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ABSTRACT: Rare events are of particular interest in synthetic biology
because rare biochemical events may be catastrophic to a biological system
by, for example, triggering irreversible events such as off-target drug delivery.
To estimate the probability of rare events efficiently, several weighted
stochastic simulation methods have been developed. Under optimal
parameters and model conditions, these methods can greatly improve
simulation efficiency in comparison to traditional stochastic simulation.
Unfortunately, the optimal parameters and conditions cannot be deduced a
priori. This paper presents a critical survey of weighted stochastic simulation methods. It shows that the methods considered here
cannot consistently, efficiently, and exactly accomplish the task of rare event simulation without resorting to a computationally
expensive calibration procedure, which undermines their overall efficiency. The results suggest that further development is needed
before these methods can be deployed for general use in biological simulations.

KEYWORDS: stochastic simulation, rare event simulation, importance sampling, weighted ensemble, genetic circuits,
stochastic chemical kinetics

■ INTRODUCTION

Despite occurring with low frequency, rare events can have
devastating effects on biological systems. For example, rare
biochemical events have been demonstrated to contribute to
cancerous phenotypes by inactivating tumor-suppressing
genes.1 The issue of rare events is of particular interest in
synthetic biology, where genetic circuits must reliably produce
desired outputs to be of use. Unfortunately, genetic circuits are
known to experience rare deviations from their expected
behavior called glitches.2,3

Although glitches may occur rarely, populations of cells may
each express genetic circuits continuously for a prolonged
period, increasing the probability that a glitch eventually occurs.
Though glitches often persist only transiently, they still pose a
threat because unwanted genetic circuit outputs could produce
irreversible cellular responses such as early or off-target release of
a therapeutic molecule. Methods to study rare biochemical
events are, therefore, a necessity in genetic circuit design.
Exact trajectories of biochemical reaction networks may be

determined with molecular dynamics, wherein, given the initial
position and momentum of each atom in the system, the
complete state of the system can be determined at any time.4

Unfortunately, suchmethods are computationally intractable for
most systems. Instead, stochastic chemical kinetics (SCK), which
assumes a chemical system as homogeneous and well-stirred,
may be used to generate many potential trajectories for a system
and approximate the probability of some event occurring.5 This

is traditionally done using the stochastic simulation algorithm
(SSA) .6,7

Probability estimation for rare events can be problematic for
stochastic simulation because the number of trajectories that
must be generated to approximate the probability of a rare event
may be computationally prohibitive. To address this issue, a
variety of stochastic simulation algorithms have been developed
that utilize importance sampling (IS) techniques to more
efficiently estimate the probability of rare events.8−10 In this
paper, three such algorithms are examined to determine whether
they are suitable for regular use in the evaluation of robust
genetic circuit designs.

The first algorithm that is examined is the weighted stochastic
simulation algorithm (wSSA),8 which first applied IS techniques
to biochemical network simulation. The second algorithm that is
examined is the state-dependent weighted stochastic simulation
algorithm (swSSA) .9 The third algorithm that is examined is the
guided weighted stochastic simulation algorithm (Guided wSSA)
.10,11 While other IS-based algorithms exist, these three together
form a representative sample of IS methods in SCK simulation.
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The performance of these algorithms is analyzed and compared
on six biochemical reaction networks, varying in complexity
from a simple biochemical network to a complete genetic circuit
design.
In addition to IS methods, a technique known as weighted

ensemble (WE) simulation, which is akin to stratified
sampling12,13 is examined. In contrast to wSSA, swSSA and
Guided wSSA, WE does not apply biasing to any reaction rates
during simulation. Individual transitions are generated using the
SSA.WE tries to estimate the probability of rare events by giving
more computational resources (i.e., CPU time) to trajectories
that are more likely to reach the target states. It achieves this by
generating parallel simulation paths, dividing the state-space
into bins. Simulation paths are duplicated or terminated to
maintain a uniform exploration across the bins.12−14

This paper makes the following claims and contributions: In
theMathematical Preliminaries section, it is shown what an ideal
importance sampling scheme looks like. Then, using a simple
example, it is shown how a poor biasing scheme can result in false
convergence�an incorrect estimate with low sample variance. In
this situation, a biasing scheme can seem near-optimal, as it
appears to converge to a narrow confidence interval, when it is in
fact a poor biasing scheme producing unreliable estimates. The
mathematical analysis applies to the original wSSA algorithm.
Other IS algorithms (swSSA and Guided wSSA) are assessed
experimentally to determine if they provide more reliable
estimators. The performance of the IS-based and WE methods
are compared on four different examples by computing the
computational gain each method achieves over SSA. The results
show that false convergence happens in all four experiments with
IS-based algorithms given that poor biasing parameters are
selected, therefore the practitioners should use caution when
applying those method, as it is possible for a biasing scheme that
seems near-optimal to produce a low-variance estimate that is
orders of magnitude off from the true probability. The WE
method offers a more reliable alternative in the cases considered,
although WE has lower performance than wSSA in terms of
computational gain achieved over SSA and has higher additional
runtime complexity.

■ MATHEMATICAL PRELIMINARIES

This paper makes two central and related claims. The first claim
is that wSSA and associated Importance Sampling methods may
provide unreliable results when biasing parameters are “poorly”
selected. The second claim is that, for “poor” biasing cases, the
sample variance is not a reliable indicator of accuracy, and the
associated confidence interval may be incorrect. Prior literature
advised using the wSSA confidence interval as an accuracy test,15

but our analysis shows that the confidence interval can be
unhelpful or misleading for poor biasing designs.

When wSSA is applied to complex models, it may be difficult
or intractable to determine if the biasing is poor or not, so a
narrow confidence interval cannot be interpreted as evidence of
accuracy. To assist the experimenter, we offer some analysis to
distinguish the features that may contribute to erroneous wSSA
estimates. A simple example is analyzed in this section to reveal
the cause of significant estimation errors. Similar patterns of
error are observed experimentally for more complex models in
subsequent sections of the paper.

First, we review the well-known conditions for an optimal
importance sampling scheme. Then we will show how those
conditions may be violated in some wSSA cases, resulting in
significant errors. Consider a random experiment X with M
discrete outcomes xi, i = 1, 2, ..., M (in the context of chemical
reaction networks, an “outcome” refers to a distinct sequence of
reaction events). Each outcome occurs with probability

= =p X xPr( )
i i . A subset of the outcomes succeeds in reaching

a chosen objective, defined by an objective set . The
experimenter seeks to determine =P XPr( ) through
statistical sampling. The Monte Carlo estimate is determined by

=

=

P
N

I x
1

( )
k

N

k

1

( )

whereN is the number of samples, I is a binary-valued indicator
function for membership in , and x(k) is the kth random sample.

If P is very small, the experimenter may apply importance
sampling to obtain the estimate using a small number of samples.
Instead of sampling the xi with their “native” probabilities pi, the

Figure 1. A simple chemical reaction network with = { }2, 3, 4 . Two wSSA biasing scenarios are shown: (a) optimal wSSA biasing and (b) poor
wSSA biasing.
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experimenter imposes an alternative sampling distribution gi.
Each obtained sample is corrected by applying a sample weight

=w I x p g( ) /k
k

k k( ) ( ) ( ), where p(k) and g(k) are the native and
biased probabilities of the obtained sample x(k), respectively.
Then the Importance Sampling estimate is determined by

=

=

P
N

w
1

k

N

k

1

( )

where N is the number of samples used for the Importance
Sampling experiment.
An optimal sample distribution g* exists mathematically,

although it is usually unknown to the experimenter:

* =

l

m

ooooo

n

ooooo

g

p

P
x,

0, otherwise

i

i
i

With this optimal distribution, zero-weight samples are never
observed, and every nonzero sample has the same weight, equal
to the true probability sought by the experimenter:

