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MINI-BATCH RISK FORMS*
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Abstract. Risk forms are real functionals of two arguments: a bounded measurable function
on a Polish space and a probability measure on that space. They are convenient mathematical
structures adapting the coherent risk measures to the situation of a variable reference probability
measure. We introduce a new class of risk forms called mini-batch forms. We construct them by
using a random empirical probability measure as the second argument and by post-composition
with the expected value operator. We prove that coherent and law invariant risk forms generate
mini-batch risk forms which are well defined on the space of integrable random variables, and we
derive their dual representation. We demonstrate how unbiased stochastic subgradients of such
risk forms can be constructed. Then, we consider pre-compositions of mini-batch risk forms with
nonsmooth and nonconvex functions, which are differentiable in a generalized way, and we derive
generalized subgradients and unbiased stochastic subgradients of such compositions. Finally, we
study the dependence of risk forms and mini-batch risk forms on perturbation of the probability
measure and establish quantitative stability in terms of optimal transport metrics. We obtain finite-
sample expected error estimates for mini-batch risk forms involving functions on a finite-dimensional
space.

Key words. risk measures, empirical estimates, dual representation, stochastic subgradients,
Wasserstein metric, error bounds
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1. Introduction. The theory of risk measures is one of the main directions
of research in stochastic optimization, with many applications, beyond the original
motivation in finance. The main setting is the following: a probability space (\Omega ,F , P )
is fixed and a risk measure is defined as a functional on a certain vector space of
real-valued measurable functions on \Omega (usually, Lp(\Omega ,F , P ) with p \in [1,\infty ]). The
functional is required to satisfy several axioms, which we recall in the next section.
The initial contributions were [21], [28], [1], [24], and [14]; we refer the reader to
[15], [39], [32], and [40] for detailed presentation, applications, and further references.
However, in many problems of risk-averse optimization and control, such as controlled
Markov systems [36] or partially observable systems [13], we deal with variable and
decision-dependent probability measures. This makes the extant risk measure theory
insufficient.

In [9], we introduced risk forms : real-valued functionals \varrho [Z,P ] of two arguments,
a bounded measurable function Z on a Polish space \frakD , and a probability measure
P on the Borel \sigma -field B(\frakD ). Under less restrictive assumptions than in the fixed
probability measure case, we proved a dual representation and a generalized Kusuoka
representation of risk forms, which remain valid for all probability measures on B(\frakD ).
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616 DARINKA DENTCHEVA AND ANDRZEJ RUSZCZY\'NSKI

Our goal is to advance the theory of risk forms by considering a random empirical
probability measure as their second argument. We interpret \frakD as the ``data space""
and evaluate risk on a small sample of the data, frequently referred to as a mini-batch
in machine learning. The expected value of this risk evaluation is a new object, which
we call the mini-batch risk form. We formally define these functionals in section 2.
They inherit many properties of the ``mother"" risk forms, but they have the remarkable
feature that they are well defined on all integrable random variables, not only bounded
functions. In section 3 we develop an explicit dual representation of coherent and
law invariant mini-batch risk forms. We use it in section 4 to show how unbiased
stochastic subgradients of mini-batch risk forms can be constructed by simulation.
This is in contrast to earlier works, such as [17, 18, 38], where major effort was
needed to overcome the inherent bias in the estimation of stochastic subgradients
of risk measures. In section 5, we analyze the pre-composition of coherent and law
invariant mini-batch risk forms with possibly nonsmooth and nonconvex functions
from a very broad class of functions that are differentiable in a generalized sense
[27]. This class of functions contains all semismooth functions and covers virtually
all structures arising in machine learning applications; we refer the reader to [18, 37]
for an extensive discussion of this issue. We show, under quite general assumptions,
that such a composition is differentiable in a generalized way itself, and we show a
straightforward way to construct its stochastic subgradients. This opens the door
for many applications of mini-batch risk forms in risk-averse machine learning [22].
Finally, in section 6, we study the continuity of risk forms and mini-batch risk forms
with respect to the probability measure, by using transportation metrics. This allows
us to develop finite-sample estimates of the difference between the mini-batch risk
forms and their ``mother"" forms for the case of the Average Value at Risk, Kusuoka
forms, and mean-semideviation forms of arbitrary orders. These results complement
the asymptotic properties established in [6, 7, 35, 40].

2. Definition and elementary properties. Consider a Polish space \frakD and its
Borel \sigma -algebra B(\frakD ). Let P(\frakD ) be the set of probability measures on B(\frakD ). The
space of all real-valued bounded measurable functions on \frakD is denoted by \BbbB (\frakD ). We
use D to denote an element of \frakD and \delta D to denote the Dirac measure concentrated
at D. The symbol 1 stands for the function in \BbbB (\frakD ) that is constantly equal to 1.

A probabilistic model is a pair [Z,P ]\in \BbbB (\frakD )\times P(\frakD ). For two probabilistic models
[Z,P ] and [W,Q] the notation [Z,P ]\sim [W,Q] means that P\{ Z \leq \eta \} = Q\{ W \leq \eta \} for
all \eta \in \BbbR (both models have the same distribution function). The inequality Z \leq V
between elements of \BbbB (\frakD ) is always understood pointwise.

In [9], we proposed an approach to risk evaluation of a family of probabilistic
models. In the definition below, the first four properties are the same as for a coherent
measure of risk, with the second argument of the risk form fixed. The last two
properties are specific for our model with two arguments.

Definition 2.1. A measurable functional \varrho : \BbbB (\frakD )\times P(\frakD )\rightarrow \BbbR is called a risk
form.

(i) It is convex if \varrho [\lambda Z +(1 - \lambda )W,P ]\leq \lambda \varrho [Z,P ] + (1 - \lambda )\varrho [W,P ] for all Z,W \in 
\BbbB (\frakD ), all \lambda \in [0,1], and all P \in P(\frakD ).

(ii) It is monotonic if Z \leq W implies \varrho [Z,P ]\leq \varrho [W,P ] for all P \in P(\frakD ).
(iii) It is translation equivariant if for all Z \in \BbbB (\frakD ), all a\in \BbbR , and all P \in P(\frakD ),

\varrho [a1+Z,P ] = a+ \varrho [Z,P ].
(iv) It is positively homogeneous if for all Z \in \BbbB (\frakD ), all \beta \in \BbbR +, and all P \in 

P(\frakD ), \varrho [\beta Z,P ] = \beta \varrho [Z,P ].
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MINI-BATCH RISK FORMS 617

(v) It is law invariant if [Z,P ]\sim [W,Q] implies that \varrho [Z,P ] = \varrho [W,Q].
(vi) It has the support property if \varrho [1supp(P )Z,P ] = \varrho [Z,P ] for all (Z,P )\in \BbbB (\frakD )\times 

P(\frakD ).

We say that a risk form is coherent if it satisfies the properties (i)--(iv) above.
A simple example of a risk form is the expected value, which is the well-understood

bilinear form

(2.1) \BbbE [Z,P ] =

\int 

\frakD 

Z(v) P (dv).

In our analysis, we are interested mainly in risk forms depending on each of the
arguments in a nonlinear way. An example is the mean-semideviation model or order
p\in [1,\infty ) (see [28, 29]):

msdp[Z,P ] =

\int 

\frakD 

Z(u) P (du) +\varkappa 

\Biggl( 

\int 

\frakD 

\biggl[ 

Z(u) - 

\int 

\frakD 

Z(v) P (dv)

\biggr] p

+

P (du)

\Biggr) 1/p

, \varkappa \in [0,1].

(2.2)

Yet another example, rarely used in the risk measure theory, due to its conservative
nature, but very relevant for us, is the worst-case risk form:

(2.3) es[Z,P ] = inf \{ b\in \BbbR : P [v :Z(v)\leq b] = 1\} .

All three examples above are coherent and law invariant risk forms having the support
property.

Our concept of law invariance is broader than that for the measures of risk,
because it allows the probability measure to vary. If the risk form is law invariant,
then it has the support property, because [Z,P ]\sim [1supp(P )Z,P ].

We now introduce the main object of our study: a mini-batch risk form. Suppose
\varrho : \BbbB (\frakD ) \times P(\frakD ) \rightarrow \BbbR is a risk form and P \in P(\frakD ). If we draw a sample D1:N =
(D1, . . . ,DN ), with N independent random elements distributed according to P in \frakD ,
we obtain a random empirical measure

P (N) =
1

N

N
\sum 

i=1

\delta Di .

It is a P(\frakD )-valued random variable on the product space (\frakD N ,B(\frakD N ), PN ). Using
it as the second argument of the risk form \varrho , we obtain a random risk form \varrho [Z,P (N)].
For fixed Z and P , it is a random variable on (\frakD N ,B(\frakD N ), PN ). This leads to the
following definition.

Definition 2.2. For a risk form \varrho :\BbbB (\frakD )\times P(\frakD )\rightarrow \BbbR , the corresponding mini-
batch risk form \varrho (N) :\BbbB (\frakD )\times P(\frakD )\rightarrow \BbbR is defined as

(2.4) \varrho (N)[Z,P ] =\BbbE D1:N\sim PN

\Bigl\{ 

\varrho [Z,P (N)]
\Bigr\} 

.

