (H)) = B2[1]. (5.3)

By [37, Lemma 4.10], the functor Ψ has a left adjoint functor

Φ(−) = π∗(−) ⊗π∗B0
E ′, (5.4)
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where E ′ is a left π∗B0-module on Ỹ defined by the following short exact sequence of left 

q∗B0-modules:

0 → OP
P3 (F)/P 3(−2) ⊗ q∗B0

δ′
−1,1

−−−→ OP
P3 (F)/P 3(−1) ⊗ q∗B1 → α∗E ′ → 0. (5.5)

Remark 5.2. The rank of torsion-free B0-modules on P
3 is always a multiple of 4 by 

[13, Remark 8.4]. The functor Ψρ∗ maps the characters λ1 and λ2 to the twisted Chern 

characters

ch−1
B0,≤2(Ψρ∗(λ1)) = (4, 3, −

7

8
) and ch−1

B0,≤2(Ψρ∗(λ2)) = (−8, 0,
7

4
) (5.6)

respectively, as computed in [13, Proof of Proposition 9.10]. In particular, for an object 

E in Ku(Y ) with character 2λ1 + 2λ2, the twisted Chern character of Ψρ∗(E) is

ch−1
B0,≤2(Ψρ∗(E)) = (−8, 6,

7

4
). (5.7)

5.2. Expression of Ψρ∗(EΓ)

Let Γ be a non-degenerate smooth elliptic quintic contained in a smooth cubic 

threefold X (which is unique). By the formula (4.13), the object Ψρ∗(EΓ) sits in the 

distinguished triangle

Ψρ∗(OX(−H)) → Ψρ∗(EΓ) → Ψρ∗(IΓ/X(H))
+
−→ . (5.8)

Recall that the morphism ρ is the blow-up along a line L on Y , and by Proposition 2.17, 

the choice of L does not affect the stability of an object in Ku(Y ). As a consequence, 

we can choose L such that Ψρ∗(EΓ) has a more explicit and nicer description. More 

precisely, given Γ and X, we may choose the line L not contained in a plane on Y such 

that:

Condition 5.3.

(a) The line L intersects X at a point P ;

(b) the point P is not on the secant variety of Γ (since X is smooth, the segment variety 

of Γ does not contain X);

(c) the point P is only on finitely many lines on X.

By condition (a), the restriction of ρ to ρ−1(X) is the blow-up X̃ of X in the point P . 

By condition (c), a plane containing L intersects with X at either three points (counting 

multiplicity) including P or a line through P . A fiber of π|X̃ : X̃ → P
3 is either two 

points or a line.
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By condition (b), the image πρ−1(Γ) in P 3 is isomorphic to Γ. By definition (5.1) and 

Lemma 5.1,

Ψρ∗(OΓ(H)) = TΓ[1] (5.9)

for some torsion sheaf TΓ supported on πρ−1(Γ). By (5.3), we have

Ψρ∗(OX(H)) = Ψρ∗(OY (H)) = B2[1]. (5.10)

We deduce the distinguished triangle for one object in (5.8):

TΓ → Ψρ∗(IΓ/X(H)) → B2[1]
+
−→ . (5.11)

In order to compute the other factor Ψρ∗(OX(−H)) in (5.8), we consider the sequence

0 → OX(−H) → OX → OS → 0,

where S is a smooth cubic surface not containing P . The object

Ψρ∗OS = TS [1],

where TS is a torsion B0-module supported on πρ−1(S). On the other hand, by (5.3), we 

have

Ψρ∗(OX) = Ψρ∗(OY (−H)[1]) = B−1[1].

In conclusion, we have the distinguished triangle

TS → Ψρ∗(OX(−H)) → B−1[1]
+
−→ . (5.12)

Putting everything together, we observe the following property of Ψρ∗(EΓ).

Lemma 5.4. Let Γ be a non-degenerate smooth elliptic quintic spanning a smooth cubic 

threefold X. Then

Hom(Bi[1], Ψρ∗(EΓ)) = 0 (5.13)

for every i ≥ 1.

Proof. By definition, the object EΓ is in Ku(Y ), so the object Ψρ∗(EΓ)) is in Ku(P 3, B0). 

Therefore (5.13) holds for i = 1, 2, 3.

When i ≥ 4, we may apply Hom(Bi[1], −) to the triangles (5.8), (5.11) and (5.12). 

The vanishing holds for every factor, therefore (5.13) holds. �
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5.3. Potential destabilizing objects for Ψ(ρ∗EΓ) and Ψ(ρ∗EC) in Coh−1(P 3, B0)

In this section, we prove some lemmas which will be useful to characterize the potential 

destabilizing objects of Ψ(ρ∗EΓ) and Ψ(ρ∗EC). In order to do this, we need the following 

natural definition.

Definition 5.5. Let F be an object in Coh(P 3, B0), we define

F ∗ := HomO
P3

(F, OP 3)

as the dual of F . Note that OP 3 is the center of the algebra B0. The dual sheaf F ∗

becomes a left B0-module. The double dual F ∗∗ is a right B0-module. When F is a 

torsion-free OP 3-module, its double dual F ∗∗ is reflexive as a OP 3-module and we have 

the natural inclusion

F ↪→ F ∗∗ → Fs

as a right B0-module. Here Fs is a torsion B0-module and dim supp(Fs) ≤ 1.

Recall that the tilt-stability condition σα,β is defined in Proposition 2.13.

Lemma 5.6 ([45, Lemma 3.2]). Let E be a σα0,β0
-semistable object in Cohβ0(P 3, B0) for 

some α0 > 0 and β0 ∈ R. Assume that ΔB0
(E) = 0 and rk(E) < 0. Then

E = B⊕n
i [1] for some i ∈ Z and n ∈ N.

Lemma 5.7. Let F ∈ Coh(P 3, B0) be reflexive as an OP 3-module with rank 4, then F ∼= Bi

for some i ∈ Z.

Proof. As F is a reflexive OP 3-module, we may choose a general hyperplane section 

P
2 ∼= H ⊂ P

3 such that the restricted sheaf F |H is a B0|H -module and locally free as a 

OH -module. Note that F |H is of rank 4 and torsion free. By [15, Proposition 2.12], the 

rank of a B0|H -module is multiple of 4. It follows that F |H is a slope stable B0|H -module 

in Coh(H, B0|H). By [15, Proposition 2.12], the numerical character

ch(F |H) = ch(Bi|H) + (0, 0, −m)

for some i, m ∈ Z. By [44, Remark 2.2 and Lemma 2.4], we have

1 ≥ χB0|H
(F |H , F |H) = χ(Bi|H , Bi|H) − 2m = 1 − 2m.

