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SMOOTH APPROXIMATION OF MAPPINGS WITH RANK OF THE
DERIVATIVE AT MOST 1

PAWEY, GOLDSTEIN AND PIOTR HAJLASZ

ABSTRACT. It was conjectured that if f € C'(R", R") satisfies rank Df < m < n ev-
erywhere in R™, then f can be uniformly approximated by C°°-mappings g satisfying
rank Dg < m everywhere. While in general, there are counterexamples to this conjecture,
we prove that the answer is in the positive when m = 1. More precisely, if m = 1, our
result yields an almost-uniform approximation of locally Lipschitz mappings f : Q — R"”,
satisfying rank Df < 1 a.e., by C*°-mappings g with rank Dg < 1, provided Q C R" is
simply connected. The construction of the approximation employs techniques of analysis
on metric spaces, including the theory of metric trees (R-trees).

1. INTRODUCTION

The following conjecture was stated by Jacek Gateski [6, Conjecture 1.1 and Section 3.3].

Conjecture 1.1. Let 1 < m < n be integers and let Q C R™ be open. If f € CH(Q,R")
satisfies rank D f < m everywhere in ), then f can be uniformly approximated by smooth
mappings g € C*°(Q, R") such that rank Dg < m everywhere in €.

One can also formulate a weaker, local version of this conjecture (see [7]).

Conjecture 1.2. Let 1 < m < n be integers and let Q C R™ be open. If f € CH(Q,R")
satisfies rank Df < m everywhere in (), then for every x € ) there is a neighborhood
B"(x,e) C Q and a sequence f; € C®°(B"(x, ), R™) such that rank D f; < m everywhere in
B"(x,¢) and f; converges uniformly to f on B"(x,¢).

These are very natural conjectures and the main difficulty is that standard approximation
techniques like the one based on convolution do not preserve the rank of the derivative. It
is a highly nonlinear constraint, difficult to deal with.

However, there is an open and dense subset G C €2, where the rank of the derivative is
locally constant. Using the rank theorem on G along with the standard approximation by
convolution one easily obtains a partial result in the positive direction |7, Theorem 3].
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Theorem 1.3. Let 1 < m < n be integers and let Q C R™ be open. If f € C1(2, R™) satis-
fiesrank D f < m everywhere in €2, then there is an open and dense set G C €2 such that for
every © € G there is a neighborhood B™(x,e) C G and a sequence f; € C>*(B"(z,¢),R"),
such that rank D f; < m in B™(x, ) and f; converges to f uniformly on B"(z,¢).

The problem is, however, caused by the closed and nowhere dense set 2\ G, where the
rank of the derivative is not constant and the rank theorem cannot be used. In fact, in [7]
the authors constructed infinitely many counterexamples to Conjecture and hence also
to Conjecture [L11

Example 1.4. There is f € C*(R® R®) with rank Df < 3 that cannot be locally and
uniformly approximated (in the sense of Conjecture [L2) by mappings g € C?(R’ R®)
satisfying rank Dg < 3.

Example 1.5. Thereis f € C1(R",R"), rank D f < 4, that cannot be locally and uniformly
approximated (in the sense of Conjecture [L2) by mappings g € C3*(R7,R7) satisfying
rank Dg < 4.

These examples are special cases of a much more general result [7, Theorem 4], which
provides infinitely many similar examples.

Theorem 1.6. Suppose that m+1 <k <2m—1,{>k+1,r > m+1, and the homotopy
group mx(S™) is non-trivial. Then there is a map f € C*(R*,R") with rank Df < m in R’
and a Cantor set E C R" with the following property:

For every x, € E and € > 0 there is 6 > 0 such that
if g € C*="* (B (z,,¢),R") and |f(x) — g(x)| < § for all x € B (z,,¢),
then rank Dg > m + 1 on a non-empty open set in B(z,, ).

The proof of the theorem involves the methods of algebraic topology.

In the same paper [7, Conjecture 6] the authors conjectured that if m = 1, then in fact
the uniform approximation is possible. The main result of the paper answers the conjecture
in the positive:

Theorem 1.7. Assume 2 C R" is a simply connected domain. If f : Q — R™ is a
locally Lipschitz map satisfying rank Df < 1 a.e. in §, then there exist C°°-smooth maps
fi : Q@ — R™ with rank Df; < 1 in 2, such that for any compact K C Q) the functions f;
converge uniformly to f on K, as i — oo.

An immediate consequence addresses Conjecture [L.2:

Corollary 1.8. Let 2 C R"™ be open. If f : Q0 — R™ is a locally Lipschitz map satisfying
rank Df < 1 a.e. in €, then for every x € Q) there is a neighborhood B™(x,c) C Q and
C*-smooth maps f; : B"(x,e) — R™, such that rank D f; < 1 everywhere in B"(x,¢), and
the functions f; converge uniformly to f on B™(z,¢), as i — oc.

While Theorem [L.7] has a purely Euclidean statement, it is interesting to note that the
proof presented in the paper is based mostly on quite abstract techniques of analysis on
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metric spaces. However, since the result should be of interest to researchers that are not
familiar with analysis on metric spaces, the proofs presented in the paper are self-contained.

A very rough idea of the proof is as follows.

Assume first that f € C'. The set G C Q where rank Df = 1 is open. According to the
rank theorem a neighborhood of every point # € G is mapped onto a C* curve. However, at
points of the closed set where rank D f = 0, the C' curve may branch into infinitely many
C! curves. Thus a rough intuition is that a mapping f € C! satisfying the rank condition
rank Df < 1is a C' curve with possibly infinitely many branching points. The situation
is very complicated from the topological point of view, and the best way to approach it
is to construct an abstract metric space Zy (a metric tree) that is a representation of the
branching of the map. Roughly speaking, edges of Z; correspond to C* curves in the image
of G. It is possible to construct Z; in such a way that the map f factors through Zy,

08 Z, LR f=¢ou,

where 1 is locally Lipschitz and ¢ is Lipschitz. In fact, the construction of the metric
tree Z; along with the factorization f = ¢ o is possible if f is Lipschitz and such that
rank D f < 1 almost everywhere.

The construction of the space Z; is quite abstract and the proof that Z; is a metric tree
requires intricate arguments from analysis on metric spaces.

Then, we construct a retraction r : Zy — T onto a finite sub-tree, which is uniformly
close to the identity map id : Zy — Zy, so that ¢ or 01 is an approximation of f = ¢ o).

