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Health co-benefits of climate change mitigation
depend on strategic power plant retirements and
pollution controls

Dan Tong®'%5, Guannan Geng ©35, Qiang Zhang ©®'*, Jing Cheng', Xinying Qin', Chaopeng Hong?,
Kebin He ©®3#* and Steven J. Davis ®2&

Reducing CO, emissions from fossil fuel- and biomass-fired power plants often also reduces air pollution, benefitting both climate
and public health. Here, we examine the relationship of climate and health benefits by modelling individual electricity-generating
units worldwide across a range of climate-energy policy scenarios. We estimate that ~92% of deaths related to power plant
emissions during 2010-2018 occurred in low-income or emerging economies such as China, India and countries in Southeast
Asia, and show that such deaths are quite sensitive to future climate-energy trajectories. Yet, minimizing future deaths will also
require strategic retirements of super-polluting power plants and deployment of pollution control technologies. These findings
underscore the importance of considering public health in designing and implementing climate-energy policies: improved air

quality and avoided air pollution deaths are not an automatic and fixed co-benefit of climate mitigation.

of humans’ exposure to harmful air pollutants such as fine

particulate matter with an aerodynamic diameter of 2.5 pm
or less (PM, ;) and ~40% of climate change-causing CO, emissions
in recent years'~. Historically, the health risks posed by such air
pollution have been mediated by stringent environmental policies
and emission standards focused on reducing end-of-pipe emis-
sions from fossil fuel-fired power plants**. But increasingly, stud-
ies have pointed out the large health ‘co-benefits’ of reducing use of
fossil fuels’™". Specifically, prior studies have quantified the extent
to which the energy transition entailed by international efforts to
limit the increase in global mean temperature to well below 2°C
(ref. *) and to ‘pursue efforts’ to avoid a 1.5°C increase'’ would also
reduce air pollutant emissions'®>'*"”. Yet such health co-benefits are
not ensured and may be unevenly distributed depending on details
of regional climate—energy and clean air policies>'>'*. In particular,
for the power sector, differences in the timing of changes, the man-
agement of existing generating infrastructure and the level of air
pollution emissions standards may each result in large differences
in the number and location of annual and cumulative air pollution
deaths this century. Yet, despite enormous implications for human
health and the overall benefits of climate change mitigation, there
has been no comprehensive accounting of the sensitivity of public
health outcomes to differences in unit-level management decisions
in the global power sector.

Here, we develop a data-driven method for quantifying the fos-
sil fuel- and biomass-fired power-related health co-benefits of dif-
ferent climate-energy and clean air policies, resolving scenarios at
the level of individual generating units (Extended Data Fig. 1) and
highlighting policies that yield the greatest health benefits while also
meeting different climate goals. Details of our data sources, models,
scenario design and analytic methods are provided in the Methods.

( i lobally, electricity generation accounts for about one-seventh

In summary, we first use a worldwide database of power plants,
the Global Power Emissions Database (GPED)?, to assess the health
impacts of emissions from operating power plants by region, fuel
type and capacity in 2010, as well as from identified super-polluting
units?”’. We then calibrate the power unit fleet (supplementing
new-built and retired units) and CO, and air pollution emissions for
the period 2011-2018 using the real information (the GPED-2018;
Supplementary Notes 1 and 2). On the basis of the disproportionali-
ties between generating capacity and health impacts identified, we
define three retirement strategies: one that allows power plants to
operate for their historical expected lifetime before being replaced
(40years); one that prioritizes retirement of the most-polluting
plants but slightly reduces the global average lifetime (~33years);
and one that again prioritizes retirement of the most-polluting plants
but also substantially reduces the average lifetime to ~26years to
adapt stringent climate target (Supplementary Table 1 and Extended
Data Fig. 2). Note that the regional electricity demand being met by
biomass- and fossil fuel-fired plants we obtained from the Global
Change Assessment Model (GCAM)*' is unaffected by these retire-
ment strategies; that is, we assume a coal-fired plant retired early is
only replaced by a newer (more energy efficient and less polluting)
coal plant to meet projected demand for coal electricity. In addi-
tion to retirement strategies, we also define three levels of pollution
control technologies: the first in which pollution removal efficien-
cies of all operating units are kept to the 2018-level for reference
(that is, reference); the second in which any units whose pollution
removal efficiencies below the 2018 average are brought up to that
average level of controls (that is, weak); and the last in which the
best-available control technologies are deployed on all units (that, is
strong; Supplementary Table 1).

On the basis of our developed top-down and bottom-up
combined projections model that represents changes at the level
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Fig. 1| Shares of PM, .-related deaths from global power plants as of 2010. a, Shares of total generating capacity (inner pie chart) and PM, .-related
deaths (outer ring chart) by fuel type (coal, gas, oil, biomass and other fuels such as waste, peat and coke oven gas). b, Shares of coal-fired power capacity
(inner pie chart) and PM, s-related deaths (outer ring chart) by unit size (<50 MW, 50-100 MW, 100-300 MW, 300-600 MW and >600 MW). ¢, Rank
ordering of coal-fired capacity by deaths per unit capacity (defined as 'death intensity’) reveals large disparities (coloured by unit size) and the horizontal
red lines indicate 50, 75 and 90% of total PM, ;-related deaths induced by coal-fired power plants. d, The top 15 death intensity of coal-fired power units

by region and unit size.

