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Warming reduces global agricultural 
production by decreasing cropping 
frequency and yields

Peng Zhu    1,2,3  , Jennifer Burney    4, Jinfeng Chang    5, Zhenong Jin    6, 
Nathaniel D. Mueller7,8, Qinchuan Xin    3, Jialu Xu    9, Le Yu    10,11, 
David Makowski    12 and Philippe Ciais    1

Annual food caloric production is the product of caloric yield, cropping 
frequency (CF, number of production seasons per year) and cropland 
area. Existing studies have largely focused on crop yield, whereas how CF 
responds to climate change remains poorly understood. Here, we evaluate 
the global climate sensitivity of caloric yields and CF at national scale. We 
find a robust negative association between warming and both caloric yield 
and CF. By the 2050s, projected CF increases in cold regions are offset by 
larger decreases in warm regions, resulting in a net global CF reduction 
(−4.2 ± 2.5% in high emission scenario), suggesting that climate-driven 
decline in CF will exacerbate crop production loss and not provide climate 
adaptation alone. Although irrigation is effective in offsetting the projected 
production loss, irrigation areas have to be expanded by >5% in warm 
regions to fully offset climate-induced production losses by the 2050s.

Global food demand is expected to increase in the coming decades 
with growing population and shifting dietary patterns1,2. In the past, 
global production has kept pace with rising demand through both 
cropland expansion and intensification. Cropland expansion into 
uncultivated areas is an expedient but unsustainable way of increas-
ing crop production, since it has caused cascading environmental 
harms like increased soil erosion, loss of wildlife habitat and substan-
tial carbon emissions3,4. Crop intensification includes within-season 
yield improvements through use of high-yielding varieties, fertilizer, 
pesticide and other inputs2,5, as well as increased cropping frequency 
(CF) or the number of crops cultivated per year on a given area of land. 
At the global scale, increases in caloric production (CalP) have been 

driven mainly by improvements in crop caloric yield (CalY, crop yield 
in calories produced per area), whereas increases in CF and cropland 
expansion have played relatively minor roles (Fig. 1)6,7.

Anthropogenic climate change is expected to make efforts to 
increase total crop production more difficult due to rising average 
temperatures and more frequent extreme weather events7,8, directly 
threatening food security objectives codified in the United Nations Sus-
tainable Development Goals. It has been noted that each component of 
crop production might be influenced by climate change through differ-
ent pathways and over different time scales9,10. Crop yield is generally 
sensitive to in-season and interannual climate variability, and there is 
robust evidence that, without major adaptation, global staple crop 
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monitored products) and then dividing it by the national total CA—
providing an estimation of the frequency cropland resources are used21 
(Supplementary Fig. 1). It is an aggregate of all cultivation patterns, 
including fallow croplands (CF = 0) used for conservation purposes 
or resulting from land abandonment, areas with single-cropping per 
year (CF = 1) and areas with multiple-cropping cycles per year (CF > 1). 
We also calculate the national annual total CalP by summing the caloric 
content of all national crop production and further obtain the national 
CalY by dividing CalP by the total harvested area of 161 crops in a nation 
(Methods). On the basis of these definitions, CalP = CalY × CF × CA. 
Although crop production additionally supplies critical protein, vita-
mins and fibre, calories from food crops are essential for meeting 
dietary energy requirements, and thus, calorie-weighted metrics are 
highly relevant for informing global food security. Taken together, 
evaluating the climate sensitivities of these four metrics provides a 
global picture of crop production change and adaptation potential 
under future climate warming.

Temporal changes in production
Over the study period (1979–2018), global CalP increased by 125% and 
CF, CalY and CA increased by 18%, 73% and 11%, respectively (Fig. 1). 
There are substantial regional variations in growth; South America 
shows the greatest CalP increase (by 320%), followed by Africa (by 
220%) and Asia (by 207%) (Fig. 1). However, unlike most continents, 
where CalY is the leading driver of CalP, the increase in African CalP 
is primarily driven by CA over time, corroborating other research1,2 
suggesting that there are large potentials to improve African crop pro-
duction with yield intensification. In fact, CF is the second primary 
driver of increasing CalP in several regions, including North America, 
South America and Asia. By contrast, CA explains only a small share of 
the CalP increase in most regions. After 2010, the rate of CA increase 
has slowed down in all continents and CA even started to decrease in 
North America and Western Europe (probably due to land resource 
conservation policies6) and in Eastern Europe.

Although most continents show increasing trends in CF, CalY and 
CalP, the time series of these variables are characterized by strong 
year-to-year fluctuations, especially in Oceania, where the interannual 
variability of CalP seems primarily driven by the concordant temporal 

yield will be reduced under climate change11,12. Climate change further 
influences cropland area (CA) over longer time scales, with cropped 
areas migrating slowly to counteract environmental changes13. CF is 
potentially susceptible to climate changes over multiple time scales. 
Dry or excessively wet soil conditions before planting schedule might 
delay or prevent a second cropping season14,15. Warmer temperature 
might be beneficial for increasing CF in cold areas, as the frost-free 
period expands and shortens single-crop growth duration16–18. How-
ever, rising temperatures in warm regions, which have an already long 
growing season, might result in lower CF due to the higher risk of crop 
failure (total loss of cropping cycle) caused by more frequent heat or 
drought stresses19,20. These dynamics have been confirmed for the 
Brazilian corn–soybean cropping system using satellite-observed CF, 
suggesting that CF will be reduced by warming to a greater degree than 
will yields19. These divergent conclusions support the need for holistic 
quantification of how climate warming influences global-scale CF to 
manage climate warming impact on regional and global food security.

Studies reporting positive effects of warming on CF normally 
relied on prescribed crop phenology models driven by temperature 
or ‘space-for-time’ substitution to infer the potential change16,17,21,22. 
Such modelling strategies may overlook other environmental factors 
constraining the feasibility of boosting CF23,24, such as increased heat 
stress in warmer conditions8, decreases in water availability for irriga-
tion25, drought stress26, soil fertility decreases and increased pests and 
pathogens in warmer climates27. Recent progress on using satellite data 
or statistics-derived regional-scale CF makes it possible to characterize 
regional disparities and explore how climate variation will influence CF 
with a data-driven approach19,28,29. However, most data-driven model 
studies have focused on crop yield12,30,31, harvested area32 and total fac-
tor productivity33; such models have not been used to assess climate 
impacts on CF specifically.

Here, we address this gap by building an empirical model fed 
by the Food and Agriculture Organization (FAO) national statistical 
data (http://www.fao.org/faostat/en/#data/QC) to examine how and 
to what degree recent climate changes have altered CF and to assess 
the potential impact of future warmer climate on CF and total food 
production globally. Annual national mean CF is obtained by summing 
the harvested area of all crops produced within a country (up to 161 
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Fig. 1 | Changes in crop CalP, CF, CalY and cropland area during 1979–2018. Here, different regions are defined by FAO. Each time series is normalized using data 
points at year 1979. Note different y axis scale for South America.
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variation in CalY (Fig. 1). Detrending CalY and CF with a spline function 
shows that the interannual variations of CF and CalY are positively 
correlated at the global scale and in several representative countries 
or regions (Supplementary Fig. 4). This synchronization suggests that 
both CF and CalY might be sensitive to climate anomalies. For example, 
adverse environmental conditions driving declined crop yield might 
also lower farmer’s prospects for raising a second crop in the same 
year19,34; extreme drought might result in a total crop failure14. However, 
we also note that CF and CalY in China and Brazil are not significantly 
(p > 0.05) correlated, perhaps because irrigation and other socioeco-
nomic factors have decoupled multiple-cropping decisions from crop 
productivity there.

