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Annual food caloric productionis the product of caloricyield, cropping

frequency (CF, number of production seasons per year) and cropland
area. Existing studies have largely focused on crop yield, whereas how CF

responds to climate change remains poorly understood. Here, we evaluate
the global climate sensitivity of caloric yields and CF at national scale. We
find arobust negative association between warming and both caloric yield

and CF. By the 2050s, projected CF increases in cold regions are offset by
larger decreases in warm regions, resulting in a net global CF reduction
(—4.2 +2.5% in high emission scenario), suggesting that climate-driven
declinein CF will exacerbate crop production loss and not provide climate
adaptation alone. Although irrigation is effective in offsetting the projected
production loss, irrigation areas have to be expanded by >5% in warm
regions to fully offset climate-induced production losses by the 2050s.

Global food demand is expected to increase in the coming decades
with growing population and shifting dietary patterns®* In the past,
global production has kept pace with rising demand through both
cropland expansion and intensification. Cropland expansion into
uncultivated areas is an expedient but unsustainable way of increas-
ing crop production, since it has caused cascading environmental
harms like increased soil erosion, loss of wildlife habitat and substan-
tial carbon emissions**. Crop intensification includes within-season
yield improvements through use of high-yielding varieties, fertilizer,
pesticide and other inputs®’, as well asincreased cropping frequency
(CF) orthe number of crops cultivated per year onagiven area of land.
At the global scale, increases in caloric production (CalP) have been

driven mainly by improvements in crop caloric yield (CalY, crop yield
in calories produced per area), whereas increases in CF and cropland
expansion have played relatively minor roles (Fig.1)%".
Anthropogenic climate change is expected to make efforts to
increase total crop production more difficult due to rising average
temperatures and more frequent extreme weather events’®, directly
threatening food security objectives codified in the United Nations Sus-
tainable Development Goals. It has been noted that each component of
crop production might be influenced by climate change through differ-
ent pathways and over different time scales™’. Crop yield is generally
sensitive toin-season and interannual climate variability, and there is
robust evidence that, without major adaptation, global staple crop
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Fig.1| Changes in crop CalP, CF, CalY and cropland area during 1979-2018. Here, different regions are defined by FAO. Each time series is normalized using data

points at year 1979. Note different y axis scale for South America.

yield willbe reduced under climate change'. Climate change further
influences cropland area (CA) over longer time scales, with cropped
areas migrating slowly to counteract environmental changes®. CF is
potentially susceptible to climate changes over multiple time scales.
Dry or excessively wet soil conditions before planting schedule might
delay or prevent a second cropping season'*">. Warmer temperature
might be beneficial for increasing CF in cold areas, as the frost-free
period expands and shortens single-crop growth duration™®, How-
ever, rising temperatures in warmregions, which have analready long
growing season, might resultin lower CF due to the higher risk of crop
failure (total loss of cropping cycle) caused by more frequent heat or
drought stresses'”?°. These dynamics have been confirmed for the
Brazilian corn-soybean cropping system using satellite-observed CF,
suggesting that CF willbe reduced by warmingto agreater degree than
willyields". These divergent conclusions support the need for holistic
quantification of how climate warming influences global-scale CF to
manage climate warmingimpact onregional and global food security.

Studies reporting positive effects of warming on CF normally
relied on prescribed crop phenology models driven by temperature
or ‘space-for-time’ substitution to infer the potential change'*""*"*,
Suchmodelling strategies may overlook other environmental factors
constraining the feasibility of boosting CF?***, such as increased heat
stressinwarmer conditions®, decreases in water availability for irriga-
tion®, drought stress®, soil fertility decreases and increased pests and
pathogensinwarmer climates?. Recent progress on using satellite data
or statistics-derived regional-scale CF makes it possible to characterize
regional disparities and explore how climate variation will influence CF
with a data-driven approach'***°, However, most data-driven model
studies have focused on crop yield>***, harvested area*and total fac-
tor productivity®; such models have not been used to assess climate
impacts on CF specifically.

Here, we address this gap by building an empirical model fed
by the Food and Agriculture Organization (FAO) national statistical
data (http://www.fao.org/faostat/en/#data/QC) to examine how and
to what degree recent climate changes have altered CF and to assess
the potential impact of future warmer climate on CF and total food
production globally. Annual national mean CF is obtained by summing
the harvested area of all crops produced within a country (up to 161

monitored products) and then dividing it by the national total CA—
providinganestimation of the frequency cropland resources are used”
(Supplementary Fig. 1). It is an aggregate of all cultivation patterns,
including fallow croplands (CF = 0) used for conservation purposes
or resulting from land abandonment, areas with single-cropping per
year (CF =1) and areas with multiple-cropping cycles per year (CF > 1).
We also calculate the national annual total CalP by summing the caloric
content of all national crop production and further obtain the national
CalY by dividing CalP by the total harvested area of 161 cropsinanation
(Methods). On the basis of these definitions, CalP = CalY x CF x CA.
Although crop production additionally supplies critical protein, vita-
mins and fibre, calories from food crops are essential for meeting
dietary energy requirements, and thus, calorie-weighted metrics are
highly relevant for informing global food security. Taken together,
evaluating the climate sensitivities of these four metrics provides a
global picture of crop production change and adaptation potential
under future climate warming.

Temporal changesin production

Over the study period (1979-2018), global CalP increased by 125% and
CF, CalY and CA increased by 18%, 73% and 11%, respectively (Fig. 1).
There are substantial regional variations in growth; South America
shows the greatest CalP increase (by 320%), followed by Africa (by
220%) and Asia (by 207%) (Fig. 1). However, unlike most continents,
where CalY is the leading driver of CalP, the increase in African CalP
is primarily driven by CA over time, corroborating other research'?
suggesting that there are large potentials toimprove African crop pro-
duction with yield intensification. In fact, CF is the second primary
driver of increasing CalP in several regions, including North America,
South Americaand Asia. By contrast, CA explains only asmall share of
the CalP increase in most regions. After 2010, the rate of CA increase
has slowed down in all continents and CA even started to decrease in
North America and Western Europe (probably due to land resource
conservation policies®) and in Eastern Europe.

