
Efficient Trace Generation for Rare-Event

Analysis in Chemical Reaction Networks

Bryant Israelsen1[0000−0002−9537−2645], Landon Taylor1[0000−0002−4071−3625], and
Zhen Zhang1[0000−0002−8269−9489]

Utah State University, Logan, UT, USA
{bryant.israelsen, landon.jeffrey.taylor, zhen.zhang}@usu.edu

Abstract. Rare-events are known to potentially cause pathological be-
havior in biochemical reaction systems. It is important to understand
the cause. However, rare events are challenging to analyze due to their
extremely low observability. This paper presents a fully automated ap-
proach that rapidly generates a large number of execution traces guar-
anteed to reach user-speciőed rare-event states for Chemical Reaction
Network (CRN) models. It is enabled by a unique combination of a multi-
layered and service-oriented CRN formal modeling approach, a depen-
dency graph method to aid the shortest rare-event trace generation, and
randomized compositional testing. The resulting prototype tool shows
marked improvement over stochastic simulation and probabilistic model
checking and it offers insights into a CRN.

Keywords: Compositional testing, rare-events, dependency graph

1 Introduction

As a formalism for modeling chemical kinetics, Chemical Reaction Networks
(CRNs) are widely used for modeling biochemical reaction systems [6], genetic
regulatory networks [29], and molecular programming [38]. Many biochemical
systems are intrinsically stochastic, including processes in gene and protein ex-
pressions. Essentially, their constituent chemical reactions are often simultane-
ously enabled to occur in parallel with different probabilities. Moreover, their
noisy operating environment can introduce unexpected behavior. Rare events in
these systems are often of signiőcant relevance, because they represent extreme
infrequent occurrence of undesirable behavior that may lead to pathological ef-
fects. Therefore, obtaining provable reliability guarantees is a must for CRNs.
Probabilistic model checking (PMC) can provide such quantitative guarantees
and allows in silico analysis for detecting and quantifying rare errors. However,
PMC approaches are challenged by the need for enumerating a model’s large
or even inőnite state space to gather a sufficient number of rare-event traces in
order to provide accurate probability veriőcation. This task is typically compu-
tationally intractable. Further, for probabilistic analysis, it is often necessary to
gather many traces that reach the rare-event states of interest. Generating only
a small number of them is often insufficient to give an accurate estimate.

2 B. Israelsen, L. Taylor, and Z. Zhang

This paper presents a fully automated approach that rapidly generates a
large number of execution traces guaranteed to satisfy a user-speciőed rare-event
property for a CRN model. These traces are used to compute a lower probabil-
ity bound for the rare-event property. We őrst propose a novel multi-layered,
service-oriented, and modular CRN modeling approach using the IVy modeling
language [27]. It offers ŕexibility in customizing both the reaction execution fre-
quency and the length of traces. We then propose a dependency graph method to
guide the shortest trace generation with unique őnite preőxes through composi-
tional testing. These traces are guaranteed to reach the speciőed rare event and
are collected to compute the rare-event’s lower probability bound. The depen-
dency graph also effectively proves unreachability of a given rare event, leading
to considerable savings in performance. We implemented these methods in a
prototype tool, Random Assume Guarantee Testing Induced Model Executions
for Reachability (Ragtimer), and found preliminary results to be promising.
The proposed rare-event trace enumeration technique can potentially be inte-
grated with many formal and semi-formal rare-event analysis methods and the
generated traces can provide detailed debugging information for understanding
reachability of rare-events. We believe that this unique combination of the pre-
sented methods has not been proposed elsewhere, and is an effective alternative
to rare-event simulation approaches for biochemical reaction networks.

2 Preliminaries

Chemical Reaction Networks (CRNs). Under the Stochastic Chemical Kinetic
(SCK) model assumption, the time-evolution of a CRN is governed by the Chem-
ical Master Equation. Formally, a CRN is a tuple M composed of n chemical
species X = {X1, . . . ,Xn}, m reactions R = {R1, . . . ,Rm}, and an initial state
representing each species’ molecule count s0 : Xn → Z⩾0. Given a reaction Ri,
denote Reactanti ⊆ X as the reactant set and Producti ⊆ X as the product set
in Ri. A reaction Ri = ⟨αi, vi⟩ includes a propensity function αi : Zn

⩾0 → R
+

corresponding to the probability (including 0) for it to occur in a state and the
state change vector vi ∈ Z

n corresponding to the update in molecule count for
each species due to reaction Ri. Under the SCK assumption, each reaction Ri

occurs nearly instantaneously, which practically limits both vi to the values of
0,±1,±2, and the size of Reactanti to be less than three [29].

CRN Semantics. A CRN under the SCK assumption induces a Continuous-time
Markov Chain (CTMC), where state change due to a reaction occurs in discrete
amounts and the probability of state change is dependent on real-valued time.
A CTMC model C is a tuple C = ⟨S, s0,R,L⟩ where S is a őnite state set
(i.e., state space); s0 ∈ S is the sole initial state; R : S × S → R⩾0 is the
transition rate matrix; and L : S → 2AP is a state labeling function with atomic
propositions AP . Transition rate R(s, s′) from state s to s′ is determined by
the propensity of Ri, assuming Ri is the sole reaction causing this state change.
The propensity is the number of possible combinations of reactant molecules:

Efficient Trace Generation for Rare-Event Analysis in CRNs 3

αi(s) = ki
∏

Xj∈Reactanti
(s[j]), where Ri’s reaction rate constant is ki ∈ R

+. A
reaction Ri is enabled to occur in state s if its corresponding propensity function
evaluates to a positive value, i.e., αi(s) > 0. Often, multiple reactions are enabled

to occur in state s and the corresponding probability for Ri is p(s, s′) = R(s,s′)
E(s) ,

where the exit rate E(s) =
∑

s′∈post(s) R(s, s′) sums up all enabled reaction rates
in s. A CTMC model has a non-zero probability of staying in a state and the
probability of leaving a state s within time interval [0, t] is 1− eE(s)·t, where t is
a non-negative real-valued quantity representing real time.

Time-bounded Reachability Property and Target States. We focus on computing
the following non-nested time-bounded transient reachability probability spec-
iőed in Continuous Stochastic Logic (CSL) [3,20]: P=?(♢

[0,T]
Ψ). It queries the

probability of reaching the rare-event Ψ -states within T time units. Let condi-
tion Ψ be XΨ = CΨ , where CΨ ∈ Z⩾0 and s0(XΨ) ̸= CΨ . That is, a target is an
equality condition for exactly one species and it is not initialized to the target
value. A state is a target state sΨ if Ψ evaluates to true in sΨ , i.e., sΨ |= Ψ .
This work aims at efficiently providing the guaranteed lower probability bound,
i.e., Pmin(♢

[0,T]
Ψ), where Ψ is XΨ = CΨ . Note that the user is not required

to provide an upper bound for each species, which could induce an inőnite-state
CTMC. However, the method presented in this paper only generates őnite traces
where the last state is a target state. Therefore, the resulting CTMC constructed
from these traces have a őnite state space.

