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Abstract. Risk forms are real functionals of two arguments: a bounded measurable function
on a Polish space and a probability measure on that space. They are convenient mathematical
structures adapting the coherent risk measures to the situation of a variable reference probability
measure. We introduce a new class of risk forms called mini-batch forms. We construct them by
using a random empirical probability measure as the second argument and by post-composition
with the expected value operator. We prove that coherent and law invariant risk forms generate
mini-batch risk forms which are well defined on the space of integrable random variables, and we
derive their dual representation. We demonstrate how unbiased stochastic subgradients of such
risk forms can be constructed. Then, we consider pre-compositions of mini-batch risk forms with
nonsmooth and nonconvex functions, which are differentiable in a generalized way, and we derive
generalized subgradients and unbiased stochastic subgradients of such compositions. Finally, we
study the dependence of risk forms and mini-batch risk forms on perturbation of the probability
measure and establish quantitative stability in terms of optimal transport metrics. We obtain finite-
sample expected error estimates for mini-batch risk forms involving functions on a finite-dimensional
space.
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1. Introduction. The theory of risk measures is one of the main directions
of research in stochastic optimization, with many applications, beyond the original
motivation in finance. The main setting is the following: a probability space (£2,.%, P)
is fixed and a risk measure is defined as a functional on a certain vector space of
real-valued measurable functions on 2 (usually, .Z,(£2,.%, P) with p € [1,00]). The
functional is required to satisfy several axioms, which we recall in the next section.
The initial contributions were [21], [28], [1], [24], and [14]; we refer the reader to
[15], [39], [32], and [40] for detailed presentation, applications, and further references.
However, in many problems of risk-averse optimization and control, such as controlled
Markov systems [36] or partially observable systems [13], we deal with variable and
decision-dependent probability measures. This makes the extant risk measure theory
insufficient.

In [9], we introduced risk forms: real-valued functionals g[Z, P] of two arguments,
a bounded measurable function Z on a Polish space ®, and a probability measure
P on the Borel o-field #(D). Under less restrictive assumptions than in the fixed
probability measure case, we proved a dual representation and a generalized Kusuoka
representation of risk forms, which remain valid for all probability measures on Z(9).
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Our goal is to advance the theory of risk forms by considering a random empirical
probability measure as their second argument. We interpret © as the “data space”
and evaluate risk on a small sample of the data, frequently referred to as a mini-batch
in machine learning. The expected value of this risk evaluation is a new object, which
we call the mini-batch risk form. We formally define these functionals in section 2.
They inherit many properties of the “mother” risk forms, but they have the remarkable
feature that they are well defined on all integrable random variables, not only bounded
functions. In section 3 we develop an explicit dual representation of coherent and
law invariant mini-batch risk forms. We use it in section 4 to show how unbiased
stochastic subgradients of mini-batch risk forms can be constructed by simulation.
This is in contrast to earlier works, such as [17, 18, 38], where major effort was
needed to overcome the inherent bias in the estimation of stochastic subgradients
of risk measures. In section 5, we analyze the pre-composition of coherent and law
invariant mini-batch risk forms with possibly nonsmooth and nonconvex functions
from a very broad class of functions that are differentiable in a generalized sense
[27]. This class of functions contains all semismooth functions and covers virtually
all structures arising in machine learning applications; we refer the reader to [18, 37]
for an extensive discussion of this issue. We show, under quite general assumptions,
that such a composition is differentiable in a generalized way itself, and we show a
straightforward way to construct its stochastic subgradients. This opens the door
for many applications of mini-batch risk forms in risk-averse machine learning [22].
Finally, in section 6, we study the continuity of risk forms and mini-batch risk forms
with respect to the probability measure, by using transportation metrics. This allows
us to develop finite-sample estimates of the difference between the mini-batch risk
forms and their “mother” forms for the case of the Average Value at Risk, Kusuoka
forms, and mean-semideviation forms of arbitrary orders. These results complement
the asymptotic properties established in [6, 7, 35, 40].

2. Definition and elementary properties. Consider a Polish space ® and its
Borel o-algebra Z(D). Let (D) be the set of probability measures on %(®). The
space of all real-valued bounded measurable functions on ® is denoted by B(D). We
use D to denote an element of ©® and dp to denote the Dirac measure concentrated
at D. The symbol 1 stands for the function in B(®D) that is constantly equal to 1.

A probabilistic model is a pair [Z, P] € B(D) x Z(D). For two probabilistic models
[Z, P] and [W,Q] the notation [Z, P]~[W, Q] means that P{Z <n} = Q{W <n} for
all n € R (both models have the same distribution function). The inequality Z <V
between elements of B(D) is always understood pointwise.

In [9], we proposed an approach to risk evaluation of a family of probabilistic
models. In the definition below, the first four properties are the same as for a coherent
measure of risk, with the second argument of the risk form fixed. The last two
properties are specific for our model with two arguments.

DEFINITION 2.1. A measurable functional ¢ : B(D) x P(D) — R is called a risk
form.

(i) It is convex if o[AZ + (1 — \)W, P] < X\o[Z, P] + (1 — ) o[W, P] for all Z, W €
B(D), all A€[0,1], and all P € 2(D).

(ii) It is monotonic if Z <W implies o[Z, P] < o[W, P] for all P € (D).

(iii) It is translation equivariant if for all Z € B(D), all a € R, and all P € 2 (D),
olal+ Z,P]=a+ 0[Z, P).

(iv) It is positively homogeneous if for all Z € B(D), all 8 € Ry, and all P €
<@((53)7 Q[ﬁZvP] :ﬂg[Z7P]
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(v) It is law invariant if [Z, P]~[W, Q] implies that o[Z, P] = o[W, Q).
(vi) It has the support property if o[lsupp(pyZ, P] = 0[Z, P] for all (Z, P) € B(D) x
(D).
We say that a risk form is coherent if it satisfies the properties (i)—(iv) above.

A simple example of a risk form is the expected value, which is the well-understood
bilinear form

(2.1) E[Z,P] = /@ Z(v) P(dv).

In our analysis, we are interested mainly in risk forms depending on each of the
arguments in a nonlinear way. An example is the mean-semideviation model or order
p€[l,00) (see [28, 29]):

(2.2)

msd,[Z, P] = /@ Z(u) P(du)+%< /@ [Z(u) - /@ Z(U)P(dv)L P(du)) Up, xe0,1].

