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Particle-surface interactions in a uniform electric field
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The electrostatic force on a spherical particle near a planar surface is calculated for the cases of a uniform
electric field applied in either normal or tangential direction to the surface. The particle and suspending media
are assumed to be weakly conducting, so that that the leaky dielectric model applies. The Laplace equation for
the electric potential is solved in bipolar coordinate system and the potential is obtained in terms of a series
expansion of Legendre polynomials. The force on the particle is calculated using the Maxwell tensor. We find
that in the case of normal electric field, which corresponds to a particle near an electrode, the force is always
attractive but at a given separation it varies nontrivially with particle-suspending medium conductivity ratio; the
force on a particle that is more conducting than the suspending medium is much larger compared to the force on
a particle less conducing than the suspending medium. In the case of tangential electric field, which corresponds
to a particle near an insulating boundary, the force is always repulsive.
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I. INTRODUCTION

Electric fields are a classic means to manipulate and assem-
ble colloidal particles [1–4]. More recently, electric fields have
become a popular tool to energize and create self-propelled
particles [5–7] due to field-induced charge electrophoresis
[8–10] or torque (due to the Quincke effect), which drives
colloids to roll on a surface [11–15]. In these applications
particles are in close proximity to boundaries, and the electro-
static force (and torque) exerted on the particle is significantly
influenced by confinement. The canonical problem of a par-
ticle near an electrode in the presence of a uniform electric
field has been analyzed in the literature theoretically in the
two limiting cases of a conducting or an insulating sphere.
The surface of a conducting particle is equipotential, and
consequently, the electric field inside vanishes. The net charge
and force on a spherical particle are found using the method of
images [16,17] or the equivalent problem of two spheres in a
uniform electric field [18]. If the particle is perfect dielectric,
the boundary condition on the particle-medium interface are
continuity of the electric potential and a jump of the dis-
placement field due to given surface charge. The electrostatic
force has been found either in terms of series expansion in
eigenfunctions of the Laplace equation in bispherical coor-
dinate system [19–22] or from a multipole-moment theory
for the pair-wise dielectrophoretic interactions of dielectric
spheres [23].

In this paper, we solve for the electrostatic force on a
particle with arbitrary conductivity. In this case, the bound-
ary conditions on the particle interface are continuity of the
electric potential and the normal electric current, and the
bulk media is assumed to be charge free. The surface charge
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density needed to satisfy the charge flux continuity is thus
determined as part of the problem. This is the so called
“leaky-dielectric” model [24]. Using this approach, the force
on a sphere straddling a planar interface subjected to either a
normal or tangential uniform electric field has been calculated
[25]. However, the force on a sphere near an interface has not
be derived, even though the electric field for the equivalent
problem of two leaky-dielectric spheres with line-of-centers
parallel or perpendicular to the applied field has been derived
[22,26]. This paper is organized as follows. The problem is
formulated in Sec. II. In Sec. III, the solution methodology
using bispherical coordinates is presented. First, the solution
of the electric field is expressed in terms of a series of Legen-
dre polynomials, and an algorithm to determine its coefficients
is given. Then, the electric field strength, surface charge dis-
tribution on the interface, and the force on the particle are
calculated. Details are presented in the Appendix. In Sec. IV,
we validate the solution with the published results for the
interaction force between two identical dielectric spheres in
a uniform electric field [23] and a conducting sphere near an
electrode [16,17], and study the force dependence on separa-
tion and particle electric properties.

