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ABSTRACT: Machine learning (ML) accelerates the exploration of material properties
and their links to the structure of the underlying molecules. In previous work [Shi et al.
ACS Applied Materials & Interfaces 2022, 14, 37161—37169.], ML models were applied
to predict the adhesive free energy of polymer—surface interactions with high accuracy
from the knowledge of the sequence data, demonstrating successes in inverse-design of
polymer sequence for known surface compositions. While the method was shown to be
successful in designing polymers for a known surface, extensive data sets were needed for
each specific surface in order to train the surrogate models. Ideally, one should be able to
infer information about similar surfaces without having to regenerate a full complement
of adhesion data for each new case. In the current work, we demonstrate a transfer
learning (TL) technique using a deep neural network to improve the accuracy of ML
models trained on small data sets by pretraining on a larger database from a related
system and fine-tuning the weights of all layers with a small amount of additional data. The shared knowledge from the pretrained
model facilitates the prediction accuracy significantly on small data sets. We also explore the limits of database size on accuracy and
the optimal tuning of network architecture and parameters for our learning tasks. While applied to a relatively simple coarse-grained
(CG) polymer model, the general lessons of this study apply to detailed modeling studies and the broader problems of inverse
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materials design.

B INTRODUCTION

Numerous industrial applications and biological phenomena
involve chemically specific polymer—surface interactions, from
ink absorption on paper” and semiconductor fabrication and
coating™ to the design and synthesis of artificial tissues® and
viruses recognizing receptors on a cell surface.”” ' The use of
highly tuned sequence-defined polymers is attractive in
controlling phase behavior, stabilizing interfaces, and promot-
ing adhesion. Sequence-dependent adsorption of polymers to
patterned surfaces has been studied through traditional
theoretical and computational approaches''™'® and machine
learning methods,'” emphasizing the importance of polymer
sequence in determining the adsorption energies. ”
Machine learning (ML) and artificial intelligence (AI
have achieved dramatic success in determining the behaviors
and groperties of polymer and biomacromolecule sys-
tems,”” "' including predicting protein structure,”>~>° polymer
structures (such as radius of gyration in solvent),”** and
thermodynamic properties (such as polymer glass transition
temperature, Tg).40’ >** However, the wide-ranging chemical
sequence, topological space, and mass distribution of the
polymer are too extensive to explore.””** For example, even for
linear binary copolymers with 20 monomers, the number of
possible sequences is approximately one million. The chemical
space becomes exponentially large if more monomer types,
variable degrees of polymerization, nonuniform topologies, and
mass distributions enter the description. ML techniques can
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help but often provide knowledge highly specific to the
immediate problem and require significant new data sets to
incorporate information outside the original scope. For
example, our prior work (see ref 19) utilized ML models to
predict the adhesive free energy of polymer—surface
interactions with high accuracy and aid the inverse-design of
polymer sequence for known surface compositions, but
exploring adhesion of such a polymer to a substrate requires
about 8000 data points to train an accurate ML model for each
decorated surface. Often, ML models are inaccurate or overfit
when trained on small data sets. At the same time, in both
industrial applications and biological settings, the surface
patterns vary substantially, both structurally and randomly.
Collecting large data sets for every patterned surface from
thousands or millions of new experiments or simulations is,
therefore, prohibitively difficult and expensive. In realistic
situations, it may only be feasible to collect tens to hundreds of
new data points. Data-driven ML modeling is easier to
implement but often necessitates large data sets that could be
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difficult to obtain.*~** Therefore, our aim here is to determine
the minimum amount of additional computation necessary to
obtain an accurate binding model, building as much as possible
on prior knowledge.

Transfer learning (TL) can be a valuable technique to
overcome the dilemma of insufficient data.**™** In TL, an ML
model initially pretrained for a given task on a large data set of
the source domain is utilized as the base to train a model for a
new task by fine-tuning a small data set of the target
domain.””**™* Typically, TL can improve the model’s
accuracy if the source and target domains are closely
related.””**~**°° TL has achieved considerable success in
speech recognition,Sl’52 image 1‘ecognition,53’54 and natural
language processing.”>*® In addition, TL has also been
successfully utilized in materials informatics studies®’ > such
as structural prediction of gas adsorption in MOFs,”* phonon
properties in semiconductors,”’ and thermal conductivity®”
and electrochemical propertie529 of polymers. However, these
studies typically do not explore the explicit inverse design
problem involved in materials design: what molecular
structures, subject to reasonable constraints, are best for a
given application.

