IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

Local Geometry of Nonconvex Spike Deconvolution
From Low-Pass Measurements

Maxime Ferreira Da Costa™, Member, IEEE, and Yuejie Chi*”, Fellow, IEEE

Abstract—Spike deconvolution is the problem of recovering the
point sources from their convolution with a known point spread
function, which plays a fundamental role in many sensing and
imaging applications. In this paper, we investigate the local geom-
etry of recovering the parameters of point sources—including
both amplitudes and locations—by minimizing a natural non-
convex least-squares loss function measuring the observation
residuals. We propose preconditioned variants of gradient descent
(GD), where the search direction is scaled via some carefully
designed preconditioning matrices. We begin with a simple fixed
preconditioner design, which adjusts the learning rates of the
locations at a different scale from those of the amplitudes, and
show it achieves a linear rate of convergence—in terms of enfry-
wise errors—when initialized close to the ground truth, as long
as the separation between the true spikes is sufficiently large.
However, the convergence rate slows down significantly when
the dynamic range of the source amplitudes is large. To bridge
this issue, we introduce an adaptive preconditioner design, which
compensates for the learning rates of different sources in an
iteration-varying manner based on the current estimate. The
adaptive design provably leads to an accelerated convergence
rate that is independent of the dynamic range, highlighting the
benefit of adaptive preconditioning in nonconvex spike deconvo-
lution. Numerical experiments are provided to corroborate the
theoretical findings.

Index Terms—Spike deconvolution, non-convex optimization,
preconditioned gradient descent, local geometry.

I. INTRODUCTION

PIKE deconvolution, also known as super-resolution [1], is
the task of recovering a stream of point sources from their
convolution with a point spread function (PSF). This classical
problem is at the core of many sensing and imaging modali-
ties, including but not limited to radar, sonar, optical imaging,
neuroimaging, and communication systems [2], [3], [4], [5].
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The PSE, which models the physical limitations of the imag-
ing device involved in the experimental process, is commonly
assumed to act as a band-limited and shift-invariant low-pass
filter on the point sources [6], [7]. The sharpness of the origi-
nal sources, modeled by Dirac impulses, is degraded through
the convolution process, introducing undesirable ambiguity on
the complex amplitudes and locations of the sources. The
spike deconvolution task amounts to inverting the low-passing
effects of the PSF, and to recovering the original sources as
precisely as possible.

There is a rich literature on algorithmic investigations of
the spike deconvolution problem, ranging from classical root-
finding methods such as Prony’s method, subspace methods
such as MUSIC [8], [9]. ESPRIT [10] and matrix pen-
cil [11], to more recent optimization methods such as atomic
norm minimization (a.k.a. total variation minimization) [12].
[13], [14], [15], [16] and basis pursuit [17], [18]. While
classical approaches harness the algebraic properties of com-
plex exponentials by mapping the observations onto a low-
dimensional linear subspace to recover the parameters of
interest, optimization methods, on the other hand, attempt
to recover the parameters via minimizing some carefully-
designed loss function. As such, optimization methods tend
to be more versatile in adapting to different imaging modal-
ities, as well as amenable to modern advances in large-scale
optimization. Inspired by the development of compressive
sensing [19], [20], initial approaches for spike deconvolu-
tion rely on a discretization of the spike locations, and
then attempts to recover a sparse solution using sparsity-
promoting convex relaxations such as the LASSO [21], [22].
However, the fundamental issue of basis mismatch [23] inher-
ent to the discretization process may significantly hinder
the localization performance, and increasing the grid size
to reach finer precision levels leads to higher computa-
tional costs. Therefore, there has been a surge of interest in
developing provably correct convex programs—such as the
atomic norm minimization framework mentioned earlier—
for spike deconvolution over the continuum in recent years,
with strong performance guarantees developed under sufficient
separations between the point sources [24], [25], [26], [27].
Nonetheless, the atomic norm framework requires solving a
semidefinite program whose complexity scales at least cubi-
cally with respect to the signal length; and therefore is
computationally expensive and memory inefficient. In addi-
tion, although it is in principle possible to examine the
so-called dual polynomial to localize the sources [14], it
often boils down to an additional post-processing step on

2641-8770 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Camegie Mellon Libranies. Downloaded on June 17,2023 at 01:26:30 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-0073-8825
https://orcid.org/0000-0002-6766-5459

the output of the convex program to recover the source
parameters, which may hamper the guarantee of the overall
procedure.

Motivated by the recent success of nonconvex methods,
especially simple first-order methods, in various signal estima-
tion and machine learning tasks [28], [29], we are interested in
understanding the efficacy of first-order methods in nonconvex
spike deconvolution. In fact, first-order methods have already
been popular empirically for spike deconvolution, but little
is known about their theoretical underpinnings [30]. As a first
step, this paper focuses on the local geometry and performance
guarantees of recovering the parameters of point sources—
including both amplitudes and locations—by minimizing a
natural nonconvex least-squares loss function measuring the
observation residuals.

A. Observation Model

Formally, we formulate the spike deconvolution problem
as follows. Consider a vector of 2r parameters 6*
[ HNNEY 7 o O T, where a; € C and 77 € R corre-
spond to the complex amplitude and location of the £-th spike,
respectively, £ = 1,...,r. Denoting by M the set of Radon
measures over the reals, we assume that the point source signal

u* € M to resolve is of the form
i
,U.* — ”(9*) — Zﬂ;arzt,
=1
where 8, stands for the Dirac function located at T € R. Let

us further denote the largest and the smallest amplitude of the
spikes as

(1)

*

8 s
amax

Amin = min |aE[

= max |aj| = |a*| .. i<t<r

I<é<r
The dynamic range of the measure p*, an important quantity
that will be used repetitively later, is thus defined as a}y,,, /@,
Denoting by g € L (R) the PSF, the temporal signal x € L;(R)
resulting from the convolution of the point source signal p*

and the PSF g reads

-

x(r) = (gxu*)(x) = Za}g(r —17), ()
=1

where * denotes the convolution product.

A versatile observation model commonly encountered in
practice considers the measurements to be taken from a
uniform sampling of the Fourier transform of the temporal
signal x. Denote by J(-) the Fourier transform of a measure

w lying in M, given by
F()() =f e Tdu(r), YueM, VfeR (3)
R

Denote by G = F(g) and X = F(x) the Fourier transform
of g and x, respectively. We assume that the PSF is band-
limited within the bandwidth B = 1 so that it constrains no
frequency greater than 1/2, ie., G(f) = 0 for [f] > 3]2.1 For

I'The normalization B = 1 is made without loss of generaliry}L up to a
rescaling of the source locations tg‘. Assuming that rg’ ] [—%, I]‘ where
T is the length of the observation window, the deconvolution problem only
depends on the time-bandwidth product T - B [31].
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convenience, we assume that an odd number N = 2n + 1
of measurements are taken in the Fourier domain, uniformly
spaced in the bandwidth [—%, %]. The sampled signal x cV
writes

= ‘D(#')
o2 2]

where ® : M — CV represents the observation operator
and g € CV is a vector with generic term gy = G(%} for
k = —n,...,n. Up to a scaling, we assume g to have unit
Euclidean norm, i.e., [[gll, = 1. The goal of spike deconvo-
lution is thus to recover the measure p*, or equivalently, the
parameter 6*, from x.