We can assume that the finite tree 7' is embedded into R¥, where E is the number of
edges in T'. Next, we approximate rot) :  — T C RF by C*-mappings ¢; : Q — T C R¥,
gi € C®(Q,RE), s0 ¢po g; is close to ¢ o r o 1) and hence close to f = ¢ o 1.

Clearly, the mappings g; satisfy rank Dg; < 1, because their images lie in the finite
tree 7.

~ We can extend ¢|7 : T — R™ to a Lipschitz map qg : RF — R™ and we can approximate
¢ by C*°-mappings ¢; € C=°(RE, R™).

Finally, ¢;0g; : @ — R™ is C**-smooth, rank D(¢; 0 g;) < 1 by the chain rule, and ¢; o g,
is close to ¢ o g; = ¢ o g;, which is close to f.

The method of factorization through metric trees used in the proof of Theorem [L.7] is
very different and completely unrelated to the methods of algebraic topology used in the
proof of Theorem However, quite surprisingly, both techniques have originally been
used in [19] as tools for study of Lipschitz homotopy groups of the Heisenberg group,
a problem that seems completely unrelated to Theorems and [L7. These techniques
were elaborated in [2] [4, [7, 8, 20]. In particular, we use results from [4], and some of the
approximation techniques from [8]. See also [12| [16] for related constructions.

In fact, the idea of factorization of real valued functions through graphs and trees already
appeared in the work of Kronrod [II] and Reeb [17]. This construction known as the
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Kronrod-Reeb graph or Reeb graph, has many applications in computational geometry
and in topological data analysis, see e.g., [3, [14] and references therein.

The paper is structured as follows. Sections[2 [3] and (] are devoted to auxiliary material
needed in the proof of Theorem [[L7 In Section 2] we discuss some topics on analysis in
metric spaces, including the theory of metric trees. In Section [3] we discuss some results
about the rank of the derivative of Lipschitz maps, and in Sectiondlwe discuss factorization
of Lipschitz maps through metric trees. The final Section [l is entirely devoted to the proof
of Theorem [L.71

Notation. The notation in the paper is rather standard, but we list here the conventions
used for the convenience of the reader.

A domain in R™ is an open and connected subset of R”. By B"(x,r) we denote the
Euclidean open ball centered at x, of radius r. If no center or radius is specified, B"
denotes the unit ball in R™. Similarly, S” denotes the unit n-dimensional sphere.

The Euclidean norm in R¥ is denoted by | - | (for any k) and for z,y € R¥ we denote
by z -y the Euclidean scalar product of x and y. If A is a linear map from R* to R™, its
operator norm is defined as || A|| = sup{|Az| : |z| < 1}.

If X is a subset of a metric space, then by X we denote the closure of X, and for any
0 > 0 the d-neighborhood of X is the set of points at distance less than ¢ from X.

For a given £ > 0, a subset X of a metric space Y is an e-net, if dist(y, X) < ¢ for every
y € Y. If X is compact, then for any € > 0 there exists a finite e-net in X.

2. METRIC SPACES

In this section we briefly recall some facts from the theory of metric spaces. While the
material is mostly well known, some of the results (Proposition 211] and Theorem [2.15)
seem new.

2.1. Rectifiable curves. For more details see e.g., [9, Section 3].

Let (X, d) be a metric space. By a curve in X we mean a continuous map 7 : [a,b] — X.
The length of v is defined as £(y) = sup S.7—, d(y(t;),V(tis1)), where the supremum is
taken over all partitions a =ty <t; <...<t, =0.

A curve is rectifiable if () < co. Clearly, if v(a) = x and v(b) = y, then d(z,y) < {(7).

Reparameterization of a curve does not change its length and every rectifiable curve can
be reparameterized in such a way that the reparameterized curve 4 : [0, ()] — X satisfies
((Alisy) =t —sforall 0 <t <s < b In particular, 4 is 1-Lipschitz. Such an orientation
preserving reparameterization is unique and we say that 4 is parameterized by arc-length,
see e.g., |9, Theorem 3.2].

For us, the only important consequence of this fact is that when studying rectifiable
curves in X, we may restrict ourselves to the class of Lipschitz continuous curves.
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We say that a metric space is proper if bounded and closed sets are compact.

Lemma 2.1. If a metric space X is proper and there is a rectifiable curve connecting
x,y € X, then there is a shortest curve connecting x and y.

For a proof, see e.g., [9, Theorem 3.9]. This is a simple consequence of the Arzela-Ascoli
theorem and the lower semicontinuity of the length with respect to the uniform convergence
of curves.

A shortest curve connecting x to y is called a geodesic. Geodesics are not necessarily
unique.

Lemma 2.2. Any geodesic is one-to-one.
Proof. Otherwise we could make it shorter by removing ‘loops’. O

We say that X is a length space if for any x,y € X, d(x,y) equals the infimum of lengths
of curves connecting x to y. A space is geodesic if for any x,y € X, there is a curve v
connecting x to y such that d(x,y) = £(7).

Clearly, every geodesic space is a length space. However, R™ \ {0} is a length space,
but not a geodesic one. It is also locally compact, but not proper. The next result is an
immediate consequence of Lemma 2.1

Lemma 2.3. If X is a proper length space, then X is geodesic.

An arc is a metric space homeomorphic to the interval [0, 1].

If T" is an arc and ; : [a;, b;] — T, i = 1,2, are homeomorphisms, then ¢(7;) = ¢(72) and
we define ¢(I") as the length of any of its homeomorphic parameterizations. We say that
an arc I is rectifiable if ¢(I") < oo.

It follows from Lemma that the image of a geodesic is a rectifiable arc.

Lemma 2.4. If points x,y € X, © # y, can be connected by a rectifiable curve v and if T
1s the image of the curve, then there is a rectifiable arc inside I' with endpoints x and vy,
of length less than or equal £(7).

Proof. T' is compact and x,y € [' can be connected by a rectifiable curve in I', so by
Lemma [2.] there is a shortest curve inside I' connecting x to y. By Lemma the curve
is one-to-one and hence its image is an arc. U

Corollary 2.5. In a length space X, for any distinct points x,y € X, d(x,y) equals the
mfimum of lengths of rectifiable arcs with endpoints x and y.

Lemma 2.6. Suppose that I'y and 'y are rectifiable arcs in a metric space X connecting

the same endpoints. If 'y # Ty, then there is a one-to-one Lipschitz map o : S' — X.

Proof. Let 719 : [0,1] — I'y2 be Lipschitz homeomorphisms with x := 7,(0) = ~2(0),
y:=71(1) = 12(1). (Note that the homeomorphisms 7, » are not necessarily bi-Lipschitz.)
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If 'y # Ty, say I'1 \ 'y # @, then there is tg € (0, 1) such that v (to) € ['s, and we can find
a € [0,ty) and b € (to, 1] such that

T:=my(a) €Ty, §:=m(b) €ly, m(a,b)NTy=2.