The following lemma summarizes the basic properties of a mini-batch risk form.

Lemma 2.3. If the risk form \varrho [ \cdot , \cdot ] is convex (monotonic, translation equivariant,
positively homogeneous, or has the support property), then the mini-batch risk form
\varrho (N)[ \cdot , \cdot ] has the corresponding properties as well. If the risk form \varrho [ \cdot , \cdot ] is law
invariant, then the mini-batch risk form \varrho (N)[ \cdot , \cdot ] is law invariant as well.
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618 DARINKA DENTCHEVA AND ANDRZEJ RUSZCZY\'NSKI

Proof. The inheritance by \varrho (N)[ \cdot , \cdot ] of convexity, monotonicity, translation equi-
variance, positively homogeneity, and the support property from \varrho [ \cdot , \cdot ] is evident. It
remains to prove the preservation of law invariance. First we establish that \varrho [Z,P (N)]
is a function of the (unordered) set of realizations of Z under P (N). Consider two
discrete measures:

P (N) =
1

N

N
\sum 

i=1

\delta Di and Q(N) =
1

N

N
\sum 

i=1

\delta wi .

If the sets of the realizations of two functions, Z(\cdot ) and U(\cdot ), under P (N) and Q(N),
respectively, are identical,

\bigl\{ 

Z(D1), . . . ,Z(DN )
\bigr\} 

=
\bigl\{ 

U(w1), . . . ,U(wN )
\bigr\} 

,

then the distribution of Z under P (N) is the same as the distribution of U under
Q(N). By the law invariance,

\varrho 
\Bigl[ 

Z,P (N)
\Bigr] 

= \varrho 
\Bigl[ 

U,Q(N)
\Bigr] 

.

This means that \varrho [Z,P (N)] is only a function of the set \{ Z(D1), . . . ,Z(DN )\} . Thus,
a measurable function \Psi :\BbbR N \rightarrow \BbbR exists, such that

\varrho [Z,P (N)] = \Psi 
\bigl( 

Z(D1), . . . ,Z(DN )
\bigr) 

,(2.5)

and for every permutation \pi of \{ 1, . . . ,N\} ,

\Psi 
\bigl( 

Z(D1), . . . ,Z(DN )
\bigr) 

= \Psi 
\Bigl( 

Z(D\pi (1)), . . . ,Z(D\pi (N))
\Bigr) 

.(2.6)

Now, if [Z,P ]\sim [U,Q], then for D1:N \sim PN and C1:N \sim QN , the vectors (Z(D1), . . . ,
Z(DN )) and (U(C1), . . . ,U(CN )) have the same distribution. Therefore,

\varrho (N)[Z,P ] =\BbbE D1:N\sim PN

\bigl\{ 

\Psi 
\bigl( 

Z(D1), . . . ,Z(DN )
\bigr) \bigr\} 

=\BbbE C1:N\sim QN

\bigl\{ 

\Psi 
\bigl( 

U(C1), . . . ,U(CN )
\bigr) \bigr\} 

= \varrho (N)[U,Q].

Let us consider the mini-batch risk form associated with (2.3):

(2.7) es(N)[Z,P ] =\BbbE D1:N\sim PN

\biggl[ 

max
1\leq i\leq N

Z(Di)

\biggr] 

.

In the special case of N = 2 it has the mean-risk structure,

es(2)[Z,P ] =\BbbE (D1,D2)\sim P 2

\bigl[ 

max
\bigl( 

Z(D1),Z(D2)
\bigr) \bigr] 

=\BbbE (D1,D2)\sim P 2

\bigl[ 

Z(D1) +max
\bigl( 

0,Z(D2) - Z(D1)
\bigr) \bigr] 

=\BbbE [Z] + \Gamma [Z],

with the Gini index [30, 43]

\Gamma [Z] =
1

2
\BbbE (D1,D2)\sim P 2

\bigl[ \bigm| 

\bigm| Z(D1) - Z(D2)
\bigm| 

\bigm| 

\bigr] 

.

For N \geq 2, (2.7) is a generalized mean-Gini model, with increasing degree of risk
aversion. Its explicit form allows for more detailed analysis.
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MINI-BATCH RISK FORMS 619

Let us recall that the Average Value at Risk is defined as

(2.8) AVaR\alpha [Z,P ] =
1

\alpha 

\int 1

1 - \alpha 

F - 1
Z (t) dt, \alpha \in (0,1],

with F - 1
Z (\cdot ) denoting the quantile function of Z under P : F - 1

Z (t) = inf\{ \tau : P [v :
Z(v)\leq \tau ]\geq t\} . A spectral risk form has the representation

\varrho [Z,P ] =

\int 1

0

AVaR\alpha [Z,P ]\lambda (\alpha ) d\alpha ,

with the spectral density \lambda \geq 0 satisfying
\int 1

0
\lambda (\alpha )d\alpha = 1.

Theorem 2.4. The mini-batch risk form (2.7) is a spectral measure of risk with
the spectral density N(N  - 1)\alpha (1 - \alpha )N - 2, \alpha \in [0,1]. Furthermore, for a fixed P , the
risk form (2.7) is well defined and finite for all Z \in L1(\frakD ,B(\frakD ), P ).

Proof. The distribution function of the sample maximum is

PN
\Bigl\{ 

es(N)[Z,P ]\leq v
\Bigr\} 

= (P [Z \leq v])
N
, v \in \BbbR .

Therefore, the mini-batch risk form (2.7) can be rewritten by changing the variables:

es(N)[Z,P ] =

\int \infty 

 - \infty 

v d
\Bigl( 

(P [Z \leq v])
N
\Bigr) 

=

\int 1

0

F - 1
Z (\alpha ) d (\alpha N ).

The last expression is a dual (rank-dependent) utility functional [8, 33, 42]

(2.9) es(N)[Z,P ] =

\int 1

0

F - 1
Z (\alpha ) dw(\alpha ),

with the rank-dependent utility function w(\alpha ) = \alpha N .
For a fixed P , the functional (2.7) as a function of Z is a coherent measure of

risk. The expression (2.9) allows for the derivation of its Kusuoka representation.
Changing the order of integration, we obtain

es(N)[Z,P ] =N

\int 1

0

F - 1
Z (\alpha )\alpha N - 1 d\alpha =N(N  - 1)

\int 1

0

F - 1
Z (\alpha )

\int \alpha 

0

\beta N - 2 d\beta d\alpha 

=N(N  - 1)

\int 1

0

\beta N - 2

\int 1

\beta 

F - 1
Z (\alpha ) d\alpha d\beta 

=N(N  - 1)

\int 1

0

(1 - \beta )\beta N - 2AVaR1 - \beta [Z] d\beta .

(2.10)

It is straightforward to check that N(N  - 1)
\int 1

0
(1 - \beta )\beta N - 2 d\beta = 1, as required from

the spectral density.

Example 2.5. Consider the mini-batch mean-semideviation risk form derived from
(2.2) with p= 1:
(2.11)

msd
(N)
1 [Z,P ] =\BbbE D1:N\sim PN

\left\{ 

 

 

1

N

N
\sum 

j=1

Z(Dj) +
\varkappa 

N

N
\sum 

j=1

\Biggl( 

Z(Dj) - 
1

N

N
\sum 

k=1

Z(Dk)

\Biggr) 

+

\right\} 

 

 

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.D
o
w

n
lo

ad
ed

 0
6
/0

2
/2

3
 t

o
 1

9
8
.1

3
4
.9

8
.5

0
 b

y
 A

n
d
rz

ej
 R

u
sz

cz
y
n
sk

i 
(r

u
sz

@
b
u
si

n
es

s.
ru

tg
er

s.
ed

u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



620 DARINKA DENTCHEVA AND ANDRZEJ RUSZCZY\'NSKI

In the special case of N = 2 it has a mean-risk form similar to the previous example:

msd
(2)
1 [Z,P ] =\BbbE [Z] +

\varkappa 

4
\BbbE (D1,D2)\sim P 2

\bigl[ \bigm| 

\bigm| Z(D1) - Z(D2)
\bigm| 

\bigm| 

\bigr] 

=\BbbE [Z] +
\varkappa 

2
\Gamma [Z].

Again, for a fixed P , the functional (2.11) as a function of Z is a coherent measure of
risk which is well-defined and finite on L1(\frakD ,B(\frakD ), P ).

3. Dual representation and extension to integrable random variables.

Suppose the risk form \varrho :\BbbB (\frakD )\times P(\frakD )\rightarrow \BbbR is coherent and law invariant. Then, for
a fixed probability measure P , the function \varrho (N)[ \cdot , P ] is a coherent measure of risk
on the space of bounded functions \BbbB (\frakD ). We plan to derive its dual representation.
In general, such a representation would have to involve elements from the space of
finitely additive measures ba(B(\frakD )), which is the topological dual of \BbbB (\frakD ). In [9,
Thm. 1] we have shown, however, that the dual representation of coherent and law
invariant risk forms involves only countably additive measures. Now, we advance the
analysis for the mini-batch risk forms, and we derive a more explicit representation
in terms of measures which are absolutely continuous with respect to P .