II. PROBLEM FORMULATION

Consider a spherical particle with radius R, conductivity
σ1, and permittivity ε1 suspended in a medium with conduc-
tivity σ2 and permittivity ε2. The mismatch in the particle
and medium conductivities is characterized by the parameter
β12 = (σ1 − σ2)/(σ1 + σ2), which ranges from −1 for a per-
fectly insulating particle to +1 for a for a perfectly conducting
particle. The particle is in the vicinity of a boundary and
the surface-to-surface distance is s. A uniform electric field
is applied in a direction either normal or tangential to the
boundary. The problem is sketched in Fig. 1(a).
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(a)

(b)

FIG. 1. (a) A spherical particle with radius R is suspended above
a planar wall. The gap between the particle and wall surfaces is s.
The applied electric field is either in the normal direction E⊥ = E0ẑ
with a conducting wall or in the tangential direction E|| = E0ŷ with
an insulating wall. (b) Sketch of Cartesian coordinates (x, y, z), cylin-
drical coordinates (r, z, φ) and bipolar coordinates (ξ, η, φ) with unit
coordinate vectors eξ and eη, and a pole A+. The isosurfaces of
coordinates η and ξ are obtained by rotating about z axis.

We adopt the leaky dielectric model, which assumes an
irrotational electric field (E = −∇�, where � is the electric
potential), electroneutral bulk fluids, and that electric current
obeys Ohm’s law [27]. Accordingly, the electric potential
inside the particle, �1, and in the suspending medium, �2,
satisfy the Laplace equation

∇2�1 = 0, ∇2�2 = 0. (1)

At the particle-medium interface, the potential and normal
electric current are continuous

�1 = �2, σ1n · E1 = σ2n · E2, (2)

where n is the inward normal to the interface. The current
leads to accumulation of charge Q at the surface, which is cal-
culated a posteriori from the jump in the electric displacement
field at the interface,

Q = (ε1E1 − ε2E2) · n.

Away from the particle, the electric field is undisturbed. We
consider two cases: (i) an electric field applied in a direction
normal to a boundary that is an equipotential surface, E⊥ =
E0ẑ at infinity, and �2 = 0 at z = 0, and (ii) an electric field

applied in a direction tangential to an insulating boundary,
E|| = E0ŷ, and n · E2 = 0 at z = 0.

We introduce disturbance fields �̂1 and �̂2,

�̂1 = �1 + E0xα, �̂2 = �2 + E0xα, (3)

where xα is the direction of the externally applied electric
field. In the case of normal electric field, xα = z, and in the
case of tangential electric field, xα = y. The governing equa-
tion becomes

∇2�̂1 = 0, ∇2�̂2 = 0. (4)

The boundary condition at infinity is now homogeneous,
�̂2 → 0. At the planar boundary, in the case of a normal
electric field,

�̂2 = 0 at z = 0 (normal electric field), (5)

or, in the case of a tangential electric field,

∂�̂2

∂z
= 0 at z = 0 (tangential electric field). (6)

The boundary conditions on the particle-medium interface
become

�̂1 = �̂2 (7)

and

σ1
∂�̂1

∂n
− σ2

∂�̂2

∂n
= E0(σ1 − σ2)

∂xα

∂n
. (8)

The problem is solved using separation of variables in bispher-
ical coordinates (ξ, η, φ)[21], defined as

r = a

h
sin ξ, z = a

h
sinh η, h ≡ cosh η − cos ξ, (9)

where a = [(2R + s)s]1/2. Figure 1(b) illustrates the coordi-
nate systems that are used in this analysis. All isocurves of
coordinate ξ pass through poles A+ and A−, A± = (0, 0,±a)
in Cartesian coordinates (x, y, z), as η → ±∞. The particle-
medium interface is specified by η = ηs,

ηs = ln
{
1 + s

R
+

[(
2 + s

R

) s

R

]1/2}
. (10)

The inward normal to the particle surface is eη. Hence,
Eqs. (7) and (8) are written as

�̂1 = �̂2, at η = ηs, (11)

σ1
∂�̂1

∂η
− σ2

∂�̂2

∂η
= E0(σ1 − σ2)

∂xα

∂η
, at η = ηs. (12)

The planar wall boundary is specified by η = 0. Accordingly,

�̂2 = 0, at η = 0 (normal electric field), (13)

∂�̂2

∂η
= 0, at η = 0 (tangential electric field). (14)

