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Abstract—The advent of LiDAR technology has had a revolu-
tionary impact on archaeological prospection by vastly enlarging
the coverage of ancient landscapes and consequently the num-
ber of ancient surface features. However, manual analysis by
experts requires a significant time and money investment. This
paper describes a deep learning model developed to segment,
i.e., label, the semantics of objects of interest as a means to
augment or supplant manual labeling of LiDAR data. The U-Net
deep learning model forms the backbone of the system which
has shown success in providing accurate outputs on similar
LiDAR data set. The trained U-Net model is integrated into
an inference pipeline to transform expansive LiDAR datasets
into labeled output images. Work focuses on the classification of
two semantic types: (1) platforms and (2) annular structures
whose attributes, e.g., location, shape, and distribution, play
an important role in improving our understanding of ancient
Maya civilizations. This article provides a deep learning-based
system that efficiently extracted these structures. CNN-generated
inferences were compared against expert-labeled features to
measure algorithm performance. Results for a LiDAR survey of
479 sq. km. indicate that the CNN provides an IoU performance
of 0.82 and 0.74 for annular structures and platforms respectively.
The discussion further analyzes how IoU performance relates to
the viability of this approach as an aid or substitute for manual
labeling.

Index Terms—LiDAR, remote-sensing, segmentation, deep-
learning, U-Net

I. INTRODUCTION

Accurate and extensive knowledge of ancient landscapes is
central to our ability to reconstruct ancient settlements and
their surroundings, allowing us to make inferences concerning
demography, economic activities, and sociopolitical organi-
zation. Traditional mapping methods are costly and labor
intensive, however, especially in heavily vegetated areas such
as the Maya lowlands. This has been revolutionized by LiDAR
(Light Detection and Ranging), a remote sensing technique
that creates high-resolution elevation models of the earth’s
surface using a laser scanner. Laser point clouds can then be
converted to Digital Terrain Models (DTMs) for the purpose
of identifying features of interest.

Detailed imagery of ancient settlements over very large re-
gions can thus be had in a small fraction of the time pedestrian
coverage would require, but comes with a sharp increase in
the time needed to manually identify features in the imagery.
As data volume increases, speeding up and automating the

annotation of features has become an active area of research.
In this paper, we report on the application of deep-learning
segmentation to LiDAR data from the Puuc region of Yucatan,
where ancient Maya communities flourished from 500 BC to
AD 1000.

Deep learning-based semantic segmentation has been used
for an automatic annotation system of objects of interest with
the model’s objective being to assign a class label to each
pixel in the image. The goal is to train the model to be able
to segment every pixel in any input image into corresponding
class labels or backgrounds.

Platforms and annular structures built by the Maya of
the Puuc region are the focus of this paper’s LiDAR data
analysis (see Fig. 1). (Stone platforms supported houses and
administrative buildings while annular structures were open
ovens probably used for lime production.) A small portion of
the region was manually labeled and verified by experts. The
goal is to automatically annotate the remaining portion of the
region using a deep learning (DL) model trained with that
small subset of labeled data.

The data set includes LiDAR data in tiff format and expert-
drawn training polygons of annular structure and platforms
provided as shapefiles. We converted the raw data, which
was provided in tiff and shapefile format, into a format that
machine learning models could understand. In addition, we
take the massive LiDAR data set and divide it into small tiles
of 128 × 128 to make a suitable input for our model. The
segmentation model’s output measures 128 × 128 as well.
However, this format of output gives little information to
archaeologists. To provide a more useful output format, we
stitched all the output tiles together to produce the inferred
output at the same size as the original input size but with a
predicted masked region showing the objects of interest.

DL models have become extremely popular in recent years
across a variety of computer vision fields due to their capacity
to automatically extract features from images while boosting
accuracy and productivity. Nevertheless, putting these DL
models into practice calls for specialized programming and
machine learning expertise, which are uncommon in archae-
ology. U-Net [1] was used to segment archaeological structures
in LiDAR data with the intent to reduce manual labeling of
these data.
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Fig. 1. Location map of the research area - the Puuc region of northern Yucatan, Mexico.

The main contributions of this paper are summarized as
follows:

• the model demonstrates the performance of 0.82 IOU for
annular structures, a type of structure analyzed for the
first time by means of DL.

