Efficient Trace Generation for Rare-Event
Analysis in Chemical Reaction Networks

1[0000—0002—9537—2645}, Landon Taylorl[0000_0002_4071_3625], and
Zhen Zhangl [0000—0002—8269—9489]

Bryant Israelsen

Utah State University, Logan, UT, USA
{bryant.israelsen, landon.jeffrey.taylor, zhen.zhang}Qusu.edu

Abstract. Rare-events are known to potentially cause pathological be-
havior in biochemical reaction systems. It is important to understand
the cause. However, rare events are challenging to analyze due to their
extremely low observability. This paper presents a fully automated ap-
proach that rapidly generates a large number of execution traces guar-
anteed to reach user-specified rare-event states for Chemical Reaction
Network (CRN) models. It is enabled by a unique combination of a multi-
layered and service-oriented CRN formal modeling approach, a depen-
dency graph method to aid the shortest rare-event trace generation, and
randomized compositional testing. The resulting prototype tool shows
marked improvement over stochastic simulation and probabilistic model
checking and it offers insights into a CRN.

Keywords: Compositional testing, rare-events, dependency graph

1 Introduction

As a formalism for modeling chemical kinetics, Chemical Reaction Networks
(CRNs) are widely used for modeling biochemical reaction systems [6], genetic
regulatory networks [29], and molecular programming [38]. Many biochemical
systems are intrinsically stochastic, including processes in gene and protein ex-
pressions. Essentially, their constituent chemical reactions are often simultane-
ously enabled to occur in parallel with different probabilities. Moreover, their
noisy operating environment can introduce unexpected behavior. Rare events in
these systems are often of significant relevance, because they represent extreme
infrequent occurrence of undesirable behavior that may lead to pathological ef-
fects. Therefore, obtaining provable reliability guarantees is a must for CRNs.
Probabilistic model checking (PMC) can provide such quantitative guarantees
and allows in silico analysis for detecting and quantifying rare errors. However,
PMC approaches are challenged by the need for enumerating a model’s large
or even infinite state space to gather a sufficient number of rare-event traces in
order to provide accurate probability verification. This task is typically compu-
tationally intractable. Further, for probabilistic analysis, it is often necessary to
gather many traces that reach the rare-event states of interest. Generating only
a small number of them is often insufficient to give an accurate estimate.

2 B. Israelsen, L. Taylor, and Z. Zhang

This paper presents a fully automated approach that rapidly generates a
large number of execution traces guaranteed to satisfy a user-specified rare-event
property for a CRN model. These traces are used to compute a lower probabil-
ity bound for the rare-event property. We first propose a novel multi-layered,
service-oriented, and modular CRN modeling approach using the IVy modeling
language [27]. It offers flexibility in customizing both the reaction execution fre-
quency and the length of traces. We then propose a dependency graph method to
guide the shortest trace generation with unique finite prefixes through composi-
tional testing. These traces are guaranteed to reach the specified rare event and
are collected to compute the rare-event’s lower probability bound. The depen-
dency graph also effectively proves unreachability of a given rare event, leading
to considerable savings in performance. We implemented these methods in a
prototype tool, Random Assume Guarantee Testing Induced Model Executions
for Reachability (RAGTIMER), and found preliminary results to be promising.
The proposed rare-event trace enumeration technique can potentially be inte-
grated with many formal and semi-formal rare-event analysis methods and the
generated traces can provide detailed debugging information for understanding
reachability of rare-events. We believe that this unique combination of the pre-
sented methods has not been proposed elsewhere, and is an effective alternative
to rare-event simulation approaches for biochemical reaction networks.

2 Preliminaries

Chemical Reaction Networks (CRNs). Under the Stochastic Chemical Kinetic
(SCK) model assumption, the time-evolution of a CRN is governed by the Chem-
ical Master Equation. Formally, a CRN is a tuple M composed of n chemical
species X = {X4,..., X, }, m reactions R = {Rq,..., R}, and an initial state
representing each species’ molecule count sg : X — Z>. Given a reaction R;,
denote Reactant; C X as the reactant set and Product; C X as the product set
in R;. A reaction R; = («;,v;) includes a propensity function o : Z’;O — Rt
corresponding to the probability (including 0) for it to occur in a state and the
state change vector v; € Z™ corresponding to the update in molecule count for
each species due to reaction R;. Under the SCK assumption, each reaction R;
occurs nearly instantaneously, which practically limits both v; to the values of
0,+1,£2, and the size of Reactant; to be less than three [29)].

CRN Semantics. A CRN under the SCK assumption induces a Continuous-time
Markov Chain (CTMC), where state change due to a reaction occurs in discrete
amounts and the probability of state change is dependent on real-valued time.
A CTMC model C is a tuple C = (S, sp,R,L) where S is a finite state set
(i.e., state space); so € S is the sole initial state; R : S x 8 — Ry is the
transition rate matrix; and L : S — 24% is a state labeling function with atomic
propositions AP. Transition rate R(s,s’) from state s to s’ is determined by
the propensity of R;, assuming R; is the sole reaction causing this state change.
The propensity is the number of possible combinations of reactant molecules:

Efficient Trace Generation for Rare-Event Analysis in CRNs 3

a;(s) = k; HXjeReactanti (s[7]), where R;’s reaction rate constant is k; € RT. A
reaction R; is enabled to occur in state s if its corresponding propensity function
evaluates to a positive value, i.e., a;(s) > 0. Often, multiple reactions are enabled

to occur in state s and the corresponding probability for R; is p(s, s’) = R]é‘s(’:;),

where the exit rate E(s) = 3¢, ,s(5) R(s, s') sums up all enabled reaction rates
in s. A CTMC model has a non-zero probability of staying in a state and the
probability of leaving a state s within time interval [0,1] is 1 — e®()t where ¢ is
a non-negative real-valued quantity representing real time.

Time-bounded Reachability Property and Target States. We focus on computing
the following non-nested time-bounded transient reachability probability spec-
ified in Continuous Stochastic Logic (CSL) [3,20]: P—>(¢[*T]). Tt queries the
probability of reaching the rare-event W-states within 7" time units. Let condi-
tion ¥ be Xy = Cy, where C'y € Z>o and so(Xy) # Cy. That is, a target is an
equality condition for exactly one species and it is not initialized to the target
value. A state is a target state sy if ¥ evaluates to true in sy, i.e., sy E V.
This work aims at efficiently providing the guaranteed lower probability bound,
ie., Pmm(O[O’T] V), where ¥ is Xy = Cy. Note that the user is not required
to provide an upper bound for each species, which could induce an infinite-state
CTMC. However, the method presented in this paper only generates finite traces
where the last state is a target state. Therefore, the resulting CTMC constructed
from these traces have a finite state space.