Hence, m ≥ 0. We denote by M the moduli space of semistable B0|H -modules with 

numerical class [F |H ]. By the same argument as that for [44, Theorem 2.12], this moduli 
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space is irreducible and smooth of dimension 2m. A generic point in M stands for the 

object Ker(Bi � OZ), where Z is a 0-dimensional subscheme with length m on H. By 

the semi-continuity property, we have

HomB0|H
(F |H , Bi|H) �= 0.

As F |H is locally free with the smallest possible rank as a B0-module, we have F |H ∼=

Bi|H . In particular, we have ch(F |H) = ch(Bi|H), which implies

ch−1
B0,≤2(F |H) = ch−1

B0,≤2(Bi) =⇒ ΔB0
(F ) = 0. (5.14)

For any T ∈ Coh(P 3, B0) such that dim supp(T ) ≤ 1, we have HomB0
(T, F [1]) = 0 as 

otherwise, by [15, Lemma 2.15] (same statement holds for (P 3, B0)-algebra), F is strictly 

contained in another torsion-free B0-module F ′ with the same rank and degree. This 

contradicts the assumption that F is a reflexive OP 3-module.

The object F [1] is therefore σα,β-stable for α � 0 and β > μslope(Bi). By (5.14) and 

Lemma 5.6, we have F ∼= Bi. �

Notation: For an object F in Db(P 3, B0), we denote Hi(F ) := Hi
Coh(P 3,B0)(F ) for i ∈ Z.

Corollary 5.8. Let F be an object in Coh−1(P 3, B0) with rank −4 such that F is σα,−1-

stable for α � 0. Then H−1(F ) is Bi, and H0(F ) is either 0 or a torsion sheaf such that 

dim supp(H0(F )) = 1.

Proof. By [16, Lemma 2.7(c)], the sheaf H−1(F ) is torsion-free of rank 4, and the sheaf 

H0(F ) is either 0 or torsion supported in dimension ≤ 1. Consider the double dual of 

H−1(F ):

0 → H−1(F ) → (H−1(F ))∗∗ → Fs → 0. (5.15)

If Fs is non-zero, then we have μα,−1(Fs) = +∞ and the injective map

0 → HomB0
(Fs, H−1(F )[1]) → HomB0

(Fs, F ).

As (5.15) is non-split, we have HomB0
(Fs, H−1(F )[1]) �= 0. In particular, HomB0

(Fs, F ) �=

0. This contradicts the stability of F . Therefore, the sheaf H−1(F ) is reflexive as an OP 3-

module of rank 4. By Lemma 5.7, H−1(F ) ∼= Bi for some i ≤ 0.

If H0(F ) is non-zero, we must have HomB0
(H0(F ), H−1(F )[2]) �= 0, since otherwise 

F = H0(F ) ⊕ H−1(F )[1]. Note that H−1(F ) = Bi is locally free, so the dimension of the 

support of H0(F ) must be 1. �
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5.4. Tilt-stability of Ψ(ρ∗EΓ)

We are now ready to show the stability of Ψ(ρ∗EΓ) with respect to σα,−1 for α large 

enough. The following basic commutative algebra lemma will be useful.

Lemma 5.9. Let V be a smooth proper variety and U be a smooth proper subvariety of 

dimension n. Denote the embedding map by ι : U → V . Let G be a locally free sheaf on 

U , and F be a coherent sheaf on V such that dim(supp(F) ∩ U) = l. Then we have

Exti
OV

(F , ι∗G) = 0

for i < n − l.

Proof. Let m be the dimension of V , by Serre duality, we need to show that

Exti
OV

(ι∗G, F) = 0

for i > m − n + l and every F as in the statement. By the local to global spectral 

sequence, we have

Ep,q
2 = Hp(Extq

OV
(ι∗G, F)) ⇒ Extp+q

OV
(ι∗G, F).

Since dim(supp(F) ∩ U) = l, we have Ep,q
2 = 0 when p > l.

For any closed point x ∈ U , since G is locally free on U , we have ι∗Gx
∼= O⊕r

U,x as an 

OV,x-module. Since U is smooth in V , the quotient module OU,x admits a free resolution 

of m − n + 1 terms. Therefore,

Extq
OV

(ι∗G, F)x
∼= Extq

OV,x
(ι∗Gx, Fx) = 0,

when q ≥ m − n + 1.

As a consequence, the term Ep,q
2 = 0 when p + q > m − n + l, so we get the Ext 

vanishing as in the statement. �

Applying Lemma 5.9, we obtain the following result which allows to rule out some 

destabilizing objects for Ψρ∗EΓ.

Lemma 5.10. Let Γ be a non-degenerate smooth elliptic quintic spanning a smooth cubic 

threefold X. For any F ∈ Coh(P 3, B0) such that dim supp(F ) ≤ 1, we have

HomB0
(F, Ψρ∗EΓ) = 0.

Proof. By using the property of adjoint functors and Serre duality, we have

HomB0
(F, Ψρ∗EΓ) ∼= (HomB0

(Ψρ∗EΓ, F ⊗B0
B−3[3]))∗ (5.16)
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∼=(HomOỸ
(ρ∗EΓ, Φ(F ⊗B0

B−3)[3])))∗ (5.17)

∼= HomOỸ
(Φ(F ⊗B0

B−3), ρ∗EΓ ⊗ KỸ [1]). (5.18)

Recall from (5.4) that Φ is the right adjoint functor of Ψ. By Condition 5.3(c) on the 

choice of P , the morphism π : X̃ → P
3 is generically finite and only contracts finitely 

many lines. Thus we have

dim(supp(Φ(F ⊗B0
B−3)) ∩ X̃) ≤ 1.

By Lemma 5.9, we conclude that the HomOỸ
in the formula (5.18) is 0. �

Proposition 5.11. Let Γ be a non-degenerate smooth elliptic quintic spanning a smooth 

cubic threefold. Then the object Ψρ∗(EΓ) is in Coh−1(P 3, B0) and σα,−1-stable for α � 0.

Proof. Step 1: By Condition 5.3 on the choice of P , the projection map from π|X̃ :

X̃ → P
3 is generically finite except contracting (the transverse image of) finitely many 

lines that across P on X. Note that ρ∗EΓ is locally free, hence by definition of Ψ

in (5.1) and Lemma 5.1, the object Ψ(ρ∗EΓ) is contained in the extension closure of 

{T or≤0, Coh(P 3, B0)[1]}, where T or≤0 consists of torsion B0-modules supported on a 

0-dimensional locus. In particular, the object Ψρ∗(EΓ) sits in the distinguished triangle

G[1] → Ψ(ρ∗EΓ) → T
+
−→, (5.19)

where G ∈ Coh(P 3, B0) and T is a torsion B0-modules supported on a 0-dimensional 

locus.