Climate effects on CF, CalY, CA and CalP
We estimate best-fit parameters for panel regression models (base-
line model M1; Methods) relating national CF, CalY or CalP to climate 
(annual mean temperature and precipitation) and major management 
practices (irrigation and nitrogen fertilizer application). With the 
median coefficients β, two response curves corresponding to ‘with-
out irrigation’ and ‘with irrigation’ can be determined through setting 
irrigation fraction as zero and historical global mean (3.1%), respectively 
(Fig. 2a–c). Without irrigation, the estimated temperature response 
functions of CF, CalY and CalP peak at 7.5, 2.6 and 4.2 °C, respectively 
(Fig. 2a–c). As we use annual mean temperature rather than growing 

season mean temperature, the estimated optimal temperature of CalY 
is lower than the optimal temperature of the crop yield recently esti-
mated31. Additionally, due to significant interactions (p < 0.05) between 
temperature and irrigation area fraction (Supplementary Tables 1–3), 
more irrigation not only increases CF, CalY and CalP but also raises the 
optimal temperature (Fig. 2a–c), suggesting the heat stress mitigation 
potential of irrigation application. Similarly, the nonlinear responses 
of CF, CalY and CalP to annual precipitation suggest that higher pre-
cipitation promotes CF, CalY and CalP until a high threshold is reached 
(Supplementary Fig. 5). The significant negative interaction (p < 0.05) 
between irrigation area fraction and precipitation suggests that irriga-
tion does indeed ease water availability constraints on CF, CalY and 
CalP (Supplementary Tables 1–3).

With this regression model, we also quantify the notable beneficial 
effect of fertilizer application (Supplementary Tables 1–3). Our empiri-
cal model suggests that there will be 15.4%, 6.64% and 7.61% increases 
in CF, CalY and CalP per 100 kg ha−1 application of nitrogen fertilizer, 
respectively. In contrast, more fertilizer application is predicted to 
reduce CA (Supplementary Table 4), as higher crop yield reduces the 
need for land reclamation and slow cropland expansion35.

Using the coefficients from baseline model M1, we show—under 
historical management practices—that +1 °C increase in annual mean 
temperature will reduce global average CalY, CF and CalP by 3.6 ± 1.5%, 
1.8 ± 0.9% and 5.7 ± 1.9% (mean ± 95% confidence interval (CI)) (Fig. 2d), 
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Fig. 2 | Response of CF, CalY and CalP to temperature. a–c, Response function 
of CF (a), CalY (b) and CalP (c) to Tmean with and without irrigation. Response 
functions are established on the basis of bootstrap. The 1,000 estimated 
regression coefficients are then used to determine the 95% CI (shaded areas) 
of model-estimated coefficients. The medians of the coefficients are used to 
determine the response curves. Two response curves corresponding to without 
and with irrigation are determined through setting irrigation fraction as zero and 
historical global mean, respectively. The 2.5th and 97.5th percentiles are used 
to define the lower and upper bounds of the 95% CI. Here, the curves are shifted 

vertically so that the peak values of CF, CalY and CalP under no irrigation are 1. 
Triangles on the x axis indicate the optimal temperature with different levels of 
irrigation. d, Marginal effect of 1 °C warming on global average CF, CalY and CalP 
estimated with eight panel models (the numbers under the line correspond to 
the models in Methods). The global average of marginal effect of 1 °C warming is 
a country crop area weighted average of warming effects in each country. Error 
bars represent 95% CI of each estimation. The ensemble mean of eight panel 
models estimation is indicated by the horizontal line with shaded area as the 95% 
CI of ensemble mean.
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respectively. This estimated value of CalY decline is quantitatively close 
to the estimation of 1 °C warming effects on staple food crops (maize, 
rice, soybean and wheat) on the basis of a similar statistical model12,30,31, 
probably because staple food crops constitute a large proportion of 
global calorie production. Further, the reduced CF could be because 
higher temperatures increase heat extremes resulting in more crop 
failure, as well as reducing available soil water supply8,36, making it 
hard to support multiple-cropping seasons. Warming effects on CalP 
are close to the sum of individual warming effects on CalY and CF, 
whereas the complementary components—warming effects on CA—are 
very small and not statistically significantly (p > 0.05) different from 
zero (Supplementary Fig. 6). This is also reflected by the statistically 
non-significant (p > 0.05) regression coefficients relating climate vari-
ables to CA (Supplementary Table 4).

Models based on spline function of climate variables (M2), quad-
ratic function of 2-month climate variables with LASSO regression 

(M3) and a growing degree day (GDD) model with LASSO regression 
(M4) produce similar estimations as the baseline model (Fig. 2d). In 
addition, we find the baseline model estimation still holds when using 
other climate datasets (M5 and M6), an alternative time period to 
aggregate climate variables (M7) and a comprehensive management 
index (total factor productivity input) to represent agricultural man-
agement practices (M8).

With the nonlinear temperature response functions driven by his-
torical observations, the baseline model shows prevalent decline in CF, 
CalY and CalP for warm areas (for example, Africa) but lower declines 
or even small gains for cold areas per 1 °C of warming (Fig. 3a–c). For 
example, CF in Canada, Scandinavian countries, Mongolia and Russia 
increases with +1 °C warming (Fig. 3a–c). These increases, however, 
are insufficient to fully offset the declines in warm (and dry) regions, 
resulting in an overall decline in global average CF (Fig. 2d). Such spa-
tial divergences could explain inconsistent findings of CF response 
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Fig. 3 | Effect of warming and irrigation on CF, CalY and CalP. a–c, Marginal 
effect of 1 °C warming on CF (a), CalY (b) and CalP (c) for each country estimated 
with baseline model. The marginal effect of 1 °C warming was estimated as the 
difference between predicted CF, CalY or CalP with uniform 1 °C warming and the 
original CF, CalY or CalP, based on model M1 and historical irrigation fraction. 
d–f, Sensitivity of CF (d), CalY (e) and CalP (f) to irrigation area fraction, 
estimated with the baseline model M1 (

∂Yi,t
∂Irrii,t

= β3Tmeani,t + β6Prcpi,t). 

Sensitivity for each country can be obtained with multiyear mean climate 
variables during 1979–2018. As Yi,t is logged, the estimated sensitivities indicate 
the percentage change in CF (CalY or CalP) with unit percentage change in 
irrigation area fraction. The insets in d–f show the sensitivity of CF, CalY and CalP 
to irrigation fraction in climate space, which is delineated by country-level annual 
precipitation (x axis) and annual mean temperature (y axis) during 1979–2018. 
Colours in each climate space indicate the sensitivity of CF, CalY and CalP to 
irrigation fraction.
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to climate warming in different geographical areas17,19,37. Overall, the 
estimated +1 °C warming effects on CF partially offset the declines in 
CalY found in Canada, Scandinavia and Russia but contribute to greater 
declines in CalP in warm areas like South America and Africa.

