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1. Introduction

Moduli spaces of stable sheaves on a K3 surface provide the major examples of pro-
jective hyperkédhler manifolds. These examples are deformation equivalent to Hilbert
schemes of points on a K3 surface, by the seminal work of Mukai [50] and the contribu-
tion of many other authors, including Beauville [10], O’Grady [53], Yoshioka [59,60]. In
[54], O’Grady considered the case when the moduli space contains also strictly semistable
sheaves. In particular, he constructed a symplectic resolution of the singular moduli
space of semistable torsion-free sheaves on a K3 surface with rank 2, trivial first Chern
class and second Chern class equal to 4. This construction provides a new example of a
hyperkéhler manifold of dimension 10, not deformation equivalent to the previous con-
struction. O’Grady’s result was generalized by Lehn and Sorger in [46] to moduli spaces
of semistable sheaves on a K3 surface having Mukai vector of the form v = 2vy with
v3 = 2. In addition, they showed that the symplectic resolution of the moduli space can
be obtained by blowing up the singular locus with the reduced scheme structure.

In this paper we investigate the analogous situation of O’Grady’s example, in the case
of moduli spaces of semistable complexes in the noncommutative K3 surface associated
to a smooth cubic fourfold. By [38], the bounded derived category of a cubic fourfold YV
has a semiorthogonal decomposition of the form

D"(Y) = (Ku(Y), Oy, Oy (H), Oy (2H)),

where H C Y is a hyperplane section and Ku(Y') is a triangulated subcategory of K3
type, in the sense that it has the same Serre functor and Hochschild homology as the
derived category of a K3 surface [36, Corollary 4.3], [40, Proposition 4.1]. We call this
category Ku(Y') the Kuznetsov component of Y. One reason to study Ku(Y') is related to
the birational geometry of Y. For instance, there is a folklore conjecture [38, Conjecture
1.1] that Y is rational if and only if Ku(Y) is equivalent to the derived category of a K3
surface.

Another interest in studying Ku(Y') is to generalize Mukai’s construction to this non-
commutative K3 surface. Bayer, Lahoz, Macri and Stellari construct Bridgeland stability
conditions on Ku(Y’) in [13] (see Section 2 for a review of the construction). We denote
by Stab!(Ku(Y)) the connected component of the stability manifold containing these
stability conditions. In a second paper [12], joint also with Nuer and Perry, they develop
the theory of families of stability conditions, which allows studying the properties of mod-
uli spaces of stable objects in Ku(Y) by deforming to cubic fourfolds whose Kuznetsov
components are equivalent to the derived category of a K3 surface. As a consequence,
they produced infinite series of unirational, locally complete families of smooth polar-
ized hyperkédhler manifolds, deformation equivalent to Hilbert schemes of points on a
K3 surface. These hyperkéhler manifolds are given as moduli spaces of stable objects in
Ku(Y) of primitive Mukai vector. It is worth to point out that the hyperkéhler mani-
folds constructed from some Hilbert schemes of rational curves of low degree in Y can
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be interpreted as moduli spaces of stable objects in Ku(Y'). Indeed, we gave in [45] a
description of the Fano variety of lines in Y [9] and, when Y does not contain a plane,
of the hyperkéahler 8-fold constructed in [43] using twisted cubic curves in Y, as moduli
spaces of stable objects in Ku(Y') with primitive Mukai vector.

In analogy to the case of K3 surfaces, the Mukai lattice of Ku(Y") has been defined
in [7] and carries a weight two Hodge structure induced from that on the cohomology
of Y. We denote by H},,(Ku(Y'),Z) the sublattice of integral (1,1) classes in the Mukai
lattice of Ku(Y") (see Section 3.1).

Consider now a vector v = 2vg € Hj,(Ku(Y),Z) such that vy is primitive with
v2 = 2. Let 7 be a stability condition in Stab(Ku(Y)) which is generic with respect to
v, in other words, the strictly 7-semistable objects with Mukai vector v are (S-equivalent
to) direct sums of T-stable objects with Mukai vector vg. Let M be the moduli space of
T-semistable objects with Mukai vector v. The first result of this paper is the following.

Theorem 1.1 (Theorem 3.1). The moduli space M has a symplectic resolution M, which
is a 10-dimensional smooth projective hyperkdhler manifold, deformation equivalent to
the O’Grady’s example constructed in [54].

In the second part we explain two main applications, which make a connection be-
tween the derived categorical viewpoint of Theorem 1.1 and the classical construction of
hyperkéhler manifolds from Y. Recall that by [7], the algebraic Mukai lattice of Ku(Y)
contains two classes A1 and g spanning an As-lattice. Motivated by classical geometric
constructions (as it will be clear later), we consider the case vg = A1 + Aa, v = 20y and
we analyze the objects in M := M, (v) where o is a stability condition as constructed in
[13]. It is not difficult to see that by [45] the strictly semistable locus of M is identified
with the symmetric square of the Fano variety of lines in Y, up to a perturbation of
the stability condition (see Remark 4.1). On the other hand, stable objects are harder
to describe. If X is a smooth hyperplane section of Y, in other words, X is a smooth
cubic threefold, then the moduli space M;j,s; parametrizing rank 2 instanton sheaves on
X has been described by [21]. In particular, stable sheaves in Mipst belong to one of the
following classes: rank 2 stable vector bundles constructed from non-degenerate elliptic
quintics in X, rank 2 stable torsion free sheaves associated to smooth conics in X. More-
over, the strictly semistable objects in Mj,s; are direct sums of two ideal sheaves of lines
in X (see Section 4.1 for a review). By [11,21] the moduli space Miyg is birational to
the translate J?(X) of the intermediate Jacobian, which parametrizes 1-cycles of degree
2 on X.

Denote by o a stability condition constructed in [13]. A key result for our applications
is the following theorem, which provides a description of an open subset of the stable
locus of M := M, (21 + 2)\2).

Theorem 1.2 (Theorem 5.19). Let X be a smooth hyperplane section of Y. Then the
projection in Ku(Y') of the stable rank 2 instanton sheaves associated to non degenerate
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quintic elliptic curves and smooth conics in X are o-stable objects with Mukai vector
2X1 + 2X0.

We apply Theorem 1.2 to show that, up to a perturbation of the stability condition o
in Stab (Ku(Y)) (see Section 6), the sympletic resolution M, given by Theorem 1.1 has
a connection to a classical construction of Jacobian fibration associated to Y. Consider
the (P®)V-family of cubic threefolds obtained as hyperplane sections of Y and let Py be
the locus parametrizing the smooth hyperplane sections. Consider the twisted family of
intermediate Jacobians p : J — Py, whose fibers are the twisted intermediate Jacobians
of the smooth cubic threefolds parametrized by Py. It is known that there exists a
holomorphic symplectic form on J by [20]. However, it remained a long standing question
whether J can be compactified to a hyperkdhler manifold J and a Lagrangian fibration
J — (P®)V extending p. This has been recently proved for very general cubic fourfolds
in the beautiful works [47] for the untwisted family and [58] by Voisin for J. We mention
that in the recent preprint [57], Sacca extended the result for the untwisted family in
[47] to all smooth cubic fourfolds. The same argument applies to the twisted family and
extends Voisin’s result to all smooth cubic fourfolds (see [57, Remark 1.10]).

Our main result is the following construction of a hyperkéhler compactification of J
for every cubic fourfold Y, obtained combining Theorems 1.1, 1.2 and some techniques
in birational geometry of hyperkahler varieties.

Theorem 1.3 (Propositions 6.1, 6.7). There exists a hyperkihler manifold N birational to
M, which admits a Lagrangian fibration structure compactifying the twisted intermediate
Jacobian family J — Py.

It is worth to note that N and M are birational, but not isomorphic if Y is very
general. In Example 6.8 we describe an explicit flop between them, involving the locus
of stable objects in Ku(Y") coming from the projection of instanton sheaves associated to
smooth conics in Y. In Remark 6.9, we explain how N is related to the compactification
constructed by Voisin [58].

The next application arises from the following conjecture of Castravet. Note that the
original conjecture involves rational quartics, but it can be equivalently stated for elliptic
quintics by residuality (see Remark 7.3).

Conjecture 1.4 ([19, page 416]). Let C be the connected component of the Hilbert scheme
Hilb>™(Y) containing elliptic quintics in' Y. Then the mazimally rationally connected
quotient of C is birationally equivalent to the twisted intermediate Jacobian of Y.

Using Theorems 1.1, 1.2 and 1.3 we are able to prove Conjecture 1.4.

Proposition 1.5 (Propositions 7.1, 7.2). The projection functor (see Definition /.3) in-
duces a rational map C --+ M which is the mazimally rationally connected fibration of
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C. The maximally rationally connected quotient of C is birational to the twisted family J
of intermediate Jacobians of Y.

Plan of the paper. In Section 2 we review some definitions and results about (weak) stabil-
ity conditions on triangulated categories and semiorthogonal decompositions. Moreover,
we recall the construction of stability conditions on the Kuznetsov component Ku(Y") of
a cubic fourfold Y as in [13].

Section 3 is devoted to the proof of Theorem 1.1. For an element vy with square
2 in the algebraic Mukai lattice of Ku(Y'), consider a stability condition 7 on Ku(Y")
which is 2vg-generic. We show that the blow-up M of the singular locus of the moduli
space M := M, (2vy) with the reduced scheme structure is a symplectic resolution, by
describing the local structure of M at the worst singularity, as done in [46] for singular
moduli spaces on K3 surfaces.

In Section 4 we compute the projection in the Kuznetsov component of some objects
related to elliptic quintics and smooth conic curves in a cubic fourfold. We explain their
relation with stable instanton sheaves on smooth hyperplane sections of Y, which were
previously studied in [21].

Section 5 deals with the proof of Theorem 1.2. We show that the objects in the
Kuznetsov component, constructed out of elliptic quintics and conics in Y, are o-stable,
where o is any stability condition as constructed in [13]. Moreover, they describe an
open subset of the moduli space M, (2A1 +2X2). Recall that o is induced on Ku(Y') from
the restriction of (a tilt of) a weak stability condition o, —; on the bounded derived
category of coherent By-modules on P3, depending on a real parameter o > 0. Here By
is the even part of the sheaf of Clifford algebras associated to the conic fibration on P?
obtained by blowing-up a line in Y (see Section 2.3, Proposition and Definition 2.15).
In Section 5.2 we compute the expression of our objects as complexes of By-modules on
P3. Then in Sections 5.4 and 5.5 we show they are o, _1-stable for a sufficiently large.
Finally in Section 5.6 we show they are o, _;-stable for every «, proving there are no
walls for stability.

In Section 6 we prove Theorem 1.3. Fix a stability condition oy which is generic with
respect to 2A1 + 2)\o and with the same stable objects as 0. Applying Theorems 1.1 and
1.2 to the moduli space M := M,, (21 +2)\3), we consider the open subvariety M of the
symplectic resolution M of M consisting of stable objects associated to elliptic quintics
in Y, with support on smooth hyperplane sections of Y. We define a line bundle £ on
M inducing a rational map from M to (P®)V, which is defined on M, by sending the
object to its support. Using some results in birational geometry of hyperkéhler varieties,
we show that there is a birational model N of M and a semiample line bundle £’ on
N, such that a multiple of £’ induces a Lagrangian fibration structure on N which is a
compactification of the twisted intermediate Jacobian J over Py.

We conclude with Section 7 where Conjecture 1.4 is proved as a consequence of The-
orems 1.1, 1.2 and 1.3.
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2. Preliminaries on stability conditions on Ku(Y")

In this section we review the definitions of (weak) stability conditions on a triangulated
category, semiorthogonal decompositions, and Kuznetsov component Ku(Y') of a cubic
fourfold Y. Then we recall the construction of stability conditions on Ku(Y) due to
[13] and some useful properties. The new contributions are an easier expression for the
central charge of these stability conditions in Proposition 2.15 and Lemma 2.16 which
makes more clear how to check the stability of objects in Ku(Y).

2.1. (Weak) stability conditions

It is in general a difficult task to construct stability conditions on a triangulated
category. In the case of the Kuznetsov component Ku(Y") of cubic fourfolds, it is proved
in [13] that such stability conditions can be induced by ‘restricting’ certain weak stability
conditions, which can be constructed via the tilting heart technique. In this section, we
briefly recall the notion of weak stability conditions following the summary in [13, Section
2].

Let 7 be a C-linear triangulated category. We denote by Kpum(7) the numerical
Grothendieck group of 7. Let A be a finite rank lattice with a surjective homomorphism
v Kpum (7T) - A

Definition 2.1. The heart of a bounded t-structure is a full subcategory A of T such that

(a) for any objects E and F in A and negative integer n, we have Hom(E, F[n]) = 0;
(b) for every E in T, there exists a sequence of morphisms

0=FEy 25 By 22 2oy
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such that the cone of ¢; is of the form A;[k;], for some sequence k1 > ko > -+ > ky,
of integers and objects A; in A.

Recall that the heart of a bounded t-structure is an abelian category by [8].

Definition 2.2. Let A be an abelian category. A group homomorphism Z : Kyym(A) — C
is a weak stability function (rvesp. a stability function) on A if, for E € A, we have
SZ(E) > 0, and in the case that SZ(E) = 0, we have RZ(E) < 0 (resp. RZ(E) < 0
when E # 0).

For every object E in A, its slope with respect to Z is given by

—RZE) it SZ(E) >0
nz(E) = SAE) .
400 otherwise.
An object E in A is semistable (resp. stable) with respect to Z if for every proper
subobject F of E in A, we have uz(F) < pz(E) (resp. puz(F) < uz(E/F)).

Definition 2.3. A weak stability condition (with respect to A) on T is a pair o = (A, Z),
where A is the heart of a bounded t-structure on 7 and Z is a group homomorphism
from A to C, satisfying the following properties:

(a) The composition Kpum(A) = Kpum(T) = A Z, C is a weak stability function on
A.! We say that an object E in A[k] is o-(semi)stable if E[—Fk] is (semi)stable with
respect to Z.

(b) Every object of A has a Harder—Narasimhan filtration with o-semistable factors.

(¢) There exists a quadratic form @ on A ® R such that the restriction of @ to ker Z is
negative definite and Q(FE) > 0 for all o-semistable objects E in A.

If Z is a stability function, then o is a stability condition introduced by Bridgeland in
[18]. In this situation, we will usually call Z the central charge of the stability condition.
If the lattice A is the numerical Grothendieck group K,um(7) and v is the identity map,
then o is called a full numerical stability condition.