“

B. Our Contributions

In the rest of this paper, we assume that the model order
r is known, and consider a natural nonconvex loss function,
which aims to minimize the quadratic loss of the parameters
0=Ia,..., r,]T of the Radon measures, given by

min £60) = 519(20)) —#1 )
Due to the nonlinear form of the parameters, the loss function
L(0) is clearly nonconvex. As a first step towards nonconvex
spike deconvolution, we are interested in understanding the
local geometry of the loss function (5) and its implications on
the computation efficacy of first-order methods. Without loss
of generality, we assume the autocorrelation function A of the
PSF g to be a triangular low pass function, i.e.,
sin® (%)
TT 2 *

2
where C > 0 is a constant, and that their Fourier transform
are linked through the relation F(g)(f) = /F(h)(f) for all
f € R. It comes, after rescaling with the constraint ||g|, = 1,

w=e(3)- ) -

for all k —n,...n. Note that the triangular low-pass
function and the Fejér kernel—its discrete counterpart—play
an important role in the deconvolution literature and have
been extensively proposed as a convolution kernel to eval-
uate the norm and distance between Radon measures [14].
Additionally, our main results can be re-derived with any other
bandlimited PSF g by following analogous reasoning, as long
as its autocorrelation h is an absolutely integrable function.

Concretely, we propose and analyze preconditioned vari-

ants of gradient descent (GD), where the search direction is
scaled via some carefully designed preconditioning matrices.
Our contributions are summarized as follows.

« We begin with a simple fixed preconditioner design,
which adjusts the learning rates of the locations at a
different scale from those of the amplitudes, and show
it achieves a linear rate of convergence—in terms of
enfrywise errors—when initialized close to the ground
truth, as long as the separation between the true spikes

hr) = f g(u+ D)g@du = C ©)

Ik
n+1
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is sufficiently large. However, the convergence rate slows
down significantly when the dynamic range of the source
amplitudes is large.

« To bridge this issue, we introduce an adaptive precon-
ditioner design, which compensates the learning rates of
different sources in an iteration-varying manner based on
the current estimate. The adaptive design provably leads
to an accelerated convergence rate that is independent of
the dynamic range, highlighting the benefit of adaptive
preconditioning in nonconvex spike deconvolution.

Our result is based on understanding the geometric prop-
erties of scaled Hessian matrices via a set of novel summa-
tion bounds on the absolute sums of sampled Fejér kernels
and higher-order derivatives, which might be of independent
interest in other contexts.

C. Related Work

The closest work to ours on recovering spike signals from
low-pass observations using nonconvex optimization is [32].
The radius of the basin of attraction for gradient descent is
characterized whenever the observation operator satisfies the
restricted isometry property over the set of well-separated
sparse measures. Although the problem setup is versatile,
specializing this result in our context of low-pass measure-
ments yields a convergence region whose size scales inversely
with the number of sources, which is pessimistic when the
number of sources is large. Moreover, the analysis in [32]
focuses on the Euclidean error of the parameters, while we
focus on the entrywise error, which is more meaningful for
gauging the recovery quality of the point sources. Projected
gradient methods, which merge pairs of colliding spikes at
each iteration, have been proposed in [33], [34] but without
theoretical convergence guarantees.

Our work can be viewed as falling into a growing
line of research on developing provably efficient non-
convex methods—especially first-order methods—for high-
dimensional signal estimation, examples including phase
retrieval [35], [36], low-rank matrix estimation [28], [37],
blind (sparse) deconvolution [38], [39], [40], dictionary learn-
ing [41], [42], multi-channel sparse deconvolution [43], [44],
and so on. In particular, the preconditioned gradient meth-
ods considered in this paper are motivated by [45], [46], [47],
which demonstrated that preconditioning can efficiently accel-
erate the convergence of gradient descent in ill-conditioned
low-rank estimation.

D. Notation and Paper Organization

Vectors and matrices are denoted by boldface and capital
boldface letters, respectively. Vectors x € CV with odd dimen-
sion N = 2n + 1 are indexed between —n and n, so that
5 Ll I ——— J:,,]T for convenience. Transpose and Hermitian
transpose of a vector or a matrix A are denoted by AT and
AR respectively. Furthermore, the adjoint of the operator @ is
denoted by ®*. We write 1, and 0, the all-one and null vector
(or matrix) in dimension d, respectively. With a slight abuse
of notation, we denote by |a|, |a12, a~! the vector with entries
equal to the modulus, the squared modulus, and the inverse

of the entries of a, respectively. The element-wise product
between two vectors @ and &’ is written as a © a’. We denote
by Dg the space of £-times differentiable functions of the real
variable. For any function h € D;, we write its £th deriva-
tive h®. We denote by (-, -) and (-, -)g = R((-,-)) the usual
inner product and real inner product between Radon measure,
respectively. Additionally, we let §¢) € M be the functional
which satisfies

gO(r) = (59, g), Vg € Dy, Vr € R. (8)

Fejér kernel: We denote by Fy(-) the normalized Fejér
kernel of order N = 2n + 1 defined by

n
Fr(t) = —— 3 L L
N —n—i—lkz_n n+1

_ { (sinz!n!n+1!f! if i ¢ 7

n+1)2 sin” (7 t)
otherwise .

©)

The Fejér kernel is a trigonometric polynomial; hence it is
infinitely differentiable. We point out that the second derivative
of Fy(-) at the origin satisfies

7 i k
FR© = — I —4:1'2k2(l — %)

k=—n

2 2
=371 +2) <0. (10)

Some of its properties, key to this paper, are derived and dis-
cussed in Appendix A. The Fejér kernel plays an important
role in the sequel as the Gramian ®*® : M — M of the
observation operator @ is a convolution product with Fy, i.e.,

Vu e M. (11)

Wrap-around distance: For any set of r points T =
{r1, ..., ;} € T, we denote by A(z) is minimal wrap-around
distance, defined by

D P(u) = Fy x p,

A(r) £ min inf|7y — 74 + p|.

12
E40 pell (12

The rest of this paper is organized as follows. Section II
starts by defining the preconditioned gradient methods and
two of its designs with provable local convergence guarantees,
using a fixed preconditioner and an adaptive preconditioner in
Sections II-B and II-C, respectively. Section III provides the
analysis of the main theorems by controlling the condition-
ing of the scaled Hessian matrix of the loss function in a
neighborhood of the ground truth. Numerical experiments are
provided in Section IV to corroborate our findings. Finally, a
brief conclusion is drawn in Section V.