In bispherical coordinates, we require an additional boundary
condition, that is, �̂1 to be finite at pole A+, where η → ∞,

|�̂1| < ∞, as η → ∞. (15)

Finally, note that r → ∞ corresponds to η → 0 and
cos ξ → 1. Hence, from Eq. (13), we see that the boundary
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condition at infinity is satisfied automatically in the case of
normal electric field, while for the tangential electric field, an
auxiliary boundary condition is needed:

�̂2 ∼ 0, as η → 0 and cos ξ → 1. (16)

III. ELECTRIC POTENTIAL

In bispherical coordinates, the Laplace’s equation can be
written as

∇2F = h3

a2 sin ξ

[
sin ξ

∂

∂η

(
1

h

∂F

∂η

)

+ ∂

∂ξ

(
sin ξ

h

∂F

∂ξ

)]
+ h2

a2 sin2 ξ

∂2F

∂φ2
= 0,

where F stands for either �̂1 or �̂2. The general solution is

F =
√
h
∑
m,n

[
Xm
n eλnη + Ym

n e−λnη
]
Pm
n (cos ξ ) cos(mφ)

+
∑
m,n

[
Mm

n e
λnη + Nm

n e
−λnη

]
Pm
n (cos ξ ) sin(mφ),

where λn ≡ n + 1/2 and Pm
n stands for associated Legendre

polynomials of degree n and order m.
∑

m,n denotes a double
sum

∑∞
m=0

∑∞
n=m.

In the case of a uniform electric field, the solution is greatly
simplified. For a normal electric field, the axial symmetry of
the problem leads to

F =
√
h

∞∑
n=0

[
X 0
n e

λnη + Y 0
n e

−λnη
]
Pn(cos ξ ). (17)

The tangential electric field indicates the dependence on φ is
sin φ. In this case, the general solution is

F =
√
h

∞∑
n=1

[
M1

n e
λnη + N1

n e
−λnη

]
P1
n (cos ξ ) sin φ. (18)

From the general solutions Eqs. (17) and (18), applying the
boundary conditions at the wall and at the particle interface for
continuous potential leads to

�1 = −E0xα +
√
h

∞∑
n=n0

An[e
2λnηs ∓ 1]e−λnηPn, (19)

�2 = −E0xα +
√
h

∞∑
n=n0

An[e
λnη ∓ e−λnη]Pn, (20)

where Pn(cos ξ ) stands for Pn(cos ξ ) and P1
n (cos ξ ) sin φ for

the applied normal and tangential electric fields, respectively.
The minus signs in the second term in Eqs. (19) and (20) are
for normal electric field. Note that P1

n (1) = 0. Accordingly,
Eq. (16) is automatically satisfied. The sum starts at n0 = 0
and 1 for normal and tangential electric fields, respectively.
Plugging Eqs. (19) and (20) into the boundary condition
Eq. (12), we get the following recurrence formula of An after
some algebra:

Ln,1An−1 + Ln,2An + Ln,3An+1 = Gn. (21)

Details are listed in Appendix B. Equation (21) is solved
numerically as follows. First, we choose a sufficiently large

number, N , which set the number of terms retained in the
series solution. For n = N , the last equation in the system
Eq. (21) is

LN−1,1AN−1 + LN,2AN = GN − LN,3AN+1, (22)

where AN+1 comes from the asymptotic behavior Eqs. (B15)
and (B18). Then, coefficients An (n � N ) are found from the
three-diagonal system [Eq. (21)], whose matrix form is pre-
sented below:

[L] · A = G, (23)

where the left-hand-side coefficient matrix [L] is a triple-
diagonal matrix, A is the column vector of coefficients An,
and G is the column vector of the right-hand-side terms.

For the normal applied electric field, their components are
listed below:

[L] =

⎡
⎢⎢⎢⎢⎢⎢⎣

L0,2 L0,3
L1,1 L1,2 L1,3

L2,1 L2,2 L2,3
. . .

. . .
. . .