Compositional Testing. A CRN model M consists of interacting chemical re-
actions where each executes atomically. M is a closed system, meaning that it
does not require any external input, because reactants required by one reaction
are provided by other reactions in the same model. These features naturally al-
low for compositional testing. As detailed in Section 6, a CRN model can be
represented as a composition of two interacting processes p; and po, denoted
as p1|| p2, following the circular assume-guarantee reasoning rules shown below:

92y AT
Y) P2 (& o) p2 (&
e pillps (any) (o) pillps (@) O

The triple (a)p; () in Rule (1) can be understood as follows. From the start of
process execution, up to step k — 1, if p; satisfies its environment assumption a,
in the form of Boolean-valued constraints on p;’s input, then the allowed input
and output behavior of p; determines the guarantee 7 in the current execution
step k. Similarly, process po in the triple (7)p2{a) guarantees v at the present if
v holds in the past. This interpretation avoids the circular definition of this rule
by requiring that each process in the composition only relies on the correctness
of inputs it received in the past, but not those to be received in the future, in
order for its output to satisfy their respective guarantees. Therefore, as long as
neither assumption fails first, neither guarantee can fail first in the composition,
and hence p1||p2 E o A~. For the triple (a)p;{«) in Rule (2), it is interpreted

4 B. Israelsen, L. Taylor, and Z. Zhang

as that p; does not cause the global property « to fail. This rule states that if
neither process in the composition causes « to fail first, then « always holds.

Predicated on Rules (1) and (2), compositional testing [11,25,28] is a semi-
formal technique that empirically checks satisfiability of the guarantee ~ for
each triple (a)p;{7) in the composition by sampling inputs from those satisfying
the assumption «. Generation of inputs typically involves randomization. For
Rule (2), testing of the triple (a)p;{(«) includes both generating only inputs
satisfying a and verifying that the outputs of p; do not fail a. Each process
pi = (I;,0;) consists of an input action set I; and an output action set O;.
Denote a}” as action a,, defined in process p;. a]" is an input action for p;
if a* is called by another process p; (j # i), but is an output action for p,.
Execution of] modifies a non-empty set of local variables in p;, and each
variable v € V; is bounded by a range R,. Two processes p; and py are compatible
for composition if O1 N Oy = @, and their composition is p; || p2 = (I, O), where
I = (Il @] 12)\(01 @] Og) and O = (01 @] 02)

3 Related Work

Rare-event properties are challenging to analyze due to their extremely low ob-
servability. Statistical model checking (SMC) techniques (e.g., [30,43,24]) have
integrated rare-event methods, including importance sampling [16,17,14] and im-
portance splitting [18,36,42]. Importance sampling biases simulation by weighting
the rare-event probability to increase its observability and then compensates for
the loss to yield the unbiased probability [24]. Importance splitting reformu-
lates a rare-event probability as a product of less-rare level-conditional prob-
abilities [15]. For analyzing rare-events in biochemical systems, the weighted
Stochastic Simulation Algorithm (wSSA) [19] relies on a user-defined biasing
scheme to favor reactions leading to observing the rare-event, but is limited by
the user’s insight in selecting the proper biasing scheme. Extensions of wSSA
(e.g., [14,33]) have substantially improved its computational efficiency. Recent
algorithms (e.g., [35]) can characterize rare events in terms of system parame-
ters. As an alternative, weighted ensemble [44,2] has been configured to sample
rare events in CRNs [9,45]. Importance splitting divides a model’s state space
into contiguous levels ordered in the increasing likelihood of reaching the rare
event [23,41,24]. The crux of it is the (possibly manually constructed) impor-
tance function, which rewards a simulation trace by spawning multiple copies if
it crosses a level closer to the rare event, but terminates it otherwise. In [4], the
authors presented an automated compositional importance function derivation
technique based on the model structure and the rare-event property. Recently,
the extended RESTART with prolonged retrials [39,40] importance technique was
re-implemented in the SMC engine modes [4,5] in the MODEST TOOLSET [12].

Advantages of the proposed approach over rare-event simulation. First, it is fully
automated and neither requires expert knowledge of nor poses modeling limita-
tions on the CRN model. Secondly, it is potentially less computationally intensive

Efficient Trace Generation for Rare-Event Analysis in CRNs 5

as it neither requires rare-event biasing computation nor wastes any simulation
traces not able to reach the rare event. Lastly, simulation-based approaches
provide an estimate of the actual rare-event probability, whereas the proposed
method provides a guaranteed lower probability bound.

4 Motivating Example

The motivating example is the modified yeast polarization model [7], a CRN
consisting of seven species reacting through eight reactions:

0.042

—4
Ry 0 o008, 5 Ry R0 g Ry: L+R YU RE 41,
R4: RL 2Y% R, Rs: RL+G 225 G, +Gbg, Re: Ga 0.100, (v
1.05x 10 3.91

R72Gd+Gbg—>G, Rs: 0 —= RL.

All reaction propensities are in molecules per second. The initial molecule count
for the following species vector (R, L, RL,G,Gq, Gpg, Gq) forms the initial state
so = [50,2,0,50,0,0,0]. This system was modified from the pheromone induced
G-protein cycle in Saccharomyces cerevisia [10] with a constant population of
ligand (L = 2) preventing it from reaching equilibrium [34]. The rare event is a
measure of an unreasonably rapid build-up of Gy4. Thus, the property of interest
is the probability that the molecule count for G4 reaching 50 within 20 seconds:
P_»(0[®201 Gy, = 50). The high concurrency nature of this model is evidenced
by R1 and Rg each being independent of all other reactions and enabled in all
states. Additionally, it takes at least 100 reaction executions to reach a target
state. These features can easily overwhelm state expansion methods performed
by probabilistic model checking tools as discussed in Section 10.

5 Method Overview

Figure 1 shows a logical flow of the proposed novel approach for the RAGTIMER
tool, where the steps in blue symbolize looping behavior. It first reads in a user-
specified CRN M and a rare-event property of interest. A dependency graph
is then generated for the given CRN model and target property reachability
is determined, as described in Section 7. The dependency graph information
is then used to automatically generate the service-oriented layered IVy model
(Section 6), which is used with compositional testing to generate the desirable
shortest traces with unique prefixes as described in Sections 7 and 8. Stochastic
simulation is then performed on each trace to obtain its execution probability,
and a summary of these results is returned to the user (Section 9).

RAGTIMER significantly differs from statistical model checking techniques
that estimate the rare-event probability by biasing events leading to the rare-
event during stochastic simulation (e.g., importance sampling) or by incremen-
tally selecting and spawning simulation traces with higher likelihood of reaching
the rare event (e.g., importance splitting) [24]. Instead, RAGTIMER produces nu-
merous (shortest) traces proven to terminate in a rare-event state, essentially

6 B. Israelsen, L. Taylor, and Z. Zhang

performing a partial state space exploration of the model, and then computes
the cumulative probability of each trace.