Compositional Testing. A CRN model M consists of interacting chemical re-
actions where each executes atomically. M is a closed system, meaning that it
does not require any external input, because reactants required by one reaction
are provided by other reactions in the same model. These features naturally al-
low for compositional testing. As detailed in Section 6, a CRN model can be
represented as a composition of two interacting processes p1 and p2, denoted
as p1∥ p2, following the circular assume-guarantee reasoning rules shown below:

⟨α⟩ p1 ⟨γ⟩
⟨γ⟩ p2 ⟨α⟩

⟨true⟩ p1∥ p2 ⟨α ∧ γ⟩
(1)

⟨α⟩ p1 ⟨α⟩
⟨α⟩ p2 ⟨α⟩

⟨true⟩ p1∥ p2 ⟨α⟩
(2)

The triple ⟨α⟩p1⟨γ⟩ in Rule (1) can be understood as follows. From the start of
process execution, up to step k− 1, if p1 satisőes its environment assumption α,
in the form of Boolean-valued constraints on p1’s input, then the allowed input
and output behavior of p1 determines the guarantee γ in the current execution
step k. Similarly, process p2 in the triple ⟨γ⟩p2⟨α⟩ guarantees α at the present if
γ holds in the past. This interpretation avoids the circular deőnition of this rule
by requiring that each process in the composition only relies on the correctness
of inputs it received in the past, but not those to be received in the future, in
order for its output to satisfy their respective guarantees. Therefore, as long as
neither assumption fails őrst, neither guarantee can fail őrst in the composition,
and hence p1∥ p2 |= α ∧ γ. For the triple ⟨α⟩p1⟨α⟩ in Rule (2), it is interpreted

4 B. Israelsen, L. Taylor, and Z. Zhang

as that p1 does not cause the global property α to fail. This rule states that if
neither process in the composition causes α to fail őrst, then α always holds.

Predicated on Rules (1) and (2), compositional testing [11,25,28] is a semi-
formal technique that empirically checks satisőability of the guarantee γ for
each triple ⟨α⟩pi⟨γ⟩ in the composition by sampling inputs from those satisfying
the assumption α. Generation of inputs typically involves randomization. For
Rule (2), testing of the triple ⟨α⟩pi⟨α⟩ includes both generating only inputs
satisfying α and verifying that the outputs of pi do not fail α. Each process
pi = (Ii, Oi) consists of an input action set Ii and an output action set Oi.
Denote ami as action am deőned in process pi. ami is an input action for pi
if ami is called by another process pj (j ̸= i), but is an output action for pj .
Execution of ami modiőes a non-empty set of local variables in pi, and each
variable v ∈ Vi is bounded by a range Rv. Two processes p1 and p2 are compatible
for composition if O1 ∩ O2 = ∅, and their composition is p1∥ p2 = (I,O), where
I = (I1 ∪ I2)\(O1 ∪O2) and O = (O1 ∪O2).

3 Related Work

Rare-event properties are challenging to analyze due to their extremely low ob-
servability. Statistical model checking (SMC) techniques (e.g., [30,43,24]) have
integrated rare-event methods, including importance sampling [16,17,14] and im-
portance splitting [18,36,42]. Importance sampling biases simulation by weighting
the rare-event probability to increase its observability and then compensates for
the loss to yield the unbiased probability [24]. Importance splitting reformu-
lates a rare-event probability as a product of less-rare level-conditional prob-
abilities [15]. For analyzing rare-events in biochemical systems, the weighted
Stochastic Simulation Algorithm (wSSA) [19] relies on a user-deőned biasing
scheme to favor reactions leading to observing the rare-event, but is limited by
the user’s insight in selecting the proper biasing scheme. Extensions of wSSA
(e.g., [14,33]) have substantially improved its computational efficiency. Recent
algorithms (e.g., [35]) can characterize rare events in terms of system parame-
ters. As an alternative, weighted ensemble [44,2] has been conőgured to sample
rare events in CRNs [9,45]. Importance splitting divides a model’s state space
into contiguous levels ordered in the increasing likelihood of reaching the rare
event [23,41,24]. The crux of it is the (possibly manually constructed) impor-
tance function, which rewards a simulation trace by spawning multiple copies if
it crosses a level closer to the rare event, but terminates it otherwise. In [4], the
authors presented an automated compositional importance function derivation
technique based on the model structure and the rare-event property. Recently,
the extended Restart with prolonged retrials [39,40] importance technique was
re-implemented in the SMC engine modes [4,5] in the Modest Toolset [12].

Advantages of the proposed approach over rare-event simulation. First, it is fully
automated and neither requires expert knowledge of nor poses modeling limita-
tions on the CRN model. Secondly, it is potentially less computationally intensive

Efficient Trace Generation for Rare-Event Analysis in CRNs 5

as it neither requires rare-event biasing computation nor wastes any simulation
traces not able to reach the rare event. Lastly, simulation-based approaches
provide an estimate of the actual rare-event probability, whereas the proposed
method provides a guaranteed lower probability bound.

4 Motivating Example

The motivating example is the modiőed yeast polarization model [7], a CRN
consisting of seven species reacting through eight reactions:

R1 : ∅
0.0038
−−−−→ R, R2 : R

4.00×10−4

−−−−−−−→ ∅, R3 : L + R
0.042
−−−→ RL + L,

R4 : RL
0.010
−−−→ R, R5 : RL + G

0.011
−−−→ Ga + Gbg, R6 : Ga

0.100
−−−→ Gd,

R7 : Gd + Gbg
1.05×103
−−−−−−→ G, R8 : ∅

3.21
−−→ RL.

All reaction propensities are in molecules per second. The initial molecule count
for the following species vector (R,L,RL,G,Ga, Gbg, Gd) forms the initial state
s0 = [50, 2, 0, 50, 0, 0, 0]. This system was modiőed from the pheromone induced
G-protein cycle in Saccharomyces cerevisia [10] with a constant population of
ligand (L = 2) preventing it from reaching equilibrium [34]. The rare event is a
measure of an unreasonably rapid build-up of Gbg. Thus, the property of interest
is the probability that the molecule count for Gbg reaching 50 within 20 seconds:
P=?(♢

[0,20] Gbg = 50). The high concurrency nature of this model is evidenced
by R1 and R8 each being independent of all other reactions and enabled in all
states. Additionally, it takes at least 100 reaction executions to reach a target
state. These features can easily overwhelm state expansion methods performed
by probabilistic model checking tools as discussed in Section 10.

5 Method Overview

Figure 1 shows a logical ŕow of the proposed novel approach for the Ragtimer

tool, where the steps in blue symbolize looping behavior. It őrst reads in a user-
speciőed CRN M and a rare-event property of interest. A dependency graph
is then generated for the given CRN model and target property reachability
is determined, as described in Section 7. The dependency graph information
is then used to automatically generate the service-oriented layered IVy model
(Section 6), which is used with compositional testing to generate the desirable
shortest traces with unique preőxes as described in Sections 7 and 8. Stochastic
simulation is then performed on each trace to obtain its execution probability,
and a summary of these results is returned to the user (Section 9).

Ragtimer signiőcantly differs from statistical model checking techniques
that estimate the rare-event probability by biasing events leading to the rare-
event during stochastic simulation (e.g., importance sampling) or by incremen-
tally selecting and spawning simulation traces with higher likelihood of reaching
the rare event (e.g., importance splitting) [24]. Instead, Ragtimer produces nu-
merous (shortest) traces proven to terminate in a rare-event state, essentially

6 B. Israelsen, L. Taylor, and Z. Zhang

performing a partial state space exploration of the model, and then computes
the cumulative probability of each trace.

Generate

dependency graph

from model

Target
Reachable?