* =

l

m
oo

n
oo

w

P x,

0, otherwise
i

i

Since the experimenter cannot access the optimal sampling
distribution, a “good” sampling distribution is sought, which
should have features similar to the optimal solution. Specifically,
gi ∝ piwhen xi , and gi should beminimized when x

i
. In

simpler terms, a “good” sampling distribution should somehow
exclude zero-weight samples (i.e., failures) without disturbing
the distribution of the remaining outcomes.
A poor sampling distribution occurs when an event xi has a

relatively high native probability pi, but is suppressed to a low
sampling probability gi. In this situation, the sample weight wi =
pi/gi can be quite large, but occurs with frequency below N1/ , so
it is not likely to be observed in the experiment. The probability
mass associated with xi is effectively hidden from the experiment,
resulting in both an underestimation and a deceptively low
sample variance. The resulting sampling scheme is not merely
suboptimal, it can produce severely distorted results without
showing any evidence of inaccuracy.
To demonstrate the effects of both “good” and poor sampling

distributions, we consider the almost-trivial time-abstracted
reaction network shown in Figure 1. This network has four
reactions with propensities a1, a2, a3, and a4 equal to 100, 10−2,
10−2, and 1, respectively. The probability of reaction Ri, hence

reaching state i, is pi = ai/a0, where = =
=

a a 101.02
j j0 1

4
. The

p r o b a b i l i t y o f r e a c h i n g t h e ob j e c t i v e s e t i s
= + + =P p p p 0.0101

2 3 4
. The experimenter plans to

estimate P using no more than =N 1000 samples.
An optimal sampling distribution is demonstrated in Figure

1a, where a1 is fully suppressed. Then the sample probabilities
are

* =

=

>

=

l

m

ooooo

n

ooooo

g

i

a

a
i

0 1

1,i
i

j j2

4

and the corresponding nonzero sample weights are

* = = =
=

w
p

g

a a

a a
Pi

i

i

i j j

i

2

4

0

With this sampling distribution, every weighted sample is equal
to the precise probability, so the sample variance is zero and a
single sample is sufficient to get the correct result.

Next, to demonstrate a poor sampling distribution, shown in
Figure 1b, suppose the experimenter chooses to enhance
reactions R2 and R3 by a factor δ = 105, so that they occur much
more often than the unhelpful reaction R1. For whatever reason
(perhaps an oversight), the experimenter does not apply any
biasing to R4. Then the sampling distribution becomes

= =

= =

= =

= = ×

g
a

b

g
a

b

g
a

b

g
a

b

0.0476

0.476

0.476

4.76 10 ,

1

1

0

2

2

0

3

3

0

4

4

0

4

where b0 = a1 + δa2 + δa3 + a4 = 2101. Due to the reaction
biasing, both R1 and R4 are suppressed by the factor b0/a0 = 20.8.
In the case ofR1, this means the experiment produces fewer zero-
weight samples, which is desirable. In the case of R4, however, it
means that a highly probable outcome in the objective set is now
unlikely to be observed in the experiment. The associated
probability mass resides in the sample weights:

= =

= = = ×

= = = ×

= = =

w
p

g

w
p

g

b

a

w
p

g

b

a

w
p

g

b

a

0

2.08 10

2.08 10

20.8.

1

1

1

2

2

2

0

0

4

3

3

3

0

0

4

4

4

4

0

0

After collecting =N 1000 samples, we expect about 476 of the
weighted samples to be w2, another 476 to be w3, and the
remaining samples are expected to be zero. The most likely

estimate is therefore ×P 1.98 10
4, underestimating the

true probability by a factor of 51. For this statistical experiment,
the standard-deviation confidence interval would be ±1.4 ×

10−6, giving the false appearance of an accurate estimation.
Although underestimation is the most likely outcome in this

scenario, it is possible for wSSA to obtain other estimation
results. To evaluate the range of possible experimental results,
ten thousand wSSA experiments were simulated using the same
biasing procedure, each with the same sample size =N 1000.
The plot in Figure 2 shows a histogram of estimation results as
well as the 99.5% confidence interval for each result. The
confidence interval is visualized as a shaded rectangle around the
estimation. In 62% of experiments, the wSSA result is an

underestimate at 1.98 × 10−4
± 5 × 10 d

−6. In these cases the 95%
confidence interval is quite narrow, barely perceptible in Figure
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2. In the remaining 38% of experiments, the results are
overestimates with very wide confidence intervals spanning
from 0 to 0.07 or higher. In all cases, the estimation is wrong by
at least an order of magnitude.
It remains true that the wSSA estimation converges toward

the exact P as N goes to infinity, even in a “poor” biasing
scenario. For a finite sample size, the estimation can be quite far
from the exact value, and it may not be possible to predict the
required sample size to obtain a desired accuracy. The primary
hazard of wSSA is underestimation with low sample variance.
We may conclude that overestimates reveal themselves via high
sample variance, and when a low sample variance occurs it
should be interpreted as a lower bound and not necessarily a
precise estimation.
To apply this example to more complex models, we may

consider each outcome in Figure 1 as a set of reaction paths
rather than a single reaction sequence. In this interpretation, R1

represents the set of paths that fail to reach the objective. R2 and
R3 represent sets of paths reaching that are enhanced by the
experimenter, and R4 represents a set of paths reaching that
are not biased or are inadvertently suppressed by the biasing
procedure. This could correspond, for example, to a large
multiplicity of low-probability paths that escape the experi-
menter’s awareness. In that situation, even with a good-faith
biasing effort the contribution of those paths is concealed from
the wSSA result.
In the sequel we present several examples of wSSA and

derived algorithms applied to more complicated models. In
those examples we observe the phenomena analyzed here:
underestimation with low sample variance, and infrequent
occurrence of large-weight samples. We attempt to assess
whether these problems are resolved by improved wSSA
algorithms, and we assess the computational cost of those
improvements in comparison to alternatives, namely SSA and
Weighted Ensemble algorithms.

■ RESULTS AND DISCUSSION

Experiment Setup and Evaluation. The setup used to
perform experiments in the following subsections and the

statistics used to compare their performance are described in this
section.

Running wSSA and swSSA requires the selection of a set of
reactions to be biased prior to the simulation. For an event

X
t T

(population of species X reaching θ within T time
units), this is done by analyzing the model’s reaction network
and identifying reactions that would help the simulation reach a
state where X = θ and those reactions that would diminish the
possibility of reaching the target state within the time-bound T.

To simplify things, a single biasing parameter is used for all
selected reactions in wSSA and swSSA methods. For wSSA, a
single value δ ∈ (0, 1) is selected. The propensity of reactions

that are selected to be biased upward is multiplied by 1 and the

propensity of reactions that are selected to be biased downward
is multiplied by δ. Similarly, a single value γmax is used for the
swSSA method. The propensity of reactions that are selected to
be biased upward can be maximally increased by a factor of γmax

and the propensity of reactions that are selected to be biased
downward can be maximally decreased by a factor of γmax. For
each model, the wSSA and swSSA methods are first run for a
range of δ and γmax values, and the reported probability for each
of these values is compared to the exact probability of the event.
A value for the biasing parameter is then selected from the range
of values producing an acceptable probability estimate (one
close to the exact probability) for further experimentation. For
cases where exact probability of the event is not known, a
probability estimate produced by running SSA simulation is
considered exact.

In various places, confidence intervals and standard errors are
used to compare the performance of different methods. This
requires calculating the variance for the estimator. For IS-based
methods, N simulation runs are performed, resulting in N run-
weight samples. The probability is reported as the mean of these
N samples and standard error and confidence interval are
calculated using the variance of these N samples. For the WE
method, an ensemble of M simulations is run for each model.
For each simulation, the sum of the weights of the trajectories
reaching the target bin is collected. The probability is then
reported as the mean of theseM samples and the standard error
and confidence interval are calculated using the variance of these
M samples.

To compare the performance of these methods on each
model, a computational gain achieved over SSA is reported for
each method. For a probability estimate p with standard error

n

, Gillespie et al.15 report that given p 1, the number of SSA

simulations required to produce an estimate with the same level

of accuracy can be estimated as =n
p

n

SSA

( / )2
. Running N IS-

based simulations, the computational gain over SSA is calculated

as n

N

SSA

.

In order to calculate the computational gain for the WE
method, first the number of SSA runs that is computationally
equivalent to the performed WE run is calculated. Given a WE
setup with polling-time τ, each trajectory segment is simulated
for τ units of time before theWE dynamics is applied. Given that
the time-bound in the event of interest is T and assuming that
the ensemble of WE simulations simulates Nsegment trajectory
segments in total, = ×N N

Tequivalent segment gives the number of

SSA runs that are computationally equivalent to running the
ensemble of M weighted ensemble simulations. The computa-

Figure 2. Results from ten thousand wSSA estimations with poor
reaction biasing. The height of each data point indicates the percent of
cases that obtained that estimate. The blue rectangle indicates the worst
99.5% confidence interval for that group of estimations. The exact
probability is indicated by the thick vertical line.
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tional gain of the WE method over SSA is then calculated as
n

N

SSA

equivalent

.