• an image augmentation pipeline is proposed that lever-
ages a relatively small amount of labeled LiDAR data
and produces results competitive with the recent works
for platform structures (0.74 IOU).

• additional archaeological analysis is provided that mea-
sures how effective this tool is in practice. Findings
indicate the tool performs satisfactorily for identifying
annular structure, but more work is required for compa-
rable utility regarding platform identification.

II. RELATED WORKS

In the field of computer vision, deep learning models cur-
rently dominate thanks to consistent improvements in accuracy
and speed for tasks such as image classification and object
detection. LeCun’s creation of CNN [2] in the early 1990s
opened up new possibilities for image classification. However,
the revolution in CNN came in 2012 with Krizhevsky’s
‘AlexNet’ [3], which classified 1.2 million images into 1000
classes with an error rate of 15.3%. CNN continues to ad-
vance with the development of ResNet [4], GoogleNet [5],
SqueezeNet [6], DenseNet [7].

Despite the enormous success of deep learning methods in
other computer vision fields, the application of deep learning

in archaeology is still in its early stages. This can be attributed,
in part, to the difficulty of implementing deep learning models,
which calls for a high level of computer science proficiency.
The limited availability of data for archaeological sites may
also be another factor. However, in recent years, with the
advent of LiDAR technology and steady improvement in the
predictive capabilities of DL models, interest in the application
of DL in archaeology has grown. A considerable amount of
work has been carried out using remote sensing imagery,
primarily for classification tasks [8]–[14].

In 2022 Banasiak, P.Z. [15] implemented deep learning
neural networks (DLNN) for the automatic recognition of
archaeological monuments in the Polish part of the Białowieża
Forest. For this, they used Airborne Laser Scanning (ALS)
data and performed semantic segmentation using the U-Net [1]
model. They were able to achieve IoU values for ancient field
system banks, ancient field system plots, and burial mounds
of 0.41, 0.616, and 0.62 respectively.

Using several variations of the VGG-19 Convolutional Neu-
ral Network (CNN) applied to Airborne Laser Scanning (ALS)
data from the Chact’̆n region, Somrak, M. [16] showed that a
CNN model can classify different types of ancient Maya struc-
tures. Concurrently, Bundzel, M. [17] used Pacunam Initiative
LiDAR survey data of the lowland Maya region in Guatemala
to identify the locations of ancient construction activity and the
remains of ancient Maya buildings. They performed semantic
segmentation using two different deep learning models, U-



Net [1] and Mask R-CNN [18] and demonstrated that they
were able to identify 60–66% of all objects and 74–81% of
medium-sized objects using U-Net.

Using LiDAR data from the Maya forest region, Landauer,
J. [19] trained an ensemble of DeepLabV3+ [20] and HRNet
[21] network to automatically detect reservoirs, buildings, and
platforms, achieving an average IoU of 0.8275 across all three
classes.

It is evident from all the published articles that DL is be-
coming more and more popular in archaeology. Its application
in classifying LiDAR imagery and detecting archaeological
features reduces the need for manual inspection while saving
time and money.

III. METHODOLOGY

Our method to develop the proposed system started with
unlabeled LiDAR data collected by the National Center for
Airborne LiDAR and Mapping (NCALM) from the Puuc
region of Mexico (see fig. 1 at a resolution of 0.5 m./pixel.
Platform and annular structures were then labeled manually
to generate a ground truth label set. Due to the large size of
the raw LiDAR data set, it was decomposed into tiles to ac-
commodate training a U-Net model. Due to the small number
of available labels a significant amount of data augmentation
was used to boost the performance of the trained U-Net model.
This section also describes other numerical considerations that
served to boost performance which include: (1) normalization
of the elevation data and (2) selection of an appropriate loss
function. Inference using the CNN was also customized by
merging multiple classifications for each pixel into a final
classification where each classification considered different
regions in the vicinity of the pixel.