Remark 2.4. There is usually a natural choice of the lattice v : Kpum (7T ) — A in each of
triangulated categories considered in this paper.

b We will write Z(—) instead of Z(v(—)) for simplicity.
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2.2. Semiorthogonal decompositions and Kuznetsov components

Definition 2.5. Let 7 be a triangulated category. A semiorthogonal decomposition
T =(D1,...,Dn)

is a sequence of full triangulated subcategories Dy, ..., D,, of T such that:

(a) Hom(F,G) = 0, for any objects F' in D;, G in D; and i > j;
(b) For any object F' in D, there is a unique sequence of morphisms

OZFm—>Fm_1—>'-'—>Fl—)F0=F,
with factors pr,(F) := Cone(F; — F;_1) € D; for 1 <i <m.

The subcategories D; are called the components of the decomposition. We also have the
functor pr; from 7 to D;.

Definition 2.6. An object F in T is exceptional if Hom(FE, E[p]) = 0 for all integers p # 0,
and Hom(E, F) = C.

A sequence of objects {F1,...,En} in T is an exceptional collection if E; is an ex-
ceptional object for all ¢, and Hom(E;, E;[p]) = 0 for all p and all ¢ > j.

By [17], an exceptional collection {E1, ..., E,,} in T provides a semiorthogonal de-
composition

T =(D,Ey,...,En). (2.1)

Here by abuse of notation, we write E; also for the full triangulated subcategory of T
generated by FE;. The full subcategory D := (E1,..., E,,)" consists of objects

{G € Obj(T)|Hom(E;, G[p]) = 0 for all p and i}. (2.2)

Let Y be a smooth cubic fourfold. Denote by H a hyperplane section of Y. There
is an exceptional collection {Oy, Oy (H),Oy(2H)}. The bounded derived category of
coherent sheaves on Y admits a semiorthogonal decomposition of the form

DP(Y) = (Ku(Y), Oy, Oy (H), Oy (2H)). (2.3)

The subcategory Ku(Y') is studied in details in [38], and it is now commonly referred to
as the Kuznetsov component.

This projection functor in Definition 2.5 can be expressed by compositions of left
(right) mutation functors, depending on the explicit semiorthogonal decomposition.
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Definition 2.7. Let E be an exceptional object in 7. The left (resp. right) mutation
functors Lg (resp. Rg) are defined as follows:

Lg(F) := Cone @Hom(E[p],F)@E[p}iF ;
pEZ

Rg(F) := Cone | F L G}Hom(RE[p])v ® Elp] | [-1].
pEZL

Remark 2.8. Note that since the Serre functor in DP(Y) is given by
Sy(=) = —®Oy(=3H)[4],

the Kuznetsov component of Y can be also given by Oy (—2H),Oy(—H)) N O%.
Namely, it appears in the semiorthogonal decomposition

(Oy(—2H),Oy(—H),Ku(Y), Oy). (2.4)
Note that the object Lg(F) (resp. Rg(F)) is in E+ (resp. “E). We denote by
pr: D(V) — Ku(Y)

the functor in Definition 2.5(b) to the component Ku(Y') with respect to the decompo-
sition (2.4). In particular, it is given as the composition of mutations:

pr = Roy (-mRoy (-2m)Lo, = Lo, Roy (-m)Roy (—2m)- (2.5)

We will use the functor pr to produce objects in Ku(Y) in Section 4. Note that the functor
pr in our paper is different from the more standard projection functor Lo, Lo, (#r)Loy (2m)
with respect to the decomposition (2.3), which is also the left adjoint functor of the
natural embedding of Ku(Y).

2.3. Kuznetsov components of DP(Y) and DP(P?, By)

It is usually a highly non-trivial task to construct stability conditions on the Kuznetsov
component. The only technique so far is to restrict weak stability conditions on the
whole derived category to its Kuznetsov component. In the cubic fourfold case, such
weak stability conditions on DP(Y") require a Bogomolov type inequality involving the
third Chern character. Unfortunately, such inequality is not known yet for any cubic
fourfold.

To avoid this technical difficulty, the idea in [13] is to embed Ku(Y") as a component
in a bounded derived category of lower dimension. More precisely, the key observation in
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[13, Section 7] is that Ku(Y) is equivalent to the Kuznetsov component of DP(P?, By).
We briefly summarize the construction of this equivalence in this section.
Let L C Y C P® be a line which is not on any plane in Y, and we denote by

pL:Y—>Y

the blow-up of L in Y.
The projection from L to a disjoint P? (in P?) equips Y with a natural conic fibration
structure

7:Y — P2

There is a rank three vector bundle F 22 037 @ Ops(—1) on P? such that Y embeds into
the P2-bundle Pps(F) as the zero locus of a section

sy € HO(P?,Sym®F" © Ops (1)) = H(Pps (F), Op,y (5)(2) ® ¢* Ops(1)).

We have the following diagram of morphisms:

Y —% Bl P5 —— Pps(F)
le k lq (26)
Y P? P3.

By [37, Section 3], we have an associated sheaf of Clifford algebras of m over P3.
Denote its even part (resp. odd part) by By (resp. B1). By [37, (12)], as a sheaf on P3,
the even part By is a rank four vector bundle:

Ops ® (/\2}"® O]ps(—l)> >~ Ops © Ops(—1) @ Ops(—2)2. (2.7)

As for its algebra structure, the structure sheaf is central. The other relations are
determined by

eiNey-epNej =sp(erQep)e; Nej, e Neg-e; Nep =sy(e; @e;)sy(er ®er), (2.8)
for an orthogonal basis (e1,es,e3) of F and i # j # k # 4.

Definition 2.9. We denote by Coh(IP3, By) the category of coherent sheaves on P3 with a
right By-module structure, and denote its bounded derived category by DP(IP3, By). The
natural forgetful functor is denoted by Forg : DP(P3, By) — DP(P?).

In particular, we have

Homppo ps 5,)(Bo, §) = Hompy ps) (Ops, Forg(G)) (2.9)
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for every G € DP(P3, By).
By [37, (14)], the odd part B; as a coherent sheaf is

Forg(B;1) = Forg(F @ (/\3]:® Ops(—1))) = OF @ Ops(—1) & Ops(—2).  (2.10)
As in [37, (15)], we define the following By-bimodules for j € Z:
Baj =By ® Ops(j) and Baji1:=Bi ® Ops(j). (2.11)
The Serre functor on DP(P?, By) (see [13, page 28]) is explicitly given as
Sp, (=) = (=) @5, B-3[3]. (2.12)

By [37, Lemma 3.8 and Corollary 3.9] and a direct computation using (2.9) and (2.12),
the ordered set {B;, B, B3} is an exceptional collection in DP(P3, By). By (2.1), there is
a semiorthogonal decomposition of the form

DP(P3, By) = (Ku(P3, By), By, B, Bs). (2.13)

One of the key observations in [13, Section 7] to construct stability conditions on Ku(Y")
is as follows.

Proposition 2.10 (/13, Lemma 7.6 and Proposition 7.7]). The Kuznetsov component
Ku(Y) is equivalent to Ku(P3,By).

Remark 2.11. The functor of this equivalence is given explicitly as
Uopi : Ku(Y) = DP(YV) 25 DP(V) L DP(P3, By) D Ku(P?,By),  (2.14)
where the functor ¥ is defined by

U(—) = m(— ® ).

Here & is a sheaf of right 7* By-modules on Y defined in (5.2). We will only make essential
use of this functor in Section 5.

2.4. Weak stability conditions on DP(P3, By)

We first review the notion of t-structure by tilting. Let 0 = (A, Z) be a weak stability
condition on 7T, and t € R. We can form the following subcategories of A:

A := {E| every Harder-Narasimhan factor F of E has uz(F) > t};
AS? .= {E| every HarderNarasimhan factor F of E has uz(F) < t}.
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It follows from the existence of Harder—Narasimhan filtrations that (AZ>#, AS*) forms
a torsion pair in A in the sense of [24]. In particular, we can obtain a new heart of a
bounded t-structure by tilting.

Proposition and Definition 2.12 (/2/]). Given a weak stability condition o = (A, Z) on
T and a choice of slope t € R, there exists a heart of a bounded t-structure defined by:

.AZ = <A;t, »A;t[lb extension closure:

For an object F' in DP(P3, By), we define its modified Chern character as

chp, (F') = ch(Forg(F))(1 — %1), (2.15)

where [ denotes the class of a line in P?. Expand the formula, we have chg, 1(F) =
chy (Forg(F)) and chp, 2(F) = chy(Forg(F)) — £ rk(F)l.
For every 8 € R, we define the twisted Chern character as

2
chgo = e PP chg, = (tk,chp, 1 — rk Bh, chg, o —Bh - chg, 1 +1k %h{ ),

where h denotes the class of a plane in P3.
We fix the lattice A of Kyum (P32, Bp) in Definition 2.3 as:

v = chp, <2 : Kpum(P?, Bo) — A
where A = {(rk(F), 1 - chy(Forg(F)), h - chy(Forg(F)) — & rk(F)): F € D*(P?,By)}. To
simplify the notation, we will also write ch; (resp. chy) for [ - ch; (resp. h - chy) in the
future when there is no ambiguity.
The discriminant of an object F in DP(P3, By) is defined as follows:
Ap,(F) = (chp, 1(F))? — 21k(F) chg, o (F) = (chy, ;(F))? — 2rk(F) chy, ,(F). (2.16)
Setting Zgope = i1k —chp, 1, then the classical slope stability

Oslope = (COh(PS, Bo), Zslope)

is a weak stability condition in the sense of Definition 2.3. For § € R, as in Proposition
and Definition 2.12, we have the heart of bounded t-structure

Coh”(P?,By) := (Coh;?  (P® By),Cohs? (P? Bo)[1]).

With this notation, we can state the following result.
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Proposition and Definition 2.13 (/13, Proposition 9.3]). Given o > 0 and 8 € R, the
pair oo.p = (Coh” (P3,By), Za.5) with

_ 1
Zop(F) = ich \(F) + 50 chig, o(F) — chyg, o(F)
defines a weak stability condition on DP(IP3, By). These stability conditions vary contin-
uwously as (o, 8) € Rsg X R wvaries. The quadratic form in Definition 2.3 can be taken
as Ag,. In particular, if an object F' is 0, g-semistable for some a > 0,3 € R, then we
have

ABU (F) > 0.
Remark 2.14.

(i) By ‘vary continuously’, we mean that if an object F' is 0, g,-stable for some oy > 0
and By € R, then F is o, g-stable for (o, 8) in an open neighborhood of (v, So).

(ii) For all j € Z, the object B; is o4, g-stable for every a > 0 and 5 € R by [13, Remark
9.4].

2.5. Stability conditions on Ku(P3,By) and Ku(Y')

The weak stability conditions in Proposition 2.13 do not restrict to stability conditions
on Ku(P3,By) directly. We need to modify them by one more tilting.

Fix some 0 < a < % and 8 = —1. Consider the tilting of o,,_1 with respect to the
slope value 0 as in Proposition and Definition 2.12. We refurbish the main result for the
stability conditions on Ku(P?3, By) in [13, Theorem 1.2] as follows.

Proposition and Definition 2.15. Let o € R with 0 < a < i. The pair
o 1= ((Coh_l(IP?’,Bo))zaﬁl (Ku(P?,By), Z = chy!, —irk) (2.17)
is a stability condition on Ku(P3, By) with respect to the natural rank-2 lattice
chg, <1 : Kpum (Ku(P?, By)) — A = {(tk(F), chy (Forg(F)): F € Ku(P?,By)}.
Moreover, the stability condition o, does not depend on the choice of .
Proof. By Proposition 2.13 and [13, Proposition 2.15, Proposition 5.1 and Proof of The-
orem 1.2], if we replace the central charge in the pair (2.17) by —iZ,, _1, then that will

be a stability condition on Ku(IP3, By). We only need to check that the central charge in
(2.17) induces the same slope function as that induced by —iZ, _1.
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For any object E in Ku(P3, By), by (2.2) and (2.13), we have
XDb(P3,BO)(BlvE) = XDb(]P’3,BU)(BSa E) =0. (2.18)
Recall that the Riemann-Roch formula for P? is given as
11
xp3(F) = chs(F) + 2cha(F) + Echl(F)—&—rk(F) (2.19)
for every object F' in DP(P3). Recall that to simplify the notation, we write ch; (resp.

chy) for - chy (resp. h - chy) here.
Denote G = Forg(E ®g, B_1). By (2.9), (2.18) and [37, Corollary 3.9], we have

o:xDWP”%ﬂBhE):que):cmﬂa)+2du«n+¥%chﬂa)+ﬂqax(22@
0 =Xpo(P3,5,) (B3, E) = xps (G(—H)) = ch3(G) + cha(G) + %Ch1(G)~ (2.:21)
By [37, Corollary 3.9], for every B; we have
cha(B; ®p, B-1) = cha(B;_1) = cha(Forg(B;)) — %Chl(Forg(Bi)) + érk(Bi)
Note that the Chern characters of Forg(B;) can be computed using (2.7), (2.10) and
(2.11). By [15, Proposition 2.12] and restricting to a general hyperplane, the character

ch<o(E) is spanned by ch<s(B;)’s. As the sheaf B_; is a flat By-module, the operation
— ®pB, B_1 is linear on ch<s, so we have

cha(G) = chy(Forg(E)) — %chl (Forg(E)) + érk(E) and
ch; (G) = chy (Forg(E)) — %rk(E).

By subtracting the equations (2.20) and (2.21), we have

mﬂ%@@»:—mﬂ%@w»—gﬁw) (2.22)
Note that
. . 11 1,
S(—iZn,—1(E)) =chy " (Forg E) — ) rk(E) — 3¢ rk(E)
1 11 1,
= chy(Forg F) + ch; (Forg E) + 3 rk(E) — 3 rk(E) — 3 rk(E)
701,

=— (=4 2).

(32 + 507 tk(E) by (2.22)

We have
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7

Z(B) = chg, 1 (E) = itk(E) = R(~iZa-1(E)) + 1
’ 32 + 504

%(_iZoz,fl(E))'

Therefore, the slope function induced by —iZ, _; is the same up to a constant scalar as
that of Z = chlg(}’1 —irk. So the pair (2.17) is a stability condition on Ku(PP?, By). Note
that the stability conditions ¢,’s vary continuously when « varies. Since they have the
same central charge, all of them are the same stability condition. O

It is worth pointing out that to check the stability of an object in Ku(PP3,By), we
usually only need to work in the heart Coh_l(IP’37Bo). The following simple lemma
makes this more precise.

Lemma 2.16. Let E be a o,,_1-stable object such that

(a) E is an object in (Cohfl(]P’B,Bo))S B N Ku(P3, By);
(b) Homgp, (T, E) =0 for every T € Coh(P3,By) of zero dimensional support.