Read user-specified

CRN and rare-event

property

Create unique

shortest trace

prefixes

Generate IVy model

For each prefix
Generate traces using

compositional testing

Obtain rare-event probability
through stochastic simulation

Return summary of

results to the user

Yes

No

Fig. 1: Ragtimer Flowchart

6 Layered and Service-Oriented CRN Model Generation

Conventionally, a CRN is modeled as a set of concurrently executing guarded
commands, each presenting a constituent chemical reaction, such as those pro-
duced by the SBML-to-PRISM converter [21,1]. The modeling approach in this
work presents a fresh perspective by considering a CRN as a layered set of service
objects that maintain all of its constituent chemical reactions:
1. Layer 0 includes the following objects: enabled_checker to evaluate a reac-

tion’s readiness to occur, selector to select an enabled transition to execute,
updater to update species as the result of a reaction, inspector to monitor
reaction behavior, and goal to check reachability of the desired target.

2. Layer 1 includes a top-level object protocol to manage the execution of all
constituent reactions of the CRN by calling services at the lower layer.

In a CRN model M = ⟨X,R, s0⟩, every reaction Ri ∈ R is modeled as an
action update_Ri in protocol. Actions in enabled_checker check whether a
given reaction has sufficient reactant(s) to occur at each state. Actions in the
selector object can be conőgured to determine the frequency of executing en-
abled reactions. The updater object has actions to increment or decrement a
given species according to the state change vector for Ri. The action in the goal
object monitors whether an execution sequence of reactions has reached a state
where the goal is achieved. Note that the layered and service-oriented IVy model
presented in this section omits reaction rates and hence is probability-abstract
due to IVy’s lack of support in ŕoating point operations needed for computing
probabilities. Acquisition of rare-event probability is described in Section 9.

The layered modeling approach naturally facilitates modularity and rare-
event trace generation using compositional testing, which is a feature provided
by the IVy veriőcation tool [28,27]. Consider protocol as process p1 as shown
in Rule (2). A mirror process for protocol and all layer-zero objects together

Efficient Trace Generation for Rare-Event Analysis in CRNs 7

object protocol = {

before update_R3 {

assert enabled_checker.

is_enabled_R3(r, l)}

action update_R3 = {

if selector.execute_R3 {

call inspector.

check_guard_R3(r, l, rl);

r := updater.decr(r);

l := updater.decr(l);

rl := updater.incr(rl);

l := updater.incr(l) }}}

object enabled_checker = {

action is_enabled_R3(r_1:

updater.num , l_1:updater.

num) returns(y:bool) = {

if r_1 >= 1 & l_1 >= 1 { y

:= true }

else { y := false }}}

object inspector = {

before check_guard_R3 {

assert r_1 >= 1 & l_1 >= 1}

action check_guard_R3(r_1:

updater.num , l_1:updater.

num , rl_1:updater.num)}

Fig. 2: IVy model snippet showing protocol’s update_R3 action calling other
actions in lower-layer objects to execute reaction R3.

form the environment process p2. The mirror process is one in which no actions
are deőned and its only purpose is to nondeterministically call the exported
actions deőned in p1. An exported idling action is also deőned in p1, which
becomes the only available action after the goal is achieved. It models that
M becomes idle after a target state has been reached for the őrst time. This
enables us to effectively curtail the model execution trace after it reaches the
goal. All layer-zero objects also constituting p2 each deőne actions that can only
be called by p1, effectively contributing to output actions for p1. Rare-event
trace generation is achieved by compositionally testing the triple ⟨α⟩p1⟨α⟩ in
isolation. Isolation of p1 (i.e., protocol) is with respect to its environment p2.
For correctness, checking of p1’s outputs is predicated only on p2’s assumptions.
Both assumption and guarantee formulas are declared as assertions in the IVy
model. When p1 is checked in isolation, assertions taking place before p1 action
calls become assumptions, and those following p1 action calls become guarantees.
IVy’s compositional testing tool then generates randomized inputs satisfying the
assumptions α, while checking that the guarantees α are not violated.

We use reaction R3 at s0 in the motivating example as an illustration. As
Figure 2 shows, before update_R3 can happen, M őrst checks its precondi-
tion (expressed as an assertion) by calling action is_enabled_R3 deőned in
enabled_checker. It checks whether R3 has sufficient reactants to occur at the
current state. If so, it is enabled and update_R3 calls selector.execute_R3,
which determines whether to execute R3. Only when it is selected can the call
be made to action inspector.check_guard_R3, whose before monitor checks
the sufficient precondition again for R3. The assertion in is_enabled_R3 of
enabled_checker is converted to an assumption, but the one in check_guard_R3

of inspector becomes a guarantee for action update_R3. Note that these two
assertions are functionally equivalent. For example, they both check that the
following speciőcation α, r_1 >= 1 & l_1 >= 1, holds during compositional test-

8 B. Israelsen, L. Taylor, and Z. Zhang

ing. When an assumption for this action fails to hold, model execution skips
this action. However, violation of a guarantee will halt model execution and re-
port a failure. This guarantee is checked by inspector.check_guard_R3, rather
than the earlier call to action enabled_checker.is_enabled_R3. This is be-
cause the purpose of is_enabled_R3 is to determine whether R3 is enabled
to occur during model execution, but it may not be selected even if it is en-
abled during testing. Therefore, having a guarantee in this action similar to that
of inspector.check_guard_R3 actually leads to incorrect behavioral modeling,
since the execution should not stop when R3 is merely disabled. However, it is
necessary to guarantee sufficient reactants in inspector.check_guard_R3, be-
cause in order to reach this point, R3 must have already been selected to occur.
Failure of this guarantee stops the execution, as it reveals a ŕaw in the model. If
R3 successfully executes, update_R3 updates its reactants and products by call-
ing actions in updater. Lastly, the protocol’s environment process arbitrarily
chooses another exported action to execute and this procedure repeats until the
goal is achieved, after which, only the idling action is allowed to execute.

A run for p1∥ p2 is a őnite sequence of action calls made by both p1 and
p2. A valid run r is a őnite sequence of action calls made by both p1 and p2
ending with idling1 or goal2. Recall that the subscript indicates the process in
which an action is deőned. Deőne reaction Ri as a őnite sequence of actions with
the preőx is_enabled_Ri2, update_Ri1, execute_Ri2, check_guard_Ri2, and
followed by a continuous sequence of either incr2 or decr2. A (valid) trace σ is a
őnite sequence of reactions obtained by removing actions in r that do not belong
to a reaction. An example of a valid run is: is_enabled_R52, is_enabled_R32,
update_R31, execute_R32, check_guard_R32, decr2, decr2, incr2, incr2, . . . ,
goal2. In this run, p2 tries to execute update_R5, but fails because R5 is disabled.
It then succeeds in executing R3, making it the őrst reaction in the extracted
trace. Note that our model preserves the atomicity of a single reaction execution.
Utilizing the atomic action construct in the IVy language, action update_Ri

requires that all actions within itself fully execute before another reaction can
occur. A comprehensive description of IVy’s language syntax and semantics, as
well as the IVy veriőcation tool can be found in [31,27,26].

7 Shortest Trace Generation

This section introduces the dependency graph for a CRN and describes how it
either proves unreachability of a rare event or guides the shortest desirable trace
generation by automated assertion creation and insertion in the IVy model, which
is used to rapidly enumerate many such traces through compositional testing.