In this study, we demonstrate the ability of transfer learning
to leverage the prediction performance of adhesive free
energies between polymer chains with a defined sequence
and patterned surfaces via fine-tuning a pretrained model. The
source domain and learning task come from a large data set of
polymer-surface interactions with one patterned surface.'” The
target domain and learning task come from a small data set of
polymer-surface interactions with a different patterned sur-
face.'” We utilize a deep neural network architecture to
perform transfer learning and characterize the improvements
on three example cases. We also explore the limits of database
size on accuracy and the optimal tuning of network
architecture and parameters for our learning tasks.

B METHODS

Data Set. The data sets used in this work are from our
recent work, Shi et al. (ref 19). As shown in Figure 1 (a), every
data point includes one sequence-defined polymer and its
adhesive free energy AF with a patterned surface. The AF were
generated by LAMMPS molecular dynamic simulations®®
coupled with adaptive biasing force (ABF) method®*
SSAGES.””**® The polymer chain and surface are both
composed of two types of beads, denoted “red” beads and
“green” by their visualization in Figure 1. The polymer is
modeled as a flexible 20-bead linear chain. The surface is
holonomically constrained, with a simple square lattice of
beads having dimensions of 200 X 200 for a total of 400 beads.
Each data set contains 2 X 10* sequence-defined polymers and
their adhesive free energies with one patterned surface. There
are four different data sets, one for each pattern shown in
Figure 1(b): PS1, which is composed of half red beads and half
green beads in two stripes. N4 = 200 and N, = 200; PS2,
which is composed of 16 alternate small size squares (56 X 50)
of red and green beads with the same overall composition as
PS1; PS3, where each bead was randomly generated with a
probability of 0.5 for each site to be red or green resulting in
Nieq = 184 and Ny, = 216; and PS4, which is built upon PS2
but randomized within the interior of the 56 X 560 squares
resulting in a total of N,,g = 206 and Ny, = 194. PS3 and PS4
allow exploration of the role of randomizing effects on our
adhesive models, with PS4 including randomness within an
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Figure 1. A schematic of the data sets about adhesive free energies of
sequence defined polymers with patterned surfaces from the work of
Shi et al.'” (a) Every data point includes the following: A sequence-
defined polymer and its adhesive free energy with a patterned surface.
Each data set contains 2 X 10* sequence defined polymers and their
adhesive free energies with one patterned surface. Therefore, for
simplification, we use the name of the patterned surface to represent
each data set. (b) There are four such data sets (Data-PS1, Data-PS2,
Data-PS3, and Data-PS4) for four different patterned surfaces (PS1,
PS2, PS3, and PS4).

overall structure rather than only randomness. For simplicity,
we use the name of the patterned surface to represent each
data set, called Data-PS1, Data-PS2, Data-PS3, and Data-PS4.
Detailed distributions and analysis of the adhesive free energy
data sets are available (see ref 19); reduced metrics
corresponding to Gaussian fit parameters for each free energy
distribution Data-PS1, Data-PS2, Data-PS3, and Data-PS4 are
shown in Table 1. Additional details for %enerating the data
sets are discussed in the previous work.”” All data sets are
available online at https://github.com/shijiale0609/ML _PSL

Table 1. Gaussian Fitting Details"’ of Distributions of
Adhesive Free Energies for Data-PS1, Data-PS2, Data-PS3,
and Data-PS4

Data set u (ksT) o (kgT)
Data-PS1 15.66 2.89
Data-PS2 13.84 1.55
Data-PS3 8.96 0.77
Data-PS4 8.20 0.31

Transfer Learning Architecture. In this work, a deep
neural network (DNN) architecture*”’ with one input layer,
three hidden layers, and one output layer was used to quantify
the relationship between the polymer sequence information
and polymer—surface adhesive free energy, AF. The input was
one hot encoding of the polymer sequence. The output was
the adhesive free energy. The DNN architecture is shown in
Figure 2.