In the following, the results for applying wSSA, swSSA,
Guided wSSA, and WE to four chemical reaction network
models are presented.

• Enzymatic Futile Cycle model was previously studied in
wSSA, swSSA, andWE contexts showing the effectiveness
of these methods in estimating rare-events, but those
studies did not discuss the effect of choosing suboptimal
biasing parameters on the accuracy of the estimate.
Guided wSSA does not require selection of biasing
parameters prior to running a simulation. In this
experiment the performance of Guided wSSA is
compared to that of WE and other IS-based methods
and the effect of selecting suboptimal biasing parameters
on the accuracy of the estimate is studied.

• Simplif ied Motility Regulation model was previously
studied in Guided wSSA context, and it was shown that
Guided wSSA can achieve significant computational gain
over SSA without providing any biasing parameters prior
to the simulation. In this experiment, the performance of

wSSA, swSSA, and WE methods using near-optimal
biasing parameters are compared to the performance of
Guided wSSA. Also, the effect of selecting suboptimal
biasing parameters on the accuracy of wSSA and swSSA
methods is studied on this model.

• Since the objective of this paper is to determine if
weighted stochastic simulation methods are suitable to be
used for the analysis of genetic circuits, two genetic digital
logic circuits showing glitching behavior were selected
and experimented with. The performance of all IS-based
andWEmethods using near-optimal biasing parameters is
studied on Genetic Circuit 0 × 8E and Genetic Circuit 0 ×
8E_TI models. Also, the effects of selecting nonoptimal
biasing parameters on the performance of wSSA and
swSSA methods are studied on each of these two models.

Enzymatic Futile Cycle.The enzymatic futile cycle example
is a simple six-reaction biochemical network given as follows:

+R : S S S1 1 2

k1

3

+R : S S S2 3

k2

1 2

Figure 3.Analysis of the enzymatic futile cycle model. (A) Comparison of estimated probability to true probability for all four algorithms over 104 runs
(with optimal biasing parameters). (B) Probability estimated by wSSA after 104 runs as δ is varied. Note that δ values in (0,1.5) were used despite δ > 1
corresponding to reciprocal weighting. This is to demonstrate that, for some values of δ, the motivated scheme presented here performs no better than
unmotivated biasing. (C) Probability estimated by swSSA after 104 runs as γmax is varied. (D) Comparison of time to complete 103 runs for each
algorithm. Time comparison results for all models were produced on a computer with an Intel i7 4-core 2.11GHz processor and 8GB of RAM, running
Windows 10 Pro (v21H1), with optimal biasing parameters.
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+R : S S S3 3

k3

1 5

+R : S S S4 4 5

k4

6

+R : S S S5 6

k5

4 5

+R : S S S
6 6

k6

4 2

where

= = = = = =k k k k k k1, 0.11 2 4 5 3 6

The initial state of the model is set as follows:

= = = =S S S S(0) (0) 1, (0) (0) 501 4 2 5

= =S S(0) (0) 03 6

This system is representative of the futile cycle motif, which is
common in natural biochemical systems, such as GTPase cycles,
MAP Kinase cascades, and glucose mobilization.16 This model
serves as an archetypal naturally occurring biochemical system
with few reactions.
The rare event of interest is S5 falling to 25 molecules or fewer

before 100 time units have passed, which is unlikely because the
symmetry of the initial molecule counts and reaction rate
constants keeps the system near its initial state with high
probability. The exact probability of this event was reported by
Kuwahara andMura8 to be 1.71 × 10−7. This value is considered
exact for all analyses.
The wSSA enhances the probability of observing a rare-event

by biasing individual reaction rates upward or downward. In
general, each reaction may be assigned a unique bias parameter,
and each parameter is chosen prior to simulation. This paper
uses a single wSSA biasing parameter, δ ∈ (0, 1), to simplify
biasing optimization to a one-dimensional problem.
The swSSA method, like wSSA, biases reactions upward or

downward using parameters selected prior to simulation. Unlike
the wSSA, the swSSA applies biased rates selectively. For every
reaction, two parameters are defined: (1) a relative propensity
threshold beyond which biasing is applied, and (2) maximum
biasing allowed for that reaction. This paper uses a fixed

threshold of = 0.15
D

0 for reactions that are selected to be

discouraged and a fixed threshold of = 0.5
E

0 for reactions that

are selected to be encouraged. A single value for maximum
biasing, γmax, is also selected for all selected reactions in a model
in order to simplify biasing optimization to a one-dimensional
problem.
In the enzymatic futile cycle model, the production of S2 may

be increased and the production of S5 decreased to increase the
probability that S5 falls to 25. This gives the following wSSA
weighting scheme:

= = =b a b a b ax x x x x x( ) ( ), ( ) ( ), ( ) ( )1 1 2 2 3 3

= = =b a b a b ax x x x x x( ) ( ), ( ) ( ), ( )
1

( )4 4 5 5 6 6

Selecting R6 to be encouraged and R3 to be discouraged gives the
following swSSA weighting scheme ( f and g functions are
described in detail in the swSSA subsection):
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The Guided wSSA requires no hand-picked reaction
weighting. Within this framework, to anecdotally demonstrate
convergence comparisons, sample estimated probability plots
were produced for each algorithm (Figure 3A). Additionally,
wSSA and swSSA convergence was compared for various biasing
parameters (Figure 3B,C). A runtime comparison was
performed so that the number of runs could be compared for
different algorithms (Figure 3D), and run weight mean and
variance was compared for each algorithm at 103 runs (Table 1).

These results show that the wSSA with optimal biasing
parameters converges much faster than other methods, but is
very sensitive to biasing. The swSSA also converges quickly as
well, but is slightly less sensitive to biasing. The Guided wSSA
and SSA both converge poorly, and the Guided wSSA has much
poorer runtime performance than any other method. A small but
nonzero run weight variance might suggest that a weighting
scheme is close to the ideal importance density, which would
assign every run a weight equivalent to the true probability.

Next the WE method is applied to the example system. WE
facilitates estimating the probability of rare events by dividing
the model’s state-space into bins and distributing trajectories to
the bins that are likely to be undersampled. WE periodically
checks the state of the simulation and enforces a fixed number of
trajectories to be assigned to each bin. This limits the number of
trajectories in highly reachable bins so that more computational
resources can be dedicated to bins with lower reachability.
Trajectories in low-probability bins are duplicated until the bin
size reaches the fixed number assigned to it.

This paper implements the following WE binning procedure
for enzymatic futile cycle model based on coordinate S5: one bin
containing states where S5 > 50. Twenty-five bins for S5 ∈ {50,
49, ..., 26}. An absorbing bin for the target states, S5 = 25.

WE enforces each populated bin to contain a fixed number of
trajectories by checking the bins after τ units of time. So, in
addition to dividing the state-space into bins, a time period, τ,
and the size of each bin should be set prior to the simulation.
Running 1000 SSA runs of 100 time units each, the average
reaction time for the enzymatic futile cycle model was estimated
to be 0.2328 time units. The time period τ should be some value
greater than this to minimize unnecessary polling of the bins. τ is
set to 1 for this model.