of individual generating units (Supplementary Notes 3-5), start-
ing from 2018, we then model future unit-level power plant emis-
sions (both CO, and air pollutants such as main PM, ; precursor
species SO,, NO, and primary PM, ;) under fixed socioeconomic
development (the Shared Socioeconomic Pathways, SSPs: SSP2)
with a range of climate mitigation scenarios® that span four levels of
climate ambition (Representative Concentration Pathways, RCPs:
1.9, 2.6, 4.5 and 6.0Wm™ of radiative forcing) and each of the
three different retirement strategies (historical, performance-based
and early retirement) and three stringencies of pollution controls
(reference, strong and weak). It is noted that the deployment of
carbon capture and storage (CCS) has requirements for impurities
in flue gas streams (air pollution concentrations) to lower solvent
degradation®*°. Therefore, power plants with CCS should inher-
ently have a relatively high control level, which is also comprehen-
sively modelled in our emission projections. Finally, we evaluate the
global health impacts of PM, ; air pollution of our scenarios using
the chemical transport model GEOS-Chem?” and the epidemiologi-
cal concentration-response (C-R) functions (the Global Exposure
Mortality Model, GEMM)*.

Power-related health impacts

We estimate that there were 7.30 million premature deaths related to
PM, ; pollution in 2010 (our baseline year since most of the global
climate scenarios begin in that year; 95% confidence interval (CI),

1078

6.84-7.74 million). Of this global total, 12% or 861,300 (95% ClI,
811,600-909,600) deaths were related to emissions from global fos-
sil fuel- and biomass-fired power plants in 2010 (Supplementary
Table 2). There are large disproportionalities between these deaths
and the fuel type and size of electricity generators producing the air
pollution (Fig. 1). For example, coal-fired plants account for 46%
(1,658 GW) of the world’s generating capacity (totally 3,570 GW;
Supplementary Table 3) in the GPED-2010 but 80% (689,100; 95%
CI, 646,300-727,300) of power-related air pollution deaths (red in
Fig. 1a; Supplementary Table 4). Further, among coal-fired plants,
smaller capacity units (<100 MW) represented only 9% of generat-
ing capacity but accounted for 16% of PM, ;-related deaths (113,100;
95% CI, 105,900-119,500; red and orange in Fig. 1b), while the
largest plants (=600 MW) represented 33% of generating capacity
(545 GW) but caused only 13% (89,800; 95% CI, 83,400-95,500) of
deaths (purple in Fig. 1b).

However, these global totals mask substantial disparities in the
emission intensities of developed and developing countries; in
many countries the disproportionalities between smaller capac-
ity, coal-fired units and related air pollution deaths are even larger.
Over 40% of the deaths (~300,000) were related to coal-fired plants
that represent <10% of all coal-fired capacity (Fig. 1c), mainly small
(<100MW) and super-polluting units in low-income and emerg-
ing economies such as India, the Middle East and Africa (Fig. 1d).
Further evaluation on all identified coal super-polluting units®
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(single- or multi-pollutants) again reflects such regional dispropor-
tionalities (Extended Data Fig. 3) and >90% of PM, ; deaths related
to global coal super-polluting units (341,200 in total) occurred in
low-income and emerging economies (Supplementary Table 5).
In contrast, regulation of coal-fired power plants in the developed
regions (for example, the United States and Europe) was largely
effective in protecting people from dying due to PM, ; air pollution.

Further, from 2010 to 2018, the disparities of health impacts
between developed and emerging economies enlarged due to the
continuous controls and coal retirements in the developed regions,
as well as the ever-lax regulations in low-income and emerging
economies except China, which benefitted from an ‘ultra-low’
emission standard in recent years® (Supplementary Table 6). With
the advanced controls of new-built units and retrofit/retirement of
old units during 2010-2018, as a result, the shares of capacity and
deaths related to super-polluting units of 2010 substantially declined
by 2018. For example, the remaining 8.0% of super-polluting coal
capacity (12.3% in 2010) contributed 18.5% of coal deaths in the
‘Rest of Asia’ in 2018 (72.1% in 2010; Supplementary Table 5).
The still-existing disproportionalities in generating capacity and
health impacts during 2010-2018, in addition to newly identified
super-polluting units, are used to define the ‘performance-based’
strategy that prioritizes power plant retirements according to the
estimated air pollution deaths caused per unit of generating capacity
(death intensity).

Health benefits of tailored retirement strategies

Demand for electricity from biomass- and fossil fuel-fired plants
increases during 2018-2030, after which such demand without
CCS decreases only in scenarios likely to avoid increasing global
mean temperatures by either 2.0 or 1.5°C (RCP2.6 and RCP1.9,
respectively; Supplementary Figs. 1 and 2). In turn, given steadily
increasing and aging populations (Supplementary Fig. 3), annual
air pollution deaths also increase until 2030 in many scenarios
(Fig. 2). If plants retire as historically and pollution controls are
weak, annual PM, .-related deaths in 2030 reach 0.93 million and
1.19million in RCP1.9 and RCP6.0, respectively (RCP2.6 and
RCP4.5 share the same electricity demand pathways as RCP6.0
during 2018-2030; small and lighter circles in Fig. 2a; hereinafter
we refer to this RCP6.0 scenario as the baseline). Reference con-
trols will further worsen the health burdens (reaching 1.05mil-
lion and 1.28 million in RCP1.9 and RCP6.0 in 2030, respectively;
Supplementary Table 7).