Dependency Graph for Shortest Trace Generation. Denote the edge ⇝
as the dependency relation between two reactions, which is a binary relation
deőned in Deőnition 3. Ri ⇝ Rj indicates that Ri depends on Rj . Denote ⇝+

as the transitive closure of the dependency relation and Ri ⇝
+ Rj means that

there is a path of dependency edges from Ri to Rj : Ri ⇝ · · ·⇝ Rk ⇝ · · ·⇝ Rj .

Efficient Trace Generation for Rare-Event Analysis in CRNs 9

Dependency relationships are established based on the minimum number of times
a reaction must execute for the model to reach a target state. For consistency,
create an abstract reaction RΨ representing the target speciőcation Ψ such
that ∆(RΨ) = CΨ − s0(XΨ) as described in Deőnition 1. Informally, ∆(RΨ)
represents the difference between the target and initial values for the abstract
species XΨ , and RΨ is required to execute at least ∆(RΨ) times to achieve the
target value. This provides a starting point for dependency graph construction.

Deőnition 1 (Minimum Required Reaction Executions). The minimum
required reaction executions ∆ : R → Z maps a reaction Ri in the set of reactions
R of a CRN M to the minimum number of times Ri must execute for M to
reach a target state sΨ from its initial state s0.

Deőnition 2 (Enabled and Disabled Reaction Sets). The reaction set R
is partitioned into two subsets: set E containing only reactions Ri enabled to
execute ∆(Ri) times from s0, and set D containing all other reactions. As such,
E ∪D = R and E ∩D = ∅.

Deőnition 3 (Dependency Relation). A dependency relation with respect
to a CRN M = ⟨X,R, s0⟩ is an antireŕexive binary relation ⇝ ⊆ D × R. Ri

depends on Rj, denoted as Ri ⇝ Rj, iff all conditions below hold:
1. Ri ∈ D ∧ (Ri ̸= Rj) ∧ ¬(Rj ⇝

+ Ri),
2. (∆(Ri) > 0 ∧ Reactanti ∩ Productj ̸= ∅) ∨

(∆(Ri) < 0 ∧ Producti ∩ Reactantj ̸= ∅), and
3. (∃Rk s.t. Rj ⇝ Rk) ∨ (Rj ∈ E).

The conditions of Deőnition 3 are described intuitively as follows:
1. Ri must be initially disabled in order to depend on another reaction and it

cannot depend on itself directly or cyclically.
2. Ri must execute a nonzero number of times. If Ri requires the production

(consumption) of a species, Rj must produce (consume) that species.
3. Rj must depend on another reaction, or the initial state must supply abun-

dant species counts to enable Rj to execute ∆(Rj) times.
An algorithm for dependency graph construction őrst explores Conditions 1 and
2 before removing dependency relations that fail Condition 3. Note that ∆(Ri)
can be negative in RΨ , indicating that if a target species count is less than its
initial count, it is desirable to őnd reactions that consume, rather than produce,
the required species. Cyclic dependencies are not permitted under Deőnition 3.
This addresses the paradox in which a reaction must execute an inőnite num-
ber of times to produce enough of a species to enable itself to execute. These
conditions are crucial in proving unreachability, as described later in this section.

The dependency relation between all reaction pairs guides the construction
of a dependency graph, which is a directed graph with vertices representing
reactions and edges representing dependency relation. The root of the graph is
RΨ , as no other reaction can depend on it. Algorithm 1 outlines the procedure
for recursively constructing the graph following Deőnitions 1, 2, and 3. Figure 3a
shows a case for the motivating example. Starting with RΨ , establish the relation

10 B. Israelsen, L. Taylor, and Z. Zhang

Algorithm 1 Dependency Graph Construction

Require: M = ⟨X,R, s0⟩, Ψ .
1: procedure Main

2: Generate RΨ and calculate ∆(RΨ) = CΨ − s0(XΨ)
3: Initialize all dependency relations to false

4: BuildGraph(RΨ)
5: if there exists Ri such that RΨ ⇝ Ri then begin trace generation.
6: elseΨ is unreachable; terminate.

7: procedure BuildGraph(Reaction Ri)
8: if Ri ∈ E then return

9: for all Rj such that ¬(Ri = Rj ∨Rj ⇝
+ Ri) do

10: δ := ∆(Ri)− minXk∈Reactanti
(s0(Xk))

11: if δ > 0 then ∆(Rj) := ∆(Rj) + δ ; Ri ⇝ Rj := true

12: BuildGraph(Rj)
13: if ¬((∃Rk s.t. Rj ⇝ Rk) ∨ (Rj ∈ E)) then Ri ⇝ Rj := false

RΨ ⇝ R5 since only R5 can produce Gbg required by RΨ . The relations R5 ⇝

R3 and R5 ⇝ R8 are similarly established. Since both R3 and R8 are enabled
in s0, the algorithm terminates without removing any relations. Figure 3b, in
contrast, shows an unreachable target state assuming a different s0, where it fails
to supply sufficient molecules of G, e.g., s0(G) = 1. Thus, relations R5 ⇝ R3,
R5 ⇝ R8, and R5 ⇝ R7 are established. Since R7 /∈ E, R7 ⇝ R6 and R7 ⇝ R5

are established, creating cyclic dependency R5 ⇝
+ R5. Therefore, R7 ⇝ R5 is

disestablished. Because it is impossible to produce enough Gbg to execute R7,
R5 ⇝ R7 is disestablished. Similarly, RΨ ⇝ R5 must be disestablished, leaving
only RΨ in the dependency graph, proving unreachability of Ψ .

The derivation of a dependency graph enables three crucial developments.
First, it enables CRN reachability analysis as described in Theorem 1. Second,
a set of desirable reactions enables the construction of traces leading to a target
state. This is useful when very few traces reach a target state. Lastly, shortest
traces (by reaction execution count) are obtainable as shown in Theorem 2.

Theorem 1 (Unreachable Target). In a dependency graph constructed per
Deőnitions 1, 2, and 3 for a CRN M = ⟨X,R, s0⟩, if RΨ ∈ D ∧ (∀Ri ∈
R. ¬(RΨ ⇝

+ Ri ∧Ri ∈ E), any target state sΨ is unreachable from s0.

Proof (Theorem 1). Assume the following opposite statement holds: A depen-
dency graph constructed with Deőnitions 1, 2, and 3 for a CRN satisőes RΨ ∈
D ∧ (∀Ri ∈ R. ¬(RΨ ⇝

+ Ri ∧ Ri ∈ E) and some target state sΨ is reach-
able. In a closed CRN, if sΨ is reachable, then either (1) RΨ ∈ E in s0 or (2)
RΨ ∈ D in s0 and there exists a reaction sequence, say Ri . . .Rl and Ri ∈ E,
that enables RΨ in a future state. Case (1) is trivially true for this theorem.
For case (2), construct a dependency graph by Deőnition 3. Then it must hold
that ∃Ri ∈ R. RΨ ⇝

+ Ri∧Ri ∈ E. Because Ri . . .Rl exists to enable RΨ , the
constructed dependency graph must establish RΨ ⇝

+ Ri (Condition 2) and the

Efficient Trace Generation for Rare-Event Analysis in CRNs 11

terminal reaction Ri for RΨ ⇝
+ Ri must be enabled in s0 (Condition 3) when

RΨ ⇝
+ Ri is acyclic (Condition 1). This contradicts the assumption. ⊓⊔

Grouping dependency relations into weighted branches as described in Deő-
nition 4 enables the discovery of trace lengths. Intuitively, a weighted branch B
is a weighted path RΨ ⇝

+ Ri ∧ Ri ∈ E in the dependency graph. The branch
weight W (B) is the minimal length of a trace including only the reactions in B.