First, we trained a source DNN with the source data set. We
used the Data-PS1, 2 X 10* data points of polymer sequences
and their AF with PS1 as the source data, as the ML model
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Figure 2. A schematic of the procedure for testing the performance of transfer learning from source domain (Data-PS1) to target domain (Data-
PS2, Data-PS3, or Data-PS4). A total of 2 X 10 * polymer sequences and the corresponding AF with PS1 are used as the source data. We train a

fully connected deep neural network whose architecture is (20,64,64,32,1), using all the 2 X 10 4

source data points and save its weights. When

training the DNN for target data, as a transfer learning framework, we fine-tune a subset of the weights in the pretrained source DNN using 200
data points (TL) and compare with the learning from a randomly initialized DNN using direct learning (DL).

applied to this data set achieved the highest accuracy among
the four original data sets.'” Then we randomly separated the 2
X 10* data points into 1.6 X 10* as the training set and 4 X 10°
as the validation set. A 4:1 ratio is a commonly used ratio in
machine learning.””*"”® The training set is the set of data that
was used to train and make the model learn the hidden
features/patterns in the data. In each epoch, the same training
data was fed to the neural network architecture repeatedly, and
the model continued to learn the features of the data. The
validation set is a set of data that was used to validate our
model performance during training. This validation process
provided information that helped tune the model’s hyper-
parameters and configurations. A test set is not required for
this initial task as we are seeking a baseline trained on PS1 to
extend to the other data sets. Without the need to leave data
points for a test set, we were able to have more data points for
training and validation. The hyperparameters of the DNN are
optimized on the source task PS1 by promoting the accuracy
and robustness of the DNN. Utilizing an n-tuple description
for the hidden layers of a fully connected DNN, our network
was represented by (20,64,64,32,1). The learning rate, which
serves as the step size for updating the DNN parameters, was
set to 0.00002 to make the learning process stable.
LeakyReLU”" with a negative slope of 0.1 was used as the
activation function, and the Adam algorithm72 was used to
optimize weights. The number of learning epochs was set to
10*, and the training process can be early ended by a
converging check function applied on the validation data to
terminate the training process, if appropriate. We trained a
source DNN using the training set of source domain and
selected the epoch with the highest accuracy on the validation
set as the base DNN for the subsequent TL task, which were

referred to as the pretrained source DNN (depicted as the red
DNN in Figure 2) An open-source machine learning
framework, Pytorch,”* was used to implement the DNN. All
the parameters are stored on Github as described in the Data
Availability Statement.

Next, we turned to the target data set and applied the DNN
with the same hyperparameters. The small target data set was
composed of 200 data points which were randomly drawn
from existing data on the new domain (Data-PS2, Data-PS3, or
Data-PS4). The data set was then divided into training,
validation, and test sets in the ratio of 72:18:10, to be
consistent with previous transfer learning studies.”” 144
training data points were used for training the model, and 36
validation data points were used to determine when the
training should be stopped and to avoid overfitting. The
validation data set was used to select the training epoch. Since
the validation data set was involved in the training process, the
model’s performance is toward it. Therefore, we additionally
tested our model on the untouched test data set to provide
unbiased final model performance metrics. Our use of this
protocol enabled us to address the core question: “How well
does the model perform on the small data set of Data-PS2,
Data-PS3, or Data-PS4 without bias?”. To illustrate the power
of transfer learning, with the same 200 data points and the
same separation for training, validation, and test sets, we
performed direct learning (DL) (black DNN in Figure 2) and
transfer learning (TL) (blue DNN in Figure 2). For direct
learning, we trained the DNN model from randomly initialized
weights. For transfer learning (blue DNN in Figure 2), we
alternatively fine-tuneed the weights of all layers in the
pretrained DNN from the source task. There are three reasons
that we choose to fine-tune the weights of all layers. First, we
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sought to build an end-to-end model which is more friendly to
other users who are not familiar with deep learning. In an end-
to-end model, users only need to focus on the input and output
and do not need to worry about how to modify the inside
architecture of the model. We want to show that starting from
a pretrained DNN without fixing the weights can get
improvements. Second, we tested other fine-tuning formats,
like fixing the weights of the first n lagfers and fine-tuning the
weights of the remaining m layers.”” We found that those
formats do not provide competitive improvements and
sometimes behaved worse than when fine-tuning all layers.
Third, when the size of the training set increases, fixing the
weights of some layers might lead to underfitting. Fine-tuning
the weights of all layers is more robust to the size of the
training data.