LN−1,1 LN−1,2 LN−1,3

LN,1 LN,2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A0

A1

A2
...

AN−1

AN

⎤
⎥⎥⎥⎥⎥⎥⎦

,G =

⎡
⎢⎢⎢⎢⎢⎢⎣

G0

G1

G2
...

GN−1

GN − LN,3AN+1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The expressions for L, G, and AN+1 are given by Eqs. (B7),
(B14), and (B15).

For the tangential electric field, subscripts start from 1,

[L] =

⎡
⎢⎢⎢⎢⎢⎢⎣

L1,2 L1,3
L2,1 L2,2 L2,3

L3,1 L3,2 L3,3
. . .

. . .
. . .

LN−1,1 LN−1,2 LN−1,3

LN,1 LN,2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1

A2

A3
...

AN−1

AN

⎤
⎥⎥⎥⎥⎥⎥⎦

,G =

⎡
⎢⎢⎢⎢⎢⎢⎣

G1

G2

G3
...

GN−1

GN − LN,3AN+1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The expressions for L, G, and AN+1 are given by Eqs. (B16)–
(B18).

Figure 2 illustrates the electric potential computed from
Eqs. (19)–(23). The solution appears spectrally convergent at
sufficiently high N . As N increases, we observe that the error
decreases as 1/N2 and approaches near plateau as N increases
[28]. We find that the number of terms N needed for the force
coefficient Cf = Fz/(ε2E2

0R
2) to reach 10−5 relative error,

|Cf (N + 1) −Cf (N )|
|Cf (N )| � 10−5,
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(a)Normal electric field

(b)Tangential electric field

FIG. 2. Equipotential contours for particle-wall separation
s/R = 0.1 and perfectly insulating particle β12 = −1. For the tan-
gential electric field, the equipotential contours are on x = 0 plane.
(N = 50).

scales as 10δ−1/2, independently of the conductivity and per-
mittivity ratios. We validated our solution for a conducting
particle with the result derived using electrostatic images [16],
see Fig. 4. We also compared with the two-sphere solution of
[23]. In both cases, the agreement is excellent. The numerical
computation is very fast, taking a fraction of a minute even at
small separations, δ ∼ 10−5.

IV. ELECTRIC FIELD AND INDUCED SURFACE
CHARGE DISTRIBUTION

The electric field is obtained by calculating the gradient of
the electric potential,

Ei = −∇�i = Ei,ηeη + Ei,ξeξ + Ei,φeφ, (24)

where the subscript i is the index of the phases. E1 and E2

are the electric field strengths inside and outside the particle,

respectively. Substituting Eq. (3) into Eq. (24) yields the com-
ponent form

Ei,η = −h

a

(
∂�̂i

∂η
− E0

∂xα

∂η

)
, (25)

Ei,ξ = −h

a

(
∂�̂i

∂ξ
− E0

∂xα

∂ξ

)
, (26)

Ei,φ = − h

a sin ξ

(
∂�̂i

∂φ
− E0

∂xα

∂φ

)
. (27)

The discontinuity of the electric field across the particle-
medium interface leads to accumulation of charge Q. The
surface density of this induced charge is calculated from

Q = (ε1E1,η − ε2E2,η )|η=ηs
. (28)

In the case a normal applied field, due to the symmetry of
the problem, Ei,φ = 0. Explicit expressions for Ei,η and Ei,ξ

are listed in Appendix A. For a net charge-neutral particle, we
find the following identity satisfied by the coefficients An:

∞∑
n=0

An = 0, (29)

see Appendix C for details.
In the case of the tangential applied electric field, the elec-

tric field components are given by

Ei,η = Êi,η sin φ,

Ei,ξ = Êi,ξ sin φ,

Ei,φ = Êi,φ cosφ,

and Êi,η, Êi,ξ , and Êi,φ are listed in Appendix A. Equation (28)
shows that Q for a tangential electric field has the sine depen-
dence of φ,

Q = Q̂ sin φ. (30)