Step 2: To show that Ψρ∗(EΓ) ∈ Coh−1(P 3, B0), it is enough to show that for any 

torsion-free B0-module D with rank 4 and slope μslope(D) > −1, the vanishing

HomB0
(D, G) = 0

holds. Suppose HomB0
(D, G) �= 0, then HomB0

(D[1], Ψ(ρ∗EΓ)) �= 0. Taking the double 

dual of D as in Definition 5.5, we have the distinguished triangle

Dtor → D[1] → D∗∗[1]
+
−→,

where Dtor is a torsion B0-module supported at a locus of dimension at most 1. By 

Lemma 5.10, we have HomB0
(D∗∗[1], Ψ(ρ∗EΓ)) �= 0. By Lemma 5.7 and the fact that 

μslope(B0) = −5
4 , we may assume

D∗∗ ∼= Bi for some i ≥ 1.

By Lemma 5.4, this can never happen. As a summary, the object Ψ(ρ∗EΓ) is in 

Coh−1(P 3, B0).
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Step 3: To show that Ψ(ρ∗EΓ) is σα,−1-stable for α � 0, we need to rule out the 

possibility that

(i) Ψ(ρ∗EΓ) has a sub-torsion object which is a torsion B0-module with support of 

dimension at most 1;

(ii) Ψ(ρ∗EΓ) has a quotient object F in Coh−1(P 3, B0) such that F is a σ+∞,−1-stable 

with rank −4 and μα,−1(F ) ≤ μα,−1(Ψ(ρ∗EΓ)) for α � 0.

Indeed, a quotient object F of Ψ(ρ∗EΓ) with rk(F ) ≤ −8 would not destabilize Ψ(ρ∗EΓ), 

as for α � 0 the slope converges to − rk
ch−1

1

. Case (i) cannot happen by Lemma 5.10. As 

for Case (ii), let K be the kernel of Ψ(ρ∗EΓ) � F in Coh−1(P 3, B0). Consider the exact 

sequence in Coh(P 3, B0):

0 → H−1(K) → H−1(Ψ(ρ∗EΓ)) → H−1(F ) → H0(K) → H0(Ψ(ρ∗EΓ)) → H0(F ) → 0.

Note that the term H0(Ψ(ρ∗EΓ)) is supported on a 0-dimensional locus or is zero. By 

Corollary 5.8, H0(F ) = 0 and the object

F = H−1(F )[1] = Bi[1]

for some i ≤ 0. By Definition 2.2, Proposition 2.13 and Remark 5.2, we have

μα,−1(B0[1]) = 2α2 −
1

8
>

16α2 + 7

24
= μα,−1(Ψ(ρ∗EΓ))

for α � 0. Therefore B0[1] does not codestabilize Ψ(ρ∗EΓ). We may assume F = Bi for 

some i ≤ −1.

Note that K ∈ Coh−1(P 3, B0), so we have ch−1
B0,1(K) ≥ 0 which implies ch−1

B0,1(F ) ≤ 6. 

Therefore, we may assume F = Bi for some i ≥ −2.

In either case of i = −1, −2, by Serre duality and the fact that Ψ(ρ∗EΓ) is an object 

in Ku(P 3, B0), we have

HomB0
(Ψ(ρ∗EΓ), Bi[1]) ∼= (HomB0

(Bi+3, Ψ(ρ∗EΓ)[2]))
∗

= 0.

Therefore, Case (ii) can neither happen. We conclude that Ψ(ρ∗EΓ) is σα,−1-stable for 

α � 0. �

5.5. Tilt-stability of Ψρ∗(EC)

Let C be a smooth conic curve on Y . Similarly to the case of non-degenerate elliptic 

quintics, we now study the σα,−1-stability of the object Ψρ∗(EC) for α large enough. We 

choose the blown-up line L for ρ : Ỹ → Y such that:
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Condition 5.12.

(a) The line L does not intersect the projective plane spanned by C;

(b) the plane spanned by L and a generic point on C intersects Y at the union of L and 

a smooth conic curve.

By Lemma 4.4, the object Ψρ∗(EC) sits in the distinguished triangle:

Ψρ∗ (
OY (−H)⊕2[1]

)
→ Ψρ∗(EC) → Ψρ∗(LOY

(θC(H))[−1]). (5.20)

By (5.3), the triangle can be simplified as

B⊕2
−1[1] → Ψρ∗(EC) → TC , (5.21)

where

TC := Ψρ∗(LOY
(θC(H))[−1]) = Ψρ∗(θC(H)[−1]).

The second equality is by noticing that Ψρ∗(OY ) = 0. By the choice of L as in Condition 

5.12(a), the image C ′ := π(ρ−1(C)) is a smooth conic in P 3. By the definition of Ψ in 

(5.1) and Lemma 5.1, the object TC is a torsion B0-module supported on C ′.

Lemma 5.13. Adopt the notation as above.

(1) As a OP 3-coherent sheaf, Forg(TC) ∼= O⊕2
C′ .

(2) A torsion B0-module with C ′ as its support has rank at least 2.

In particular, the sheaf TC is indecomposable as a B0-module.

Proof. (1). Note that Ψρ∗(EC) is an object in Ku(P 3, B0), so we have

0 = HomB0
(B1, Ψρ∗(EC)[i]) = HomB0

(B0, TC ⊗B0
B−1[i])

for every i ∈ Z. Denote the embedding map by ι : C ′ → P
3. By the definition of Ψ in 

(5.1) and Lemma 5.1, the sheaf Forg(TC) = ι∗(FC′) for some rank 2 locally free sheaf 

FC′ on C ′. By (2.9), we have

0 = HomO
P3

(OP 3 , Forg(TC ⊗B0
B−1)[i]) = HomOC′ (OC′ , FC′ ⊗ θC′ [i])

for every i ∈ Z. This can only happen when FC′ ∼= O⊕2
C′ .

(2). By the choice of L as in Condition 5.12(b), the B0-algebra structure as in (2.8) on 

a generic point on C is isomorphic to Mat2×2(C), the 2 by 2 complex matrices, as a C-

algebra. Since a Mat2×2(C)-module is at least of dimension 2 as a C-vector space, there is 
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no torsion B0-module supported on C ′ with rank 1. In particular, TC is indecomposable 

as a B0-module. �

Lemma 5.14. If F ∈ Coh(P 3, B0) is such that dim supp(F ) ≤ m, then HomB0
(F, Bi[j]) =

0, for j ≤ 2 − m and all i ∈ Z.

Proof. By Serre duality and (2.9),

HomB0
(F, Bi[j]) ∼= (HomB0

(B0, F ⊗B0
B−3−i[3 − j]))∗

∼= (HomO
P3

(OP 3 , Forg(F ⊗B0
B−3−i)[3 − j]))∗ = 0

when 3 − j ≥ 1 + m. �

Lemma 5.15. For any F ∈ Coh(P 3, B0) such that dim supp(F ) ≤ 1, we have

HomB0
(F, Ψ(ρ∗EC)) = 0.