Benefits of irrigation on CF, CalY and CalP
The temperature and precipitation response curves in different levels 
of irrigation (Fig. 2 and Supplementary Fig. 5) raise the question of how 
much irrigation can partially offset the negative effects of warming and 
drought stress on CF, CalY and CalP. With the interaction term between 
irrigation area fraction and climatic variables in the baseline model, we 

are able to assess the sensitivity of CF, CalY and CalP to irrigation area 
fraction, which is expressed as a linear function of temperature and 
precipitation. We find a positive and statistically significant (p < 0.05) 
sensitivity of CF, CalY and CalP to irrigation area fraction with higher 
beneficial effect in warm and dry conditions (Fig. 3d–f). For example, 
in tropical and subtropical regions, the sensitivity of CalP to irrigation 
can reach 5%, meaning that a 1% increase in irrigation area fraction will 
lead to 5% increase in CalP. As these regions are characterized by a high 
decline of CF, CalY and CalP with temperature rise, irrigation expansion 
could be an effective way of mitigating production losses in this part of 
the world, provided that there are sufficient water supplies.
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Changes in CF, CalY and CalP for 2031–2070
Projected changes in CF, CalY and CalP for 2031–2070, relative to 
the reference period 1979–2018, show in the low-warming scenario 
Shared Socioeconomic Pathway (SSP) 126, the projected global aver-
age changes in CF, CalY and CalP are equal to −2.9 ± 0.5%, −5.8 ± 1.1% 
and −9.0 ± 1.7% (mean ± 95% CI), respectively (Fig. 4a). In the higher 
warming scenario SSP 585, climate change leads to greater reductions 
in CF (−4.2 ± 0.6%), CalY (−8.1 ± 1.3%) and CalP (−12.7 ± 2.1%) (Fig. 4b). 
The projected impacts show substantial regional disparities (Fig. 4c–h; 
see Supplementary Figs. 7 and 8 for separate effects of temperature 
and precipitation). For example, CF is projected to increase in both 
scenarios in Canada, Scandinavian countries, Mongolia and Russia 
(representing ~12% of the world cropland), while CF would decline in 
other countries. The United States, Western Europe and China show 
slight declines in CF, CalY and CalP in both scenarios, while stronger 
declines are identified in tropical countries. Specifically, in Brazil 
and Sub-Saharan African countries, CalP is projected to decline up 
to 30% under SSP 585. In these tropical countries, the projection sug-
gests that without additional adaptation, future warming will result 
in reduced CF that will exacerbate the total CalP loss and threaten  
food supply.

On the basis of the estimated positive impacts of irrigation, we 
make a zero-order projection of how much additional irrigation expan-
sion would be required for each country to fully offset the anticipated 
climate-induced decline in total CalP. We find that greater increases 
(increase to 5% irrigation fraction in SSP 585 scenario) are required for 
countries in Africa and South America than in other countries (Fig. 5). 
This is because a greater decline in CalP is expected in these warm coun-
tries due to climate change (Fig. 4g,h) and also because these countries 
are characterized by lower irrigation fractions in the historical period 
(Supplementary Fig. 2a). In fact, our projection suggests that irrigation 
fractions in countries like Congo, Angola and Zambia would have to 
be boosted by more than 20 times relative to their very low historical 
baseline levels. However, the increasing rate of irrigation fraction in 
Africa during the historic period is <0.2% per decade (Supplementary 
Fig. 2b), suggesting that the historical increasing rate in irrigation frac-
tion has to be augmented to satisfy the future irrigation requirement. 
Considering the expansion of irrigation fraction in Africa is not only 
limited by local water resource availability but also the infrastructure 
investment like water pumping system construction38,39, there are sub-
stantial challenges to achieving these targets to fully offset anticipated 
food production losses in these areas. However, future precipitation 
changes provide opportunities for irrigation expansion. For example, 
countries in Eastern Africa, South Asia and Southeastern Asia are pro-
jected to have precipitation increases (Supplementary Fig. 9), which 
might facilitate the building of irrigation infrastructure. However, 
actual irrigation water withdrawal will also depend on the competition 
for water resources from other sectors.

Discussion and conclusion
It has been suggested that increasing multiple-cropping practices could 
be an effective adaptation strategy to future warmer climate16,17,37, since 
future warming will expand the annual window for crop production 
in cold areas and potentially allow for higher CF to offset loss from 
lower yield. However, we show that warming is expected to reduce 
global average CF, especially in warm areas, possibly because heat and 
associated drought stresses disrupt the normal planting or harvest-
ing time window14,40 or the depleted water supply is unable to sustain 
multiple-cropping25. Even for northern cold areas, our predicted CF 
increases are smaller than previous estimations16,37. This discrepancy 
could be explained by multiple-cropping practices not only being lim-
ited by temperature but also other environmental and socioeconomic 
factors. For example, converting single-cropping to double-cropping 
will result in higher water demand41, which might not be satisfied by 
water supply when local infrastructures and irrigation techniques are 
insufficiently developed. Multiple-cropping might also require addi-
tional adjustments in farming systems42, which might not always be 
economically practicable. As our analysis is based on FAO statistics 
which reflect the actual multiple-cropping practices, the estimated 
values of CF reported here probably account indirectly for more of these 
environmental and socioeconomic constraints than do the technical 
potential studies16,17,37.

While the projected CF increase in northern cold areas is relatively 
small, it would be possible to achieve a substantial increase in future 
agricultural production by extending cultivated land into areas that 
are currently too cold from an agronomic perspective43,44. If cropland 
expansion is taken as the only approach to mitigating the projected 
CalP loss, based on our projection (Fig. 4), CAs would have to increase 
by 9.0 ± 1.7% (SSP 126 or 0.18% per year) and 12.7 ± 2.1% (SSP 585 or 
0.25% per year) by 2031–2070. These calculations assume that new CAs 
exhibit the same average yields of existing lands, although in reality new 
croplands often yield lower than average45. During 1979–2018, global 
CAs show an increasing rate of 0.2% per year (Supplementary Table 6); 
therefore, if cropland expansion holds this momentum, globally, the 
projected CalP loss will be fully offset in SSP 126 and partially offset in 
SSP 585. However, climate warming might change the spatial pattern 
of global agricultural suitability46.

These findings are robust to different model specifications (M1–
M4), climate data (M5 and M6) (Fig. 2d), alternative time period aggre-
gation (M7), to the use of a comprehensive management index (M8) 
(Fig. 2d and Supplementary Fig. 10), different polynomial functions 
to characterize the trends (Supplementary Figs. 11–12) and a subset 
of high-quality data records (Supplementary Fig. 13). We also validate 
FAO country-level CF with CF derived from subnational statistics and 
satellite data (Supplementary Fig. 14) and conduct robustness checks 
by running the regression model with satellite data-derived CF. This 
robustness check shows that satellite data-derived CF has a similar 

Irrigation area fraction required in SSP 126 Irrigation area fraction required in SSP 585 

0 1 2 3 4 5 (%) (%)0 1 2 3 4 5

a b

Fig. 5 | Projected irrigation area fraction to offset climate change-induced decline in CalP. a,b, The irrigation area fraction required to offset climate change-
induced decline in CalP is projected with baseline model M1 driven by ensemble mean of future (2031–2017) climate models outputs under SSP 126 (a) and SSP 585 (b) 
and historical reference period (1979–2018) climate dataset.
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temperature response curve and estimated warming effects (Sup-
plementary Fig. 15).

We test whether our findings could be biased by countries with 
extreme high or low temperatures. Removing the 10% coldest/warmest 
countries did not change noticeably the estimated warming effects on 
CF, CalY and CalP (Supplementary Figs. 16 and 17), suggesting that our 
estimation is robust to samples with extreme high or low temperatures. 
Another potential concern is the effect of crop species omission in FAO 
statistics on our findings. We simulate this through randomly discard-
ing a portion of crop species (Methods) and find that the estimated 
temperature effects are robust to different levels of crop species omis-
sion (Supplementary Fig. 18).