Now, concatenation of subarcs of ['; and I'y between the points  and ¢ defines a one-to-one
Lipschitz map o : St — X. U

Remark 2.7. Although the map v : S — X is one-to-one and Lipschitz, it need not be
bi-Lipschitz, since its image may possess ‘cusps’.

2.2. Lipschitz functions. Let X be a metric space. A mapping f : Q2 — X, Q C R"
open, is locally Lipschitz, if for every x € 2 there is r > 0 such that f|p(,) is Lipschitz.

Lemma 2.8. Let f: Q — X be a mapping from an open set Q0 C R™ to a metric space X.
Then the following conditions are equivalent:

(a) f is locally Lipschitz,
(b) flk is Lipschitz for every compact set K C €,

Proof. The implication from (b) to (a) is obvious, so it remains to show that (a) implies
(b).

Clearly, M := sup, ,cx d(f(x), f(y)) < co. Let {B;}}', be a finite covering of K by balls
such that for each 4, f|p, is Lipschitz. Let L be the maximum of the Lipschitz constants
of these functions. Let 0 > 0 be the Lebesgue number of the covering.

If z,y € K and |z — y| < ¢, then z and y belong to one of the balls B; and hence
d(f(z), f(y)) < Llz —y|. I [z —y[ > 6, then d(f(x), f(y)) < M < Mé~'|z —y|. This
proves that f|x is Lipschitz. O

The following extension result is due to McShane [13], |10, Theorem 6.2].

Lemma 2.9. Let X be a metric space and let f : E — R be an L-Lipschitz function
defined on a subset E of X. Then there exists an L-Lipschitz function F : X — R such
that F(z) = f(x) for all z € E.

The next result is also well known, see [10, Theorem 6.8].

Lemma 2.10. If f : X — R is a bounded and uniformly continuous function on a metric
space, then there is a sequence of Lipschitz continuous functions f; : X - R, 1 =1,2,3,.. .,
such that f; — f converges uniformly on X.

2.3. Mapping spheres into metric spaces.

Proposition 2.11. Let X be a metric space. Assume that there is a continuous map
a:S" = X, and x, € S", such that a is one-to-one in a neighborhood of x,, and
a Ya(x,)) = {x,}. Then there is a Lipschitz map 7 : X — R such that (7 o a)(S") =
S* c R", and the map ™o o : S* — S™ is homotopic to the identity map.



APPROXIMATION OF MAPPINGS WITH rankDf <1 7

Proof. Without loss of generality, we may assume that x, = N is the north pole of S™. It
follows from the assumptions of the theorem that there is a closed spherical cap W centered
at N (boundary of W is a parallel of constant longitude), such that o : W — «(W) is a
homeomorphism and a(S"\ W)Na(W) = .

Let R :S"™ — S™ be the continuous map that stretches W onto S" along meridians, and
maps S™ \ W to the south pole S. Clearly, R is homotopic to the identity.

The map a™' : a(W) — W is continuous and we define g : a(S") — S" by

_J(Roa(y) ifyea(W),
9ly) = {5 if y € a(S™) \ a(W).

It is easy to see that the map ¢ is continuous and that goa = R : S" — S", so go « is
homotopic to the identity.

According to Lemma 2.I0, we can find a Lipschitz map h : a(S") — R"™!, such that
|h(y) —g(y)| < 1/2 for all y € a(S").

Since |g(y)| = 1, it follows that |h(y)| > 1/2, so the map

h(y)
m(y) = ca(S") — ST
A (y)]
is Lipschitz continuous and |7(y) — g(y)| < 1 for all y € «(S™). Therefore, the maps
7, g : a(S") — S™ are homotopic (homotopy along unique shortest geodesics in S™). This
also implies that m o : S — S™ is homotopic to g o & = R, and hence 7 o o is homotopic
to the identity map.

Now, it remains to extend 7 : (S") — S® C R™*! to a Lipschitz map 7 : X — R*!
using Lemma, O

The next result illustrates the above proposition. We learned it from Petrunin, see [15]
p.67].

Corollary 2.12. Let X be a contractible metric space with zero (n+ 1)-dimensional Haus-
dorff measure. Assume that Dy, Dy C X are two embedded closed n-dimensional balls
having the same boundary. Then Dy = Ds.

Proof. Suppose by way of contradiction that D; # D,. Since D; and D, have common
boundary, there is a continuous map « : S™ — X that is a homeomorphism of the upper
hemisphere S} and the lower hemisphere S” onto D; and D, respectively.

Indeed, we can construct « as follows. Let ay : S} — D; and a— : S — D, be
homeomorphisms. We cannot glue them along the equator S"~* = S N'S™, because o
and a_ need not agree on S*~*. Note that a~' o a . : S*! — S*! is a homeomorphism
and we can extend it to a homeomorphism of the lower hemisphere A : S — S” as a map
that maps each of the (n — 1)-dimensional spheres parallel to the equator S*~* onto itself
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as a scaled copy of the homeomorphism a~! o a;. Then

oy on S”
a:{ :

a_oh onS"
has all the properties we need.

Since D; # D,, it follows that the mapping « satisfies the assumptions of Proposi-
tion 211l By contractibility of the space, the map « admits a continuous extension to
A B — X. Let 7 : X — R"! be the mapping from Proposition 211 Then
B"*! C (7o A)(B"™') C w(X). That shows that a Lipschitz image of X has positive
(n + 1)-dimensional Hausdorff measure and hence X has positive (n + 1)-dimensional
Hausdorff measure, which is a contradiction. O]

2.4. Metric trees. A geodesic space is called a metric tree if for any x,y € X, x # vy,
there is a unique arc with endpoints x and y.

The next lemma is well known, see e.g., [I, Lemma 2.2.2].

Lemma 2.13. Metric trees are contractible.

Indeed, we fix a point x, in a metric tree and we perform a contraction to x, of any
point z along the unique geodesic connecting x, to point . One only needs to check that
the homotopy created this way is continuous.

Lemma 2.14. If X is a length space, and for any x,y € X, x # y, there is a unique
rectifiable arc with endpoints x and y, then X is a geodesic space.

Proof. Let x,y € X, v # y. Since X is a length space, Corollary yields existence of
a rectifiable arc I" with endpoints = and y. It remains to show that ¢(T") = d(z,y). If
by contrary, ¢(I') > d(x,y), then Corollary yields another arc I connecting x to y
and such that ¢(I') > ¢(I') > d(x,y), so clearly I" # I"". This, however, contradicts the
uniqueness of a rectifiable arc connecting x and y. U

The next result provides several characterizations of a metric tree.