The comparison between performances of DL and TL
scenarios was evaluated by comparing their respective
coefficients of determination (R> values) on the same test
sets (20 data points).

_ X (AE - AEY

R* =
Y (AE — AF)? (1)

The maximum performance score of R* = 1.0 occurs when
every prediction is correct (AF; = AE). Note that R> can be
negative because the model can be arbitrarily poor. The choice
of R? as an evaluation metric was reasonable, as R* can provide
a natural baseline for judging the performance of models.”” For
each small data set, we obtained two coefficients: Rf;, which
shows the performance of DL, and R%;, which characterizes the
performance of TL. The small data set resulted in highly
variable accuracies in models due to the random data drawing,
Therefore, we did not limit testing to a single small target data
case and randomly drew sample data from the target space
1000 times for both DL and TL scenarios, subsequently
obtaining 1000 pairs of Rfy; and Rj;. This enabled us to gain a
statistically robust understanding of the behavior of TL,
mitigating the effects of outlier data sets on training,

B RESULTS AND DISCUSSION

A summary of performance (captured via R* values) of direct
(DL) and transfer (TL) learning for 1000 target data sets at
sizes of 200, 4000, and 20000 from Data-PS2, Data-PS3, and
Data-PS4 is given in Table 2. We step through specific cases
below. We note that there appears to be a saturation of the

Table 2. R* Characteristics from DL and TL for 1000 Target
Data Sets for Data Sets Data-PS2, Data-PS3, and Data-PS4
at Size 200, 4000, and 20000“

Data set Data set Size R, R%,

Data-PS2 200 —0.0089 + 0.1956 0.8303 + 0.0747
Data-PS2 4000 0.9256 + 0.0085 0.9541 + 0.0044
Data-PS2 20000 0.9587 + 0.0023 0.9646 + 0.0014
Data-PS3 200 0.6338 + 0.2079 0.7998 + 0.1173
Data-PS3 4000 0.8794 + 0.0123 0.8973 + 0.0101
Data-PS3 20000 0.8994 + 0.0043 0.9058 + 0.0041
Data-PS4 200 0.4502 + 0.1849 0.6578 + 0.1341
Data-PS4 4000 0.8251 + 0.0145 0.8319 + 0.0132
Data-PS4 20000 0.8528 + 0.0053 0.8548 + 0.0051

“Transfer learning proceeds using a neural network trained on Data-

PS1 applied to data on the target surface.

improvement between transfer and direct learning strategies,
though direct learning never statistically outperforms transfer
learning on these data sets. Overall, we can conclude that
transfer learning is a sound strategy in the studied cases, in
particular if transferring to a small data set. We discuss the
performance of transfer learning from PS1 to other data sets in
more detail in what follows.

Knowledge Transfer from Data-PS1 to Data-PS2. We
first investigate the application of TL in transferring knowledge
from Data-PS1 over to Data-PS2, which links data acquired
from one regular patterned surface to another regular
patterned surface. PS1 and PS2 have the same overall
composition (red:green = 200:200) and similar patterning
when accounting for periodic boundaries, though PS2 uses
smaller squares of uniform chemistry rather than two large
stripes. The results of 1000 trials are plotted as pairs R3; and
R}, for comparison in Figure 3. As shown in Figure 3(a), 624
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Figure 3. Transfer learning applied adhesive free energies of sequence
defined polymers using a DNN fit to Data-PS1 adapted to Data-PS2
using a small data set. (a) 1000 pairs of R, for direct learning (blue
line) and R}, for transfer learning (red line). The improvement from
transfer learning (AR* = R — R} ) is represented by the green line.
The Case ID numbers on the x axis are sorted by the value AR in
descending order. (b) R}, plotted against R}. (c) Improvement AR
as a function of R%;.