Several caveats apply here. It is critical to find the right balance 
between too-simple highly biased models neglecting important inputs 
and too-complex models including too many inputs with overfitting. 
Indeed, if some important inputs are neglected, the effect of a specific 
input on the response can be strongly over- or under-estimated. The 
selection of inputs to be included in a regression model is therefore 
a key step. First, we use 18-month mean climate variables (or climate 
exposures) rather than climate variables during specific crop growing 
seasons, since there is no explicit crop growing season information 
covering all 161 crops at global scale. In addition, non-growing season 
climate might be also relevant to model climate effects on CF, CalY and 
CalP, especially for CF, as planting decisions are largely determined 
by preseason weather conditions47. Therefore, we took the climatic 
conditions in both current year and the second half of the year pre-
ceding the harvest year into account in our models. It is worth noting 
that our LASSO statistical model (M3) addresses this issue, as it auto-
matically selects the seasonal climate variables in certain time periods 
which explain most of the variation of CF, CalY and CalP. Second, our 
statistical model does not account for the fertilization effect of rising 
atmospheric CO2, which might partially offset future warming-driven 
crop yield losses. Since biophysical models normally account for this, 
such omission might cause discrepancy between statistical models 
and biophysical models, especially in high-warming scenarios that 
accompany substantially elevated CO2 concentrations. However, we 
note that because CO2 fertilization effect is further complicated by envi-
ronmental conditions (soil fertility, temperature or drought stress), a 
better understanding of the real potential of CO2 fertilization to offset 
future crop losses requires more comprehensive synthesis of field 
experiments48. Third, as already identified, rainy season statistics (for 
example, rainy season onset, duration and cessation) might influence 
CF through regulating the planting season soil water status14,15, but 
these factors are not accounted for here. This is mainly because climate 
models normally show a higher uncertain projection for precipitation 
relative to temperature49, which makes deriving the rainy season statis-
tics more challenging. Considering the rising precipitation variability 
and more extreme events50,51 in the future, it is important to improve 
the climate model’s predictive capacity for precipitation and derive 
more accurate rainy season statistics52.

We show that future warming is expected to have a positive but 
lower than expected effect on CF in northern cold areas and will prob-
ably induce a decline of CF in warm areas like Africa and South America, 
eventually reducing global average CF. The projected decline in global 
CF represents about one-third of total projected CalP losses. Increased 
irrigation through increased irrigated fraction or increased duration 
could nevertheless be an effective approach compensating for the 
negative impacts of heat and water stress, but its large-scale implemen-
tation might be constrained by infrastructure development, economic 
returns and local water supply in each country53,54.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of 

author contributions and competing interests; and statements of 
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Methods
FAO agricultural statistics
Crop production, harvested area, crop yield, CA, irrigated CA and agri-
cultural total nitrogen use at country scale spanning 1979–2018 were 
obtained from the FAOSTAT database55. We restricted our analysis to 
1979–2018 as FAO statistics during the earlier time period include more 
missing or estimated values and also because we used an hourly cli-
mate dataset starting from 1979. The 150 most populous countries are 
selected as they normally have more complete data records and cover 
98% of global crop production. In the FAOSTAT database, harvested 
area and crop yield are recorded for 161 crop species, while CA, irrigated 
CA and agricultural total nitrogen use are the sum of all crop species 
and do not distinguish among crops. According to FAO’s definition for 
harvested area, if the crop is harvested more than once during the year 
as a consequence of successive cropping (for example, rice is sown and 
harvested more than once in the same field during the year), the area is 
counted as many times as harvested, which ensures multiple-cropping 
is accounted for in harvested area data. In terms of CA, it is the sum of 
areas under ‘arable land’ and ‘permanent crops’, according to FAO defi-
nitions. Arable land is the land area under temporary crops, temporary 
meadows and pastures and land with temporary fallow. Land under 
permanent crops means land cultivated with long-term crops which 
do not have to be replanted for several years (such as cocoa and coffee), 
land under trees and shrubs producing flowers and nurseries (except 
those for forest trees, which should be classified under ‘Forestry’). We 
note that FAO data were a mixture of ‘FAO estimate’ and ‘official data’. 
Data entries marked as ‘FAO estimate’ were often less reliable than the 
‘official data’. To minimize the influence of those countries with high 
rates of ‘FAO estimate’ on our regression model, countries with >20% 
of the data on harvested area or production marked as ‘estimated data’ 
were excluded, as previously done56. The excluded nations were Guinea, 
Kenya, Mozambique, North Korea and Zambia.

Modelling climate effects on CalY, CF, CA and CalP
For a country producing N different crops (N denotes the number of 
crop species in a country), the total yearly crop (CalP) can be further 
decomposed into CalY, CF and CA:

CalP =
N
∑
k=1

γk × Yieldk ×HAk =
∑N

k=1 γk × Yieldk ×HAk

∑N
k=1 HAk

×
∑N

k=1 HAk

CA × CA

where γk is the caloric conversion factor of crop k, and we obtained the 
caloric conversion factor on the basis of published dataset (http://www.
fao.org/docrep/003/X9892E/X9892e05.htm#P8217_125315); HAk indi-
cates harvested area of crop k; CA is the total CA of a country. Thus, 
∑N

k=1 γk×Yieldk×HAk

∑N
k=1 HAk

 represents the country-average CalY and ∑
N
k=1 HAk

CA
 repre-

sents the country-scale average CF (Supplementary Fig. 1). This 
country-scale average CF is the aggregate of fallow croplands (fre-
quency = 0) due to conservation purposes or abandonment, 
single-cropping per year (frequency = 1) or multiple-cropping per year 
(CF > 1). On the basis of these definitions, we have CalP = CalY × CF × CA.

We build panel models separately for each dependent variable 
(CF, CalY, CA or CalP) to estimate the effects of year-to-year climate 
variation and farmer management practices on CF, CalY, CA or CalP 
(sample size n = 5,184), which is specified as follows:

log(Yi,t) = α1,it + α2,it2 + countryi + βWi,t + εi,t

Yi,t represents CF, CalY, CA or CalP for country i and year t. Term 
α1,it + α2,it2 characterizes the country-specific quadratic time trends, 
which capture unobserved, country-specific factors affecting CF, CalY, 
CA or CalP, such as technological progress. Parameter countryi  is  
the country-specific fixed-effect capturing all time-invariant, 

country-specific factors that might explain variations in Yi,t. The model 
component βWi,t takes into account the effects of the inputs in Wi,t 
potentially affecting Yi,t  using a set of parameters β (common  
to all countries12,31). Our baseline model for βWi,t used a quadratic func-
tion of annual mean temperature (Tmean) and annual precipitation 
(Prcp) to characterize the potential nonlinear effect of Tmean and  
Prcp on Yi,t:

βWi,t = β1Tmean
2
i,t + β2Tmeani,t + β3Tmeani,t ⋅ Irrii,t + β4Prcp

2
i,t

+β5Prcpi,t + β6Prcpi,t ⋅ Irrii,t + β7Ferti,t

To account for the potential compensation effect of irrigation on 
temperature stress and water stress, irrigation fraction (Irrii,t) (Supple-
mentary Fig. 2a), which was estimated as the ratio of irrigated CA to total 
CA at country i and year t, was interacted with Tmean and Prcp. The 
interaction terms characterize the marginal relationship between CF, 
CalY or CalP and irrigation, conditional on climate variables. This allows 
us to quantify the benefit of irrigation through evaluating the sensitivity 
of Yi,t to irrigation fraction ( ∂Yi,t