Figure 3 illustrates the dependence of the dimensionless
surface charge distribution, q = Q/(ε2E0), on dimension-
less particle-wall separation δ = s/R and conductivity ratio
χ = σ1/σ2 with permittivity ratio κ = ε1/ε2 = 1. If κ > χ ,
i.e., ε1/σ1 > ε2/σ2, the surface charge distribution indicates a
free-charge dipole which is antiparallel to the applied electric
field. In the opposite case, κ < χ , the dipole is in the same
direction as the applied electric field. At large separations
(s/R = 10), the distribution is symmetric. The wall proximity
introduces asymmetry in the charge distribution. However,
the surface integral over the particle-medium interface (a unit
sphere in dimensionless form), is zero and the particle is net
charge neutral.

V. INTERACTION FORCE

The electrostatic force on the particle is calculated from the
Maxwell stress

F =
∫
Sp

(T1 − T2) · eηdS, (31)

where eη is the inward normal on the interface, and T1 and
T2 are Maxwell stress tensor in the particle and media phases,
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(a)Normal electric field

(b)Tangential electric field

FIG. 3. Dimensionless surface charge density, q = Q/(ε2E0), as
a function of the polar angle θ for various values of the conductivity
ratio χ = σ1/σ2 and particle-wall separations δ = s/R. In the case of
the tangential applied field, q = q̂ sin φ and the θ dependence of q̂ is
shown. θ is the angle between the positive z axis and the line from the
particle center to a point on the interface, see Fig. 1(b). Permittivity
ratio κ = ε1/ε2 = 1.

respectively:

Ti = εi

[
EiEi − 1

2
(Ei · Ei )I

]
. (32)

The divergence of the Maxwell strength is zero, ∇ · Ti = 0,
because of the bulk media are charge-free. Using the diver-
gence theorem leads to

F = −
∫
Sp

TD
2 · eηdS,

where SB stands for the wall boundary and TD
2 is the distur-

bance Maxwell stress tensor,

TD
2 = ε2

[
E0ED

2 + ED
2 E0 + ED

2 E
D
2

− 1

2

(
2E0 · ED

2 + ED
2 · ED

2

)
I
]
.

Here, E0 is the applied electric field and ED
2 is the disturbance

field due to the particle. The detailed calculation process can
be found in Appendix C. For both normal and tangential
applied fields, the force has only a component in the direction
normal to the wall surface (in the z direction).

For a normal electric field, the force on the particle is

Fz = −4ε2π
∞∑
n=0

[
λnA

2
n − (n + 1)AnAn+1

]
. (33)

For a tangential electric field, the force on the particle is

Fz = 1
2ε2π

(
IT1 + IT2

)
, (34)

where

IT1 =
∞∑
n=1

A2
n

λn
n(n + 1) − 3

∞∑
n=1

AnAn+1

λnλn+1
n(n + 1)(n + 2) +

∞∑
n=1

∞∑
m=1

AnAm
n2m2

λnλm
In+1,m+1

+
∞∑
n=1

∞∑
m=1

AnAm
(n + 1)2(m + 1)2

λnλm
In−1,m−1 − 2

∞∑
n=1

∞∑
m=1

AnAm
(n + 1)2m2

λnλm
In−1,m+1, (35)

IT2 = 4
∞∑
n=1

∞∑
m=1

AnAmIn,m. (36)

In,m stands for the following integral:

In,m =
∫ 1

−1

P1
n (u)P

1
m(u)

1 + u
du =

{
n(n + 1) n = m
(−1)p−qq(q + 1) n 
= m

,

where p = max(n,m) and q = min(n,m).

A. Special case: Perfectly conducting sphere in normal electric
field

A perfectly conducting sphere occurs in the limit of σ1 →
∞. This requires a special solution because β12 → 1 and
causes the denominator in Eq. (B15) to become zero. Here,
we outline this special solution.