II. How DOES PRECONDITIONING HELP
LocAL CONVERGENCE?

A. Preconditioned Gradient Descent

Recognizing that the parameters corresponding to the ampli-
tudes and locations may require different treatments, we
consider iterates of preconditioned gradient descent (GD) to
recover the ground truth parameters, where the preconditioner
can possibly be iteration-varying. Given an initialization point
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fo € C¥, the update sequence of preconditioned GD is
obtained by successively moving oppositely along the direc-
tion of a linear transform of the gradient. More specifically,
the update rule reads

Ok+1 = O — PV L(Ok), (13)

where 6, = [af, r;— ]T is the k-th iterate, P € C2™*% is a pre-
conditioning matrix (also called preconditioner) that can vary
at each iteration; the choice of P; will be detailed momen-
tarily. Here, it is worth noticing that there are no additional
learning rates in (13), which can be thought of as already
absorbed and set within the preconditioner P;. By analogy
with the celebrated Newton-Raphson method, which selects
P = Vzﬁ(ﬂk)_l (which might however be computationally
expensive), the role of the preconditioning matrix Py is to
balance the local optimization landscape towards a quadratic
function to improve the convergence rate towards a local min-
imum over the vanilla gradient method. By basic calculation,

the gradient VL(#) at point 0 = [ay,...,a,, 11, A LTS
given by
dc(e
) — ((5,), @(u(®) — u(¢")))
j
= (85, ®*@(r(®) — n(¢7)))
(Sr;,FN*(Mﬂ)— (9*)))
= ZHEFN T — ‘.'.‘g ZGEFN (143)
e=1
forj=1,...,r, and similarly,
dL(e) 2
B (( ®(u® - WD)
-, 000000,
= (ajst, P+ (u(®) — ( )))

.

a;s..
-z
forj=1,...,r

In this paper, we are particularly interested in precondi-
tioning matrices Py that are diagonally structured, so they do
not add computation overhead compared with vanilla gradi-
ent methods. In the sequel, we study the basin of attraction
and the convergence rate of preconditioned GD for two differ-
ent preconditioning strategies. The first consists of selecting a
time-invariant, diagonal preconditioning matrix P = P whose
role is to judiciously renormalize the learning rates between
the amplitudes @ € C" and the locations 7 € R" which are
of different units. The second strategy seeks to dynamically
update the preconditioning matrix Py based on the current iter-
ate to better approximate the inverse of the Hessian matrix
around the point 6, and accelerate convergence.

agFy(s— ¢ )))

(14b)

(E HEP‘IN = ‘L'f

=1

B. Invariant Preconditioning

In this section, we seek to recover the ground truth param-
eter * from an instance of the preconditioned GD algorithm
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(13) where the sequence of preconditioning matrices is con-
stant, i.e., P = Py for all k € N. We fix
1)

i,
P =di
lag([— 7 0)"'A21
where A > 0 is an input parameter that controls the ratio
between the learning rate applied to the amplitudes a; of the
sources and that applied to the locations 7; of the sources
throughout the iterative process.
1) Performance Metric: To gauge the performance, we
define by § € C*™*?" the weighting matrix
a!

S:diag([ To)1 ])

where Fy(0) is given in (10), and study the convergence prop-
erties of preconditioned GD in terms of the infinity norm
weighted by the matrix S, ie.,

IS (6x — 6*

Moo
-
= maxl (0) Thj— -"

Intuitively, the role of this scaling is to analyze a unitless
metric that decorrelates the error with the dynamic range of
the sources and with the problem dimension, as we have
,Z—Fj{r(O) = (@(n) and that the error on the source loca-
tions is expected to be inversely proportional to the number
of observation: ||[tp — ¥l = O(n_I).

The following theorem establishes the linear convergence
of preconditioned GD with a fixed preconditioning matrix P
whenever the input parameter A is properly set, and the initial
point ) is close enough to the ground truth #*, as long as the
true spikes are sufficiently separated.

Theorem 1 (Linear  Convergence With  Invariant
Preconditioner): Suppose that n > 2 and that the input
parameter A satisfies ||a@*]|oo < %A. Moreover, assume that

(15)

(16)

a7

AT
n = 276. 21‘%(( n+DA(T)) P <1, (18)
min
then if the initial point fp = [a] , 7, 1 satisfies
1
(60— 0%) ], < 5. (19

the iterates {6} of preconditioned GD (13) with a fixed
preconditioner (15) converge towards #* according to

s — 6%,

(1 (@) | ,}))

4 A2
for all k e N.
Theorem 1 indicates that preconditioned GD admits a linear
rate of convergence as long as the separation condition A(z*)
is sufficiently large with respect to the dynamic range, i.e.,

* 3/2
(H+ I)A(T*) 2 ("ﬂ*"oo) )

min

k
|[S(00 B 8*) "oo

<<

(20)

(21)
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Additionally, our finding is independent of the number of
sources r of the input measure, both in terms of the size of the
basin of attraction (cf. (19)) and the convergence rate. Faster
convergence rates are achieved for smaller values of the param-
eter 0 < 5 < 1, when the separation A(z*) of the true spikes is

larger or the dynamic range H_E:L-o of the amplitudes is smaller.

However, even for small valugs" of n, the convergence rate p
predicted by Theorem 1 is lower bounded by

* 2 > 2
pol—nfGmin) 52 ( Gmn )"
=TV A ) T B\ i

This suggests that a high dynamic range will lead to
a slow convergence rate, independently of the separation
A(T*). Additionally, the convergence guarantees established
in Theorem 1 demand to adjust the input parameter A as a
function of ||a@*|| 5, which can be impractical in scenarios with
no postulate on the norm of the source amplitudes.

C. Adaptive Preconditioning

In order to mitigate the limitations of the fixed precondition-
ing strategy presented in Section II-B, we propose to study an
instance of preconditioned GD where the preconditioner Py
varies at each iteration and is selected as a function of the
current iterate . In particular, we fix

. 1,
b= dlag([—FKf(O)“lakrz])'

Similar to Theorem 1, the next theorem guarantees a linear
convergence rate of the iterates towards the ground truth 6*,
provided a good enough initialization point f, as long as the
true spikes are sufficiently separated.

Theorem 2 (Linear  Convergence With  Adaptive
Precondifioner): Suppose that n > 2, and assume that

(23)

y == 11.60 "‘:" (n+DA(*) 2 < L (24)
min 2
then if the initial point 6y = [aa—, r[;'— ]T satisfies
" 2
IS0 —6")]o < 1-/3 (25)

the iterates {6} of preconditioned GD (13) with an adaptive
preconditioner (23) converge towards #* according to

1 k
I~ ) = (347) 5@ =091 @9

for all k € N.

Theorem 2 guarantees that preconditioned GD with an
adaptive preconditioner achieves a constant linear rate of con-
vergence in a similar basin of attraction, provided that the
separation condition A(t*) is sufficiently large with respect
to the dynamic range, i.e.,

" 1/2
lla Iloo) , @7

(n+DA(t*) 2 ( .
min

which is much weaker than the requirement for the case

using a fixed preconditioner, as indicated in Theorem 1.

Consequently, this highlights the benefit of adaptive precon-
ditioning in accelerating the convergence in the presence of
high dynamic ranges for nonconvex spike deconvolution.

Remark 1: We have not attempted to optimize the constants
in the above theorems fully. Therefore, their values are set
in a quite pessimistic fashion; see Section IV for numerical
experiments.

ITI. ANALYSIS

This section is devoted to proving the two main results of
this paper comprised in Theorem 1 and Theorem 2. Before
entering the core of the proofs, we first provide some warm-up
analysis that will be required in the latter proofs.