Between 2030 and 2050, differences in PM, ;-related deaths across
climate scenarios grow: again assuming historical retirement and
weak pollution controls, deaths in the baseline RCP6.0 reach about
three times the 2010 levels in 2050 (2.18 million per year) while
deaths are substantially 87% lower (291,900 per year) in RCP1.9
scenarios likely to avoid 1.5°C of warming due to the combination
of energy transition and CCS deployment (small and lighter grey
and purple circles in Fig. 2b, respectively). In contrast to the health
benefits of ambitious climate targets which occur mostly after 2030,
the deployment of pollution control technologies—focusing on
reducing the end-of-pipe emissions—can effectively and immedi-
ately lower pollution emission intensities (Fig. 2a, b). Indeed, wide-
spread deployment of strong pollution controls in the near-term
can mostly avoid increases in PM, ;-related deaths in 2030 and 2050
even where climate mitigation is weak (RCP6.0). More than half of
baseline PM, ;-related deaths (60-68%) can be avoided by deploy-
ment of strong pollution controls regardless of retirement strategies
in RCP4.5 and RCP6.0 as of 2050 (strong control group versus weak
control group in Fig. 2b). By 2050, under the most strong scenario
(RCP1.9 with early retirement and strong pollution control), there
are significant emission reductions (—90% of SO,, —82% of NO, and
—96% of PM, ; during 2010-2050; Supplementary Table 8) but not
equivalent health benefits (185,300 premature deaths compared to
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Fig. 2 | Mean annual change in CO, emissions and PM, ;-related deaths.
a,b, The relationship between annual average CO, reduction rate and

PM, .-related deaths under the scenario assemble in 2030 (a) and

2050 (b), spanning four levels of climate ambition (RCP6.0, RCP4.5,
RCP2.6 and RCP1.9), three different retirement strategies (historical,
performance-based and early retirement) and two stringencies of pollution
controls (strong and weak). The filled black circles in a show the mean
annual change in CO, emissions during 2010-2015 (and 2010-level

PM, .-related deaths) and 2010-2018 (and 2018-level PM, ;-related
deaths), respectively.

861,300 in 2010), implying future population increasing and aging
notably swallow part of health benefits from air quality improve-
ment, especially for the developing regions.

Annual changes in CO, emissions and PM, ;-related deaths (also
PM, ;-related years of life lost; Extended Data Fig. 4) differ as a func-
tion of climate mitigation as well as the different pollution control
stringencies and retirement strategies (Fig. 2; emission differences
are shown in Extended Data Fig. 5 and Supplementary Table 8). For
example, despite the different sign of annual changes in CO, emis-
sions under RCP6.0 (weak mitigation, grey circles, CO, emissions
still growing) and RCP1.9 (very strict mitigation, purple circles,
annual emissions decreasing), PM, ;-related deaths in 2030 are less
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Fig. 3 | PM, exposures and PM, ;-related deaths that are linked to emissions from global power plants. a,b, Regional PM, s exposure in 2030 (a) and
2050 (b). ¢, d, PM, ;-related premature mortality in 2030 (¢) and 2050 (d) under a series of combined scenarios (climate ambitions, retirement strategies

and stringencies of pollution controls). Hist., historical.

sensitive to climate pathway than to the stringency of pollution
control and retirement strategies (indicated by horizontal distances
between various circles in Fig. 2a). Therefore, if strong pollution
control is implemented, retirement strategy can determine whether
RCP6.0 or RCP1.9 have less power plant-related air pollution deaths
(dark circles in Fig. 2).

However, by 2050 the effects of retirement strategies on modelled
air pollution deaths have been narrowed because most of all the
units operating before 2018—including identified super-polluting
units—are replaced by the new units regardless of the retirement
strategy. Meanwhile, the effects of CCS deployment on air pollu-
tion deaths are particularly observed under ambitious climate
targets (for example, RCP1.9). Even under the weak control strin-
gency scenario, the addition of air pollution control technologies
through CCS deployment would substantially reduce the air pollu-
tion deaths. That is, almost all the power plant-installed CCS under
all RCP1.9 scenarios have more similar performances on air pollu-
tion deaths as of 2050 (185,300-351,400 deaths in RCP1.9 versus
623,500-3.00 million deaths in RCP6.0; the reference scenarios are
shown in Supplementary Table 7).

1080

Regional disparities

Although global changes in CO, and air pollution emissions vary
substantially across our scenarios (Supplementary Table 8), there
are drastic regional disparities in air pollution and health impacts.
For all the future scenarios, from 2030 to 2050, the disproportionali-
ties of changes between air quality and PM, ;-related deaths indicate
where extra efforts are needed to offset the increasing size and age
of the regional population (Fig. 3 and Supplementary Fig. 3). For
example, during 2030-2050, 72% of the global air quality improve-
ment (2.3-0.6pgm™; the eighth columns in Fig. 3a,b) can only
bring 56% of avoided pollution deaths (553,000-243,600 deaths; the
eighth columns in Fig. 3¢,d) under the ambitious climate target that
successfully avoiding 1.5 °C of warming (RCP1.9).