Theorem 2.15. Let X be a metric space. Then the following conditions are equivalent.

(a) X is a metric tree.

b) X is a length space and for anyx,y € X, x there is a unique arc with endpoints

( gth sp yr,ye X,z #y, q p
x and y.

(c) X is a length space and for any x,y € X, x # y, there is a unique rectifiable arc
with endpoints x and y.

(d) X is a length space and there is no one-to-one Lipschitz map o : S* — X.

(e) X is a length space and it has the following property: for any Lipschitz maps
a:S' = X and 7 : X — R?, such that m o o maps S' to S* C R?, the map
moa: St — S is not homotopic to the identity map.
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Proof. 1t suffices to prove implications (a)<(b), (a)=-(c)=(b), (¢)<(d)<«=(e) and (a)=>(e)
The implication (a)=-(b) is obvious.

To prove (b)=-(a) we only need to show that X is a geodesic space. Since X is a length
space, Corollary yields existence of a rectifiable arc connecting = to y, z # y. Clearly,
by the assumptions of (b), it must be a unique rectifiable arc connecting x and y, so X is
a geodesic space by Lemma 2.14]

The implication (a)=-(c) is obvious. Indeed, since X is a geodesic space, there is a
geodesic connecting = and y, © # y, and by Lemma 2.2] the image of the geodesic is a
rectifiable arc. Since it is the unique arc connecting x and y, it is also the unique rectifiable
arc connecting x and y.

(¢)=(b) According to Lemma 2.14] X is a geodesic space. Thus, if x,y € X, x # vy, the
image I' of the geodesic connecting x to y is the unique rectifiable arc with endpoints x
and y. It remains to show that I' is the unique arc with the endpoints x and y.

To this end it suffices to show that any arc A connecting x to y is contained in I';) A C T,
because it clearly implies that A =T

Suppose by way of contradiction that there is an arc A with endpoints  and y, and
such that A\ T # &.

Let v : [0,1] = A be a homeomorphism, «(0) = z, a(1) = y. Since A is not contained
in T, there is ¢ty € (0,1), such that a(ty) € I'. We can find a € [0,y) and b € (¢o, 1] such
that

T:=aa)el, g:=ab)el, and oafe,b)NI' =0o.
Denote the sub-arc of T’ with endpoints Z and § by I'. Choose

a<t Ny<tny<...<tg<...<ty<hb,

such that

(2.1) d(a(ty), a(tisy)) < dist(a(t;),T) fori=—N,...,N —1,

and

(2.2) d(#,a(t-n)) + d(a(tn), §) < d(&,5) = (I).

Next, we connect consecutive points Z, a(t_n), a(t_n+1), ..., a(ty), g, by geodesics (we

already proved that X is a geodesic space).

It follows from (2.I]) that the geodesics connecting «(t;) to a(t;11) do not intersect with
I'. Since by (2.2)), the sum of lengths of geodesics connecting & to a(t_y) and a(ty) to §
is less than ¢(T"), T" is not contained in the image of these two geodesics.

Let n be a rectifiable curve connecting ¥ to g obtained by concatenation of the geodesics

constructed above. Let E be the image of . As we observed above, I' is not contained
in E.

_ According to Lemma 2.4 there is a rectifiable arc inside £ connecting 7 to y. Since
'\ E # @, this arc must be different than I" and we arrived to a contradiction with the
uniqueness of a rectifiable arc connecting  and §. The proof is complete.
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The implication (c)=-(d) is obvious: assume, by contradiction, that X is a length space
and o : S! — X is one-to-one and Lipschitz. Then the images of the upper and the lower
semicircles are distinct rectifiable arcs connecting the same endpoints.

Similarly, the implication (d)=-(c) follows by contradiction from Lemma 2.0
The implication (e)=-(d) follows by contradiction from Proposition 211l

Finally, we prove the implication (a)=-(e). Suppose that X is a metric tree and Lipschitz
maps a : S* — X and 7 : X — R? are such that m o o maps S! to St € R2. It is easy to
see that the image a(S') C X is also a metric tree. Indeed, any two points z,y € a(S'),
x # y, can be connected by a rectifiable curve and hence by a rectifiable arc inside a(S*)
(see Lemma [2.4)). Clearly, this is a unique arc connecting = and y, and its length equals
d(z,y), because X is a metric tree. Hence «(S') is a metric tree by definition. Therefore,
a(S') is contractible by Lemma T3, and hence the map 7o a : S* — S' is homotopic to
a constant map, so it is not homotopic to the identity map. O

The next lemma is, in fact, an easy exercise, but we include it for the sake of complete-
ness.

Lemma 2.16. Assume (X, d) is a metric tree and T' C X is a closed, non-empty metric
tree. Then there is a 1-Lipschitz retraction v : X — T, i.e., r|lp = idr, d(r(z),r(y)) <
d(z,y). Moreover, for all x € X we have d(z,r(x)) = dist(z,T).

Proof. To simplify the notation, whenever z,y € X, we denote the (unique) arc connecting
x and y in X by (z,y). We can clearly assume that 7" ¢ X.

To prove the existence of the retraction we first establish the following auxiliary facts:

For any x € X there is a unique ¢, € T such that

1) {ty,2) NT = {t,},
2) for any y € T we have t, € (y, ),
3) dist(z,T) = d(z,t,).

If z € T, obviously ¢, = x is the only point satisfying 1), 2), and 3), so assume that = & T'.

To prove the existence of t, satisfying 1), pick any y € T and let v : [0,1] — X
parameterize the arc (y,x) from y to x. The set (y,z) N'T is closed, so if s = sup{s’ €
0,1] : ~(s') € T}, then t, = ~v(s) is in 7', and 7([s, 1]) = (t,,x) intersects with 7" only
at 1.

Uniqueness of t, follows immediately from uniqueness of arcs in X: assume that for
some x € X there are two distinct ¢, and ¢, satisfying 1). Then there are two distinct
arcs connecting = to t,: (x,t,) and (z,t.) U (t’,t,), which is a contradiction. Note that
(x,t)) U (t,, t,) is an arc, because (x,t!) meets T at ¢/, only and (t’,t,) C T, since T is a
metric tree.