A perfectly conducting sphere implies a constant poten-
tial �p along the interface. In this case, boundary condition

Eq. (2) is replaced by �2 = �p. Here, �p is an unknown
which we will determine using the zero net charge condition.

The solution approach for �2 parallels the approach at the
beginning of this section. Equation (17) still represents the
solution �̂2. Using the constant potential boundary condition,
it is straightforward to show that

�̂2 =
√
h

∞∑
n=0

Bn sinh (λnη)Pn(cos ξ ),

where

Bn =
√
2(�p + 2E0aλn)

exp(−λnηs)

sinh(λnηs)
.
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Now, paralleling the charge calculation in Appendix C, we
find the net charge on the particle,

Qnet = 4πε2a�pS1(ηs) + 8πε2a
2E0S2(ηs) = 0,

where S1 and S2 are two sums

S1(ηs) =
∞∑
n=0

exp (−λnηs)

sinh (λnηs)
,

S2(ηs) =
∞∑
n=0

λn exp (−λnηs)

sinh (λnηs)
.

Setting Qnet to zero we can solve for �p to find

�p = −2E0a
S2(ηs)

S1(ηs)
.

From Eq. (31) with T1 = 0, we can calculate the vertical force
on the particle to find

Fz = −ε2π

∞∑
n=0

[
λnB

2
n − (n + 1)BnBn+1

]
. (37)

B. Variation of the force with separation and media electric
properties

In the absence of a wall, the force on a charge-free par-
ticle in a uniform electric field is zero. The wall breaks the
symmetry and, as shown below, gives rise to attraction in the
case of a normal applied field and repulsion in the case of a
tangential applied field. In Fig. 4, we plot the force coefficient
Cf = Fz/(ε2E2

0R
2) as a function of particle-wall separation

δ. In both cases, the magnitude of the force increases with
decreasing separation.

The dependence on the dimensionless conductivity mis-
match β12, however, is nonmonotonic. Figure 5 shows that
the force vanishes for β12 = 0, as expected since the particle
and suspending media have the same electric properties. The
variation with β12 is asymmetric with respect to β12 = 0. In
the case of a normal applied field, a conducting particle is
attracted more strongly by the electrode compared to an insu-
lating particle. A similar trend is observed also in the case of
a tangential applied field: the conducting particle experiences
stronger repulsion compared to the insulating particle.

C. Asymptotic behavior of the force at large particle-wall
separations

In this section, we present the asymptotic behavior of the
force coefficientCf for large separations. In the case of normal
electric field, the numerical solution for An suggests a two-
term approximation. For δ = s/R � 1, from Eq. (10), ηs ∼
ln(2δ). Applying this result in Eqs. (B7) and (B14), we find
the leading-order asymptotic form of the system Eq. (21):

√
2(β12 − 1)A0 + 2

√
2A1 ∼ E0β12R

1

δ2
, (38)

√
2A0 + 2

√
2(β12 − 3)δ2A1 ∼ −2E0β12R. (39)

(a)Normal electric field

(b)Tangential electric field

FIG. 4. Force coefficient Cf = Fz/(ε2E 2
0R

2) as a function of di-
mensionless separation δ = s/R. Circles: Washizu’s solution using
the equivalent multipole method [23]. Diamonds in (a): Pérez so-
lution using the method of images for a conducting particle [16]
Diamonds in (b): Young’s solution using bispherical coordinates for
a insulating particle [29].

The asymptotic behavior of coefficients A0 and A1 is found
from these two equations by balancing the order of δ,

A0 ∼ −A1 ∼ − E0β12R√
2(3 − β12)

1

δ2
. (40)

Substituting into Eq. (33) yields the asymptotic behavior of
the force coefficient Cf for the normal electric field,

Cf ∼ − 6πβ2
12

(3 − β12)2
1

δ4
. (41)

In the case of a tangential applied electric field, the numer-
ical solution for An suggests a one-term approximation. The
asymptotic form of Eq. (21) is

√
2(β12 − 3)δ5/2A1 ∼ E0β12Rδ1/2, (42)
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(a)Normal electric field