Although most continents show increasing trendsin CF, CalY and
CalP, the time series of these variables are characterized by strong
year-to-year fluctuations, especially in Oceania, where the interannual
variability of CalP seems primarily driven by the concordant temporal
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Fig.2|Response of CF, CalY and CalP to temperature. a-c, Response function
of CF (a), CalY (b) and CalP (c) to Tmean with and without irrigation. Response
functions are established on the basis of bootstrap. The 1,000 estimated
regression coefficients are then used to determine the 95% CI (shaded areas)

of model-estimated coefficients. The medians of the coefficients are used to
determine the response curves. Two response curves corresponding to without
and withirrigation are determined through setting irrigation fraction as zero and
historical global mean, respectively. The 2.5th and 97.5th percentiles are used

to define the lower and upper bounds of the 95% CI. Here, the curves are shifted

Caly

CalP

vertically so that the peak values of CF, CalY and CalP under noirrigationare 1.
Triangles on the x axis indicate the optimal temperature with different levels of
irrigation. d, Marginal effect of 1 °C warming on global average CF, CalY and CalP
estimated with eight panel models (the numbers under the line correspond to
the models in Methods). The global average of marginal effect of 1°C warming is
acountry crop area weighted average of warming effects in each country. Error
bars represent 95% Cl of each estimation. The ensemble mean of eight panel
models estimationis indicated by the horizontal line with shaded area as the 95%
Clofensemble mean.

variationin CalY (Fig.1). Detrending CalY and CF with aspline function
shows that the interannual variations of CF and CalY are positively
correlated at the global scale and in several representative countries
orregions (Supplementary Fig. 4). This synchronization suggests that
both CF and CalY might be sensitive to climate anomalies. For example,
adverse environmental conditions driving declined crop yield might
also lower farmer’s prospects for raising a second crop in the same
year'>**; extreme drought mightresultinatotal crop failure'. However,
we also note that CF and CalY in China and Brazil are not significantly
(p>0.05) correlated, perhaps because irrigation and other socioeco-
nomic factors have decoupled multiple-cropping decisions from crop
productivity there.

Climate effects on CF, CalY, CA and CalP

We estimate best-fit parameters for panel regression models (base-
line model M1; Methods) relating national CF, CalY or CalP to climate
(annualmean temperature and precipitation) and major management
practices (irrigation and nitrogen fertilizer application). With the
median coefficients §, two response curves corresponding to ‘with-
outirrigation’ and ‘withirrigation’ canbe determined through setting
irrigation fraction as zero and historical global mean (3.1%), respectively
(Fig. 2a-c). Without irrigation, the estimated temperature response
functions of CF, CalY and CalP peak at 7.5, 2.6 and 4.2 °C, respectively
(Fig. 2a-c). As we use annual mean temperature rather than growing

season meantemperature, the estimated optimal temperature of CalY
is lower than the optimal temperature of the crop yield recently esti-
mated®. Additionally, due tosignificantinteractions (p < 0.05) between
temperature and irrigationareafraction (Supplementary Tables1-3),
moreirrigation not only increases CF, CalY and CalP but also raises the
optimal temperature (Fig. 2a-c), suggesting the heat stress mitigation
potential of irrigation application. Similarly, the nonlinear responses
of CF, CalY and CalP to annual precipitation suggest that higher pre-
cipitation promotes CF, CalY and CalP until a high thresholdis reached
(Supplementary Fig. 5). The significant negative interaction (p < 0.05)
betweenirrigationareafractionand precipitation suggests thatirriga-
tion does indeed ease water availability constraints on CF, CalY and
CalP (Supplementary Tables1-3).

With this regression model, we also quantify the notable beneficial
effect of fertilizer application (Supplementary Tables 1-3). Our empiri-
cal model suggests that there will be 15.4%, 6.64% and 7.61% increases
in CF, CalY and CalP per 100 kg ha™ application of nitrogen fertilizer,
respectively. In contrast, more fertilizer application is predicted to
reduce CA (Supplementary Table 4), as higher crop yield reduces the
need for land reclamation and slow cropland expansion®.

Using the coefficients from baseline model M1, we show—under
historical management practices—that +1 °Cincrease in annual mean
temperature will reduce global average CalY, CF and CalP by 3.6 +1.5%,
1.8 £+ 0.9% and 5.7 +1.9% (mean + 95% confidence interval (Cl)) (Fig. 2d),
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Fig. 3| Effect of warming and irrigation on CF, CalY and CalP. a-c, Marginal
effect of 1°C warming on CF (a), CalY (b) and CalP (c) for each country estimated
with baseline model. The marginal effect of 1 °C warming was estimated as the
difference between predicted CF, CalY or CalP with uniform1°C warming and the
original CF, CalY or CalP, based on model M1and historical irrigation fraction.
d-f, Sensitivity of CF (d), CalY (e) and CalP (f) toirrigation area fraction,
estimated with the baseline model M1 (alrrii;t, = BsTmean;; + BePrep, ).
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Sensitivity for each country can be obtained with multiyear mean climate
variables during1979-2018. As ¥; . is logged, the estimated sensitivities indicate
the percentage change in CF (CalY or CalP) with unit percentage change in
irrigation area fraction. The insets in d-fshow the sensitivity of CF, CalY and CalP
toirrigation fractionin climate space, which is delineated by country-level annual
precipitation (x axis) and annual mean temperature (y axis) during 1979-2018.
Coloursin each climate space indicate the sensitivity of CF, CalY and CalP to
irrigation fraction.

respectively. This estimated value of CalY decline is quantitatively close
to the estimation of 1 °C warming effects on staple food crops (maize,
rice, soybean and wheat) on the basis of a similar statistical model>*%*,
probably because staple food crops constitute a large proportion of
global calorie production. Further, the reduced CF could be because
higher temperatures increase heat extremes resulting in more crop
failure, as well as reducing available soil water supply®*°, making it
hard to support multiple-cropping seasons. Warming effects on CalP
are close to the sum of individual warming effects on CalY and CF,
whereas the complementary components—warming effects on CA—are
very small and not statistically significantly (p > 0.05) different from
zero (Supplementary Fig. 6). This is also reflected by the statistically
non-significant (p > 0.05) regression coefficients relating climate vari-
ables to CA (Supplementary Table 4).

Models based on spline function of climate variables (M2), quad-
ratic function of 2-month climate variables with LASSO regression

(M3) and a growing degree day (GDD) model with LASSO regression
(M4) produce similar estimations as the baseline model (Fig. 2d). In
addition, we find the baseline model estimation stillholds when using
other climate datasets (M5 and M6), an alternative time period to
aggregate climate variables (M7) and a comprehensive management
index (total factor productivity input) to represent agricultural man-
agement practices (M8).

Withthenonlinear temperature response functions driven by his-
torical observations, the baseline model shows prevalent declinein CF,
CalY and CalP for warm areas (for example, Africa) but lower declines
or even small gains for cold areas per 1°C of warming (Fig. 3a—c). For
example, CF in Canada, Scandinavian countries, Mongolia and Russia
increases with +1 °C warming (Fig. 3a-c). These increases, however,
are insufficient to fully offset the declines in warm (and dry) regions,
resulting in an overall decline in global average CF (Fig. 2d). Such spa-
tial divergences could explain inconsistent findings of CF response
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2031-2070 relative to the reference period 1979-2018.

to climate warming in different geographical areas”>*. Overall, the
estimated +1 °C warming effects on CF partially offset the declines in
CalY foundin Canada, Scandinaviaand Russiabut contribute to greater
declinesin CalP in warm areas like South America and Africa.