Now, 2) follows from the construction of ¢,: we constructed it as a point on an arc (y, x)
for any y € T and proved that any choice of y yields the same (unique) t,; 3) follows
immediately from 2).
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Finally, we set r(xz) = t, and note that d(r(x),r(y)) < d(x,y) is an immediate conse-
quence of the easy observation that for any =,y € X we either have r(z),r(y) € (x,y) or
r(z) =r(y). Also, by 3), d(x,r(x)) = dist(z, T). O

3. DERIVATIVES OF LIPSCHITZ MAPPINGS

We assume that the reader is familiar with basic results about differentiability of Lip-
schitz mappings, like for example Rademacher’s theorem. Lemmata [B.1] and B.3] below
are well known. The other two lemmata, while possibly known to specialists, seem to be
missing in the literature, and the only relevant reference we are aware of is [4].

For a proof of the following result see e.g., [5, Theorem 3.8].

Lemma 3.1. If f : B" — R" is Lipschitz continuous, then the measure of the image of f
1s bounded by the integral of the Jacobian:

|f(B")] < . | det Df(z)| de.

Lemma 3.2. Suppose that the mappings f : Q — R™ and g : Q — R* are locally Lipschitz
continuous, where & C R™ is open. If there is a constant L > 0 such that for every
rectifiable curve v : [a,b] — £ we have

l(goy) < LU(for),

then for almost every x € Q, we have |Dg(z)v| < L|Df(z)v| for all v € S™™', and hence
rank Dg < rank Df almost everywhere in ).

Proof. Since the problem is local in nature, we may assume that (2 = B”, and that the
mappings f and g are Lipschitz continuous.

Let {v;}52, C S"7! be a countable and dense subset. It suffices to prove that for almost
all z € B" we have
(3.1) |Dg(z)v;| < LIDf(x)v;| foralli=1,2,...
Indeed, by a density argument it will imply that |Dg(x)v| < L|Df(x)v| for all v € S*~1.
Fix ¢ € N. It suffices to prove that
(3.2) |Dg(x)v;| < L|Df(x)v;| for almost all z € B".

Indeed, since the union of countably many sets of measure zero has measure zero, (B
will follow.

For almost every line ¢ parallel to v;, both functions f and g are differentiable at almost
all points of ¢. Fix such a line ¢ and for z € ¢ define v,(t) = z + tv;. Let I C R be the
open interval consisting of all ¢ such that v, (t) € B".

Since the functions g o v, and f o~, are Lipschitz continuous on I, for s,t € I we have

[

i fon) )] dr.

——@O%Xﬂwfzd@owmm)SLMUO%MM)ZL/ <

dr
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Since the functions f and g are differentiable at almost all points of ¢, the chain rule yields

t t
/ |Dg(z + Tv;)v;| dr < L/ |IDf(z+ 1v;)v| dr.

Now it follows from the Lebesgue differentiation theorem that for almost all s € I we have
|Dg(z + sv;)v;| < LIDf(z 4+ sv;)vy.

We proved that inequality ([B.2)) is true for almost all lines ¢ parallel to v; and for almost
all z € £NB". Therefore it follows from Fubini’s theorem that (32) is true for almost all
x e B". 0

The next lemma is a well known consequence of Brouwer’s theorem (c.f. [I8, Lemma 7.23|):

Lemma 3.3. Assume F : B"(0,p) — R" is continuous and satisfies |F(x) — x| < p/2
whenever |z| = p. Then B"(0,p/2) C F(B"(0, p)).

Proof. By contradiction, if there exists a € B"(0, p/2) \ F(B"(0, p)), then

a— F(z)
Glz) =p—F0 =7
la — F(z)]
is continuous and maps B"(0, p) to itself without a fixed point, which contradicts Brouwer’s
theorem. Indeed, any fixed point would have to lie on the sphere S"1(0, p), but if |z| = p,
then

v (a—F(z)) =z (a+z—F(2)) =z < |2/(ja] + |z — F(2)]) - p* < p* = p* =0,
so x - G(z) < 0 and hence = # G(x). O

Lemma 3.4. Let Q C R™, U C R™ be open, and let g : Q — U, f: U — R¥ be Lipschitz
continuous. If rank Df < r almost everywhere in U, then rank D(f o g) < r almost
everywhere in §2.

If f € C! satisfies rank D f < r everywhere in U, then the lemma is an obvious conse-
quence of the chain rule. However, if f is Lipschitz continuous only, the lemma is very far
from being obvious, because the image of g might be contained in the set where f is not
differentiable and the chain rule cannot be applied.

Essentially, Lemmal[34lis Proposition 3.16 in [4]. There, however, the result is considered
and proved for a much more general concept of the metric derivative, so while the proof
in [4] quickly reduces to the Euclidean setting, we present it for the reader’s convenience,
avoiding the (unnecessary here) general metric space setting.

Proof. Assume, by the way of contradiction, that rank D(fog) > r+1 on a set of positive
measure in €. Then, we can find a positive measure set £ C Q and an (r + 1) x (r + 1)
minor of D(fog) such that this minor is non-zero in £. Without loss of generality we may
assume that the minor corresponds to the first (r 4+ 1) coordinates, both in the domain
and in the image, so that

(3.3) det (m(az)) #0 for x € E.
1<i,j<r+1
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In what follows, we shall restrict our attention to these (r+ 1) coordinates. First, we set
F={(f1,..., frr1): U— R"" Showing that rank DF = r+1 on a set of positive measure
would imply rank Df = r + 1 on a set of positive measure, leading to a contradiction.

Next, we pick x, € E such that g is differentiable at x,; without loss of generality we
may assume that z, = 0 and g(0) = 0, and likewise F'(0) = 0.

Then, we restrict g to Q' = QN H, where H is the linear subspace spanned by the first
(r 4+ 1) coordinates (note that z, = 0 € '), setting G = g|o : ' — U. Then

(3.4) det D(F o G)(0) 2 0.

Since F' is Lipschitz and G differentiable at 0, (3.4]) implies that rank DG(0) = r + 1.
Indeed, if L is the Lipschitz constant of F', then all the directional derivatives of F oG at 0
satisfy |D,(F o G)(0)| < L|D,G(0)|, and thus

r+1=rank D(F o G)(0) <rank DG(0) <r + 1.

To simplify the setting, we post-compose G with a linear isomorphism of R™ to have for
all v € R™*1,

DG(0)

v=(v1,...,041) —— (V1,...,0,41,0,...,0) = (v,0) € R"Tt x R "1 = R™

and since D(F o G)(0) : R — R™! is an isomorphism, we may post-compose F with a
linear isomorphism of R™™! to have D(F o G)(0) = id.