Read user-specified Target Create unique
CRN and rare-event Reachable? shortest trace
property prefixes
No
Obtain rare—eveqt p[obabl!lty Generatg_traces using For each prefix
through stochastic simulation compositional testing

Fig.1: RAGTIMER Flowchart

Generate
dependency graph
from model

Generate 1Vy model

Return summary of
results to the user

6 Layered and Service-Oriented CRN Model Generation

Conventionally, a CRN is modeled as a set of concurrently executing guarded
commands, each presenting a constituent chemical reaction, such as those pro-
duced by the SBML-to-PRISM converter [21,1]. The modeling approach in this
work presents a fresh perspective by considering a CRN as a layered set of service
objects that maintain all of its constituent chemical reactions:

1. Layer 0 includes the following objects: enabled_checker to evaluate a reac-
tion’s readiness to occur, selector to select an enabled transition to execute,
updater to update species as the result of a reaction, inspector to monitor
reaction behavior, and goal to check reachability of the desired target.

2. Layer 1 includes a top-level object protocol to manage the execution of all
constituent reactions of the CRN by calling services at the lower layer.

In a CRN model M = (X, R,sp), every reaction R; € R is modeled as an

action update_Ri in protocol. Actions in enabled_checker check whether a

given reaction has sufficient reactant(s) to occur at each state. Actions in the

selector object can be configured to determine the frequency of executing en-

abled reactions. The updater object has actions to increment or decrement a

given species according to the state change vector for R;. The action in the goal

object monitors whether an execution sequence of reactions has reached a state
where the goal is achieved. Note that the layered and service-oriented IVy model
presented in this section omits reaction rates and hence is probability-abstract
due to IVy’s lack of support in floating point operations needed for computing

probabilities. Acquisition of rare-event probability is described in Section 9.
The layered modeling approach naturally facilitates modularity and rare-

event trace generation using compositional testing, which is a feature provided

by the IVy verification tool [28,27]. Consider protocol as process p; as shown
in Rule (2). A mirror process for protocol and all layer-zero objects together

Efficient Trace Generation for Rare-Event Analysis in CRNs 7

object protocol = { object enabled_checker = {
before update_R3 { action is_enabled_R3(r_1:
assert enabled_checker. updater .num, 1l_1:updater.
is_enabled_R3(r, 1)} num) returns (y:bool) = {
action update_R3 = { if r_1 >= 1 & 1.1 >= 1 { y
if selector.execute_R3 { := true }
call inspector. else { y := false 1}}}
check_guard_R3(r, 1, rl);|lobject inspector = {
r := updater.decr(r); before check_guard_R3 {
1 := updater.decr(l); assert r_1 >= 1 & 1_1 >= 1}
rl := updater.incr(rl); action check_guard_R3(r_1:
1 := updater.incr(l) 3}}} updater.num, 1_1:updater.
num, rl_1:updater.num)}

Fig.2: IVy model snippet showing protocol’s update_R3 action calling other
actions in lower-layer objects to execute reaction R3.

form the environment process ps. The mirror process is one in which no actions
are defined and its only purpose is to nondeterministically call the exported
actions defined in p;. An exported idling action is also defined in p;, which
becomes the only available action after the goal is achieved. It models that
M becomes idle after a target state has been reached for the first time. This
enables us to effectively curtail the model execution trace after it reaches the
goal. All layer-zero objects also constituting po each define actions that can only
be called by pi, effectively contributing to output actions for p;. Rare-event
trace generation is achieved by compositionally testing the triple (a)p;(a) in
isolation. Isolation of p; (i.e., protocol) is with respect to its environment po.
For correctness, checking of p;’s outputs is predicated only on ps’s assumptions.
Both assumption and guarantee formulas are declared as assertions in the IVy
model. When p; is checked in isolation, assertions taking place before p; action
calls become assumptions, and those following p; action calls become guarantees.
IVy’s compositional testing tool then generates randomized inputs satisfying the
assumptions «, while checking that the guarantees o are not violated.

We use reaction R3 at sp in the motivating example as an illustration. As
Figure 2 shows, before update_R3 can happen, M first checks its precondi-
tion (expressed as an assertion) by calling action is_enabled_R3 defined in
enabled_checker. It checks whether R3 has sufficient reactants to occur at the
current state. If so, it is enabled and update_R3 calls selector.execute_R3,
which determines whether to execute R3. Only when it is selected can the call
be made to action inspector.check_guard_R3, whose before monitor checks
the sufficient precondition again for R3. The assertion in is_enabled_R3 of
enabled_checker is converted to an assumption, but the one in check_guard_R3
of inspector becomes a guarantee for action update_R3. Note that these two
assertions are functionally equivalent. For example, they both check that the
following specification o, r_1 >= 1 & 1_1 >= 1, holds during compositional test-

8 B. Israelsen, L. Taylor, and Z. Zhang

ing. When an assumption for this action fails to hold, model execution skips
this action. However, violation of a guarantee will halt model execution and re-
port a failure. This guarantee is checked by inspector.check_guard_R3, rather
than the earlier call to action enabled_checker.is_enabled_R3. This is be-
cause the purpose of is_enabled_R3 is to determine whether Rj3 is enabled
to occur during model execution, but it may not be selected even if it is en-
abled during testing. Therefore, having a guarantee in this action similar to that
of inspector.check_guard_R3 actually leads to incorrect behavioral modeling,
since the execution should not stop when Rj3 is merely disabled. However, it is
necessary to guarantee sufficient reactants in inspector.check_guard_R3, be-
cause in order to reach this point, R3 must have already been selected to occur.
Failure of this guarantee stops the execution, as it reveals a flaw in the model. If
Rs successfully executes, update_R3 updates its reactants and products by call-
ing actions in updater. Lastly, the protocol’s environment process arbitrarily
chooses another exported action to execute and this procedure repeats until the
goal is achieved, after which, only the idling action is allowed to execute.

A run for pi||ps is a finite sequence of action calls made by both p; and
p2. A walid run r is a finite sequence of action calls made by both p; and ps
ending with idling; or goals. Recall that the subscript indicates the process in
which an action is defined. Define reaction R; as a finite sequence of actions with
the prefix is_enabled_Ri,, update_Rij, execute_Ri,, check_guard_Ris, and
followed by a continuous sequence of either incry or decrs. A (valid) trace o is a
finite sequence of reactions obtained by removing actions in r that do not belong
to a reaction. An example of a valid run is: is_enabled_R5,, is_enabled_R3s,
update_R3;, execute_R3y, check_guard_R3s, decry, decry, incry, incry, ...,
goalsy. In this run, ps tries to execute update_R5, but fails because R is disabled.
It then succeeds in executing R3, making it the first reaction in the extracted
trace. Note that our model preserves the atomicity of a single reaction execution.
Utilizing the atomic action construct in the IVy language, action update_Ri
requires that all actions within itself fully execute before another reaction can
occur. A comprehensive description of IVy’s language syntax and semantics, as
well as the IVy verification tool can be found in [31,27,26].