RΨ

R5

RΨ

R5

R3 R8

RΨ 505050

50 50

50 50
RLRL

GbgGbg
R5

R3 R8

RΨ 50

50

50 50
RL

Gbg

RL

(a) Reachable case

R5

R3 R8

RΨ 50

50

50 50

RLRL

Gbg

R7

G
1

R5

Gd Gbg
1R6 1

R5

R3 R8

RΨ 50

50

50 50

RLRL

Gbg

R7

G

1

Gd Gbg
1R6 1?

R5

R3 R8

RΨ

50

50 50

RLRL

Gbg

G
1?

RΨ 50

50

Gbg
?

RΨ 50

(b) Unreachable case

Fig. 3: Dependency Graph Examples.

Deőnition 4 (Weighted Branch on a Dependency Graph). Let a branch
Bα = {Ri | (RΨ ⇝

+ Ri ⇝
+ Rj∧Rj ∈ E)∨(RΨ ⇝

+ Ri∧Ri ∈ E)}. The weight
of Bα is W (Bα) =

∑
Ri∈Bα

∆(Ri), which is the sum of the minimal number of
reaction executions when executing only the reactions in Bα. Label a branch with
L(Bα) = {Reactanti ∩ Productj | Ri ⇝ Rj ∧Ri,Rj ∈ Bα}.

Theorem 2 (Shortest Trace). Construct a set of branches Bx such that each
branch is required to produce a unique species and ∀ By ̸= Bx,

∑
Ba∈Bx

W (Ba) ≤∑
Bb∈By

W (Bb). Let ρ(Bx) =
⋃

Ba∈Bx
Ri ∈ Ba. There exists some sequence of

reactions in ρ(Bx), where each Ri ∈ ρ(Bx) is executed precisely ∆(Ri) times
such that the resulting trace yields the minimal reaction execution count.

Intuitively, a branch is a set of reactions that together produce or consume at
least one desired species for RΨ . In the motivating example shown in Figure 3a,
there are two branches: {R5,R3} and {R5,R8}. Shortest traces are generated by
őrst gathering the non-empty lowest-weighted set of branches producing unique
required species. For example, R3 and R8 produce the same species needed by
RΨ , so only one branch is required to be included in Bx, but both R3 and R8 can
be included in Bx since ∆(R3) = ∆(R8). If another branch produced a different
required species, it would be included in Bx with R3 and/or R8.

Proof (Theorem 2). Consider a trace ση containing nη reaction executions pro-
duced by the method in Theorem 2. Consider a trace σβ containing nβ reaction
executions, such that nβ < nη. Because σβ reaches a target state from the initial
state, σβ must include reactions that are required to reach a target state from
the initial state. These actions are, by deőnition, included in a branch in the
dependency graph. Because each reaction Ri in σβ is, by deőnition, required to

12 B. Israelsen, L. Taylor, and Z. Zhang

execute at least ∆(Ri) times, the branches used to derive sequence σβ from the
dependency graph must have a lesser cumulative weight than the branches used
to derive sequence ση. However, in constructing sequence ση, only the branches
with the least cumulative weight are selected. Thus, either σβ is of the same
length as ση (causing both traces to be shortest traces), or σβ cannot exist,
proving by contradiction that a trace ση derived by the procedure in Theorem 2
must be a trace with the fewest total reaction executions. ⊓⊔

Shortest Trace Generation using Compositional Testing. After obtain-
ing Bx as prescribed by Theorem 2, we exclude reactions Rl ̸∈ Bx as they do not
directly or indirectly contribute to reaching sΨ . Each remaining reaction Ri ∈ Bx

is then assigned a unique variable Ri_executions in protocol corresponding to
the number of times Ri has been executed. A shortest trace can then be obtained
via randomized compositional testing by asserting Ri_executions < ∆(Ri) as
a precondition for update_Ri. In Figure 3a, ρ(Bx) = {R3,R5,R8}, and there-
fore, all other reactions are removed. Assertions are then added to ensure each
reaction only executes the minimum required number of times needed to reach
sΨ . For example, assertion R5_executions < 50 is added to update_R5 to en-
sure that R5 does not execute more than 50 times. During compositional testing
of the triple ⟨α⟩p1⟨α⟩, p1 is the protocol object in a CRN model and α is
Ri_executions < ∆(Ri). This assertion serves as a part of the precondition
for action update_Ri deőned in p1. It becomes an assumption when testing p1
locally. Execution of every Ri ∈ ρ(Bx) starts with action update_Ri, which is
called by p1’s environment process p2. Ri cannot occur if Ri_executions has
already reached ∆(Ri), indicating that the minimal number of the required Ri’s
action sequences to reach sΨ has already occurred, even if Ri is enabled. The
same assertion is inserted as a part of the precondition for the check_guard_Ri

action deőned in the inspector object, which is part of p2. It becomes a guaran-
tee during the local testing of p1 because check_guard_Ri is p1’s output action.
Inserting the assertion Ri_executions < ∆(Ri) in this way guarantees that
only the minimum number of every Ri ∈ ρ(Bx) can appear in the resulting trace
σ, whose length is therefore, the shortest. Note that only once the contributing
reactions (i.e., those in Bx) have been established from the dependency graph is
the IVy model actually constructed with all of the aforementioned assertions.

8 Generation of Diverse Traces

To optimize the chance of őnding representative traces leading to rare-event
states with relatively high probability, it is desirable to obtain a diverse assort-
ment of traces. Using reactions from equally weighted branches and sequence
preőxes can generate a diverse set of traces from compositional testing.

Equally Weighted Sets of Branches. Given Bx = {Ba,Bb}, RΨ ⇝
+ Ri ⇝

+

Rx, and RΨ ⇝
+ Ri ⇝

+ Ry, if a species Xi ∈ Reactanti is produced equally

Efficient Trace Generation for Rare-Event Analysis in CRNs 13

effectively by a reaction Ry ∈ Bb as by a reaction Rx ∈ Ba, in order to pro-
duce more diverse traces, the traces should include both Rx and Ry, but they
should be executed at a lower frequency than that of other reactions, in order
to not favor the production of one species more than another during compo-
sitional testing. To accomplish this, let each reaction be assigned a tier value,
where tier(Rα) = |{Ri ∈ B | (Ri ⇝

+ Rα}| and let the frequency of Rβ be
denoted as freq(Rβ) = |{Rα | tier(Rα) = tier(Rβ) ∧Rα,Rβ ∈ ρ(Bx)}|

−1. The
CRN model is then modiőed as follows: (1) The assertion (Rx_executions +
Ry_executions) < ∆(Ry) is inserted as a precondition for both Rx and Ry; and
(2) selector is modiőed to let Rx,Ry execute with a frequency of freq(Ry).
These modiőcations ensure that the generated traces are diverse and the shortest.
For instance, for R3 and R8 in our motivating example, because L(R5 ⇝ R3) =
L(R5 ⇝ R8) = RL, R3 and R8 have the same tier value, and ∆(R3) = ∆(R8) =
50, we change the precondition assertions for update_R3 and update_R8 to be
(R3_executions+ R8_executions) < 50. We also modify selector so that R3

and R8 execute once per every two times they are enabled.