Then E is o,-stable.
Proof. We only need to show that F is stable with respect to the weak stability condition
((Cohfl(IP’g’, BO))g o fiZm_l). Denote A = Coh™*(P?,Bp). Let F be a non-zero

proper subobject of E in (Coh_l(P3,BO))
objects in A:

0
- ., then we have the exact sequence of
o,—1

0— HNF) = HLNE) = HL(B/F) = HYF) — HY(E) = HY(E/F) — 0. (2.23)

Since E is o4, _1-stable, either H ;' (E) or HY(E) = 0. When HY(E) # 0, we have
HLNF) =HL (E) =0. Since E = HY(E) is 04,_1-stable, we have

1Zos(HU(E/F)) > piz, _,(E) > 0. (2.24)

By condition (b), we have Z, _1(F) # 0. Since pz, _,(H ' (E/F)) <0 or HL(B/F) =
0, it is clear that

/’[‘Za,—l(E) > ILLZQ,—I(F) > 0. (225)

The equality in (2.25) can hold only when H'(E/F) = 0 and Z,,_1(E/F) = 0. In
particular, E/F = H%(E/F) in this case. By Definition 2.2, we always have

1z, (E/F)) > pz, ,(F)>0.

Therefore,

:u_iZa,fl(E/F) > M_iZa,fl(F) > 0.
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By Definition 2.2, the object E is 1—;z, _,-stable. A similar argument also holds for the
case when H ' (E) #0. O

Another issue is that the Clifford structure and the embedding of Ku(Y') in D (P3, By)
depend on the choice of the line L to blow up, see Remark 2.11. However, for the induced
stability conditions on the Kuznetsov component, we have the following result.

Proposition 2.17 ([45, Proposition 2.6]). If o is a stability condition as defined in (2.17),
then the induced stability condition (¥ o p%)~to on Ku(Y) is independent of the choice
of L.

Remark 2.18. As we are only interested in the stability of objects in Ku(Y"), we will omit
L in all the morphisms and functors that rely on L in what follows. For simplicity, we
will also write o instead of (¥ o p% )~ 1o for the stability condition on Ku(Y).

The stability condition ¢ is also a full numerical stability condition. The whole con-
nected component Stab! (Ku(Y)) containing o is described in [12, Theorem 29.1].

3. Symplectic resolution of the moduli space M, (2vg) with vg =2

This section is devoted to the proof of Theorem 1.1. After recalling the definition
of algebraic Mukai lattice of Ku(Y") and stating the main result, we describe the local
structure of the moduli space M, (2vy) at the worst singular points. This is used to
construct the symplectic resolution M by blowing up the singular locus with the reduced
scheme structure as in [46]. Finally, we obtain the projectivity and the deformation
class of M by specializing to Kuznetsov components equivalent to the bounded derived

category of a K3 surface.
3.1. Algebraic Mukai lattice of Ku(Y')

Let Y be a cubic fourfold over C and Ku(Y') be its Kuznetsov component. The al-
gebraic Mukai lattice H},(Ku(Y'),Z) of Ku(Y) is introduced in [13, Proposition and
Definition 9.5]. It consists of algebraic cohomology classes of Y which are orthogonal to
the classes of Oy, Oy (H), Oy (2H) with respect to the Euler pairing,.

As for an alternative description, the algebraic Mukai lattice is Kpum (Ku(Y")) equipped
with a Mukai pairing:

([E], [F]) :== —X(E, F) = —x(F} E) (3.1)

for objects E and F in Ku(Y). The signature of the Mukai pairing is (2, p), where
0< p < 20.

We will be only interested in a sub-lattice in Kyum(Ku(Y')) generated by two special
classes
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)\i = [LOY LOy(H)LOy(ZH)(OL(ZH))] fori =1 and 27 (32)

where L is a line on Y and Lo, Lo, (m)Loy 2m) : DP(Y) — Ku(Y) is the projection func-
tor with respect to the semiorthogonal decomposition (Ku(Y), Oy, Oy (H), Oy (2H)) of
DP(Y). The Mukai pairing of them can be computed as:

(A1, A1) = (A2, A2) = 2, (A1, A2) = —1. (3.3)

In particular, when Y is a very general cubic fourfold, the Mukai lattice is spanned by
A1 and A\g.

3.2. The main theorem

Fix a primitive element vy in the algebraic Mukai lattice of Ku(Y) such that
(vo,v0) = 2 and set v := 2vy. Let Stab'(Ku(Y)) be the connected component of full
numerical stability conditions on Ku(Y') containing . By [12, Theorem 21.24] (which
makes use of the main result in [1]), for every 7 € Stab!(Ku(Y")), the moduli stack M (v)
parametrizing 7-semistable objects in Ku(Y") admits a good moduli space M, (v), which
is a proper algebraic space.

In this section, we fix a stability condition 7 € Stab'(Ku(Y')) which is generic with
respect to v. In other words, the strictly 7-semistable objects in M, (v) are S-equivalent
to the direct sum of two 7-stable objects with Mukai vector vg. Note that v-generic
stability conditions exist as Stab'(Ku(Y')) is a connected component of full numerical
stability conditions. Also note that this stability condition may be different as that in
Remark 2.18, which was denoted by o, when Y is not very general. Set M := M, (v),
then by [12, Theorem 29.2 and Remark 29.3], M is an irreducible proper algebraic space,
and there is a holomorphic symplectic form on the smooth locus of M. The aim of this
section is to prove the following result.

Theorem 3.1. The moduli space M has a symplectic resolution M, which is a 10-
dimensional smooth projective hyperkdhler manifold, deformation equivalent to the O’-
Grady’s example constructed in [54].

The construction of the symplectic resolution is done in [46] in the case of the moduli
space of semistable sheaves having Mukai vector 2vy with (vg,vg) = 2 over a polarized
K3 surface. A large part of their argument applies to our more general setup without
much change. For this reason, we only sketch the proof, referring to [46] for a complete
discussion. The main difference is that in the case of moduli of sheaves, the moduli are
constructed as a GIT quotient. To study the local structure, it is enough to take an étale
slice. In our case, we instead use the result on étale slice of algebraic stacks [2], and we
give the details for this part of the proof.

The strategy is to study the local structure of the moduli space at the worst singularity
and prove that its normal cone is isomorphic to an affine model obtained as a nilpotent
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orbit in the symplectic Lie algebra sp(4). It turns out that the singularity is formally
isomorphic to its normal cone. Since the singularity at the generic point of the singular
locus of M is of type Ay, one can conclude that the blow up M of M at its singular locus
endowed with the reduced scheme structure is a symplectic resolution of M. The other
properties of M (projectivity, deformation type) will be obtained by degeneration to the
locus of cubic fourfolds with Kuznetsov component equivalent to the bounded derived
category of a K3 surface, as in [12].

3.8. Local structure of M
We have the following possibilities for E € M:

(1) E is 7-stable. Its automorphism group is Aut(FE) = C*.

(2) E is S-equivalent to F' @ F’ with non-isomorphic F, F' € M_.(vg). In this case, we
have Aut(F) = C* x C*.

(3) E is S-equivalent to F®2 for F' € M, (vg). Then, Aut(F) = GL(2,C).

In this section, we investigate the structure of M in a formal neighborhood of a semistable
point as in item (3).

Let E be a T-semistable object in M. As in [46], the first ingredient for the proof is the
description of the infinitesimal deformation of E. In the case of polystable sheaves on a
K3 surface a good summary of the results is provided in [6, Sections 2 and 4], which we
follow in our case. The deformation theory for perfect complexes in the derived category
has been studied in [42]. In our setting, we consider the functor

Defg : Art — Sets

from the category of local Artinian C-algebras to the category of sets, which assigns
to an object A in Art, the set Defg(A) of equivalence classes of deformations of F
to Y4 := Y x Spec A. Explicitly, objects in Defg(A) are equivalence classes of pairs
(Ea, ), where E4 is a complex on Y, together with an isomorphism ¢ : B4 @4 C = F
(see [42, Definition 3.2.1]). Two pairs (E4, ) and (E'y, ¢’) are equivalent if there is an
isomorphism 1 : E4 & E’, such that ¢/ o = .

Note that by [42, Lemma 3.2.4], E4 is an object in DP(Y,4). By base change and the
definition of E4, if p is the closed point of Spec A, then

RHom(Oy, (iH), E4), = RHom(Oy, (iH),, E,) = RHom(Oy (iH), E) = 0

for i = 0,1,2. So the property of being in Ku(Y) is an open condition, and we may
assume F4 is an object in Ku(Y4) := (Oy,, Oy, (H), Oy, (2H))*, where Oy, (H) is the
trivial deformation of Oy (H) to Y. By [42, Theorem 3.1.1 and Proposition 3.5.1], the
functor Defg is a deformation functor and its tangent space Defg(Cle]) is Ext'(E, E),
where Cle] := C[t]/(t?).
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As proved in [35], the definition of the trace map requires an additional step. Denote
by eg the linkage class of E (see [35, Proposition 3.1]) and consider the composition

tr: Ext?(E, E) 25 Ext!(E, E© 04) 25 HY(Q4) =~ C,

where the first map is given by the composition with ez and the second map is the usual
trace map. We set Ext®(F, E)q := ker(tr), which is the obstructions space.

As noted at the beginning of the Appendix in [46], every polystable sheaf F on a
smooth projective surface admits an injective resolution which is equivariant with respect
to the canonical action of the automorphism group Aut(E) of E. The same argument
applies to a polystable object E € M. In fact, every £ € D(Y') has an injective resolution
(see for instance [29, Proposition 2.35]). If E is stable, then Aut(E) = C*, thus any
injective resolution is Aut(E)-equivariant. If E = F & F’, where F' and F’ are non-
isomorphic T-stable objects, then consider two injective resolutions F' — I, F/ — I’
and define the injective resolution E — I @ I’ which is Aut(E) & C* x C*-equivariant.
Similarly, if £ = F®2, then E — I®? is an injective resolution which is equivariant with
respect to Aut(E) = GL(2,C).

Then the argument in [46, Appendix| allows to construct a formal map

K=Ky + K3+ Ext' (B, E) = Ext?(E, E)o

known as the Kuranishi map, defined inductively on the order, with the following prop-
erties:

(1) The map & is equivariant with respect to the conjugation action of Aut(FE).

(2) The second order term ko : Ext'(E,E) — Ext*(E,E)y is given by the Yoneda
product ry(e) = e — e for e € Ext*(E, E).

(3) By [56] there exists an Aut(E)-equivariant formal deformation (E,3) of E having
the versality property, parametrized by the formal scheme D, := x~1(0).

Denote by A := C[Ext'(E, E)] the polynomial ring on Ext*(E, E). Let A be the comple-
tion of the ring A with respect to the maximal ideal m of polynomial functions vanishing
at 0. The Kuranishi map can be also written dually as

k" Ext*(E,E)f — m2A.
If a C A is the ideal generated by the image of k*, then by definition we have
D,. = Spf(A/a) = colim,, Spec((A/a) /m™),

where m is the maximal ideal of A /a by abuse of notation.
On the other hand, the object E defines a closed point z in the moduli stack M :=
M. (v) and the S-equivalence class of E determines a point w(x) € M, where 7 : M — M
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is the good moduli space. The stabilizer G5 of z is identified with Aut(E). If n is the
maximal ideal defining the inclusion of the residual gerbe BG, — M, we denote by
M,, = M the n-th nilpotent thickening of M at x defined by n"*! for n > 0. By [2,
Theorem 4.16] there exists the coherent completion of M at x, which is a complete local
stack (/\//\lz,A) and a morphism (M\m,fv\) — (M, z) inducing isomorphisms on the n-th
nilpotent thickenings of Z and z. Moreover, since M has a good moduli space M, by
[2, Theorem 4.16(3)] we have /\/l = M X Spec((’)M7T (z)) and /\/l — Spec(OM ()
is a good moduli space. Note that ./\/lz — M is formally versal at z, i.e. for every
commutative diagram

(M\x)o(—> Z— M\x

|l

z —— M

where Z < Z’ is an inclusion of local artinian stacks, there is a lift Z’ — ./T/l\w filling the
above diagram (see [2, Definition A.13]).

The next lemma is a generalization of a well-known result for moduli spaces of sheaves
on a K3 surface (see [30, Section 2.6] or [46, Proposition 4.1(3)]). In that case the proof
relies on the description of the moduli space as a GIT quotient of an open subset of a
Quot scheme and on the Luna slice Theorem. In our case of moduli spaces of complexes,
we apply the results in [2], which among other things imply that the stack M is étale-
locally a GIT quotient.

Lemma 3.2. Assume E = F & F where F is T-stable of Mukai vector vy. Adopt the
notation of w(x), A and a as above, then

OM ) = (A/a)Aut A\Aut(E)/(a n A\Aut(E)).

Proof. Consider the quotient stack 7 := [Spec(Sym®(Ta,.))/Gz], where T, is the
tangent space to M at . By definition T, = Defg(Cle]) = Ext'(F, E), so in this case

T = [Spec A/ Aut(E)] — T := Spec A | Aut(E) = Spec AAE)

which is a good moduli space. We denote by 7,, the n-th thickening of 7 at the point 0.
As computed in the proof of [2, Theorem 1.1], since G, = Aut(F) is linearly reductive
and smooth, the isomorphisms Mgy = BG, = 7o and My = T lift to closed immersions
M, — T, which effectivize to a closed immersion M\l — ’?, where T := T X7 Spec (510.
Note that O & ((AAWE)), ) = (ATU'J(\E))m ~ fAut(B) o AA(B) | a5 Jocalization and
completion with respect to a maximal ideal commute.

On the other hand, note that G, acts on the quotient 2/ a. Indeed, as x is G-

equivariant, we have G, (a) C a, so the action on the quotient is well-defined.
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We claim that (,Z/ a)% is a complete local ring. In order to prove this, we firstly
show that there is an isomorphism of rings (A/a)% = A% /(a N A%). Indeed, note
that the surjection A — (A/a) induces surjections A/m" — (A/a)/m" for every n. Now
recall that G, is linearly reductive, so every surjection B — C of G,-rings induces a
surjection B¢ — C% on the invariant rings. As a consequence, we have the surjections
(A/m™)% — ((A/a)/m™)% for every n. Passing to the completions, it follows that there
is a surjection AGs (/T /a)%. An easy computation shows that this surjection induces
a surjection A% /(a N A%) — (A/a)C which is injective. -

Now note that A% /(an A%) is a local ring. Indeed, A% = AG= is a local ring, and
the quotient of a local ring is a local ring. Moreover, by [46, Equation (4.7)] we have the
explicit description of AGe /(an A\Gm) as the quotient of the ring of formal power series,

ie.
A% [(an AS) = C[Xy, ..., X4, Y11, Via, .. ., Yaa] /1,

where T is an ideal of C[ X7, ..., X4, Y11, Y12,...,Ya4] (for the precise definition see [46,
Section 4, page 762]). Indeed, the same computation as in [46] with respect to a fixed
symplectic basis on V := Ext'(F, F) can be performed using G, = GL,, Ext!(E, E) =
gl ®V, Ext2(E7E)0 = 5l and the description of the generators of A5 in terms of
the traces of the coordinate functions on A. Since the quotient of a Noetherian complete
local ring is complete, we deduce the desired properties for (E/ a)%e.