7 Shortest Trace Generation

This section introduces the dependency graph for a CRN and describes how it
either proves unreachability of a rare event or guides the shortest desirable trace
generation by automated assertion creation and insertion in the IVy model, which
is used to rapidly enumerate many such traces through compositional testing.

Dependency Graph for Shortest Trace Generation. Denote the edge ~~
as the dependency relation between two reactions, which is a binary relation
defined in Definition 3. R; ~» R; indicates that R; depends on R;. Denote ~~7
as the transitive closure of the dependency relation and R; ~+ R; means that
there is a path of dependency edges from R; to Rj: R ~= -+ ~» Ry~ -+ -~ R

Efficient Trace Generation for Rare-Event Analysis in CRNs 9

Dependency relationships are established based on the minimum number of times
a reaction must execute for the model to reach a target state. For consistency,
create an abstract reaction Ry representing the target specification ¥ such
that A(Ry) = Cy — so(Xy) as described in Definition 1. Informally, A(R)
represents the difference between the target and initial values for the abstract
species Xy, and Ry is required to execute at least A(Ry) times to achieve the
target value. This provides a starting point for dependency graph construction.

Definition 1 (Minimum Required Reaction Executions). The minimum
required reaction executions A : R — Z maps a reaction R; in the set of reactions
R of a CRN M to the minimum number of times R; must execute for M to
reach a target state sy from its initial state sq.

Definition 2 (Enabled and Disabled Reaction Sets). The reaction set R
is partitioned into two subsets: set E containing only reactions R; enabled to
execute A(R;) times from sg, and set D containing all other reactions. As such,
EUD=R and END = 0.

Definition 3 (Dependency Relation). A dependency relation with respect
to a CRN M = (X, R,s0) is an antireflexive binary relation ~ C D x R. R;
depends on R, denoted as R; ~ R;, iff all conditions below hold:
1. R, € DA (Rl =+ R]) A —‘(Rj st Rl),
2. (A(R;) > 0 A Reactant; N Product; # 0) v

(A(R;) < 0 A Product; N Reactant; # 0), and
3. (FRi s.t. Rj ~ Ri) V(R € E).

The conditions of Definition 3 are described intuitively as follows:
1. R; must be initially disabled in order to depend on another reaction and it
cannot depend on itself directly or cyclically.
2. R; must execute a nonzero number of times. If R; requires the production
(consumption) of a species, R; must produce (consume) that species.
3. R; must depend on another reaction, or the initial state must supply abun-
dant species counts to enable R; to execute A(R;) times.
An algorithm for dependency graph construction first explores Conditions 1 and
2 before removing dependency relations that fail Condition 3. Note that A(R;)
can be negative in Ry, indicating that if a target species count is less than its
initial count, it is desirable to find reactions that consume, rather than produce,
the required species. Cyclic dependencies are not permitted under Definition 3.
This addresses the paradox in which a reaction must execute an infinite num-
ber of times to produce enough of a species to enable itself to execute. These
conditions are crucial in proving unreachability, as described later in this section.
The dependency relation between all reaction pairs guides the construction
of a dependency graph, which is a directed graph with vertices representing
reactions and edges representing dependency relation. The root of the graph is
Ry, as no other reaction can depend on it. Algorithm 1 outlines the procedure
for recursively constructing the graph following Definitions 1, 2, and 3. Figure 3a
shows a case for the motivating example. Starting with R y, establish the relation

10 B. Israelsen, L. Taylor, and Z. Zhang

Algorithm 1 Dependency Graph Construction

Require: M = (X, R,s0), V.
1: procedure MAIN
2: Generate Ry and calculate A(R¢) = Cy — so(Xw)

3: Initialize all dependency relations to false

4: BUILDGRAPH(R)

5: if there exists R; such that Ry ~~ R; then begin trace generation.
6: else ¥ is unreachable; terminate.

7: procedure BUILDGRAPH(Reaction R;)

8: if R; € E then return

9: for all R; such that =(R; = R; VR; ~1 R;) do

10: 0:= A(Rz) - minXkeReactanti (50 (Xk))

11: if 6 > 0 then A(R;) := A(R;)+ 6 ; Ri ~ R; := true

12: BUILDGRAPH(R;)

13: if =((3Rk s.t. Rj ~ Ri) V (R; € E)) then R; ~» R, := false

R ~+ Rs since only Rs can produce Gy required by R . The relations Rs ~~
Rs and R5 ~» Rg are similarly established. Since both R3 and Rg are enabled
in sg, the algorithm terminates without removing any relations. Figure 3b, in
contrast, shows an unreachable target state assuming a different sg, where it fails
to supply sufficient molecules of G, e.g., sg(G) = 1. Thus, relations R5 ~» R,
R5 ~ Rs, and R5 ~» Ry are established. Since R; ¢ E, R7 ~> Rg and Ry ~> R
are established, creating cyclic dependency R5 ~»T Rs. Therefore, Ry ~ Rj is
disestablished. Because it is impossible to produce enough Gy, to execute Ry,
Rs ~ Ry is disestablished. Similarly, R 3 ~~ R5 must be disestablished, leaving
only Ry in the dependency graph, proving unreachability of ¥.

The derivation of a dependency graph enables three crucial developments.
First, it enables CRN reachability analysis as described in Theorem 1. Second,
a set of desirable reactions enables the construction of traces leading to a target
state. This is useful when very few traces reach a target state. Lastly, shortest
traces (by reaction execution count) are obtainable as shown in Theorem 2.

Theorem 1 (Unreachable Target). In a dependency graph constructed per
Definitions 1, 2, and 8 for a CRN M = (X, R,s0), if Rw € DA (¥YR; €
R.=(Rw ~T R; AR; € E), any target state sy is unreachable from sq.

Proof (Theorem 1). Assume the following opposite statement holds: A depen-
dency graph constructed with Definitions 1, 2, and 3 for a CRN satisfies Ry €
DA(VR; € R. 2(Ry ~T Ri AR; € E) and some target state sy is reach-
able. In a closed CRN, if sy is reachable, then either (1) Ry € E in s or (2)
Ry € D in sy and there exists a reaction sequence, say R;...R; and R; € E,
that enables Ry in a future state. Case (1) is trivially true for this theorem.
For case (2), construct a dependency graph by Definition 3. Then it must hold
that IR; € R. Ry ~T R;AR; € E. Because R; ... R, exists to enable Ry, the
constructed dependency graph must establish R ¢ ~* R; (Condition 2) and the

Efficient Trace Generation for Rare-Event Analysis in CRNs 11

terminal reaction R; for Ry ~»* R; must be enabled in sy (Condition 3) when
Ry ~1 R; is acyclic (Condition 1). This contradicts the assumption. O

Grouping dependency relations into weighted branches as described in Defi-
nition 4 enables the discovery of trace lengths. Intuitively, a weighted branch B
is a weighted path Ry ~1 R; AR; € E in the dependency graph. The branch
weight W (B) is the minimal length of a trace including only the reactions in B.