Sequence Preőxes for Generating Diverse Traces. Due to the highly con-
current nature of CRNs, multiple unique weighted branch sets can create short-
est traces according to Theorem 2. In the motivating example, the branches
{R5,R3} and {R5,R8} each have a weight of 100. Executing a total of 100 re-
actions using a combination of R5, R3, and R8 as prescribed by the dependency
graph results in the generation of a shortest trace. Dependency information is
used to partition the state space into preőx-based subsets. For example, all traces
generated using branches {R5,R3} and {R5,R8} must begin with the sequence
preőx R8,R5; R3,R5; R3,R8; or R8,R3. Because each preőx is unique, there is
no need to check for duplicate traces except among traces with identical preőxes.
Therefore, it is possible to discard saved trace information after each preőx set is
completed, saving only the sum of the probability of each trace. This saves time
and allows for more trace enumeration using less memory. This state space par-
titioning method is achieved by using stochastic simulation to obtain the state
immediately following each preőx. This state is then used in lieu of the model’s
initial state for compositional testing, and the number of required executions for
each reaction in the preőx decrements. The preőx reaction sequence is prepended
to each trace before stochastic simulation to obtain the trace’s probability.

9 Tool Implementation

Ragtimer tool ŕow. We have implemented the proposed techniques in a
prototype tool called Ragtimer, so named because it is designed to be fast and
carefree for a user, much like the Ragtime musical genre. As Figure 1 shows,
Ragtimer őrst builds a dependency graph from the CRN model and its rare-
event reachability property. The dependency graph is then used to determine
reachability of the target rare-event speciőcation and it either provides a proof
of unreachability, or creates an IVy model containing only reactions in the set of

14 B. Israelsen, L. Taylor, and Z. Zhang

branches with the lowest weight, as described in Theorem 2 and Section 8. To
optimize the chance of a diverse set of representative traces to reach the target
rare-event, Ragtimer partitions the possible traces by shortest trace preőxes.
Using information obtained from the dependency graph analysis, it automatically
creates and then inserts assertions into the IVy model. Ragtimer then invokes
randomized compositional testing to produce a user-speciőed quantity of unique
traces to the target state. Lastly, it simulates each trace to obtain its rare-event
reachability probability by interfacing the Prism probabilistic model checker [22]
and sums them together to obtain the total probability of the set of traces.

Probability acquisition. The main advantage of Ragtimer is its effectiveness
in rapidly generating a large number of the shortest desirable traces to a rare-
event of interest. The lower bound for the rare-event probability Pmin(♢

[0,T]
Ψ),

where Ψ is the rare-event in the form of Xi = C, is obtained by summing up the
probabilities of all generated traces. Ragtimer interfaces the stochastic simu-
lation engine in Prism to obtain probabilities for all individual traces. When
branch preőxes are used for trace generation, this simulation occurs in batches,
where each batch is for one equally weighted preőx from the dependency graph.
An alternative approach is to construct a partial state space from the gener-
ated traces őrst and then interface a probabilistic model checking tool to obtain
Pmin(♢

[0,T]
Ψ). However, such construction would require an equivalent sim-

ulation effort for each trace in addition to state duplication. Our experiments
showed that state space construction yielded an identical lower probability bound
to trace simulation, but it used signiőcantly more computational resources.

10 Results and Discussion

We obtained all results on a machine with an AMD Ryzen Threadripper 12-Core
3.5 GHz Processor and 132 GB of RAM, running Ubuntu Linux (v18.04.3). With
one CPU and 16 GB of RAM allocated, Ragtimer was tested on three repre-
sentative CRN models. The rarity of their target speciőcations combined with
the large state spaces can quickly overwhelm computational resources. Reaction
propensities for all models presented in this section are in molecules per second.

Single species production-degradation model. This model consists of two

species reacting through a production-degradation interaction [19]: R1 : S1
1.0
−−→

S1 + S2,R2 : S2
0.025
−−−→ ∅. The initial molecule count for species vector (S1, S2)

forms the initial state: s0 = [1, 40]. The desired CSL property of this model
is P=?(♢

[0,100] S2 = 80). Obviously, the the shortest trace to sΨ is simply a
repetition of R1. Ragtimer quickly discovers this shortest trace, and alerts the
user that only one shortest trace can be generated. Restriction is then loosened
in the IVy model to allow extraneous reactions, i.e., R2, to randomly execute at
a desired frequency to produce additional traces. Figure 4a shows the probability
increase when these traces are generated. Generating 10, 000 additional traces

Efficient Trace Generation for Rare-Event Analysis in CRNs 15

repeatedly took less than 2 minutes. This shows the value of controlling reaction
restrictions. While obtaining a single shortest trace can be valuable, allowing
many traces with extraneous reactions enables the accumulation of increased
probability. In our experiments, when these probabilities begin to converge, it
becomes helpful to increase the allowance for extraneous reactions to generate
more diverse traces.

0 10000 20000 30000 40000 50000
Paths Generated

10-16

10-15

10-14

10-13

Pa
th

 P
ro

ba
bi

lit
y

(a) Single species

0 10000 20000 30000 40000 50000
Paths Generated

10-72
10-67
10-62
10-57
10-52
10-47
10-42

Pa
th

 P
ro

ba
bi

lit
y

(b) Enzymatic futile cycle

0 10000 20000 30000 40000 50000
Paths Generated

10-65

10-64

10-63

10-62

Pa
th

 P
ro

ba
bi

lit
y

(c) Modiőed yeast polariz.

Fig. 4: Cumulative probability of desirable traces produced by Ragtimer.

Enzymatic futile cycle model. This example models the enzymatic futile
cycle motif consisting of two single-substrate enzymatic reaction scheme, one
transforming S2 into S5 catalyzed by S1 and the other transforming S5 into S2

catalyzed by S4 [19]:

R1 : S1 + S2
1.0
−−→ S3, R2 : S3

1.0
−−→ S1 + S2, R3 : S3

0.1
−−→ S1 + S5,

R4 : S4 + S5
1.0
−−→ S6, R5 : S6

1.0
−−→ S4 + S5, R6 : S6

0.1
−−→ S4 + S2.

This motif widely exists in biological systems including GTPase cycles, MAPK
cascades, and glucose mobilization [37]. The initial molecule count for species
vector (S1, S2, S3, S4, S5, S6) forms the initial state: s0 = [1, 50, 0, 1, 50, 0]. The
rare-event property is P=?(♢

[0,100] S5 = 25). Similar to the single-species model,
this model only produces one shortest trace that alternates between R4 and
R6. Figure 4b shows the probability trend with additional traces. Since these
traces each reach a rare-event state, it enables a probability increase of over 30
orders of magnitude using under 2 minutes of total run time. Notably, the test
with 50, 000 traces yielded a much lower probability than the test with 10, 000
traces, which demonstrates the importance of the user-speciőed frequency to
execute extraneous reactions. In the test with 50, 000 traces, extraneous reac-
tions were allowed to execute more frequently, resulting in slightly longer traces
with a shorter runtime per trace production. However, they lowered the overall
probability despite the presence of more traces.