Proof. We first show that for any sub-B0-module F of TC , the statement holds. By 

Lemma 5.13, the sheaf F is supported on C ′, locally free with rank 2 as a sheaf on C ′. 

Moreover, any non-zero morphism f : F → TC is injective. Applying HomB0
(−, B⊕2

−1) to 

the short exact sequence

0 → F
f
−→ TC → F ′ → 0, (5.22)

by Lemma 5.14, we have

HomB0
(F ′, B⊕2

−1[2]) = 0 and HomB0
(F, B⊕2

−1[1]) = 0.

Thus the morphism

f ◦ − : HomB0
(TC , B⊕2

−1[2]) → HomB0
(F, B⊕2

−1[2])

is injective. In other words, the composition of ev : TC → B⊕2
−1[2] in (5.21) with any 

non-zero f is a non-zero morphism in HomB0
(F, B⊕2

−1[2]). Therefore, in (5.21), any non-

zero morphism f : F → TC cannot lift to a morphism from F to Ψρ∗(EC). Note that 

HomB0
(F, B−1[1]) = 0 by Lemma 5.14, so the statement holds for any sub-B0-module F

of TC .

As for an arbitrary F with dim supp F ≤ 1, we make induction on its ch2. Let g be a 

morphism in HomB0
(F, Ψ(ρ∗EC)). Applying HomB0

(F, −) to (5.20), we have

.. → HomB0
(F, B−1[1]⊕2) → HomB0

(F, Ψ(ρ∗EC)) → HomB0
(F, TC) → ..

and since HomB0
(F, B−1[1]) = 0, the morphism g is mapped to a morphism g′.
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Suppose g �= 0, then g′ �= 0 and HomB0
(im(g′), Ψ(ρ∗EC)) = 0 as im(g′) is a submodule 

of TC . By induction, HomB0
(ker(g′), Ψ(ρ∗EC)) = 0. Therefore, HomB0

(F, Ψ(ρ∗EC)) = 0, 

which contradicts g �= 0. �

Proposition 5.16. Let C be a smooth conic curve. Then the object Ψρ∗(EC) is in 

Coh−1(P 3, B0) and σα,−1-stable for α � 0.

Proof. By (5.21), the object Ψρ∗(EC) is in Coh−1(P 3, B0). To show that Ψ(ρ∗EC) is 

σα,−1-stable for α � 0, we need to rule out the possibility that

(i) Ψ(ρ∗EC) has a sub-torsion object which is a torsion B0-module with support of 

dimension at most 1;

(ii) Ψ(ρ∗EC) has a quotient object F in Coh−1(P 3, B0) such that F is a σ+∞,−1-stable 

with rank −4 and μα,−1(F ) ≤ μα,−1(Ψ(ρ∗EΓ)) for α � 0.

Case (i) cannot happen by Lemma 5.15. As for Case (ii), let K be the kernel of 

Ψ(ρ∗EC) � F in Coh−1(P 3, B0), then we have the exact sequence in Coh(P 3, B0):

0 → H−1(K) → B⊕2
−1 → H−1(F ) → H0(K) → TC → H0(F ) → 0.

By Corollary 5.8, we may assume H−1(F ) is Bi for some i ≤ 0. Note that B0[1]

has a larger slope than Ψ(ρ∗EΓ) with respect to σα,−1, so we have i ≤ −1. Since 

HomB0
(B⊕2

−1, Bi) = 0 for every i ≤ −2, the sheaf H−1(F ) can only be B−1 as well as 

H−1(K). Hence we have the sequence in Coh(P 3, B0):

0 → H0(K) → TC → H0(F ) → 0.

By Lemma 5.13, the sheaf H0(F ) is either with 0-dimensional support, or supported on 

C ′, locally free of rank 2 as a sheaf on C ′. The second case cannot happen since the 

slope of F would be larger than that of Ψ(ρ∗EC). By Corollary 5.8, H0(F ) = 0. In other 

words, F = B−1[1].

Since Ψ(ρ∗EC) ∈ Ku(P 3, B0), by Serre duality, we have

HomB0
(Ψ(ρ∗EC), F ) ∼= (HomB0

(B2, Ψ(ρ∗EC)[2]))∗ = 0.

Therefore, Case (ii) can neither happen. The object Ψ(ρ∗EC) is σα,−1-stable for α �

0. �

5.6. No actual walls for Ψρ∗(EΓ) and Ψρ∗(EC)

By Propositions 5.11 and 5.16, we have the σα,−1-stability of Ψρ∗(EΓ) (Ψρ∗(EC)) 

for α � 0. In this section, we show that σα,−1-stable objects in Ku(P 3, B0) with this 

character cannot be destabilized when α decreases.
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We first list the character ch−1
B0,≤2 of all possible destabilizing objects with respect to 

the weak stability conditions σα,−1. Recall that the rank of B0-modules on P 3 is always 

a multiple of 4. We can write the characters of potential destabilizing subobjects and 

quotient objects for Ψρ∗(EΓ) and Ψρ∗(EC) as

ch−1
B0,≤2(Ψρ∗(2λ1 + 2λ2)) = (−8, 6,

14

8
) = (4a, b,

c

8
) + (−8 − 4a, 6 − b,

14

8
−

c

8
), (5.23)

where a, b, c ∈ Z. These characters have to satisfy the following conditions:

(a) The two characters have non-negative discriminant ΔB0
by Proposition 2.13.

(b) The two characters should be integral combinations of the characters of ch−1
B0,≤2(Bi)

for i = −1, 0, 1 by restriction to Coh(P 2, B0|P 2) and [15, Proposition 2.12]. In par-

ticular, the set

{(4, 1,
1

8
), (0, 2, 0), (0, 0, 1)} (5.24)

forms a Z-linear basis for all possible characters.

(c) There exists α > 0 such that the two characters have the same slope with respect to 

σα,−1. In particular, both b and 6 −b > 0. Indeed, as the objects are in Coh−1(P 3, B0)

we have b ≥ 0, 6 − b ≥ 0. Then the inequalities are strict since we are assuming the 

objects have the same slope.

(d) Without loss of generality, we may assume that the character (4a, b, c8) is the char-

acter of a destabilizing subobject. The equivalent numerical assumption is

4a

b
>

rk(Ψρ∗(2λ1 + 2λ2))

ch−1
B0,1(Ψρ∗(2λ1 + 2λ2))

= −
4

3
,

as Ψρ∗(EΓ) and Ψρ∗(EC) are σα,−1-stable for α � 0.