DL R’ values are negative, implying poor model performance
for those cases. All R* values for TL cases are positively
correlated, and many are close to one, meaning that the
models’ performances are excellent in those cases. Collectively,
the average R* on the 1000 test sets through DL is —0.0089 +
0.1956, while the same metric for TL is 0.8303 + 0.0747.
Therefore, TL both improved the mean value of R* and
decreased its standard deviation (SD). The diminishing SD
shows that TL is less sensitive to the random selection of the
small data set than the DL, which can be ascribed to the
weights of the pretrained DNN being close to the optimized
weights of the target DNN. From the dashed line depicting
AR’ in Figure 3(c), where all the AR* are greater than zero,
and Figure 3(b), where all points (R3; vs Rp;) are above the
line y = x, it can be inferred that in all the 1000 target cases, TL
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improved the accuracy of the model prediction. In Figure 3(c),
a strong negative linear relationship between the improvement
in AR? and the model accuracy from DL demonstrated that TL
contributed improved knowledge in situations where DL
yielded low accuracy. Since TL transfers a pretrained network
rather than initializing weights randomly, the additional small
data set acts to refine the weights rather than generate them
wholesale—hence, even when DL yields low accuracy, the
performance of TL remains stable, as is strongly evident in the
improvement of AR? for these surfaces. At the same time,
when DL already achieved very high model accuracy on the
target tasks, the transfer knowledge from the source task
offered only a slight improvement. For these cases, the
randomly initialized weights of the DNN for DL happened to
be close to the optimized weights.

Knowledge Transfer from Data-PS1 to Data-PS3.
Next, we investigated the application of TL from Data-PS1 to
Data-PS3. While PS1 is very regular, PS3 is a fully randomized
surface with composition (red:green = 184:216), generated
using a random probability P(red) = P(green) = 0.5 for the
beads in the square lattice. The average R* on 1000 test sets
modeled using DL was 0.6338 + 0.2079, while the same metric
from TL was improved to 0.7998 + 0.1173. We note that DL’s
performance for Data-PS3 was better than that for Data-PS2,
attributable to the reason that the standard variation (¢ = 0.77
kyT) of the whole 2 X 10* Data-PS3’s AF is smaller than that
of Data-PS2 (6 = 1.55 kyT)."” We conclude that the
improvement from TL is less robust on this data set than
Data-PS2, likely because of the tighter distribution for adhesive
energies (see ref 19 for context). Still there remains a marked
improvement. Another significant reason for the differences in
this case is that the source and data sets are the more dissimilar
adhesion properties related to the randomization of the surface
pattern. Still, DL has 1S5 cases where R}, is not greater than
zero, while TL only has 2 cases where R}, is not greater than
zero. The green line in Figure 4(a) and data in Figure 4(b)
show that in most examined cases (910 out of 1000), TL gives
positive improvement. In Figure 4(c), there is a generally
negative linear relationship between AR* and model accuracy
from DL, though the linear relationship is not as strong as the
prior data set in Figure 3(c). Thus, we infer that when the
target tasks have very high model accuracy from DL already,
the transfer of knowledge from the source task does not always
help further improve the model accuracy.

Knowledge Transfer from Data-PS1 to Data-PS4.
Finally, we test the application of TL from Data-PS1 to Data-
PS4; the surface PS4 is a randomized version of PS2 whose
composition (red:green = 206:194) differs slightly from the 1:1
composition of PS2.'" The average R* on 1000 test sets
through DL is 0.4502 + 0.1849, while the same metric from
TL is improved to 0.6578 + 0.1341. DL’s performance for
Data-PS4 was better than that for Data-PS2, attributable to the
relative tightness of the free energy distribution of Data-PS4 (o
= 0.31 kyT) compared to Data-PS2 (6 = 1.55 k;T)."" The
improvement is not as evident as in the first case (Data-PS1 to
Data-PS2) but is overall much better than the performance
using TL on the completely randomized PS3 surface. The
green line in Figure 5(a) and Figure S(b) shows most cases
(939 out of 1000) are positively impacted by TL. In Figure
5(c), the negatively correlated relationship between the
improvement in AR®* and the model accuracy from DL
appeared weaker than the previous two cases in Figure 3(c)
and Figure 4(c), though we note that a single testing point
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Figure 4. Transfer learning applied adhesive free energies of sequence
defined polymers using a DNN fit to Data-PS1 adapted to Data-PS3
using a small data set. (a) R? values for direct learning (R}, blue
line), transfer learning (R}, red line), and improvement from transfer
learning (AR* = R%; — R}, green line) of the 1000 target cases. Case
ID numbers on the x axis are sorted by the value AR? in descending
order. (b) R}, plotted against R};. (c) Improvement AR> as a
function of R3;.
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Figure S. Transfer learning applied adhesive free energies of sequence
defined polymers using a DNN fit to Data-PS1 adapted to Data-PS4
using a small data set. (a) R? values for direct learning (R}, blue
line), transfer learning (R7,, red line), and improvement from transfer
learning (AR* = R%; — R}, green line) of the 1000 target cases. Case
ID numbers on the x axis are sorted by the value AR? in descending
order. (b) R}, plotted against Rf;. (c) Improvement AR as a
function of R3;.