A. Ground Truth Labeling

The procedure for generating ground truth data follows
the standard practice for developing deep learning systems.
Specifically, ground truth labels were specified manually as
polygons that enclose each object of interest as shown in Fig.
3(b). Binary masks were derived from polygon data to generate
ground truth labels for tiles during training. Fig. 3(a) shows
a sample visualization of the elevation data using a hillshade
algorithm to highlight variations in elevation. Fig. 3(b) shows
ground truth polygon region labels for platforms (green) and
annular structures (yellow) superimposed labeling over the
hillshade version of the data. Fig. 3(c) and (d) show examples
of binary mask representations of the annular structures and
platforms, respectively.

B. Model Architecture

U-Net is an encoder-decoder type neural network architec-
ture proposed by O. Ronneberger et al. [1]. This work adopts
the U-Net neural architecture to segment the LiDAR data.
Although this U-Net was primarily developed for the purpose
of segmenting biomedical images, it has demonstrated excel-
lent success in segmenting remotely sensed images including
LiDAR images [15], [17], [22].

Fig. 2. U-Net architecture [1]

U-Net consists of two parts, an encoder, and a decoder. The
encoder is used to down-sample the input, and the decoder is
used to up-sample it. Skip connections concatenate encoder
feature maps to the decoder feature maps in between encoders
and decoders, allowing information to be passed from an
earlier stage to a later stage directly and significantly reducing
the issue of vanishing gradient. An illustration of U-Net
architecture from the original paper [1] is shown in Fig. 2.

C. Augmentation

Due to the limited number of ground truth labels of our
classes, data augmentation methods were applied to generate
samples of alternate realizations of our classes in image
tile data. Data augmentation was performed via two image
sampling approaches: (1) random background sampling and
(2) random rotations and translations of each training label
within the tile perceptual field. The first sampling approach
focuses on the development of a comprehensive model of
background by collecting random samples that do not relate
to the location of labeled structures. The second sampling
approach ensures that the small number of existing labels is
also sampled with sufficient variation and density to maximize
the performance of the trained network. In both cases, regions
of the LiDAR source data equivalent to the input layer size
of our network were extracted with varying positions and
orientations.

D. Numerical Considerations

1) Normalization: We normalize the range of elevation data
within each training tile to the [0, 1] interval which has proven
to improve classification results as noted by other researchers
[22]. The normalization technique used is shown in equation
(1)

Xnorm =
X −Xmin

Xmax −Xmin
(1)

where X denotes an elevation value, Xmax, Xmin denote
the maximum and minimum elevation values in the tile, and
Xnorm denotes the normalized elevation result.



2) Loss Function: The standard loss function for binary
classification is used which is the categorical cross-entropy
loss function as shown in equation (2)

H(p, q) = H(p) +DKL(p ∥ q) = −
∑
x∈X

p(x) log q(x) (2)

where H(p) denotes the entropy of the random variable p,
DKL(p ∥ q) denotes the Kullback-Leibler divergence of p from
q and x is an event drawn from the probability space of these
random variables X . The Keras cross entropy also provides a
smoothing parameter which serves to penalize overconfident
outputs and helps prevent over-fitting [23]. Results shown in
this article use a smoothing parameter of 0.1.

E. Inference of Structure Labels

Our method for inference differs from the standard approach
for CNN inference. Specifically, our approach decomposes
the unlabeled data into 128 × 128 input tiles where these
tiles may overlap. This modification allows the inferred output
classifications to take into consideration image values from
a larger perceptual field and also reduces adverse impacts
associated with labels that lie on the boundary of the image.
We refer to this approach as a sliding-window classification
output, and our results consider sliding window skips of 32
pixels horizontally and vertically. For our chosen tile size,
this results in classifying each pixel 16 times. The results
are combined by choosing the class having the highest joint
probability across all tile classifications.

IV. DATA SET

A. Data Acquisition

LiDAR imagery was provided by the Bolonchen Regional
Archaeological Project (BRAP), directed by Ringle, Tomás
Gallareta Negrón (INAH/CY), and George Bey (Millsaps
College), and was collected by NCALM with funding from
the National Science Foundation. Most of the coverage was
obtained in 2017 and then supplemented by areas to the
east and west in 2022. Our coverage also borders a data set
to the south collected for forestry research by the Alianza
MexicoREDD+, which has courteously allowed the use of
their information. In all, our data set comprises 478.68km2

of continuous coverage. (Note that this is an increase from
that reported in [24]). LiDAR data was obtained using a
Teledyne Optech TitanMW(14SEN/CON340) sensor mounted
in a small airplane flying at an altitude of 600-650 m. About
62.6% of our pulses produced ground returns, resulting in
a density of 10.6/m2. From this, a 0.5 m DTM raster was
produced that forms the input for our analysis. (The Alianza
point cloud, originally used to produce a 1.0 m-density raster,
was reclassified and resampled to produce a DTM at the same
resolution).