Owing to (2.5), the random risk form \varrho [ \cdot , P (N)] is a function \Psi (\cdot ) of the vector
(Z(D1), . . . ,Z(DN )). Since \varrho [ \cdot , P (N)] is coherent and law invariant, the function \Psi :
\BbbR 

N \rightarrow \BbbR is convex, nondecreasing, and positively homogeneous and has the translation
property: \Psi (z1 + a, . . . , zN + a) = \Psi (z1, . . . , zN ) + a. Due to (2.6), it is invariant with
respect to permutations of the arguments. Applying Fenchel duality to \Psi (\cdot ) and
reasoning as for the dual representation of a coherent measure of risk [39, Thm. 2.2],
we obtain that a closed convex set

(3.1) A
(N) \subset S(N) =

\left\{ 

 

 

\xi \in \BbbR 
N
+ :

N
\sum 

j=1

\xi j = 1

\right\} 

 

 

exists, such that for all Z \in \BbbB (\frakD )

(3.2) \varrho [Z,P (N)] = max
\xi \in A (N)

N
\sum 

j=1

\xi jZ(D
j).

The set A (N) depends on N , but not on the specific sample D1:N , and has the
property that for every \xi \in A (N) and for every permutation \pi of \{ 1, . . . ,N\} , the
vector(\xi \pi (1), . . . , \xi \pi (N)) is an element of A (N) as well. Therefore,

(3.3) \varrho (N)[Z,P ] =\BbbE D1:N\sim PN

\left\{ 

 

 

max
\xi \in A (N)

N
\sum 

j=1

\xi jZ(D
j)

\right\} 

 

 

.

We now transform formula (3.3) into the standard dual representation of a coherent
measure of risk. Consider the cylindrical multifunction H :\frakD N

\rightrightarrows S(N) defined as

H(D1:N ) =A
(N) for all D1:N \in \frakD 

N .

For each D1:N the maximizer in the braces in (3.3) exists; with no loss of generality we
may assume that it is a measurable function of the sample. This follows from Berge's
theorem about the measurability of the optimal value (see, e.g., [2, Th. 1.4.16]),
and from the existence of measurable selectors [23]. We can thus interchange the
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maximization and expectation operators and rewrite the formula (3.3) as follows:

(3.4) \varrho (N)[Z,P ] = max
\xi (\cdot )\lessdot H

\BbbE D1:N\sim PN

\left\{ 

 

 

N
\sum 

j=1

\xi j(D
1:N )Z(Dj)

\right\} 

 

 

.

Here, the notation \xi (\cdot )\lessdot H means that \xi (\cdot ) is a measurable selector of H(\cdot ). The said
maximizer in the braces in (3.3), as a function of D1:N , constitutes a maximizer in
(3.4).

Define linear continuous operators\Pi 
(N)
j :L\infty (\frakD N ,B(\frakD N ), PN )\rightarrow L\infty (\frakD ,B(\frakD ),

P ), j = 1, . . . ,N , as follows:

(3.5)
\Bigl[ 

\Pi 
(N)
j (\xi )

\Bigr] 

(v) =\BbbE D1:N\sim PN

\bigl[ 

\xi j(D
1:N )

\bigm| 

\bigm| Dj = v
\bigr] 

, v \in \frakD .

Using the fact that all Dj are distributed according to P , we obtain

\varrho (N)[Z,P ] = max
\xi (\cdot )\lessdot H

\BbbE D1:N\sim PN

\left\{ 

 

 

N
\sum 

j=1

\Bigl[ 

\Pi 
(N)
j (\xi )

\Bigr] 

(Dj)Z(Dj)

\right\} 

 

 

= max
\xi (\cdot )\lessdot H

\int 

\frakD 

N
\sum 

j=1

\Bigl[ 

\Pi 
(N)
j (\xi )

\Bigr] 

(v)Z(v) P (dv).(3.6)

In this way, we established the following result.

Theorem 3.1. If the risk form \varrho : \BbbB (\frakD ) \times P(\frakD ) \rightarrow \BbbR is coherent and law
invariant, then, for every N \geq 1, the corresponding mini-batch risk form has the
following dual representation:

(3.7) \varrho (N)[Z,P ] = sup
Q\in \partial \varrho (N)[0,P ]

\int 

\frakD 

Z(v)Q(dv),

where

(3.8) \partial \varrho (N)[0, P ] =

\left\{ 

 

 

Q\in P(\frakD ) : \exists (\xi (\cdot )\lessdot H)
dQ

dP
=

N
\sum 

j=1

\Bigl[ 

\Pi 
(N)
j (\xi )

\Bigr] 

\right\} 

 

 

,

with the operators \Pi 
(N)
j defined as in (3.5).

We may check the essential properties of \partial \varrho (N)[0, P ]. Since A (N) is convex, then
the set of measurable selectors \xi (\cdot ) \lessdot H is convex as well. As the mapping \xi \mapsto \rightarrow 
\sum N

j=1\Pi 
(N)
j (\xi ) is linear, the resulting set of densities is indeed convex. Furthermore,

for every measure Q in the set (3.8), using (3.5) and (3.1), we obtain

Q(\frakD ) =

N
\sum 

j=1

\BbbE D1:N\sim PN [\Pi 
(N)
j (\xi )] =

N
\sum 

j=1

\BbbE D1:N\sim PN [\xi j ] =\BbbE D1:N\sim PN

\left[ 

 

N
\sum 

j=1

\xi j

\right] 

 = 1.

Nonnegativity is evident by construction, and thus indeed Q\in P(\frakD ), Q\ll P .
We conclude that for a fixed probability measure P , our mini-batch risk form

\varrho (N)[ \cdot , P ], although originally defined on the set of bounded functions, has a dual
representation in terms of countably additive measures, without any singular compo-
nents. This is due to the involvement of the expectation over a finite sample, which
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622 DARINKA DENTCHEVA AND ANDRZEJ RUSZCZY\'NSKI

``averages out"" the singularities (this can be seen best on the form (2.7)). All probabil-
ity measures in the dual representation are absolutely continuous with respect to the
base measure P . Their densities are bounded by N , because all [\Pi 

(N)
j (\xi )](\cdot ) \in [0,1],

due to (3.1). Therefore, for a fixed probability measure P , we can consider the fol-
lowing mini-batch risk measure r(N) :L1(\frakD ,B(\frakD ), P )\rightarrow \BbbR :

(3.9) r(N)[Z] = \varrho (N)[Z,P ], Z \in L1(\frakD ,B(\frakD ), P ).

Corollary 3.2. If the risk form \varrho : \BbbB (\frakD ) \times P(\frakD ) \rightarrow \BbbR is coherent and law
invariant, then for every N \geq 1 the functional (3.9) is a coherent measure of risk on
the space L1(\frakD ,B(\frakD ), P ), and its subdifferential is given by the equation

(3.10) \partial r(N)[Z] =

\left\{ 

 

 

\zeta \in L\infty (\frakD ,B(\frakD ), P ) : \exists (\^\xi (\cdot )\lessdot \^H) \zeta =

N
\sum 

j=1

\Pi 
(N)
j (\^\xi )

\right\} 

 

 

,

where the multifunction \^H :\frakD N
\rightrightarrows S(N) is defined as

\^H(D1:N ) =Arg max
\xi \in A (N)

N
\sum 

j=1

\xi jZ(D
j), D1:N \in \frakD 

N .

Example 3.3. Consider the mini-batch max risk form (2.7) of Example 2.4:

(3.11) r(N)[Z] =\BbbE D1:N\sim PN

\biggl[ 

max
1\leq i\leq N

Z(Di)

\biggr] 

;

the measure P is fixed here. We have A (N) = S (N) in this case, and the formula
(3.10) applies directly.

An alternative way to derive the dual representation in this case follows from
the Kusuoka representation. Formula (2.10) and Strassen's theorem imply that every
subgradient of r(N)[0] has density of the form

(3.12) \zeta (v) =N(N  - 1)

\int 1

0

\alpha (1 - \alpha )N - 2\eta (\alpha ,v) d\alpha , v \in \frakD ,

where the function \eta : (0,1]\times \frakD \rightarrow \BbbR + satisfies the conditions

0\leq \eta (\alpha , \cdot )\leq 
1

\alpha 
, \alpha \in (0,1],

\int 

\frakD 

\eta (\alpha ,v) P (dv) = 1, \alpha \in (0,1],

which express the requirement that \eta (\alpha , \cdot ) \in \partial AVaR\alpha [0]. The collection of functions
(3.12) is identical to (3.10) at Z = 0 with A (N) =S (N).