Then G(x) = (,0) + o(|z]) and (F o G)(z) = = + o(|z|). Thus, we may find p > 0 such
that B"(0, p) x B™""1(0,p/6L) C U and whenever |z| = p,

p p
|(FoG)(x) —z| < A and |G(z) — (z,0)| < 6L

For any y with |y| < p/6L and |z| = p we have

[F (2, y) — o <[F(,y) = F(2,0)[ + [F(2,0) = F(G(x))| + [F(G(2)) — x|

< Lly| + L|(z,0) — G(2)| +g < g

This, together with Lemma B3] implies that for every y with |y| < p/6L
B"(0,p/2) C F(B™(0,p) x {y}),

in particular, the Lebesgue measure of F(B™+(0, p) x {y}) is positive. Now, by Fubini’s
theorem, F' is differentiable a.e. on B"1(0, p) x {y} for almost every y with |y| < p/6L,
so for any such y, by Lemma [3.]

rank D(F|ET+1(O,p)X{y}) =T + ]_

on a positive measure subset of B (0, p) x {y}. This, again by Fubini’s theorem, implies
rank DF' > r+ 1 on a positive measure subset of B"*(0, p) x B™"~1(0, p/6L) C U, which
gives the desired contradiction. ([l
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4. FACTORIZATION OF LIPSCHITZ MAPPINGS

The content of this section is based on [4, 19]. While the constructions in |4, 19] were
carried out in a general framework of Lipschitz mappings between metric spaces, we specify
the construction here to the case of locally Lipschitz mappings f : 2 — R™, Q C R".

4.1. Canonical factorization. Assume that 2 C R" is a domain and let f: Q — R™ be
a locally Lipschitz mapping.

We say that the mapping f factors through a metric space X, if there is a locally
Lipschitz map ¢ : Q — X and a 1-Lipschitz map ¢ : X — R™ such that f = ¢ o).

Next, we describe a particular construction of a factorization of f.
We define a quasimetric in 2 by
dy(x,y) = nf{{(f o)},
where the infimum is taken over all rectifiable curves « : [0, 1] — €2 such that 7(0) = 2 and
(1) =y.

Clearly, ds(z,y) = ds(y, x) and d; satisfies the triangle inequality, but it is a quasimetric,
since it may happen that ds(z,y) = 0 for some x # y.

It is easy to see that

(4.1) [f(x) = f(y)] < dys(,y)
and that for any compact set K C €2 there is a constant Lx > 0 such that
(4.2) de(z,y) < Lg|lr —y| forall z,y € K.

Indeed, if € < dist(K, 0f2), then the e-neighborhood of K
(4.3) Vo= B"(z,¢)

zeK

satisfies V. C Q. Take a finite sub-cover {B;}¥, of K from the covering ([3)). Let
vi 10,1 = Q, ¢ =1,2,...,N — 1, be rectifiable curves connecting the centers of the
consecutive balls B; and B;;1, and let I'; = +;([0, 1]). The set

N N—-1
K:RuUan

i=1
is compact. Let A be the Lipschitz constant of f|z (see Lemma 2.§]).

If M equals 2¢ plus the sum of lengths of curves v;, then any points z,y € K can be
connected by a curve in K of length at most M.

Take any points z,y € K. If |x — y| < ¢, then the segment [z, y| is contained in V. and
hence

dy(z,y) < ((f([z,y]) < Alw —yl.
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If |x —y| > e and ~ is a curve of length at most M connecting x and y inside K , then
dp(z,y) < U(fory) <AM < AMe o —yl.

Thus, ([£2) is satisfied with Lg := max{A, AMe'}.

Inequality (A1) yields
(4.4) di(z,y) =0 = f(z)=f(y)
However, in general, the converse implication is false.

We define an equivalence relation in {2 by

x~vy ifand only if ds(z,y) =0

and then we define Z; := Q / ~ with the quotient metric
(45) ds((al, [y) = ds (. ).

where [z] = {2/ € Q : z ~a'}. It is easy to check that (4.3]) is well defined, i.e., if z ~ 2’
and y ~ v/, then dy(x,y) = ds(2',y').

The next result is an easy exercise.

Lemma 4.1. (Zy,dy) is a metric space.

Now, we define mappings
¥ ? mm
Q= Z; = R™ by ¢x) =[], o([z]) = fz), so f=gdoy.
The mapping ¢ is well defined, because by ([£4), if [z] = [2/], i.e., z ~ 2/, then f(z) = f(2').

Lemma 4.2. The mapping v : Q — Zy is locally Lipschitz and the mapping ¢ : Zy — R™
is 1-Lipschitz. Hence, f: Q0 — R™ factors through Z;, f = ¢ o).

Proof. The mapping ¢ is locally Lipschitz, because according to (A2), for any compact
K C Q we have

dr(¥(x), () = dg([2], [y]) = ds(z,y) < Li|z —y| for all 7,y € K.
Also, the mapping ¢ is 1-Lipschitz, because (A.1]) yields

0([2]) = (WDl = [f(x) = f(y)| < dy(z,y) = ds([2], [y]).
O

Composing with a 1-Lipschitz mapping cannot increase the length of a curve, thus for
any curve o : [0, 1] = Z; we have {(¢ o a)) < {(av).
Lemma 4.3. If v : [0,1] — Q is a rectifiable curve and o = ¢ o~y : [0,1] — Zf, then
la) =Ll(poa).

For a proof, see [4, Lemma 6.4|. In other words, ¢ preserves lengths of curves in Z; that
are images of rectifiable curves in 2.

Lemma 4.4. (Zy,dy) is a length space.
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For a proof, see [4, Corollary 6.5].

Lemma 4.5. Let a: S' — Z; be a Lipschitz curve. Then there is a sequence of Lipschitz
curves v : S' — Q such that a, = Y oy, : St — Z; converge uniformly to o, and
Uag) — ).

For a proof, see [4, Lemma 6.6].

We will discuss now a situation when the metric space Z; is a metric tree.

4.2. Factorization through metric trees. The next result is similar to Theorem 1.9
in [4]. While [4] deals with a more general factorization of Lipschitz maps into metric
spaces, the mappings considered in [4] are defined on the compact cube [0, 1]”. The fact
that ) is not compact causes some additional problems. At the same time, our argument
is simpler than the one used in [4] since we avoid the use of metric area formula and that
of differential forms. However, the overall idea of the proof remains the same.

Proposition 4.6. Let Q@ C R" be a simply connected domain and let f : 2 — R™ be
a locally Lipschitz map. Then Z; is a metric tree if and only if rank Df < 1 almost
everywhere.

Proof. It Z¢ is a metric tree, then rank D f < 1 almost everywhere by [4, Theorem 5.6].