Using these conditions, by a standard computation we obtain the following result.

Proposition 5.17. All possible solutions of (5.23) are:

(1) for α =
√

17
4 , a = 0, b = 2, c = 16;

(2) for α =
√

5
4 ,

(i) a = −1, b = 5, c = 15;

(ii) a = 0, b = 4, c = 16;

(iii) a = 0, b = 2, c = 8;

(3) for α = 1
4 , a = 1, b = 3, c = 9.

Proof. We sketch the steps of the computation here. The first step is to rule out the 

‘higher rank’ wall case. Namely, by the non-negativity condition (a), (c) and (d), we 

have:
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• b2 − ac ≥ 0 and (6 − b)2 + ( c
4 − 7

2 )(−8 − 4a) ≥ 0;

• 0 < b < 6;

• 3c − 7b > 0.

Combining these inequalities, one may deduce from a standard computation that −12 ≤

−8 − 4a ≤ 0. Then by condition (b) and (d), the possible pairs (a, b) are (−1, 5), (0, 2), 

(0, 4), (1, 1), (1, 3), and (1, 5). By condition (a) again, one can list all possible triples of 

(a, b, c). �

Proposition 5.18. Let E be a σα0,−1-stable object in Ku(P 3, B0) and Coh−1(P 3, B0) with 

ch−1
B0,≤2(E) = (−8, 6, 14

8 ). Then E is σα,−1-stable for any α ≤ α0.

Proof. Suppose E becomes strictly semistable with respect to σα,−1 for some 0 < α <

α0. By Proposition 5.17, this may happen when α = 1
4 , 

√
5

4 or 
√

17
4 . Let us denote the 

destabilizing sequence in Coh−1(P 3, B0) as follows:

0 → S → E → Q → 0, (5.25)

where S and Q are σα,−1-semistable objects with characters as those in Proposition 5.17.

Step I: We get rid of two cases when the destabilizing object is B⊕a
0 [1].

When α =
√

5
4 , if Case (2.i) or (2.ii) in Proposition 5.17 happens, then the Chern 

character of the quotient object Q is

ch−1
B0,≤2(Q) = (−4, 1, −

1

8
) or (−8, 2, −

1

4
).

By Lemma 5.6, the quotient object Q is either B0[1] or B⊕2
0 [1]. In either case, we would 

have

Hom(B3, E[2]) ∼= (Hom(E, B0[1]))∗ �= 0,

which contradicts the assumption that E ∈ Ku(P 3, B0).

Step II: We show that Hom(Bj , Q[i]) = 0 for i ≥ 1 and j = 1, 2, 3.

Now there are three cases in Proposition 5.17 left. In Case (1) and (3), it is possible 

to show that any σ √
17
4

,−1
-semistable (resp. σ 1

4
,−1) objects with character (0, 2, 2) and 

(−8, 4, −1
4 ) (resp. (4, 3, 98) and (−12, 3, 58)) are σ √

17
4

,−1
-stable (resp. σ 1

4
,−1), using Defini-

tion 2.2 and similar computations as in Proposition 5.17. Both S and Q are σα,−1-stable 

in these two cases. In Case (2.iii), the object S with character (0, 2, 8) is also σ √
5

4
,−1

-

stable. If Q is strictly σ √
5

4
,−1

-semistable, we may reduce to either Case (2.i) or (2.ii). 

Therefore, in any of the remaining cases, we may assume both S and Q are σα,−1-stable.

For each Bj , 1 ≤ j ≤ 3, apply Hom(Bj , −) to the sequence (5.25). Since E ∈

Ku(P 3, B0), we have
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Hom(Bj , S[i + 1]) ∼= Hom(Bj , Q[i]) (5.26)

for all i ∈ Z.

We next show that Hom(Bj , S[i + 1]) = 0 for i ≥ 1 and j ≤ 0. In Case (1) of 

Proposition 5.17, the object S is σ √
17
4

,−1
-stable. Note that the character ch−1

B0,≤2(S) =

(0, 2, 2), by a standard computation on the potential walls, the object S is σα,−1-stable 

for α ∈ (0, 
√

17
4 ]. We may let α1 = 1

4 in this case. In Case (2.iii) of Proposition 5.17, 

as S is σ √
5

4
,−1

-stable, the object S is σα1,−1-stable for some α1 <
√

5
4 . In Case (3) of 

Proposition 5.17, we may let α1 = 1
4 . By the choice of α1 in each case, we always have

μα1,−1(S) =

⎧
⎪⎪⎨
⎪⎪⎩

1 Case (1)
1
2 Case (2.iii)
1
3 Case (3)

>
16α2

1 − 1

8
= μα1,−1(B0[1]) ≥ μα1,−1(Bj [1]) (5.27)

for j ≤ 0. Note that both S and Bj [1] are in Coh−1(P 3, B0) and σα1,−1-stable for j ≤ 0. 

By (5.27) and Serre duality,

Hom(Bj+3, S[i + 1]) ∼= (Hom(S, Bj [2 − i]))∗ = 0 (5.28)

for any j ≤ 0, i ≥ 1. By (5.26), we have Hom(Bj , Q[i]) = 0 for i ≥ 1 and 1 ≤ j ≤ 3.

Step III: We show that Hom(Bj , Q[i]) = 0 for i ≤ −1 and j = 1, 2, 3, or i = 0 and 

j = 2, 3.

As B1, B2, B3 and Q are in the heart Coh−1(P 3, B0), we have Hom(Bj , Q[i]) = 0 for 

any j = 1, 2, 3 and i ≤ −1. Together with Step II, this implies Hom(Bj , Q[i]) may be 

nonzero only when i = 0. In Case (1) of Proposition 5.17, as ch−1
B0,≤2(Q) = (−8, 4, −1

4 ), 

by a standard computation on the potential walls, the object Q is σα1,−1-stable for 

α1 ∈ ( 1
4 , 

√
17
4 ], we may let α1 = 1

2 . In Case (2.iii) of Proposition 5.17, the object Q is 

σ √
5

4
,−1

-stable. Note that ch−1
B0,≤2(Q) = (−8, 4, 34 ), by a standard computation on the 

potential walls, the object Q is σα1,−1-stable for all α1 ∈ (0, 
√

5
4 ], we may let α1 = 1

4 . 

In Case (3) of Proposition 5.17, the object Q is σα1,−1-stable for some α1 < 1
4 . By the 

choice of α1 in each case, we always have

μα1,−1(Q) =

⎧
⎪⎪⎨
⎪⎪⎩

16α2
1−1

16 Case (1)
16α2

1+3
16 Case (2.iii)

48α2
1+5

24 Case (3)

<
−16α2

1 + 9

24
= μα1,−1(B2) ≤ μα1,−1(Bj)

(5.29)

for j ≥ 2. Therefore,

Hom(Bj , Q) = 0 for j ≥ 2. (5.30)
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Step IV: We show that the character of Q or LB1
Q cannot be in Ku(P 3, B0).