(A AN
50 50 (R?/]so (Ry)50
N -
Ge Grg Gbe ¥Gie

R ¢ y N :
. 50 5 ¥) 50 , 50 (Rs)50 @50
Cbt Gbs W'b RL_RL RLARLY NG RL/@I\G
N
Rs R3 550 Rg 501 Rs 50(Rg)s0(R7)1 (Ry 50(Rg 50@1

RL RLy” \AR Gy \Ghe Gyl Gbe
R3 50 (Rg)50 (R3)50 (Rg)s0 1 R5\H 1 @1
(a) Reachable case (b) Unreachable case

Fig. 3: Dependency Graph Examples.

Deﬁnition 4 (Weighted Branch on a Dependency Graph). Let a branch

={Ri| Ry ~T R; ~T R;jAR; € E)V(Ry ~+ RiAR; € E)}. The weight
of By is W(Ba) = > _r,ep, A(Ri), which is the sum of the minimal number of
reaction evecutions when ezecuting only the reactions in B,,. Label a branch with
L(B,) = {Reactant; N Product; | R; ~ R; AR;, R; € Ba}.

Theorem 2 (Shortest Trace). Construct a set of branches B, such that each
branch is required to produce a unique species and ¥V By # By, > 5 o5 W(B,) <
> p,es, W(B). Let p(By) = Up,ep, Ri € Ba. There exists some sequence of
reactions in p(By), where each R; € p(By) is executed precisely A(R;) times
such that the resulting trace yields the minimal reaction execution count.

Intuitively, a branch is a set of reactions that together produce or consume at
least one desired species for R . In the motivating example shown in Figure 3a,
there are two branches: {Rs5, R3} and {R5, Rg}. Shortest traces are generated by
first gathering the non-empty lowest-weighted set of branches producing unique
required species. For example, R3 and Rg produce the same species needed by
Ry, so only one branch is required to be included in B, but both R3 and Rg can
be included in B, since A(R3) = A(Rg). If another branch produced a different
required species, it would be included in B, with R3 and/or Rs.

Proof (Theorem 2). Consider a trace o, containing n,, reaction executions pro-
duced by the method in Theorem 2. Consider a trace og containing ng reaction
executions, such that ng < n,. Because o reaches a target state from the initial
state, 0g must include reactions that are required to reach a target state from
the initial state. These actions are, by definition, included in a branch in the
dependency graph. Because each reaction R; in oz is, by definition, required to

12 B. Israelsen, L. Taylor, and Z. Zhang

execute at least A(R;) times, the branches used to derive sequence og from the
dependency graph must have a lesser cumulative weight than the branches used
to derive sequence o,. However, in constructing sequence o, only the branches
with the least cumulative weight are selected. Thus, either o3 is of the same
length as o, (causing both traces to be shortest traces), or og cannot exist,
proving by contradiction that a trace o, derived by the procedure in Theorem 2
must be a trace with the fewest total reaction executions. a

Shortest Trace Generation using Compositional Testing. After obtain-
ing B, as prescribed by Theorem 2, we exclude reactions R; ¢ B, as they do not
directly or indirectly contribute to reaching s y. Each remaining reaction R; € B,
is then assigned a unique variable Ri_executions in protocol corresponding to
the number of times R; has been executed. A shortest trace can then be obtained
via randomized compositional testing by asserting Ri_executions < A(R;) as
a precondition for update_Ri. In Figure 3a, p(B,) = {Rs3, R5, Rs}, and there-
fore, all other reactions are removed. Assertions are then added to ensure each
reaction only executes the minimum required number of times needed to reach
sy. For example, assertion R5_executions < 50 is added to update_R5 to en-
sure that Rs does not execute more than 50 times. During compositional testing
of the triple (a)pi{a), p1 is the protocol object in a CRN model and « is
Ri_executions < A(R;). This assertion serves as a part of the precondition
for action update_Ri defined in p;. It becomes an assumption when testing p;
locally. Execution of every R; € p(B,) starts with action update_Ri, which is
called by p;’s environment process ps. R; cannot occur if Ri_executions has
already reached A(R;), indicating that the minimal number of the required R;’s
action sequences to reach sy has already occurred, even if R; is enabled. The
same assertion is inserted as a part of the precondition for the check_guard_Ri
action defined in the inspector object, which is part of ps. It becomes a guaran-
tee during the local testing of p; because check_guard_Ri is p;’s output action.
Inserting the assertion Ri_executions < A(R;) in this way guarantees that
only the minimum number of every R; € p(B,) can appear in the resulting trace
o, whose length is therefore, the shortest. Note that only once the contributing
reactions (i.e., those in B,) have been established from the dependency graph is
the IVy model actually constructed with all of the aforementioned assertions.

8 Generation of Diverse Traces

To optimize the chance of finding representative traces leading to rare-event
states with relatively high probability, it is desirable to obtain a diverse assort-
ment of traces. Using reactions from equally weighted branches and sequence
prefixes can generate a diverse set of traces from compositional testing.

Equally Weighted Sets of Branches. Given B, = {B,, By}, Ry ~1 R; ~T
R., and Ry ~1 R; ~T R, if a species X; € Reactant; is produced equally

Efficient Trace Generation for Rare-Event Analysis in CRNs 13

effectively by a reaction R, € By, as by a reaction R, € B,, in order to pro-
duce more diverse traces, the traces should include both R, and R, but they
should be executed at a lower frequency than that of other reactions, in order
to not favor the production of one species more than another during compo-
sitional testing. To accomplish this, let each reaction be assigned a tier value,
where tier(Ro) = {Ri € B | (Ri ~T Ra}| and let the frequency of Rg be
denoted as freq(Rg) = |[{Ra | tier(Ra) = tier(Rg) ARa,Rp € p(B)}H L. The
CRN model is then modified as follows: (1) The assertion (Rx_executions +
Ry_executions) < A(R,) is inserted as a precondition for both R, and R,; and
(2) selector is modified to let R,, R, execute with a frequency of freg(R,).
These modifications ensure that the generated traces are diverse and the shortest.
For instance, for R3 and Rg in our motivating example, because L(R5 ~» R3) =
L(Rs ~ Rg) = RL, R3 and Rg have the same tier value, and A(R3) = A(Rg) =
50, we change the precondition assertions for update_R3 and update_R8 to be
(R3_executions + R8_executions) < 50. We also modify selector so that Rg
and Rg execute once per every two times they are enabled.