Define the stack K := [Spec (4/a)/G,], whose good moduli space is K — Spec(A/a)%=
(see [3, Example 8.3]). By the above computation and [2, Theorem 1.3] we have that
K is coherently complete along z. Let KC,, be the n-th thickening of K at 0. The G-
equivariant versal family (E ,®) constructed out of x defines a collection of equivariant
compatible objects (E,, ¢,) € Defg((A/a)/m"+?) for every n. Equivalently we have the
compatible collection K,, — M. Since K is coherently complete, by [2, Corollary 2.6]
these morphisms effectivize to K — M. Also K satisfies the versality property as (E D)
does.

Now note that Ko = 75 and K1 = 77 as a C m2A. Thus we have the commutative
diagram

M —s M\x .

A

% /
=
K ' M
|

/

/
K

By the universal property of M\x, there exists a lifting f : K — ./T/l\g; filling the above
diagram and inducing a collection of morphisms f, : K, — M, for every n > 0. Since
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Ki=2M; — M\z is a closed immersion, by [2, Proposition A.8] we have that f, and f
are closed immersions. So we have the commutative diagram

K4k
7
g
Jf v l
Ve
M.

My ——

The versality property of K implies that there exists a lifting g : /\//\lI — K filling the
above diagram. This implies that f is an isomorphism.

Now consider the maps A: K =/ /(/l\m — Spec((/Q\Mm(x)) and B: /Qx ST G
Spec(A/a)%. By [3, Theorem 6.6] we have the bijections

Hom(K, Spec(@Mﬁﬂ(m))) = Hom(Spec(ﬁ/a)G” , Spec(@M’w(m)))
and
Hom(/(/l\gg7 SpeC(;{/a)G”) =] Hom(Spec(@Mﬂr(I)), Spec(A\/a)Gm).

Thus A and B factor through a: Spec(ﬁ/a)Gx %Spec(@M’w(w)) and b: Spec(@M’ﬂ(w)) —
Spec(ﬁ/ a)% respectively. By construction, we have that b is the inverse of a. This
implies an isomorphism (g/a)Aut(E) = @M,,r(m) of local rings as we wanted. O

Note that since the tangent space to the moduli space at a polystable object E is
identified with Ext*(E, E)A"(5) the singular part M>"€ of M corresponds to the locus
where the dimension of the tangent space jumps, i.e. the locus of polystable objects. In
particular, we have a stratification

A C M8 c M,
where
A= M, (v) and M8 = Sym? (M, (v)).
3.4. Affine model

The affine model Z for the local structure at the worst singularities of M is described
in [46, Section 2]. Here we recall the definition for sake of completeness referring to [46]
for the details.

Let V be a 4-dimensional C-vector space with a symplectic form w. Denote by sp(V)
the associated symplectic Lie algebra which has dimension 10. Consider the set Z C sp(v)
defined as
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Z ={B e sp(V)|B* =0}.

The ideal Iy C C[sp(V)] defining Z is generated by the coefficients of the matrix B2,
which are linearly dependent, and Z has dimension 6. The singular locus Zg, of Z is

Zang = {B € Z|1tk(B) < 1}

and it is defined by the ideal Ly generated by the 2 x 2-minors of B. Note that Zg,, has
dimension 4 and is singular in the origin.

On the other hand, consider the Grassmannian GG parametrizing maximal isotropic
subspaces U C V. Define the incidence subvariety

Z={(B,U)€ ZxG|B(U)=0}C ZxG.

The canonical projection 7 : Z — G to the second factor is identified with the canonical
projection T*G — G. Moreover, the first projection o : Z — 7 is a semi-small resolution.
Indeed, over matrices B € Zgn, with rk(B) = 1, the fiber of o is P((kerB/imB)*) = P!,
while over B = 0 the fiber is G.

Proposition 3.3 ([/6], Théoréme 2.1). The resolution o : Z — Z is isomorphic to the
blow-up of Z along Z*™9 C Z.

A key property of Z is that its singularity is rigid with respect to deformations,
meaning that a deformation of Z which does not change the singularities of Z around
the origin cannot change the singularity at the origin [46, Théoréme 3.1].

3.5. Symplectic resolution of M

The main result of this section is the following.

Theorem 3.4. The blow-up M of the singular locus of M with the structure of reduced
algebraic space is a symplectic resolution of M.

Here M is an irreducible proper algebraic space by [12, Theorem 29.2 and Remark
29.3]. For the definition of blow-up of an algebraic space and reduced algebraic space
consult Stacks Project, Sections 69.17 and 64.7, respectively. The argument is due to
[46] and we summarize it for the interested reader.

Theorem 3.4 is a consequence of the following result.

Proposition 3.5 ([/6, Théoréme 4.5]). Let E := F% where F € M,(vg). Then there is
an isomorphism of germs of analytic spaces

(M,[E]) = (C* x Z,0).



24 C. Li et al. / Advances in Mathematics 408 (2022) 108584

Proof. We use the notation introduced in Sections 3.3 and 3.4. By Lemma 3.2 we have
the isomorphism @Mﬂr(m) >~ AAu(E) /(g AAUE)),

Set V = Ext'(F, F); then Ext'(E, E) = gl, ® V = gIy* and Ext*(E, E)y = sly. By
[46, Proposition 4.3], we have AA(E) /(qn AAE)) =~ R/T where R = C[C* x sp(4)], R
is the completion of R at 0 and I is an ideal of R. Moreover, by [46, Proposition 4.3(3)]
the ideal Iy corresponds to the locus of strictly semistable objects via the isomorphism
above and by [46, Lemma 4.4] the ideal of initial terms of I satisfies in(I) = IpR.

In order to prove (M, [E]) & (C* x Z,0) by Artin’s Theorem [5, Corollary 1.6] and
the above observations, it is enough to show R/I = R/IyR. By the computation in [46,
Section 5] the deformation of R/I towards its normal cone is trivial. This implies the
statement. O

Proof of Theorem 3.4. The same computation as in [54, (2.2.4), Claim (1.8.8)] shows
that the singularity of a point in M8\ A is of type A; transversally to M®18. Thus the
blow-up of M \ A in M*™&\ A is a resolution of these singularities and the symplectic
form over the smooth part of M extends to the exceptional divisor of this blow-up. By
Propositions 3.5 and 3.3 applied to the points in A, we have that the blow-up o of M
in M8 is a resolution of singularities. Note that the fiber of o over a point in A is a
3-dimensional quadric. Thus the symplectic form extends to M by Hartog’s Theorem. 0O

Remark 3.6. Note that the moduli space M is normal, as it is locally described by Z.
3.6. Relative version

In order to complete the proof of Theorem 3.1, we need to apply the theory introduced
in [12] about families of stability conditions and relative moduli spaces.

Recall that given a family of cubic fourfolds ) — S over a smooth quasi-projective
variety S with relative ample class Oy (1), by [12, Lemma 30.1] there exists an admissi-
ble subcategory Ku()) C DP()) which defines a family of Kuznetsov components over
S, obtained from the relative exceptional collection Oy, Oy(1), Oy (2). For every point
s € S the base change category Ku()), to Spec(k(s)) is the right orthogonal to the
exceptional collection Oy_, Oy (1), Oy (2). In particular, Ku(}), is the Kuznetsov com-
ponent Ku(Ys) of Y, for every s € S. A stability condition on Ku()) is a collection
T = (7s)ses of stability conditions 75 on Ku(Ys) for s € S, satisfying the compatibility
conditions of [12, Definitions 20.5 and 21.15].

The next result is the relative version of Theorem 3.4 over a 1-dimensional base and
is the generalization of [12, Corollary 32.1] to the case of a non-primitive Mukai vector.

Proposition 3.7. Let Y be a cubic fourfold, let v = 2vy be a Mukai vector in
Hy, (Ku(Y),Z) with (vo,v0) = 2 and let 7 € Stab'(Ku(Y)) be v-generic. Let Y’ be
another cubic fourfold such that there is smooth family of cubic fourfolds over a con-

nected quasi-projective base with fibers Y and Y’ along which vg remains a Hodge class.
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Then there exist a family g : Y — C of cubic fourfolds over a smooth connected quasi-
projective curve, complex points 0,1 € C(C) and a stability condition 7 on Ku(Y) over
C such that:

(1) Yo=Y and Y, =

(2) wo is a primitive vector in H},(Ku(Y.),Z) for all c € C.

(3) 7. is v-generic for all ¢ € C and 79 is a small deformation of T so that M., (v) =
M, (v).

(4) There exist an algebraic space M, (v) and a proper morphism M. (v) — C such that
every fiber is the connected component containing the singular locus Sym? (M., (vo))

of the good moduli space M, (v) of semistable objects in Ku(),).
(5) There exist an algebraic space M, (v) and a proper morphism M. (v) — C making

M (v) a relative symplectic resolution of M, (v): its fiber over any point ¢ € C is a
symplectic resolution of the fiber of M (v) over ¢, obtained by blowing up the singular
locus Sym?* (M, (vo)).

Proof. Properties (1)-(3) are a consequence of the assumptions and [12, Proposition
30.8] (in loc. cit. the authors assume v is primitive, but the same proof adapts to the
non-primitive case).

In order to prove (4), note that by [12, Theorem 21.24(3)] the moduli stack M (v),
parametrizing 7-semistable objects in Ku()), admits a good moduli space M (v) which
is a proper algebraic space over C. By Remark 3.6, the fiber M._(v) is normal for every
¢ € C. Thus M,_(v) is a finite disjoint union of normal irreducible components. Denote by
M._(v)' the irreducible component of M, (v) containing Sym?(M;. (vo)). Then consider
the irreducible component of M, (v) with fiber M., (v)" at a point ¢ € C. By abuse of
notation, we denote this component by M, (v) and this defines the proper algebraic space
of item (4).

Part (5) follows from the fact that the relative symmetric product Sym? (M, (vg)) over

c

[12, Corollary 32.1] applied to vg. Thus we define M, (v) as the blow up of M,(v) in

Sym?(M;(vg)) and we have that M (v), is the blow up of M, (v)" in Sym? (M. (vp)).
This implies (5). O

C' is proper over C and satisfies Sym?(M, (v)). = Sym?*(M,, (vo)) for every ¢ € C, by

3.7. Proof of Theorem 3.1

By Theorem 3.4, we know M is smooth, connected, proper and symplectic of dimen-
sion 10. In this paragraph, we end the proof of Theorem 3.1. In particular, we show that
M and M are projective, by proving that they carry an ample divisor, and that M is
deformation equivalent to the O’Grady’s 10-dimensional example.

Consider the irreducible component M’ C M containing M8, By abuse of notation,
we still denote by M the blow up of M’ in the reduced singular locus. By Proposi-
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tion 3.7(3) we have that M’ is a limit (in the sense of [55, Definition 1.12]) of moduli
spaces M, of semistable objects in the derived category of a K3 surface with Mukai
vector v with respect to a v-generic stability condition which is geometric. Indeed, it is
enough to choose a curve C' in the moduli space of cubic fourfolds, such that its inter-
section with the loci of cubic fourfolds having Kuznetsov component equivalent to the
bounded derived category of a K3 surface is dense in C. Such a choice of C' is possible
since the locus of cubic fourfolds with Kuznetsov component equivalent to the bounded
derived category of a K3 surface is a countable union of divisors in the quasi-projective
moduli space of cubic fourfolds [7], [12, Corollary 29.7], thus it is dense in the moduli
space of cubic fourfolds. By [12, Proposition 32.4] and [52, Proposition 2.2, Corollary
3.16], the moduli space M, admits a symplectic resolution Mn which is deformation
equivalent to the irreducible holomorphic symplectic manifold constructed by O’Grady
n [54]. Then by Proposition 3.7(4) the blow-up M is the limit of the smooth irreducible
holomorphic symplectic varieties Mn

By the same argument used in [12, version 1, page 125], there is a non-degenerate
quadratic form ¢ defined over H Q(JT/f Z), which is the Beauville— Bogomolovau‘]lkl form.
By [55, Theorem 1.14], there is a bimeromorphic map f : M --» M", where M" is
a projective irreducible holomorphic symplectic manifold. Moreover, the blmeromor—
phic map f induces an isometry H2(M,Z) = H2(M",Z7) respecting the Beauville-
Bogomolov—Fujiki forms, arguing as in [22, Section 27.1].

Now denote by [ the divisor class on M’ constructed in [14]. By [14, Theorem 1.1],
the class [ is strictly nef, i.e. [ - C > 0 for every curve C' C M’. On the other hand, if [ is
the pullback via the blow-up o of I, then ¢(I) > 0. Indeed, the same statement is true for
the desingularized moduli spaces of semistable objects on K3 surfaces, and the divisor
class [ behaves well with respect to deformations by [12, Theorem 21.25].

Let I” be the line bundle of M” such that [ = f*I”; note that ¢(I"") = q(I) > 0. By
[27, Corollary 3.10] [28], I is big. Since f is an isomorphism out of codimension 2, it
follows [ is big too. Since M has trivial canonical bundle, the Base Point Free Theorem
(see [34], or [4] for algebraic spaces) implies that ml is globally generated for a certain
integer m > 0. Since by Theorem 3.4, the moduli space M has rational singularities, we
deduce that also ml is globally generated. Together with the fact that ml is strictly nef,
we conclude that ml is ample. This implies the projectivity of M’, and then of M.

Finally note that since M’ is normal and projective, we can apply the same argument
in [33, Theorem 4.4] to deduce that M’ = M, namely that M is irreducible, as explained
in Lemma 3.8 below. The deformation type of M is obtained by degeneration to the loci
of cubic fourfolds with associated K3 surface. This ends the proof of Theorem 3.1.

Lemma 3.8. The moduli space M and its symplectic resolution M are irreducible.
Proof. Since M is normal, we have that M is a finite disjoint union of normal irreducible

components. The singular locus of M is Sym?(M,(vg)) which is connected, so it is
contained in only one component of M which we denote by M’. The symplectic resolution
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M is then a finite disjoint union of irreducible components where one is the blowup M’
of M’ in Sym?(M;(vp)).

Assume that M’ has a universal family Ll let U be the pullback of U to M'. Assume
there exists a point in M which is not in M’. Note that this point determines the (S-
equlvalence) class of a 7-stable object G. Fix a 7-stable obJect F € M’ which defines
a point of M. Consider the projections p: M xY — M and q: M xY — Y. We
consider the following objects of Db(M’). px Hom(q *F,Z/I) and p, Hom(¢*G, U). Arguing
as in the proof of [33, Theorem 4.1, item 3] (see also [13, Proposition A.7]), since M’ and
Y are smooth and projective, it is p0551ble to show that p. Hom(q*G, LNI)[ 1] is a locally
free sheaf on M !, while p, Hom(q*F, u ) is quasi-isomorphic to a complex of locally free
sheaves on M’ supported in the degrees 0,1, 2. On the other hand, the numerical classes
of F' and G are equal, then by Grothendieck-Riemann-Roch the same is true for the
relative objects p. Hom(q*F, &) and p, ”Hom(q*G,Zj{). This leads to a contradiction with
the previous computation as explained in [33]. We deduce that M is irreducible and so
is M.