∂Irrii,t
 = β3Tmeani,t + β6Prcpi,t). To control the 

influence of fertilizer application on increasing CF or crop yield, nitro-
gen application rate (Ferti,t) was included in the model as well. Parameter 
Ferti,t was estimated as the ratio of agricultural total nitrogen use to the 
total harvested area of all crops in a country. Our panel model was 
weighted by the country-level crop area from FAO to define the model 
output as an average over all crop areas. The weighting method was also 
useful to reduce heteroskedasticity and correct the influences of coun-
tries with very small CAs30. Since presence of spatial autocorrelation 
could violate the assumption of normally distributed residuals, we also 
checked whether spatial autocorrelation occurred in each panel model 
residual using Moran’s I. The results suggest that there is no statistically 
significant (P > 0.05) spatial autocorrelation in each panel model. Fur-
ther, we note that although CF might be also driven by other unobserved 
variables (crop rotation, cropland expansion and agricultural policies) 
apart from climatic factors, as long as these unobserved variables are 
not marginally influenced by temperature, which seems plausible, the 
first-order approximation of temperature effect on CF can be estimated 
with our linear regression model. With the established model and the 
historical irrigation fraction, the marginal effect of temperature on CF, 
CalY, CA or CalP was estimated as the difference between predicted Yi,t 
with 1 °C uniform increase in Tmean and the original Yi,t. The global 
average change is then a weighted average (weighted by country crop 
area) of the 1 °C warming effects in each country.

Hourly reanalysis climate data ERA5 at 0.25° × 0.25° resolution 
spanning from 1979 to 2018 were used to characterize climate condi-
tions during crop growth57. Considering some crops were sown in the 
previous year of harvest, especially for winter crops in the Northern 
Hemisphere, we used both the current year and the second half of the 
previous year to calculate Tmean and Prcp. In addition, we also fitted 
a panel model with climate variables exclusively averaged over the 
current year (see model summary in Supplementary Table 5). When 
averaging climate variables to get their annual mean, we did not dis-
tinguish crop growing season and non-growing season because the 161 
crop species considered here have diverse growing seasons and also 
crop yield or farmer planting decision might be influenced by both crop 
growing season and non-growing season weather58. The annual mean 
temperature and precipitation at 0.25° × 0.25° resolution were then 
aggregated to country-level spatially weighted by CA fraction in each 
grid cell. We get CA fraction in each grid cell through aggregating the 
1 km Global Food Security Support Analysis Data (GFSAD) crop mask 
into 0.25° × 0.25° resolution59 (Supplementary Fig. 3). GFSAD dataset 
was created using multiple input data including remote sensing such as 
Landsat, Satellite Probatoire d’Observation de la Terre (SPOT) vegeta-
tion and MODIS; multiyear precipitation and temperature data; ground 
reference data; and country statistics data59.

http://www.fao.org/docrep/003/X9892E/X9892e05.htm#P8217_125315
http://www.fao.org/docrep/003/X9892E/X9892e05.htm#P8217_125315
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Robustness checks
We tested other specifications of βWi,t to assess the robustness of our 
analysis. Similarly, nitrogen application rate and interaction between 
Irrii,t and climate variables were also considered in the following alterna-
tive specifications of βWi,t to account for fertilizer application and 
irrigation compensation effects, respectively.

M2: Model using natural cubic splines (NCS) function of annual 
mean temperature and precipitation. Studies suggest NCS function has 
a good capacity to capture the nonlinear response of crop productivity 
to climate variables60. Here, we used five knots set at the 5th, 25th, 50th, 
75th and 95th percentiles of Tmean or Prcp:

βWi,t = β1NCS (Tmeani,t) + β2Tmeani,t × Irrii,t + β3NCS (Prcpi,t)

+β4Prcpi,t × Irrii,t + β5Ferti,t

Tmeani,t,m and Prcpi,t,m are the annual mean temperature and pre-
cipitation for country i and year t.

M3: Model with quadratic function of 2-month mean Tmean and 
Prcp. Studies have suggested that crop yield is sensitive to climate 
stresses in specific crop growth stages. To better characterize the influ-
ence of seasonal climate variation on CF or CalY, we used the quadratic 
function of 2-month average climate variables:

βWi,t =
9
∑
m=1

( β1,mTmean
2
i,t,m + β2,mTmeani,t,m + β3,mTmeani,t,m × Irrii,t

+β4,mPrcp
2
i,t,m+,β5,mPrcpi,t,m + β6,mPrcpi,t,m × Irrii,t ) + β7Ferti,t

Tmeani,t,m and Prcpi,t,m are the mth 2-month mean temperature and 
precipitation for country i and year t. As we used climate variables in 
both current year and the second half of the previous year, there are 
nine 2-month mean Tmeani,t,m and Prcpi,t,m. Here, we did not use monthly 
climate variables in the model to avoid too many predictors and thus 
overfitting. Penalized regression (LASSO) was implemented with the 
R package glmnet61 to select the most influential climate predictors. A 
tenfold cross-validation was performed to maximize the predictive 
accuracy of the model. LASSO regression allowed us to identify a subset 
of predictors that explain most of the variation in outcomes by shrink-
ing the regression coefficient towards zero and discarding irrelevant 
predictors. This procedure thus automatically determined which time 
periods of climate variables were most relevant for explaining CF, CalY 
and CalP variation.

M4: GDD model.

βWi,t =
5
∑
m=1

(β1,mGDDi,t,m + β2,mGDDi,t,m × Irrii,t) + β3Prcp
2
i,t

+β4Prcpi,t + β5Prcpi,t × Irrii,t + β6Ferti,t

In this GDD model, five levels of GDD for country i and year t 
(GDDi,t,1, GDDi,t,2, GDDi,t,3, GDDi,t,4 and GDDi,t,5) were considered to char-
acterize the differential response of Yi,t to different levels of tempera-
ture exposures with 10 °C increment: GDD1 as GDD0−∞, GDD2 as GDD100 , 
GDD3 as GDD2010, GDD4 as GDD3020 and GDD5 as GDD+∞

30 . ERA5 hourly tempera-
ture at the height of 2 m was used to estimate GDD with the following 
equation:

GDDT2
T1 =

H
∑
h=1
DDh/24,DDh =

⎧⎪
⎨⎪
⎩

0,Th < T1
Th − T1,T1 ≤ Th < T2

T2 − T1,Th ≥ T2

⎫⎪
⎬⎪
⎭

where Th represents the temperature at hour h, and H is the total number 
of hours during the growing season. T1 and T2 indicate the lower and 
upper temperature thresholds of GDD, respectively. GDD1 takes the 

freezing stress into account, while GDD5 uses a high temperature thresh-
old of 30 °C to characterize high-temperature stress effects on crop 
growth as suggested by previous studies32,62,63. The other GDDs gener-
ally represent the mild temperature exposures. Similarly, we used 
LASSO regression to estimate model coefficients, as LASSO regression 
can automatically select GDDs most relevant for explaining CF, CalY, 
CA and CalP variations, thus minimizing the potential multicollinearity 
effect among GDDs.

M5 and M6: Model with alternative climate dataset. To test the 
robustness of our model to other climate datasets, we also run the 
baseline model with two other climate datasets: Climate Research Unit 
time-series datasets (CRU TS 4.0.4)64 (M5 in Supplementary Table 5) and 
the University of Delaware temperature and rainfall datasets65 (M6 in 
Supplementary Table 5).

M7: Model with annual climate variables aggregated over 1 year. 
This model uses the same specification as the baseline model M1, but 
the annual climate variables are aggregated over 1 year (12-month) 
time period.

M8: Total factor productivity input (TFPI) model (M8 in Supple-
mentary Table 5).