While we do not provide details of the proof of this implication, let us emphasize that
it is not needed in the proof of Theorem [.7. We only need the other implication: that if
rank Df <1, then Z; is a metric tree, and we prove it carefully below.

Suppose by way of contradiction that Z; is not a metric tree. Since Z is a length space,
Theorem 2.IH(e) yields Lipschitz maps & : S' — Z; and 7 : Z; — R?, such that 7 o &
maps S! to S' € R? and 7o @ : St — S! is homotopic to the identity map.

Let H : R? — R? be a Lipschitz map such that H(z) = z/|z| for || > 1/2.

Let ap = 1 o 7y, be the Lipschitz approximation of & from Lemma 4.5 Since aj, — &
uniformly, 7 o oy — 7 o & uniformly, and hence |7 o ai| > 1/2 for all sufficiently large k.

Thus, .

o
— kgt —S', Ho#oay — 7 od uniformly.
|70 ay
Since 7o is homotopic to the identity, Homoqy is homotopic to the identity for sufficiently
large k. Therefore, if a = o, for sufficiently large k and m = H o 7, then

Homoqy =

(1) a: St — Zy is of the form o = 1 oy, where v : St — Q is Lipschitz,
(2) m: Z; — R? is Lipschitz,
(3) Toa:S' — S!is homotopic to the identity.

Since (2 is simply connected, 7 admits a continuous extension § : B> — . Using
standard approximation, we may then improve § to a Lipschitz map g : B> — € such that
glomz = 7. Then T o1 og: B? — R? is a Lipschitz extension of ooy =7moa:S! — S.
The mapping 7 o « is homotopic to the identity, so it follows that B? C (7 o % o g)(R?).
Since the image of the Lipschitz map 7w o1 o g has positive area, Lemma [B.Tlimplies that its
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Jacobian must be non-zero on a set of positive measure and we will arrive to a contradiction
as soon as we prove the following claim:
(4.6) det D(motog) =0 almost everywhere in B2

To prove this, we will use Lemma 3.2}, so we need to consider rectifiable curves in B2. Let
n : [a,b] — B? be a rectifiable curve, then gon : [a,b] — Q is rectifiable and Lemma
yields

l(pogon)=Lt(¢popogon)=L(fogon).
If L is the Lipschitz constant of 7, then

motYog:B>—-R?* and fog:B*—=R™
are Lipschitz continuous, and
l(mopogon) < Li(pogon)=LLU(fogon),
so Lemma [B.2] Lemma [3.4] and the fact that rank Df <1 a.e. yield that
rank D(moog) <rankD(fog) <1 a.e.
This proves (4.6). The proof is complete. O

5. PROOF OF THEOREM [I.7]

This section is entirely devoted to the proof of Theorem [L7 We will need the following
lemma:

Lemma 5.1. Assume Q C R" is a domain. Fix x, € Q and for ¢ > 0 let Q. be the
connected component of the open set {x € Q : |v—z,| < &', dist(x,0Q) > e} containing
the point x,. Then the family {Q:}eso has the following properties:

(a) the sets Q. are compact and connected in €,
(b) whenever e < €', we have §). C .,

() Ueisg €2 = Q,
(d) for any compact K C  there is ex > 0 such that for any ¢ € (0,ex) we have
K c ..

(e) dist(Q.,0Q) > € and diam Q. < 271,
Checking the properties (a) through (e) of €. is straightforward. O
By the construction given in Section M, the mapping f factorizes:

Y ¢ mpm
Q—=Zy=R", f=¢o1,

where ¢ is locally Lipschitz, ¢ is 1-Lipschitz, and, according to Proposition 4.6}, (Z¢,dy) is
a metric tree.

Let us next fix ¢ > 0 and let ), be as in Lemma [5.1]
Since €2, is compact and connected in €, the set ¥(£).) is compact and connected in Z;.

The outline of the rest of the proof was given in the Introduction, here we state it in
some more detail:
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1) We find a finite tree T' C Z, approximating ¢(.), so that the retractionr : Z; — T
(see Lemma 216 is close to the identity on 1(€.).

2) We embed T in R®, where E is the number of edges in T, w : T — R¥| so that the
edges in w(T') are mutually orthogonal.

3) For some small 6 > 0 depending on &, we construct a C'*°-smooth mapping p. from
a d-neighborhood Vs of w(T') in R¥ onto w(T); pe|w(r) need not be the identity, but
it is close to the identity. Clearly, rank Dp. < 1.

4) We approximate ¢ = woro : Q — RE by a C®smooth ¢g. : O — RE,
supg |g — g-| < 0. Clearly, the image of g. lies in V.

5) We extend ¢pow™' : w(T) — R™ to a Lipschitz map ¢ : RE — R™ and approximate
¢ with a smooth ¢, : RF — R™.

Then f, = ¢.op.0g. is a smooth almost-uniform approximation of f. Since rank Dp. < 1,
it follows that rank D f. < 1.

Construction of a finite sub-tree T C Z; approximating (€),).

Let A C 9(€.) be a finite e-net in 1(€.). The tree T consists of all the geodesic arcs in
Zy connecting the points of the e-net A. It is easy to see that if £ is the number of points
in A (and k£ > 1), then T has at most 2k — 2 vertices and 2k — 3 edges. Indeed, for k = 2
we have 2 vertices and 1 edge. Suppose we already have the tree constructed with & points
from A and add a (k4 1)-st point a € A\ T'. Then there is a unique point z in 7" closest to
a; adding the arc (z,a) to T increases the number of vertices and the number of edges by
one (if z is a vertex of T') or by two (if z is an interior point of one of the edges of T'). For
any point b € T, (b, z) U (z,a) is an arc (and, since Z is a tree, the only arc) connecting
b and a, so adding all the other geodesics connecting a to the first k points used to create
T is not necessary.

Thus, we have a finite tree T' C Zy, with a finite number E of edges. Let us enumerate

these edges, {n;}£,, in such a way that for each k the set T}, = Ule n; is connected. To
do so, we pick an arbitrary edge and label it n;, then pick 7y among the edges that share
a vertex with 7;, then choose 13 among edges sharing a vertex with 7; or 1 and so on.
Denote by A the length of the edge 1. We write mp = (ug, vy), where u; is one of the
endpoints of 7y, and u, k > 2, is the unique endpoint of 7, that belongs to T}._;.

Note that, since the e-net A is a subset of T', every point of ¥(€2,) lies in a distance less
than € to T. Thus, if r : Z; — T is the retraction given in Lemma 210 for any z € ¥(€2.)
we have d;(r(z),z) = ds(z,T) < ¢, so r is e-close to the identity on ¥(£2.).