A. Preliminaries

1) Contraction of Entrywise Errors: The convergence anal-
ysis of the preconditioned gradient method presented in
Theorem 1 and Theorem 2 calls for understanding of the con-
traction properties of the sequence {||S(6r — 0%)|x}. Starting
from the update rule (13), leveraging VL(6,) = 0, and
applying the fundamental theorem of calculus, we have

S(ks1 —6,)
=8O —P,NVL(G) —0,)
= S0 — 6,) — SP (VL) — VL®,))
= S(6 —6,)

1
. ( f V2L(0* + u(6 — 9*))du) (6 —6,)
0

— [1 _sP; (fﬂl V2L(0* + u(6r — 9*))(1”)3_]]

- 80 — 0,). (28)

Let S = {6* + u(f — 0™)|u < [0, 1]} be the line segment that
connects #* and 6 in C%", and denote by p the quantity

op2 maxHI _ SPH(6)S™! || , (29)
0cS; 00

where H(#) = V2L£(#) is the Hessian of the loss function £
at point #. Continuing to bound (28) yields

1S(Bks1 — 02|l
< [T —SP; (LI H(0* + u(6 — 9*))du)s—1
Sk — 6o, ~ (300
where
I—SpP; (fu ; H(e* 4 u(ﬂk = B*))du)s—l
- fo ; (1~ SPeH(O* + u(B — 6%))s™" )du

< ( fo l |1 = P (6" + u(8 — 67))s™" ||Oodu)

1—SP.H(®0)S™ ||Oo} =a,

< max{

30b
feS; ( )
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Hence, the crux of the convergence analysis is to show that
pr < 1 (and control the size of pi) uniformly over the segment
Sk whenever the point 6 lies in an appropriate region centered
around the ground truth #*. Further analysis towards that goal
requires an explicit derivation of the Hessian matrix H(#),
which is done next.

2) Hessian Decomposition: Recall that H(f) = VL) ¢
C2r>2r jg the Hessian matrix of the loss function £ in (5) at
the point # =[a',z"]". We decompose H(#) as

_ |Haa(0) Ha:(0)
mo) =[G o)
where each block is of size r x r, with genenc terms

2
Hoo®;, = $52. [H”(B)]m} L, and
[H:(0)]; df(éj) for i,j = 1...,r. A direct calcula-
tion of the Hessian matrix H(#) (see, e.g., [32]) yields a

decomposition of the form
H(0) = G(0) + E(9), (32)

where the terms G(#) € C2*¥ and E(#) € C¥*% are
described in the sequel.
a) Structure of G(8): The expression of G(#) is

H
. 1, . 1,
G(0) = dlag([ —F;(O)a]) D{r)dlag([ —Fjv({))a])’

(3D

(33)
with D(1) € C¥>2r given with a block structure
_ | Do(z) Di(x)
Dix)= [Dl @M Dz(r)]' 9

The entries of the blocks Dg(t), Di(t), D2(7) € C™" are
composed of

[Do()]i jy = Fn(zi — 1), (35a)
[D1(0)ij) = —Fn(zi — 1) /{/ —Fy(0), (35b)
[D2(D)]ij = FKr(Tr' e Tj)fFKr(O) (35¢)

for all i,j = 1,...,r. As shall be seen, the matrix G(#) is
a relatively well-conditioned matrix whose spectrum can be
controlled as a function of the separation parameter between
the spikes (n+ 1)A(z*), the dynamic range of the amplitudes
@’&, and the distance of @ to the ground truth parameter 6*.

o b) Structure of E(#): The matrix E(f) is given by the
block structure decomposition

(36)

Orxr EI (9)
E@)= [El @ Ez(ﬂ)]’

where the entries of E (@), E2(8) € C™" are given as

[E1(0)1g,) = (‘STJ’F N* (@) — @ ))} =5 319
0 i#];
(85, Fy + (u®) = @) i =i 3
0 i#].
It is worth noting that E(f,) = 0, hence E can be interpreted
as a perturbation term that grows as @ deviates from #,.

[E2(0)]ij) =
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With the above preliminaries, we are now ready to prove the
main results of this paper. The following two sections present
our convergence analyses for preconditioned GD using a fixed
preconditioner and an adaptive preconditioner, respectively.

B. Proof of Theorem 1

1
— P — d- f
We recall that Py lag([—FKr(O)_]A_zlr]) or
all k € N when the preconditioner is fixed. The contrac-

tion analysis (30) presented in Section III-A1 suggests that
the contraction rate in Theorem 1 is controlled by the quan-
tity |SPH(#)S~" —I| , in neighborhood around the ground
truth 6*. The next theorem, whose proof is deferred to
Appendix B, provides a uniform bound on this quantity on
a neighborhood of the ground truth.

Theorem 3 (Uniform Bound of the Hessian): Suppose that

n>2 (n+1)A(z*) > 16.5 and ||t — r‘|[t,O < 1A(r*) Let
0 = [a}, 717 and assume that A > max{glla*[loo, llaklloo}
then the exist two positive constants
Kpa = 2.13, (38a)
K = 44.42, (38b)

such that forall @ =[a","]T € S with |S(H — 0*)]l < 1,
we have that

HSPH(G)S" - IH
o0

- (%) - s - 01,

lla*lloo

=

+ (4Ka + Ko |S (0 = 0) | ) =

((+ DAE)) (1 + S0 — 9*) l.)? (39

Theorem 3 provides a bound on ||SPH(B)S_] —1I " -
depending on the quantity nz—:uﬂ((n—l— DA(z*))~2, which can
be made small enough under the hypothesis of Theorem 1.
We proceed with the rest of the proof by induction.

For the base case, it is trivial that (20) holds for kK = 0. We
start the induction by assuming that

56— ")l

= _Z(T) il

holds for some k € N. We begin by verifying the assumptions
of Theorem 3.

« First, as the dynamic range LL > 1, it is easy to see
that the hypothesis (18) 1mme'313tcly implies that (n +
DA(T*) = 16.6.

« By the definition (17) and the induction hypothesis (40),
it follows that

k

Is(6o —6%)[,, (0

1
i — |5 (8 — 6™
"l = 50,
1
L[S (6 —6*
< bsls(h ).
AT A N
2r n+1 n+1 4
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« Furthermore, we have that

laklloo < la*| o + [lak —a*|
< [la* [ o (1 + [ S (6 — 67)] )
< |la* [ o (1 + |5 (60 — 67)] )

3
<l <a @)

Hence, the assumptions of Theorem 3 hold, which yields

- s ]
& \Z
<1-— (amin)
= 4A2
9 lla* || .
+Z(4K +2K) (@ DAR)
o 52
<1— (amin)
= 4A2
2 a*
-(1 —9(4K¢+%K9)%(( +DA(e*) 2)
@rin

IA

* )2 2 a*
—%(1 27621’M((n+1m( )" 2)

ax
2

- 1 - (a:nm)

- T4A2
where we substituted the definition (18) of n in the last line.
It results from the iterative analysis (30) that the next update
Or1 obeys

IS (Oks1 —6%)]
< ok|[S(6x — 0%)]

a:[lll‘l w*
< (-l n)is-o1,

(a*.)z k+1
<(1-ha-n) Il @

min

(1 —mn), (43)

which concludes the proof of Theorem 1.

C. Proof of Theorem 2

We proceed with the proof of Theorem 2 analogously to the
proof of Theorem 1 presented in Section III-B. First, we estab-
lish the following intermediate theorem that controls the condi-
tioning of the scaled Hessian matrix SPi(0)HS ™! uniformly
over the segment S; as a function of the weighted infinity-
norm distance ||S(f; — 0*)| . The proof of Theorem 4 is
deferred to Appendix B-C.