Yet another example, rarely used in the risk measure theory, due to its conservative
nature, but very relevant for us, is the worst-case risk form:

(2.3) es[Z,Pl]=inf{beR: Plv: Z(v) <b] =1}.

All three examples above are coherent and law invariant risk forms having the support
property.

Our concept of law invariance is broader than that for the measures of risk,
because it allows the probability measure to vary. If the risk form is law invariant,
then it has the support property, because [Z, P]~[1gpp(p)Z, P).

We now introduce the main object of our study: a mini-batch risk form. Suppose
0:B(®D) x Z(D) = R is a risk form and P € Z(D). If we draw a sample D"V =
(D',..., DY), with N independent random elements distributed according to P in D,
we obtain a random empirical measure

N
p(N)_i Smi
= NZ Di.

i=1

It is a Z(D)-valued random variable on the product space (DY, Z(DV), PV). Using
it as the second argument of the risk form g, we obtain a random risk form g[Z, P(N)}.
For fixed Z and P, it is a random variable on (D", 2(D"), PN). This leads to the
following definition.

DEFINITION 2.2. For a risk form o:B(D) x (D) — R, the corresponding mini-
batch risk form o) :B(D) x #(D) — R is defined as
(2.4) oM(2,P)=Epixpn {02, PM]}.

The following lemma summarizes the basic properties of a mini-batch risk form.

LEMMA 2.3. If the risk form o[-, -] is convex (monotonic, translation equivariant,
positively homogeneous, or has the support property), then the mini-batch risk form
o[-, -] has the corresponding properties as well. If the risk form o[-, -] is law
imvariant, then the mini-batch risk form Q(N)[~, -] is law invariant as well.
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Proof. The inheritance by oV )[-, -] of convexity, monotonicity, translation equi-
variance, positively homogeneity, and the support property from g[-, -] is evident. It

remains to prove the preservation of law invariance. First we establish that o[Z, P(V)]
is a function of the (unordered) set of realizations of Z under PXY). Consider two
discrete measures:

1 1 &
PN = —N"5,, d oW ==-N"6,..
N;D all Q N;w

If the sets of the realizations of two functions, Z(-) and U(-), under PV) and Q)|
respectively, are identical,

{z(D"),...,Z(D")} = {U(w),...,U(w™)},

then the distribution of Z under P®Y) is the same as the distribution of U under
QW) By the law invariance,

o[ eftia).

This means that o[Z, P(M)] is only a function of the set {Z(D'),...,Z(DN)}. Thus,
a measurable function ¥ : RY — R exists, such that

(2.5) 0[Z2, PN =w (Z2(DY),...,Z(D")),
and for every permutation w of {1,..., N},
(2.6) v (2(DY),...,2(DN)) =w (Z(D”(l)), . .,Z(D”(N))> .

Now, if [Z, P] ~ [U, @], then for DN ~ PN and C*N ~ Q¥ the vectors (Z(D%),...,
Z(DN)) and (U(CY),...,U(CN)) have the same distribution. Therefore,

oM(Z, Pl =Epinpy {¥ (Z(D"),...,Z(DV))}

=Ecinogy {¥ (U(CY),...,UCN))} = oMU, Q). 0
Let us consider the mini-batch risk form associated with (2.3):
(2.7) es™M[Z, Pl =Epu~pn Lgli%Z(Di)] .

In the special case of N =2 it has the mean-risk structure,

es®[Z, Pl =E p1 p2y~p: [max (Z(D'), Z(D?))]
=Ep1 p2y~p2 [Z(D') + max (0, Z(D?) — Z(DY))] =E[Z] + I'[Z],

with the Gini index [30, 43]
1
17} = 5B poyp2 [|2(DY) = Z(D?)]].

For N > 2, (2.7) is a generalized mean-Gini model, with increasing degree of risk
aversion. Its explicit form allows for more detailed analysis.
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Let us recall that the Average Value at Risk is defined as

1 1
(2.8) AVaR,[Z,P] = — Fyht)dt, ae€(0,1],

A J1—q

with F,;'(-) denoting the quantile function of Z under P: F,'(t) = inf{r : Plv
Z(v) <T1|>t}. A spectral risk form has the representation

1
0[Z, P] :/0 AVaR,[Z, P] M«) da,

with the spectral density A > 0 satisfying fo a)da=1.

THEOREM 2.4. The mini-batch risk form (2.7) is a spectral measure of risk with
the spectral density N(N —1)a(l—a)N=2, a€0,1]. Furthermore, for a fived P, the
risk form (2.7) is well defined and finite for all Z € £ (D, B(D),P).

Proof. The distribution function of the sample maximum is
PV {esM(z, Pl <o} = (PZ<o), veR.

Therefore, the mini-batch risk form (2.7) can be rewritten by changing the variables:
o'} 1
es™|Z, P] :/ vd ((p[z < v])N> :/ F7'(a)d(a™).
—00 0

The last expression is a dual (rank-dependent) utility functional [8, 33, 42]

1
(2.9) es™M[z, P] = /0 F; ' () dw(a),

with the rank-dependent utility function w(a) = aV.
For a fixed P, the functional (2.7) as a function of Z is a coherent measure of
risk. The expression (2.9) allows for the derivation of its Kusuoka representation.

Changing the order of integration, we obtain
es™[2, P] = zv/1 Fy ' (@)a ! da= N(N - 1) /01 Fy'(a) /Oa B2 dgda
(2.10) =N(N-1) / BN= 2/ F ' (a)dadB
=N(N - 1)/0 (1—B)BN"2AVaR,_5[Z] dB.

It is straightforward to check that N(N — 1) fO B)BN=2dp =1, as required from
the spectral density. 0

Ezxample 2.5. Consider the mini-batch mean-semideviation risk form derived from
(2.2) with p=1:
(2.11)

N
1
15,71 =Bpusps 357200+ 5 (000 & 3~ 2000
+

k=1
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In the special case of N =2 it has a mean-risk form similar to the previous example:
d? [z, P|=E[Z] + ZE Z2(DY) - Z(D?)|] =E|Z] + =Tz
msd? (2, P) = ElZ) + ZE(pr oy [|2(DY) — 2(D?)|| =E[Z) + 2 1(2).