Modiőed yeast polarization model. Ragtimer is well-suited for mining
rare-event traces for large-state models such as the modiőed yeast polarization

16 B. Israelsen, L. Taylor, and Z. Zhang

model introduced in Section 4. When simulating this model using the standard
stochastic simulation algorithm (SSA) implemented in the Prism probabilistic
model checking tool, the average trace length is generally over 4, 000 reactions
before reaching a target state, and the total probability for over 500, 000 traces
is rounded to 0 due to ŕoating-point precision limitations. That is, SSA alone
generates paths with probabilities much lower than 4.9×10−324. On the contrary,
Ragtimer can őnd a collection of short and generally more probable traces.
Figure 4c shows that with only 10, 000 traces that Ragtimer found within 2
minutes, their cumulative probability was already signiőcant. Given its run time
is not signiőcantly different from pure SSA per generated trace, Ragtimer is a
more effective and efficient őrst strategy for rare-event analysis than SSA.

When this model is instead initialized with G = 49, the target state becomes
unreachable. Ragtimer quickly detected this unreachability and terminated,
while other tools, including modes in the Modest Toolset and SSA in Prism,
executed indeőnitely attempting to simulate traces. When tested on unreachable
variants of the modiőed yeast polarization and futile cycle models, Ragtimer

reported unreachability in under 1 second and did not attempt to generate traces.

Table 1: Rare-event simulation results for the three examples using modes.

single species enzymatic futile cycle modiőed yeast polar.

rare-event probability 3.0631× 10−7 1.7043× 10−7 1.7002× 10−6

runtime (seconds) 5.7 127.9 26.9
peak memory (MB) 143 141 144

Comparison to modes rare-event simulation engine. The modes tool was
able to efficiently and accurately compute rare-event probabilities. Accuracy
means the closeness of reported rare-event probabilities between the results from
modes, shown in Table 1, and [19] for the single-species prodcuction-degradation
and enzymatic futile cycle models, and [9] for the modiőed yeast polarization
model. However, the compositional importance function required for rare-event
simulation poses a major limitation on global variables shared among multiple
components, each representing a reaction in the CRN. While manual modiőca-
tions to the model’s importance function can be made to get around this issue,
it requires user intervention and a thorough understanding of the CRN model
and the Modest language, with the possibility of introducing errors. modes was
also tested on the modiőed yeast polarization model initialized with G = 49 to
produce an unreachable target. Despite its speed for veriőcation of reachable
models, it ran for 24 hours on 23 CPU threads, performing over 1 million sweeps
of the model without determining the target speciőcation is unreachable.

Efficient Trace Generation for Rare-Event Analysis in CRNs 17

Comparison to probabilistic model checking tools. After bounding all
species’ molecule counts to a reasonably large range of [0, 150], we attempted
to verify the modiőed yeast polarization model using the Storm probabilistic
model checker [13] with the Sylvan library [8] to allow for parallel construc-
tion of the symbolic state space. Although symbolic state space construction
completed quickly, Storm failed to complete the transient analysis after run-
ning for 30 days. This is due to the overhead in converting symbolic state space
to the sparse matrix representation to perform time-bounded transient analy-
sis. Similar to Storm, Prism was also unable to complete probabilistic model
checking of this property within a reasonable time bound. However, running the
state-truncation probabilistic model checker Stamina [32] on the same model
produced a probability bound of [1.64× 10−6, 23.01× 10−6] after two days.

11 Conclusion

This paper presents a scalable and fully automated approach to rapidly enu-
merate a large number of traces guaranteed to reach desirable rare-event states
for a given CRN model. It includes both a layered and service-oriented compo-
sitional modeling method and a dependency graph analysis technique to either
prove unreachability or guide the generation of a variety of the shortest traces.
Together, they automatically construct assumptions and guarantees that enable
compositional testing to produce many desirable traces, which are then simu-
lated to provide the lower probability bound for the rare-event. Efficiency in
both trace generation and rare-event probability computation is demonstrated
in three challenging CRN models. For future work, we will investigate effective
cycle detection method to further improve rare-event trace generation.

Acknowledgment We thank Arnd Hartmanns (U. Twente) for his help with
modes; Chris Winstead (Utah State U.), Chris Myers (U. Colorado Boulder), and
Hao Zheng (U. South Florida) for their feedback. This work was supported by the
National Science Foundation under Grant No. 1856733. Any opinions, őndings,
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reŕect the views of the funding agencies.

18 B. Israelsen, L. Taylor, and Z. Zhang

References

1. SBML-to-PRISM translator, http://www.prismmodelchecker.org/sbml/
2. Adelman, J.L., Grabe, M.: Simulating rare events using a weighted ensemble-based

string method. The Journal of Chemical Physics 138(4), 044105 (2013). https:
//doi.org/10.1063/1.4773892, https://doi.org/10.1063/1.4773892

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
markov chains. ACM Trans. Comput. Logic 1(1), 162ś170 (Jul 2000)

4. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Automated compositional
importance splitting. Science of Computer Programming 174, 90ś108
(2019). https://doi.org/https://doi.org/10.1016/j.scico.2019.01.006,
https://www.sciencedirect.com/science/article/pii/S0167642318301503

5. Budde, C.E., Hartmanns, A.: Replicating RESTART with prolonged retrials: An
experimental report. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12652, pp. 373ś
380. Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_21, https:
//doi.org/10.1007/978-3-030-72013-1_21

6. Chellaboina, V., Bhat, S.P., Haddad, W.M., Bernstein, D.S.: Modeling and analysis
of mass-action kinetics. IEEE Control Systems Magazine 29(4), 60ś78 (2009)

7. Daigle, B.J.J., Roh, M.K., Gillespie, D.T., Petzold, L.R.: Automated estimation of
rare event probabilities in biochemical systems. J Chem Phys 134(4), 044110 (Jan
2011). https://doi.org/10.1063/1.3522769

8. Dijk, T., Pol, J.: Sylvan: Multi-core framework for decision diagrams. Int. J. Softw.
Tools Technol. Transf. 19(6), 675ś696 (nov 2017). https://doi.org/10.1007/

s10009-016-0433-2, https://doi.org/10.1007/s10009-016-0433-2
9. Donovan, R.M., Sedgewick, A.J., Faeder, J.R., Zuckerman, D.M.: Efficient stochas-

tic simulation of chemical kinetics networks using a weighted ensemble of tra-
jectories. The Journal of Chemical Physics 139(11), 115105 (Sep 2013). https:
//doi.org/10.1063/1.4821167

10. Drawert, B., Lawson, M.J., Petzold, L., Khammash, M.: The diffusive őnite state
projection algorithm for efficient simulation of the stochastic reaction-diffusion
master equation. The Journal of Chemical Physics 132(7), 074101 (2010). https:
//doi.org/10.1063/1.3310809, https://doi.org/10.1063/1.3310809

11. Giannakopoulou, D., Pasareanu, C., Blundell, C.: Assume-guarantee testing for
software components. Software, IET 2, 547 ś 562 (01 2009). https://doi.org/
10.1049/iet-sen:20080012

12. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment
for quantitative modelling and veriőcation. In: Ábrahám, E., Havelund, K. (eds.)
TACAS. LNCS, vol. 8413, pp. 593ś598. Springer (2014)

13. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The prob-
abilistic model checker Storm. International Journal on Software Tools for
Technology Transfer 24(4), 589ś610 (Aug 2022). https://doi.org/10.1007/

s10009-021-00633-z
14. Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of impor-

tance sampling parameters for statistical model checking. In: Proceedings of
the 24th international conference on Computer Aided Veriőcation. pp. 327ś342.
CAV’12, Springer-Verlag, Berlin, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31424-7_26, http://dx.doi.org/10.1007/978-3-642-31424-7_26