Theorem 4 (Uniform Bound of the Hessian): Suppose that
n>2 (n+ DAGE*) =47 and ||t — t¥||x < %A(r*) then
the exists two positive constants

Ka =232, (45a)
Ky < 75.80, (45b)
such that for all 8 = [a',7']T e & satisfying

IS0 —0*)||oc < 1 we have that

1

T (1= ISE—0)1l)®
+ (4Ka + Ko || S(6: — 6%) )
((n+ DA
—0M)l0)®

The rest of the proof follows similarly by induction. For the
base case, it is trivial that the initial point 8y verifies (26). We
now assume that @, satisfies

k
56 =07 = (3 +7) IS0 —0)llec

for some k € N. Let’s verify the assumptions of Theorem 4.

« First, as the dynamic range —Hm > 1, the assump-
tion (24) easily implies that (n —|— I)A(r*) >4.7.

« By the definition (17) and the induction hypothesis (47),
it follows that

1
“rJrc - T*”oo = mlls(ﬂk _9‘)“00
N

HSPkH(G‘}S ! —1"

lla* [l oo

- (46)
nin (1 — |IS(9k

(47)

1
< ——_1|S(6g — 6™
= —ﬁ (1 = ‘/?)zracln +1
T 3
1 A(T™)
Sn-l—lS 4 - “8)

Hence, the assumptions of Theorem 4 hold. Noticing that the
function f(u) = ﬁ is increasing over [0, 1), we have that

1
A—[[S@—0)
d

e boun

5. Together with Theorem 4, this yields

op = max 'lSPkH(G)S_‘ _ 1"
feS; 0o

1 2
< — 4K Kgl1l— /=
1 furn(i-4)

lla* 1l -
: ((n+ DA(r))
2a;’ll[l
1
<lin g1l

2

(@ +DA()

min

1
< =+y=<l, (49)

2

where we substituted the definition (24) of y in the third
inequality. It results from the iterative analysis (30) that the
next update 6 satisfies

ISkt —6%) ] = oi]S(Ox —67)]
1
< (3+7)Is—0)l.,
1 k1
<(3+7) Is®-0)l. o
which concludes the proof of Theorem 2.
IV. NUMERICAL EXPERIMENTS

This section provides a numerical validation of Theorem 1
and Theorem 2. In the following experiments, the signal length
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x—a—a—ﬁ-ﬁ-ﬁﬁ—:;:—:_ﬂﬂ lwﬁ'*ﬁ;;ﬁ\ 10, 53,
0 3 '||I 18 % L
- \
o8 \ £i4 \\ ’? w* ﬁ
Y i \\ pil e
204 \\ 2ol \ :: &
\ b - b
N EEE % yiii e
—+— Adaptive prsconditioner - —=— Adaptive precondisiazer )‘G-n 5 A
] 0s 1 13 F 13 3 ] 5 1 13 P 25 1 " 0 0 0 © 30
|88 1= 15188, &
(A k=1 (b) s =6 (a) Invariant preconditioning (b) Adaptive preconditioning

Fig. 1. Success rate of the invariant and adaptive preconditioning schemes on
reconstructing the ground truth #, as a function of the initialization distance
[IS(#p — 64) || o for different dynamic ranges x. The results are averaged over
1000 randomized trials.

is set to N = 65 (i.e, n = 32). The ground truth signal is
composed of r = 6 sources placed in the interval [—%, %)
while ensuring that (n + 1)A(z*) > 2, which is a more
optimistic separation condition than what the theorems’ state-
ments us_gﬁesi. Additionally, the dynamic range is denoted by
K = 3*.00- The complex amplitudes a* € C" are selected
mdepengjé'ntly and uniformly at random in a complex annu-
lus with bounds 1 < |aj| < «. The input parameter of the
invariant preconditioning scheme is set at A = %||a*||oo.

a) Size of the basin of attraction: Of critical importance
in the analysis of Theorem 1 and Theorem 2 is the distance
between the initial parameter 6p and the ground truth 6,. We
start by comparing the success rates of both preconditioning
schemes on reconstructing the ground truth as a function of
the initialization distance ||S(fy — 0,) |- In each experiment,
the starting point #y is drawn uniformly over the set of points
equidistant to #,. An experiment is labeled as a success if
1S (#200—0,)|loo < 102 after 200 iterations. Figure 1 suggests
that, for both schemes, the size of the basin of afttraction is
independent of the dynamic range «, and is around the order of
magnitude [|S(fp—6,)|lcc 2 1. This suggests that the numerical
constants (1/2 and 1 — /2/3 =~ 0.184, respectively) set forth
in Theorem 1 and Theorem 2, respectively, are pessimistic
and nonconvex spike deconvolution performs in a much more
benign manner than predicted by our theory, indicating room
for further refinements.

b) Linear convergence using a spectral initialization: In
practice, several ad hoc initialization methods could be envis-
aged to produce an initial point 6y that falls in the basin
of attraction of the preconditioned gradient descent meth-
ods. Herein, we proceed by uniformly discretizing the spectral
domain over N elements. Given the knowledge of the ground
truth model order r, the initial locations zp are selected as
the r elements of the discrete grid whose weighted Fourier
transform best describes the observation x. Mathematically,
consider the following optimization problem

1
uo = argmin — |lx — diag(@)Fyull3 st lullo <. (51)
1
where Fy € CN*N is a discrete Fourier transform matrix, and
the £p-norm denotes the cardinality of the support. Writing
Ty = supp(ug) C [—n, ..., n] the support of the solution wug
of (51), the parameter 6y is constructed in a second stage by

selecting 1y = [Kl-,...,i—‘\}]—r where ky € Iy, £ = 1,...,r1

Fig. 2. Convergence rates of the iterate sequence of preconditioned GD
towards the ground truth as the dynamic range « varies for: (a) the invariant
preconditioning scheme: (b) the adaptive preconditioning scheme.

W

5 —&— lovariant precoaditioner
A g —5— Adaptive preconditionsr
T~ s~ Sl = T A

Wik T 5. +CRE

o i e

18080}
1
I

wlE

10
SNE (dB}

Fig. 3. Statistical error ||S(6200 — #4) || oo of both preconditioned GD schemes
as a function of the SNR. The dynamic range is set to ¥ = 3, and the results
are averaged over 1000 randomized trials.

and @g = uz, as the restriction of u to the elements in Tp.
The program (51) is itself a non-convex sparse reconstruc-
tion problem, which we approximate the solution using the
orthogonal matching pursuit algorithm [48]. The proposed ini-
tialization procedure offers several benefits over more classical
methods: It is highly scalable, robust to high dynamic range,
and does not involve any polynomial root finding subroutine.

Figure 2 pictures the convergence rate of preconditioned
GD under the invariant and adaptive preconditioning schemes,
respectively. For both schemes, 6 is selected according to
the previously described initialization procedure. It can be
seen that, although both preconditioning schemes ensure a lin-
ear convergence of the iterate sequence, the convergence rate
with a fixed preconditioner degrades as the dynamic range of
the sources increases. In contrast, the one with an adaptive
preconditioner remains unchanged. Additionally, the adap-
tive preconditioning scheme benefits from faster convergence
rates for a given dynamic range. These experimental results
corroborate the theoretical findings presented in Section II.

c) Noisy recovery: We next examine the performance of
preconditioned GD in the presence of noise. We assume obser-
vations of the form x = ®(u*) + w, where w is white
Gaussian noise, and estimate p* by minimizing (5) starting
from an initial point 6y obtained by the spectral initializa-
tion procedure described above. Figure 3 draws the statistical
error [|S(6200 — 0.)|lcc Of both preconditioning schemes after
200 iterations — when convergence is reached — as a func-
tion of the signal-to-noise ratio (SNR), defined as SNR =
@) I3/lwll3. The results are benchmarked against the
Cramér-Rao bound (CRB) [49]. Both statistical errors remain
close to the CRB under a sufficiently large SNR, provid-
ing an empirical validation of the robustness of the proposed
algorithms.