Benefits of irrigation on CF, CalY and CalP

Thetemperature and precipitation response curvesin different levels
ofirrigation (Fig. 2 and Supplementary Fig. 5) raise the question of how
muchirrigation can partially offset the negative effects of warming and
drought stress on CF, CalY and CalP. With theinteraction termbetween
irrigation areafraction and climatic variables in the baseline model, we

are ableto assess the sensitivity of CF, CalY and CalP toirrigation area
fraction, which is expressed as a linear function of temperature and
precipitation. We find a positive and statistically significant (p < 0.05)
sensitivity of CF, CalY and CalP to irrigation area fraction with higher
beneficial effectin warmand dry conditions (Fig. 3d-f). For example,
intropical and subtropical regions, the sensitivity of CalP toirrigation
canreach 5%, meaningthatal%increaseinirrigation areafraction will
lead to 5% increasein CalP. Asthese regions are characterized by ahigh
decline of CF, CalY and CalP with temperaturerise, irrigation expansion
could be an effective way of mitigating production losses in this part of
the world, provided that there are sufficient water supplies.

Nature Climate Change



Article

https://doi.org/10.1038/s41558-022-01492-5

Irrigation area fraction required in SSP 126

3 . Sen

A\ 4

. sl

% s 4
F 4

.

Irrigation area fraction required in SSP 585

Fig. 5| Projectedirrigation area fraction to offset climate change-induced decline in CalP. a,b, The irrigation area fraction required to offset climate change-
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and historical reference period (1979-2018) climate dataset.

Changes in CF, CalY and CalP for 2031-2070
Projected changes in CF, CalY and CalP for 2031-2070, relative to
the reference period 1979-2018, show in the low-warming scenario
Shared Socioeconomic Pathway (SSP) 126, the projected global aver-
age changes in CF, CalY and CalP are equal to 2.9 + 0.5%, -5.8 +1.1%
and -9.0 £1.7% (mean £ 95% CI), respectively (Fig. 4a). In the higher
warming scenario SSP 585, climate change leads to greater reductions
in CF (-4.2+ 0.6%), CalY (-8.1+1.3%) and CalP (-12.7 + 2.1%) (Fig. 4b).
The projected impacts show substantial regional disparities (Fig. 4c-h;
see Supplementary Figs. 7 and 8 for separate effects of temperature
and precipitation). For example, CF is projected to increase in both
scenarios in Canada, Scandinavian countries, Mongolia and Russia
(representing ~12% of the world cropland), while CF would decline in
other countries. The United States, Western Europe and China show
slight declines in CF, CalY and CalP in both scenarios, while stronger
declines are identified in tropical countries. Specifically, in Brazil
and Sub-Saharan African countries, CalP is projected to decline up
to 30% under SSP 585. In these tropical countries, the projection sug-
gests that without additional adaptation, future warming will result
in reduced CF that will exacerbate the total CalP loss and threaten
food supply.

On the basis of the estimated positive impacts of irrigation, we
make azero-order projection of how much additionalirrigation expan-
sionwould be required for each country to fully offset the anticipated
climate-induced decline in total CalP. We find that greater increases
(increase to 5%irrigation fractionin SSP 585 scenario) are required for
countriesin Africaand South America thaninother countries (Fig. 5).
Thisisbecause agreater declinein CalP is expected in these warm coun-
tries dueto climate change (Fig.4g,h) and also because these countries
arecharacterized by lower irrigation fractions in the historical period
(Supplementary Fig. 2a). In fact, our projection suggests thatirrigation
fractions in countries like Congo, Angola and Zambia would have to
be boosted by more than 20 times relative to their very low historical
baseline levels. However, the increasing rate of irrigation fraction in
Africaduringthe historic periodis <0.2% per decade (Supplementary
Fig.2b), suggesting that the historical increasingrateinirrigation frac-
tion has tobe augmented to satisfy the future irrigation requirement.
Considering the expansion of irrigation fraction in Africa is not only
limited by local water resource availability but also the infrastructure
investment like water pumping system construction®®*’, there are sub-
stantial challenges to achieving these targets to fully offset anticipated
food production losses in these areas. However, future precipitation
changes provide opportunities for irrigation expansion. For example,
countriesin Eastern Africa, South Asiaand Southeastern Asiaare pro-
jected to have precipitation increases (Supplementary Fig. 9), which
might facilitate the building of irrigation infrastructure. However,
actualirrigation water withdrawal will also depend on the competition
for water resources from other sectors.

Discussion and conclusion

Ithasbeen suggested thatincreasing multiple-cropping practices could
be aneffective adaptation strategy to future warmer climate'®”?, since
future warming will expand the annual window for crop production
in cold areas and potentially allow for higher CF to offset loss from
lower yield. However, we show that warming is expected to reduce
global average CF, especially in warm areas, possibly because heat and
associated drought stresses disrupt the normal planting or harvest-
ing time window'**° or the depleted water supply is unable to sustain
multiple-cropping®. Even for northern cold areas, our predicted CF
increases are smaller than previous estimations'®”. This discrepancy
couldbe explained by multiple-cropping practices not only being lim-
ited by temperature but also other environmental and socioeconomic
factors. For example, converting single-cropping to double-cropping
will result in higher water demand*, which might not be satisfied by
water supply whenlocalinfrastructures andirrigation techniques are
insufficiently developed. Multiple-cropping might also require addi-
tional adjustments in farming systems*?, which might not always be
economically practicable. As our analysis is based on FAO statistics
whichreflect the actual multiple-cropping practices, the estimated
values of CF reported here probably accountindirectly for more of these
environmental and socioeconomic constraints than do the technical
potential studies'®""¥,

While the projected CF increase innorthern cold areasis relatively
small, it would be possible to achieve a substantial increase in future
agricultural production by extending cultivated land into areas that
are currently too cold froman agronomic perspective***. If cropland
expansion is taken as the only approach to mitigating the projected
CalPloss, based onour projection (Fig. 4), CAswould have toincrease
by 9.0 £1.7% (SSP 126 or 0.18% per year) and 12.7 + 2.1% (SSP 585 or
0.25% per year) by 2031-2070. These calculations assume that new CAs
exhibit the same average yields of existing lands, althoughin reality new
croplands often yield lower than average*. During 1979-2018, global
CAsshowanincreasingrate of 0.2% per year (Supplementary Table 6);
therefore, if cropland expansion holds this momentum, globally, the
projected CalP loss will be fully offset in SSP 126 and partially offsetin
SSP 585. However, climate warming might change the spatial pattern
of global agricultural suitability*°.

These findings are robust to different model specifications (M1-
M4), climate data (M5 and Mé6) (Fig. 2d), alternative time period aggre-
gation (M7), to the use of a comprehensive management index (M8)
(Fig. 2d and Supplementary Fig. 10), different polynomial functions
to characterize the trends (Supplementary Figs. 11-12) and a subset
of high-quality datarecords (Supplementary Fig.13). We also validate
FAO country-level CF with CF derived from subnational statistics and
satellite data (Supplementary Fig.14) and conduct robustness checks
by running the regression model with satellite data-derived CF. This
robustness check shows that satellite data-derived CF has a similar
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temperature response curve and estimated warming effects (Sup-
plementary Fig.15).