Now Hom(B1, Q) is the only possible non-zero space among all Hom(Bj , Q[i]) for 

j = 1, 2, 3, i ∈ Z. Therefore, the object

LB1
Q = Cone(B1 ⊗ Hom(B1, Q) → Q)

is in Ku(P 3, B0). By (2.22) in Definition and Proposition 2.15, the character

ch−1
B0,≤2(LB1

Q) ∈ ch−1
B0,≤2(Ku(P 3, B0)) ⊂ {(a, b, −

7

32
a)|a, b ∈ Z}.

On the other hand, in any case of Proposition 5.17, we have rk(Q) < 0 and 
ch−1

B0,2(Q)

rk(Q) ≥

− 3
32 . Note that ch−1

B0,≤2(B1[1]) = (−4, −1, −1
8 ), so we have

ch−1
B0,2(LB1

Q)

rk(LB1
Q)

=
ch−1

B0,2(Q) + hom(B1, Q) ch−1
B0,2(B1[1])

rk(Q) + hom(B1, Q) rk(B1[1])
≥ −

3

32
> −

7

32
.

We get the contradiction. Therefore, the object E does not become strictly σα,−1-

semistable for any α ≤ α0. �

Theorem 5.19. Let Γ be a non-degenerate quintic elliptic curve spanning a smooth cubic 

threefold on Y . Let C be a smooth conic curve on Y . Let σ be the stability condition on 

Ku(Y ) as in Proposition and Definition 2.15 and Remark 2.18. Then the objects EΓ and 

EC are σ-stable.

Proof. By Proposition 5.11, 5.16 and 5.18, the objects Ψρ∗(EΓ) and Ψρ∗(EC) are in the 

heart Coh−1(P 3, B0) and σα,−1-stable for every α > 0. Note that

μZα,−1
(EΓ) = μZα,−1

(EC) =
16α2 + 7

24
> 0.

Thus Ψρ∗(EΓ) and Ψρ∗(EC) are in 
(
Coh−1(P 3, B0)

)0

σα,−1

⋂
Ku(P 3, B0).

By Lemma 5.10 and Lemma 5.15, both Ψρ∗(EΓ) and Ψρ∗(EC) satisfy the conditions 

as those in Lemma 2.16. Therefore, they are stable with respect to the stability condition 

defined in Proposition 2.15. By Proposition 2.10 and Remark 2.18, both of them are σ-

stable. �

5.7. Example of C12

We give an example when EΓ is not expected to be σ-stable.

Denote by C12 the divisor in the moduli space of cubic fourfolds parametrizing cubic 

fourfolds containing a rational cubic scroll [23, Section 4.1.2]. Let Γ be a non-degenerate 

quintic elliptic curve in P 5; then Γ is contained in a rational cubic scroll Σ ⊂ 〈Γ〉 (see [25, 
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Lemma 6.11]). Assume that Σ ⊂ Y for some smooth cubic fourfold in P 5, in particular, 

the fourfold Y is in C12. Consider the cubic threefold X := 〈Γ〉 ∩ Y , which contains Σ by 

our assumption. We point out that such X cannot be smooth.

Lemma 5.20. Let Γ be a non-degenerate quintic elliptic curve contained in a cubic scroll 

Σ in Y . Then the object IΣ/X(H) is in Ku(Y ). If IΣ/X(H) is σ-stable, then EΓ is not 

σ-stable.

Proof. Consider the exact sequence

0 → IΣ/X(H) → OX(H) → OΣ(H) → 0.

Note that Σ is defined by a quadric in P 4 = 〈Γ〉 ⊂ P
5, so its canonical bundle is ωΣ

∼=

OΣ(−2H). Moreover, we have χ(OΣ(tH)) = 3
2 t2 + 5

2 t + 1. Then by Kodaira vanishing 

we have Hi(OΣ(−H)) = 0 for every i. Similarly we compute Hi(OΣ) = Hi(OΣ(H)) = 0

for i �= 0, H0(OΣ) = C, H0(OΣ(H)) = C
5.

Applying Hom(OY (mH), −) to the sequence for m = 0, 1, 2, we observe that IΣ/X(H)

is in Ku(Y ). In particular, by Serre duality, we have

IΣ/X(H) ∈⊥〈OY (−2H), OY (−H)〉. (5.31)

Recall from Definition 4.3 that:

EΓ = pr(IΓ(H)) = ROY (−H)ROY (−2H)LOY
(IΓ(H)) = ROY (−H)ROY (−2H)(IΓ/X(H)).

By (5.31),

Hom(IΣ/X(H), EΓ) = Hom(IΣ/X(H), ROY (−H)ROY (−2H)(IΓ/X(H)))

∼= Hom(IΣ/X(H), IΓ/X(H)) �= 0.

Since ch(OΣ) = Σ − 2
3H3 + 1

12 H4, we have

ch(IΣ/X(H)) = ch(λ1) + ch(λ2) + s,

where s = H2−Σ is a class in H2,2(Y, Z)prim. In particular, H2s = 0 and μσ(IΣ/X(H)) =

μσ(EΓ). Therefore, if Ψρ∗(IΣ/X(H)) is in Coh−1(P 3, B0), then it will destabilize EΓ with 

respect to σ. �

In [52, Section 5], the authors give a classification of walls for stability for objects with 

non-primitive Mukai vector with square 2 and divisibility 2 on a K3 surface. In our more 

general noncommutative setting, we expect similar results hold for the singular moduli 

space Mσ(2λ1 + 2λ2).
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Question 5.21. Let Y be in C12, Γ, Σ and X be as those in the lemma. We expect that 

IΣ/X(H) is always σ-stable. Moreover, the object EΓ is strictly σ-semistable and σ is on 

the flopping wall predicted by [52].

6. Application: Lagrangian fibration and twisted family of intermediate Jacobians

We are now ready to prove Theorem 1.3. Let Y be a smooth cubic fourfold, and fix

v0 = λ1 + λ2, v = 2λ1 + 2λ2.

By [12], we have full numerical stability conditions on Ku(Y ). In particular, we choose 

σ0 which is generic with respect to v, and also is in a chamber whose closure contains 

the stability condition σ. By Theorem 3.1, there exists a projective moduli space M :=

Mσ0
(v), which admits a projective hyperkähler resolution M̃ , deformation equivalent to 

O’G10.

For a very general Y , we can just take σ0 = σ. However, the example in Section 5.7

shows that a change of the stability condition is necessary in special cases.