Authorized licensed use limited to: Camegie Mellon Libranies. Downloaded on June 17,2023 at 01:26:30 UTC from IEEE Xplore. Restrictions apply.
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V. CONCLUSION

This work proposed and analyzed preconditioned gradi-
ent methods for nonconvex spike deconvolution using both
fixed and adaptive preconditioners, and demonstrated that for
ground truth with sufficiently separated spikes, the proposed
methods achieve a linear rate of convergence that is inde-
pendent of the number of spikes, as long as a close enough
initialization is provided near the ground truth. In particular,
by designing the preconditioner to compensate adaptively for
the amplitude profile of the spikes, it is possible to accelerate
the convergence rate to be dimension-free and independent
of the dynamic range, while the convergence using a fixed
preconditioner slows down when the dynamic range is large.
Our work thus highlights the importance of preconditioning in
accelerating convergence in nonconvex spike deconvolution.

As a first step towards understanding the efficacy of first-
order methods for spike deconvolution, this works opens up
several interesting directions for further investigation.

« Initialization schemes: One immediate direction is to ana-
lyze initialization schemes that produce initial estimates
that fall into the basin of attraction, which we suspect the
procedure described in Section IV is a good candidate.

s Model order: For simplicity, it is assumed that the model
order r is known perfectly, which might not hold in prac-
tice. It is of great interest to develop modified algorithms
when the model order is overspecified, which has recently
been examined comprehensively in [50] for low-rank
estimation from small random initializations.

« General observations: Another direction is to extend the
analysis to more general observation operators, possibly
including random sampling, missing data, as well as cor-
ruptions. This may necessarily require a reformulation
of the loss function, such as a nonsmooth and noncon-
vex formulation using the least absolute deviation [47] to
improve robustness.

« Separation condition: Last but not least, it is of great
importance to study to what extent it is possible to relax
the success condition in terms of the separation condition,
possibly with additional positive constraints of the source
amplitudes.

APPENDIX A
SUMMATION BOUNDS OF THE FEJER KERNEL

The purpose of this section is to present Lemma 1, which
delivers fundamental bounds on the absolute sum of the
Fejér kernel and its derivatives at sampled points of interest.
Although specific to the Fejér kernel, Lemma 1 could be
adapted to any other absolutely integrable point spread func-
tion without a significant change in the proof structure.

Lemma 1 (Uniform Bounds on the Fejér Kernel): Suppose
that n > 2. Let T = {r1,..., 7} C T, and let @ > O be such
that (n+1)A(z) > . Let u = {u;j}i C R be a set of 21
real numbers that are absolutely bounded by B such that

1 apg 2 52
(n+ )r}r_\gHmJI]—ﬁ{E- (52)

Then the inequalities
max 3| FiP (5 — 7+ uig)| < Cetr+ DE@+ DAE)
I
J#
(33)

hold for £ = 0,1, 2, 3, where the constants Cy only depend
on o and B and are given by

Co= iz(a —28)"la, (54a)
m
Ci = 4 28)~! 8 28)2 54b
1= ;(ﬂ— B) +F(Of— B) " e, (54b)
80 ., 16 .
G = g(a—lﬂ) +;(a—2ﬁ)
64 =
+—5(@—28) )a, (54c)
3
16 . 1488 .
C3 = ?(05—2,8) 31"9'?(“—2,3)

192 192
+—(@—28)" + —(a— 2,3)—4)a. (54d)
T T
Proof: Due to space limits, the proof is deferred to [51]. W

APPENDIX B
PROOF OF THE UNIFORM HESSIAN BOUNDS

This section is dedicated to establish Theorem 3 and
Theorem 4.

A. Technical Lemmas

Lemma 2 and Lemma 3 provide bounds on core quanti-
ties that are involved in the decomposition of the Hessian
matrix H (@) characterized in Section IT1I-A2. Their proofs are
presented in Appendix B-D and Appendix B-E, respectively.

Lemma 2: Suppose that n > 2 and let  C T be such that
(n+1)A(t) = «a for some a > 0, then there exists a constant
Ka with

343

34/3 27
Cy, V3
4

C
w2 ies

Kp = max[Cg + Cz] (55)
where the constants Cy, C;, C; > 0 are defined in in (54) with
parameters a and 8 = 0 such that

ID(t) —Illo < Ka((n+ DA(T)) 2 (56)

Lemma 3: Suppose that n > 2 and let 7, = [z, ..., -r;’]T
and T = [y, ...,‘t_,]T be two vectors of points around the
torus. Assume that (n+ 1)A(z*) > «. As long as (n+1)||t —
™*lec < B < 5, we have

(@(s1), @G2@) — n6)
< (Ci]la —a*| , + Co|a* | + D]z — 7% )
S+ D+ DA@) 2,
|(@(81), @@) - n6,)
< (Gfa—a"|, + Csla*| o+ D]r = 7*] )
(4 DX((n+ DA(x)) 2 (57b)

(57a)
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for all j = 1,...,r, where the constants Cq, C2, C3 > 0 are
defined in (54) with parameters (c, ).

B. Proof of Theorem 3

Recalling the expression of the Hessian in (32), it follows
that

SPH(®)S™' — 1 =SPG(#)S™! — I+ SPE@®)S™'. (58)

We proceed to bound [|SPG(#)S~' —I||« and |SPE(#)S ||
separately, and then combine them via the triangle inequality.

a) Step 1 (Bound ||SPG(0)S~" —I||s): From (16) and (33),
we have that

H
-1 g_ . 1,
SPG(6)S I= SPdlag(I:ma]) D(7)
. 1, -
.dlag([ o K,(O)a])s g
*—l H *
—dlag([ D D(r)diag([‘;]) —1
e o
= diag([A_za]) D(t) — Ddiag([a ])
. 1,
+d1ag(|:A_2|a|2]) -1

This immediately yields from the triangle inequality that

(59)

HSPG(B)S_I - IHm
a1 H

diag([ e oaD (D(1) —I)diag([‘;])
. 1,
* “‘ag([A—zolaPD"H

o]

. a*! A . a*
= dlag(l:A_zea:I) IDG) = Llloo dlag(l:a])“oo
+ ||dia L —1
g A—2®|a|2 o
1 |aJ| * .
Sme TR max{|a; . |a} | ID(®) ~ Tlog

The three maxima in (60) can be controlled using the basic
relation

ar| — ‘a;c i —ar
L= 50— 0) o =
G
. ar| + ‘a ‘?
<ol BT s )
a; a)‘!‘
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forj=1,...,r and by exploiting the assumption ||a*|o < A
as follows
max ! ,@
oz L+ 15— 67)])
=7 I+ “S (0 — )"oo)’ (61a)
max
i
fm[a 7|1+ s e - 0)1.o))
< oo (1 5 156 = 7)), 1)
12
maxl | ‘F| ] min[ﬁ}
j A?
1 —f;a") (-IsE-"l). oo
The bounds (61) and Lemma 2 imply with (60) that
||SPG(6)S—‘ _ 1“
= "i |.|Oo(1+ IS8 — 6%)] )2 1D(@) — Tl
( mm) (1 =[SO — 6" )
+1-— - o0
= II§ ”oo(l + S0 — 67| ) Ka (@ + DAE)
L1 (@) - 156 -6 )||m) .