4. Unbiased stochastic subgradients. Suppose we have a coherent and law
invariant risk form \varrho : \BbbB (\frakD ) \times P(\frakD ) \rightarrow \BbbR . For bounded measurable functions Z :
\frakD \rightarrow \BbbR we can define the mini-batch risk form \varrho (N)[Z,P ] as in (2.4). As discussed in
section 3, when P is fixed and we view \varrho (N)[ \cdot , P ] as a function of its first argument, it is
well defined on the space of integrable random variables L1(\frakD ,B(\frakD ), P ). Particularly
relevant for our purposes is formula (3.3). The set A (N) is a closed convex subset of
the simplex (3.1). Explicit representations of the set A (N) for some popular measures
of risk are readily available.
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MINI-BATCH RISK FORMS 623

For a sample D1:N = (D1, . . . ,DN ) and a bounded measurable function Z(\cdot ), we
construct a random probability measure \mu (Z;D1:N ) in the following way. We solve
the maximization problem inside (3.3), obtaining a vector \^\xi (Z;D1:N ). Then we set

(4.1) \mu (Z;D1:N ) =

N
\sum 

j=1

\^\xi j(Z;D
1:N ) \delta Dj .

For any W \in \BbbB (\frakD ), the following inequality holds by construction:

max
\xi \in A (N)

N
\sum 

j=1

\xi jW (Dj)\geq 

N
\sum 

j=1

\^\xi j(Z;D
1:N )Z(Dj) +

N
\sum 

j=1

\^\xi j(Z;D
1:N )

\bigl( 

W (Dj) - Z(Dj)
\bigr) 

=
N
\sum 

j=1

\^\xi j(Z;D
1:N )Z(Dj) +

\int 

\frakD 

(W (v) - Z(v))
\bigl[ 

\mu (Z;D1:N )
\bigr] 

(dv).

Taking the expected value of both sides with respect to the sample D1:N , we conclude
that

(4.2) \varrho (N)[W,P ]\geq \varrho (N)[Z,P ] +

\int 

\frakD 

(W (v) - Z(v)) [\=\mu (Z)] (dv),

where

\=\mu (Z) =\BbbE D1:N\sim PN

\bigl[ 

\mu (Z;D1:N )
\bigr] 

.

The expected value is understood in the weak\ast sense: for every bounded measurable
function f :\frakD \rightarrow \BbbR ,

(4.3) \BbbE D1:N\sim PN

\biggl[ 
\int 

f(v)
\bigl[ 

\mu (Z;D1:N )
\bigr] 

(dv)

\biggr] 

=

\int 

f(v) [\=\mu (Z)] (dv).

It follows from (4.2) that the probability measure \=\mu (Z) is a subgradient of \varrho (N)[ \cdot , P ] at
Z, and the random measure \mu (Z;D1:N ) can be interpreted as an unbiased stochastic
subgradient at Z.

Using (4.3), for any bounded measurable function W (\cdot ) we obtain

\int 

\frakD 

(W (v) - Z(v)) [\=\mu (Z)] (dv) =\BbbE D1:N\sim PN

\biggl[ 
\int 

\frakD 

(W (v) - Z(v))
\bigl[ 

\mu (Z;D1:N )
\bigr] 

(dv)

\biggr] 

=\BbbE D1:N\sim PN

\left[ 

 

N
\sum 

j=1

\^\xi j(Z;D
1:N )

\bigl( 

W (Dj) - Z(Dj)
\bigr) 

\right] 

 .

(4.4)

As in (3.5) we define
\Bigl[ 

\Pi 
(N)
j (\^\xi )

\Bigr] 

(v) =\BbbE 

\Bigl[ 

\^\xi j(Z;D
1:N )

\bigm| 

\bigm| Dj = v
\Bigr] 

, j = 1, . . . ,N.

Using the fact that all Dj are distributed according to P , we obtain from (4.2) and
(4.4) the inequality

\varrho (N)[W,P ] - \varrho (N)[Z,P ]\geq \BbbE D1:N\sim PN

\left\{ 

 

 

N
\sum 

j=1

\Bigl[ 

\Pi 
(N)
j (\^\xi )

\Bigr] 

(Dj)
\bigl( 

W (Dj) - Z(Dj)
\bigr) 

\right\} 

 

 

=

\int 

\frakD 

N
\sum 

j=1

\Bigl[ 

\Pi 
(N)
j (\^\xi )

\Bigr] 

(v) (W (v) - Z(v)) P (dv).
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624 DARINKA DENTCHEVA AND ANDRZEJ RUSZCZY\'NSKI

This means that the subgradient \=\mu (Z) is absolutely continuous with respect to P ,
with the density

\zeta =

N
\sum 

j=1

\Pi 
(N)
j (\^\xi ).

If we extend the domain of \varrho (N)[ \cdot , P ] to L1(\frakD ,B(\frakD ), P ), we get \zeta \in \partial \varrho (N)[Z,P ].
We shall calculate unbiased stochastic subgradients of the mini-batch risk forms

defined in Examples 2.4 and 2.5.

Example 4.1. Consider the mini-batch risk form (2.7). For a function Z(\cdot ) and a
sample D1:N , we find j\ast (Z;D1:N ) such that

Z(Dj\ast (Z;D1:N )) = max
1\leq j\leq N

Z(Dj).

Then it follows from (4.1) that the random measure \mu (Z;D1:N ) = \delta Dj\ast (Z;D1:N ) is a
stochastic subgradient of es(N)[ \cdot , P ] at Z. Its weak\ast expected value has the density
in (3.10).

Example 4.2. For the mini-batch risk form (2.11), given a function Z and a sample
D1:N , we can find the vector \^\xi (Z;D1:N ) by calculating

\lambda k =

\Biggl\{ 

\varkappa 

N if Z(Dk)\geq 1
N

\sum N
j=1Z(D

j),

0 otherwise,
k= 1, . . . ,N,

and setting \^\xi k(Z;D
1:N ) = 1

N +\lambda k  - 
1
N

\sum N
j=1 \lambda j , k= 1, . . . ,N . Then the formula (4.1)

provides an unbiased stochastic subgradient of msd
(N)
1 [ \cdot , P ] at Z.

Stochastic subgradients of mini-batch risk forms are random probability measures.
However, they rarely occur in isolation; rather, they occur in compositions that we
discuss in the next section.

5. Compositions with nonsmooth and nonconvex functions. In applica-
tions, we usually deal with compositions of risk measures with some random functions
of our decision variables. A typical situation is the following: we have a ``loss func-
tion"" \ell :\BbbR n\times \frakD \rightarrow \BbbR and we consider the operator \Kappa :\BbbR n \rightarrow L1(\frakD ,B(\frakD ), P ), defined
as

[\Kappa (x)] (v) = \ell (x, v), v \in \frakD .

Then, for a risk measure r : L1(\frakD ,B(\frakD ), P ) \rightarrow \BbbR , we formulate the optimization
problem

(5.1) min
x\in X

r[\Kappa (x)],

with some feasible set X \subset \BbbR 
n. Of course, additional conditions (to be discussed in

due course) are needed to make the composition F = r \circ \Kappa well defined. Furthermore,
in many situations, such as adversarial machine learning models [18], or multistage
stochastic programming [10], the loss function \ell (x,D) is neither smooth nor convex
with respect to x. This creates theoretical challenges in the analysis of the composition
F = r \circ \Kappa and in the construction of solution methods. The extant approaches are
limited to specially structured risk measures, such as the semideviations [17, 18] or
the Average Value at Risk [20]. Our intention is to show that when we use the risk
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MINI-BATCH RISK FORMS 625

measure r(N)[ \cdot ] = \varrho (N)[ \cdot , P ] derived from a mini-batch risk form, we can analyze and
solve problems of form (5.1) for a very general class of nonsmooth and nonconvex loss
functions.

In our analysis, we focus on the broad subclass of locally Lipschitz functions
introduced in [27] and called ``differentiable in a generalized sense"" there. Here, we
call them ``Norkin differentiable"" for brevity.

Definition 5.1. A function f :\BbbR n \rightarrow \BbbR is Norkin differentiable at a point x\in \BbbR 
n

if an open set U \subset \BbbR 
n containing x, and a nonempty, convex, compact valued, and

upper semicontinuous multifunction \^\partial f : U \rightrightarrows \BbbR 
n exist, such that for all y \in U and

all g \in \^\partial f(y) the following equation is true:

f(y) = f(x) + \langle g, y - x\rangle + o(x, y, g),

with

lim
y\rightarrow x

sup
g\in \^\partial f(y)

o(x, y, g)

\| y - x\| 
= 0.

The set \^\partial f(y) is the Norkin subdifferential of f at y. If a function is Norkin differen-
tiable at every x\in \BbbR 

n with the same subdifferential mapping \^\partial f :\BbbR n
\rightrightarrows \BbbR 

n, we call it
Norkin differentiable. A vector function f : \BbbR n \rightarrow \BbbR 

m is Norkin differentiable if each
of its component functions, fi :\BbbR 

n \rightarrow \BbbR , i= 1, . . . ,m, has this property.

The class of such functions is contained in the set of locally Lipschitz functions
and contains all subdifferentially regular functions [5], Whitney stratifiable Lipschitz
functions [12], semismooth functions [25], and their compositions. If a function is
Norkin differentiable and has directional derivatives at x in every direction, then it
is semismooth at x. The Clarke subdifferential \partial f(x) is an inclusion-minimal Norkin
subdifferential, but the Norkin subdifferential mapping \^\partial f(\cdot ) is not uniquely defined
in Definition 5.1, which is important when considering compositions. For stochastic
optimization, essential is the closure of the class of such functions with respect to
expectation, which allows for easy generation of stochastic subgradients.