Sequence Prefixes for Generating Diverse Traces. Due to the highly con-
current nature of CRNs, multiple unique weighted branch sets can create short-
est traces according to Theorem 2. In the motivating example, the branches
{R5,R3} and {R5,Rs} each have a weight of 100. Executing a total of 100 re-
actions using a combination of R5, R3, and Rg as prescribed by the dependency
graph results in the generation of a shortest trace. Dependency information is
used to partition the state space into prefix-based subsets. For example, all traces
generated using branches {Rs5, R3} and {R5, Rs} must begin with the sequence
prefix Rg, Rs5; R3, Rs5; R3, Rs; or Rg, R3. Because each prefix is unique, there is
no need to check for duplicate traces except among traces with identical prefixes.
Therefore, it is possible to discard saved trace information after each prefix set is
completed, saving only the sum of the probability of each trace. This saves time
and allows for more trace enumeration using less memory. This state space par-
titioning method is achieved by using stochastic simulation to obtain the state
immediately following each prefix. This state is then used in lieu of the model’s
initial state for compositional testing, and the number of required executions for
each reaction in the prefix decrements. The prefix reaction sequence is prepended
to each trace before stochastic simulation to obtain the trace’s probability.

9 Tool Implementation

RAGTIMER tool flow. We have implemented the proposed techniques in a
prototype tool called RAGTIMER, so named because it is designed to be fast and
carefree for a user, much like the Ragtime musical genre. As Figure 1 shows,
RAGTIMER first builds a dependency graph from the CRN model and its rare-
event reachability property. The dependency graph is then used to determine
reachability of the target rare-event specification and it either provides a proof
of unreachability, or creates an IVy model containing only reactions in the set of

14 B. Israelsen, L. Taylor, and Z. Zhang

branches with the lowest weight, as described in Theorem 2 and Section 8. To
optimize the chance of a diverse set of representative traces to reach the target
rare-event, RAGTIMER partitions the possible traces by shortest trace prefixes.
Using information obtained from the dependency graph analysis, it automatically
creates and then inserts assertions into the IVy model. RAGTIMER then invokes
randomized compositional testing to produce a user-specified quantity of unique
traces to the target state. Lastly, it simulates each trace to obtain its rare-event
reachability probability by interfacing the PRISM probabilistic model checker [22]
and sums them together to obtain the total probability of the set of traces.

Probability acquisition. The main advantage of RAGTIMER is its effectiveness
in rapidly generating a large number of the shortest desirable traces to a rare-
event of interest. The lower bound for the rare-event probability Pmm(Q[O’T] V),
where V¥ is the rare-event in the form of &X; = C| is obtained by summing up the
probabilities of all generated traces. RAGTIMER interfaces the stochastic simu-
lation engine in PRISM to obtain probabilities for all individual traces. When
branch prefixes are used for trace generation, this simulation occurs in batches,
where each batch is for one equally weighted prefix from the dependency graph.
An alternative approach is to construct a partial state space from the gener-
ated traces first and then interface a probabilistic model checking tool to obtain
Pmm(O[O’T] V). However, such construction would require an equivalent sim-
ulation effort for each trace in addition to state duplication. Our experiments
showed that state space construction yielded an identical lower probability bound
to trace simulation, but it used significantly more computational resources.

10 Results and Discussion

We obtained all results on a machine with an AMD Ryzen Threadripper 12-Core
3.5 GHz Processor and 132 GB of RAM, running Ubuntu Linux (v18.04.3). With
one CPU and 16 GB of RAM allocated, RAGTIMER was tested on three repre-
sentative CRN models. The rarity of their target specifications combined with
the large state spaces can quickly overwhelm computational resources. Reaction
propensities for all models presented in this section are in molecules per second.

Single species production-degradation model. This model consists of two

species reacting through a production-degradation interaction [19]: Ry : S; 19,

S1+ S92, Ra : So 0925, % The initial molecule count for species vector (57,52)

forms the initial state: sy = [1,40]. The desired CSL property of this model
is P_, (001001 6, = 80). Obviously, the the shortest trace to sy is simply a
repetition of R;. RAGTIMER quickly discovers this shortest trace, and alerts the
user that only one shortest trace can be generated. Restriction is then loosened
in the IVy model to allow extraneous reactions, i.e., Ro, to randomly execute at
a desired frequency to produce additional traces. Figure 4a shows the probability
increase when these traces are generated. Generating 10,000 additional traces

Efficient Trace Generation for Rare-Event Analysis in CRNs 15

repeatedly took less than 2 minutes. This shows the value of controlling reaction
restrictions. While obtaining a single shortest trace can be valuable, allowing
many traces with extraneous reactions enables the accumulation of increased
probability. In our experiments, when these probabilities begin to converge, it
becomes helpful to increase the allowance for extraneous reactions to generate
more diverse traces.

o o Lo@
Z gV z
=101 =05 =00
3 3 5
E-] 57
5 810 e
a [& g6
£10 . &
s T 1067 ©
& a a
107 106
Lo
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Paths Generated Paths Generated Paths Generated
(a) Single species (b) Enzymatic futile cycle (c) Modified yeast polariz.

Fig. 4: Cumulative probability of desirable traces produced by RAGTIMER.

Enzymatic futile cycle model. This example models the enzymatic futile
cycle motif consisting of two single-substrate enzymatic reaction scheme, one
transforming S5 into S5 catalyzed by S7 and the other transforming S5 into So
catalyzed by Sy [19]:

R1151+52L0—>53, RQZS;),LO—)S1+SQ, R3253&1—>51+S57
R4:S4+S5ﬂ>56, R5ZS6£>S4+S5, R6:56£>S4+52.

This motif widely exists in biological systems including GTPase cycles, MAPK
cascades, and glucose mobilization [37]. The initial molecule count for species
vector (S1,52,53,54,55,56) forms the initial state: so = [1,50,0,1,50,0]. The
rare-event property is P_, (019100 S5 = 25). Similar to the single-species model,
this model only produces one shortest trace that alternates between R4 and
Re. Figure 4b shows the probability trend with additional traces. Since these
traces each reach a rare-event state, it enables a probability increase of over 30
orders of magnitude using under 2 minutes of total run time. Notably, the test
with 50,000 traces yielded a much lower probability than the test with 10,000
traces, which demonstrates the importance of the user-specified frequency to
execute extraneous reactions. In the test with 50,000 traces, extraneous reac-
tions were allowed to execute more frequently, resulting in slightly longer traces
with a shorter runtime per trace production. However, they lowered the overall
probability despite the presence of more traces.

Modified yeast polarization model. RAGTIMER is well-suited for mining
rare-event traces for large-state models such as the modified yeast polarization

16 B. Israelsen, L. Taylor, and Z. Zhang

model introduced in Section 4. When simulating this model using the standard
stochastic simulation algorithm (SSA) implemented in the PRISM probabilistic
model checking tool, the average trace length is generally over 4,000 reactions
before reaching a target state, and the total probability for over 500,000 traces
is rounded to 0 due to floating-point precision limitations. That is, SSA alone
generates paths with probabilities much lower than 4.9 x 107324, On the contrary,
RAGTIMER can find a collection of short and generally more probable traces.
Figure 4c shows that with only 10,000 traces that RAGTIMER found within 2
minutes, their cumulative probability was already significant. Given its run time
is not significantly different from pure SSA per generated trace, RAGTIMER is a
more effective and efficient first strategy for rare-event analysis than SSA.