Recall from Section 4 that, for every elliptic quintic Γ contained in a smooth hy-

perplane section of Y , we have an object EΓ ∈ Ku(Y ). We further denote by M0 the 

locus of the objects of the form EΓ in M , which is identified with an open subvariety 

i : M0 → M̃ . Note that M0 is non-empty, since by Theorem 5.19 and our choice of σ0, 

we know that EΓ is σ0-stable. Similarly, by Theorem 5.19 we have a σ0-stable object EC

for every smooth conic C in Y .

Recall that by Proposition 4.5(2), each EΓ is supported on a smooth cubic threefold. 

We define a morphism

π0 : M0 → P0 ⊂ P
5∨,

which sends each EΓ to its support. Here P0 parametrizes smooth hyperplane sections 

of Y . By definition, this morphism is induced by a linear series on M0: for every point 

x ∈ P
5, consider the linear divisor in P0 given by the cubic threefolds which span 

hyperplanes containing x in P 5. Its preimage in M0 is the divisor

Dx := {EΓ | Supp(EΓ) spans a hyperplane containing x in P
5}.

Denote this linear series on M0 by |D|. Note that the fiber of π0 over a point correspond-

ing to a smooth cubic threefold is the moduli of EΓ on that threefold, hence is affine and 

irreducible by Remark 4.2 and Proposition 4.5(2). Hence the elements in |D| are prime 

divisors.

Now define a line bundle on M̃ as follows: by taking closure, each divisor in |D|

extends to a prime divisor in M̃ . The closures of generic elements in |D| are algebraically 

equivalent divisors on M̃ . Since M̃ is simply-connected, we know that the closures of 
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generic elements in |D| are linearly equivalent. This defines a line bundle L. We use |L|

to denote the complete linear series associated to L, which is at least 5-dimensional by 

our construction.

Recall that two birational hyperkähler manifolds are isomorphic outside a locus with 

codimension at least 2 (see [26, Section 2.2]), hence the line bundles on each are naturally 

identified. Now we have the following result by Matsushita:

Proposition 6.1. There exists a projective hyperkähler manifold N birational to M̃ , with 

the following properties:

a) the birational map restricts to an isomorphism away from Bs(L);

b) the induced line bundle L′ on N is nef.

Proof. Note that |L| on M̃ has no fixed divisor (fixed component), as it contains prime 

divisors given as closures of elements in |D|. Now the existence of N with a) and b) 

follows from [49, Prop. 1]. �

The aim of this section is to prove the following theorem:

Theorem 6.2. The line bundle L′ on N is semiample. A multiple of it induces a La-

grangian fibration π : N → B.

Remark 6.3. We do not know whether B ∼= P
5, though by construction B contains the 

open subset P0. It is in general a conjecture that the base of a Lagrangian fibration on 

a hyperkähler manifold is always isomorphic to a projective space.

To prove this theorem we need to introduce one more construction. Denote by X → P0

the family of smooth hyperplane sections of Y . In [58], the twisted family of intermediate 

Jacobians of p : J → P0 was constructed, where the fiber Jt is the intermediate Jacobians 

of the cubic threefold Xt for each point t ∈ P0. Note that the relative Hilbert scheme of 

conics naturally maps to J , and we denote the image by Q.

Now for the family X → P0, consider the relative moduli space J̃ → P0 of semistable 

instanton sheaves. By Remark 4.2, each fiber J̃t is isomorphic to the blowup of Jt along 

the involution of the Fano surface. We have the following relationship of J̃ and J .

Proposition 6.4. The space J̃ is isomorphic to the blowup of J along the image Q of the 

relative Hilbert scheme of conics.

Proof. Note that there exists a quasi-universal family on J̃ of instanton sheaves with 

second Chern classes given by 1-cycles of degree 2. By [21, Theorem 4.8], there exists a 

morphism J̃ → J induced by taking the second Chern class. By the previous discussion, 

we know this morphism is birational, with exceptional divisor in J̃ mapped to Q ⊂ J . 

Now the result follows from the universal property of blowup. �
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Now we have the following observation.

Lemma 6.5. The variety J0 := J\C is isomorphic to an open subset of M̃ . More precisely, 

it is isomorphic to the union of M0 and the open subset of the exceptional divisor over 

the locus parametrizing objects of the form P�1
⊕ P�2

for disjoint lines. Moreover, this 

open set is disjoint from the base locus of |L| on M̃ .

Proof. Proposition 6.4 implies that J0 can be identified with the moduli space 

parametrizing instanton sheaves EΓ and I�1/X ⊕ I�2/X for disjoint lines on any smooth 

cubic threefold X ⊂ Y . Recall that EΓ, viewed as a torsion sheaf on Y , is a σ0-stable 

object in Ku(Y ). By Proposition 4.5(3), the sheaf I�1/X ⊕ I�2/X projects to the σ0-

semistable object P�1
⊕ P�2

defined in (4.1).

Hence the projection functor prι∗ induces a morphism J0 → M , which is an isomor-

phism over M0. For the object P�1
⊕P�2

∈ M with disjoint lines, the fiber of the morphism 

is the open set of the P 1 parametrizing smooth cubic threefolds containing �1 and �2. 

Recall that M̃ is given by the blowup of M along the singular locus. At P�1
⊕ P�2

, it is 

locally an A1-singularity, and the resolution produces a P 1-fiber. Now the result follows 

from the universal property of blowup.

The last assertion follows from the construction of |L|: it generically consists of the 

closure of Dx ⊂ M0 in M̃ . A point in the exceptional divisor of M̃ in the fiber over the 

point P�1
⊕ P�2

, for disjoint lines, is identified with a point in J0, hence is associated to 

a cubic threefold X. Now choose x /∈ X, then the point is not contained in the closure 

of Dx. This proves the statement. �

This implies the following result.

Lemma 6.6. The line bundle L′ on N is not big.

Proof. As J0 ⊂ M̃ is away from Bs(L), by Proposition 6.1 a), we regard J0 as an open 

subset of N . The important observation is that p : J → P0 is a projective morphism 

and Q is of relative codimension three. Hence the open set J0 can be covered by proper

curves that are contracted by p.

Now recall from [41, Corollary 2.2.7] that a divisor D is big if and only if

nD = A + E,

for some positive integer n such that A is an ample divisor, and E is an effective divisor. 

In our case, for any effective divisor E, we can always choose a p-exceptional proper 

curve C ⊂ J0 ⊂ N not contained in E. With this choice we have

L′.C = 0, A.C > 0, E.C ≥ 0,

so L′ is not big. �
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Now we are ready to prove Theorem 6.2.