Again, for a fixed P, the functional (2.11) as a function of Z is a coherent measure of
risk which is well-defined and finite on 2 (D, %(D), P).

3. Dual representation and extension to integrable random variables.
Suppose the risk form ¢:B(D) x £(D) — R is coherent and law invariant. Then, for
a fixed probability measure P, the function o(™)[-, P] is a coherent measure of risk
on the space of bounded functions B(®D). We plan to derive its dual representation.
In general, such a representation would have to involve elements from the space of
finitely additive measures ba(%(®)), which is the topological dual of B(®). In [9,
Thm. 1] we have shown, however, that the dual representation of coherent and law
invariant risk forms involves only countably additive measures. Now, we advance the
analysis for the mini-batch risk forms, and we derive a more explicit representation
in terms of measures which are absolutely continuous with respect to P.

Owing to (2.5), the random risk form o[-, P?V)] is a function ¥(-) of the vector
(Z(DY),...,Z(DN)). Since o[-, P™M)] is coherent and law invariant, the function ¥ :
RY — R is convex, nondecreasing, and positively homogeneous and has the translation
property: ¥(z1 +a,...,z2y +a) =¥(z1,...,28) + a. Due to (2.6), it is invariant with
respect to permutations of the arguments. Applying Fenchel duality to ¥(-) and
reasoning as for the dual representation of a coherent measure of risk [39, Thm. 2.2],
we obtain that a closed convex set

N
(3.1) dMcsM=ceeRY:> ¢=1
j=1
exists, such that for all Z € B(D)
(3.2) 0[Z, PN = max Z@ Z(D%).

56%(1\’)

The set /™) depends on N, but not on the specific sample D', and has the
property that for every ¢ € &M and for every permutation m of {1,..., N}, the

vector(§r 1y, - -+, &x(n)) is an element of /N as well. Therefore,
N .
(3.3) oM (2, P)=Epi~_pw e ;a—zwﬂ)

We now transform formula (3.3) into the standard dual representation of a coherent
measure of risk. Consider the cylindrical multifunction H : ®~ = SO) defined as

H(D'"N)=ag™N) forall D"V eV,
For each D'V the maximizer in the braces in (3.3) exists; with no loss of generality we
may assume that it is a measurable function of the sample. This follows from Berge’s

theorem about the measurability of the optimal value (see, e.g., [2, Th. 1.4.16]),
and from the existence of measurable selectors [23]. We can thus interchange the
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maximization and expectation operators and rewrite the formula (3.3) as follows:

N
(N) — LN i
(3.4) o2, P)= max Epunpy > &Ny Z(DY)

j=1

Here, the notation &(-) < H means that £(-) is a measurable selector of H(-). The said
maximizer in the braces in (3.3), as a function of D'V constitutes a maximizer in
(3.4).

Define linear continuous operators HJ(-N) 1 Lo (DN, B(DN), PN) = Lo (D, B(D),
P),j=1,...,N, as follows:

(3.5) [Hj(N)(g)} (v) =Epuvopy [§(DN)| DI =0], veD.

Using the fact that all D7 are distributed according to P, we obtain

N
Mz pl= ™) - :
oM(z7, P| = max Epuxpn ; [nj (g)} (D7) Z(D7)

(36) = s [ S2[1(©)] ) 2(0) Plan).

In this way, we established the following result.

THEOREM 3.1. If the risk form o : B(D) x £(D) — R is coherent and law
imvariant, then, for every N > 1, the corresponding mini-batch risk form has the
following dual representation:

(3.7) oMz, P]=  sup / Z(v) Q(dv),
QedoM0,P] /D

where

(38 90V(0.P)={ Qe 2():3(E0) <H) o= [1Me)] T,

with the operators H](N) defined as in (3.5).

We may check the essential properties of 9o [0, P]. Since M) is convex, then
the set of measurable selectors £(-) < H is convex as well. As the mapping & —
Z;V:l I J(N) (&) is linear, the resulting set of densities is indeed convex. Furthermore,
for every measure ) in the set (3.8), using (3.5) and (3.1), we obtain

N N N
QD)= Epinvepn M€= Epivopn (€] =Epivopy | &| =1.
j=1

j=1 j=1

Nonnegativity is evident by construction, and thus indeed Q € Z (D), Q < P.

We conclude that for a fixed probability measure P, our mini-batch risk form
oN)[-, P], although originally defined on the set of bounded functions, has a dual
representation in terms of countably additive measures, without any singular compo-
nents. This is due to the involvement of the expectation over a finite sample, which
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“averages out” the singularities (this can be seen best on the form (2.7)). All probabil-
ity measures in the dual representation are absolutely continuous with respect to the
base measure P. Their densities are bounded by N, because all [H](.N) ©]() €10,1],
due to (3.1). Therefore, for a fixed probability measure P, we can consider the fol-
lowing mini-batch risk measure () : 2, (D, B(D), P) — R:

(3.9) rMz1=0oM|2,P|, ZeL(D,B(D),P).

COROLLARY 3.2. If the risk form ¢ : B(D) x Z(D) — R is coherent and law
invariant, then for every N >1 the functional (3.9) is a coherent measure of risk on
the space L1 (D, B(D), P), and its subdifferential is given by the equation

N
(310)  orM[Z]={ (e Zu(®.8(D),P): FE()<H) (= 1IN (E) ¢,

where the multifunction H:9N = 5N 45 defined as

N
H(D“N) = Arg max Z(D%), DN eV,
g J
gead (M)

Ezample 3.3. Consider the mini-batch max risk form (2.7) of Example 2.4:

N i .
(3.11) rM[Z] =Epu~ py [1235\[2(D )] ;
the measure P is fixed here. We have &™) = .%(N) in this case, and the formula
(3.10) applies directly.
An alternative way to derive the dual representation in this case follows from
the Kusuoka representation. Formula (2.10) and Strassen’s theorem imply that every
subgradient of ()[0] has density of the form

1
(3.12) ((v):N(N—l)/ a(l—a)N2p(a,v)da, vED,
0
where the function 7 :(0,1] x ® — R satisfies the conditions