We test whether our findings could be biased by countries with
extreme high or low temperatures. Removing the 10% coldest/warmest
countries did not change noticeably the estimated warming effects on
CF, CalY and CalP (Supplementary Figs.16 and 17), suggesting that our
estimationis robust to samples with extreme high or low temperatures.
Another potential concernis the effect of crop species omissionin FAO
statistics on our findings. We simulate this through randomly discard-
ing a portion of crop species (Methods) and find that the estimated
temperature effects are robust to different levels of crop species omis-
sion (Supplementary Fig. 18).

Several caveats apply here. It is critical to find the right balance
between too-simple highly biased models neglectingimportantinputs
and too-complex models including too many inputs with overfitting.
Indeed, if someimportantinputs are neglected, the effect of a specific
input on the response can be strongly over- or under-estimated. The
selection of inputs to be included in a regression model is therefore
a key step. First, we use 18-month mean climate variables (or climate
exposures) rather than climate variables during specific crop growing
seasons, since there is no explicit crop growing season information
coveringall161 crops at global scale. In addition, non-growing season
climate might be also relevant to model climate effects on CF, CalY and
CalP, especially for CF, as planting decisions are largely determined
by preseason weather conditions*. Therefore, we took the climatic
conditions in both current year and the second half of the year pre-
ceding the harvest year into account in our models. It is worth noting
that our LASSO statistical model (M3) addresses this issue, as it auto-
matically selects the seasonal climate variablesin certain time periods
which explain most of the variation of CF, CalY and CalP. Second, our
statistical model does not account for the fertilization effect of rising
atmospheric CO,, which might partially offset future warming-driven
cropyieldlosses. Since biophysical models normally account for this,
such omission might cause discrepancy between statistical models
and biophysical models, especially in high-warming scenarios that
accompany substantially elevated CO, concentrations. However, we
notethatbecause CO,fertilization effectis further complicated by envi-
ronmental conditions (soil fertility, temperature or drought stress), a
better understanding of the real potential of CO, fertilization to offset
future crop losses requires more comprehensive synthesis of field
experiments*®, Third, as already identified, rainy season statistics (for
example, rainy season onset, duration and cessation) might influence
CF through regulating the planting season soil water status'*", but
these factors are not accounted for here. This is mainly because climate
models normally show a higher uncertain projection for precipitation
relative to temperature*’, which makes deriving the rainy season statis-
ticsmore challenging. Considering the rising precipitation variability
and more extreme events*>*' in the future, it is important to improve
the climate model’s predictive capacity for precipitation and derive
more accurate rainy season statistics™.

We show that future warming is expected to have a positive but
lower than expected effect on CFinnorthern cold areas and will prob-
ablyinduce adecline of CFinwarm areas like Africaand South America,
eventually reducing global average CF. The projected decline in global
CF represents about one-third of total projected CalP losses. Increased
irrigation through increased irrigated fraction or increased duration
could nevertheless be an effective approach compensating for the
negative impacts of heat and water stress, butits large-scaleimplemen-
tationmightbe constrained by infrastructure development, economic
returns and local water supply in each country>***,
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Methods

FAO agricultural statistics

Crop production, harvested area, cropyield, CA, irrigated CA and agri-
cultural total nitrogen use at country scale spanning 1979-2018 were
obtained from the FAOSTAT database®. We restricted our analysis to
1979-2018 as FAO statistics during the earlier time period include more
missing or estimated values and also because we used an hourly cli-
mate dataset starting from1979. The 150 most populous countries are
selected asthey normally have more complete datarecords and cover
98% of global crop production. In the FAOSTAT database, harvested
areaand cropyield arerecorded for161 crop species, while CA, irrigated
CA and agricultural total nitrogen use are the sum of all crop species
and do not distinguish among crops. According to FAO’s definition for
harvested area, if the crop is harvested more than once during the year
asaconsequence of successive cropping (for example, riceis sown and
harvested more than onceinthe same field during the year), the areais
counted as many times as harvested, which ensures multiple-cropping
isaccounted for in harvested area data. In terms of CA, it is the sum of
areasunder ‘arableland’ and ‘permanent crops’, according to FAO defi-
nitions. Arablelandis the land area under temporary crops, temporary
meadows and pastures and land with temporary fallow. Land under
permanent crops means land cultivated with long-term crops which
donothavetobereplanted forseveral years (such as cocoaand coffee),
land under trees and shrubs producing flowers and nurseries (except
those for forest trees, which should be classified under ‘Forestry’). We
note that FAO data were a mixture of ‘FAO estimate’ and ‘official data’.
Dataentries marked as ‘FAO estimate’ were often lessreliable than the
‘official data’. To minimize the influence of those countries with high
rates of ‘FAO estimate’ on our regression model, countries with >20%
ofthe dataonharvested areaor production marked as ‘estimated data’
wereexcluded, as previously done’*. The excluded nations were Guinea,
Kenya, Mozambique, North Korea and Zambia.

Modelling climate effects on CalY, CF, CA and CalP

For a country producing N different crops (N denotes the number of
crop species in a country), the total yearly crop (CalP) can be further
decomposed into CalY, CF and CA:

N N .
% Yield; x HA HA
CalP = Z Vi X Yleldk X HAk = Zk:l Vi K k Zk 1 K

x CA
a h HA, CA

where y,is the caloric conversionfactor of crop k,and we obtained the
caloric conversion factor onthe basis of published dataset (http:/www.
fao.org/docrep/003/X9892E/X9892e05.htm#P8217_125315); HA,indi-
cates harvested area of crop k; CA is the total CA of a country Thus,
ZL yiXYieldg xHA;

S represents the country-average CalY and == — Zk L
k=110

A repre-
sents the country-scale average CF (Supplementary Fig. 1). This
country-scale average CF is the aggregate of fallow croplands (fre-
quency = 0) due to conservation purposes or abandonment,
single-cropping per year (frequency =1) or multiple-cropping per year
(CF >1).0Onthebasis of these definitions, we have CalP = CalY x CF x CA.

We build panel models separately for each dependent variable
(CF, CalyY, CA or CalP) to estimate the effects of year-to-year climate
variation and farmer management practices on CF, CalY, CA or CalP
(sample size n = 5,184), which s specified as follows:

log(Y;,) = ay;t + ay ;2 + country, + fW;, + &,

Y. represents CF, CalY, CA or CalP for country i and year t. Term
a;t + oy ;£ characterizes the country-specific quadratic time trends,
which capture unobserved, country-specific factors affecting CF, Caly,
CA or CalP, such as technological progress. Parameter country, is
the country-specific fixed-effect capturing all time-invariant,

country-specific factors that might explain variationsin ¥; . The model
component SW;, takes into account the effects of the inputs in W;,
potentially affecting ¥;, using a set of parameters g (common
toall countries>”). Our baseline model for gW; used aquadratic func-
tion of annual mean temperature (Tmean) and annual precipitation
(Prcp) to characterize the potential nonlinear effect of Tmean and
PrcponyY;,.