Table 1. Estimated Probability, Run Weight Variance, and
95% Confidence Interval for Each Simulation Method for the
Enzymatic Futile Cycle Model at 103 Runs (μexact = 1.71 ×

10−7)a

Algorithm μw σw
2 95% CI

SSA 0 0 [0, 0]

wSSA 1.4753 × 10−7 9.1059 × 10−13 [8.83 × 10−8,
2.06 × 10−7]

swSSA 6.2517 × 10−8 1.0426 × 10−12 [0, 1.25 × 10−7]

Guided
wSSA

0 0 [0, 0]

aNote that a tight confidence interval containing the true probability
indicates near-optimal biasing, while zero probability and zero
variance indicate poor biasing, as the error state was never reached.
Near-optimal biasing parameters were used (δ = 0.5, γmax = 2.5).
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This paper assigns to each bin the same target number of
trajectories, called the “bin size”, in order to simplify parameter
selection to a one-dimensional problem. The results attained by
running 15 WE simulations with the described framework are
shown in Figure 4. As expected, estimates are more precise with
increasing bin size. As with the wSSA and swSSA, performance is
sensitive to choice in bin size. Unlike the wSSA and swSSA,
however, a well-performing set of parameters may cause poor
runtime performance.
Table 2 compares the performance of IS-based and WE

methods on this model by reporting the computational gain
achieved over running SSA for each method. In order to derive
the standard error for the WE method, an ensemble of 200
independent WE runs was simulated, and the standard error of
these 200 samples is reported. Note that for IS-based methods,
column N reports the number of simulation runs that produced
the reported estimate. For WE method, column N reports the
number of SSA runs that is computationally equivalent to the
WE simulation. Near-optimal biasing parameters are used for
wSSA and swSSA. The same described binning framework is
used for the WE method with the bin size being set to 30.
Table 2 shows that wSSA and swSSA both achieve significant

computational gain over SSA given that near-optimal biasing
parameters are selected, but the accuracy of estimator in these
two methods is extremely sensitive to biasing parameters
(Figure 3B,C). Guided wSSA was not able to produce a single
trajectory ending in a state where S5 = 25 after simulating
100,000 trajectories. Weighted Ensemble provides a safer
option, as it is easier to select a good set of parameters
compared to IS-based methods but the computational gain
achieved over SSA was less than wSSA and swSSA.

Simplified Motility Regulation. The simplified motility
regulation model is a 12-reaction naturally occurring gene
regulatory network given as follows:

+R : codY codY CodY
1

k1

R : CodY
2

k2

+R : flache flache SigD3

k3

R : SigD4

k4

+ +R : SigD SigD hag Hag5

k5

R : Hag6

k6

+ _R : SigD hag SigD hag7

k7

_ _R : SigD hag SigD hag8

k8

+ _R : CodY flache CodY flache9

k9

_ +R : CodY flache CodY flache
10

k10

+ _R : CodY hag CodY hag11

k11

_ +R : CodY hag CodY hag12

k12

where

Figure 4. Analysis of the enzymatic futile cycle model. (A) 95% confidence interval constructed by running an ensemble of 15 WE simulations as bin
size is varied from 10 to 200 with a step of 10. (B) Comparison of time to complete 15WE simulations as bin size is varied from 10 to 200 with a step of
10.

Table 2. Number of Simulations, Estimated Probability, One-Standard-Error, Equivalent Number of SSA Runs Required to
Produce the Same Level of Accuracy and the Gain Achieved over Brute-Force SSA for Each SimulationMethod for the Enzymatic
Futile Cycle Model (pexact = 1.71 × 10−7)a

Method N p̂ σn nSSA Gain (nSSA/N)

wSSA 105 1.73 × 10−7 3.29 × 10−9 1.60 × 1010 1.60 × 105

swSSA 105 1.95 × 10−5 1.45 × 10−8 9.30 × 108 9.30 × 103

Guided wSSA 105 0 0

WE 9.36 × 104 1.49 × 10−7 2.23 × 10−8 3.01 × 108 3.21 × 103

aNear-optimal biasing parameters were used (δ = 0.5, γmax = 2.5) for IS-based methods. An ensemble of 200 WE simulations was run to produce
the results with the bin size set to 30. Note that the number of simulations, N, for the WE method is the number of SSA simulations
computationally equivalent to the WE run.
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= = = = = = =k k k k k k k0.1, 0.00021 8 10 12 2 4 6

= = = = =k k k k k1, 0.01, 0.023 5 7 11 9

The initial state of the model is set as follows:

= = _ =

= _ = _ =

codY flache SigD hag hag

CodY flache CodY hag

(0) (0) (0) (0)

(0) (0) 1

= = =CodY SigD Hag(0) (0) (0) 10

This system represents the genetic mechanism which
regulates flagella formation in Bacillus subtilis.17,18 This model
serves as an archetypal simple gene regulatory network.
The rare event of interest is CodY reaching 20 molecules

before 10 time units have passed. The probability of this event
was estimated to be 2.161 × 10−7with 107 runs of the wSSA with
the biasing setup described below and δ = 0.3. This value is
similar to estimates presented by Gillespie and Golightly10 for
the same model, and is considered exact for all analyses.
In the simplified motility regulation model, codY tran-

scription/translation, Cod_flache dissociation, and CodY_hag
dissociation may be increased, and CodY degradation, CodY_fl-
ache association, and CodY_hag association may be decreased
to increase the probability that CodY rises to 20. This gives the
following wSSA weighting scheme:

= = =b a b a b ax x x x x x( )
1

( ), ( ) ( ), ( ) ( )1 1 2 2 3 3
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1

( ), ( ), ( )
1

( )10 10 11 11 12 12

Again, we fix = 0.15
D

0 for all reactions selected to be biased

downward and = 0.5
E

0 for all reactions selected to be biased

upward. This gives the following swSSA weighting scheme:
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Within this framework, the same analyses performed on the
previous two models were performed on the simplified motility
regulation model (Table 3, Figure 5). The results of these
analyses corroborate those of the analyses performed on the
previous two models.
WE requires dividing the state space of the model into bins

prior to simulation. This paper implements the following
binning procedure for the Motility Regulation model based on
coordinate CodY: One bin containing states where CodY < 10.

Ten bins for CodY ∈ {10, 11, ..., 19}. An absorbing bin for the
target states, CodY = 20.

Running 1000 SSA runs of 10 time units each, the average
reaction time for this model was estimated to be 0.5071 time
units. Setting τ to some value greater than this will minimize
unnecessary polling of the bins. τ is set to 1 for this model.

The results attained by running 100 WE simulations with the
described framework is shown in Figure 6. As was the case with
the IS-based methods, the results of these analyses corroborate
those of the analyses performed on the previous two models.

Table 4 compares the performance of IS-based and WE
methods on a simplified motility regulation model by reporting
the computational gain achieved over running SSA for each
method. In order to derive the standard error for the WE
method, an ensemble of 500 independent WE runs was
simulated, and the standard error of these 500 samples is
reported. For IS-based methods, column N reports the number
of simulation runs that produced the reported estimate. For the
WE method, column N reports the number of SSA runs that is
computationally equivalent to the WE simulation. Near-optimal
biasing parameters are used for wSSA and swSSA. The same
described binning framework is used for WE method with the
bin size being set to 150.

Table 4 shows that all the methods provide a considerable
computational gain over SSA. Running 5 × 105 simulations,
Guided wSSA provides a computational gain of 330, while the
selection of biasing parameters is done totally automatically. We
again observe that the accuracy of the estimate with wSSA and
swSSA methods are very sensitive to the selection of biasing
parameter (Figure 5B,C).Weighted ensemble again proves to be
a safer option as it is easier to select a good set of parameters
compared to IS-based methods but the computational gain
achieved over SSA was less than that for IS-based methods with
near-optimal biasing parameters.
Genetic Circuit 0x8E. The third example is the genetic

circuit 0x8E originally published by Nielsen et al.19 The circuit is
one of 60 genetic digital logic circuits designed using the genetic
design automation (GDA) tool Cello.19 The circuit has three
input molecules arabinose (Ara, ChEBI = 17535), isopropyl-beta-
D-thiogalactopyranoside (IPTG, ChEBI = 61448) and acetylcho-
line (aTc, ChEBI = 15355) and one output, the production of
yellow f luorescent protein (YFP).

The inducer molecules have to be present for a prolonged
time so that the input states can propagate through the different
levels of logic. The circuit has three input molecules and
therefore eight input combinations: IPTG, aTc, Ara = (0,0,0),
(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). A one

Table 3. Estimated Probability and Run Weight Variance for
Each Simulation Method for the Simplified Motility
Regulation Model at 103 Runs (μexact = 2.161 × 10−7)a

Algorithm μw σw
2 95% CI

SSA 0 0 [0, 0]

wSSA 6.3233 × 10−8 6.4963 × 10−13 [1.32 × 10−8,
1.13 × 10−7]

swSSA 3.3120 × 10−8 2.5388 × 10−13 [1.89 × 10−9,
6.43 × 10−8]

Guided
wSSA

6.4949 × 10−7 2.4402 × 10−10 [0, 1.61 × 10−6]

aNote that a tight confidence interval containing the true probability
indicates near-optimal biasing, while zero probability and zero
variance indicate poor biasing, as the error state was never reached.
Near-optimal biasing parameters were used (δ = 0.3, γmax = 8.25).
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represents a high input of 60 molecules and a zero represents a

low input meaning nomolecules of that input are available to the

cell. For example, (0,0,1) means that zero molecules of IPTG or

aTc are available but 60 molecules of Ara. Out of these eight

different input combinations, four result in the production of

YFP. For example, if (0,0,0) is applied, YFP is produced and the

cell glows yellow. However, if (0,0,1) is applied, the circuit does

not produce YFP and the cell is not glowing yellow.