1
0<n(e,")<—, a€(0,1],
o

/n(a,v)P(dv):l, a € (0,1],
o)

which express the requirement that n(c«,-) € 90AVaR,[0]. The collection of functions
(3.12) is identical to (3.10) at Z =0 with &/(N) = (V)

4. Unbiased stochastic subgradients. Suppose we have a coherent and law
invariant risk form ¢ : B(®) x £(®) — R. For bounded measurable functions Z :
D — R we can define the mini-batch risk form o¥)[Z, P] as in (2.4). As discussed in
section 3, when P is fixed and we view o(™)[., P] as a function of its first argument, it is
well defined on the space of integrable random variables £ (D, Z(D), P). Particularly
relevant for our purposes is formula (3.3). The set .&7(M) is a closed convex subset of
the simplex (3.1). Explicit representations of the set .7 (N) for some popular measures
of risk are readily available.
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For a sample DV = (D!,..., DV) and a bounded measurable function Z(-), we
construct a random probability measure p(Z; D¥V) in the following way. We solve
the maximization problem inside (3.3), obtaining a vector £(Z; D¥N). Then we set

(4.1) Z; DV Zgj s DY) 6 s

For any W € B(®D), the following inequality holds by construction:

N N
max Zgj Z (2; DN Z(D?) + Y &;(2; D"N) (W(D7) — Z(D7))

Z (2:D")2(D) + /@ (W) — Z()) [1(Z; D*N)] (dv).

Taking the expected value of both sides with respect to the sample D'V, we conclude
that

(4.2) oMW, P> o!™[Z, P] +/®(W(v) - Z(v)) [#(2)] (dv),

where
i(Z) =Epinp~ [u(Z; DY)

The expected value is understood in the weak* sense: for every bounded measurable
function f:® — R,

(13)  Epiveps [/ F0) [1(2; D)) dv} [ 1) ) @),

It follows from (4.2) that the probability measure fi(Z) is a subgradient of o(™¥)[-, P] at
Z, and the random measure p(Z; DY) can be interpreted as an unbiased stochastic
subgradient at Z.

Using (4.3), for any bounded measurable function W (-) we obtain

(4.4)
/ (W(v) = Z(v)) [1(Z)] (dv) = Epu~ . py [/ (W(v) = Z(v)) [p(Z; D¥M)] (do)
) )

N
=Epivopy |3 &(Z; DY) (W(D7) — Z(D7))

j=1
As in (3.5) we define
(N) ¢ _ £ (7. HLI:N i .
[Hj (f)}(v)—E[@(ZD )|D —v}, j=1,...,N.

Using the fact that all D7 are distributed according to P, we obtain from (4.2) and
(4.4) the inequality
N
oMW, P = odM[Z,P) 2 Epinpn § 3 [V ()] (D7) (W(D7) - 2(D7))

N
- /@ Z [1@)] () (W) - 2()) P(av).
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This means that the subgradient fi(Z) is absolutely continuous with respect to P,
with the density

N
¢=>"1M(@).
j=1

If we extend the domain of V)., P] to £ (D, (D), P), we get ¢ € o™ [Z, P].
We shall calculate unbiased stochastic subgradients of the mini-batch risk forms
defined in Examples 2.4 and 2.5.

Ezample 4.1. Consider the mini-batch risk form (2.7). For a function Z(-) and a
sample D'V we find j*(Z; D) such that

Z(D7(ZP"Y = max Z(DP).
1<j<N
Then it follows from (4.1) that the random measure p(Z; D*™N) = 6. zp1n, is a
stochastic subgradient of esV)[-, P] at Z. Its weak* expected value has the density
in (3.10).

Ezample 4.2. For the mini-batch risk form (2.11), given a function Z and a sample
DYV we can find the vector £(Z; DY) by calculating

[P N ;
M ¥ HZDN 253,207,
0 otherwise,

., N,

and setting &, (Z; DY) = T+ M- % Zjvzl Aj, k=1,...,N. Then the formula (4.1)
provides an unbiased stochastic subgradient of msdgN)[- ,Plat Z.

Stochastic subgradients of mini-batch risk forms are random probability measures.
However, they rarely occur in isolation; rather, they occur in compositions that we
discuss in the next section.

5. Compositions with nonsmooth and nonconvex functions. In applica-
tions, we usually deal with compositions of risk measures with some random functions
of our decision variables. A typical situation is the following: we have a “loss func-
tion” £:R™ x D — R and we consider the operator A:R" — £ (D, %4(D), P), defined
as

[A(z)] (v) =€(z,v), veED.

Then, for a risk measure r : £ (9, %4(D),P) — R, we formulate the optimization
problem

(5.1) min r{A(z)),

with some feasible set X C R™. Of course, additional conditions (to be discussed in
due course) are needed to make the composition F' =7 o A well defined. Furthermore,
in many situations, such as adversarial machine learning models [18], or multistage
stochastic programming [10], the loss function ¢(x, D) is neither smooth nor convex
with respect to x. This creates theoretical challenges in the analysis of the composition
F =roA and in the construction of solution methods. The extant approaches are
limited to specially structured risk measures, such as the semideviations [17, 18] or
the Average Value at Risk [20]. Our intention is to show that when we use the risk
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measure 7(N)[.] = o™ [., P] derived from a mini-batch risk form, we can analyze and
solve problems of form (5.1) for a very general class of nonsmooth and nonconvex loss
functions.

In our analysis, we focus on the broad subclass of locally Lipschitz functions
introduced in [27] and called “differentiable in a generalized sense” there. Here, we
call them “Norkin differentiable” for brevity.

DEFINITION 5.1. A function f:R™ — R is Norkin differentiable at a point z € R™
if an open set % C R™ containing x, and a nonempty, convex, compact valued, and
upper semicontinuous multifunction éf % = R™ exist, such that for all y € % and
all g € 3f(y) the following equation is true:

fy)=f(z) + {9,y — z) +o(z,y,9),
with
lim sup MZO
y—=x gedf(y) ||y—1'||

The set éf(y) 1s the Norkin subdifferential of f aty. If a function is Norkin differen-
tiable at every x € R™ with the same subdifferential mapping éf R = R™, we call it
Norkin differentiable. A wvector function f:R™ — R™ is Norkin differentiable if each
of its component functions, f; :R™ - R, i=1,...,m, has this property.