2 . 2
BWi, = BiTmean;, + B, Tmean;, + B3 Tmean,, - Irri;, + B4 Prep;,

+BsPrep; , + BsPrep; , - Irri; + B;Fert;,

To account for the potential compensation effect of irrigation on
temperature stress and water stress, irrigation fraction (Irri; ;) (Supple-
mentary Fig. 2a), which was estimated as theratio of irrigated CA to total
CA at country i and year ¢, was interacted with Tmean and Prcp. The
interaction terms characterize the marginal relationship between CF,
CalY or CalPandirrigation, conditional on climate variables. This allows
us to quantify the benefit ofirrigation through evaluating the sensitivity
of Y;, toirrigation fraction ( o = B3Tmean;, + BPrcp; ). To control the
influence of fertilizer appllcatlon onincreasing CF or cropyield, nitro-
genapplicationrate (Fert; ) wasincluded in the model as well. Parameter
Fert;,was estimated as theratio of agricultural total nitrogen use to the
total harvested area of all crops in a country. Our panel model was
weighted by the country-level crop area from FAO to define the model
outputasanaverage over all crop areas. The weighting method was also
useful to reduce heteroskedasticity and correct the influences of coun-
tries with very small CAs*. Since presence of spatial autocorrelation
couldviolate the assumption of normally distributed residuals, we also
checked whether spatial autocorrelation occurredin each panel model
residual usingMoran’s /. Theresults suggest that there is no statistically
significant (P> 0.05) spatial autocorrelation in each panel model. Fur-
ther, we note that although CF might be also driven by other unobserved
variables (crop rotation, cropland expansion and agricultural policies)
apart from climatic factors, as long as these unobserved variables are
not marginally influenced by temperature, which seems plausible, the
first-order approximation of temperature effect on CF can be estimated
with our linear regression model. With the established model and the
historicalirrigation fraction, the marginal effect of temperature on CF,
CalY, CA or CalP was estimated as the difference between predicted v;,
with 1°C uniform increase in Tmean and the original Y;,. The global
average change is then a weighted average (weighted by country crop
area) of the 1°C warming effectsin each country.

Hourly reanalysis climate data ERAS at 0.25° x 0.25° resolution
spanning from 1979 to 2018 were used to characterize climate condi-
tions during crop growth*”. Considering some crops were sownin the
previous year of harvest, especially for winter crops in the Northern
Hemisphere, we used both the current year and the second half of the
previous year to calculate Tmean and Prcp. In addition, we also fitted
a panel model with climate variables exclusively averaged over the
current year (see model summary in Supplementary Table 5). When
averaging climate variables to get their annual mean, we did not dis-
tinguish crop growing season and non-growing season because the 161
crop species considered here have diverse growing seasons and also
cropyield or farmer planting decision might be influenced by both crop
growing season and non-growing season weather*®, The annual mean
temperature and precipitation at 0.25° x 0.25° resolution were then
aggregated to country-level spatially weighted by CA fractionin each
grid cell. We get CA fraction in each grid cell through aggregating the
1km Global Food Security Support Analysis Data (GFSAD) crop mask
into 0.25° x 0.25° resolution® (Supplementary Fig. 3). GFSAD dataset
was created using multipleinput dataincluding remote sensing such as
Landsat, Satellite Probatoire d'Observation de la Terre (SPOT) vegeta-
tionand MODIS; multiyear precipitation and temperature data; ground
reference data; and country statistics data®.
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Robustness checks

We tested other specifications of W, to assess the robustness of our
analysis. Similarly, nitrogen application rate and interaction between
Irri; ,and climate variables were also considered in the following alterna-
tive specifications of gW;, to account for fertilizer application and
irrigation compensation effects, respectively.

M2: Model using natural cubic splines (NCS) function of annual
meantemperature and precipitation. Studies suggest NCS function has
agood capacity to capture the nonlinear response of crop productivity
toclimate variables®. Here, we used five knots set at the 5th, 25th, 50th,
75th and 95th percentiles of Tmean or Prcp:

BW;¢ = BINCS (Tmean; ) + B, Tmean;, x Irri;, + B3NCS (Prep; )

+B4Prep;, x Irri, + BsFert;,

Tmean;,,and Prcp, , , are the annual mean temperature and pre-
cipitation for countryiand year¢.

M3: Model with quadratic function of 2-month mean Tmean and
Prcp. Studies have suggested that crop yield is sensitive to climate
stressesin specific crop growth stages. To better characterize the influ-
ence of seasonal climate variation on CF or CalY, we used the quadratic
function of 2-month average climate variables:

9
2 .
ﬁu/i,t = ZI( ﬁl,meeani,t,m + ﬂz,meeani,t,m + ﬂ3,meeani,t,m X ll‘l’li,[
m=

2 .
+ﬁ4,mPrcpi,t,m+,/}5,mPrcpi,t!m +ﬁ6,,,,Prcpl.,[,m x Irri; ) + B;Fert;,

Tmean,, n,and Prcp, , .are the mth 2-month mean temperature and
precipitation for country i and year t. As we used climate variables in
both current year and the second half of the previous year, there are
nine 2-month mean Tmean, ,and Prcp; , .. Here, we did not use monthly
climate variables in the model to avoid too many predictors and thus
overfitting. Penalized regression (LASSO) was implemented with the
R package glmnet® to select the mostinfluential climate predictors. A
tenfold cross-validation was performed to maximize the predictive
accuracy of themodel. LASSO regression allowed us toidentify a subset
of predictors that explain most of the variation in outcomes by shrink-
ing the regression coefficient towards zero and discarding irrelevant
predictors. This procedure thus automatically determined which time
periods of climate variables were most relevant for explaining CF, CalY
and CalP variation.

M4: GDD model.

5
. 2
BWit = 3 (B1,mGDD;m + B2, mGDDy g X Irriy) + ‘33PVCP,',[

m=1

+B4Prep;, + BsPrep;, x Irriy, + BeFert;,

In this GDD model, five levels of GDD for country i and year ¢
(GDD;;, GDD;,, GDD; 3, GDD; ., and GDD;, 5) were considered to char-
acterize the differential response of ¥;, to different levels of tempera-
ture exposures with 10 °C increment: GDD, as GDD°., GDD, as GDDy,,
GDD;as GDDZy, GDD,as GDD3gand GDDsas GDD <. ERAS hourly tempera-
ture at the height of 2 m was used to estimate GDD with the following
equation:

0,T,<Ty
H
GDDJ? = 3 DD4/24.DD; ={ Ty~ L. Ty < Ty < T
h=
' T -TuTy>T,

where T, represents the temperature athour A, and His the total number
of hours during the growing season. T, and T, indicate the lower and
upper temperature thresholds of GDD, respectively. GDD, takes the

freezing stressinto account, while GDD;uses a high temperature thresh-
old of 30 °C to characterize high-temperature stress effects on crop
growth as suggested by previous studies®*>**, The other GDDs gener-
ally represent the mild temperature exposures. Similarly, we used
LASSO regression to estimate model coefficients, as LASSO regression
can automatically select GDDs most relevant for explaining CF, CalY,
CA and CalP variations, thus minimizing the potential multicollinearity
effectamong GDDs.