(b)Tangential electric field

FIG. 5. Force coefficient as a function of β12 (separation
s/R = 1). The dashed line corresponds to the perfectly conducting
solution (β12 = 1).

from which we find the asymptotic behavior of A1,

A1 ∼ E0β12R√
2(β12 − 3)

1

δ2
. (43)

Substituting into Eq. (34) yields the asymptotic behavior of
the force coefficient Cf for the tangential electric field

Cf ∼ 3πβ2
12

(β12 − 3)2
1

δ4
. (44)

To a leading order, the effect of the wall is equivalent to plac-
ing a mirror image dipole. The 1/δ4 dependence is consistent
with the dipole-dipole interaction [30].

The exact and asymptotic solutions are compared in Fig. 6.
The agreement is excellent when δ > 10. Equation (41) is also
valid for the special case β12 = 1.

VI. CONCLUSIONS

In this paper, the interaction of a spherical particle and
a planar wall in the presence of a uniform electric field is

(a)Normal electric field

(b)Tangential electric field

FIG. 6. Force coefficient asymptotic (β12 = −0.5).

studied in the framework of the leaky dielectric model. The
bulk media are assumed to be charge free; charge brought
by conduction is only present at the surfaces separating me-
dia with different conductivities and permittivities. Analytical
solutions of the Laplace equation for the electric potential
are derived using separation of variables in bispherical co-
ordinates. The force on the particle is calculated using the
Maxwell stress tensor. We find that in the case of normal
electric field, which corresponds to a particle near an elec-
trode, the force is always attractive but at a given separation
it varies nonmonotonically with particle-suspending medium
conductivity ratio; the force on a particle that is more con-
ducting than the suspending medium is much larger compared
to the force on a particle less conducing than the suspending
medium. In the case of tangential electric field, which cor-
responds to a particle near an insulating boundary, the force
is always repulsive. In both cases, the force decreases with
increasing separation between the particle and the wall and
its asymptotic behavior at large separation is given by the
force between the particle dipole and its mirror image. The
results provide a comprehensive understanding of the effect of
particle conductivity on the wall-induced electrostatic force.
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APPENDIX A: COMPONENTS OF THE ELECTRIC
FIELD STRENGTH

In the case of the normal electric field, the components of
the electric field strength are given by

E1,η = E0

h
(1 − cosh η cos ξ ) −

√
h sinh η

2a

∞∑
n=0

An[e
2λnηs − 1]e−λnηPn(cos ξ ) + h3/2

a

∞∑
n=0

Anλn[e
2λnηs − 1]e−λnηPn(cos ξ ) (A1)

E1,ξ = − E0

h
sinh η sin ξ −

√
h sin ξ

2a

∞∑
n=0

An[e
2λnηs − 1]e−λnηPn(cos ξ ) − h3/2

a

∞∑
n=0

An[e
2λnηs − 1]e−λnη

d

dξ
Pn(cos ξ ) (A2)

E2,η =E0

h
(1 − cosh η cos ξ ) −

√
h sinh η

a

∞∑
n=0

An sinh (λnη)Pn(cos ξ ) − 2h3/2

a

∞∑
n=0

Anλn cosh (λnη)Pn(cos ξ ) (A3)

E2,ξ = − E0

h
sinh η sin ξ −

√
h sin ξ

a

∞∑
n=0

An sinh (λnη)Pn(cos ξ ) − 2h3/2

a

∞∑
n=0

An sinh (λnη)
d

dξ
Pn(cos ξ ) (A4)

E1,φ and E2,φ are both zero due to the symmetry.
In the case of the tangential electric field, the components of the electric field strength are given by

Ei,η = Êi,η sin φ,Ei,ξ = Êi,ξ sin φ,Ei,φ = Êi,φ cosφ,

Ê1,η = − E0

h
sinh η sin ξ −

√
h sinh η

2a

∞∑
n=1

An[1 + e2λnηs ]e−λnηP1
n (cos ξ ) + h3/2

a

∞∑
n=1

Anλn[1 + e2λnηs ]e−λnηP1
n (cos ξ ), (A5)