When this model is instead initialized with G = 49, the target state becomes
unreachable. RAGTIMER quickly detected this unreachability and terminated,
while other tools, including modes in the MODEST TOOLSET and SSA in PRISM,
executed indefinitely attempting to simulate traces. When tested on unreachable
variants of the modified yeast polarization and futile cycle models, RAGTIMER
reported unreachability in under 1 second and did not attempt to generate traces.

Table 1: Rare-event simulation results for the three examples using modes.

‘ single species ‘enzymatic futile cycle‘modiﬁed yeast polar.

rare-event probability|3.0631 x 1077 1.7043 x 1077 1.7002 x 10~¢
runtime (seconds) 5.7 127.9 26.9
peak memory (MB) 143 141 144

Comparison to modes rare-event simulation engine. The modes tool was
able to efficiently and accurately compute rare-event probabilities. Accuracy
means the closeness of reported rare-event probabilities between the results from
modes, shown in Table 1, and [19] for the single-species prodcuction-degradation
and enzymatic futile cycle models, and [9] for the modified yeast polarization
model. However, the compositional importance function required for rare-event
simulation poses a major limitation on global variables shared among multiple
components, each representing a reaction in the CRN. While manual modifica-
tions to the model’s importance function can be made to get around this issue,
it requires user intervention and a thorough understanding of the CRN model
and the MODEST language, with the possibility of introducing errors. modes was
also tested on the modified yeast polarization model initialized with G = 49 to
produce an unreachable target. Despite its speed for verification of reachable
models, it ran for 24 hours on 23 CPU threads, performing over 1 million sweeps
of the model without determining the target specification is unreachable.

Efficient Trace Generation for Rare-Event Analysis in CRNs 17

Comparison to probabilistic model checking tools. After bounding all
species’ molecule counts to a reasonably large range of [0,150], we attempted
to verify the modified yeast polarization model using the STORM probabilistic
model checker [13] with the SYLVAN library [8] to allow for parallel construc-
tion of the symbolic state space. Although symbolic state space construction
completed quickly, STORM failed to complete the transient analysis after run-
ning for 30 days. This is due to the overhead in converting symbolic state space
to the sparse matrix representation to perform time-bounded transient analy-
sis. Similar to STORM, PRISM was also unable to complete probabilistic model
checking of this property within a reasonable time bound. However, running the
state-truncation probabilistic model checker STAMINA [32] on the same model
produced a probability bound of [1.64 x 107¢,23.01 x 1079] after two days.

11 Conclusion

This paper presents a scalable and fully automated approach to rapidly enu-
merate a large number of traces guaranteed to reach desirable rare-event states
for a given CRN model. It includes both a layered and service-oriented compo-
sitional modeling method and a dependency graph analysis technique to either
prove unreachability or guide the generation of a variety of the shortest traces.
Together, they automatically construct assumptions and guarantees that enable
compositional testing to produce many desirable traces, which are then simu-
lated to provide the lower probability bound for the rare-event. Efficiency in
both trace generation and rare-event probability computation is demonstrated
in three challenging CRN models. For future work, we will investigate effective
cycle detection method to further improve rare-event trace generation.

Acknowledgment We thank Arnd Hartmanns (U. Twente) for his help with
modes; Chris Winstead (Utah State U.), Chris Myers (U. Colorado Boulder), and
Hao Zheng (U. South Florida) for their feedback. This work was supported by the
National Science Foundation under Grant No. 1856733. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding agencies.

18

B. Israelsen, L. Taylor, and Z. Zhang

References

1.
2.

10.

11.

12.

13.

14.

SBML-to-PRISM translator, http://www.prismmodelchecker.org/sbml/
Adelman, J.L., Grabe, M.: Simulating rare events using a weighted ensemble-based
string method. The Journal of Chemical Physics 138(4), 044105 (2013). https:
//doi.org/10.1063/1.4773892, https://doi.org/10.1063/1.4773892

. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time

markov chains. ACM Trans. Comput. Logic 1(1), 162-170 (Jul 2000)

. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Automated compositional

importance splitting. Science of Computer Programming 174, 90-108
(2019). https://doi.org/https://doi.org/10.1016/j.scico.2019.01.0086,
https://www.sciencedirect.com/science/article/pii/S0167642318301503

. Budde, C.E., Hartmanns, A.: Replicating RESTART with prolonged retrials: An

experimental report. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12652, pp. 373—
380. Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_21, https:
//doi.org/10.1007/978-3-030-72013-1_21

. Chellaboina, V., Bhat, S.P., Haddad, W.M., Bernstein, D.S.: Modeling and analysis

of mass-action kinetics. IEEE Control Systems Magazine 29(4), 60-78 (2009)

. Daigle, B.J.J., Roh, M.K., Gillespie, D.T., Petzold, L.R.: Automated estimation of

rare event probabilities in biochemical systems. J Chem Phys 134(4), 044110 (Jan
2011). https://doi.org/10.1063/1.3522769

. Dijk, T., Pol, J.: Sylvan: Multi-core framework for decision diagrams. Int. J. Softw.

Tools Technol. Transf. 19(6), 675-696 (nov 2017). https://doi.org/10.1007/
510009-016-0433-2, https://doi.org/10.1007/s10009-016-0433-2

. Donovan, R.M., Sedgewick, A.J., Faeder, J.R., Zuckerman, D.M.: Efficient stochas-

tic simulation of chemical kinetics networks using a weighted ensemble of tra-
jectories. The Journal of Chemical Physics 139(11), 115105 (Sep 2013). https:
//doi.org/10.1063/1.4821167

Drawert, B., Lawson, M.J., Petzold, L., Khammash, M.: The diffusive finite state
projection algorithm for efficient simulation of the stochastic reaction-diffusion
master equation. The Journal of Chemical Physics 132(7), 074101 (2010). https:
//doi.org/10.1063/1.3310809, https://doi.org/10.1063/1.3310809
Giannakopoulou, D., Pasareanu, C., Blundell, C.: Assume-guarantee testing for
software components. Software, IET 2, 547 — 562 (01 2009). https://doi.org/
10.1049/iet-sen:20080012

Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment
for quantitative modelling and verification. In: Abraham, E., Havelund, K. (eds.)
TACAS. LNCS, vol. 8413, pp. 593-598. Springer (2014)

Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The prob-
abilistic model checker Storm. International Journal on Software Tools for
Technology Transfer 24(4), 589-610 (Aug 2022). https://doi.org/10.1007/
s10009-021-00633-z

Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of impor-
tance sampling parameters for statistical model checking. In: Proceedings of
the 24th international conference on Computer Aided Verification. pp. 327-342.
CAV’12, Springer-Verlag, Berlin, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31424-7_26, http://dx.doi.org/10.1007/978-3-642-31424-7_26