MS5 and Mé6: Model with alternative climate dataset. To test the
robustness of our model to other climate datasets, we also run the
baseline model with two other climate datasets: Climate Research Unit
time-series datasets (CRUTS4.0.4)°* (M5inSupplementary Table 5) and
the University of Delaware temperature and rainfall datasets® (M6 in
Supplementary Table 5).

M7: Model with annual climate variables aggregated over 1 year.
This model uses the same specification as the baseline model M1, but
the annual climate variables are aggregated over 1year (12-month)
time period.

MB8: Total factor productivity input (TFPI) model (M8 in Supple-
mentary Table 5).

BW,, = ,Bleean,%t + B,Tmean;, + B3 Tmean;, x TFPI;,

+ﬂ4Prcpzt + BsPrep; , + BePrep; , x TFPI;,

In this alternative model, agricultural total factor productivity input
(TFPI) replaces irrigation and fertilizer application to represent the
comprehensive management practices (cultivation technology, man-
agement ability and agricultural infrastructure). Total factor pro-
ductivity (TFP) measures productive efficiency, that is, the amount
of agricultural output produced from the combined set of input®®.
The output includes crop and livestock commodities aggregated on
the basis of acommon set of international prices derived by the FAO.
Input (TFPI) includes agriculturalland, farm labour, irrigation, capital
inputs (including farm machinery) and intermediate inputs (fertilizer).
TFPI thus can be used to represent the comprehensive management
practices used in farm production. This dataset is obtained from the
United States Department of Agriculture (USDA) Economic Research
Service (ERS) International Agricultural TFP dataset (https://www.
ers.usda.gov/data-products/international-agricultural-productivity
/), which provides country-level TFP and TFPlindex for 172 countries
over the 1961-2019 period. In model M8, TFPI replaces irrigation and
fertilizer application to more comprehensively account for various
management practices. Theinteraction term between TFPland climate
variablesis used to characterize the effect of agricultural management
practices in offsetting the negative impact of climate change onyield
and CF.To account for the statistical uncertainty of these regression
models, we run each model with 1,000 bootstrap, where we sample
fromall 5,184 country-year observations with replacement. The 1,000
sets of estimated regression coefficients are then used to determine the
Clofthe model-estimated coefficients. The medians of the 1,000 sets
of coefficients are used to determine the response curvesin Fig. 2a-c.
With the median of coefficients S, two response curves correspond-
ing to without and with irrigation can be determined through setting
irrigation fraction as zero and historical mean (3.1%), respectively
(Fig. 2a-c). When LASSO regression is run using each bootstrap sam-
ple, the penalized algorithm selects new combinations of predictors
for each sample. Therefore, applying bootstrap to LASSO regression
model (M3 and M4) allows us to account for the uncertainties in model
formulationas well.

We also checked whether the estimated coefficients will be biased
by countries withextreme high or low temperatures. With the baseline
model, model coefficients and marginal effects of 1 °C warming were
re-estimated on the basis of samples excluding the 10% coldest or 10%
warmest countries. Another potential bias is the omission of certain
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cropsin FAO statistics, considering there might be more than 161 crops
planted in a country”. To simulate the influence of crop species omis-
sion on our estimations, five levels (10%, 20%, 30%, 40%, 50%) of crop
species omission were considered. For example, to simulate the effects
of10% crop species omission, we re-estimated CF, CalY and CalP1,000
times, and for each time, we randomly discarded 10% crop species. We
then applied the baseline model M1 to each set of CF, CalY and CalP
to estimate climate effects (1,000 estimates of climate effects) (Sup-
plementary Fig.18).

Model evaluation

First, we conduct an out-of-sample model validation with1,000 boot-
straps. Each time, 80% of country-year observations are randomly
sampled as the training data to build the panel model with model M1;
the remaining 20% country-year observations are used as test data.
The relative difference between the model predicted CF, CalY and
CalP and those in test data were used to evaluate the performance of
our panel model. Relative differences in each country are presented
in Supplementary Fig. 19.

Second, we fit the panel model M1using a subset of dataset flagged
by the FAO as ‘official data’. We consider this to be as high-quality data
as possible (compared to, for example, data flagged as ‘estimated
data’). Similar to Fig. 2 in the main text, we estimate the temperature
sensitivity of CF, CalY and CalP with model M1and create the response
curves of CF, CalY and CalP to temperature. This alternative model
test has a smaller sample size but does not substantially change the
response of CF, CalY and CalP to temperature (Supplementary Fig13)
and consistently suggests an overall negative association between
climate warming and CF, CalY and CalP at global scale.

Third, we validate the country-level aggregated CF with subna-
tional statistics in Brazil and satellite data-derived CF. The subnational
statistics in Brazil are compiled in a recent study® and characterize
the corn-soybean double-cropping system. The statistics contain
soybean harvest area and also separate records for first-season corn
and second-season corn harvest area. Since the main-season crops
are soybean and first-season corn, whereas the only second crop is
second-season corn, the CF can be thus calculated as:

CF Area; + Area.,; + Areag,y,
- Area; + Areagoy

where Area, and Areag, are the harvest area of first-season and
second-season corn, respectively, and Area,,, is the harvested area of
soybean. The validation result canbe found in Supplementary Fig. 14.

A spatially explicit estimation of CF derived from satellite datais
alsoused. Relative to the CF derived from national statistics, it can bet-
ter characterize the spatial heterogeneity of multiple-cropping prac-
tices. Similar to the CF used in the previous study”, our satellite-derived
CFisalso developed by detecting the number of sharp peaks followed
by troughs using time series of MODIS enhanced vegetation index
(EVI). This information is obtained from the established MODIS land
cover dynamics product (MCD12Q2)*® at 500 m spatial resolution dur-
ing 2001-2018, wherein it contains a data layer named ‘NumCycles’.
Combining MODIS-derived ‘NumCycles’ which characterizes the total
number of vegetation cycles per year with MODIS land cover map®’
which differentiates cropland and non-cropland, we can get the CF
information for each 500 mgrid cell across the global cropland. Then
this satellite-derived CF information is averaged to country level and
used as the dependent variable in M1, by which we can check whether
our findings will hold with this satellite-based CF. These dataevaluation
and model test results can be found in Supplementary Figs. 14 and 15.