In general, we only have the existence of a quasi-universal family. In this case, it is
enough to use the construction in [33, Lemma 4.2] and argue as before to conclude the
proof of the statement. O

4. Stable objects in the moduli space M, (21 + 2X2)

In this section, we introduce the objects which form an open subset of M, (2\; +2\2).
After recalling the definition of instanton sheaves on a smooth cubic threefold from [21],
we compute the projection of the push-forward of the stable instanton sheaves to Ku(Y).

Remark 4.1. Comparing with o-stable objects, strictly semistable objects are easier to
describe. Note that we may vary the stability condition ¢ to oo in Stab’(Ku(Y')) such
that

(a) ME(2M +2X) = M2, (20 + 2Xo) and ME(A1 + A2) = M2, (A1 + Ao);
(b) o9 is generic with respect to 2A; + 2.

By condition (b), as the character A; + A is primitive, the Jordan-Hélder factors of
strictly op-semistable objects are all with character A; + A2. By [45, Theorem 1.1], such
a factor is always of the form

Py := pr(Oy[—1]) = Cone(Zy[-1] =5 Oy (—H)[1]), (4.1)
where £ is a line in Y C P®, Z; denotes the ideal sheaf of £. Let F(Y) be the Fano

variety of lines on Y; then the strictly semistable locus in M,,(2A1 + 2A2) is isomorphic
to Sym?F(Y).
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4.1. Moduli space of semistable instanton sheaves on a smooth cubic threefold

Recall the definition of A; and Ay in (3.2). By a direct computation, their Chern
characters are
H? H? 3 H?

Ch(}\l) = (3, *H, *7, T, g) and Ch()\g) = (*3,2H,0, *?,0) (42)

In particular, we have

H3 3

ch(2\; + 2X\;) = (0,2H, —H?, -5

). (4.3)
On the other hand, in [21] Druel studies the moduli space of semistable sheaves F' on

a smooth cubic threefold X with Chern classes (note that these are the classes on the
threefold X)

202
tk(F) =2, c1(F) =0, co(F) = 3 and c3(F) = 0.

We follow the definition in [44,39], and call such sheaves rank 2 instanton sheaves on
cubic threefolds. Let X = HNY be a smooth cubic threefold and denote by ¢ : X — Y
the closed embedding. For such an instanton sheaf F', by a direct computation, we have

Ch(L*F) = Ch(2)\1 + 2/\2)
We summarize the results about rank 2 instanton sheaves in [11,21] as follows.

Remark 4.2. Let X be a smooth cubic threefold. The moduli space Mj,s; of rank 2
instanton sheaves on X consists of the following objects, see [21, Theorem 3.5].

(i) Fr: For every stable rank 2 instanton bundle F', the zero locus of a non-zero section
of F(H) is a non-degenerate elliptic quintic curve I'. Recall that a quintic elliptic
curve is a locally complete intersection quintic curve with trivial canonical bundle
and h°(Or) = 1, and the curve is called non-degenerate if it spans P4. Conversely,
for a generic section, the curve I' is smooth.

For every non-degenerate quintic elliptic curve I', one can produce the vector bundle
Fr by the Serre construction. For a more categorical description,

Fr := Cone (IF(H)[—l] LN OX(—H)> . (4.4)

All these stable bundles form a dense affine open subset M3

St 10 Mingt, see [11,
Corollary 6.6].
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(ii) Fe: Stable non-locally-free rank 2 instanton sheaves are one-to-one corresponding
to smooth conic curves C. For each smooth conic C, one can define a stable sheaf
Fo as the kernel of

Ox @ Hom(Ox,0c(H)) <5 6c(H). (4.5)

Here we write 6¢ for the theta-characteristic of C' so that 0c(H) = Opi(1) is a
degree 1 line bundle on C.
The locus A in Mi,e that parametrizes these sheaves is of dimension 4.

(iii) Zs, @ Zy,: Every strictly semistable rank 2 instanton sheaves is S-equivalent to this
direct sum. Here ¢; and {5 are lines (possibly the same) on X.
The locus B in M, that parametrizes these sheaves is isomorphic to SmeF(X ),
where F'(X) stands for the Fano surface of lines on X.

The following properties of Mi,s are summarized from [21, Section 4] and [11, Section
6]. Let J%(X) be the translate of the intermediate Jacobian which parametrizes 1-cycles
of degree 2 on X. Consider the morphism

¢t Mings — JA(X) : F s &(F), (4.6)

where & (F') is the Abel-Jacobi invariant of co(F') and where co(F') is the second Chern
class in the Chow group of 1-cycle Y.

(1) The moduli space Mj,st is smooth and connected. The morphism c¢o induces an
isomorphism of Mg onto its image in J?(X).

(2) The morphism ¢y contracts the locus A to Feonic(X) C J2(X), where Fionic(X) is
the image of the variety of conics and is isomorphic to F(X). In particular, the
morphism ¢y is isomorphic to the blowing up of J?(X) along Fonic(X).

(3) The morphism ¢ maps B onto an ample divisor which we denote by Dp r in J?(X).

We will make use of these further details on M;,s; in Section 6.
4.2. Formulas of Er and E¢

The classification of semistable rank 2 instanton sheaves summarized in the pre-
vious section inspires us the construction of some objects in Ku(Y') with character
2A1 + 2X2. Recall the definition of the projection functor pr = Ro, (—m)Roy (—2m)Loy, =
L@Y R@Y(,H)R@Y(,QH) as in (2.5).

Definition 4.3. Let Y be a smooth cubic fourfold. Let I" be a quintic elliptic curve on Y.
We define the object Er as:

Er = pr(Zp(H)). (4.7)
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Let C be a smooth conic curve on Y. We define the object E¢ as:
Ec = pr(0c(H))[-1]. (4.8)
We will need a more explicit expression of F¢, as computed in the following lemma.
Lemma 4.4. The object Ec can be written as
Cone (Lo, (Be(H))[~2) = Oy (~H)[1] & (Hom(Lo, (6c(H)), Oy (~H)[3])*) . (49)
Proof. Note that

C?, when i = 0;
Home(y) (Oy, ec(H)[ZD = Homoc (0(}7 ec(H) [Z]) = . (4.10)
0, when 4 # 0.

In particular, the object Lo, (6c(H))[—1] is a coherent sheaf on Y. Note that
0c(H),Oy € Oy(H)" = “Oy(-2H),
therefore the object Lo, (fc(H)) is also in “Oy (—2H), in other words,
Roy (—2m)Loy (0c(H)) = Loy (0c(H)).
Since Oy € 1Oy (—H), by Serre duality we have
Hompy (v (Loy (0o (H)), Oy (—H)[i]) = Hompy (v (6c (H), Oy (=H)[1]) (4.11)

=(Homps vy (Oy (—H),0c(—2H)[4 —1]))" = (4.12)

C?, when i =3;
0, when i # 3.
By Definition 2.7, the formula (4.9) for E¢ holds. O
Proposition 4.5. Let Y be a smooth cubic fourfold and X be a smooth hyperplane section
of Y and v : X — Y be the embedding morphism. We have the following statements for
objects of the form Ec and Er.
(1) If C is a smooth conic contained in X, then

Ec = pr(u.Feo),

where Fo is defined in (4.5).
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(2) IfT is a non-degenerate quintic elliptic curve contained in X, then Er = 1, Fr which
is defined in (4.4). In particular, the object Er sits in the short exact sequence in
Coh(Y):

0= Ox(—H) — Er = Iy x(H) — 0. (4.13)

(3) Let £ be a line on X; then Py = pr(Zy/x).
(4) Both Er and E¢ are in Ku(Y') with character 2\; + 2)\,.

Remark 4.6. Note that the objects Er are exactly i.€ in P(Y") as that considered in [35
Theorem 7.3].

Proof of Proposition 4.5. (1). When C is contained in a smooth cubic threefold X,
note that F¢ is stable on X, so we have Hom(Oy,t.Fc) = 0. Note that . Fo =
Cone(1,0%% — 0c(H))[—1] and Hom(Oy,1.Ox|[i]) = 0 when i # 0. Together with
(4.10), this implies that ¢, Fo € Os-. Since both O¢, Ox € Oy (H)*, we have

pr(teFo) = Roy (—m) (LeFo).
By Serre duality

Hompp (y) (t:Ox, Oy (—H)[i]) = Homo, (Ox, Ox(—2H)[4 — i])

B C, wheni=1; (4.14)
0, when i # 1.

The unique extension gives the obvious triangle 1,Ox — Oy (—H)[1] — Oy[1] .
Therefore, we have the natural commutative diagram of distinguished triangles:

O[] ——= Oy (- o7 —
Oc(H)[-1] l) Oc(H)
v Fo CHY1®2 —~ Lo, (bc(H)) .

The morphism ev at the bottom line is ¢, Fo — Oy (—H)[1]® (Hom(t. Fe, Oy (—H)[1]))*.
By (4.12) and (4.14), the object Ro, (—m)(t+Fc) is

Cone (1.Fo <% Oy (~H)**[1] ) Oy (~H)[2] & (Hom(Lo, (6c(H)), Oy (~H)[2]))")

X [_1]7
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which is isomorphic to the object in (4.9).
(2). Consider the short exact sequence

0—Ir(H) = Oy(H) = Or(H) — 0.
As WY (Or(H)) = h°(Or(—H)) = 0 and x(Op(mH)) = 5m as I' is a non-degenerate
quintic elliptic curve, we have h°(Or(H)) = 5. Note that h%(Oy(H)) = 6 and the
induced map
H°(Oy(H)) — H°(Or(H))
is surjective, since the linear span of I' is a P*. We conclude that

Lo, (Zr(H)) = Cone (oy & Ir /Y(H)) = Tr ) x (H).

Consider on the category O3 the following semiorthogonal decomposition with two com-
ponents:

{((Oy(—2H), Oy (—H)),Ku(Y)). (4.15)
Consider the expression of Zr, x (H) in Definition 2.5 (b):
0="Fy— Fy =0 Fr =5 F =TI x (H). (4.16)
Here Cone(Fy — F3) is Ox(—H)[1] by (4.4). Note that
Ox(—H)[1] = Cone(Oy(—2H) — Oy (—H))[1] € (Oy(—2H),Oy(—H)).
By [39, Lemma 3.1],

Home,, (Oy (jH), t+ Fr[i]) = Home, (Ox (jH), Fr[i]) =0 (4.17)
for 5 = 0,1,2 and all ¢ € Z. Therefore, 1, Fr € Ku(Y). By Remark 2.8, the functor
Prku(y) With respect to (4.15) maps Lo, (Zr(H)) to t.Fr.

(3). Since T,/ x € (Oy, Oy (H))*, we have pr(Zy/x) = Roy (—#)(Ze/x ). By the same
argument as that for the conic case, the statement holds.

(4). By (4.10) and (4.9), the character of E¢ is

ch(E¢) = ch(Lo, (0c(H))[-1]) — 2ch(Oy(-H))
— 2ch(Oy) — ch(8o(H)) — 2ch(Oy (—H)) = ch(2A1 + 2)s).

The Chern character of Er is ch(t.Fr) which is the same as ch(2A; +2X3). O
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5. Stability of Er and E¢

In this technical section, we prove Theorem 5.19, namely, Theorem 1.2 in the intro-
duction. In particular, we study the essential image of the objects Er and E¢ defined
in Section 4 via the equivalence between Ku(Y) and Ku(P?, By) of Proposition 2.10. We
show that these objects are stable with respect to tilt-stability o,,—1 on D" (P3, By) by
a wall-crossing argument.

For this purpose, we will inevitably work with details about the category DP(IP3, By)
and we will prove some additional properties used for the computation, which are also of
independent interest. This is the only section where DP(P3, By) is involved. For readers
not familiar with this setting, there is no harm to skip the whole section, since the only
result that we will use in the rest of the paper is Theorem 5.19.

5.1. More on the equivalence between Ku(Y') and Ku(P3, By)

Recall that the construction of the stability condition o on Ku(Y') is via pull-back
of the stability condition induced on Ku(P?3,By). In particular, in order to prove the
stability of an object F in Ku(Y'), we need to show that ¥(p*E) in Ku(P3, By) is stable.
In this section, we recall some properties of the functor ¥ which we will use in the next.

Recall from (2.6) and Remark 2.11 that p : ¥ — Y is the blow-up morphism. The
functor ¥ is defined in [13, Section 7, page 32] by

U(—) = m.(— ® E[1]) : D2(Y) — DP(P3, By). (5.1)

Here £ is the sheaf of right 7*By-modules on Y defined by the short exact sequence of
right ¢*Byp-modules

* o1, *
0— OPPS(}')/]P’E'(_Q) ® q* By —2> OPpg(J:)/]P*(_l) ® q¢* By — a,& — 0, (5.2)

where the morphism d_; 2 is defined in [37, Section 3.1 and 3.4]. We would not use
further details about d_; 2 here, but the following fact will be important for us.

Lemma 5.1 (37, Lemma 4.7]). The Oy -coherent sheaf Forg(£) is locally free with rank
2.

By [37, Lemma 4.12] and [13, Proposition 7.7], the image of some objects under ¥ o p*
is as follows:

Y(p*Oy) =0; W(p*Oy(—H)) =B_1; ¥(p*Oy(H)) = B:[1]. (5.3)
By [37, Lemma 4.10], the functor ¥ has a left adjoint functor

(=) =7"(=) @n5, £, (5.4)
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where £’ is a left 7*By-module on Y defined by the following short exact sequence of left
q* Bo-modules:

oL
0— OIP]PS(]:)/PS(_2) ® q* By —4 OJP’P;;(]:)/]P’3(_1) ®q*B1 = a,& — 0. (5.5)

Remark 5.2. The rank of torsion-free By-modules on P3 is always a multiple of 4 by
[13, Remark 8.4]. The functor ¥p* maps the characters A\; and Ay to the twisted Chern
characters

_ . 7 _ N 7
ChBol,SZ(\I’p (Al)) = (4a37 _g) and ChB()l,§2(\ij ()‘2)) = (_870a Z) (56)

respectively, as computed in [13, Proof of Proposition 9.10]. In particular, for an object
E in Ku(Y) with character 2A\; + 22, the twisted Chern character of Up*(E) is

bz} <al(0p" () = (=5,6,7). (5.7

5.2. Expression of Vp*(Er)

Let T' be a non-degenerate smooth elliptic quintic contained in a smooth cubic
threefold X (which is unique). By the formula (4.13), the object ¥p*(Er) sits in the
distinguished triangle

Up* (Ox(—H)) = Up*(Er) — Up*(Zr/x (H)) = . (5.8)

Recall that the morphism p is the blow-up along a line L on Y, and by Proposition 2.17,
the choice of L does not affect the stability of an object in Ku(Y). As a consequence,
we can choose L such that Up*(Er) has a more explicit and nicer description. More
precisely, given I' and X, we may choose the line L not contained in a plane on Y such
that:

Condition 5.3.