with good TL and poor DL performance skews the plots
visually.
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Feature Importance Analysis. The structure of the one-
hot encoding of our sequence-defined polymers permitted the
interrogation of the feature importance of various sites on the
polymer backbone. We utilize the entire data set of Data-PS1,
Data-PS2, Data-PS3, and Data-PS4. The details of the training
process were identical to those stated in the Methods section.
Permutation feature importance, which is defined to be the
decrease in predictive accuracy (AR?) when a single feature
value is randomly shuffled, was used to evaluate descriptor
importance.””’* The feature importance for the feature i is
computed by

FI, = AR* = R* = R}

where R? is the predictive accuracy without randomly shuffling,
and R? is the predictive accuracy after randomly shuffling the
i™ dimensional feature. We used the permutation feature
importance implementation in the Python package ELIS” to
perform this analysis. Since our input is the one-hot encoding
of the polymer sequence, a 20-dimensional vector, we
alternatively shuffled the feature value of each dimension and
calculated the descriptor importance for every input variable.

The results of the feature importance analysis are shown in
Figure 6. Even though the absolute value of feature importance

0.25

'EEData-PS1 ElData-PS2 [T Data-PS3 @lData-PS4'
0.20

0.10

0.05

Feature Importance

0.00

5 10 15 20
Polymer Chain Bead Order

Figure 6. Permutation feature importance of a 20-dimensional input
vector representing beads in the sequence-defined polymer for four
data sets: Data-PS1 (red), Data-PS2 (blue), Data-PS3 (orange), and
Data-PS4 (purple). Essentially, only the end points are significantly
different with the 18 interior beads having rough similar importance
to one another.

is different for each patterned surface, some common features
exist for all four patterned surfaces. The head (first) and the
tail (twentieth) beads had relatively lower values of feature
importance, and the other 18 beads’ feature importance were
almost the same within the individual surface data set. Statt et
al.’” also found that the ends of an intrinsically disordered
protein (IDP) have a distinct effect on the phase behavior
(critical temperature) compared with mutations in the middle
of the chain, though the ends are seen there to have a more
pronounced effect on the proteins’ phase behavior. The
common features we found among Data-PS1, Data-PS2, Data-
PS3, and Data-PS4 represent the shareable knowledge from TL
and can explain the successful application of TL in these cases.
Pretrained models were able to obtain these features before
fine-tuning with the small data sets.

Size Effects for TL Improvements. From the above
investigations, we illustrated that transfer learning can improve
the accuracy of the DNN models trained on a small target data
set (200 data points). It is of interest to see how this scales
with the amount of the available data; thus, we also explored
the effects of the size of the target data set on the

improvements from TL, increasing the “small” data set to
values between 100 and 4000 points. As previously, other
training settings were kept the same as for the N = 200 data
sets.

Figure 7(a) illustrates the prediction performance of DL and
TL for Data-PS2 as a function of the size of the target data set,
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Figure 7. (a) R}, (blue) and R}, (red) as a function of the size of the
target data set. Data-PS2 was used for this comparison. The error bars
reflect the SD of the R* score from 1000 random draws. As the size of
the target data set increases, Rh and R}, both increase, and their SD
values decrease. R}y increases more dramatically relative to RZ;.
Though the improvement AR* decreases with the increasing size of
the data set, R is always larger than R};. Similar improvements of
DL and TL were seen in Data-PS3 (b) and Data-PS4 (c), though the
behavior of TL saturated at lower accuracy in each relative to Data-
PS2.