Theorem 5.2. Suppose the function \ell (x, v) is Norkin differentiable with respect
to x for all v \in \frakD , and P -integrable with respect to v for all x \in \BbbR 

n. Suppose the
multifunction \^\partial \ell : \BbbR n \times \frakD \rightrightarrows \BbbR 

n is measurable with respect to v for all x \in \BbbR 
n,

and is a Norkin subdifferential mapping of \ell (\cdot , v) for all v \in \frakD . Furthermore, let
for every compact set K \subset \BbbR 

n a P -integrable function LK : \frakD \rightarrow \BbbR exist, such that
supx\in K supg\in \^\partial \ell (x,v) \| g\| \leq LK(v), v \in \frakD . If the risk form \varrho : \BbbB (\frakD ) \times P(\frakD ) \rightarrow \BbbR is
coherent and law invariant, then for every N \geq 1 the function

(5.2) F (x) = \varrho (N)[\Kappa (x), P ], x\in \BbbR 
n,

is well defined and Norkin differentiable, and the multifunction \Gamma : \BbbR n
\rightrightarrows \BbbR 

n defined
as

\Gamma (x) =

\Biggl\{ 

\gamma \in \BbbR 
n : \exists g(\cdot )\in \^\partial \ell (x, \cdot ), \exists \zeta \in \partial r(N)[Z] at Z =\Kappa (x),

\gamma =

\int 

\frakD 

g(v) \zeta (v) P (dv)

\Biggr\} 

, x\in \BbbR 
n,(5.3)

is its Norkin subdifferential mapping.
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Proof. By formula (3.3),

(5.4) F (x) =\BbbE D1:N\sim PN

\left\{ 

 

 

max
\xi \in A (N)

N
\sum 

j=1

\xi j\ell (x,D
j)

\right\} 

 

 

.

Consider the function f :\BbbR n \times \frakD 
N \rightarrow \BbbR given by

(5.5) f(x,D1:N ) = max
\xi \in A (N)

N
\sum 

j=1

\xi j\ell (x,D
j).

It is a composition f =m \circ \ell (N) of the convex support function m :\BbbR M \rightarrow \BbbR ,

m(z1, . . . , zN ) = max
\xi \in A (N)

N
\sum 

j=1

\xi jzj ,

and the sample loss function

\ell (N)(x,D1:N ) =
\bigl( 

\ell (x,D1), . . . , \ell (x,DN )
\bigr) 

.

By virtue of [27, Prop. 7], f(\cdot ,D1:N ) is Norkin differentiable, and

\^\partial f(x,D1:N ) = conv

\Biggl\{ 

s\in \BbbR 
n : s=

N
\sum 

j=1

\^\xi jgj , with

\^\xi \in \^\partial m
\bigl( 

\ell (x,D1), . . . , \ell (x,DN )
\bigr) 

and gj \in \^\partial \ell (x,Dj), j = 1, . . . ,m

\Biggr\} 

(5.6)

is its Norkin subdifferential mapping. Observe that \^\xi \in \^\partial m(\ell (x,D1), . . . , \ell (x,DN ))
corresponds to the maximizers in (3.4) at Z(Dj) = \ell (x,Dj), j = 1, . . . ,N . As \^\xi \geq 0,
the convex hull operation in (5.6) is not needed, because the set in braces is convex
already; for a similar argument, see [19, Thm. VI.4.3.1]. Furthermore, \xi j \in [0,1]
implies that the norm of each subgradient of f(x,D1:N ) is bounded by the norm of a
subgradient of \ell (x,Dj) for some j. Hence, the assumptions of the theorem entail the
following bound for every compact set K:

sup
x\in K

sup
\gamma \in \^\partial f(x,D1:N )

\| g\| \leq 

N
\sum 

j=1

LK(Dj).

The bound is integrable with respect to D1:N \sim PN . Observing that in (5.4) we have

(5.7) F (x) =\BbbE D1:N\sim PN

\bigl[ 

f(x,D1:N )
\bigr] 

,

we obtain \^\partial F (x) = \BbbE D1:N\sim PN [ \^\partial f(x,D1:N )] by virtue of [26, Thm. 23.1].
This, together with (5.6), where we skip the unnecessary convex hull, results in
formula (5.3).

Due to (5.7), formula (5.6) can be directly used to obtain unbiased stochastic
Norkin subgradients of the composition (5.2). First, we generate a sample D1:N from
PN . Then we calculate for eachDj a subgradient gj of \ell (x,D

j), j = 1, . . . ,N . Further,
we solve the maximization problem in (5.5) and obtain the vector \^\xi ; this is equivalent
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MINI-BATCH RISK FORMS 627

to the calculation of the random risk measure \varrho [\Kappa (x), P (N)]. Finally, we construct
the stochastic subgradient by setting s =

\sum N
j=1

\^\xi jgj ; \BbbE D1:N\sim PN [s] \in \^\partial F (x) by
Theorem 5.2. This allows for the application of the stochastic subgradient method of
[37], which is capable of solving problems with nonconvex and nonsmooth functions
that are differentiable in a generalized sense.

6. Dependence of risk forms on the probability measure. We study the
properties of risk forms when the measure P changes and their implication for mini-
batch risk forms, when the sample size changes. Throughout this section, we assume
that the space \frakD is a finite-dimensional vector space with the norm \| \cdot \| and that Z
is a fixed continuous function on \frakD .

Recall the definition of the transportation distance between probability
measures.1

For \mu 1, \mu 2 \in P(\frakD ), we define the set of transportation plans

U(\mu 1, \mu 2) = \{ \pi \in P(\frakD \times \frakD ) : \Pi 1\pi = \mu 1, \Pi 2\pi = \mu 2\} ,

where \Pi 1\pi and \Pi 2\pi denote the marginalizations of \pi over the first and the
second \frakD -spaces. The transportation distance of order p \in [1,\infty ) between \mu 1 and
\mu 2 is defined as

(6.1) Tp(\mu 1, \mu 2) = inf
\pi \in U(\mu 1,\mu 2)

\biggl( 
\int 

\frakD \times \frakD 

\| v - w\| p \pi (dv dw)

\biggr) 1/p

.

We restrict the space of probability measures on \frakD to measures which have finite
moments or order p. We denote

Mp(\mu ) =

\int 

\frakD 

\| w\| p \mu (dw)

and consider the space

Pp(\frakD ) = \{ \mu \in P(\frakD ) :Mp(\mu )<\infty \} .

The space Pp(\frakD ) with the metric Tp(\cdot , \cdot ) is a Polish space; see, e.g., [41].
This setting is very useful for our purposes, because it is known that for a finite-

dimensional data space \frakD the empirical measures P (N) converge to P in the expected
distance Tp if Mu(P ) <\infty for some u > p. Furthermore, the expected distance can
be bounded by an explicit expression involving the batch size, the dimension of the
space, and the moment Mu(P ). The following inequality due to [11, 16] is true for all
N :

\BbbE 

\Bigl[ 

Tp

\Bigl( 

P (N), P
\Bigr) \Bigr] 

\leq CMp/u
u

\times 

\left\{ 

 

 

 

 

N - 1/2 +N - (u - p)/u if p > d/2 and u \not = 2p,

N - 1/2 ln(1 +N) +N - (u - p)/u if p= d/2 and u \not = 2p,

N - p/d +N - (u - p)/u if p < d/2 and u \not = d
d - p ,

(6.2)

where d=dim(\frakD ), u is an arbitrary real number greater than p, and C is a constant
depending only on p, u, and d.

1It is called the Monge--Kantorovich, the Earth Mover's, or the Wasserstein distance; we refer
the reader to the monographs [34] and [41] for an extensive exposition and historical account.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.D
o
w

n
lo

ad
ed

 0
6
/0

2
/2

3
 t

o
 1

9
8
.1

3
4
.9

8
.5

0
 b

y
 A

n
d
rz

ej
 R

u
sz

cz
y
n
sk

i 
(r

u
sz

@
b
u
si

n
es

s.
ru

tg
er

s.
ed

u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



628 DARINKA DENTCHEVA AND ANDRZEJ RUSZCZY\'NSKI

It follows that the continuity of the mapping P \mapsto \rightarrow \varrho [Z,P ] is germane to our study.
We investigate this property and its implications for the analysis of the effect of the
batch size N in two important special cases.

6.1. Average Value at Risk and Kusuoka representations. We first con-
sider the special case of the Average Value at Risk (2.8) as the base risk form \varrho [ \cdot , \cdot ].
It has an equivalent extremal representation,

(6.3) AVaR\alpha [Z,P ] = inf
\eta \in \BbbR 

\biggl\{ 

\eta +
1

\alpha 
\BbbE D\sim P [max(0,Z(D) - \eta )]

\biggr\} 

,

and the dual representation

(6.4) AVaR\alpha [Z,P ] = sup
Q\in A (P )

\BbbE D\sim Q [Z(D)] ,

where

(6.5) A (P ) =

\biggl\{ 

Q\in P(\frakD ), Q\ll P,
dQ

dP
\leq 

1

\alpha 

\biggr\} 

.

If P \in P1(\frakD ), then A (P ) \subset P1(\frakD ), and thus A can be viewed as a multifunction
from P1(\frakD ) to its subsets.