βWi,t = β1Tmean
2
i,t + β2Tmeani,t + β3Tmeani,t × TFPIi,t

+β4Prcp
2
i,t + β5Prcpi,t + β6Prcpi,t × TFPIi,t

In this alternative model, agricultural total factor productivity input 
(TFPI) replaces irrigation and fertilizer application to represent the 
comprehensive management practices (cultivation technology, man-
agement ability and agricultural infrastructure). Total factor pro-
ductivity (TFP) measures productive efficiency, that is, the amount 
of agricultural output produced from the combined set of input66. 
The output includes crop and livestock commodities aggregated on 
the basis of a common set of international prices derived by the FAO. 
Input (TFPI) includes agricultural land, farm labour, irrigation, capital 
inputs (including farm machinery) and intermediate inputs (fertilizer). 
TFPI thus can be used to represent the comprehensive management 
practices used in farm production. This dataset is obtained from the 
United States Department of Agriculture (USDA) Economic Research 
Service (ERS) International Agricultural TFP dataset (https://www.
ers.usda.gov/data-products/international-agricultural-productivity
/), which provides country-level TFP and TFPI index for 172 countries 
over the 1961–2019 period. In model M8, TFPI replaces irrigation and 
fertilizer application to more comprehensively account for various 
management practices. The interaction term between TFPI and climate 
variables is used to characterize the effect of agricultural management 
practices in offsetting the negative impact of climate change on yield 
and CF.To account for the statistical uncertainty of these regression 
models, we run each model with 1,000 bootstrap, where we sample 
from all 5,184 country-year observations with replacement. The 1,000 
sets of estimated regression coefficients are then used to determine the 
CI of the model-estimated coefficients. The medians of the 1,000 sets 
of coefficients are used to determine the response curves in Fig. 2a–c. 
With the median of coefficients β, two response curves correspond-
ing to without and with irrigation can be determined through setting 
irrigation fraction as zero and historical mean (3.1%), respectively 
(Fig. 2a–c). When LASSO regression is run using each bootstrap sam-
ple, the penalized algorithm selects new combinations of predictors 
for each sample. Therefore, applying bootstrap to LASSO regression 
model (M3 and M4) allows us to account for the uncertainties in model 
formulation as well.

We also checked whether the estimated coefficients will be biased 
by countries with extreme high or low temperatures. With the baseline 
model, model coefficients and marginal effects of 1 °C warming were 
re-estimated on the basis of samples excluding the 10% coldest or 10% 
warmest countries. Another potential bias is the omission of certain 

https://www.ers.usda.gov/data-products/international-agricultural-productivity/
https://www.ers.usda.gov/data-products/international-agricultural-productivity/
https://www.ers.usda.gov/data-products/international-agricultural-productivity/
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crops in FAO statistics, considering there might be more than 161 crops 
planted in a country21. To simulate the influence of crop species omis-
sion on our estimations, five levels (10%, 20%, 30%, 40%, 50%) of crop 
species omission were considered. For example, to simulate the effects 
of 10% crop species omission, we re-estimated CF, CalY and CalP 1,000 
times, and for each time, we randomly discarded 10% crop species. We 
then applied the baseline model M1 to each set of CF, CalY and CalP 
to estimate climate effects (1,000 estimates of climate effects) (Sup-
plementary Fig. 18).

Model evaluation
First, we conduct an out-of-sample model validation with 1,000 boot-
straps. Each time, 80% of country-year observations are randomly 
sampled as the training data to build the panel model with model M1; 
the remaining 20% country-year observations are used as test data. 
The relative difference between the model predicted CF, CalY and 
CalP and those in test data were used to evaluate the performance of 
our panel model. Relative differences in each country are presented 
in Supplementary Fig. 19.

Second, we fit the panel model M1 using a subset of dataset flagged 
by the FAO as ‘official data’. We consider this to be as high-quality data 
as possible (compared to, for example, data flagged as ‘estimated 
data’). Similar to Fig. 2 in the main text, we estimate the temperature 
sensitivity of CF, CalY and CalP with model M1 and create the response 
curves of CF, CalY and CalP to temperature. This alternative model 
test has a smaller sample size but does not substantially change the 
response of CF, CalY and CalP to temperature (Supplementary Fig 13) 
and consistently suggests an overall negative association between 
climate warming and CF, CalY and CalP at global scale.

Third, we validate the country-level aggregated CF with subna-
tional statistics in Brazil and satellite data-derived CF. The subnational 
statistics in Brazil are compiled in a recent study67 and characterize 
the corn–soybean double-cropping system. The statistics contain 
soybean harvest area and also separate records for first-season corn 
and second-season corn harvest area. Since the main-season crops 
are soybean and first-season corn, whereas the only second crop is 
second-season corn, the CF can be thus calculated as:

CF =
Areac1 + Areac2 + Areasoy

Areac1 + Areasoy

where Areac1 and Areac2 are the harvest area of first-season and 
second-season corn, respectively, and Areasoy is the harvested area of 
soybean. The validation result can be found in Supplementary Fig. 14.

A spatially explicit estimation of CF derived from satellite data is 
also used. Relative to the CF derived from national statistics, it can bet-
ter characterize the spatial heterogeneity of multiple-cropping prac-
tices. Similar to the CF used in the previous study19, our satellite-derived 
CF is also developed by detecting the number of sharp peaks followed 
by troughs using time series of MODIS enhanced vegetation index 
(EVI). This information is obtained from the established MODIS land 
cover dynamics product (MCD12Q2)68 at 500 m spatial resolution dur-
ing 2001–2018, wherein it contains a data layer named ‘NumCycles’. 
Combining MODIS-derived ‘NumCycles’ which characterizes the total 
number of vegetation cycles per year with MODIS land cover map69 
which differentiates cropland and non-cropland, we can get the CF 
information for each 500 m grid cell across the global cropland. Then 
this satellite-derived CF information is averaged to country level and 
used as the dependent variable in M1, by which we can check whether 
our findings will hold with this satellite-based CF. These data evaluation 
and model test results can be found in Supplementary Figs. 14 and 15.

Future projections
We projected future CF, CalY and CalP during 2031–2070 using 
the baseline model M1 with climate outputs from Coupled Model 

Intercomparison Project Phase 6 (CMIP6), which is provided by 
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). Cli-
mate change effects are estimated as the difference between pre-
dicted CF, CalY or CalP during 2031–2070 and the reference period 
(1979–2018) CF, CalY or CalP. Two climate scenarios were consid-
ered to represent lower (SSP 126) and higher (SSP 585) emission 
scenarios. Here, SSP 585 is used to shed light on future crop produc-
tion changes under the worst-case climate change scenarios, since 
SSP 585 is commonly used to simulate upper limits of temperature 
change over the next century70. ISIMIP provides five climate model 
outputs (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1–2-HR, MRI-ESM2-0 
and UKESM1-0-LL) to account for the potential bias in future cli-
mate projections in each specific model. The five climate models 
were selected because they are structurally independent in terms 
of their ocean and atmosphere model components. Meanwhile, the 
five primary models are good representatives of the whole CMIP6 
ensemble as they include three models with low climate sensitivity 
(GFDL-ESM4, MPI-ESM1-2-HR and MRI-ESM2-0) and two models with 
high climate sensitivity (IPSL-CM6A-LR and UKESM1-0-LL)71. Climate 
model outputs (daily mean temperature and precipitation) were 
downscaled to 0.5° resolution and bias-corrected through compar-
ing the climate model outputs with corresponding climate observa-
tions during the training period71. The bias-corrected climate model 
outputs were available at https://esg.pik-potsdam.de/search/isimip/. 
Then a similar method as we processed the historical climate dataset 
was applied to the five climate model outputs to obtain country-level 
climate variables for 2031–207072. Our future projections assume 
no new adaptation between now and then or holding technology 
equivalent to current levels, so that the estimated changes in CF, 
CalY and CalP are exclusively caused by changes in temperature and  
precipitation.