as quantified by the R score. The mean value increases, and
the SD decreases for the R* score in both DL and TL as the
size of the target data set increases. These values are seen to
change more rapidly in DL than TL, which is perhaps to be
expected, as more data should drastically improve the behavior
of DL given the initial data sets are so small; the pretrained TL
model is able to approach an optimal fit more easily. We note
R%, quickly converged with increasing size. After the target
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data size exceeded 800, accuracy (measured by R%; ) saturated.
Thus, the improvement between TL and DL decreased as the
target data set size increased. Still, the performance of the TL
models was always better on average than DL models. This
indicates that the transfer of knowledge from the source task
can offer significant improvement when scant target data is
available. The DNN model can learn sufficiently directly from
the feed data in large target data sets, and TL does not offer
significant improvement. In our data sets, 2 X 10* independent
points are available, and TL’s efficacy saturates relative to DL
when approximately 20% of the target data set is used. This
suggests a threshold below which TL should always be used.
Similar improvements of DL and TL were seen in Data-PS3
and Data-PS4 [see Figure 7(b,c)], though the behavior of TL
saturated at lower accuracy in each relative to Data-PS2.
Nonetheless, improvements on the order of one standard
deviation in R* were seen up to the same 20% threshold
applied to the target data size.

To assess the robustness of our transfer learning results to
the choice of training patterns for the pretrained model, we
selected Data-PS4 as the source data, which has a lower relative
accuracy. We trained a pretrained model on Data-PS4 and then
applied it to Data-PS1, Data-PS2, and Data-PS3. As shown in
Figure S5 in the SI, we found that transfer learning with a
pretrained model from Data-PS4 also resulted in improved
predictions from the transfer learning model. Detailed results
and discussions are included in the SI

B CONCLUSION

In summary, a comprehensive TL study of the polymer—
surface interaction between polymers with defined sequences
and different surfaces was conducted through pretraining a
DNN with a large data set from the source domain (Data-PS1)
and fine-tuning the pretrained DNN with the small data set
from the target domain (Data-PS2, Data-PS3, or Data-PS4).
Knowledge was transferable among the polymer interactions
with different patterned surfaces. TL significantly upgraded the
performance of the model trained on the small data set. In
addition, our results showed that TL’s model is more stable
than the DL and less likely to be affected by the random
selection of data. The study of permutation feature importance
revealed that the four patterned surfaces have some similar
features, representing part of the reasons the transferable
knowledge can work. We also demonstrate that the increase in
target data size can diminish the improvement from TL,
ascribable to the fact that DL learns more knowledge from the
feed data directly when the size of the target data increases.
However, the TL model with the full-fine-tuning architecture
always performs better than the DL model, even though the
improvement diminishes at large sizes of data sets.

Our work highlights the importance of transfer learning in
elevating the performance of an ML model regarding the
polymer—surface interaction under insufficient data dilemmas.
Usually, tens or hundreds of data points are insufficient to train
an accurate ML model. With transfer learning tools, the
shareable knowledge from a pretrained model can help the ML
model trained for polymer—surface interaction with a new
surface to obtain higher performance. Our test cases are all
simulation data sets, and the knowledge is shared among
different surfaces in simulation. But the benefit of knowledge
sharing is not only limited to simulation data sets. For example,
Briceno-Mena et al.”” have utilized transfer learning techniques
to increase the performance of an ML model trained with

insufficient experimental data by transferring knowledge from
an ML model trained with a large simulation data set.””
Similarly, for the prediction and optimization of adhesive
energies, transfer learning can be used to maximize our
knowledge within a new chemical domain from a smaller
amount of simulations or experiments, perhaps allowing purely
computational and coarse-grained models to cheaply explore
compositional space and predictive models to be refined by
directed experimentation. As transfer learning, especially few-
shot learning, has achieved dramatic successes in computer
vision and language models by buildin6g a series of sizable
pretrained ML models, such as YOLO,” BERT,® and GPT-
3,”> we anticipate knowledge about network structure and
problem complexity may be used to guide these algorithms and
their applications to materials problems. With more exper-
imental and simulation data about polymer—surface inter-
actions being produced and collected in the future, it is
expected to obtain a sizable pretrained ML model for polymer
surface interaction.
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