The Hausdorff distance between sets A and B in Pp(\frakD ) is understood here as

distp(A,B) =max

\biggl( 

sup
P\in A

inf
Q \in B

Tp(P,Q) , sup
Q\in B

inf
P \in A

Tp(P,Q)

\biggr) 

.

Lemma 6.1. The multifunction A : P1(\frakD )\rightrightarrows P1(\frakD ) given by (6.5) is Lipschitz
continuous in the Hausdorff distance dist1(\cdot , \cdot ) with the constant 1/\alpha :

dist1(A (P1),A (P2))\leq 
1

\alpha 
T1(P1, P2) \forall P1, P2 \in P1(\frakD ).

Proof. Consider two probability measures P1, P2 \in P1(\frakD ), and let \pi \in U(P1, P2)
be the optimal transportation plan:2

(6.6)

\int 

\frakD \times \frakD 

\| x - y\| \pi (dxdy) =T1(P1, P2).

It always exists; see, e.g., [41, Thm. 4.1]. We disintegrate the measure \pi into the
marginal P1 on \frakD and a kernel K :\frakD \rightarrow P1(\frakD ) (see, e.g., [4, Thm. IV.2.18]), so that

\pi (A\times B) =

\int 

A

\int 

B

K(dy| x) P1(dx) \forall A,B \in B(\frakD ).

For an arbitrary Q1 \in A (P1) we construct a measure Q2 \in P1(\frakD ) by setting (see,
e.g., [4, Thm. I.6.11])

(6.7) Q2(B) =

\int 

\frakD 

\int 

B

K(dy| x)Q1(dx) \forall B \in B(\frakD ).

2In some proofs in this section, to improve readability, we use x and y to denote elements of the
space \frakD .
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MINI-BATCH RISK FORMS 629

Now we verify that Q2 \in A (P2). Let \varphi = dQ1

dP1
be the Radon--Nikodym derivative.

From (6.7), after returning to the product measure, we obtain

Q2(B) =

\int 

\frakD 

\int 

B

K(dy| x)\varphi (x) P1(dx) =

\int 

\frakD 

\int 

B

\varphi (x) \pi (dxdy)

\leq 
1

\alpha 

\int 

\frakD 

\int 

B

\pi (dxdy) =
1

\alpha 
P2(B) \forall B \in B(\frakD ).

This means that Q2 \in A (P2).
Consider the transportation plan

\lambda (A\times B) =

\int 

A

\int 

B

K(dy| x)Q1(dx) \forall A,B \in B(\frakD ).

Equation (6.7) implies that \lambda \in U(Q1,Q2). Therefore,

T1(Q1,Q2)\leq 

\int 

\frakD \times \frakD 

\| x - y\| \lambda (dxdy) =

\int 

\frakD \times \frakD 

\| x - y\| \varphi (x) \pi (dxdy)

\leq 
1

\alpha 

\int 

\frakD \times \frakD 

\| x - y\| \pi (dxdy) =
1

\alpha 
T1(P1, P2),(6.8)

where we have used (6.6). Thus,

sup
Q1\in A (P1)

inf
Q2\in A (P2)

T1(Q1,Q2)\leq 
1

\alpha 
T1(P1, P2).

Reversing the roles of P1 and P2, we obtain the assertion.

Recall that a function Z :\frakD \rightarrow \BbbR admits a modulus of continuity \psi : [0,\infty )\rightarrow [0,\infty ) if

| Z(v) - Z(w)| \leq \psi (\| v - w\| ) \forall v,w \in \frakD ,

where limt\downarrow 0\psi (t) = \psi (0) = 0. It is well known that if Z(\cdot ) admits a modulus of
continuity, then it also admits a nondecreasing modulus of continuity. If the modulus
of continuity has an affine majorant or if the domain of Z(\cdot ) is convex, then a concave
nondecreasing modulus of continuity exists. A good example is \psi (t) = Lta with
a\in (0,1].

Theorem 6.2. (i) If Z(\cdot ) is continuous and satisfies the inequality

(6.9) | Z(w)| \leq CZ (1 + \| w\| ) \forall w \in \frakD ,

then the functional AVaR\alpha [Z, \cdot ] is continuous on the space P1(\frakD ).
(ii) If Z(\cdot ) admits a concave nondecreasing modulus of continuity \psi (\cdot ), then

(6.10) | AVaR\alpha [Z,P1] - AVaR\alpha [Z,P2]| \leq \psi 

\biggl( 

1

\alpha 
T1(P1, P2)

\biggr) 

\forall P1, P2 \in P1(\frakD ).

Proof. Assume that Z(\cdot ) is continuous and satisfies the growth condition (6.9). In
this case, AVaR\alpha [Z,P ]<\infty for all P \in P1(\frakD ). Let \{ Pn\} be a sequence of measures
converging to P in the space P1(\frakD ). Suppose \alpha \in (0,1). It follows from (6.3) that

(6.11) AVaR\alpha [Z,P ] = \=\eta +
1

\alpha 
\BbbE D\sim P [max(0,Z(D) - \=\eta )] ,
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630 DARINKA DENTCHEVA AND ANDRZEJ RUSZCZY\'NSKI

with \=\eta being an (1 - \alpha )-quantile of Z under P . This yields the following estimate:

AVaR\alpha [Z,Pn] - AVaR\alpha [Z,P ]

=min
\eta 

\biggl\{ 

\eta +
1

\alpha 
\BbbE D\sim Pn

[max(0,Z(D) - \eta )]

\biggr\} 

 - \=\eta  - 
1

\alpha 
\BbbE D\sim P [max(0,Z(D) - \=\eta )]

\leq 
1

\alpha 
(\BbbE D\sim Pn

[max(0,Z(D) - \=\eta ) - \BbbE D\sim P [max(0,Z(D) - \=\eta )) .

(6.12)

Notice that | max(0,Z(D) - \=\eta )| \leq | Z(D) - \=\eta | , and, thus, it satisfies the growth condition
(6.9). Hence, the right-hand side of (6.12) converges to zero, by virtue of [41, Definition
6.4 (iv)]. We infer that

limsup
n\rightarrow \infty 

AVaR\alpha [Z,Pn]\leq AVaR\alpha [Z,P ].

Let \=Q\in A (P ) be such that

AVaR\alpha [Z,P ] = sup
Q\in A (P )

\BbbE D\sim Q [Z(D)] =\BbbE D\sim \=Q [Z(D)] .

Using Lemma 6.1, we construct Qn \in A (Pn) such that

T1(Qn, \=Q)\leq 
1

\alpha 
T1(Pn, P ) +

1

n
.

Hence, the sequence \{ Qn\} converges to \=Q in the space P1(\frakD ). We obtain

AVaR\alpha [Z,Pn] - AVaR\alpha [Z,P ] = sup
Q\in A (Pn)

\BbbE D\sim Q [Z(D)] - \BbbE D\sim \=Q [Z(D)]

\geq \BbbE D\sim Qn
[Z(D)] - \BbbE D\sim \=Q [Z(D)] .(6.13)

Letting n\rightarrow \infty , we obtain that the right-hand side of (6.13) converges to zero. Hence,

lim inf
n\rightarrow \infty 

AVaR\alpha [Z,Pn]\geq AVaR\alpha [Z,P ].

This concludes the proof of the continuity of AVaR\alpha [Z, \cdot ] for \alpha \in (0,1). If \alpha = 1, then
AVaR1[Z,P ] = \BbbE D\sim P [Z(D)], and the continuity follows directly from [41, Definition
6.4 (iv)].

We now pass to the assertion (6.10) involving a concave nondecreasing modulus
of continuity. Observe that the growth condition (6.9) is satisfied in this case. Let
P1, P2 \in P1(\frakD ). Let Q1 \in A (P1) be such that \BbbE D\sim Q1

[Z(D)] = AVaR\alpha [Z,P1].
As in Lemma 6.1, we can construct Q2 \in A (P2) such that (6.8) is satisfied. We

have the estimate

AVaR\alpha [Z,P2]\geq \BbbE D\sim Q2
[Z(D)] =\BbbE D\sim Q1

[Z(D)] + (\BbbE D\sim Q2
[Z(D)] - \BbbE D\sim Q1

[Z(D)])

=AVaR\alpha [Z,P1] + (\BbbE D\sim Q2
[Z(D)] - \BbbE D\sim Q1

[Z(D)]) .

(6.14)

Consider the case when Z(\cdot ) admits the modulus of continuity \psi (\cdot ). For any trans-
portation plan \lambda \in U(Q1,Q2), applying the modulus of continuity and Jensen's in-
equality, we obtain

| \BbbE D\sim Q2 [Z(D)] - \BbbE D\sim Q1 [Z(D)]| =

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\int 

\frakD \times \frakD 

[Z(v) - Z(w)] \lambda (dv dw)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq 

\int 

\frakD \times \frakD 

\psi (\| v - w\| ) \lambda (dv dw)\leq \psi 

\biggl( 
\int 

\frakD \times \frakD 

\| v - w\| \lambda (dv dw)

\biggr) 

.
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Taking the infimum over the feasible transportation plans on the right-hand side, and
keeping in mind the monotonicity of \psi (\cdot ), we obtain

(6.15) | \BbbE D\sim Q2
[Z(D)] - \BbbE D\sim Q1

[Z(D)]| \leq \psi (T1(Q1,Q2)) .