(a) The line L intersects X at a point P;

(b) the point P is not on the secant variety of I" (since X is smooth, the segment variety
of T does not contain X);

(c) the point P is only on finitely many lines on X.

By condition (a), the restriction of p to p~!(X) is the blow-up X of X in the point P.
By condition (c), a plane containing L intersects with X at either three points (counting
multiplicity) including P or a line through P. A fiber of 7|z : X — P? is either two
points or a line.
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By condition (b), the image mp~!(T") in P? is isomorphic to I'. By definition (5.1) and
Lemma 5.1,

Vp*(Or(H)) = Tr[1] (5.9)
for some torsion sheaf Tr supported on mp~1(T'). By (5.3), we have
Up*(Ox (H)) = ¥p*(Oy (H)) = Ba[1]. (5.10)
We deduce the distinguished triangle for one object in (5.8):
Tr — Up* (Ir)x (H)) — Ba[1] . (5.11)
In order to compute the other factor ¥p*(Ox(—H)) in (5.8), we consider the sequence
0—Ox(—H)—> O0x = 05— 0,
where S is a smooth cubic surface not containing P. The object
W O = Ts[1],

where T is a torsion By-module supported on mp~1(.S). On the other hand, by (5.3), we
have

Ty (Ox) = Up* (Oy (—H)[1]) = B_1[1].
In conclusion, we have the distinguished triangle
Ts = Up*(Ox(—H)) = B_q[1] & . (5.12)
Putting everything together, we observe the following property of ¥p*(Er).

Lemma 5.4. Let ' be a non-degenerate smooth elliptic quintic spanning a smooth cubic
threefold X . Then

Hom(B;[1], ¥p*(Er)) =0 (5.13)
for every i > 1.
Proof. By definition, the object Er is in Ku(Y"), so the object ¥p*(Er)) is in Ku(P?3, By).
Therefore (5.13) holds for i = 1,2, 3.

When ¢ > 4, we may apply Hom(B;[1],—) to the triangles (5.8), (5.11) and (5.12).
The vanishing holds for every factor, therefore (5.13) holds. O
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5.8. Potential destabilizing objects for W(p*Er) and ¥(p*E¢) in Coh™ (P3, By)

In this section, we prove some lemmas which will be useful to characterize the potential
destabilizing objects of U(p*Er) and ¥ (p*E¢). In order to do this, we need the following
natural definition.

Definition 5.5. Let F' be an object in Coh(P3, By), we define
.= 'HO?noP3 (F, Ops)

as the dual of F. Note that Ops is the center of the algebra By. The dual sheaf F*
becomes a left By-module. The double dual F** is a right Bp-module. When F' is a
torsion-free Ops-module, its double dual F** is reflexive as a Ops-module and we have
the natural inclusion

F — F** — F
as a right By-module. Here Fj is a torsion By-module and dim supp(Fy) < 1.
Recall that the tilt-stability condition o, g is defined in Proposition 2.13.

Lemma 5.6 ([/5, Lemma 3.2]). Let E be a 04, p,-semistable object in Coh” (P3, By) for
some ag > 0 and By € R. Assume that Ag,(E) =0 and rk(E) < 0. Then

E=B[1] for somei€Z andn € N.

Lemma 5.7. Let F' € Coh(PP3, By) be reflexive as an Ops-module with rank 4, then F = B;
for some i € Z.

Proof. As F' is a reflexive Ops-module, we may choose a general hyperplane section
P2 = H C P3 such that the restricted sheaf F|g is a By|z-module and locally free as a
Opg-module. Note that F|g is of rank 4 and torsion free. By [15, Proposition 2.12], the
rank of a By|g-module is multiple of 4. It follows that F| is a slope stable By|g-module
in Coh(H, By|g). By [15, Proposition 2.12], the numerical character

Ch(F|H> = Ch(Bl|H) + (0, 0, —m)
for some i, m € Z. By [44, Remark 2.2 and Lemma 2.4], we have
1> XBolw (Fla, Fla) = x(Bilg, Bilg) —2m = 1 —2m.

Hence, m > 0. We denote by 9t the moduli space of semistable By|g-modules with
numerical class [F|g]. By the same argument as that for [44, Theorem 2.12], this moduli
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space is irreducible and smooth of dimension 2m. A generic point in 9t stands for the
object Ker(B; - Oz), where Z is a 0-dimensional subscheme with length m on H. By
the semi-continuity property, we have

HomBolH(F|HvBi|H) 7£ 0.

As F|p is locally free with the smallest possible rank as a By-module, we have F'| g =
B;| . In particular, we have ch(F|g) = ch(B;|x), which implies

chg! o (Flp) = chg! »(B;) = Ap,(F)=0. (5.14)

For any T' € Coh(P3, By) such that dim supp(T) < 1, we have Homg, (T, F[1]) = 0 as
otherwise, by [15, Lemma 2.15] (same statement holds for (P3, By)-algebra), F is strictly
contained in another torsion-free Bp-module F’ with the same rank and degree. This
contradicts the assumption that F' is a reflexive Ops-module.

The object F[1] is therefore o, g-stable for oo > 0 and S > pigiope(B;). By (5.14) and
Lemma 5.6, we have F £ B;,. O

Notation: For an object I in DP(IP?, By), we denote H'(F) := Héoh(]?g By (F) for i € Z.

Corollary 5.8. Let F' be an object in Coh_l(IP3,Bo) with rank —4 such that F is 04, _1-
stable for o> 0. Then H™Y(F) is B;, and H°(F) is either 0 or a torsion sheaf such that
dimsupp(H°(F)) = 1.

Proof. By [16, Lemma 2.7(c)], the sheaf H~1(F) is torsion-free of rank 4, and the sheaf
HO(F) is either 0 or torsion supported in dimension < 1. Consider the double dual of
HL(F):

0—H YF) = (H ' (F)™ = F,—0. (5.15)
If F, is non-zero, then we have fio,—1(Fs) = +00 and the injective map
0 — Homgp, (Fs, ™ (F)[1]) — Homg, (Fs, F).

As (5.15) is non-split, we have Homp, (Fs, H~1(F)[1]) # 0. In particular, Homp, (Fs, F) #
0. This contradicts the stability of . Therefore, the sheaf H~!(F) is reflexive as an Ops-
module of rank 4. By Lemma 5.7, H~!(F) = B; for some i < 0.

If HY(F) is non-zero, we must have Homp, (H?(F), H~1(F)[2]) # 0, since otherwise
F=HY(F)®H 1 (F)[1]. Note that H~!(F) = B; is locally free, so the dimension of the
support of HY(F) must be 1. O
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5.4. Tilt-stability of ¥(p*Er)

We are now ready to show the stability of ¥(p*Er) with respect to o4,—1 for « large
enough. The following basic commutative algebra lemma will be useful.

Lemma 5.9. Let V' be a smooth proper variety and U be a smooth proper subvariety of
dimension n. Denote the embedding map by v : U — V. Let G be a locally free sheaf on
U, and F be a coherent sheaf on V' such that dim(supp(F) NU) = I. Then we have

Extt, (F,0.G) =0

fori<n—1.

Proof. Let m be the dimension of V| by Serre duality, we need to show that
Ext, (1.G,F) =0

for i > m —n + [ and every F as in the statement. By the local to global spectral
sequence, we have

EY? = HP(Extd, (1.G,F)) = Exth (1.G, F).

Since dim(supp(F) NU) = [, we have EY'? = 0 when p > [.

For any closed point = € U, since G is locally free on U, we have .G, = (93’; as an
Oy z-module. Since U is smooth in V, the quotient module Oy, admits a free resolution
of m — n + 1 terms. Therefore,

Exth, (1xG, F)z Z Bxtd (14Ge, Fu) = 0,

T

when ¢ > m —n+ 1.
As a consequence, the term EY? = 0 when p+q > m —n + [, so we get the Ext
vanishing as in the statement. 0O

Applying Lemma 5.9, we obtain the following result which allows to rule out some
destabilizing objects for ¥p* Er.

Lemma 5.10. Let I' be a non-degenerate smooth elliptic quintic spanning a smooth cubic
threefold X. For any F € Coh(P3, By) such that dimsupp(F) < 1, we have

Homgp, (F, Up*Er) = 0.
Proof. By using the property of adjoint functors and Serre duality, we have

Hompg, (F, Yp*Er) = (Hompg, (Yp* Er, F ®5, B_3[3]))" (5.16)
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~(Homoy, (p" Er, ®(F ®5, B_3)[3])))" (5.17)
=~ Homo, (B(F @5, B_3), p* Er @ Ky [1]). (5.18)

Recall from (5.4) that @ is the right adjoint functor of ¥. By Condition 5.3(c) on the
choice of P, the morphism 7 : X — P3 is generically finite and only contracts finitely
many lines. Thus we have

dim(supp(®(F ®g5, B_3)) N X) < 1.
By Lemma 5.9, we conclude that the Home_ in the formula (5.18) is 0. O

Proposition 5.11. Let I' be a non-degenerate smooth elliptic quintic spanning a smooth
cubic threefold. Then the object Wp* (Er) is in Coh™ (P3, By) and o, _1-stable for a > 0.

Proof. Step 1: By Condition 5.3 on the choice of P, the projection map from 7|3 :
X — P3 is generically finite except contracting (the transverse image of) finitely many
lines that across P on X. Note that p*FEr is locally free, hence by definition of ¥
in (5.1) and Lemma 5.1, the object W(p*Er) is contained in the extension closure of
{Tor<% Coh(P3,By)[1]}, where Tor<’ consists of torsion Byp-modules supported on a
O-dimensional locus. In particular, the object ¥p*(FEr) sits in the distinguished triangle

G[1] = U(p*Er) = T =, (5.19)

where G € Coh(PP3,By) and T is a torsion Byg-modules supported on a 0-dimensional
locus.

Step 2: To show that Wp*(Er) € Coh™'(P3,By), it is enough to show that for any
torsion-free Bo-module D with rank 4 and slope psiope (D) > —1, the vanishing

Homgp, (D,G) =0

holds. Suppose Homp, (D, G) # 0, then Homp, (D[1], ¥(p*Er)) # 0. Taking the double
dual of D as in Definition 5.5, we have the distinguished triangle

Dtor — D[l] - D**[l] i>’

where Dy, is a torsion Bp-module supported at a locus of dimension at most 1. By
Lemma 5.10, we have Homg,(D**[1], U(p*Er)) # 0. By Lemma 5.7 and the fact that
Lslope (Bo) = —2, we may assume

D** = B, for some 7 > 1.

By Lemma 5.4, this can never happen. As a summary, the object ¥(p*Er) is in
Coh™!(PP3, By).
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Step 3: To show that W¥(p*Er) is o4,—1-stable for a > 0, we need to rule out the
possibility that

(i) ¥(p*Er) has a sub-torsion object which is a torsion By-module with support of
dimension at most 1;

(ii) W(p*Er) has a quotient object F in Coh™'(IP3, By) such that F is a 0y, _1-stable
with rank —4 and po,—1(F) < pta,—1(¥(p*Er)) for a > 0.

Indeed, a quotient object F' of W(p*Er) with rk(F') < —8 would not destabilize ¥(p* Er),
rk
chy

for Case (ii), let K be the kernel of ¥(p*Ep) — F in Coh™*(P3, By). Consider the exact
sequence in Coh(IP3, By):

as for a > 0 the slope converges to — Case (i) cannot happen by Lemma 5.10. As

0— H YK) = H Y (U(p*Er)) = H Y(F) = HOK) — HO(U(p*Er)) — H(F) — 0.

Note that the term H°(¥(p*Er)) is supported on a 0-dimensional locus or is zero. By
Corollary 5.8, H(F) = 0 and the object

for av > 0. Therefore By[1] does not codestabilize ¥(p*Er). We may assume F = B; for
some 1 < —1.

Note that K € Coh™"(IP?, By), so we have chy | (K) > 0 which implies chy, (F) < 6.
Therefore, we may assume F = ; for some i > —2.

In either case of i = —1, —2, by Serre duality and the fact that U(p*Er) is an object
in Ku(P?,By), we have

Homp, (¥(p" Er), Bi[1]) = (Homg, (Biys, ¥(p"Er)[2])" = 0.

Therefore, Case (ii) can neither happen. We conclude that ¥(p*Er) is 0,,—1-stable for
a>0. O

5.5. Tilt-stability of $p*(E¢)
Let C be a smooth conic curve on Y. Similarly to the case of non-degenerate elliptic

quintics, we now study the o, _1-stability of the object ¥p*(E¢) for a large enough. We
choose the blown-up line L for p: Y — Y such that:
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Condition 5.12.

(a) The line L does not intersect the projective plane spanned by C;
(b) the plane spanned by L and a generic point on C' intersects Y at the union of L and
a smooth conic curve.

By Lemma 4.4, the object ¥p*(E¢) sits in the distinguished triangle:
Vp* (Oy (—H)#?[1]) = ¥p*(Ec) — ¥p*(Loy (6 (H))[-1]). (5.20)
By (5.3), the triangle can be simplified as
B®2[1] — ¥p*(Ec) — To, (5.21)
where
To i= Wp* (Loy (9 (H))[-1]) = Wp* (6c(H)[-1]).
The second equality is by noticing that ¥p*(Oy) = 0. By the choice of L as in Condition
5.12(a), the image C’ := w(p~1(C)) is a smooth conic in P3. By the definition of ¥ in
(5.1) and Lemma 5.1, the object T¢ is a torsion By-module supported on C”.

Lemma 5.13. Adopt the notation as abowve.

(1) As a Ops-coherent sheaf, Forg(Tc) = 087 .
(2) A torsion By-module with C' as its support has rank at least 2.

In particular, the sheaf Te is indecomposable as a By-module.
Proof. (1). Note that Vp*(E() is an object in Ku(P3, By), so we have
0 = Homp, (By, \I/p*(Ec)[’L]) = Homgp, (Bo, Tc 5, B_l[i])

for every i € Z. Denote the embedding map by ¢ : ¢’ — P3. By the definition of ¥ in
(5.1) and Lemma 5.1, the sheaf Forg(T¢) = t«(Fcr) for some rank 2 locally free sheaf
Feron C'. By (2.9), we have

0 = Homo,, (Ops, Forg(Tc ®@p, B-1)[i]) = Home_, (Oc, For ® Ocrli])
for every i € Z. This can only happen when For =2 02,2 .
(2). By the choice of L as in Condition 5.12(b), the Bp-algebra structure as in (2.8) on
a generic point on C is isomorphic to Matay2(C), the 2 by 2 complex matrices, as a C-
algebra. Since a Mats o (C)-module is at least of dimension 2 as a C-vector space, there is
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no torsion Bg-module supported on C’ with rank 1. In particular, T¢ is indecomposable
as a Bp-module. O

Lemma 5.14. If F € Coh(P3, By) is such that dim supp(F) < m, then Homg, (F, B;[j]) =
0, forj <2—m and alli € Z.