Figure 5. Analysis of the simplified motility regulation model. (A) Comparison of estimated probability to true probability for all four algorithms over
104 runs (with optimal biasing parameters). (B) Probability estimated by wSSA after 104 runs as δ is varied. Note that δ values in (0,1.5) were used
despite δ > 1 corresponding to reciprocal weighting. This is to demonstrate that, for some values of δ, the motivated scheme presented here performs
no better than unmotivated biasing. (C) Probability estimated by swSSA after 104 runs as γmax is varied. (D) Comparison of time to complete 103 runs
for each algorithm (with δ = 0.3, γmax = 8.25).

Figure 6.Analysis of the simplifiedmotility regulationmodel. (A) 95% confidence interval constructed by running an ensemble of 100WE simulations
as bin size is varied from 10 to 200 with a step of 10. (B) Comparison of time to complete 100WE simulations as bin size is varied from 10 to 200 with a
step of 10.
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In their experiments on this circuit, the circuit exhibited a
glitching behavior. If the circuit is in the state IPTG, aTc, Ara =
(1, 0, 0), no YFP is produced. If the circuit is in the state IPTG,
aTc, Ara = (1, 1, 1), there is also no YFP produced. However,
Nielsen et al. observed that if the circuit is in the state (1, 0, 0)
and then transitions to state (1, 1, 1), for a short amount of time,
YFP is produced although this behavior is unwanted. In
particular, both input combinations yield a low output, but
instead of maintaining a low output throughout the input
transition, the output switches from low, to high, to low. More
information on the glitching behavior of circuit 0x8E can be
found in refs 2 and 3.
Themodel consists of 15 reactions including 79 reaction rates.

The rare event of interest is the quantification of that glitching
behavior by determining the probability of YFP exceeding 70
molecules before 1000 time units pass. The probability of this
event was estimated to be 6.29 × 10−4 with 106 runs of the SSA.
This value is considered exact for all analyses.
YFP production may be increased and YFP degradation may

be decreased to increase the probability that YFP rises to 70.
This gives the following wSSA weighting scheme:
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Within this framework, the same analyses performed on the
previous three models were performed on the genetic circuit
0x8E model (Table 5, Figure 7). The results of these analyses
corroborate those of the analyses performed on the previous
three models.
In order to estimate the probability of the event of interest

using Weighted Ensemble, this paper implements the following
binning procedure for the this model based on coordinate YFP:
70 bins for YFP ∈ {0, 1, ..., 69}. An absorbing bin for the target
states, YFP = 70.
Running 1000 SSA runs of 1000 time units each, the average

reaction time for this model was estimated to be 1.0052 time
units. The time period τ should be some value greater than this
to minimize unnecessary polling of the bins. τ is set to 1.5 for this
model.

The results attained by running 15 WE simulations with the
described framework is shown in Figure 8. As was the case with
the IS-based methods, the results of these analyses corroborate
those of the analyses performed on the previous three models.

In order to compare the performance of IS-based and WE
methods on this model, the computational gain achieved over
running SSA for each method is reported in Table 6. In order to
derive the standard error for the WE method, an ensemble of
150 independent WE runs was simulated and the standard error
of these 150 samples is reported. For IS-based methods, column
N reports the number of simulation runs that produced the
reported estimate. For WE method, column N reports the
number of SSA runs that is computationally equivalent to the
WE simulation. Near-optimal biasing parameters are used for
wSSA and swSSA. The same described binning framework is
used for WE method with the bin size being set to 100.

As it can be observed from Table 6, Guided wSSA and swSSA
achieve a computational gain of less than 1 over SSA with
relatively large one-standard-error, indicating that SSA is
expected to produce a more accurate estimate if it were to run
for the same number of simulations. In the case of swSSA, it
indicates the necessity of good biasing. Encouraging reactions 13
and 14 and discouraging reaction 15 seems to be helping the
simulation reaching the error state more often, and selecting γmax

= 4.5 seems to be optimal by running 103 swSSA simulations (as
it can be seen in Figure 7) but the resulting biasing scheme
worsens the performance compared to SSA.Weighted Ensemble
and wSSA both achieve a computational gain of more than 1
with the same limitation that wSSA performs very poorly in cases
where poor biasing parameters are selected (Figure 7B).
Genetic Circuit 0x8E_TI. Circuit 0x8E_TI is a redesign of

circuit 0x8E.19 The circuit variation was designed by
Fontanarrosa et al.2 It has Two added Inverters to add extra
delay to a pathway of the circuit to reduce its glitching behavior.
The circuit implements the same logic function as circuit 0x8E
and has therefore the same inputs (Ara (ChEBI = 17535), IPTG

Table 4. Number of Simulations, Estimated Probability, One-Standard-Error, Equivalent Number of SSA Runs Required to
Produce the Same Level of Accuracy and the Gain Achieved over Brute-Force SSA for Each SimulationMethod for the Simplified
Motility Regulation Model (pexact = 2.161 × 10−7)a

Method N p̂ σn nSSA Gain (nSSA/N)

wSSA 5 × 105 2.07 × 10−7 3.45 × 10−8 1.74 × 108 3.49 × 102

swSSA 5 × 105 1.97 × 10−7 1.74 × 10−8 6.50 × 108 1.30 × 103

Guided wSSA 5 × 105 2.80 × 10−7 4.12 × 10−8 1.65 × 108 3.30 × 102

WE 4.09 × 105 3.75 × 10−7 1.30 × 10−7 2.20 × 107 5.37 × 10
aNear-optimal biasing parameters were used (δ = 0.3, γmax = 8.25) for IS-based methods. An ensemble of 500 WE simulations was run to produce
the results with the bin size set to 150. Note that the number of simulations, N, for the WE method is the number of SSA simulations
computationally equivalent to the WE run.

Table 5. Estimated Probability and Run Weight Variance for
Each Simulation Method for the Genetic Circuit 0x8E Model
at 103 Runs (μexact = 6.29 × 10−4)a

Algorithm μw σw
2 95% CI

SSA 0 0 [0, 0]

wSSA 5.0043 × 10−4 9.8086 × 10−5 [0, 1.11 × 10−3]

swSSA 2.7317 × 10−4 2.8359 × 10−5 [0, 6.03 × 10−4]

Guided wSSA 2.7908 × 10−6 7.7807 × 10−9 [0, 8.25 × 10−6]
aNote that a tight confidence interval containing the true probability
indicates near-optimal biasing, while zero probability and zero
variance indicate poor biasing, as the error state was never reached.
Optimal biasing parameters were used (δ = 0.6, γmax = 4.5).
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(ChEBI = 61448), aTc (ChEBI = 15355)), and output (YFP).
The input combinations and the corresponding high or low
output are identical to the circuit 0x8E as well. More information
about the circuit, the inverters, and glitching behavior can be
found in ref 2.

The model consists of 19 reactions including 109 reaction

rates. The rare event of interest is the quantification of the

glitching behavior by determining the probability of YFP

exceeding 100 molecules before 1000 time units pass. The

Figure 7. Analysis of the genetic circuit 0x8E model. (A) Comparison of estimated probability to true probability for all four algorithms over 104 runs
(with optimal biasing parameters). (B) Probability estimated by wSSA after 102 runs as δ is varied. Note that δ values in (0,1.5) were used despite δ > 1
corresponding to reciprocal weighting. This is to demonstrate that, for some values of δ, the motivated scheme presented here performs no better than
unmotivated biasing. (C) Probability estimated by swSSA after 102 runs as γmax is varied. (D) Comparison of time to complete 103 runs for each
algorithm (with optimal biasing parameters).