The class of such functions is contained in the set of locally Lipschitz functions
and contains all subdifferentially regular functions [5], Whitney stratifiable Lipschitz
functions [12], semismooth functions [25], and their compositions. If a function is
Norkin differentiable and has directional derivatives at x in every direction, then it
is semismooth at z. The Clarke subdifferential df(x) is an inclusion-minimal Norkin
subdifferential, but the Norkin subdifferential mapping 0 f () is not uniquely defined
in Definition 5.1, which is important when considering compositions. For stochastic
optimization, essential is the closure of the class of such functions with respect to
expectation, which allows for easy generation of stochastic subgradients.

THEOREM 5.2. Suppose the function {(x,v) is Norkin differentiable with respect
to x for all v € ®, and P-integrable with respect to v for all x € R™. Suppose the
multifunction o0 : R" x ® = R™ is measurable with respect to v for all x € R",
and is a Norkin subdifferential mapping of £(-,v) for all v € ©. Furthermore, let
for every compact set K C R™ a P-integrable function Lk : ® — R exist, such that
SUD, ¢ K SUP ;g 1,0) llgll < Li(v), v e D. If the risk form o : B(D) x (D) —» R is
coherent and law invariant, then for every N > 1 the function

(5.2) F(z)= o™ [A(z),P], zeR"

1s well defined and Norkin differentiable, and the multifunction I' : R™ = R™ defined
as

I(z)= {’y eR":3g(-) € dl(x,-), AC e arM[Z] at Z = A(z),

(5.3) V—Ag(v)C(v)P(dv)}, zeR",

1s its Norkin subdifferential mapping.
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Proof. By formula (3.3),

N
(5.4) F(z)=Epu~_pn ggﬁ);@z(x,Dﬂ)

Consider the function f:R” x DY — R given by

(5.5) f(z,DYN) = max Zgj (x, D7)

Eegf(N)

It is a composition f=m o ¢N) of the convex support function m : RM — R,

m(z1,...,2y) = max Zgjz],

gegﬂm
and the sample loss function
(M) (2, DYN) = (¢(x, DY),...,e(x, DV)).

By virtue of [27, Prop. 7], f(-, DY'V) is Norkin differentiable, and

N
Af (z, D) = conv {SER”:s:Zéjgj, with

j=1

(5.6) Eedm (¢(z,DY),... 7E(JU,DN)) and g; € ol(x, D7), j=1,... ,m}

is its Norkin subdifferential mapping. Observe that £ € dm((x, DY), ..., ¢(x, D))
corresponds to the maximizers in (3.4) at Z(D’) = {(x, D7), j=1,...,N. As £>0,
the convex hull operation in (5.6) is not needed, because the set in braces is convex
already; for a similar argument, see [19, Thm. VI.4.3.1]. Furthermore, §; € [0,1]
implies that the norm of each subgradient of f(z, D**V) is bounded by the norm of a
subgradient of £(z, D7) for some j. Hence, the assumptions of the theorem entail the
following bound for every compact set K:

N
sup  sup g <D Li(DY).
€K ~edf(z,DVN) j=1

The bound is integrable with respect to D" ~ PN. Observing that in (5.4) we have
(5.7) F(z) =Epu~pn [f(z,D"N)],

we obtain dF(z) = Epin_pn[df(x,DVN)] by virtue of [26, Thm.  23.1].
This, together with (5.6), where we skip the unnecessary convex hull, results in
formula (5.3). a0

Due to (5.7), formula (5.6) can be directly used to obtain unbiased stochastic
Norkin subgradients of the composition (5.2). First, we generate a sample DV from
PN . Then we calculate for each D7 a subgradient g; of {(z, D7), j =1,..., N. Further,

we solve the maximization problem in (5.5) and obtain the vector &; this is equivalent
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to the calculation of the random risk measure IQ\JA(AI‘),P(N )]. Finally, we construct
the stochastic subgradient by setting s = > ., g5 Epunvopn(s] € OF(z) by
Theorem 5.2. This allows for the application of the stochastic subgradient method of
[37], which is capable of solving problems with nonconvex and nonsmooth functions
that are differentiable in a generalized sense.

6. Dependence of risk forms on the probability measure. We study the
properties of risk forms when the measure P changes and their implication for mini-
batch risk forms, when the sample size changes. Throughout this section, we assume
that the space D is a finite-dimensional vector space with the norm || - || and that Z
is a fixed continuous function on D.

Recall the definition of the transportation distance between probability
measures.

For pq, o € P (D), we define the set of transportation plans

U(pr, p2) ={m € 2(D x D) : I = pu, om = o},

where IIy7w and Ilom denote the marginalizations of 7 over the first and the
second D-spaces. The transportation distance of order p € [1,00) between uq and
o is defined as

1/p

(6.1) )=t ([ - ulpaavan)
meU(n1,p2) \JDxD

We restrict the space of probability measures on ® to measures which have finite

moments or order p. We denote

M) = [ ol e
and consider the space
Zp(D) ={ne Z(D): Mp(p) <oo}.

The space &7,(®) with the metric J,(-,-) is a Polish space; see, e.g., [41].

This setting is very useful for our purposes, because it is known that for a finite-
dimensional data space © the empirical measures P(") converge to P in the expected
distance 7, if M, (P) < oo for some u > p. Furthermore, the expected distance can
be bounded by an explicit expression involving the batch size, the dimension of the
space, and the moment M, (P). The following inequality due to [11, 16] is true for all
N:

E [yp (P<N>,P)} <oMp/m

N-1/2 4 N—(u=p)/u if p>d/2 and u # 2p,
(6.2) x { N~V2In(14 N) + N-(w=P)/v if p=d/2 and u # 2p,
N—?/d 4 N~(u=p)/u if p<d/2 and u#d%‘ip,

where d =dim(®), u is an arbitrary real number greater than p, and C' is a constant
depending only on p, u, and d.

11t is called the Monge-Kantorovich, the Earth Mover’s, or the Wasserstein distance; we refer
the reader to the monographs [34] and [41] for an extensive exposition and historical account.
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Tt follows that the continuity of the mapping P — o[Z, P] is germane to our study.
We investigate this property and its implications for the analysis of the effect of the
batch size N in two important special cases.