Future projections
We projected future CF, CalY and CalP during 2031-2070 using
the baseline model M1 with climate outputs from Coupled Model

Intercomparison Project Phase 6 (CMIP6), which is provided by
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). Cli-
mate change effects are estimated as the difference between pre-
dicted CF, CalY or CalP during 2031-2070 and the reference period
(1979-2018) CF, CalY or CalP. Two climate scenarios were consid-
ered to represent lower (SSP 126) and higher (SSP 585) emission
scenarios. Here, SSP 585 is used to shed light on future crop produc-
tion changes under the worst-case climate change scenarios, since
SSP 585 is commonly used to simulate upper limits of temperature
change over the next century’. ISIMIP provides five climate model
outputs (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0
and UKESM1-0-LL) to account for the potential bias in future cli-
mate projections in each specific model. The five climate models
were selected because they are structurally independent in terms
of their ocean and atmosphere model components. Meanwhile, the
five primary models are good representatives of the whole CMIP6
ensemble as they include three models with low climate sensitivity
(GFDL-ESM4, MPI-ESM1-2-HR and MRI-ESM2-0) and two models with
high climate sensitivity (IPSL-CM6A-LR and UKESM1-0-LL)". Climate
model outputs (daily mean temperature and precipitation) were
downscaled to 0.5° resolution and bias-corrected through compar-
ing the climate model outputs with corresponding climate observa-
tions during the training period”. The bias-corrected climate model
outputs were available at https://esg.pik-potsdam.de/search/isimip/.
Thenasimilar method as we processed the historical climate dataset
was applied to the five climate model outputs to obtain country-level
climate variables for 2031-20707% Our future projections assume
no new adaptation between now and then or holding technology
equivalent to current levels, so that the estimated changes in CF,
CalY and CalP are exclusively caused by changes in temperature and
precipitation.

Data availability

FAO national statistical data was obtained from http://www.fao.org/
faostat/en/#data/QC. Agricultural TFP was obtained from the USDA
ERS International Agricultural TFP dataset https://www.ers.usda.
gov/data-products/international-agricultural-productivity/. The
caloric conversion factor is based on the published dataset http://
www.fao.org/docrep/003/X9892E/X9892e05.htm#P8217_125315.
The bias-corrected climate model outputs are available at https://esg.
pik-potsdam.de/search/isimip/.

Code availability
The scripts used to run the regression model are available through
zenodo at: https://zenodo.org/record/7038556
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Supplementary material

Supplementary Table 1 Summary of the baseline model for cropping frequency

(sample size n=5184)

Estimated coefficients

95% confidence interval

Tmean 0.012 (*)
Tmean? -8.14- 10~*(***)
Prcp 7.74- 1075(***)
Prcp? -8.94- 1079(***)

Irri-Tmean  0.05 (***)
Irri - Prcp -1.34- 107*(**%)

Fert 0.0015/G2) (***)

[-0.0045, 0.029 ]
[-0.0014, -0.0003]
[4.38-1075, 1.09-107* ]
[-1.26- 1078, -4.97-107°]
[0.014, 0.093]
[-2.73-107%, -1.02-1075]

[0.0014, 0.0017]

R? 0.82

*, ** and *** in parentheses denote the statistical significance at the 0.1, 0.05, 0.01
levels (this convention also applies to the following tables).

Supplementary Table 2 Summary of the baseline model for caloric yield (sample size

n=5184)
Estimated coefficients 95% confidence interval
Tmean 0.0059 [-0.024, 0.037]
Tmean? -0.0012(**) [-0.0021, -0.0003]
Prep 2.58+ 107 4(***) [1.88-107% 3.41-107% ]
Prcp? -2.74- 1078(**%) [-4.41- 1078, -1.80-1078]

Irri-Tmean  0.12 (***)
Irri - Prcp -3.21- 1074(**%)

Fert 6.64-107/(2) (***)

[0.060, 0.187]
[-5.51- 1074, -1.29- 10~4]

[4.17-107%, 9.11-107%]

R? 0.91

Supplementary Table 3 Summary of the baseline model for caloric production (sample

size n=5184)
Estimated coefficients 95% confidence interval
Tmean 0.0176 [-0.019, 0.056]
Tmean? -0.0021(***) [-0.0032, -0.0010]
Prep 3.44- 1074 (***) [2.67-107%, 4.47-107* ]
Prcp? -3.76- 1078(***) [-5.61- 1078, -2.71-107%]

Irri-Tmean  0.25 (***)
Irri- Prcp -4.50- 10~*(***)

Fert 7.61-1074/(G2) (**¥)

[0.18, 0.33]
[-7.57-107%, -2.17-1074]

[4.43-10™*, 1.08-1073]

R? 0.86




Supplementary Table 4 Estimated coefficients when using cropland area as the
dependent variable with baseline model M1 (sample size n=5184).

Estimated coefficients 95% confidence interval

Tmean -7.68- 1073 (p>0.1) [-0.021, 0.0053]

Tmean? 1.02:107* (p>0.1) [-3.02: 107%, 5.06-107]
Prcp 1.26-1075 (p>0.1) [-1.08-1075, 3.60-1075 ]
Prcp? -7.31-1071° (p>0.1) [-3.22:107°, 1.79-1077]

Irri-Tmean  0.16 (**) [0.12, 0.19]
Irri - Prcp -1.81-107* (p>0.1) [-3.71-107%, 0.9-1075]
Fert -1.17-10‘3/(:—i) (***) [-1.26- 1073, -1.08-1073]

R? 0.71




Supplementary Table 5 Summary of alternative model specifications of SW; ,

Time period to

Models Climate functions Climate dataset
be averaged
) _ One and
Quadratic function of annual mean
M1 ERAS5 previous half
Tmean and Prcp
year
_ _ One and
Spline function of annual mean Tmean
M2 ERAS5 previous half
and Prcp
year
) _ One and
Quadratic function of 2-months mean _
M3 ERA5 previous half
Tmean and Prcp
year
One and
M4 GDD model ERA5 previous half
year
) _ One and
Quadratic function of annual mean _
M5 CRU previous half
Tmean and Prcp
year
) _ o One and
Quadratic function of annual mean University of _
M6 previous half
Tmean and Prcp Delaware
year
Quadratic function of annual mean
M7 ERA5 One year
Tmean and Prcp
Quadratic function of annual mean One and
M8 Tmean and Prcp and total factor ERAS previous half

productivity input

year




Supplementary Table 6 Changing rate of cropland area during 1979-2018

Regions Changing rate (%/year)
Globe 0.2% (p<0.001)
North America -0.52% (p<0.001)
South America 0.57% (p<0.001)
Western Europe -0.19% (p<0.001)
East Europe -1.1% (p<0.001)
Africa 1.2% (p<0.001)
Asia 0.56% (p<0.001)
Oceania 1.1% (p<0.001)