Figure 8. Analysis of the genetic circuit 0 × 8E model. (A) 95% confidence interval constructed by running an ensemble of 15 WE simulations as bin
size is varied from 10 to 200 with a step of 10. (B) Comparison of time to complete 15WE simulations as bin size is varied from 10 to 200 with a step of
10.
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probability of this event was estimated to be 8.74× 10−4with 107

runs of the SSA. This value is considered exact for all analyses.
YFP production may be increased and YFP degradation may

be decreased to increase the probability that YFP rises to 100.
This gives the following wSSA weighting scheme:
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Within this framework, the same analyses performed on the
previous four models were performed on the genetic circuit
0x8E_TI model (Table 7, Figure 9).

In order to estimate the probability of the event of interest
using Weighted Ensemble, this paper implements the following
binning procedure for the this model based on coordinate YFP:
100 bins for YFP ∈ {0, 1, ..., 99}. An absorbing bin for the target
states, YFP = 100.
Running 1000 SSA runs of 1000 time units each, the average

reaction time for this model was estimated to be 0.9159 time
units. The time period τ should be some value greater than this
to minimize unnecessary polling of the bins. τ is set to 1.5 for this
model.
The results attained by running 15 WE simulations with the

described framework is shown in Figure 10. As was the case with
the IS-based methods, the results of these analyses corroborate
those of the analyses performed on the previous three models.

To compare the performance of IS-based andWEmethods on
this model, the computational gain achieved over running SSA
for each method is reported in Table 8 In order to derive the
standard error for the WE method, an ensemble of 60
independent WE runs was simulated and the standard error of
these 60 samples is reported. For IS-based methods, column N
reports the number of simulation runs that produced the
reported estimate. For the WE method, column N reports the
number of SSA runs that is computationally equivalent to the
WE simulation. Near-optimal biasing parameters are used for
wSSA and swSSA. The same described binning framework is
used for the WE method with the bin size being set to 150.

The results of this experiment confirm those shown for
Genetic Circuit 0x8E. Guided wSSA does not require selection
of biasing parameters prior to the simulation but produces an
estimate less accurate than the one expected to be produced by
SSA running the same number of simulations (Table 8).
Weighted Ensemble, wSSA, and swSSA all achieve a computa-
tional gain more than 1 with the same limitation that wSSA and
swSSA perform poorly in cases where poor biasing parameters
were selected (Figure 9B,C). Weighted Ensemble achieves a
smaller computational gain than wSSA but is safer with regards
to the selection of parameters.
Discussion. The wSSA and swSSA require the user to select

the reactions that should be encouraged and the reactions that
should be discouraged. Although such a task might seem trivial
for very simple models, deep insight into the underlying
dynamics of the network is necessary for more complex models.
This paper obtains weighting schemes by reasoning that certain
reactions take a system toward or away from some state of
interest, but it is unclear whether or not these schemes are
optimal, nor is there a computationally efficient method of
determining an optimal scheme. This pitfall undermines the
applicability of both the wSSA and swSSA.

In the wSSA, the biasing factor for those selected reactions
must also be specified prior to simulation. This is also nontrivial
because these parameters can take on any value greater than zero
and it is not obvious which values will result in accurate
estimates just by considering the model. Moreover, the accuracy
of the estimate is highly sensitive to these values (Figures 3, 5, 7,
9B). Selecting nonoptimal biasing factors can result in an
estimate even less accurate than one produced by running the
original SSA for the same number of simulations. This paper
simplifies biasing schemes by introducing only one biasing
factor, which was applied multiplicatively to down-biased
reactions and inverse multiplicatively to up-biased reactions.
This method simplifies biasing factor optimization to a one-
dimensional problem, making parameters simpler to optimize
but likely limiting the performance of the wSSA by greatly
reducing the size of the biasing space. Even in the simplified one-

Table 6. Number of Simulations, Estimated Probability, One-Standard-Error, Equivalent Number of SSA Runs Required to
Produce the Same Level of Accuracy and the Gain Achieved over Brute-Force SSA for Each Simulation Method for the Circuit
0x8E Model (pexact = 6.29 × 10−4)a

Method N p̂ σn nSSA Gain (nSSA/N)

wSSA 5 × 104 5.80 × 10−4 4.74 × 10−5 2.58 × 105 5.15

swSSA 5 × 104 6.44 × 10−4 1.70 × 10−4 2.22 × 104 4.44 × 10−1

Guided wSSA 5 × 104 2.56 × 10−4 1.30 × 10−4 1.51 × 104 3.01 × 10−1

WE 5.73 × 104 5.66 × 10−4 5.44 × 10−5 1.91 × 105 3.33
aNear-optimal biasing parameters were used (δ = 0.6, γmax = 4.5) for IS-based methods. An ensemble of 150 WE simulations was run to produce
the results with the bin size set to 100. Note that the number of simulations, N, for the WE method is the number of SSA simulations
computationally equivalent to the WE run.

Table 7. Estimated Probability and Run Weight Variance for
Each Simulation Method for the Genetic Circuit 0x8E_TI
model at 103 runs (μexact = 8.74 × 10−4)a

Algorithm μw σw
2 95% CI

SSA 0 0 [0, 0]

wSSA 8.9846 × 10−4 4.2146 × 10−4 [0, 2.17 × 10−3]

swSSA 1.2945 × 10−4 5.9258 × 10−6 [0, 2.80 × 10−4]

Guided wSSA 8.2357 × 10−5 6.7493 × 10−6 [0, 2.43 × 10−4]
aNote that a tight confidence interval containing the true probability
indicates near-optimal biasing, while zero probability and zero
variance indicate poor biasing, as the error state was never reached.
Optimal biasing parameters were used (δ = 0.85, γmax = 3.75).
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dimensional case, there is no algorithmic way of producing

optimal biasing parameters or determining whether a biasing

parameter performs well. It is, therefore, not possible to know

whether a given biasing setup is working well unless the true

probability of the event of interest is known, making the wSSA

ineffective in its intended use case.
Traditionally, a low run weight variance has been considered

indicative of an optimal biasing scheme.15 This measure alone is

Figure 9. Analysis of the genetic circuit 0x8E_TI model. (A) Comparison of estimated probability to true probability for all four algorithms over 104

runs (with optimal biasing parameters). (B) Probability estimated by wSSA after 103 runs as δ is varied. Note that δ values in (0,1.5) were used despite δ

> 1 corresponding to reciprocal weighting. This is to demonstrate that, for some values of δ, the motivated scheme presented here performs no better
than unmotivated biasing. (C) Probability estimated by swSSA after 103 runs as γmax is varied. (D) Comparison of time to complete 103 runs for each
algorithm (with optimal biasing parameters).

Figure 10. Analysis of the genetic circuit 0x8E_TI model. (A) 95% confidence interval constructed by running an ensemble of 15 WE simulations as
bin size is varied from 10 to 200with a step of 10. (B) Comparison of time to complete 15WE simulations as bin size is varied from 10 to 200 with a step
of 10.
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inadequate, however, because IS-based techniques have a
tendency to underestimate the true probability with low but
nonzero run weight variance (Tables 1, 3, 5, 7), which may yield
confidence intervals that do not contain the true probability at
all. In these cases, the IS-based techniques certainly still
converge to the correct value, but may appear to have converged
to an underestimate until (many simulation runs later) a high-
weight run occurs which drastically changes the estimated
probability and run weight variance. This effect is visible in the
IS-based simulations, for example in Figure 7A, where a single
sample after 8000 runs causes an almost order-of-magnitude
jump in the Guided wSSA estimate.
The swSSA suffers from the same issues. For each reaction

designated to be up-biased or down-biased, the maximum
amount of biasing allowed, as well as a threshold from which
encouragement/discouragement should be applied, must be set
prior to simulation, so the user must specify twice as many
biasing parameters as in the wSSA. As is the case with the wSSA,
the accuracy of the swSSA is sensitive to these parameters
(Figures 3, 5, 7, 9C). The swSSA generally exhibits more
robustness to variation in biasing parameters than the wSSA,
however.
The Guided wSSA eliminates the challenge of choosing a

biasing scheme by requiring the user to specify no parameters
whatsoever. To achieve this, however, the Guided wSSA relies
on multivariate statistical techniques, which require matrix
inversion, making the Guided wSSA inherently slower than the
SSA, wSSA, and swSSA in simulating trajectories, typically
taking around four times as long to complete the same number
of runs as the SSA, wSSA, or swSSA (Figures 3, 5, 7, 9D).
The Guided wSSA also exhibits very poor convergence at a