Efficient Trace Generation for Rare-Event Analysis in CRNs 19

15. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) Computer Aided Ver-
iőcation. pp. 576ś591. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

16. Kahn, H.: Random sampling (monte carlo) techniques in neutron attenuation
problemsśI. Nucleonics 6(5), 27; passim (May 1950)

17. Kahn, H., Marshall, A.W.: Methods of reducing sample size in monte carlo
computations. Journal of the Operations Research Society of America 1(5),
263ś278 (1953). https://doi.org/10.1287/opre.1.5.263, https://doi.org/10.
1287/opre.1.5.263

18. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
National Bureau of Standards applied mathematics series 12, 27ś30 (1951)

19. Kuwahara, H., Mura, I.: An efficient and exact stochastic simulation method to an-
alyze rare events in biochemical systems. The Journal of Chemical Physics 129(16),
165101 (Oct 2008). https://doi.org/10.1063/1.2987701

20. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking, pp. 220ś
270. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

21. Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model check-
ing in systems biology. SIGMETRICS Perform. Eval. Rev. 35(4), 14ś21 (mar
2008). https://doi.org/10.1145/1364644.1364651, https://doi.org/10.1145/
1364644.1364651

22. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Veriőcation of probabilistic
real-time systems. In: Proceedings of the 23rd International Conference on Com-
puter Aided Veriőcation. pp. 585ś591. CAV’11, Springer-Verlag, Berlin, Heidelberg
(2011)

23. L’Ecuyer, P., LeGland, F., Lezaud, P., Tuffin, B.: Splitting techniques (Jan 2009)
24. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statisti-

cal Model Checking, pp. 478ś504. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-319-91908-9_23, https://doi.org/10.1007/

978-3-319-91908-9_23

25. McMillan, K.: Modular speciőcation and veriőcation of a cache-coherent interface.
In: Proceedings of the 16th Conference on Formal Methods in Computer-Aided
Design. pp. 109ś116. FMCAD ’16, FMCAD Inc, Austin, Texas (2016)

26. McMillan, K.L.: IVy: http://microsoft.github.io/ivy/ (2019), https://github.

com/kenmcmil/ivy

27. McMillan, K.L., Padon, O.: Ivy: A multi-modal veriőcation tool for distributed
algorithms. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Veriőcation. pp.
190ś202. Springer International Publishing, Cham (2020)

28. McMillan, K.L., Zuck, L.D.: Compositional testing of internet protocols. In: 2019
IEEE Cybersecurity Development (SecDev). pp. 161ś174 (Sep 2019). https://

doi.org/10.1109/SecDev.2019.00031

29. Myers, C.J.: Engineering Genetic Circuits. Chapman & Hall/CRC Mathematical
and Computational Biology, Chapman & Hall/CRC, 1 edn. (July 2009)

30. Okamoto, M.: Some inequalities relating to the partial sum of binomial proba-
bilities. Annals of the Institute of Statistical Mathematics 10(1), 29ś35 (1959).
https://doi.org/10.1007/BF02883985, https://doi.org/10.1007/BF02883985

31. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety
veriőcation by interactive generalization. SIGPLAN Not. 51(6), 614ś630 (jun
2016). https://doi.org/10.1145/2980983.2908118, https://doi.org/10.1145/
2980983.2908118

20 B. Israelsen, L. Taylor, and Z. Zhang

32. Roberts, R., Neupane, T., Buecherl, L., Myers, C.J., Zhang, Z.: STAMINA 2.0:
Improving scalability of inőnite-state stochastic model checking. In: Finkbeiner,
B., Wies, T. (eds.) Veriőcation, Model Checking, and Abstract Interpretation. pp.
319ś331. Springer International Publishing, Cham (2022)

33. Roh, M., Daigle, B.J.J., Gillespie, D.T., Petzold, L.R.: State-dependent doubly
weighted stochastic simulation algorithm for automatic characterization of stochas-
tic biochemical rare events. In: Journal of Chemical Physics. vol. 135. American
Institute of Physics (2011)

34. Roh, M., Gillespie, D.T., Petzold, L.R.: State-dependent biasing method for im-
portance sampling in the weighted stochastic simulation algorithm. In: Journal of
Chemical Physics. vol. 133. American Institute of Physics (2010)

35. Roh, M.K., Daigle, B.J.: Sparse++: improved event-based stochastic parameter
search. BMC Systems Biology 10(1), 109 (2016). https://doi.org/10.1186/

s12918-016-0367-z, https://doi.org/10.1186/s12918-016-0367-z
36. Rosenbluth, M.N., Rosenbluth, A.W.: Monte carlo calculation of the average exten-

sion of molecular chains. The Journal of Chemical Physics 23(2), 356ś359 (1955).
https://doi.org/10.1063/1.1741967, https://doi.org/10.1063/1.1741967

37. Samoilov, M., Plyasunov, S., Arkin, A.P.: Stochastic ampliőcation and signal-
ing in enzymatic futile cycles through noise-induced bistability with oscillations.
Proceedings of the National Academy of Sciences 102(7), 2310ś2315 (2005).
https://doi.org/10.1073/pnas.0406841102, https://www.pnas.org/doi/abs/

10.1073/pnas.0406841102
38. Soloveichik, D., Seelig, G., Winfree, E.: Dna as a universal substrate for chem-

ical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393ś
5398 (2010). https://doi.org/10.1073/pnas.0909380107, https://www.pnas.

org/doi/abs/10.1073/pnas.0909380107
39. Villén-Altamirano, J.: Restart vs splitting: A comparative study. Performance

Evaluation 121-122, 38ś47 (2018). https://doi.org/https://doi.org/10.1016/
j.peva.2018.02.002, https://www.sciencedirect.com/science/article/pii/

S0166531616300839
40. Villén-Altamirano, J.: An improved variant of the rare event simulation method

restart using prolonged retrials. Operations Research Perspectives 6, 1ś
9 (2019). https://doi.org/10.1016/j.orp.2019.100108, http://hdl.handle.

net/10419/246387
41. Villén-Altamirano, M., Villén-Altamirano, J.: The Rare Event Simulation Method

RESTART: Efficiency Analysis and Guidelines for Its Application, pp. 509ś547.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-02742-0_22, http://dx.doi.org/10.1007/978-3-642-02742-0_22

42. Villen-Altamirano, M., Villen-Altamirano, J., et al.: Restart: a method for acceler-
ating rare event simulations. Queueing, Performance and Control in ATM (ITC-13)
pp. 71ś76 (1991)

43. Wald, A.: Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics 16(2), 117ś186 (1945), http://www.jstor.org/stable/2235829

44. Zhang, B.W., Jasnow, D., Zuckerman, D.M.: Efficient and veriőed simulation
of a path ensemble for conformational change in a united-residue model of
calmodulin. Proceedings of the National Academy of Sciences 104(46), 18043ś
18048 (2007). https://doi.org/10.1073/pnas.0706349104, https://www.pnas.
org/doi/abs/10.1073/pnas.0706349104

45. Zuckerman, D.M., Chong, L.T.: Weighted ensemble simulation: Review of method-
ology, applications, and software. Annu Rev Biophys 46, 43ś57 (May 2017).
https://doi.org/10.1146/annurev-biophys-070816-033834

	Efficient Trace Generation for Rare-Event Analysis in Chemical Reaction Networks