Proof. By Serre duality and (2.9),

Homg, (F, Bi[j]) = (Homg, (Bo, F ®p5, B-3-i[3 — j]))"
= (Homo,,, (Ops, Forg(F @5, B-3-)[3 = j]))" = 0

when3—353>1+m. O
Lemma 5.15. For any F € Coh(P3,By) such that dimsupp(F) < 1, we have
HOIHBO (F‘7 \I/(p*Ec)) =0.

Proof. We first show that for any sub-By-module F of Ty, the statement holds. By
Lemma 5.13, the sheaf F' is supported on C’, locally free with rank 2 as a sheaf on C’.
Moreover, any non-zero morphism f : F' — T¢ is injective. Applying Hompg, (—, Be_af) to
the short exact sequence

0FL T F —o, (5.22)
by Lemma 5.14, we have
Homp, (F', B®%[2]) = 0 and Homp, (F, B¥?[1]) = 0.
Thus the morphism
fo—: Homg, (Tc, B¥}[2]) — Homp, (F, B%7[2])

is injective. In other words, the composition of ev : T — B®%[2] in (5.21) with any

5.2
non-zero f is a non-zero morphism in Homg, (F, 66_93[2]) Therefore, in (5.21), any non-
zero morphism f : F' — T¢ cannot lift to a morphism from F to Up*(E¢). Note that
Hompg, (F,B_1[1]) = 0 by Lemma 5.14, so the statement holds for any sub-By-module F'
of Tc.

As for an arbitrary F' with dimsupp F' < 1, we make induction on its chy. Let g be a

morphism in Hompg, (F, ¥(p*Ec)). Applying Hompg, (F, —) to (5.20), we have
.. = Homp, (F, B_1[1]®?) — Homg, (F, ¥(p*Ec)) — Homg, (F,Tc) — ..

and since Homg, (F, B_1[1]) = 0, the morphism g is mapped to a morphism g¢’.
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Suppose g # 0, then ¢’ # 0 and Homp, (im(g'), ¥(p*Ec)) = 0 as im(g’) is a submodule
of Te. By induction, Hompg, (ker(g'), ¥(p* Ec)) = 0. Therefore, Homp, (F, ¥(p*E¢)) = 0,
which contradicts g # 0. O

Proposition 5.16. Let C' be a smooth conic curve. Then the object Vp*(Ec) is in
Coh™ (P?, By) and o, _1-stable for o> 0.

Proof. By (5.21), the object Wp*(E¢) is in Coh™ ' (IP3, By). To show that ¥(p*E¢) is
0q,—1-stable for oo > 0, we need to rule out the possibility that

(i) ¥(p*E¢c) has a sub-torsion object which is a torsion Bp-module with support of
dimension at most 1;

(ii) W(p*Ec) has a quotient object F in Coh™* (P2, By) such that F' is a 0y, _1-stable
with rank —4 and g, —1(F) < pia,—1(¥(p*Er)) for a > 0.

Case (i) cannot happen by Lemma 5.15. As for Case (ii), let K be the kernel of
U(p*Ec) — F in Coh™(P3, By), then we have the exact sequence in Coh(P?, By):

0—H YK) = B2 5 H YF) = HYK) = Te — HO(F) — 0.

By Corollary 5.8, we may assume H~!(F) is B; for some i < 0. Note that Bo[l]
has a larger slope than ¥(p*Er) with respect to 04,1, so we have i < —1. Since
Homp, (B¥?,B;) = 0 for every i < —2, the sheaf #~'(F) can only be B_; as well as
H~(K). Hence we have the sequence in Coh(P3, By):

0— HYK) = Tc — H(F) = 0.

By Lemma 5.13, the sheaf HO(F) is either with 0-dimensional support, or supported on
C’, locally free of rank 2 as a sheaf on C’. The second case cannot happen since the
slope of F would be larger than that of ¥(p*E¢). By Corollary 5.8, H°(F) = 0. In other
words, F' = B_1[1].

Since ¥(p*Ec) € Ku(P?,By), by Serre duality, we have

Homg, (¥(p"Ec), F) = (Homg, (B2, ¥(p"Ec)[2]))" = 0.

Therefore, Case (ii) can neither happen. The object ¥(p*E¢) is 0,,—1-stable for a >
0. O

5.6. No actual walls for Up*(Er) and Vp*(E¢)
By Propositions 5.11 and 5.16, we have the o, _1-stability of Up*(Er) (¥p*(E¢))

for o > 0. In this section, we show that o, _1-stable objects in Ku(P3,By) with this
character cannot be destabilized when « decreases.
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We first list the character chgoléQ of all possible destabilizing objects with respect to
the weak stability conditions o, 1. Recall that the rank of By-modules on P3 is always
a multiple of 4. We can write the characters of potential destabilizing subobjects and
quotient objects for Wp*(Er) and ¥p*(E¢) as

14

m§3JWﬁ@M+2M»:%—&&§J:M@@%%H—8—Mﬁ—b

14 ¢

- — = 5.23
5o, (623)
where a, b, c € Z. These characters have to satisfy the following conditions:

(a) The two characters have non-negative discriminant Ag, by Proposition 2.13.

(b) The two characters should be integral combinations of the characters of Chgolv <2(Bi)
for i = —1,0,1 by restriction to Coh(P2, Bg|p2) and [15, Proposition 2.12]. In par-
ticular, the set

{(4,1,%),(0,2,0),(0,0,1)} (5.24)

forms a Z-linear basis for all possible characters.

(¢) There exists o > 0 such that the two characters have the same slope with respect to
Oa,—1. In particular, both b and 6—b > 0. Indeed, as the objects are in Coh_l(]P’3, Bo)
we have b > 0, 6 — b > 0. Then the inequalities are strict since we are assuming the
objects have the same slope.

(d) Without loss of generality, we may assume that the character (4a,b, ) is the char-
acter of a destabilizing subobject. The equivalent numerical assumption is

da tk(Up* (21 +2X2)) 4

b7 chy (Upr(20 +2))) 3

as ¥p*(Er) and Up*(E¢) are o, _1-stable for o > 0.
Using these conditions, by a standard computation we obtain the following result.

Proposition 5.17. All possible solutions of (5.23) are:

(1) fora=Y7 6=0b=2, c=16;

4
(2) forozz%,
(i) a=—1,b="5, c=15;
(i) a=0,b=4, c=16;
(i) a=0,b=2, c=8;
(3) fora:i,azl,b:?),c:?).

Proof. We sketch the steps of the computation here. The first step is to rule out the
‘higher rank’ wall case. Namely, by the non-negativity condition (a), (¢) and (d), we
have:
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e b¥»—ac>0and (6—0b)2+ (£ — I)(—8—4a) > 0;
e 0<b<6;
e 3¢—Tb>0.

Combining these inequalities, one may deduce from a standard computation that —12 <
—8 —4a < 0. Then by condition (b) and (d), the possible pairs (a,b) are (—1,5), (0, 2),
(0,4), (1,1), (1,3), and (1,5). By condition (a) again, one can list all possible triples of
(a,b,¢). O

Proposition 5.18. Let E be a 04, 1-stable object in Ku(P?3,By) and Coh™ " (P3, By) with
chg(}éQ(E) = (—8,6,%). Then E is 04, _1-stable for any o < ap.

Proof. Suppose F becomes strictly semistable with respect to o,,—1 for some 0 < a <
. By Proposition 5.17, this may happen when o = %, % or @. Let us denote the
destabilizing sequence in Coh™ ' (P, By) as follows:

0—+S—FE—Q—0, (5.25)

where S and () are o,,_1-semistable objects with characters as those in Proposition 5.17.

Step I: We get rid of two cases when the destabilizing object is By *[1].
When o = %, if Case (2.i) or (2.ii) in Proposition 5.17 happens, then the Chern
character of the quotient object @ is

ChBOleQ(Q) = (_47 17_§) or (_8,2; _Z)

By Lemma 5.6, the quotient object @ is either By[1] or BY?[1]. In either case, we would
have

Hom(Bs, E[2]) 2 (Hom(E, Bo|1]))* # 0,

which contradicts the assumption that E € Ku(P3, By).

Step II: We show that Hom(B;,Q[i]) =0 fori >1and j =1,2,3.
Now there are three cases in Proposition 5.17 left. In Case (1) and (3), it is possible

to show that any o1z _ -semistable (resp. o1 ;) objects with character (0,2,2) and
1> ’

1

(—8,4,—1) (resp. (4,3, 3) and (—12,3, 2)) are ag,_l—s‘cable (resp. 01 _), using Defini-

tion 2.2 and similar computations as in Proposition 5.17. Both S and @ are o, _;-stable

in these two cases. In Case (2.iii), the object S with character (0,2,8) is also 05 -
4

stable. If @ is strictly o5 _,-semistable, we may reduce to either Case (2.i) or (2.ii).
1

1
Therefore, in any of the remaining cases, we may assume both S and @ are o, _1-stable.
For each B;, 1 < j < 3, apply Hom(B;,—) to the sequence (5.25). Since E €

Ku(P3, By), we have
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Hom(B;, S[i + 1]) = Hom(B;, Q[i]) (5.26)

for all ¢ € Z.

We next show that Hom(B;,S[i +1]) = 0 for i« > 1 and j < 0. In Case (1) of
Proposition 5.17, the object S is 0@’71—stable. Note that the character chgoléz(S) =
(0,2,2), by a standard computation on the potential walls, the object S is o,,_1-stable

for a € (0, @] We may let a; = % in this case. In Case (2.iii) of Proposition 5.17,
as S is 05 ,-stable, the object S is 04, ,—1-stable for some a; < %. In Case (3) of
2,

Proposition 5.17, we may let oy = i. By the choice of «; in each case, we always have

Case (1)
Case (2.iii) >
Case (3)

1603 — 1

/’[/0117_1(5) = 8

= oy 1 (Bol1]) = pray -1 (B,[1]) (5.27)

[SSIE ST

for j < 0. Note that both S and B;[1] are in Coh™"(P?, By) and ¢,,,1-stable for j < 0.
By (5.27) and Serre duality,

Hom(B,t3, S[i + 1]) = (Hom(S, Bj[2 —i]))* =0 (5.28)

for any j <0, i > 1. By (5.26), we have Hom(B;, Q[i]) =0 for ¢« > 1 and 1 < j < 3.

Step III: We show that Hom(B;,Q[i]) = 0 for ¢ < —1 and j = 1,2,3, or i = 0 and
j=2.3.

As By, By, Bs and Q are in the heart Coh™" (P3, By), we have Hom(B;, Q[i]) = 0 for
any j = 1,2,3 and i« < —1. Together with Step II, this implies Hom(B;, Q[i]) may be
nonzero only when ¢ = 0. In Case (1) of Proposition 5.17, as ChgoléQ(Q) =(-8,4,-7),
by a standard computation on the potential walls, the object Q is o4, _1-stable for
oy € (%, @], we may let a; = % In Case (2.iii) of Proposition 5.17, the object @ is
U@ﬁl—stable. Note that Chg(iS?(Q) = (-8,4, %), by a standard computation on the

potential walls, the object @ is 04, —1-stable for all ay € (0, %}, we may let a; =

1

Z.
In Case (3) of Proposition 5.17, the object @ is 04,,—1-stable for some a; < 1. By the
choice of a1 in each case, we always have

16ai-1 (50 (1)

16 2
o2 —16a7 + 9
Hay,—1(Q) = % Case (2.iii) < 2711 = fa;,—1(B2) < fia,,—1(B;)
2
% Case (3)

(5.29)
for 7 > 2. Therefore,

Hom(B;,Q) = 0 for j > 2. (5.30)
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Step IV: We show that the character of @ or Lg, Q cannot be in Ku(P3, By).
Now Hom(B1, Q) is the only possible non-zero space among all Hom(B;, Q[i]) for
j=1,2,3, i € Z. Therefore, the object

Lp, @ = Cone(B; ® Hom(B1, Q) — Q)
is in Ku(P3, By). By (2.22) in Definition and Proposition 2.15, the character
- _ 7
chg) 5(Lp, Q) € chy, o(Ku(P?,By)) C {(a,b, —3—2a)|a, beZ}.

On the other hand, in any case of Proposition 5.17, we have rk(Q) < 0 and (mio(—z)()@ >

— . Note that chg;éQ(Bl [1]) = (=4, —1,—1), so we have

8
chigya(Le Q) _ chpyo(Q) +hom(Br, Q) chgo(Bill) - 38 7
rk(Lp, Q) a rk(Q) + hom(B1, Q) rk(B1[1]) - 32 32°

We get the contradiction. Therefore, the object E does not become strictly o, _1-
semistable for any o < ap. O

Theorem 5.19. Let ' be a non-degenerate quintic elliptic curve spanning a smooth cubic
threefold on Y. Let C' be a smooth conic curve on'Y . Let o be the stability condition on
Ku(Y) as in Proposition and Definition 2.15 and Remark 2.18. Then the objects Er and
Ec are o-stable.

Proof. By Proposition 5.11, 5.16 and 5.18, the objects ¥p*(Er) and ¥p*(E¢) are in the
heart Coh™ " (P3, By) and o, _;-stable for every o > 0. Note that

1602 + 7
_— >

2 0.

Bz, ,(Er)=pz, ,(Ec)=

Thus ¥p*(Er) and ¥p*(E¢) are in (Coh_l(IP’?),BO))Sa B N Ku(P3, By).

By Lemma 5.10 and Lemma 5.15, both ¥p*(Er) and Wp* (E¢) satisfy the conditions
as those in Lemma 2.16. Therefore, they are stable with respect to the stability condition
defined in Proposition 2.15. By Proposition 2.10 and Remark 2.18, both of them are o-
stable. O

5.7. Example of C14

We give an example when Er is not expected to be o-stable.

Denote by Ci5 the divisor in the moduli space of cubic fourfolds parametrizing cubic
fourfolds containing a rational cubic scroll [23, Section 4.1.2]. Let I' be a non-degenerate
quintic elliptic curve in P5; then T" is contained in a rational cubic scroll ¥ C (I') (see [25,



48 C. Li et al. / Advances in Mathematics 408 (2022) 108584

Lemma 6.11]). Assume that ¥ C Y for some smooth cubic fourfold in P?, in particular,
the fourfold Y is in C;2. Consider the cubic threefold X := (I') NY, which contains ¥ by
our assumption. We point out that such X cannot be smooth.

Lemma 5.20. Let T’ be a non-degenerate quintic elliptic curve contained in a cubic scroll
Y in Y. Then the object Is,x(H) is in Ku(Y). If Iy x (H) is o-stable, then Er is not
o-stable.