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

Efficient Trace Generation for Rare-Event Analysis in CRNs 19

Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) Computer Aided Ver-
ification. pp. 576-591. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)
Kahn, H.: Random sampling (monte carlo) techniques in neutron attenuation
problems—I. Nucleonics 6(5), 27; passim (May 1950)

Kahn, H., Marshall, A.W.: Methods of reducing sample size in monte carlo
computations. Journal of the Operations Research Society of America 1(5),
263-278 (1953). https://doi.org/10.1287/opre.1.5.263, https://doi.org/10.
1287/opre.1.5.263

Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
National Bureau of Standards applied mathematics series 12, 27-30 (1951)
Kuwahara, H., Mura, I.: An efficient and exact stochastic simulation method to an-
alyze rare events in biochemical systems. The Journal of Chemical Physics 129(16),
165101 (Oct 2008). https://doi.org/10.1063/1.2987701

Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking, pp. 220—
270. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model check-
ing in systems biology. SIGMETRICS Perform. Eval. Rev. 35(4), 1421 (mar
2008). https://doi.org/10.1145/1364644.1364651, https://doi.org/10.1145/
1364644 .1364651

Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: Proceedings of the 23rd International Conference on Com-
puter Aided Verification. pp. 585-591. CAV’11, Springer-Verlag, Berlin, Heidelberg
(2011)

L’Ecuyer, P., LeGland, F., Lezaud, P., Tuffin, B.: Splitting techniques (Jan 2009)
Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statisti-
cal Model Checking, pp. 478-504. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-319-91908-9_23, https://doi.org/10.1007/
978-3-319-91908-9_23

McMillan, K.: Modular specification and verification of a cache-coherent interface.
In: Proceedings of the 16th Conference on Formal Methods in Computer-Aided
Design. pp. 109-116. FMCAD ’16, FMCAD Inc, Austin, Texas (2016)

McMillan, K.L.: IVy: http://microsoft.github.io/ivy/ (2019), https://github.
com/kenmcmil/ivy

McMillan, K.L., Padon, O.: Ivy: A multi-modal verification tool for distributed
algorithms. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification. pp.
190-202. Springer International Publishing, Cham (2020)

McMillan, K.L., Zuck, L.D.: Compositional testing of internet protocols. In: 2019
IEEE Cybersecurity Development (SecDev). pp. 161-174 (Sep 2019). https://
doi.org/10.1109/SecDev.2019.00031

Myers, C.J.: Engineering Genetic Circuits. Chapman & Hall/CRC Mathematical
and Computational Biology, Chapman & Hall/CRC, 1 edn. (July 2009)
Okamoto, M.: Some inequalities relating to the partial sum of binomial proba-
bilities. Annals of the Institute of Statistical Mathematics 10(1), 29-35 (1959).
https://doi.org/10.1007/BF02883985, https://doi.org/10.1007/BF02883985
Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety
verification by interactive generalization. SIGPLAN Not. 51(6), 614-630 (jun
2016). https://doi.org/10.1145/2980983.2908118, https://doi.org/10.1145/
2980983.2908118

20

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

B. Israelsen, L. Taylor, and Z. Zhang

Roberts, R., Neupane, T., Buecherl, L., Myers, C.J., Zhang, Z.: STAMINA 2.0:
Improving scalability of infinite-state stochastic model checking. In: Finkbeiner,
B., Wies, T. (eds.) Verification, Model Checking, and Abstract Interpretation. pp.
319-331. Springer International Publishing, Cham (2022)

Roh, M., Daigle, B.J.J., Gillespie, D.T., Petzold, L.R.: State-dependent doubly
weighted stochastic simulation algorithm for automatic characterization of stochas-
tic biochemical rare events. In: Journal of Chemical Physics. vol. 135. American
Institute of Physics (2011)

Roh, M., Gillespie, D.T., Petzold, L.R.: State-dependent biasing method for im-
portance sampling in the weighted stochastic simulation algorithm. In: Journal of
Chemical Physics. vol. 133. American Institute of Physics (2010)

Roh, M.K., Daigle, B.J.: Sparse++: improved event-based stochastic parameter
search. BMC Systems Biology 10(1), 109 (2016). https://doi.org/10.1186/
512918-016-0367-z, https://doi.org/10.1186/s12918-016-0367-2
Rosenbluth, M.N., Rosenbluth, A.W.: Monte carlo calculation of the average exten-
sion of molecular chains. The Journal of Chemical Physics 23(2), 356-359 (1955).
https://doi.org/10.1063/1.1741967, https://doi.org/10.1063/1.1741967
Samoilov, M., Plyasunov, S., Arkin, A.P.: Stochastic amplification and signal-
ing in enzymatic futile cycles through noise-induced bistability with oscillations.
Proceedings of the National Academy of Sciences 102(7), 2310-2315 (2005).
https://doi.org/10.1073/pnas.0406841102, https://www.pnas.org/doi/abs/
10.1073/pnas.0406841102

Soloveichik, D., Seelig, G., Winfree, E.: Dna as a universal substrate for chem-
ical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393—
5398 (2010). https://doi.org/10.1073/pnas.0909380107, https://www.pnas.
org/doi/abs/10.1073/pnas.0909380107

Villén-Altamirano, J.: Restart vs splitting: A comparative study. Performance
Evaluation 121-122, 38-47 (2018). https://doi.org/https://doi.org/10.1016/
j.peva.2018.02.002, https://www.sciencedirect.com/science/article/pii/
S0166531616300839

Villén-Altamirano, J.: An improved variant of the rare event simulation method
restart using prolonged retrials. Operations Research Perspectives 6, 1-
9 (2019). https://doi.org/10.1016/j.0rp.2019.100108, http://hdl.handle.
net/10419/246387

Villén-Altamirano, M., Villén-Altamirano, J.: The Rare Event Simulation Method
RESTART: Efficiency Analysis and Guidelines for Its Application, pp. 509-547.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-02742-0_22, http://dx.doi.org/10.1007/978-3-642-02742-0_22
Villen-Altamirano, M., Villen-Altamirano, J., et al.: Restart: a method for acceler-
ating rare event simulations. Queueing, Performance and Control in ATM (ITC-13)
pp. 71-76 (1991)

Wald, A.: Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics 16(2), 117-186 (1945), http://wuw. jstor.org/stable/2235829
Zhang, B.W., Jasnow, D., Zuckerman, D.M.: Efficient and verified simulation
of a path ensemble for conformational change in a united-residue model of
calmodulin. Proceedings of the National Academy of Sciences 104(46), 18043—
18048 (2007). https://doi.org/10.1073/pnas.0706349104, https://www.pnas.
org/doi/abs/10.1073/pnas.0706349104

Zuckerman, D.M., Chong, L.T.: Weighted ensemble simulation: Review of method-
ology, applications, and software. Annu Rev Biophys 46, 43-57 (May 2017).
https://doi.org/10.1146/annurev-biophys-070816-033834

	Efficient Trace Generation for Rare-Event Analysis in Chemical Reaction Networks