Integrating (6.14), (6.15), and (6.8), we conclude that

AVaR\alpha [Z,P1] - AVaR\alpha [Z,P2]\leq \psi (T1(Q1,Q2))\leq \psi 

\biggl( 

1

\alpha 
T1(P1, P2)

\biggr) 

.

Exchanging the roles of P1 and P2, we obtain the estimate (6.10).

Let us pass to the mini-batch risk form

AVaR(N)
\alpha [Z,P ] =\BbbE D1:N\sim PN

\Bigl[ 

AVaR\alpha 

\Bigl[ 

Z,P (N)
\Bigr] \Bigr] 

.

It is well known that the infimum of a sample average approximation is a lower bound
of the infimum in (6.3):

AVaR(N)
\alpha [Z,P ]\leq AVaR\alpha [Z,P ].

Now, we can obtain an explicit bound on the bias.

Corollary 6.3. If Z(\cdot ) admits a concave nondecreasing modulus of continuity
\psi (\cdot ), then

AVaR\alpha [Z,P ] - AVaR(N)
\alpha [Z,P ]\leq \psi 

\biggl( 

1

\alpha 
\BbbE 

\Bigl[ 

T1(P
(N), P )

\Bigr] 

\biggr) 

.

Furthermore, if Mu(P )<\infty for some u> 1, then for all N \geq 1

AVaR\alpha [Z,P ] - AVaR(N)
\alpha [Z,P ]\leq \psi 

\biggl( 

\tau 1(N)

\alpha 

\biggr) 

,

where the constant \tau 1(N) is given by the right-hand side of (6.2).

Proof. According to Theorem 6.2,

AVaR\alpha [Z,P ] - AVaR\alpha [Z,P
(N)]\leq \psi 

\biggl( 

1

\alpha 
T1(P

(N), P )

\biggr) 

.

Taking the expected value of both sides, and using Jensen's inequality, we obtain the
assertion.

These estimates allow us to analyze law invariant risk forms that admit a Kusuoka
representation

(6.16) \varrho [Z,P ] = sup
\lambda \in \Kappa \varrho 

\int 1

0

AVaR\alpha [Z,P ] \lambda (d\alpha ),

where \Kappa \varrho is a closed convex set of probability measures on [0,1]. In [9], sufficient
conditions for such a representation are provided.

With every \lambda \in \Kappa \varrho in the Kusuoka representation (6.16) of \varrho [Z,P (N)], we associate
the function

(6.17) \varphi \lambda (\alpha ) =

\int 1

\alpha 

\lambda (dt)

t
.
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632 DARINKA DENTCHEVA AND ANDRZEJ RUSZCZY\'NSKI

We observe that \varphi \lambda (\cdot ) is nonnegative and nonincreasing and can be viewed as a density
because

(6.18)

\int 1

0

\varphi \lambda (\alpha )d\alpha =

\int 1

0

\int 1

\alpha 

\lambda (dt)

t
d\alpha =

\int 1

0

\int t

0

d\alpha 
\lambda (dt)

t
=

\int 1

0

\lambda (dt) = 1.

The second equation is obtained by changing the order of integration.
We show that the resulting mini-batch risk measure is strongly consistent for

bounded continuous functions Z(\cdot ).

Theorem 6.4. If Z(\cdot ) is continuous and bounded, the measure P has connected
support, and the risk form \varrho [ \cdot , \cdot ] admits the representation (6.16), then the mini-batch
risk measure \varrho (N)[Z,P ] converges to \varrho [Z,P ], when N \rightarrow \infty .

Proof. We denote the quantile function of Z by GZ and the generalized inverse
of F

(N)
Z by G

(N)
Z .

Noting that \lambda (d\alpha )/\alpha =  - d\varphi \lambda (\alpha ) and integrating by parts, we transform the
integral in the Kusuoka representation as follows:

\int 1

0

AVaR\alpha [Z,P
(N)] \lambda (d\alpha ) =

\int 1

0

1

\alpha 

\int 1

1 - \alpha 

GZ(t) dt\lambda (d\alpha )

= - 

\int 1

0

\int 1

1 - \alpha 

GZ(t) dtd\varphi \lambda (\alpha ) = - 

\int 1

0

\varphi \lambda (\alpha )GZ(\alpha )d\alpha .(6.19)

We compare \varrho [Z,P (N)] and \varrho [Z,P ] using (6.19) in their Kusuoka representations as
follows:

\varrho [Z,P (N)] - \varrho [Z,P ] = sup
\lambda \in \Kappa \varrho 

\int 1

0

\varphi \lambda (\alpha )GZ(\alpha )d\alpha  - sup
\lambda \in \Kappa \varrho 

\int 1

0

\varphi \lambda (\alpha )G
(N)
Z (\alpha )d\alpha 

\leq sup
\lambda \in \Kappa \varrho 

\int 1

0

\varphi \lambda (\alpha )
\Bigl( 

GZ(\alpha ) - G
(N)
Z (\alpha )

\Bigr) 

d\alpha (6.20)

\leq 
\bigm\| 

\bigm\| 

\bigm\| 
G

(N)
Z (\alpha ) - GZ(\alpha )

\bigm\| 

\bigm\| 

\bigm\| 

\infty 
.

The last inequality is obtained by applying H\"older's inequality and using (6.18). The

norm \| G
(N)
Z (\alpha ) - GZ(\alpha )\| \infty is finite for any Z with bounded support. Hence,

\bigm| 

\bigm| 

\bigm| 
\varrho [Z,P (N)] - \varrho [Z,P ]

\bigm| 

\bigm| 

\bigm| 
\leq 
\bigm\| 

\bigm\| 

\bigm\| 
G

(N)
Z (\alpha ) - GZ(\alpha )

\bigm\| 

\bigm\| 

\bigm\| 

\infty 
.

Under the assumptions of the theorem, \| G
(N)
Z (\alpha ) - GZ(\alpha )\| \infty converges a.s. to zero,

whenN \rightarrow \infty [3], which implies that \varrho [Z,P (N)] converges a.s. to \varrho [Z,P ]. Additionally,
our estimate implies

| \varrho [Z,P (N)]| \leq | \varrho [Z,P ]| +
\bigm\| 

\bigm\| 

\bigm\| 
G

(N)
Z (\alpha ) - GZ(\alpha )

\bigm\| 

\bigm\| 

\bigm\| 

\infty 
\leq | \varrho [Z,P ]| + 2\| GZ(\alpha )\| \infty .

Hence, \varrho (N)[Z,P ] converges to \varrho [Z,P ] when N \rightarrow \infty by virtue of the Lebesgue domi-
nated convergence theorem.

To obtain error estimates, stronger assumptions on the spectrum are needed.
However, we may drop the boundedness condition on Z(\cdot ).
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Theorem 6.5. Suppose P \in Pp(\frakD ) with p \in [1,\infty ) and Z(\cdot ) is Lipschitz con-
tinuous with the constant LZ . Furthermore, suppose the risk form \varrho [ \cdot , \cdot ] admits the
representation (6.16) such that, with some constant C\varrho ,

\| \varphi \lambda (\cdot )\| q \leq C\varrho \forall \lambda \in \Kappa \varrho , 1/p+ 1/q= 1.

If Mu(P )<\infty for some u> p, then for all N \geq 1

\bigm| 

\bigm| 

\bigm| 
\varrho (N)[Z,P ] - \varrho [Z,P ]

\bigm| 

\bigm| 

\bigm| 
\leq C\varrho LZ\tau p(N),

where the constant \tau p(N) is given by the right-hand side of (6.2).

Proof. We compare \varrho [Z,P (N)] and \varrho [Z,P ] using (6.20):

\varrho [Z,P (N)] - \varrho [Z,P ]\leq sup
\lambda \in \Kappa \varrho 

\int 1

0

\varphi \lambda (\alpha )
\Bigl( 

G
(N)
Z (\alpha ) - GZ(\alpha )

\Bigr) 

d\alpha 

\leq sup
\lambda \in \Kappa \varrho 

\bigm\| 

\bigm\| 

\bigm\| 
G

(N)
Z (\cdot ) - GZ(\cdot )

\bigm\| 

\bigm\| 

\bigm\| 

p
\| \varphi \lambda (\cdot )\| q \leq C\varrho Tp

\Bigl( 

P
(N)
Z , PZ

\Bigr) 

.(6.21)

The penultimate inequality is obtained by applying H\"older's inequality, while the last
inequality follows by the assumptions on \Kappa \varrho and the representation of the distance by

quantile functions: Tp(P
(N)
Z , PZ) = \| G

(N)
Z (\alpha ) - GZ(\alpha )\| p; see, e.g., [31].

Suppose \lambda is the optimal transportation plan between P (N) and P on \frakD \times \frakD .
Define \pi \in P(\BbbR \times \BbbR ) as

\pi (A\times B) = \lambda 
\bigl( 

Z - 1(A)\times Z - 1(B)
\bigr) 

\forall A,B \in B(\BbbR ).