Data availability
FAO national statistical data was obtained from http://www.fao.org/
faostat/en/#data/QC. Agricultural TFP was obtained from the USDA 
ERS International Agricultural TFP dataset https://www.ers.usda.
gov/data-products/international-agricultural-productivity/. The 
caloric conversion factor is based on the published dataset http://
www.fao.org/docrep/003/X9892E/X9892e05.htm#P8217_125315. 
The bias-corrected climate model outputs are available at https://esg.
pik-potsdam.de/search/isimip/.

Code availability
The scripts used to run the regression model are available through 
zenodo at: https://zenodo.org/record/7038556
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Supplementary material 

 

Supplementary Table 1 Summary of the baseline model for cropping frequency 

(sample size n=5184) 

 Estimated coefficients 95% confidence interval 

𝑇𝑚𝑒𝑎𝑛 0.012 (*) [-0.0045,  0.029 ] 

𝑇𝑚𝑒𝑎𝑛2 -8.14∙ 10−4(***) [-0.0014,  -0.0003] 

𝑃𝑟𝑐𝑝 7.74∙ 10−5(***) [4.38 ∙ 10−5,   1.09 ∙ 10−4  ] 

𝑃𝑟𝑐𝑝2 -8.94∙ 10−9(***) [-1.26∙ 10−8,  -4.97∙ 10−9] 

𝐼𝑟𝑟𝑖 ∙ 𝑇𝑚𝑒𝑎𝑛 0.05 (***) [0.014,  0.093] 

𝐼𝑟𝑟𝑖 ∙ 𝑃𝑟𝑐𝑝 -1.34∙ 10−4(**) [-2.73∙ 10−4,  -1.02∙ 10−5] 

𝐹𝑒𝑟𝑡 0.0015/(
𝑘𝑔

ℎ𝑎
) (***) [0.0014,  0.0017] 

𝑅2 0.82  

 *, **, and *** in parentheses denote the statistical significance at the 0.1, 0.05, 0.01 

levels (this convention also applies to the following tables). 

 

Supplementary Table 2 Summary of the baseline model for caloric yield (sample size 

n=5184) 

 Estimated coefficients 95% confidence interval 

𝑇𝑚𝑒𝑎𝑛 0.0059  [-0.024,  0.037 ] 

𝑇𝑚𝑒𝑎𝑛2 -0.0012(**) [-0.0021,  -0.0003] 

𝑃𝑟𝑐𝑝 2.58∙ 10−4(***) [1.88 ∙ 10−4,   3.41 ∙ 10−4  ] 

𝑃𝑟𝑐𝑝2 -2.74∙ 10−8(***) [-4.41∙ 10−8,  -1.80∙ 10−8] 

𝐼𝑟𝑟𝑖 ∙ 𝑇𝑚𝑒𝑎𝑛 0.12 (***) [0.060,  0.187] 

𝐼𝑟𝑟𝑖 ∙ 𝑃𝑟𝑐𝑝 -3.21∙ 10−4(***) [-5.51∙ 10−4,  -1.29∙ 10−4] 

𝐹𝑒𝑟𝑡 6.64∙ 10−4/(
𝑘𝑔

ℎ𝑎
) (***) [4.17∙ 10−4,  9.11∙ 10−4] 

𝑅2 0.91  

 

Supplementary Table 3 Summary of the baseline model for caloric production (sample 

size n=5184) 

 Estimated coefficients 95% confidence interval 

𝑇𝑚𝑒𝑎𝑛 0.0176 [-0.019,  0.056 ] 

𝑇𝑚𝑒𝑎𝑛2 -0.0021(***) [-0.0032,  -0.0010] 

𝑃𝑟𝑐𝑝 3.44∙ 10−4(***) [2.67 ∙ 10−4,   4.47 ∙ 10−4  ] 

𝑃𝑟𝑐𝑝2 -3.76∙ 10−8(***) [-5.61∙ 10−8,  -2.71∙ 10−8] 

𝐼𝑟𝑟𝑖 ∙ 𝑇𝑚𝑒𝑎𝑛 0.25 (***) [0.18,  0.33] 

𝐼𝑟𝑟𝑖 ∙ 𝑃𝑟𝑐𝑝 -4.50∙ 10−4(***) [-7.57∙ 10−4,  -2.17∙ 10−4] 

𝐹𝑒𝑟𝑡 7.61∙ 10−4/(
𝑘𝑔

ℎ𝑎
) (***) [4.43∙ 10−4,  1.08∙ 10−3] 

𝑅2 0.86  



Supplementary Table 4 Estimated coefficients when using cropland area as the 

dependent variable with baseline model M1 (sample size n=5184). 

 Estimated coefficients 95% confidence interval 

𝑇𝑚𝑒𝑎𝑛 -7.68∙ 10−3 (p>0.1) [-0.021,  0.0053] 

𝑇𝑚𝑒𝑎𝑛2 1.02∙ 10−4 (p>0.1) [-3.02∙ 10−4, 5.06 ∙ 10−4] 

𝑃𝑟𝑐𝑝 1.26 ∙ 10−5 (p>0.1) [−1.08 ∙ 10−5,   3.60 ∙ 10−5  ] 

𝑃𝑟𝑐𝑝2 -7.31∙ 10−10 (p>0.1) [-3.22∙ 10−9,  1.79∙ 10−9] 

𝐼𝑟𝑟𝑖 ∙ 𝑇𝑚𝑒𝑎𝑛 0.16 (**) [0.12,  0.19] 

𝐼𝑟𝑟𝑖 ∙ 𝑃𝑟𝑐𝑝 -1.81∙ 10−4 (p>0.1) [-3.71∙ 10−4,  0.9∙ 10−5] 

𝐹𝑒𝑟𝑡 -1.17 ∙ 10−3/(
𝑘𝑔

ℎ𝑎
) (***) [-1.26∙ 10−3,  -1.08∙ 10−3] 

𝑅2 0.71  

 

  



Supplementary Table 5 Summary of alternative model specifications of 𝛽𝑊𝑖,𝑡 

Models Climate functions Climate dataset 
Time period to 

be averaged 

M1 
Quadratic function of annual mean 

Tmean and Prcp 
ERA5 

One and 

previous half 

year 

M2 
Spline function of annual mean Tmean 

and Prcp 
ERA5 

One and 

previous half 

year 

M3 
Quadratic function of 2-months mean 

Tmean and Prcp 
ERA5 

One and 

previous half 

year 

M4 GDD model ERA5 

One and 

previous half 

year 

M5 
Quadratic function of annual mean 

Tmean and Prcp 
CRU 

One and 

previous half 

year 

M6 
Quadratic function of annual mean 

Tmean and Prcp 

University of 

Delaware 

One and 

previous half 

year 

M7 
Quadratic function of annual mean 

Tmean and Prcp 
ERA5 One year 

M8 

Quadratic function of annual mean 

Tmean and Prcp and total factor 

productivity input 

ERA5 

One and 

previous half 

year 

 

  



Supplementary Table 6 Changing rate of cropland area during 1979-2018 

Regions Changing rate (%/year) 

Globe 0.2% (p<0.001) 

North America -0.52% (p<0.001) 

South America 0.57% (p<0.001) 

Western Europe -0.19% (p<0.001) 

East Europe -1.1% (p<0.001) 

Africa 1.2% (p<0.001) 

Asia 0.56% (p<0.001) 

Oceania 1.1% (p<0.001) 

 

 

 

 

Supplementary Figure 1 Four decades (1979-2018) of mean cropping frequency in each 

country. 