Embedding T in R”.
We embed T in R¥, w: T — R¥, in the following, inductive way:

We map u; to the origin in R¥ and embed the edge 7, isometrically along the 1-st
coordinate axis:

m = (u1,U1> — [0, )\151]

(following the standard conventions, for a,b € RE, we denote by [a, b] the interval with
endpoints a and b; €1, ..., €g is the standard orthonormal basis in RF).
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The edge 79 shares the endpoint us with 7y, us € {uy,v1}, so we already know the value
of w(uy). That is, w(uy) = 0, if us = uy and w(ug) = A€, if uy = vy.

Then, we map 72 to a segment starting at w(us) and extending in the 2-nd coordinate
direction:
2 = <UQ, U2> lL) [’LU(UQ),’LU(UQ) + )\252] (: [O, )\252] or [)\151, )\151 + )\252]),

and so on: once we have w defined on the edges 7ny,...,7x_1, we know the value of the
embedding w at the endpoint uy of 7;; then the embedded isometric image of 7, is the
interval in R” starting at w(uy,) and extending in the k-th coordinate direction:

e = (Up, Vr) — [w(ug), wlug) + Mp€).

This way each of the edges w(ny) of w(T') is parallel to &, and hence the edges of w(T)
are mutually orthogonal. Also, the edges of w(T") form a subset of the edges of the closed
E-dimensional interval [0, A\1] x [0, Ag] X -+ X [0, Ag].

More precisely, the edge w(n;) satisfies: for 1 < j < i, there is A;; € {0, \;} such that
the j-th coordinate of w(n;) equals \;;; the i-th coordinate of w(n;) can be any number in
[0, \i]; for i < j < E, the j-th coordinate of w(n;) equals \;; := 0.

The embedding w : T — w(T) € R¥ would be isometric, if we considered R with
the ¢! norm, |z|; = ZZE:1 |z;|. This norm is less convenient for us than the standard
Euclidean norm; with that norm w : T'— (R¥,| - |) is 1-Lipschitz, while w™! : w(T) — T
is v/ E-Lipschitz, by the Schwarz inequality.

Projection onto w(T).

Let A = min” , \; denote the minimum of length of edges in 7. Fixing ¢ and the e-net
A C Zy determines X. Let § € (0,\/4]. The actual value of § will depend on ¢ and it will
be determined later. Let Vs be the d-neighborhood of w(T) in R¥.

In the next step, we construct a smooth mapping p. : R — RF satisfying p.(V;) =
w(T). Tt is not difficult to construct a continuous retraction p. : Vs — w(T), i.e., a
continuous map satisfying p.(t) = ¢ for all t € w(T"). However, in general it is not possible
to find a smooth map with that property, so we relax the condition that p.|,) = id,
asking merely that p.(t) is sufficiently close to ¢ for all ¢t € w(T).

Fori=1,2,... FE, let £, : R — R be a smooth, non-decreasing function satisfying
A fors >\ — 4,
&i(s)=<s  fors e (26, \; —20),
0 fors <,
so & maps (—0, \; +9) to [0, ], (—=6,0) to 0, (\; — 0, \; +9) to \; and if s € (=0, \; +9),
then [&;(s) — s| < 20.
We define a C*°-smooth map p. : RE — RE by p.(t1,...,tg) = (&(t1), ..., Ee(tr)).
We will show now that the mapping p. maps Vs onto w(7T).

Recall that if s = (s1,...,55) € w(n,;), then s; € [0,\;] can be any number, while
Sj = >\ij c {O, >\]} for j # 1.
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If t € Vj, then t is in a d-neighborhood of one of the edges w(n;). Hence
t; € (—5, Ai + 5),
tj € ()\2] - 5, )\ij + 5) for ] 7é 1.

Therefore, &(t;) € [0,\;] and &;(t;) = Ai; for j # 4, so p.(t) € w(n;). Since & maps
(—0, A\; + 0) onto [0, \;], it follows that p.(Vs) = w(T).

Also,

E
(5.1) po(t) — ] = JZ () — 1P < 2VES fort € V.
k=1

Essentially, p. acts on Vj as the nearest point projection along the edges of w(T'), but then
collapses a neighborhood of every vertex of w(T') to that vertex.

Approximation and conclusion of the proof.

Recall that the retraction r : Z; — T is e-close to the identity on (€.): for any
z € ¥(Q.) we have ds(r(z),z) < e. Thus, by the fact that ¢ is 1-Lipschitz,

[(porod)(z) — f(z)] =|(dorod)(z) — (poy)(z)] <e forallz € Q..

We set § = min(¢/(1 + VE + 2E), \/4) and approximate (in a standard way) g =
worot :Q— w(T)C RF with a smooth map g. : Q — R, so that |g.(x) — g(z)] < §
for all x € Q. Then g.(Q) lies in Vj, the §-neighborhood of w(T’), which is projected by p.

back onto w(T) and |(p. o g.)(z) — g(z)| < (1 + 2V E)s by (1.
Since w~' : w(T) — T is v/ E-Lipschitz and ¢ is 1-Lipschitz, ¢ o w™ : w(T) — R™ is
v/ E-Lipschitz, and we extend it to a Lipschitz map ¢ : R¥ — R™ (by Lemma 9). Then,

we approximate it with a smooth ¢, : R — R™, |¢.(2) — ¢(2)| < 8 for all z € R”. Finally,
setting f. = ¢. o p. o g., we have for all x € Q.

| fe(2) = f(2)] = [(¢2 0 pe 0 g:)(2) — f(2)]
< e (pe(9:(x))) = D(p=(g:(2)))| + 16(pe(g:(2))) — dlg(2))] + [(S(g(x)) — f(x)]
= |0=(pe(9:())) = (pe(ge(2)))] + (¢ 0 w™ ) (p=(g:())) = (p 0w ) (g(x))]
+(@orov)(z) — f(z)|
<6+ VE|(p:0g.)(x) —gx)+e <A1+ VE+2E)d ¢ = 2,

because p.(g(z)) and g(z) lie in w(T), where ¢ = ¢ o w™ 1.
Also, (pow™)(g(z)) = (pow ™ oworow)(z) = (poroy)(x).

Since for any given compact K C 2 we have K C Q. for all ¢ € (0, k), this proves that
f- converge uniformly to f on K.

It remains to prove that rank D f. < 1 everywhere. This, however, follows from the chain
rule and the fact that rank Dp. <1 for all z € Vj, because p.(Vs) = w(T') is 1-dimensional.
O
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