In many future scenarios, both the overall number of deaths
and the share occurring in low-income and emerging economies
grow, such as in India, the Middle East and Africa. Most strik-
ingly, PM, ;-related deaths related to the power plant emissions in
India almost quadruple between 2010 and 2050 under the base-
line scenario (historical retirements and weak pollution controls).
Moreover, in 2050, 90% of deaths in the baseline scenario occur in
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Fig. 4 | Cumulative avoided PM, ;-related deaths and CO, emissions 2010-2050. a-d, Accumulative CO, mitigations and avoided PM, c-related deaths
during 2010-2050 from RCP2.6 climate target with historical retirement (a), RCP2.6 climate target with early retirement (b), RCP1.9 with historical
retirement (¢) and RCP1.9 climate target with early retirement (d), compared with the RCP6.0 target with historical retirement. Note that all scenarios here

deployed the strong pollution control technologies.

Asia (1.96 million of 2.18 million; first column of Fig. 3d) due to
rapid projected growth in both fossil fuel-fired electricity demand
and population. In addition, the Middle East and Africa make up
more than half of PM, ;-related deaths outside Asia in the baseline
scenario in 2050 (65%, 140,700 deaths in 2050) despite comparable
population-weighted PM, ; exposure in either the United States or
Europe (first column of Fig. 3b).

Strategic power plant retirements (either performance-based
or early retirements) especially help in low-income and emerging
economies whose power-generating units are young but which tend
to have smaller generating capacities, lower efficiencies and higher
pollution emissions per unit capacity (Fig. 1c). For example, in
China and India, 77,200 (~52% of avoided deaths in RCP1.9 with
strong pollution control) and 136,100 (44%) PM, ;-related deaths
in 2030 could be avoided by early retirement and replacement of
generators, respectively (the last two columns in Fig. 3¢). Our addi-
tional coal super-polluting isolated simulation further shows that,
strategic power plant retirements under RCP1.9 with strong pollu-
tion control (early retirement and strong pollution controls) would
rapidly and entirely eliminate the identified super-polluting units
by 2030 compared to historical retirement and under the histori-
cal retirement there still exist 5.2% of coal super-polluting capacity
whose ages are young, far from ‘aged out] but electric efficiencies
and end-of-pipe controls are poor by 2030, which could still con-
tribute 29.5% of PM,,-related deaths in 2030 (Supplementary
Table 5). The early (and performance-based) retirement of
identified super-polluting units through strategic power plant
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retirements, especially for low-income and emerging economies,
could substantially reduce the health burden under the same
climate-energy and clean air pathway.

Cumulative health benefits

Although ambitious climate mitigations under RCP2.6 or RCP1.9
reach low levels of annual air pollution deaths by 2050, large num-
bers of deaths can be avoided in the intervening decades by targeted
early retirement and replacement of super-polluting power plants
(Fig. 4). For example, comparing RCP6.0 and RCP2.6, both with
strong pollution controls and power plants retiring as they have
historically, we estimate a cumulative 149 Gt of CO, emissions and
4 million air pollution deaths would be avoided between 2010 and
2050 (Fig. 4a). However, when coupled with a strategy of early retire-
ment, the cumulative avoided CO, emissions and deaths increase
by 37 and 125% to 204 Gt and 9 million, respectively (Fig. 4b). The
additional CO, emissions avoided are due to improved energy effi-
ciency of replacement power plants (climate scenarios dictate the
demand for biomass- or fossil fuel-electricity but newer plants may
be considerably more energy efficient).

The cumulative benefits of strategic retirements under the
even-more-ambitious RCP1.9 are also large: 18% more CO,
emissions and 100% more deaths avoided (from 235GtCO, and
6million deaths avoided to 278 Gt and 12 million deaths avoided;
Fig. 4c,d). And as suggested by the red areas of the maps in Fig. 4,
millions of these avoided deaths are concentrated in India, China
and the Rest of Asia region. In fact, 45% of the PM, ;-related deaths
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under the RCP1.9 + early retirement scenario is occurred in India
and four-fifths of the rest avoided deaths are in either China or the
Rest of Asia region.

Discussion

Our detailed and dynamic analysis of climate, pollution and health
impacts from the future power systems at the level of individual gen-
erating units reveals that air pollution deaths are not an automatic
and fixed co-benefit of all climate mitigation. Rather, pollution con-
trols and strategic retirements of the most-polluting and harmful
power plants may ultimately determine the extent to which health
co-benefits are realized. This is especially clear when considering
the different time scales of these various technological and policy
interventions: whereas the evolution of electricity systems as a result
of long-term climate policies may greatly diminish annual air pol-
lution deaths by 2050, pollution controls and retirement/replace-
ment decisions could have equally large effects on annual deaths
over the next decade, leading to millions of cumulative avoided
deaths, especially in Asia. The elimination of super-polluting units
especially in China, India and the Rest of Asia would have a dis-
proportionately large health benefit in those regions and worldwide
and international cooperation to support such retirements/retrofits
is important. Our analysis on health co-benefits of climate change
mitigation policy implies different and targeted policy implications
compared to more recent results**’.