fixed number of runs, even relative to the SSA in many cases
(Figures 3, 5, 7, 9A). This is likely because of the issue of
negative weights (see the Methods section), which is solved
using a mathematical technique that changes biasing parameters
from their derived optimal value.
TheWEmethod requires manual parameter selection, like the

wSSA and swSSA, and suffers from the same issues. However,
the WE requires three inputs regardless of model size. These are
(1) state-space binning, (2) polling/checking period, and (3)
bin size. This makes the WE method more scalable than its IS-
based counterparts. As it is the case with the wSSA and swSSA,
the WE performance is dependent on the values of these three
inputs. However, there are some advantages. First, binning
schemes are easier to develop than reaction weightings because
the user need only know how to divide the state space into a
series of ’steps’ which lead to the state of interest, rather than
having intuition for system dynamics, and a larger bin size is
always more favorable, regardless of the system being studied.
Second, the WE method exhibits more robustness to parameter

variation than the wSSA (Figures 4A, 6A, 8A) and is more
comparable to the swSSA, though a poor choice in bin size may
still lead to a very large relative error.

The WE method also becomes much less time-efficient as bin
size increases (Figures 4B, 6B, 8B), in contrast to the wSSA and
swSSA whose runtime performances are generally unchanged by
reaction biasing.

In summary, the original wSSA may achieve rapid
convergence and lower variance than competing methods
(Tables 1, 3, 5), but only with a narrow set of biasing parameters
that cannot be reliably determined in general (Figures 3, 5, 7,
9B). The swSSA demonstrates broader robustness to biasing
variation (Figures 3, 5, 7, 9C). The Guided wSSA solves the
issue of biasing parameter determination, but has poor run-time
performance and does not produce an accurate estimate in most
of the experiments presented in this paper.

The WE method is not easily compared to IS-based methods
in runtime performance or precision because it does not work by
producing many independent simulation runs. TheWEmethod,
while suffering the same parameter sensitivity issues as the wSSA
and swSSA, is more easily applied to larger models where many
wSSA or swSSA reaction biases would need to be individually
determined. It is also easier to choose an appropriate bin size,
which need only be sufficiently large, rather than finely tuned
reaction biasing parameters. This strength is undercut, however,
by the WE method’s poor runtime performance as bin sizes
increase because a sufficient parameter scheme could be
prohibitively inefficient. This is in contrast to the wSSA and
swSSA, which, when optimally biased, are more efficient than
the SSA because more simulations terminate before maximum
simulation time by reaching the state of interest.

While the IS-based methods considered here each present
unique strengths and challenges, none of them are able to
consistently, efficiently, and exactly estimate the probability of
rare events in synthetic biology, suggesting that further research
and development is necessary for these methods to adequately
study rare biological events. Because these methods may
produce deceivingly low variances with poor estimates, the
user cannot use them to reliably produce an accurate confidence
interval, like they could when simulating a higher-probability
event using the traditional SSA. At present, results produced by
the methods considered here cannot be taken at face value.
Instead, they must somehow be validated. In this paper, results
were validated through analytical techniques or through SSA
simulation. In practice, stochastic simulation of any kind are
unnecessary if analytical techniques may be applied. Likewise,
validating results with the SSA is impracticable in the case of rare
event simulation. Using the SSA would incur a great deal of
computational overhead and defeat the purpose of using an
accelerated simulation method. It may be possible to mitigate

Table 8. Number of Simulations, Estimated Probability, One-Standard-Error, Equivalent Number of SSA Runs Required to
Produce the Same Level of Accuracy and the Gain Achieved over Brute-Force SSA for Each Simulation Method for the Circuit
0x8E_TI Model (pexact = 8.74 × 10−4)a

Method N p̂ σn nSSA Gain (nSSA/N)

wSSA 5 × 104 9.43 × 10−4 9.40 × 10−5 1.07 × 105 2.13

swSSA 5 × 104 2.29 × 10−4 6.41 × 10−5 5.56 × 104 1.11

Guided wSSA 5 × 104 5.41 × 10−4 4.97 × 10−4 2.18 × 103 4.38 × 10−2

WE 5.02 × 104 1.32 × 10−3 1.47 × 10−4 6.10 × 104 1.21
aNear-optimal biasing parameters were used (δ = 0.85, γmax = 3.75) for IS-based methods. An ensemble of 60 WE simulations was run to produce
the results with the bin size set to 150. Note that the number of simulations, N, for the WE method is the number of SSA simulations
computationally equivalent to the WE run.
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the computational overhead if the obtained parameters can be
reused, for example when simulating the effect of small model
variations. This could be useful for simulating changes in
temperature or other environmental parameters if they do not
appreciably alter the optimal IS parameters. This would serve as
a useful application of the IS methods, but should still be used
with cautious skepticism. Alternatively, multiple accelerated
simulation methods could be applied to the same model and
trusted only if they agree, reducing risk.
An ideal method would have the favorable efficiency and

precision of the wSSA with ideal biasing parameters but would
be autonomous like the Guided wSSA or more easily tuned like
the WE Dynamics. An ideal method would also maintain good
runtime efficiency as models grow in size or as probability of the
event of interest decreases, like the wSSA and swSSA, suggesting
that stratified sampling methods like the WE Dynamics will not
be sufficient. This investigation does not suggest that the
dynamic weighting techniques of the swSSA and Guided wSSA
are necessary. Taken together, these conclusions point toward a
method which autonomously determines a static weighting
scheme, either by analyzing the structure of a given system or
through an optimization technique, and otherwise simulates
similarly to the wSSA or swSSA. The method of determining
optimal biasing would need to perform much better than the
Guided wSSA, which is shown here to perform far from
optimally.

■ METHODS

Stochastic Simulation Algorithm. The SSA6 is a Monte
Carlo simulation procedure that numerically calculates the
temporal behavior of a chemically reacting system. It assumes an
input model as a well-stirred system of N chemical species {S1,
S2, ..., SN} reacting throughM irreversible reaction channels {R1,
R2, ..., RM}. The state vector X(t) ≡ (X1(t), X2(t), ..., XN(t))
indicates the population of each species at time t and the system
is initially at state x0, i.e. X(0) = x0. The state change vector v(j)
is defined for each reaction Rj as the effect of that reaction on the
system’s state vector. Thus, given that the system is at state x, a
single reaction Rj would take the system to the state x + vj.
At a state X(t) = x, the propensity of reaction Rj, denoted

aj(x), is defined such that aj(x) dt is the probability that reaction
Rj would fire in the next infinitesimal time interval [t, t + dt).
Given this definition, the propensity of the reaction Rj at any
given state would be the constant rate of that reaction, kj,
multiplied by the number of distinct combinations of molecular
reactants of Rj at that state.
Given that the system is at state x at time t, i.e. X(t) = x, the

probability that the system leaves this state between time t + τ

and t + τ + dτ is equal to a x( ) e da x

0
( )0 where =

=

a a x( )
i

M
j0 1

and the probability that reaction Rj is the reaction that takes the
system to the next state is equal to aj(x)/a0(x).
In order to simulate the temporal behavior of the system,

starting from the initial state, the SSA selects the time τ to jump
to a next state by sampling an exponential distribution with
mean 1/a0(x), and the index j of the reaction taking the system
to the new state is chosen probablisitically with P(j) = aj(x)/
a0(x). To estimate the probability of a given property, SSA
performs N simulation runs of the system and reports the
estimated probability as the number of successful simulation
runs (those satisfying the property) over the total number of
simulations.

wSSA. Rare events are difficult to simulate because the
number of traditional SSA runs necessary to see a rare event of
interest occur even once can be very high. For example, an event
with probability 10−6would, on average, be observed once in 106

runs and would require many more runs for its probability to be
estimated with a high degree of confidence. The wSSA addresses
this issue by directing simulation runs toward the state of interest
and carefully weighting those runs such that the sum of all run
weights divided by the number of runs is an unbiased estimator
of the true probability of reaching the state of interest.8

Simulation runs are directed toward the state of interest by
increasing the likelihood of certain reactions occurring in
simulation and decreasing the likelihood of others. Runs are
assigned weights specific to the sequence of reactions which
occurred during the run in a manner presented in Algorithm 1.