Proof of Theorem 6.2. The theorem follows from several results in the literature. Note 

that |L| induces a rational map M̃ ��� P
5∨, which sends an object EΓ to the point in P 5∨

corresponding to the support of EΓ. We know that for any point in P 5∨ corresponding 

to a smooth hypersurface, there exist EΓ supported on it. Hence the induced rational 

map M̃ ��� P
5∨ is dominant. So the Iitaka dimension κ(L′) = κ(L) ≥ 5.

On the other hand, since L′ is nef but not big on N , by [51, Cor 3.2], we have 

q(L′) = 0, where q is the Beauville-Bogomolov form. By [22, Prop 24.1], this implies 

that the numerical dimension ν(L′) = 5. Hence we have

κ(L′) = ν(L′).

By [31, Theorem 6.1], L′ is semiample. Now the assertion follows from [48, Thm. 1]. �

The following result completes the proof of Theorem 1.3.

Proposition 6.7. The hyperkähler manifold N provides a compactification of J , i.e.

J ∼= π−1(P0) ⊂ N.

Proof. We know that J , J̃ , M , M̃ and N are birational to each other. Note that both 

π : π−1(P0) → P0 and p : J → P0 are projective morphisms. Now since both N and 

J have symplectic structures, they are both relative minimal models. By [34, Theorem 

3.52], π−1(P0) and J are isomorphic in codimension 1, hence related by a sequence 

of relative flops by [32]. Moreover, the exceptional loci are covered by rational curves 

contracted by π and p. However, as J → P0 is a family of abelian varieties, such a relative 

flop cannot exist. Hence, we know that J ∼= π−1(P0). �

Note that this provides a different construction of the results of [58] and [57, Remark 

1.10] on the existence of a hyperkähler compactification of J .

It remains an interesting question to determine all birational models of N for very 

general Y , similarly to the work [57]. We plan to study this in future work. In this 

paper, we focus on one flop between N and M̃ , which can be explicitly described by our 

construction.

Example 6.8. Recall that an open subset of the exceptional divisor of J̃ parametrizes the 

sheaves of the form FC where C ⊂ X is a conic. The blowdown morphism to Q ⊂ J ⊂ N

is defined by taking the residual line of C in X. Hence the fiber of this morphism is 

isomorphic to the P 2 parametrizing all conics contained in a fixed X and residual to a 

fixed line.

On the other hand, the projection of FC into Ku(Y ) gives the object EC , which is 

σ0-stable by Theorem 5.19, and defines a point in M̃ . Hence the fiber of this projection 
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is isomorphic to the P 2 parametrizing all cubic threefolds containing a fixed conic C. 

This explicitly describes a flop between M̃ and N .

Remark 6.9. For a very general cubic fourfold Y , it is easy to see that the Picard rank 

of M̃ and N is two. In this case, we know that their movable cones are identified, 

with boundaries given by the blow up and the Lagrangian fibration. This implies that 

for such Y , there exists a unique hyperkähler compactification of the twisted family of 

intermediate Jacobians with a Lagrangian fibration structure. In particular, M̃ and N

are not isomorphic and N is isomorphic to Voisin’s construction in [58].

7. Application: elliptic quintics and MRC quotients

In this section we prove Proposition 1.5. Let Y be a smooth cubic fourfold, recall that 

we can write the semiorthogonal decomposition

Db(Y ) = 〈OY (−2H), OY (−H), Ku(Y ), OY 〉.

Let Γ ⊂ Y be an elliptic quintic, whose ideal sheaf is denoted by IΓ/Y . Recall from 

Definition 4.3 that we have the following projection EΓ in Ku(Y ):

EΓ := pr(IΓ/Y (H)) = ROY (−H)ROY (−2H)LOY
IΓ/Y (H) ∈ Ku(Y ).

By Proposition 4.5, if Γ is non-degenerate and spanning a smooth cubic threefold X ⊂ Y , 

then EΓ = ι∗FΓ where ι∗FΓ was defined in (4.4). In particular, it sits in the following 

short exact sequence in Coh(Y ):

0 → OX(−H) → EΓ → IΓ/X(H) → 0.

Moreover, by Theorem 5.19, the object EΓ is stable in the moduli M = Mσ0
(2λ1 + 2λ2), 

where σ0 is as chosen in Section 6.

Recall that for a variety X, a rational map ρ : X ��� Y is the maximally rationally 

connected (MRC) fibration of X, if the general fibers of ρ are rationally connected and 

any rational curve in X intersecting a fiber over a general point of Y is contained in the 

fiber. Let C be the connected component of the Hilbert scheme Hilb5m(Y ) containing 

elliptic quintics in Y .

Proposition 7.1. There is a rational map ρ : C ��� M defined by the projection of 

IΓ/Y (H) in Ku(Y ), which is the MRC fibration of C.

Proof. Consider the open subset U ⊂ C parametrizing non-degenerate quintic elliptic 

curves on Y . Let I be the universal family on Y ×U parametrizing the objects IΓ/Y (H). 

Then the projection of I in Ku(Y × U) is a flat family of σ0-stable objects in Ku(Y ). 
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Thus there is an induced morphism from U to M , defining the rational map ρ in the 

statement.

Recall that EΓ is an instanton bundle over its support X, and Γ can be identified with 

the vanishing locus of a section of EΓ(H). As mentioned in Remark 4.2, for a generic 

section, the vanishing locus is a locally complete intersection, connected and reduced 

elliptic quintic. Hence we know that the general fibers of ρ are identified with open 

subset of global sections of EΓ(H), hence the general fibers are rational.

To see that ρ is the MRC fibration of C, it is enough to note that by Proposition 6.1

there exists a hyperkähler compactification of the locus M0 parametrizing EΓ. Now [19, 

Lemma 1.4] proves the claim. �

A closely related question is about rational quartics on cubic fourfolds. The following 

was conjectured by Castravet [19, Page 416], and follows from our results in Section 6.

Proposition 7.2. For any smooth cubic fourfold Y , the MRC quotient of the main compo-

nent of the Hilbert scheme of rational quartics on Y is (birational to) the twisted family 

of intermediate Jacobians J of Y .

Proof. It was observed in [19] that it is enough to show that J is not uniruled. This 

follows from the existence of the hyperkähler compactification of the twisted family in 

Proposition 6.7. �

This is the only remaining case of MRC quotients of rational curves on cubic fourfolds: 

the case of degree d ≤ 3 is classical, while d ≥ 5 was treated in [19].

Remark 7.3. Here we briefly recall the connection between elliptic quintics and rational 

quartics. It was proved in [25, Section 8] that for a generic elliptic quintic in a generic 

cubic threefold, we can choose a generic cubic scroll surface containing the curve, such 

that the residual curve is a smooth rational quartic. Along this line, it should be possible 

to show that the main components of the Hilbert schemes corresponding to these two 

cases are stably birational. We do not need this result and leave it as an open question.
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