Several important uncertainties and limitations apply to our
findings. First, the trajectory of future emissions depicted in our
scenarios reflects an assumption that existing electricity-generating
units either ‘age out’ at historical retirement schedules or else are
strategically targeted for retirement and replacement with more
efficient and lower-emitting units. In addition, the fuel-specific
electricity demand projected from the GCAM model implies its
underlying specific-power plants assumptions®. The scenario
design of this study on different strategic retirements may induce
uncertainty by ignoring the feedback of retirement strategy on the
changes of cost and power demand (Supplementary Note 4 gives
detailed discussion and evaluation). Second, the current resolu-
tions of Integrated Assessment Models (IAMs) are relatively coarse
compared to our unit-level emission projections model and the base
year of these IAMs is far to present for 10years and may be greatly
different from current development. Only one model was used in
this study (GCAM), while different IAMs have various projections
on future electricity demand and electricity supply structure. All of
these uncertainties would affect the estimates of energy consump-
tion, final pollution emissions and premature deaths and detailed
discussions are presented in Supplementary Note 4. Third, given
unavailability of more detailed planning information, we project
that emissions of newly built units will occur at the same locations as
retired ones. Larger health benefits might be obtained if we instead
optimized the siting of newly built units®. Fourth, the degree of air
quality and health benefits is subjected to the zero-out method we
used and the effects of future meteorological conditions. Several
sensitivity simulations we conducted indicate relatively small effects
on the power-related pollution estimates (Supplementary Note 6).
In contrast, future meteorological conditions will be influenced by
climate change and remain highly uncertain, although several stud-
ies have projected that meteorological changes may in fact worsen
air quality in key regions such as China®, such that we may underes-
timate the deaths avoided by reducing air pollution emissions.

Regardless, by modelling differences in emissions and deaths at the
unit level, our results add important nuance to policy-relevant discus-
sions of health co-benefits of climate change mitigation by showing that
realizing such benefits often depends on supplementary programmes
to deploy pollution control technologies and to target super-polluting
units for retirement and replacement, especially for coal power elimi-
nation. Even assuming successful climate change mitigation and
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strong pollution controls, implementing our data-driven approach to
targeting super-polluting units for retirement and replacement could
save millions of lives worldwide by the middle of the century.
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Methods

Unit-based emission projections. The GPED we previously developed” contains
unit-based information (for example, unit capacity, start year of operation,
technologies in place for desulfurization, denitration and dust removal) of fossil
fuel- and biomass-burning power generators in service as of 2010, as well as

CO, and pollutant emissions (SO,, NO, and primary PM, ;). We first update the
GPED—Dby integrating the latest World Electric Power Plants Database and local
datasets—to track regional power unit development (new-built and retired unit
information) and CO, and pollutant emissions during 2011-2018 (GPED-2018;
Supplementary Notes 1 and 2). Starting from the GPED-2018, a unit-based
top-down and bottom-up combined emission projection model that represents
future changes at the level of individual units is developed for this study to estimate
future fossil fuel- and biomass-burning power plant emissions worldwide through
2050, which is extended and adapted on the basis of the unit-based emission
projection model developed for China’s coal-fired power plants’.

The projection model is designed to simulate power plant fleet turnover by
tracking the lifespan of each power generation unit, which is modelled by region
(totally 31 regions; Supplementary Table 9) and fuel type (coal, natural gas, oil,
biomass and other fuels such as waste, peat and coke oven gas; Supplementary
Table 10) on an annual basis (Extended Data Fig. 1). Within each region and fuel
type, for a given year, the model first estimates the power supply capability of
in-fleet units (suppliable power generation) after implementing retirement policies,
which is determined by the operating-unit installed capacity and 2018-year
capacity factors. The model then estimates the power supply gap under the certain
fuel-type-specific electricity demand provided by future energy scenarios and fills
the gap using new-built same-fuel-type generating units. Note that the regional
electricity demand being met by biomass- and fossil fuel-fired plants is unaffected
by these retirement strategies. For example, we assume a coal-fired plant retired
is only replaced by a newer (more energy efficient and less-polluting) coal plant
to meet projected demand for coal electricity. By assuming different lifespan
and retirement polices for each unit in different mitigation pathways, the power
plant fleet structure then changes as a result of the retirement of old units and the
construction of new units. We then model the changes in emission factors at the
unit level by considering the evolution of end-of-pipe control technologies under
different pollution control strength assumptions (Supplementary Note 3).