Its left marginal is

\pi (A\times \BbbR ) = \lambda 
\bigl( 

Z - 1(A)\times \frakD 
\bigr) 

= P (N)
\bigl( 

Z - 1(A)
\bigr) 

= P
(N)
Z (A) \forall A\in B(\BbbR ).

The right marginal is PZ , in a similar way, and thus \pi \in U(P
(N)
Z , PZ). Consequently,

Tp

\Bigl( 

P
(N)
Z , PZ

\Bigr) p

\leq 

\int 

\BbbR \times \BbbR 

| a - b| p \pi (dadb) =

\int 

\frakD \times \frakD 

| Z(v) - Z(w)| p \lambda (dv dw)

\leq Lp
Z

\int 

\frakD \times \frakD 

\| v - w\| p \lambda (dv dw) =Lp
ZTp(P

(N), P )p.

The substitution into (6.21) yields

\varrho [Z,P (N)] - \varrho [Z,P ]\leq C\varrho LZTp(P
(N), P ).

Reversing the roles of P (N) and P , and taking the expected value, we obtain the
assertion.

6.2. Mean-semideviation risk forms. The method applied in the previous
subsection can be extended to other risk forms with the use of higher order trans-
portation metrics.

Consider the mean-semideviation risk form of order p\in [1,\infty ) defined in (2.2):

msdp[Z,P ] =\BbbE P [Z] +\varkappa \| max(0,Z  - \BbbE P [Z])\| p .
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To simplify notation, we write \BbbE P [Z] for \BbbE D\sim P [Z(D)], and we use the norm \| \cdot \| p in
the space Lp(\frakD ,B(\frakD ), P ). The dual representation of msdp[ \cdot , P ] has the following
form, with 1/p+ 1/q= 1:

(6.22) A (P ) =

\biggl\{ 

Q\in P(\frakD ) :Q\ll P,
dQ

dP
= 1+ \zeta  - \BbbE P [\zeta ], \| \zeta \| q \leq \varkappa , \zeta \geq 0

\biggr\} 

.

H\"older's inequality implies that A (P ) \subset P1(\frakD ) whenever P \in Pp(\frakD ), and thus we
can view A as a multifunction from Pp(\frakD ) to P1(\frakD ).

Lemma 6.6. The multifunction A : Pp(\frakD ) \rightrightarrows P1(\frakD ) given by (6.22) satisfies
the inequality

(6.23) dist1 (A (P1),A (P2))\leq (1 +\varkappa )Tp(P1, P2) \forall P1, P2 \in Pp(\frakD ).

Proof. Consider two probability measures P1, P2 \in Pp(\frakD ), and let \pi \in U(P1, P2)
be the optimal transportation plan:

(6.24)

\biggl( 
\int 

\frakD \times \frakD 

\| x - y\| p \pi (dxdy)

\biggr) 1/p

=Tp(P1, P2).

Again, we disintegrate the measure \pi into the marginal P1 on \frakD and a kernel K :
\frakD \rightarrow Pp(\frakD ):

\pi (A\times B) =

\int 

A

\int 

B

K(dy| x) P1(dx) \forall A,B \in B(\frakD ).

For an arbitrary Q1 \in A (P1), we construct a measure Q2 \in P(\frakD ) by formula (6.7).
It follows from (6.22) that dQ1

dP1
= 1+ \zeta  - \BbbE P1

[\zeta ] for some \zeta \geq 0 integrable in the qth
power with respect to P1. Substituting into (6.7), we obtain

Q2(B) =

\int 

\frakD 

\int 

B

K(dy| x) (1 + \zeta (x) - \BbbE P1
[\zeta ]) P1(dx)

= P2(B) (1 - \BbbE P1 [\zeta ]) +

\int 

\frakD 

\int 

B

K(dy| x) \zeta (x) P1(dx) \forall B \in B(\frakD ).(6.25)

Consider the measure defined by the third term in (6.25):

\Gamma (B) =

\int 

\frakD 

\int 

B

K(dy| x) \zeta (x) P1(dx) =

\int 

\frakD \times B

\zeta (x) \pi (dxdy) \forall B \in B(\frakD ).

As it is absolutely continuous with respect to P2, it has a density \gamma = d\Gamma 
dP2

by the
Radon--Nikodym theorem. Hence, for any function g \in Lp(\frakD ,B(\frakD ), P2), we can
write

(6.26)

\int 

\frakD 

g(y)\gamma (y) P2(dy) =

\int 

\frakD \times \frakD 

g(y)\zeta (x) \pi (dxdy).

Observe that we may formally regard both g and \zeta as members of Lp(\frakD \times \frakD ,B(\frakD \times 
\frakD ), \pi ) and Lq(\frakD \times \frakD ,B(\frakD \times \frakD ), \pi ), respectively. We apply H\"older's inequality to
the right-hand side of (6.26) to obtain

\int 

\frakD 

g(y)\gamma (y) P2(dy)\leq \| g\| p \| \zeta \| q,
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with the norms in the said spaces. However, since g(\cdot ) is a function of the second
variable only and P2 is the second marginal of \pi , \| g\| p is the same in the space
Lp(\frakD ,B(\frakD ), P2). In a similar way, \| \zeta \| q is the same in Lq(\frakD ,B(\frakD ), P1). It follows
from the last displayed inequality that

(6.27) \| \gamma \| q \leq \| \zeta \| q \leq \varkappa ,

with the norm of \gamma in Lq(\frakD ,B(\frakD ), P2) and the norm of \zeta in Lq(\frakD ,B(\frakD ), P1). Fur-
thermore, (6.26) with g\equiv 1 implies that

(6.28) \BbbE P2
[\gamma ] =

\int 

\frakD 

\gamma (y) P2(dy) =

\int 

\frakD 

\zeta (x) P1(dx) =\BbbE P1
[\zeta ].

Combining (6.25), (6.27), and (6.28), we conclude that

dQ2

dP2
= 1 - \BbbE P2 [\gamma ] + \gamma , \| \gamma \| q \leq \varkappa , \gamma \geq 0.

This means that Q2 \in A (P2).
To estimate the distance T1(Q1,Q2) we consider the transportation plan

\lambda (A\times B) =

\int 

A

\int 

B

K(dy| x)Q1(dx) \forall A,B \in B(\frakD ).

By (6.7), \lambda \in U(Q1,Q2). Therefore, by H\"older's inequality in the spaces Lp(\frakD \times 
\frakD ,B(\frakD ,\times \frakD ), \pi ) and Lq(\frakD \times \frakD ,B(\frakD ,\times \frakD ), \pi ), and by (6.24), we obtain the chain of
relations

T1(Q1,Q2)\leq 

\int 

\frakD \times \frakD 

\| x - y\| \lambda (dxdy)

=

\int 

\frakD \times \frakD 

\| x - y\| (1 + \zeta (x) - \BbbE P1 [\zeta ]) \pi (dxdy)

\leq Tp(P1, P2) \| 1 + \zeta  - \BbbE P1
[\zeta ]\| q

\leq Tp(P1, P2)(1 +\varkappa ).

(6.29)

In the last inequality, we used the fact that 0\leq \BbbE P1
[\zeta ]\leq \| \zeta \| q \leq \varkappa . Thus,

sup
Q1\in A (P1)

inf
Q2\in A (P2)

T1(Q1,Q2)\leq (1 +\varkappa )Tp(P1, P2).

Reversing the roles of P1 and P2, we obtain (6.23).

This allows us to obtain an estimate of the difference between the mini-batch risk
measure and its ``mother"" measure for any batch size N .

Corollary 6.7. If P \in Pp(\frakD ) and Z(\cdot ) admits a concave nondecreasing modu-
lus of continuity \psi (\cdot ), then

\bigm| 

\bigm| 

\bigm| 
msdp[Z,P] - msd(N)

p [Z,P]
\bigm| 

\bigm| 

\bigm| 
\leq \psi 

\Bigl( 

(1 +\varkappa )\BbbE 
\Bigl[ 

Tp(P
(N), P )

\Bigr] \Bigr) 

.

Furthermore, if Mu(P )<\infty for some u> p, then for all N \geq 1

\bigm| 

\bigm| 

\bigm| 
msdp[Z,P] - msd(N)

p [Z,P]
\bigm| 

\bigm| 

\bigm| 
\leq \psi ((1 +\varkappa ) \tau p(N)) ,

where the constant \tau p(N) is given by the right-hand side of (6.2).
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636 DARINKA DENTCHEVA AND ANDRZEJ RUSZCZY\'NSKI

7. Conclusions. While the base risk forms are defined for bounded functions
on the data space \frakD and probability measures on this space, the mini-batch risk
forms are well defined for all integrable functions once the probability measure is
fixed. They have the potential for applications in risk-averse decision, control, and
learning, due to the fact that they allow for the construction of unbiased estimates of
their subgradients, and generalized gradients of their compositions with random loss
functions. Furthermore, restricting the data space to a finite-dimensional space allows
for the use of transportation metrics in the spaces of probability measures and leads
to quantitative estimates of the difference between the mini-batch risk evaluation and
the base risk measure.
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