B. Data Regions

We selected data from three sites (Muluchtzekel, Kom, and
Uchbenmul) and a region of 67.6km2 centered around the site
of Sayil (Fig. 1). The first three had been partially covered by
the ground survey and so were useful for training purposes.
The Sayil region has not been explored by the BRAP project,
although much of the site of Sayil was mapped in the 1980s.

1) Muluchtzekel: Muluchtzekel(MLS) is the largest site we
have ground-surveyed and covers about 3.8km2. It lies at the
interface between the relatively flat lands to its north and the
Bolonchen Hills behind it.

2) Kom: Kom is a second-rank site within the Bolonchen
Hills. Although much smaller than Muluchtzekel, it does
possess a palace and several elite residential platforms.

3) Uchbenmul: Uchbenmul (UCB) is the farthest south of
the sites and also lies within the Bolonchen Hills. It lacks a
palace (though it has a much earlier acropolis) and has only
a few vaulted structures and so represents the lower tier of
regional sites.

4) Sayil: The Sayil block is named for the principal site
within it but includes a number of other sites.

A detailed summary of the ground survey statistics for these
regions is provided in Table.I.

V. RESULTS

A. Experiments

Our experimental results consider 4 data sets from the three
sites and the Sayil region mentioned above. We refer to them
as: (1) Kom, (2) MLS, (3) UCB and (4) Sayil. Kom, MLS,
and UCB were partially labeled and Sayil was unlabeled. As
shown in Table I, the Kom and MLS data sets include labels for
annular structures and platforms, while UCB includes labels
only for annular structures. Two U-Net segmentation models
were trained: one for platforms and the other for annular
structures.

1) Label Generation and Data Augmentation: A total of
96 annular structures were manually ground-truthed and used
for training (see Table I). The platform segmentation algo-
rithm was trained with the Kom and MLS data sets, which
contain 861 labeled platforms. Due to the small amount of
labeled data, augmentation methods were used extensively.
Augmentations consist of a random translation and rotation
of original LiDAR elevation data. In our case, this consisted
of 1000 random augmentations, where random tiles of the data
were sourced, and 150 augmentations of regions in the vicinity
of each training label. The resulting collection of augmented
imagery was subdivided into training, validation, and testing
data sets where the number of images in each set was 65%,
15%, and 20% respectively of overall number of images.

B. Training the U-Net Model

Experiments were conducted using an NVIDIA RTX A6000
GPU with CUDA 12.0 for training the U-Net. Training pa-
rameters included choosing a batch size of 100 images and
a learning rate of 0.001 with the Adam optimizer. Training



Fig. 3. Visualization of input, ground truth labeling, and corresponding masks for the object of interest. (a) shows a hillshade visualization of the measured
elevation data, (b) shows ground truth polygon labels for annular structures (yellow) and platforms (green) superimposed over the hillshade data, (c) and (d)
show the binary masks for annular structures and platforms in (b).

TABLE I
GROUND SURVEY STATISTICS FOR THREE SITES.

Site Overall Area Area Surveyed (ha.) Platforms Annulars
Muluchtzekel 600.00 403.0 613 54

Kom 125.30 90.7 248 32
Uchbenmul 27.70 31.1 – 10

Fig. 4. IoU curve for training and validation set with U-Net model for binary
segmentation of Annular Structures.

optimization was run for 500 epochs and required approxi-
mately 4 hours to complete. The training and validation IoU
and loss curves for the annular structure segmentation model
are depicted in Fig. 4 and Fig. 5 where the number of epochs
is denoted on the x-axis and the IoU or loss is measured on
the y-axis. Fig. 6 and Fig. 7 show the training and validation
IoU and loss curves for the platform segmentation model.