Scenario design. Climate mitigation scenarios, coupled with different retirement
strategies and stringencies of pollution controls, are specifically considered as
future mitigation options for global fossil fuel- and biomass-burning power plants.
We first derive future fossil fuel- and biomass-burning electricity demand under a
range of climate mitigation scenarios from the GCAM*' (http://www.globalchange.
umd.edu/gcam/). The GCAM is a global IAM that represents the behaviour of,
and interactions between, five systems: the energy system, water, agriculture and
land use, the economy and the climate. A new scenario framework, combining
pathways of future radiative forcing and their associated climate changes (RCPs)*
with alternative pathways of socioeconomic development (SSP1-5)*, is developed
for climate change research. Each SSP-RCP combination represents an integrated
scenario of future climate and societal change, which can be used to investigate
the mitigation effort required to achieve that particular climate outcome, the
possibilities for adaptation under that climate outcome and assumed societal
conditions and the remaining impacts on society or ecosystems®. To eliminate the
effects from the socioeconomic conditions, we combine moderate SSP narrative
(SSP2) with four levels of RCP scenarios (6.0, 4.5, 2.6 and 1.9 W m™) as our
climate-energy scenarios. In detail, the GCAM model directly provides the region-
(31 regions), fuel- and with/without CCS-specific electricity demands every 10yr
from 2010 to 2050. We linearly interpolate regional power demand at every 10-yr
interval to obtain future annual demand (2018-2050). We also proportionally
adjust the power generation demand from GCAM model due to the inconsistency
between real historical electricity and projections from the GCAM in the year of
2018. In addition, the energy consumption in the power sector provided by the
GCAM is not used in our study, which would be derived through our unit-level
projections model (power generation multiplied by fuel consumption rate).
Various retirement strategies would alter the power plant fleet structure and
further influence the future operating units’ emission characteristics. Historically,
statistical results show that fossil fuel-fired units generally operate for ~40yr
globally, which reflects the decision to retire a unit or power plant with the
economic consideration of operating costs, replacement costs and revenues™. Prior
studies highlight the substantial decreases of the lifetime or operation of existing
energy infrastructure to meet the 1.5°C climate target. It is estimated that even
if no new plants are built, the lifetimes of existing units as of 2017 are reduced
to ~35yr in a well-below 2 °C scenario or 20yr in a 1.5°C scenario”. Apart from
reducing the lifetimes of existing units to adapt strict climate targets, our study also
highlights large disparities in health impacts at the unit level*’. Super-polluting
units (higher emission intensity than regional mean) that we previously defined
represent larger undesirable emissions that should be reduced first. We therefore
design three different retirement strategies to assess the health benefits from
strategic power plant retirements, including historical, performance-based and
early retirements (Supplementary Table 1). Historical retirement allows power
plants to operate for their historical expected lifetime before being replaced

(40yr). Performance-based retirement prioritizes retirement of the most-polluting
plants but slightly reduces the global average lifetime (~33yr) and all the current
operating capacities specifically are linearly retired from 2018 to 2050. More
aggressively, early retirement again prioritizes retirement of the most-polluting
plants but also substantially reduces the average lifetime to ~26yr (all the

current operating capacities are linearly retired from 2018 to 2030). The detailed
description on the retirement function development at the individual level is
shown in Supplementary Note 4.

The efficiencies of end-of-pipe controls would determine the ultimate emission
level. By 2018, operating units, especially in the developing regions except China,
are in poor pollution controls. We thus design three stringencies of pollution
control in response to air pollution induced by the power sector and possible
implemented clean power actions (Supplementary Table 1). The reference control
reflects the future emission changes that there is no any air pollution control policy.
Under the reference scenario, we assume the pollution removal efficiencies of all
the operating power units will remain at the 2018-level (Supplementary Tables
11 and 12) and new units to fill the power supply gap will be built with pollution
controls whose removal efficiency equals the mean removal efficiency of in-fleet
units (Supplementary Tables 13 and 14). Weak and strong controls refer to lax and
strict environmental regulations, respectively. Under the weak control strength,
we assume that all the operating power units whose pollution removal efficiencies
are below the 2018 average are brought up to that average level of controls and
new units to fill the power supply gap will be built with advanced combustion
technology and relatively high-efficient control measures whose removal efficiency
equals the mean removal efficiency of units built in 2018. Strong control strength
assumes that all the operating power units whose removal efficiencies are lower
than the best-available control technologies will be gradually retrofitted to meet the
best level derived from the related documents such as in the European Union and
China***. And new units will be built with the most highly efficient combustion
technologies and control measures whose removal efficiency equals that of the
best-available technologies.

Pollution controls under each stringency applied to the same fuel type with
CCS and without CCS are particularly different because strict air pollution
concentrations are required for impurities in flue gas streams (air pollution
concentrations) to lower solvent degradation'***=*>*". For power plants with CCS
device, there are large ranges for air pollution concentrations*~** and our estimates
for the requirement of average control efficiencies are, respectively, 80-95%,
60-85% and 96-99.3% for SO,, NO, and PM, ;. Therefore, power units with
CCS device are modelled with additional air pollution controls if their control
efficiencies are less than our assumption. That is, pollution control levels are
not only determined by the local environmental policies but also affected by the
penetration rates of CCS deployment.

Additionally, the differences of retrofit process and the removal efficiency
of best-available technology among different regions (for example, between
developing countries and developed counties) and fuel types are comprehensively
considered according to their emission characteristics, previous environmental
policies and future possible environmental challenges. The retrofit order is
basically the reverse of the retirement order but low-efficient controls is our
priority. The description of retrofit functions at the individual level is shown in
Supplementary Note 5.

Estimates of PM, ; concentrations. The global GEOS-Chem model” is used

to calculate the fractional contribution of global power plant-related emissions

to global PM, ; concentrations at the grid level. Determined by the horizontal
resolution of GEOS-Chem, the fractional contributions are calculated on a 2°
latitude X 2.5° longitude grid. These spatially varying fractions are then multiplied
by the 0.1°x 0.1° global annual mean PM, ; concentrations taken from GBD2013 in
the year of 2010" to get power plant-related PM, ; concentrations. The 0.1°X0.1°
GBD2013 grid cells are applied with the simulated fraction from the 2°x2.5° grid
cells they fall in.