While it is clear that reactions which move the system toward a
rare event of interest should be biased upward and reactions
which move the system away from a rare event of interest should
be biased downward, Kuwahara and Mura8 propose no method
of determining the magnitude of biasing for each reaction.
swSSA. wSSA uses importance sampling in the reaction

selection step of the SSA algorithm to sample parts of the
sample-space with higher importance more frequently.
Kuwahara and Mura8 propose a fixed, predetermined biasing
factor for each reaction in order to encourage reactions that
increase the likelihood of reaching the target state and
discourage those which decrease the likelihood of reaching the
target state.

As the species population changes throughout the course of
simulation, relative propensity of each reaction changes too. In
order to produce an accurate estimate, the fixed biasing factor
used in wSSA should bias relative propensity of reactions
correctly for most of the values they take throughout the
simulation. This results in a narrow range of values that the
biasing factor can take to produce an accurate estimate.
Moreover, if a fixed biasing factor is selected for a reaction
and the relative propensity of that reaction takes a wide range of
values (getting close to both 0 and 1 during the simulation),
wSSA is going to inevitably modify some of those relative
propensities too much or too little, resulting in a less accurate
estimator. If a reaction is assumed to take the simulation toward
the target states and the relative propensity of that reaction is
already close to 1 in the current state of the simulation, there is
no need for further encouragement of that reaction. The same is

Scheme Algorithm 1. wSSA
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true for a reaction assumed to take the simulation away from the
target states which already has a relative propensity close to 0. In
fact, further modifying relative propensities of reactions in those
states would result in a less accurate estimate and decreases the
efficiency of the algorithm as it results in oversampling a small
part of the sample-space while neglecting other parts that could
potentially be of high importance.
In order to address these issues, Roh et al.(2010)9 propose a

state-dependent biasing factor over the fixed biasing factor used
in wSSA. The state-dependent weighted stochastic simulation
algorithm, swSSA, calculates alternative propensities for
reactions (b functions in line 6 of Algorithm 1) by multiplying
current relative propensities by functions instead of positive
constant scalars, as is the case in wSSA. The relative propensity
of a reaction j, aj/a0, indicates the likelihood of that reaction
being selected as the next step. Roh et al. define the parameter ρj
to be the relative propensity of reaction j at state x, ρj(x) = aj(x)/
a0(x). Like wSSA, prior to simulation, reactions which are to be
encouraged or discouraged should be identified. Reactions
which are assumed to take the simulation toward target states are
added to group GE, reactions assumed to take the simulation
away from target states are added to group GD, and neutral
reactions are added to groupGN. For each reaction j in groupsGE

and GD a threshold,
j

0, and the maximum amount of biasing

allowed for that reaction,
j

max is defined prior to the simulation.

For a reaction j in group GE at state x, if current relative
propensity of that reaction, ρj(x) is already greater than the

predefined threshold for that reaction,
j

0, no further biasing is

applied. If ρj(x) is less than
j

0 then biasing is applied by

multiplying the current propensity of that reaction by a biasing
function, f j(x) which has the two following characteristics: (1)

f x( )
j j

max as ρj(x)→ 0 and (2) f j(x)→ 1 as x( )
j j

0. For

a reaction j in group GD at state x, if the current relative
propensity of that reaction, ρj(x) is already less than the

predefined threshold for that reaction,
j

0, no further biasing is

applied. If ρj(x) is greater than
j

0 then biasing is applied by

multiplying the current propensity of that reaction by a biasing
function, gj(x) which has the two following characteristics: (1)

g x( ) 1/
j j

max as ρj(x) → 1 and (2) gj(x) → 1 as x( )
j j

0.

In theory, any function with such characteristics can be used.
Roh et al.9 use parabolic functions, and the results presented in

this paper are obtained by running swSSA with the same
functions described in Roh et al. An illustration of parabolic f and
g functions and their behavior is given in Figure 11 and the
pseudocode of swSSA method can be viewed in Algorithm 2.

Guided wSSA. To avoid reliance on user input and a priori
knowledge of the system being simulated, the Guided wSSA
automatically biases reactions at each point in time during a
simulation. Gillespie and Golightly, motivated by results in a
simple discrete-time model, argue that reactions are optimally
biased when they cause the system to reach the state of interest
immediately before the maximum simulation time.

In the Guided wSSA, therefore, biases are calculated such that
the system is expected to reach the state of interest at maximum
simulation time. This is achieved by assuming a constant
reaction hazard for each reaction over the remainder of the
simulation such that the number of times each reaction occurs

Figure 11. Example of parabolic f and g functions.
j

max is the maximum amount of biasing allowed for reaction j. j

0
is the threshold beyond which

biasing is applied.

Scheme Algorithm 2. swSSA
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will follow a Poisson distribution. A multivariate normal
approximation to the resulting Poisson distribution is made
and also the conditioned expectation of reaction count over the
remainder of the simulation for each reaction given that the state
of interest is attained at maximum simulation time. The exact
details of the matrix manipulations necessary to perform these
multivariate statistical calculations are included in Algorithm 3.

Unfortunately, the support of the multivariate normal
distribution includes negative values, which are not meaningful
in the context of reaction counts. For this reason, the published
version of the Guided wSSA experiences regular errors when
used in simulation. Inspection of the R code for the three
example cases used by Gillespie and Golightly reveals that a
different method of dealing with these negatives is used in each
case.
The first of these methods, referred to as “Method A” here,

increases each derived optimal biasing factor by the absolute
value of the minimum biasing factor plus 0.01, thereby ensuring
that no biasing factors will be negative. The second of these
methods, referred to as “Method B” here, divides each biasing
factor by the minimum biasing factor, which only ensures
positive biasing if all biasing factors are negative, and does not
work in general. The third and final method, referred to as
“Method C” here, replaces each negative biasing factor with one,
thereby eliminating negative reaction rates. MethodC is used for
all analyses included in this paper.
Weighted Ensemble.Weighted Ensemble (WE), originally

introduced by Huber and Kim12 in the context of molecular
dynamic simulations and later applied to systems-biology
models by Donovon et al.,14 is a simulation strategy aiming at
path sampling of rare events.
Considering a model’s state-space, rare-events generally

contain paths with states that have lower reachability probability
from the initial state(s).WE increases the efficiency of rare-event
sampling by limiting the amount of computational resources
spent on sampling parts of the state-space with higher
reachability probability. The resulting additional computational
resources (CPU time) is then spent on further investigating

trajectories which have already made it to parts of the state space
with less reachability probability. This procedure will increase
the number of trajectories reaching the states comprising the
rare-event of interest and hence increasing the accuracy of the
probability estimate for a fixed amount of computational
resources compared to SSA. Donovon et al.14 propose the
following framework for applying WE to chemical reaction
networks:

Prior to WE simulation, model’s state space is divided into
nonoverlapping bins, {b1, b2, ..., bj}, and a target number of
trajectories is then assigned to each of those bins,
{ }M M M, , ...,

targ targ
j
targ

1 2 . After every τ units of time, a polling

of currently active trajectories takes place and the WE dynamics
is applied to all populated bins as described in Algorithm 4. A

populated bin is a bin that contains at least one trajectory at
current state of the simulation. Selecting a trajectory for splitting
is done probabilistically with the probability directly propor-
tional to the trajectory’s weight. After a trajectory is split into
two, each of the newly spawned trajectories get half the weight of
their parent. Selecting trajectories for merging is done
probabilistically with the probability inversely proportional to
the trajectories’ weight. When two trajectories are merged, one
of them survives probabilistically based on their relative weight.
The weight of the surviving trajectory is updated by adding the
weight of the killed trajectory.

τ is selected to be some value greater than the average reaction
time of the model. Setting τ to some value less than that will
result in excessive polling, as the system is not given enough time
to evolve and move within bins. Dividing the state-space into
bins should be done in a manner that states with the same
reachability probability with respect to the event of interest are
grouped together. Failure to do so will hinder the computational
gains achieved by applying WE. After a WE run finishes, the
aggregated weight of trajectories reaching the target bin is
reported as the probability estimate. The confidence intervals
reported for WE method in this paper are constructed by
simulating an ensemble of WE simulations and using the
standard error of the mean target bin.
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