Proof. Consider the exact sequence

0—Zs,x(H) = Ox(H) = Og(H) — 0.
Note that ¥ is defined by a quadric in P4 = (I') C P, so its canonical bundle is wy =
Os;(—2H). Moreover, we have x(Ox(tH)) = 3t> + 2t + 1. Then by Kodaira vanishing
we have H!(Ox(—H)) = 0 for every i. Similarly we compute H!(Oyx) = H(Ox(H)) =0
for i #0, H*(Os) = C, H(Ox(H)) = C>.

Applying Hom(Oy (mH), —) to the sequence for m = 0, 1,2, we observe that Zs,/x (H)
is in Ku(Y"). In particular, by Serre duality, we have

Is/x(H) € Oy (—2H), Oy (—H)). (5.31)
Recall from Definition 4.3 that:

Er = pr(Ir(H)) = Roy (-m)Roy (—2m)Loy (Zr(H)) = Roy (—m)Roy (—2m) (Zr/x (H)).

Hom(Zy,x (H), Er) = Hom(Zs, x (H ), Roy (- m)Roy (—2m)(Zr/x (H)))
= Hom(IZ/X(H)aIF/X(H)) # 0.

Since ch(Ox) = ¥ — 2H?® + {; H*, we have
Ch(IE/X(H)) = Ch()\l) + Ch()\g) + s,

where s = H?—Y is a class in H*?(Y, Z)prim. In particular, H?s = 0 and pi,(Zs x (H)) =
o (Er). Therefore, if Wp*(Zy,/ x (H)) is in Coh™(P?, By), then it will destabilize Fr with
respect to o. 0O

In [52, Section 5], the authors give a classification of walls for stability for objects with
non-primitive Mukai vector with square 2 and divisibility 2 on a K3 surface. In our more
general noncommutative setting, we expect similar results hold for the singular moduli
space My (2A1 + 2)\2).
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Question 5.21. Let Y be in C19, I'; ¥ and X be as those in the lemma. We expect that
Ix/x(H) is always o-stable. Moreover, the object Er is strictly o-semistable and o is on
the flopping wall predicted by [52].

6. Application: Lagrangian fibration and twisted family of intermediate Jacobians
We are now ready to prove Theorem 1.3. Let Y be a smooth cubic fourfold, and fix
Vg = A1+ Ao, v = 2A1 + 2)s.

By [12], we have full numerical stability conditions on Ku(Y"). In particular, we choose
0¢ which is generic with respect to v, and also is in a chamber whose closure contains
the stability condition o. By Theorem 3.1, there exists a projective moduli space M :=
M, (v), which admits a projective hyperkéhler resolution M , deformation equivalent to
0’G10.

For a very general Y, we can just take g = 0. However, the example in Section 5.7
shows that a change of the stability condition is necessary in special cases.

Recall from Section 4 that, for every elliptic quintic I" contained in a smooth hy-
perplane section of Y, we have an object Er € Ku(Y). We further denote by M, the
locus of the objects of the form Er in M, which is identified with an open subvariety
i: My — M. Note that My is non-empty, since by Theorem 5.19 and our choice of oy,
we know that Er is og-stable. Similarly, by Theorem 5.19 we have a og-stable object F¢
for every smooth conic C' in Y.

Recall that by Proposition 4.5(2), each Er is supported on a smooth cubic threefold.
We define a morphism

7o 1 My — Py P9V,

which sends each Er to its support. Here Py parametrizes smooth hyperplane sections
of Y. By definition, this morphism is induced by a linear series on Mj: for every point
x € P®, consider the linear divisor in Py given by the cubic threefolds which span
hyperplanes containing z in P®. Its preimage in My is the divisor

D, := {Er | Supp(Er) spans a hyperplane containing z in P°}.

Denote this linear series on My by |D|. Note that the fiber of 7y over a point correspond-
ing to a smooth cubic threefold is the moduli of Er on that threefold, hence is affine and
irreducible by Remark 4.2 and Proposition 4.5(2). Hence the elements in |D| are prime
divisors.

Now define a line bundle on M as follows: by taking closure, each divisor in |D]
extends to a prime divisor in M. The closures of generic elements in | D| are algebraically
equivalent divisors on M. Since M is simply-connected, we know that the closures of
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generic elements in |D| are linearly equivalent. This defines a line bundle £. We use |L|
to denote the complete linear series associated to £, which is at least 5-dimensional by
our construction.

Recall that two birational hyperkédhler manifolds are isomorphic outside a locus with
codimension at least 2 (see [26, Section 2.2]), hence the line bundles on each are naturally
identified. Now we have the following result by Matsushita:

Proposition 6.1. There exists a projective hyperkdhler manifold N birational to M , with
the following properties:

a) the birational map restricts to an isomorphism away from Bs(L);
b) the induced line bundle L on N is nef.

Proof. Note that |£| on M has no fixed divisor (fixed component), as it contains prime
divisors given as closures of elements in |D|. Now the existence of N with a) and b)
follows from [49, Prop. 1]. O

The aim of this section is to prove the following theorem:

Theorem 6.2. The line bundle £ on N is semiample. A multiple of it induces a La-
grangian fibration w: N — B.

Remark 6.3. We do not know whether B = P®, though by construction B contains the
open subset Py. It is in general a conjecture that the base of a Lagrangian fibration on
a hyperkéhler manifold is always isomorphic to a projective space.

To prove this theorem we need to introduce one more construction. Denote by X — Py
the family of smooth hyperplane sections of Y. In [58], the twisted family of intermediate
Jacobians of p : J — Py was constructed, where the fiber J; is the intermediate Jacobians
of the cubic threefold X for each point ¢t € Py. Note that the relative Hilbert scheme of
conics naturally maps to J, and we denote the image by Q.

Now for the family X — Py, consider the relative moduli space J— Py of semistable
instanton sheaves. By Remark 4.2, each fiber jt is isomorphic to the blowup of J; along
the involution of the Fano surface. We have the following relationship of J and J.

Proposition 6.4. The space J is isomorphic to the blowup of J along the image @ of the
relative Hilbert scheme of conics.

Proof. Note that there exists a quasi-universal family on J of instanton sheaves with
second Chern classes given by 1-cycles of degree 2. By [21, Theorem 4.8], there exists a
morphism J — J induced by taking the second Chern class. By the previous discussion,
we know this morphism is birational, with exceptional divisor in J mapped to Q C J.
Now the result follows from the universal property of blowup. O
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Now we have the following observation.

Lemma 6.5. The variety Jo := J\C is isomorphic to an open subset 0f]\7. More precisely,
it is isomorphic to the union of My and the open subset of the exceptional divisor over
the locus parametrizing objects of the form Py, @ Py, for disjoint lines. Moreover, this
open set is disjoint from the base locus of |L| on M.

Proof. Proposition 6.4 implies that Jy can be identified with the moduli space
parametrizing instanton sheaves Er and 7, /x ® Z,,,x for disjoint lines on any smooth
cubic threefold X C Y. Recall that Er, viewed as a torsion sheaf on Y, is a gg-stable
object in Ku(Y'). By Proposition 4.5(3), the sheaf 7, ,x @ Z,,/x projects to the op-
semistable object Py, @ Pp, defined in (4.1).

Hence the projection functor pre, induces a morphism Jy — M, which is an isomor-
phism over M. For the object Py, ® Py, € M with disjoint lines, the fiber of the morphism
is the open set of the P! parametrizing smooth cubic threefolds containing ¢; and 5.
Recall that M is given by the blowup of M along the singular locus. At Py, & P, it is
locally an A;-singularity, and the resolution produces a P!-fiber. Now the result follows
from the universal property of blowup.

The last assertion follows from the construction of |L]: it generically consists of the
closure of D, C My in M. A point in the exceptional divisor of M in the fiber over the
point Py, & Py,, for disjoint lines, is identified with a point in Jy, hence is associated to
a cubic threefold X. Now choose x ¢ X, then the point is not contained in the closure
of D,. This proves the statement. 0O

This implies the following result.
Lemma 6.6. The line bundle L on N is not big.

Proof. As Jy C M is away from Bs(L), by Proposition 6.1 a), we regard Jy as an open
subset of N. The important observation is that p : J — Py is a projective morphism
and @ is of relative codimension three. Hence the open set Jy can be covered by proper
curves that are contracted by p.

Now recall from [41, Corollary 2.2.7] that a divisor D is big if and only if

nD=A+E,

for some positive integer n such that A is an ample divisor, and E is an effective divisor.
In our case, for any effective divisor E, we can always choose a p-exceptional proper
curve C' C Jy C N not contained in E. With this choice we have

£.C=0A.C>0,EC >0,

so L' is not big. O
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Now we are ready to prove Theorem 6.2.

Proof of Theorem 6.2. The theorem follows from several results in the literature. Note
that |£| induces a rational map M --» P?, which sends an object Er to the point in P5
corresponding to the support of Er. We know that for any point in PV corresponding
to a smooth hypersurface, there exist Er supported on it. Hence the induced rational
map M --» P?" is dominant. So the litaka dimension (L) = (L) > 5.

On the other hand, since £’ is nef but not big on N, by [51, Cor 3.2], we have
q(L’) = 0, where ¢ is the Beauville-Bogomolov form. By [22, Prop 24.1], this implies
that the numerical dimension v(£’) = 5. Hence we have

By [31, Theorem 6.1], £’ is semiample. Now the assertion follows from [48, Thm. 1]. O
The following result completes the proof of Theorem 1.3.
Proposition 6.7. The hyperkdhler manifold N provides a compactification of J, i.e.
J=a1(Py) C N.

Proof. We know that J, j, M, M and N are birational to each other. Note that both
77 Y (Py) — Py and p : J — Py are projective morphisms. Now since both N and
J have symplectic structures, they are both relative minimal models. By [34, Theorem
3.52], m1(IPy) and J are isomorphic in codimension 1, hence related by a sequence
of relative flops by [32]. Moreover, the exceptional loci are covered by rational curves
contracted by 7 and p. However, as J — P is a family of abelian varieties, such a relative
flop cannot exist. Hence, we know that J = 7~ 1(Py). O

Note that this provides a different construction of the results of [58] and [57, Remark
1.10] on the existence of a hyperkahler compactification of J.

It remains an interesting question to determine all birational models of N for very
general Y, similarly to the work [57]. We plan to study this in future work. In this
paper, we focus on one flop between N and M , which can be explicitly described by our
construction.

Example 6.8. Recall that an open subset of the exceptional divisor of J parametrizes the
sheaves of the form F where C' C X is a conic. The blowdown morphism to Q@ C J C N
is defined by taking the residual line of C' in X. Hence the fiber of this morphism is
isomorphic to the P? parametrizing all conics contained in a fixed X and residual to a
fixed line.

On the other hand, the projection of F¢ into Ku(Y') gives the object E¢x, which is
op-stable by Theorem 5.19, and defines a point in M. Hence the fiber of this projection
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is isomorphic to the P? parametrizing all cubic threefolds containing a fixed conic C.
This explicitly describes a flop between M and N.

Remark 6.9. For a very general cubic fourfold Y, it is easy to see that the Picard rank
of M and N is two. In this case, we know that their movable cones are identified,
with boundaries given by the blow up and the Lagrangian fibration. This implies that
for such Y, there exists a unique hyperkédhler compactification of the twisted family of
intermediate Jacobians with a Lagrangian fibration structure. In particular, M and N
are not isomorphic and N is isomorphic to Voisin’s construction in [58].

7. Application: elliptic quintics and MRC quotients

In this section we prove Proposition 1.5. Let Y be a smooth cubic fourfold, recall that
we can write the semiorthogonal decomposition

DP(Y) = (Oy (—2H), Oy (~H), Ku(Y), Oy ).

Let I' C Y be an elliptic quintic, whose ideal sheaf is denoted by Zr,y. Recall from
Definition 4.3 that we have the following projection Er in Ku(Y):

Er :=pr(Zr;y (H)) = Roy (- m)Roy (—2m) Loy Ir)y (H) € Ku(Y).

By Proposition 4.5, if ' is non-degenerate and spanning a smooth cubic threefold X C Y,
then Epr = v, Fr where ¢, FT was defined in (4.4). In particular, it sits in the following
short exact sequence in Coh(Y):

0= Ox(-H)— Er = Ir/x(H) — 0.

Moreover, by Theorem 5.19, the object Er is stable in the moduli M = M, (2A\1 4+ 2\2),
where o is as chosen in Section 6.

Recall that for a variety X, a rational map p : X --» Y is the maximally rationally
connected (MRC) fibration of X, if the general fibers of p are rationally connected and
any rational curve in X intersecting a fiber over a general point of Y is contained in the
fiber. Let C be the connected component of the Hilbert scheme Hilb®™(Y') containing
elliptic quintics in Y.

Proposition 7.1. There is a rational map p : C --» M defined by the projection of
Ir)y (H) in Ku(Y'), which is the MRC fibration of C.

Proof. Consider the open subset U C C parametrizing non-degenerate quintic elliptic
curves on Y. Let Z be the universal family on Y x U parametrizing the objects Zp vy (H ).
Then the projection of Z in Ku(Y x U) is a flat family of op-stable objects in Ku(Y).
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Thus there is an induced morphism from U to M, defining the rational map p in the
statement.

Recall that Er is an instanton bundle over its support X, and I' can be identified with
the vanishing locus of a section of Er(H). As mentioned in Remark 4.2, for a generic
section, the vanishing locus is a locally complete intersection, connected and reduced
elliptic quintic. Hence we know that the general fibers of p are identified with open
subset of global sections of Er(H), hence the general fibers are rational.

To see that p is the MRC fibration of C, it is enough to note that by Proposition 6.1
there exists a hyperkéhler compactification of the locus My parametrizing Er. Now [19,
Lemma 1.4] proves the claim. O

A closely related question is about rational quartics on cubic fourfolds. The following
was conjectured by Castravet [19, Page 416], and follows from our results in Section 6.

Proposition 7.2. For any smooth cubic fourfold Y, the MRC quotient of the main compo-
nent of the Hilbert scheme of rational quartics on'Y is (birational to) the twisted family
of intermediate Jacobians J of Y.

Proof. It was observed in [19] that it is enough to show that J is not uniruled. This
follows from the existence of the hyperkéhler compactification of the twisted family in
Proposition 6.7. O

This is the only remaining case of MRC quotients of rational curves on cubic fourfolds:
the case of degree d < 3 is classical, while d > 5 was treated in [19].

Remark 7.3. Here we briefly recall the connection between elliptic quintics and rational
quartics. It was proved in [25, Section 8] that for a generic elliptic quintic in a generic
cubic threefold, we can choose a generic cubic scroll surface containing the curve, such
that the residual curve is a smooth rational quartic. Along this line, it should be possible
to show that the main components of the Hilbert schemes corresponding to these two
cases are stably birational. We do not need this result and leave it as an open question.
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