6.1. Average Value at Risk and Kusuoka representations. We first con-
sider the special case of the Average Value at Risk (2.8) as the base risk form o[-, -].
It has an equivalent extremal representation,

(6.3) AVaR,[Z,P]= 7171611[% {n + é]Epr [max(0,Z(D) — n)}} ,

and the dual representation

(6.4) AVaR,[Z,P]= sup Ep.qlZ(D)],
Qe (P)

where

(6.5) M(P):{Qeﬁ(Q), Q<P Zg<;}‘

If Pe 2,(D), then & (P) C £1(D), and thus & can be viewed as a multifunction
from £;(®D) to its subsets.
The Hausdorff distance between sets A and B in &2,(D) is understood here as

dist, (A, B) = max (sup inf ,(P,Q), sup inf %(P,Q)) .
PecAQ €B QeBP €A

LEMMA 6.1. The multifunction o : 1(D) = P1(D) given by (6.5) is Lipschitz
continuous in the Hausdorff distance disty(-,-) with the constant 1/a:

1
dlStl(éZ/(Pl)7%(P2))§E%(Phpg) VPl,PQGng(Q).

Proof. Consider two probability measures Py, P, € Z1(D), and let 7 € U(Py, P»)
be the optimal transportation plan:?

(6.6) /@ o=yl w(dady) = (71, ).

It always exists; see, e.g., [41, Thm. 4.1]. We disintegrate the measure 7 into the
marginal P; on © and a kernel K : © — &1(D) (see, e.g., [4, Thm. IV.2.18]), so that

7T(A><B):/A/B K(dylz) Pi(dz) VA, Be Z(D).

For an arbitrary Q1 € &7 (P;) we construct a measure Q2 € (D) by setting (see,
e.g., [4, Thm. 1.6.11])

(6.7) Qa(B) = /@ /B K(dylz) Qu(dz) VB eB(D).

2In some proofs in this section, to improve readability, we use  and y to denote elements of the
space ©.
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Now we verify that Q2 € &7 (P3). Let ¢ = fli%l be the Radon-Nikodym derivative.

From (6.7), after returning to the product measure, we obtain

Qs(B) = /@ || K(@yla) ota) Prlar) - /@ | ety elazay)
g;/@/Bw(dzdy)_;PQ(B) VBeBD).

This means that Qo € &7 (Ps).
Consider the transportation plan

MAx B) :/ / K(dylz) Q1(dz) VA,BcB®).
AJB
Equation (6.7) implies that A € U(Q1,Q2). Therefore,

,%(Ql,c;z)g/Q )
1

1
(6.8) <1 / o — yl| m(dzdy) = = 75 (1, Py),
a JoxD «

e =yl Mdady) = /

D X

|z =yl ¢(z) m(dz dy)
D

where we have used (6.6). Thus,

. 1
sup inf  7(Q1,Q2) < —J1 (P, P).
Qi€ (P1) Qye7(Pa) «

Reversing the roles of P, and P», we obtain the assertion. O
Recall that a function Z : ® — R admits a modulus of continuity v : [0,00) — [0, 00) if
1Z(v) = Z(w)| <Y (lv—wl)) Vv,weD,
where lim; o (t) = ¥(0) = 0. It is well known that if Z(-) admits a modulus of
continuity, then it also admits a nondecreasing modulus of continuity. If the modulus
of continuity has an affine majorant or if the domain of Z(-) is convex, then a concave

nondecreasing modulus of continuity exists. A good example is ¥(t) = Lt® with
a€(0,1].

THEOREM 6.2. (i) If Z(-) is continuous and satisfies the inequality
(6.9) |Z(w)| <Cz(1+||w]) VweD,

then the functional AVaR,[Z, -] is continuous on the space P1(D).
(ii) If Z(-) admits a concave nondecreasing modulus of continuity ¥(-), then

(610) |AVaRa[Z,P1] — AV&RQ[Z,PQH S 'l)/J <;<%(P1,P2)> VPl,PQ c @1(@)

Proof. Assume that Z(-) is continuous and satisfies the growth condition (6.9). In
this case, AVaR,[Z, P] < oo for all P € 92,(D). Let {P,} be a sequence of measures
converging to P in the space &2 (D). Suppose « € (0,1). It follows from (6.3) that

(6.11) AVaR,[Z, Pl =1+ éEDNP [max(0, Z(D) — )],
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with 7 being an (1 — «)-quantile of Z under P. This yields the following estimate:
(6.12)

AVaR,|Z, P,| — AVaR,[Z, P

—min {1+ B, [ax(0,2(0) )] | 71 B fmax(0,2(D) ~ )

< é (Epp, [max(0, Z(D) — 1) — Epp[max(0, Z(D) — ).

Notice that | max(0, Z(D)—7)| < |Z(D)—7|, and, thus, it satisfies the growth condition
(6.9). Hence, the right-hand side of (6.12) converges to zero, by virtue of [41, Definition
6.4 (iv)]. We infer that

limsup AVaR,[Z, P,,] < AVaR,[Z, P].

n—oo

Let Q € &/ (P) be such that

AVaR,[Z,P]= sup Ep~q|Z(D)]=Ep.qlZ(D)].
Qe (P)

Using Lemma 6.1, we construct @,, € & (P,,) such that
— 1 1

Hence, the sequence {Q,,} converges to ) in the space Z;(®). We obtain
AVaRq[Z, P,] — AVaR,[Z, P]= sup Ep.q[Z(D)]-Ep.qlZ(D)]
Qe (Pn)
(6.13) >Ep~q, [Z(D)] —Ep.g[Z(D)].

Letting n — 0o, we obtain that the right-hand side of (6.13) converges to zero. Hence,

liminf AVaR,[Z, ] > AVaR[Z, P),
This concludes the proof of the continuity of AVaR,[Z, -] for a € (0,1). If a =1, then
AVaR,[Z,P] =Ep.p[Z(D)], and the continuity follows directly from [41, Definition
6.4 (iv)].

We now pass to the assertion (6.10) involving a concave nondecreasing modulus
of continuity. Observe that the growth condition (6.9) is satisfied in this case. Let
P, P, e 21(D). Let Q1 € & (P1) be such that Ep.g,[Z(D)] = AVaR,[Z, P;].