A2
where the constant K, defined in Lemma 2 is numeri-
cally evaluated to Kxo < 2.32 by setting the parameter
a = 16.5.

b) Step 2 (Bound ||SPE(9)S_"||00): Using the block diago-
nal structure of the matrix E(#) defined in (36), we have

diag!a*_l !E|(8)

0
SPE#)S~! = y VRO L (63)
diag(A~%a*) "E\(0)  _ A2E;(0)
JF©) O

Therefore, it follows

HSPE{B)S“ ||Oo <!

= /R0

*
1 %
’ 2
A
4

- max { max
J

(8%, P # () -

u(6))

o v e ) |
)l

L max{u
Fa©) | A2

< (ahan) ' (1+ ]IS0

Authorized licensed use limited to: Camegie Mellon Libranies. Downloaded on June 17,2023 at 01:26:30 UTC from IEEE Xplore. Restrictions apply.



FERREIRA DA COSTA AND CHI: LOCAL GEOMETRY OF NONCONVEX SPIKE DECONVOLUTION 11

(8% Fv # (n6) -

(7 )
(35,5 () = @)}

where we used the bounds (61) in the second line. From (64),
it can be seen that bounding the quantity of interest amounts to
controlling |(8/,, Fy * (£(8) — 2(6*)))| and |(8, F * (1(6) —
1©(6%)))|, which can be achieved by applying Lemma 3.
Substituting the expression provided by Lemma 3 into (64)
leads to

1
N ONE

HSPE(B)S—' ”
(n+1) (n+1%\ lla — a*lloo
< e +
—(( ) 2—F;\;(O)) lla* oo
Ca(n+ 1)2 Ci(n+1) ;—,,
( O F”(O))m) O )
N
¥l

—2((n+ DA@)) (1 + [ S(6 —6%)] ) (65)

l'[llﬂ

Evaluating the constants C; < 2.75, C; < 19.08 and C3 <
48.74 defined in (54) with parameters o = 16.5 a.nd B = — =

4.125, altogether with the inequality (k1) < —2- under the

—Fy(0) =
assumption n > 2 yields
HSPE(H)S‘I "
o0
lla — a*lls ”
< (Ka T + K.\ /—F{0)| 7 — =*| )
L "°°(( +DA@) 1+ S0 — 6%)] ). (66)

min

where the constants K, and K, are given by

B Gl 2 b B 2 (67a)
1672 16n2 —
B 2 -I—C3( o )3/2{6.?1. (67b)
1672 167 =

c) Step 3 (Combine the Bounds): The scaled Hessian
matrix SPH(#)S™! can be controlled over Si by the triangle
inequality as follows

||SPH(0)S—‘ o 1"00
< HSP(G(B) +E@)S~ — IHOO
< HSPG(G)S—‘ —1"00 + ||SPE(9)S—‘ Hoo (68)

Furthermore, we note that the inequality |A(T) — A(z*)| <
2|t — t¥]|oo holds for every r,r* C R. This implies, with
the assumption |7 — t*||loo < FA(z*), that A(z) > FA(T¥).
Substituting the bounds given in (62) and (66) yields

H SPH(#)S™' — IHOO

<1

a:ning * 2
— = (1= [s6—67)].)

e
3 (KA LKA Ty g 0y — r*llm)
T

Ilﬂ lloo

((+ DA@)2(1+ || S(0 — 67) ] )
.
=i~ =

50— 0%) 1)’
+ (Ka + (Ko + K [S(6: = ") o)

e IIOO(( +DA@) 21+ || SO —07)| o, )’
1 2

a

Toin (1~ (s — )]’

+ (Ka + (Ko + K|S0 — 6%)] )
A g+ A ) 20+ |0k -

2
{l_a;'lll'l (
- A?

wl

) ]oo)”

(6 — %)) ..)°
+ (4Ka + Ko ||S (6 —0%) ||oo)

2o (@t a0+ s - 0)])"

min

(69)

where we defined in the last line the constant Ky as
Ky =4(K, + K;) <44.42. (70)

This concludes the proof of the theorem. |

C. Proof of Theorem 4

We proceed analogously to the proof of Theorem 3
presented in Appendix B-B. We start from the expansion (32)
of the Hessian matrix to get

SPLH(0)S™! — I = SP.GO)S™ — I+ SPLE@®)S™!,

and proceed to bound ||SPG(@®)S~! — Il and
||SPkE(9)S_l||oo individually before recombining them
via the triangle inequality.

a) Step 1 (Bound |iSPkG{B)S_f—I||oo): From (16) and (33),
we have that

H
o . 1,
SPG(8)S I= SPkdlag([ma]) D(r)
% lr —1
ane( | ] s -1

*—1 H *
- diag([lakT_z 5 aD D(r)diag([‘L ]) -
*—1 H

- diag([lakT_; s aD D) — f)diag([‘:I ])
. i
+dlag(|:|ak[_2 o) !alz]) —1I.

This immediately yields from the triangle inequality

(71)

(72)

||SP;CG(B)S_1 = 1||
o0
H

L a ! . a*
dlag(l:lﬂkl_z Oa]) (D(7) —I)dlag([a])
. 1.
+ d’ag([mr? o |a|2D = "c,o

o0
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H

< — 1o

*—1
: a
dlag([w_z e])

ID(z)

sae([<])],

. 1,
+ ||dia e |
g([iakl zalaFD Hoo
O
7 ap| )
2
a;
+ max e ¥ (73)
I |

The three maxima in (73) can be controlled using the basic
relation

*

|aj ‘ ] 74
|ak‘_;| ’ ’ |a;( = 1180 —0%) og” (74)
as follows
1|9
m. ?
T el
1 1 1
= max e -
i\la |a; (1 — IS0 — 0"
1 1
= (75a
if'-‘ﬁr'mn (1 — (IS — 9*)”00)2 )
{ |af|]
= @1+ 56 - 67)]..)}
E o ”oo ( ”oo) (75b)
max
/ |akJ|
2
ﬂ* a“'
< max I
4 |akd'| |akdl
2
G
<maxg l,=—=—=1
i el
1
(75¢)

=< =
(1= [IS(O — ) ]lc)
The bounds (75) and Lemma 2 conclude with (73) on

“SPkG(a)s—‘ —IH
o0

la*lloc 1+ IS(Bx — 6"l

ID
@iy (L[S0 — 8%)]lo0)*
1

(1= IS — 0)0)?
a*loc 1+ SO — 0*)lloo
arin (1= 18O — 09)1lx0)?

1
5 _ K (76)
(1 — (IS0 — 6%)||s0)?