 

 



 

Supplementary Figure 2 Mean irrigation area fraction during 1979-2018 (a) and 

irrigation area fraction expansion rates per decade during 1979-2018 (b) in each 

country. 

 

 

Supplementary Figure 3 Cropland fraction in each grid cell. Cropland fraction is used 

as weight for aggregating gridded climate data to the country level. 

 

 



 

Supplementary Figure 4 Pearson’s correlation (r) between detrended cropping 

frequency and caloric yield at global and regional scales. Cropping frequency and 

caloric yield were detrended before estimating the Pearson correlation. Detrending was 

conducted by removing the spline function fitted trend term in CalY and CF. USSR is a 

group of countries previously within the Union of Soviet Socialist Republics. *, **, and 

*** in parentheses denote the statistical significance at the 0.05, 0.01, 0.001 levels for 

the estimated correlation coefficients.  

 

 

Supplementary Figure 5 Response of cropping frequency (a), caloric yield (b), and 

caloric production (c) to annual mean precipitation with and without irrigation. 

Response functions are established based on bootstrap. The 1000 estimated regression 

coefficients are then used to determine the 95% confidence interval (CI, shaded areas) 

of model estimated coefficients. The medians of the coefficients are used to determine 



the response curves. Two response curves corresponding to ‘with and without 

irrigation’ can be determined through setting irrigation fraction as zero and historical 

global mean (3.1%), respectively. Here the curves are shifted vertically so that the 

peak value of CF, CalY, and CalP under no irrigation is 1. Triangles on the x axis 

indicate the optimal precipitation with and without irrigation. 

 

 

 

 
Supplementary Figure 6 Marginal effect of 1°C warming on global cropland area 

estimated with eight panel models. Marginal effect of 1°C warming for each country 

was estimated as the difference between +1°C warming prediction and historical 

mean. Error bars represent 95% confidence intervals of each estimation. The 

ensemble mean of eight panel models estimation is indicated with the horizontal line 

with shaded area as the 95% confidence interval of ensemble mean. 

 



 

Supplementary Figure 7 Projected changes in cropping frequency, caloric yield, and 

caloric production based on five climate models under SSP126 and SSP585 in 2050 

(2031-2070) when only future precipitation change is accounted for.   

 

 



 

Supplementary Figure 8 Projected changes in cropping frequency, caloric yield, and 

caloric production based on five climate models under SSP126 and SSP585 by 2050 

(2031-2070) when only future temperature change is accounted for.  

 

 

 

 

Supplementary Figure 9 Mean annual temperature (a,b) and precipitation (c,d) change 

based on five climate models under SSP126 and SSP585 in 2050 (2031-2070) relative 

to 1979-2018.   

 



 

 

Supplementary Figure 10 Response of cropping frequency (a), caloric yield (b), and 

caloric production (c) to mean annual temperature based on models using irrigation 

(M1) and TFP input index (M8) to represent agricultural management practices. (d) 

Effect of 1℃ warming on global mean cropping frequency, caloric yield, and caloric 

production based on models using irrigation (M1) and TFP input index (M8) to 

represent agricultural management practices. Shaded areas (a-c) and error bars (d) 

represent 95% confidence intervals based on 1000 bootstrap samples. 



 

Supplementary Figure 11 Response of cropping frequency (a), caloric yield (b), and 

caloric production (c) to annual mean temperature when using quadratic polynomial 

and linear polynomial to characterize trends in CF, CalY, and CalP. (d) Effect of 1℃ 

warming on global mean CF, CalY, and CalP based on models using quadratic 

polynomial and linear polynomial to characterize trends in CF, CalY, and CalP. 

Shaded areas (a-c) and error bars (d) represent 95% confidence intervals based on 

1000 bootstrap samples. 

 

 



 

Supplementary Figure 12 Response of cropping frequency (a), caloric yield (b), and 

caloric production (c) to annual mean temperature when using quadratic polynomial 

and cubic polynomial to characterize trends in CF, CalY, and CalP. (d) Effect of 1℃ 

warming on global mean CF, CalY, and CalP based on models using quadratic 

polynomial and cubic polynomial to characterize trends in CF, CalY, and CalP. Shaded 

areas (a-c) and error bars (d) represent 95% confidence intervals based on 1000 

bootstrap samples. 

 

 



 

Supplementary Figure 13 Response of cropping frequency (a), caloric yield (b), and 

caloric production (c) to annual mean temperature when using all samples and high 

quality samples (data records flagged as ‘Official data’). (d) Effect of 1℃ warming on 

global mean CF, CalY, and CalP using response functions built on all samples and 

high quality samples (data records flagged as ‘Official data’). Shaded areas (a-c) and 

error bars (d) represent 95% confidence intervals based on 1000 bootstrap samples. 

 

 



 
Supplementary Figure 14 Comparison of FAO country-scale CF with CF derived from 

satellite data (a-c and e-f) and sub-national statistics (d) for globe and several 

representative countries. We use the Pearson correlation to represent the temporal 

correlation between two time series. *** denotes p<0.001. This result suggests the 

two different sets of CF have a good temporal correlation in several countries, 

although FAO based CF is generally lower than CF derived from satellite data and 

sub-national statistics, mainly due to the different definitions of CF. For example, 

FAO country-scale CF includes cropland abandonment, i.e. CF=0, while CF derived 

from sub-national statistics and satellite data does not. 

 

 
Supplementary Figure 15 Response of cropping frequency (a) to annual mean 

temperature when using aggregated CF from FAO statistics and MODIS derived CF 

during 2001-2018. (b) Effect of 1℃ warming on global mean CF using response 

functions built on aggregated CF from FAO statistics and MODIS derived CF. 

Shaded areas (a) and error bars (b) represent 95% confidence intervals based on 1000 

bootstrap samples.  



 

 

Supplementary Figure 16 Response of cropping frequency (a), caloric yield (b), and 

caloric production (c) to annual mean temperature with all samples and removing the 

10% warmest countries. (d) Effect of 1℃ warming on global mean cropping frequency, 

caloric yield, and caloric production based on response functions estimated with all 

samples and removing the 10% warmest countries. Shaded areas (a-c) and error bars (d) 

represent 95% confidence intervals based on 1000 bootstrap samples. 

 



 

Supplementary Figure 17 Response of cropping frequency (a), caloric yield (b), and 

caloric production (c) to annual mean temperature with all samples and removing the 

10% coldest countries. (d) Effect of 1℃ warming on global mean cropping frequency, 

caloric yield, and caloric production based on response functions estimated with all 

samples and removing the 10% coldest countries. Shaded areas (a-c) and error bars (d) 

represent 95% confidence intervals based on 1000 bootstrap samples. 

 

 



 

Supplementary Figure 18 Influence of crop species omission on warming effects 

estimation. The leftmost in each group is the estimation based on all 161 crop species. 

The right ones are estimations with 10%, 20%, … 50% of crop species omitted as 

indicated by the numbers. For example, to estimate the influence of 10% crop species 

omission, CF, CalY and CalP were recalculated through randomly discarding 10% crop 

species in all country-year samples and this procedure was replicated 1000 times. 1000 

climate effects estimations can be obtained through applying the baseline model to each 

replication. The mean ± 2standard error (error bar) of 1000 temperature effects 

estimations is plotted here. 

 

 



 
Supplementary Figure 19 The relative difference between the model predicted CF, 

CalY and CalP and those in test data in each country. This out-of-sample model 

validation is obtained with 1000 bootstrap. 
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