We use the GEOS-Chem v.11-01 driven by assimilated meteorological
fields from the NASA Global Modeling and Assimilation Office’s Modern-Era
Retrospective analysis for Research and Applications v.2 (MERRA-2)*. The model
has a horizontal resolution of 2° X 2.5° and 47 vertical layers. The model is run
with full 0,—NO,—CO-VOC-HO, chemistry and includes sulfate-nitrate—
ammonium™*, primary” and secondary’® carbonaceous aerosols, mineral dusts'*
and sea-salts*’. Sulfate-nitrate-ammonium is modelled by the ISOROPLA-II
thermodynamical equilibrium. Primary organic aerosols are simulated as
primary organic carbon in the model and then multiplied by 1.8 to account for
the oxygen molecules contained when calculating ambient PM, ; concentrations.
Secondary organic aerosols are predicted on the basis of rate constants and
aerosol yield parameters determined from laboratory chamber studies*".

The aerosol simulations have been extensively evaluated using ground-based
measurements'*'”*” and aircraft measurements®*.

The global sectoral anthropogenic emissions of NO,, SO,, CO, NMVOC, NH;,
BC and OC are used to drive GEOS-Chem simulations, which are derived in
different ways. Except for emissions from the power sector, monthly gridded NO,,
SO,, CO, NH;, BC and OC emissions at 0.1° X 0.1° resolution from other sectors
(industry, transport, residential and agriculture) as of 2010 are directly obtained
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from the HTAP_V2 dataset™. Annual gridded emissions from the power sector
developed in this work are converted to monthly gridded emissions at 0.1°x0.1°
resolution in proportion to the monthly emissions grid maps of the energy sector
from the HTAP_V?2 dataset for 2010. These high-resolution emissions (0.1°X0.1°
resolution) are automatically remapped to 2°x2.5° in the model simulations. It

is noted that annual emissions from the power sector in 2010 are allocated to the
0.1°x0.1° grids according to units’ geolocations. Due to very little contribution of
the power sector to anthropogenic NMVOC emissions, we assume that NMVOC
emissions are held constant in all model simulations. Anthropogenic NMVOC
emission are taken from the monthly RETRO inventory with speciated NMVOC
emissions’. MEGAN emissions are used for biogenic NMVOC™ and the monthly
GFED?3 dataset is used for the biomass-burning emissions*. Other individual
emission sources, such as aircraft®, shipping”, soil NO, (ref. ) and lightning NO,
(refs. ©1-°%), are also included in the simulation. The simulations are conducted

for the entire 2010 year with a 6-month spin-up starting from July 2009. The

24-h average PM, ; concentrations in the bottom layer of the model are taken to
represent the ground-level concentrations.

We also evaluate the base model simulations against ground measurements of
PM, s, ground measurements of aerosol optical depth (AOD), satellite-retrieved
AOD and global burden of diseases (GBD) PM, ; fusion dataset in 2010
(Supplementary Note 7). In summary, our modelled AOD and PM, ;
concentrations agree well with those datasets (Supplementary Figs. 4-7) and are
comparable to other global simulation studies"®".

The zero-out approach is used to simulate the fractional contributions of
global power plant-related emissions to PM, ; concentrations and related deaths
(Supplementary Table 15 gives model simulation design). In particular, a base
simulation contains global anthropogenic and natural emissions and the base case
subtracts the global anthropogenic power plant-related emissions of NO,, SO,,
CO, NH;, BC and OC produced to derive the contributions of global power plants
to the global PM, ; concentrations. That is, all regional emissions related to the
power plants are shut off together in each simulation. The second set of base-year
cases separately subtracts the anthropogenic power plant-related emissions
produced within each of fuel types, capacity sizes and super-polluting units to
derive the corresponding contributions of fuel type- and sized specific-power
plants to the global PM, ; concentrations, as well as the contributions of identified
super-polluting units. Similarly, the future scenarios to split global power
plants-related contributions during 2011-2050 apply the same zero-out method
as the base-year case. The zero-out approach used here may introduce additional
uncertainties due to the nonlinear relationship between emissions and modelled
PM, ; concentrations. In addition, future emissions from other sectors will change
with the climate and environmental polices like the power sector, which may also
introduce additional bias in estimating the fractional contribution of power sector.
We therefore perform a set of sensitivity tests (Supplementary Note 6) and the
results indicate that the uncertainties related to nonlinear effects are relatively small
(Supplementary Figs. 8 and 9).

PM, ;-related mortality and years of life lost estimates. Premature mortality
attributable to ambient PM, ; exposure is commonly used as the health burden
indicator in policy evaluations of health co-benefits®. Attributable mortalities
from outdoor PM, ; exposures are widely estimated by applying the Integrated
Exposure-Response model (IER)* developed for the GBD study®. However,
limited by chronic studies of outdoor PM, ; and mortality in areas with
relatively low concentrations (<35pgm™), at high PM, ; concentrations the
previous IER functions provide the relationships between chronic exposure and
attributable deaths (called C-R relationships) by PM, ;—mortality associations
from non-outdoor PM, ; sources®, which bias the estimates of disease burden
attributable to PM,; (ref. **). To resolve the uncertainties introduced by
non-ambient PM, ;-mortality associations, the GEMM is constructed by Burnett
et al.”® by incorporating outdoor air pollution data across the most of the global
exposure range, especially the polluted areas (for example, China). We therefore
apply the GEMM model to estimate the premature mortality attributable to
chronic PM, ; exposures for this study. Meanwhile, years of life lost (YLL)
attributable to ambient PM, ; exposure is a common indicator®, which is also
estimated in this study.
The GEMM is built for estimating PM, ;-related non-accidental deaths
and YLL due to non-communicable diseases (NCDs) and lower respiratory
infections (LRIs), denoted as GEMM NCD + LRI. The GEMM NCD + LRI
parameterizes the dependence of relative risk (RR) of NCD + LRI on
concentrations (C):
6X1n (i +1)
z—u