(r) Il

Ka((n+1)A(x)) 72
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where the constant K defined in Lemma 2 is numerically
evaluated to Ka < 2.32 by settin Jg the parameter a = 4.7.

b) Step 2 (Bound |SPrE(8)S™ " ||oc): Again, using the block
diagonal structure of the matrix E(@) defined in (36), we

similarly have that
4 diag!a*_l !El(ﬂ}
 —Fy(0)
_ lm[E0)
Fy(0)

SPLE@)S™' = . (1D

diag(lar|20a*)"E1(6)
V=Fy(©)
Therefore, the quantity of interest can be bounded as follows

1
"SPM(B)S‘I || &
oo

= J=F3©0)

ar
- max { max A0 (8;}_, Fy * (n(0) — ,u(ﬂ*)))‘
|ﬂjk|
1 " *
ONE |a; ,(| (SQ’FN*(“’(GJ_”(Q )))‘]
o gt
< (amin)

T (1= [IS(Ok — )] o0)?

(o s 0=t
H(ar,FN*(;L(ﬂ)— (o )))”)’{78)

1
FKr(O)
where we used the inequalities (75) on the second line.
Substituting the expression provided by Lemma 3 into (78)
leads to

HSP;(E(G)S_' Hw
n41 n+ 1%\ lla — a*ll o
2l 1E 6
: (( W) "‘—F"(O)) l@*lloo
Ca(n+ 1)2 Cy(n+1) "
(L + om0
lla*llec  ((mn+DA(x) 2

. T
arin (1 — 1Sk — 6%l 00)? S

Evaluating the constants C; < 3.24, C; < 2290 and C3 <

105.55 defined in (54) with parameters « = 4.7 and § = %
1.2, altogether with the inequality 1%,'(}0—) < % under the
assumption n > 2 yields
|spE@)s—|
oo
< (Ka 12~ @loo , . [0 @) — | )
lla* ]l oo s
@t (a4 DA@) (80)
Bin (1= 1SBk — 09 l0)””
where the constants K, and K, are given by
K. =C i+C - < 5.26, (81a)
1672 1672 —
27 g7 KR
K. =C—— =% +C3(]6 ) < 11.38. (81b)

Authorized licensed use limited to: Camegie Mellon Libranies. Downloaded on June 17,2023 at 01:26:30 UTC from IEEE Xplore. Restrictions apply.



FERREIRA DA COSTA AND CHI: LOCAL GEOMETRY OF NONCONVEX SPIKE DECONVOLUTION 13

c) Step 3 (Combine the Bounds): The scaled Hessian
matrix SPiH (9)5_1 can be controlled over S by the triangle
inequality as follows

”SPkH(G)S_l 4 "w
< || SPL(G(0) +E@)S™" —1 Hm

< ||SP;;G(9)S“—I|| + |spiE@)s
oo

(82)

Finally, the inequality |A(r) — A(7*)| < 2||t — t*|| holds
for every r,r* C R. This implies, with the assumption
IT — t*[loc < $A(z*), that A(z) > A(z*). Substituting the
bounds given in (76) and (80) yields

"SP;CH(G)S_' . IH
[s.4]
1

S e
(1 — 1Sk — 6"l x0)?
£ (Ralt+ I5( — 0 o) + B2 e
lla* |l oo
F g la*llee  ((n4+1DA(T))2
+ K/ —F(O) | o
HO ) (1= IS — 6%)ll0)?
T (- ||S(9k — %) [l00)?
+ (Ka(1+[[S(6x — 07)] o) + (Ka + Ko)[|S(6c — 67) ]| .)
Nla*lloe  (+ DAGE)?
arin (1= IS0k — 0%)lls)?
1
T A= SO —0Mll)
4 (Ka + (Ka + Ko+ K0) | S(6c — 6%)] )
Nla*lloo (4 DA(2))
ain (1 — [1S(8k — %) 0)?
" 1

(1= IS0 — 0)lln0)®
+ (Ka + (Ka + Ko + Ko)|S(6c — 67) | )
oo 4+ DAE*)

Trin (1 — 1158k — 0%)lloo)”
1

(1= IS6k — 0%)lo0)®
+ (4Ka + Ko [ S(6x — 6*) | o)

* DA(T* i
_ IIa‘IIoo ((n+1DA(r")) - 83)
Arin (1 =SB — 0") [l )
where defined the constant Ky as
Ky = 4(Ka + Kz + K;) < 75.80. (84)
This concludes the proof of the theorem. |

D. Proof of Lemma 2

Leveraging the block structure (34) of the matrix D(t), it
boils down to controlling

ID(t) — 1|0 < max [IIDG(T) —TIlloo + ID1 (D)l o,

1D2() ~llos + 101 (©)lloo |- (85)

which can be accomplished with the aid of Lemma 1.
Specifically, recalling the expressions in (35), applying
Lemma 1 with arame!crs a and f = 0, and noticing that the
inequality ";;1(0) < —5 holds whenever n > 2, the quantities
of interest in (85) can be controlled as follows

IDo(x) — Il = m?xZ|FN(rj — )]
i

< co((n +DA() 2,
ID1(Dlloc = ——= W Z'FN(TJ %)

n+1
< Gl (1 + DA®@)
TR T hAr
33

< =Ci((n+ DA@E) 2,
4

l (4
WWKZIFMT; — )]
J#i

(n+1)2
. it (0)

27 P
< Tcz((n—k DA(7))

Further substituting (86) into (85) leads to

3. 353 27
ID(r) — 1| < max{ Cp+ Cy, Ci+
4 4

(4 DA@) 2,

(863)

(86b)

ID2(7) —1loc =

((n+1DA@) 2

(86¢)

which leads to the desired statement. [ |

E. Proof of Lemma 3
For the first inequality, following the definition, we have

that
[CICARIMOEAON)]
= |(5% *(@@® — w6

r r*
= Z“EFN(TJ — 1) — ZGEF’N(TJ
=1 =1
r

= E(ﬂf = aE)F"'N(Tj =

£=1

+Zae Fy(
.

Z(ﬂg —ay)Fy(t — )

=1
r
+ > as (Fy (5 — ) — Fy(g —
=1

where the last line used the triangle inequality. To proceed, we
control the two terms separately. Using Holder’s inequality and

1)

—Fy(5— 7))

[A

. (88)

7))
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Lemma 1, we obtain

r

X_Z(az —ay)Fy(y — )

< |a—a*| . 2 _IF(5 — )|

=1
< Cin+ D]a—a*|  ((n+ DHA@) .

Next, the second term can be bounded by applying Holder’s
inequality, the mean-value theorem and Lemma 1 with param-
eter f > (n+ 1)||t — t*||» as follows

iam(y—n) —Filg—1))

r

(89)

< ol X_IFu(z — ve) — Fiv (5 — =)
=1
;
<la*olr 7"l D sup  |FR (5 — e+ u)
et el <lr—7*log
< |a*|| o |* — *]| L C2(n + DX + DA@E)H 2. (90)

Plugging the previous two bounds into the inequality (88)
reduces to

(@(s1). 2@ — n@))
= (Ci]a—a| + G|+ D]z = 7] )
(4 D+ DAE)
Moreover, we may show that through analogous reasoning that
(@(7), @) - n@)

< (G]a-a'|,+ Csla*| @+ D]z — ] )
-+ DAH(n+ DA(T) 2,

Oon

(92)

which concludes the proof. |
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