C. Evaluation Metrics

We used the IoU (Intersection over Union) metric, which
calculates the amount of overlap between two masks of ground
truth and prediction, to assess the model’s performance. The
IoU value ranges from 0 to 1, with 1 denoting perfect overlap
and 0 denoting imperfect overlap. The formula for IoU is given
in equation (3).

Fig. 5. Loss curve for training and validation set with U-Net model for binary
segmentation of Annular Structures.

IoU(A,B) =
|A ∩B|
|A ∪B|

(3)

Here, the number of shared pixels in both ground truth and
prediction images is represented by the intersection of (A∩B),
and the total number of pixels from both images is represented
by the union of ground truth and prediction (A ∪B).

1) Annular Structure Classification: The model converges
and archives 0.82 IOU on validation data, as seen in Fig.
4. Fig. 8(b) displays an inference on a small portion of the
MLS region and depicts how well it extracts annular structures.
Regions marked in light purple indicate True Positive results
where the label was correctly assigned. False Positives are
indicated by light blue; the model labeled them incorrectly.
Regions marked in light pink indicate correctly inferred clas-
sifications.



Fig. 6. IoU curve for training and validation set with U-Net model for binary
segmentation of Platforms.

Fig. 7. Loss curve for training and validation set with U-Net model for binary
segmentation of Platforms.

2) Platform Classification: The model for platform classi-
fication succeeds in achieving 0.74 IoU on the validation data
(Fig. 6). To demonstrate how well platforms are extracted,
Fig. 8(a) shows an inference on a small portion of the MLS
region. These segmentation results are consistent with the most
recent findings [19], [25] (also 0.74 IoU). Given the disparity
in labeled source data between this work and [19], [25](they
had approximately 951 images of platforms for their training),
this is an indication that our augmentation provides sufficient
variability to generate a state-of-the-art platform classifier.

D. Archaeological Analysis

Archaeological analysis reviews classifications performed
on the MLS and Sayil data sets to evaluate the utility of
this tool in practice. Selected classification results are shown
in Fig. 8(a,b) and Fig. 9. These results were also analyzed
manually to evaluate the benefit of this tool as an aid or
substitute for manual labeling.

1) Annular Structures: The chosen excerpt shown in Figure
9 depicts the four possible classification outcomes: (1) True
Positive, (2) True Negative, (3) False Positive, and (4) False
Negatives. Fig. 9 shows that the system is capable of extracting
annular structures (marked as True positive), and rejecting

similar shapes which are typically chultuns (Maya cisterns)
and other anomalies, e.g., pits (marked as True Negative). Fig.
9 also shows classification errors which include classifying a
pit and a pyramid with a looter’s pit at its peak incorrectly as
annular structures (pointed as False Positive). Some annular
structures were missed (marked as false negatives). It is also
important to note that classification results detected 13 annular
structures in the Sayil data set that were overlooked in the
initial manual review. The performance of this classifier was
found to be appropriate for accelerating manual labeling.

2) Platform Structures: Fig. 8(a) shows inference results
for the MLS region. Correct classifications are valuable as
they provide both location and shape of the structure. Shape
features are particularly valuable as they can be used to infer
structure type and the energy involved in their construction,
but they are time-consuming to manually specify.

These results also show some inaccuracies in classification
results. The frequency and regularity of these errors lead to
the conclusion that despite the performance report of 0.74 IoU,
this level of performance can aid manual labeling but is not
sufficient to act as a substitute. Therefore, further investigation
into this topic is required to create automated tools that use
deep learning to consistently create pointwise features for
platforms.

VI. CONCLUSIONS

In this article, we have investigated the efficacy of applying
a deep learning model to extract ancient Maya structures
from LiDAR data. Deep learning models are being applied
increasingly in several computer vision applications but there
has been very little work on extracting archaeological features
from LiDAR data with deep neural networks. This paper
describes a system that successfully extracts annular and
platform structures using the U-Net model with an IoU perfor-
mance of 0.82 for annular structures and an IoU performance
of 0.74 for platform structures. After analyzing the result, our
finding indicates that these are sufficiently accurate identifi-
cations when supplemented with manual revision. We were
pleased to find that some structures missed during preliminary
manual labeling were extracted by the model. Additionally,
processing the errors took less time than it would if the deep
learning model had not been used and the process had to be
completed manually.
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