As in Lemma 6.1, we can construct Q2 € o/ (P,) such that (6.8) is satisfied. We
have the estimate
(6.14)

AVaR,[Z, Po] 2 Ep~q, [Z(D)] = Ep~q, [Z(D)] + (Ep~q, [Z(D)] — Ep~q, [Z(D)])
= AVaR,[Z, P+ (Ep~q, [Z(D)] = Ep~q, [Z(D)]) -

Consider the case when Z(-) admits the modulus of continuity v (-). For any trans-
portation plan A € U(Q1,Q2), applying the modulus of continuity and Jensen’s in-
equality, we obtain

[Ep~@, [Z(D)] = Ep~q, [Z(D)]]| =

/szu [Z(v) — Z(w)] )\(dvdw)‘

<[ _uto-uxavawy o ([ jo-ula@an).
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Taking the infimum over the feasible transportation plans on the right-hand side, and
keeping in mind the monotonicity of #(-), we obtain

(6.15) [Ep~@, [Z(D)] = Epnq, [Z(D)]] <9 (71(Q1,Q2)) -
Integrating (6.14), (6.15), and (6.8), we conclude that

AV [Z,P1] = AVaR (2, P2 < 6 (7i(Q1,Qa)) < (£ (P ) ).

Exchanging the roles of P; and P», we obtain the estimate (6.10). d

Let us pass to the mini-batch risk form
AVaRM[Z, P] = Epiov . pn [AVaRa [Z’P(N)H .

It is well known that the infimum of a sample average approximation is a lower bound
of the infimum in (6.3):

AVaR(M[Z, P] < AVaR,|Z, P].

Now, we can obtain an explicit bound on the bias.

COROLLARY 6.3. If Z(-) admits a concave nondecreasing modulus of continuity

¥(+), then
AVaR,[Z, P — AVaR™M[Z, P] < ¥ (1IE {z(PUV), P)D .
o)
Furthermore, if M, (P) < oo for some u> 1, then for all N >1

AVaR,|Z, P] — AVaR™M)[Z, P] < (%N)) 7

where the constant 71 (N) is given by the right-hand side of (6.2).
Proof. According to Theorem 6.2,

AVaRa|Z, P] — AVaRo[Z, PYV)] < (191(P(N), P)) .
[0

Taking the expected value of both sides, and using Jensen’s inequality, we obtain the
assertion. O

These estimates allow us to analyze law invariant risk forms that admit a Kusuoka
representation

1
(6.16) 0[Z,P] = sup / AVaR,[Z, P] M(da),
red, Jo
where A, is a closed convex set of probability measures on [0,1]. In [9], sufficient
conditions for such a representation are provided.
With every A € 4, in the Kusuoka representation (6.16) of o[Z, P(N)], we associate
the function

(6.17) oale)= | Aldh)

t
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We observe that ¢, (+) is nonnegative and nonincreasing and can be viewed as a density
because

619 [ ot [ [ 200 [ [ [

The second equation is obtained by changing the order of integration.
We show that the resulting mini-batch risk measure is strongly consistent for
bounded continuous functions Z(+).

THEOREM 6.4. If Z(-) is continuous and bounded, the measure P has connected
support, and the risk form o[-, -] admits the representation (6.16), then the mini-batch
risk measure oN)[Z, P] converges to o[Z, P], when N — occ.

Proof. We denote the quantile function of Z by GGz and the generalized inverse
(N) (N)
of F; " by G;.
Noting that A(da)/a = —dpa(a) and integrating by parts, we transform the
integral in the Kusuoka representation as follows:

/1AVaRa[Z,P(N)])\(da):/11 1 Gz(t) dt \(da)
0 0

& J1—a

(6.19) __ /0 G (1) dt dgy (0) = — /0 o1 (0)G () dar.

-«

We compare o[Z, PY)] and o[Z, P] using (6.19) in their Kusuoka representations as
follows:

1 1 N
olZ, PN)] = o[Z, P] = sup / er(@Gz(a)da— swp [ or(@G(@)da

AE4, xed, Jo
1
(6.20) < sup / or(a) (Gz(a) —G(ZN) (a)) da
Aed, Jo

<68 @ - ez

The last inequality is obtained by applying Holder’s inequality and using (6.18). The
norm ||G(ZN)(a) — Gz(®)]| o is finite for any Z with bounded support. Hence,

012, P™) = 0(2,P]| < | 65" () — Gz (o)

o

Under the assumptions of the theorem, ||G(ZN) (@) — Gz()]|oo converges a.s. to zero,
when N — oo [3], which implies that o[Z, P(N)] converges a.s. to o[Z, P]. Additionally,
our estimate implies

012, PN < 1612, P]| + [ 657 (@) = G2 ()| _ < el Pl + 2 ]Gz ()]

Hence, o™)[Z, P] converges to ¢[Z, P] when N — oo by virtue of the Lebesgue domi-
nated convergence theorem. 0

To obtain error estimates, stronger assumptions on the spectrum are needed.
However, we may drop the boundedness condition on Z(-).
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THEOREM 6.5. Suppose P € Z,(D) with p € [1,00) and Z(-) is Lipschitz con-
tinuous with the constant Ly. Furthermore, suppose the risk form o[-, -] admits the
representation (6.16) such that, with some constant C,,

lex(le <C, YAEA, 1/p+i/g=1.
If M, (P) < oo for some u>p, then for all N >1
|6 (2,P] = o 2.P)| < CyLm, (),
where the constant 7,(N) is given by the right-hand side of (6.2).

Proof. We compare o[Z, P‘N)] and o[Z, P] using (6.20):

ol#, PV) —ol2,P) < sup | @) (65" = G2(@)) da

(6.21) < swp [65() = Gz0)| lerO)lla < Co7, (PR, ).
AeA, P

The penultimate inequality is obtained by applying Holder’s inequality, while the last
inequality follows by the assumptions on A, and the representation of the distance by
quantile functions: Z,(PéN),PZ) = HG(ZN)(a) — Gz(a)||p; see, e.g., [31].
Suppose A is the optimal transportation plan between P(N) and P on ® x D.
Define 7 € Z(R x R) as
m(Ax B)=X(Z""(A)x Z7'(B)) VA,Bec%R).
Its left marginal is

T(AXR)=A(Z71(A) x D) = PN (271(4)) = P (A) VAecBR).