Multi-year mean croping frequency

1.4
1.2

0.8
0.6
0.4
0.2

Supplementary Figure 1 Four decades (1979-2018) of mean cropping frequency in each
country.
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country.
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Supplementary Figure 3 Cropland fraction in each grid cell. Cropland fraction is used
as weight for aggregating gridded climate data to the country level.
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Supplementary Figure 4 Pearson’s correlation (r) between detrended cropping
frequency and caloric yield at global and regional scales. Cropping frequency and
caloric yield were detrended before estimating the Pearson correlation. Detrending was
conducted by removing the spline function fitted trend term in CalY and CF. USSR is a
group of countries previously within the Union of Soviet Socialist Republics. *, **, and
*** in parentheses denote the statistical significance at the 0.05, 0.01, 0.001 levels for
the estimated correlation coefficients.
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Supplementary Figure 5 Response of cropping frequency (a), caloric yield (b), and
caloric production (c) to annual mean precipitation with and without irrigation.
Response functions are established based on bootstrap. The 1000 estimated regression
coefficients are then used to determine the 95% confidence interval (Cl, shaded areas)
of model estimated coefficients. The medians of the coefficients are used to determine



the response curves. Two response curves corresponding to ‘with and without
irrigation’ can be determined through setting irrigation fraction as zero and historical
global mean (3.1%), respectively. Here the curves are shifted vertically so that the
peak value of CF, CalY, and CalP under no irrigation is 1. Triangles on the x axis
indicate the optimal precipitation with and without irrigation.

Marginal effect of 1 °C warming (%)

-2 Cropland area
Supplementary Figure 6 Marginal effect of 1<C warming on global cropland area
estimated with eight panel models. Marginal effect of 1<C warming for each country
was estimated as the difference between +1<C warming prediction and historical
mean. Error bars represent 95% confidence intervals of each estimation. The
ensemble mean of eight panel models estimation is indicated with the horizontal line

with shaded area as the 95% confidence interval of ensemble mean.
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Supplementary Figure 7 Projected changes in cropping frequency, caloric yield, and
caloric production based on five climate models under SSP126 and SSP585 in 2050
(2031-2070) when only future precipitation change is accounted for.
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Supplementary Figure 8 Projected changes in cropping frequency, caloric yield, and
caloric production based on five climate models under SSP126 and SSP585 by 2050
(2031-2070) when only future temperature change is accounted for.
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polynomial and cubic polynomial to characterize trends in CF, CalY, and CalP. Shaded
areas (a-c) and error bars (d) represent 95% confidence intervals based on 1000
bootstrap samples.
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Supplementary Figure 13 Response of cropping frequency (a), caloric yield (b), and
caloric production (c) to annual mean temperature when using all samples and high
quality samples (data records flagged as ‘Official data’). (d) Effect of 1°C warming on
global mean CF, CalY, and CalP using response functions built on all samples and
high quality samples (data records flagged as ‘Official data’). Shaded areas (a-c) and
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error bars (d) represent 95% confidence intervals based on 1000 bootstrap samples.
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Supplementary Figure 14 Comparison of FAO country-scale CF with CF derived from
satellite data (a-c and e-f) and sub-national statistics (d) for globe and several
representative countries. We use the Pearson correlation to represent the temporal
correlation between two time series. *** denotes p<0.001. This result suggests the
two different sets of CF have a good temporal correlation in several countries,
although FAO based CF is generally lower than CF derived from satellite data and
sub-national statistics, mainly due to the different definitions of CF. For example,
FAQ country-scale CF includes cropland abandonment, i.e. CF=0, while CF derived
from sub-national statistics and satellite data does not.
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Supplementary Figure 15 Response of cropping frequency (a) to annual mean
temperature when using aggregated CF from FAO statistics and MODIS derived CF
during 2001-2018. (b) Effect of 1°C warming on global mean CF using response
functions built on aggregated CF from FAO statistics and MODIS derived CF.
Shaded areas (a) and error bars (b) represent 95% confidence intervals based on 1000
bootstrap samples.



1.2¢

0.8} RS

log(CF)
Y

0.6}
0.4+
0.2¢ All samples 0.2; All samples
Without 10% warmest countries ——— Without 10% warmest countries
0 : ‘ ‘ 0 : ‘ :
0 10 20 30 0 10 20 30
Mean annual temperature (°C) Mean annual temperature (°C)
C Sy d
1 .5' (@)
g
£ H
—
g
3F
(@)
o
-
Y—
(@)
3 -6 o)
ol =
(<H)
\ «© All ft
All samples c samples (left)
05— Without 10% warmest countries % Without 10% warmest countries (right)
0 10 20 50 =9

Mean annual temperature (°C) CF Caly  CalP

Supplementary Figure 16 Response of cropping frequency (a), caloric yield (b), and
caloric production (c) to annual mean temperature with all samples and removing the
10% warmest countries. (d) Effect of 1°C warming on global mean cropping frequency,
caloric yield, and caloric production based on response functions estimated with all
samples and removing the 10% warmest countries. Shaded areas (a-c) and error bars (d)
represent 95% confidence intervals based on 1000 bootstrap samples.
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Supplementary Figure 17 Response of cropping frequency (a), caloric yield (b), and
caloric production (c) to annual mean temperature with all samples and removing the
10% coldest countries. (d) Effect of 1°C warming on global mean cropping frequency,
caloric yield, and caloric production based on response functions estimated with all
samples and removing the 10% coldest countries. Shaded areas (a-c) and error bars (d)
represent 95% confidence intervals based on 1000 bootstrap samples.
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Supplementary Figure 18 Influence of crop species omission on warming effects
estimation. The leftmost in each group is the estimation based on all 161 crop species.
The right ones are estimations with 10%, 20%, ... 50% of crop species omitted as
indicated by the numbers. For example, to estimate the influence of 10% crop species
omission, CF, CalY and CalP were recalculated through randomly discarding 10% crop
species in all country-year samples and this procedure was replicated 1000 times. 1000
climate effects estimations can be obtained through applying the baseline model to each
replication. The mean = 2standard error (error bar) of 1000 temperature effects
estimations is plotted here.



Relative difference of model prediction for CF

%
‘ 4
\
AN 2
1
0

Relative difference of model prediction for CalP

e P A
a2 3

2

1

0

¢ =
1 4 qy,

<
2 2

Supplementary Figure 19 The relative difference between the model predicted CF,

CalY and CalP and those in test data in each country. This out-of-sample model
validation is obtained with 1000 bootstrap.



	Warming reduces global agricultural production by decreasing cropping frequency and yields

	Temporal changes in production

	Climate effects on CF, CalY, CA and CalP

	Benefits of irrigation on CF, CalY and CalP

	Changes in CF, CalY and CalP for 2031–2070

	Discussion and conclusion

	Online content

	Fig. 1 Changes in crop CalP, CF, CalY and cropland area during 1979–2018.
	Fig. 2 Response of CF, CalY and CalP to temperature.
	Fig. 3 Effect of warming and irrigation on CF, CalY and CalP.
	Fig. 4 Projected changes in CF, CalY and CalP for 2031–2070 relative to the reference period 1979–2018.
	Fig. 5 Projected irrigation area fraction to offset climate change-induced decline in CalP.