RR (C) = e'+f(_ v ) , where z = max(0, C — 2.4) (1)

where C represents the PM, ; concentration (pg m~?), z therefore represents the
maximum of 0 and (C — 2.4), e represents Euler’s number, and 6, @, u and v are
parameters that determine the shape of C-R relationships. According to the
parameters provided by the GEMM, RR of NCD + LRI are calculated by age for
adults with every 5-yr interval from 25yr to age >85yr. Premature mortality and
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YLL for a population subgroup p (population by age and gender) in grid i (M,,)) are
further estimated:

RR,(C) — 1

M,; = Py;i X By X
PTIRTT URR(C)

(2

where P, represents the population amount for population subgroup p in grid i;
B, represents the national average annual mortality incidence rate and YLL rate
of NCD + LRI for population subgroup p and country/region c of grid i; RR,(C))
represents the relative risk of NCD + LRI for population subgroup p at the PM, ;
exposure level of C,. For the base year of 2010, national base mortality incidences
and YLL rates are derived from the GBD2017 study*® and GBD Results Tool* and
demographic information by gender and age is obtained from the World Bank™.
Gridded population distribution for 2010 with a horizontal resolution of 0.1°x 0.1°
is obtained from the Global Population for the World dataset”'. Additionally, in
this study, a distribution of 1,000 point estimates of @ calculated on the basis of the
parameters provided by the GEMM is used to estimate the lower and upper bounds
of a 95% CI around mean attributable mortality in the base year (2010).

For the health-related parameters in the years from 2011 to 2050, the future
national/regional demographic information under each SSP pathway are derived
from SSP Database-Version 2.0 developed by International Institute for Applied
Systems Analysis” and harmonized with the base-year demographic structure
(Supplementary Fig. 3). And future yearly gridded population distributions by
age and gender with a horizontal resolution of 0.1°x 0.1° are produced on the
basis of the gridded population in the year of 2010 according the change rates of
corresponding age- and gender-based population information from SSP Database.
For the yearly base mortality incidences and YLL rates, we derive from the
GBD2017 study and GBD Results Tool® for the years from 2011 to 2018 and future
mortality incidences from the International Futures (IFs)” for the years 2018, 2030
and 2050. Here, we first derive the continuous yearly base mortality incidences
during 2017-2050 from the IFs by linear interpolation. We then harmonize the
base mortality incidences during 2017-2050 from IFs by linking the 2017 base
mortality incidences to that from the GBD2017 study.

Data availability

The database GPED that supports the base-year findings of this study is

available at http://www.meicmodel.org/dataset-gped.html. The base mortality
incidences data during 2010-2018 are available at http://ghdx.healthdata.org/
gbd-results-tool. The future base mortality incidences database is available at
http://www.ifs.du.edu/ifs/frm_MainMenu.aspx. The future demographic structure
database is available at https://tntcat.iiasa.ac.at/SspDb/dsd? Action=htmlpage&p
age=30. Emission data for other sectors are available at https://edgar.jrc.ec.europa.
eu/emissions_data_and_maps. Emissions data of the power plants in scenarios
produced that support the findings of this study are available at https://doi.
org/10.5281/zenodo.5637476 (ref. 7).

Code availability
The code of the GEOS-Chem model to simulate the global PM, ; concentrations is
available at https://geos-chem.seas.harvard.edu/.
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Extended Data Fig. 1| The framework of unit-level power emission projection model. The figure shows the framework of unit-level power emission

projection model developed for this study.

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange


http://www.nature.com/natureclimatechange

ARTICLES NATURE CLIMATE CHANGE

Average lifetime (years)

0 1|0 2|0 3|0 40 5|0 60

i Early
China Performance-based
Historical
|
India |
|
U 'S' |
|
Europe
Russia

Latin Am. + Canada

Middle East + Africa

Rest of Asia [

Rest of world

Extended Data Fig. 2 | Regional average lifetimes for each retirement strategy. The figure shows the regional average lifetimes of power plants for each
retirement strategy.
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Extended Data Fig. 3 | Identified capacity and death contributions of 2010-coal super-polluting units. The figure shows capacity and death contributions
of 2010-coal super-polluting units in 2010 and 2018 across nine regions.
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Extended Data Fig. 4 | Mean annual change in CO, emissions and PM, ;-related years of life lost. The figure shows the relationship between annual
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Extended Data Fig. 5 | Future emission reductions during 2010-2050 under various combined mitigation options. The period during 2010-2018 show
the real emission differences, equalling 0. The RCP6.0 with performance-based retirement and weak pollution control scenario was set as the base
scenario for comparison, Figs. al-a4 show the emission reductions among different ambitious climate-energy scenarios (that is RCP4.5, RCP2.6, and
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