The right marginal is Pz, in a similar way, and thus 7 € U (PéN),PZ). Consequently,

%(p;N>,PZ)pg/ |a—b|p7r(dadb):/ 1Z(0) — Z(w)[P A(dvduw)
RxR DXD

DXD

The substitution into (6.21) yields
012, PN — (2, P) < CyLz 7, (P, P).

Reversing the roles of PY) and P, and taking the expected value, we obtain the
assertion. O

6.2. Mean-semideviation risk forms. The method applied in the previous
subsection can be extended to other risk forms with the use of higher order trans-
portation metrics.

Consider the mean-semideviation risk form of order p € [1,00) defined in (2.2):

msd,[Z, P| =Ep[Z] + » |[max (0, Z — Ep[Z])||,, -
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To simplify notation, we write Ep[Z] for Ep.p[Z(D)], and we use the norm || - ||, in
the space .Z,(D,A(D),P). The dual representation of msd,|[-, P] has the following
form, with 1/p+1/¢=1:

(6.22) d(P)z{QE@(CD):Q«P, %:1+§—Ep[§]7 ISl < 52, gzo}.

Hoélder’s inequality implies that o/ (P) C 71 (®) whenever P € Z,(D), and thus we
can view &7 as a multifunction from &,(D) to &1 (D).

LEMMA 6.6. The multifunction o : Z,(D) = P1(D) given by (6.22) satisfies
the inequality

(623) diStl (L(Zf(Pl),JZ{(PQ))S(1+%)%(P17P2) \V/Pl,PQEQP(@).

Proof. Consider two probability measures Pi, P, € Z,(D), and let m € U(P1, Ps)
be the optimal transportation plan:

(6.24) ([ e ynpw(dxdy))l/p _ 7(Py.Py).

Again, we disintegrate the measure 7 into the marginal P, on ® and a kernel K :
D — Z,(D):

W(AXB):/A/BK(dypc)Pl(dx) VA BeBD).

For an arbitrary Q; € &7 (P;), we construct a measure Q2 € Z(®) by formula (6.7).

It follows from (6.22) that 2%1 =1+ ¢ —Ep,[¢] for some ¢ > 0 integrable in the gth

power with respect to Py. Substituting into (6.7), we obtain

Qu(B)= [ [ Kasle) (1+C(@) ~En () Pr(an
(6.25) =P5(B)(1-Ep,[¢]) + / / K(dy|z) ((x) Py(dz) V¥ Be B(D).
o.JB
Consider the measure defined by the third term in (6.25):
Ir'B)= /@ /B K(dy|x) ¢(x) Py (dz) = /@XBC(z) w(dzdy) VBeRBD).

As it is absolutely continuous with respect to P, it has a density v = 5171; by the
Radon—Nikodym theorem. Hence, for any function g € £,(9,%(D), P,), we can
write

(6.26) /@ 9(y)v(y) Pa(dy) = / 9(y)¢(x) m(dz dy).

DXD

Observe that we may formally regard both g and ¢ as members of .2, (D x D, (D x
D), m) and Z,(D x D, B(D x D), m), respectively. We apply Holder’s inequality to
the right-hand side of (6.26) to obtain

/@ 9(0)7(®) Pa(dy) < llgllp <1l
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with the norms in the said spaces. However, since g(-) is a function of the second
variable only and P, is the second marginal of 7, ||g||, is the same in the space
2, (D, %(D), P;). In a similar way, ||(]|4 is the same in % (D, A(D), P1). It follows
from the last displayed inequality that

(6.27) 7lla < €llq < 52,

with the norm of v in .2, (D, Z(D), P;) and the norm of ¢ in .Z,(D, A(D), P1). Fur-
thermore, (6.26) with g =1 implies that

(6.25) Erbl= [ ) Pdn) = [ <o) Pidn) =En (0]
Combining (6.25), (6.27), and (6.28), we conclude that
dQ
—*L_ 1 < >0.
ap, — L ErDI+y Il <o v 20

This means that Q2 € 7 (Ps).
To estimate the distance .71 (Q1,Q2) we consider the transportation plan

)\(AxB):/A/BK(dy|m)Q1(dx) VA,Be D).

By (6.7), A € U(Q1,Q2). Therefore, by Hélder’s inequality in the spaces .£,(D x
D, B(D,xD),n) and L, (D x D, B(D, xD),n), and by (6.24), we obtain the chain of
relations

«%(Ql,Qz)S/

DX

[l =yl A(dz dy)
D

(6.29) - /@ _llo =yl (1+¢(a) = B [q]) m(dedy)

< Tp(Pr, B) 14+ ¢ = Ep (],

In the last inequality, we used the fact that 0 <Ep, [(] < [|(]|; < 3. Thus,

sup Hlf %(Ql,Q2)§(1+%)%(P1,P2)
Q19 (P1) Q€9 (Ps)

Reversing the roles of P; and P,, we obtain (6.23). O

This allows us to obtain an estimate of the difference between the mini-batch risk
measure and its “mother” measure for any batch size N.

COROLLARY 6.7. If P€ Z,(D) and Z(-) admits a concave nondecreasing modu-
lus of continuity (), then

‘msdp[Z,P] - msd<pN>[z,P]‘ < ((1 +)E [yp(P(NL P)D :
Furthermore, if M, (P) < oo for some u>p, then for all N >1
[ msdy (2, P] — msd{ [, P]| < o (14 59 7(NV)),

where the constant 7,(N) is given by the right-hand side of (6.2).
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7. Conclusions. While the base risk forms are defined for bounded functions
on the data space ® and probability measures on this space, the mini-batch risk
forms are well defined for all integrable functions once the probability measure is
fixed. They have the potential for applications in risk-averse decision, control, and
learning, due to the fact that they allow for the construction of unbiased estimates of
their subgradients, and generalized gradients of their compositions with random loss
functions. Furthermore, restricting the data space to a finite-dimensional space allows
for the use of transportation metrics in the spaces of probability measures and leads
to quantitative estimates of the difference between the mini-batch risk evaluation and
the base risk measure.
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