Ê1,ξ =E0

h
(cosh η cos ξ − 1) −

√
h sin ξ

2a

∞∑
n=1

An[1 + e2λnηs ]e−λnηP1
n (cos ξ ) − h3/2

a

∞∑
n=1

An[1 + e2λnηs ]e−λnη
d

dξ
P1
n (cos ξ ), (A6)

Ê1,φ =E0 − h3/2

a sin ξ

∞∑
n=1

An[1 + e2λnηs ]e−λnηP1
n (cos ξ ), (A7)

Ê2,η = − E0

h
sinh η sin ξ −

√
h sinh η

a

∞∑
n=1

An cosh (λnη)P
1
n (cos ξ ) − 2h3/2

a

∞∑
n=1

Anλn sinh (λnη)P
1
n (cos ξ ), (A8)

Ê2,ξ =E0

h
(cosh η cos ξ − 1) −

√
h sin ξ

a

∞∑
n=1

An cosh (λnη)P
1
n (cos ξ ) − 2h3/2

a

∞∑
n=1

An cosh (λnη)
d

dξ
P1
n (cos ξ ), (A9)

Ê2,φ =E0 − 2h3/2

a sin ξ

∞∑
n=1

An cosh (λnη)P
1
n (cos ξ ). (A10)

APPENDIX B: RECURRENCE FORMULA FOR An

Here, we outline the derivation of the recurrence formula
which is used to determine coefficients An in the expression of
the electric potential.

1. Normal electric field

For the normal applied electric field, the disturbance fields
�̂1 and �̂2 can be written as

�̂1 =
√
h�̃1, �̂2 =

√
h�̃2, (B1)

where

�̃1 =
∞∑
n=0

An[e
2λnηs − 1]e−λnηPn(cos ξ ), (B2)

�̃2 =
∞∑
n=0

2An sinh (λnη)Pn(cos ξ ). (B3)

Substituting Eq. (B1) into the boundary condition for the
continuity of the normal electric current,

σ1
∂�̂1

∂η
− σ2

∂�̂2

∂η
= E0(σ1 − σ2)

∂z

∂η
,
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leads to

2(cosh ηs − u)

(
σ1

σ1 + σ2

∂�̃1

∂η
− σ2

σ1 + σ2

∂�̃2

∂η

)
+ sinh ηsβ12�̃2 = 2E0β12(cosh ηs − u)1/2

∂z

∂η
, (B4)

where u = cos ξ . Plugging Eqs. (B2) and (B3) into the left-hand side (L.H.S.) of Eq. (B4), one gets

L.H.S. =
∞∑
n=0

[(β12 sinh ηs − 2λn cosh ηs) exp (λnηs) − β12(sinh ηs − 2λn cosh ηs) exp (−λnηs)]AnPn(u)

+
∞∑
n=0

An[exp (λnηs) − β12 exp (−λnηs)]2λnuPn(u).

Note that λn ≡ n + 1/2 and β12 = (σ1 − σ2)/(σ1 + σ2). With
the help of the recurrence formula for Legendre polynomials,

(2n + 1)uPn(u) = (n + 1)Pn+1(u) + nPn−1(u), (B5)

the second sum of L.H.S. could be written as

∞∑
n=1

n[exp (λn−1ηs) − β12 exp (−λn−1ηs)]An−1Pn(u)

+
∞∑
n=0

(n + 1)[exp (λn+1ηs) − β12 exp (−λn+1ηs)]An+1Pn(u).

Putting these terms together, we have

L.H.S. =
∞∑
n=1

Ln,1An−1Pn(u) +
∞∑
n=0

Ln,2AnPn(u)

+
∞∑
n=0

Ln,3An+1Pn(u).

(B6)

Coefficients Ln,1, Ln,2, and Ln,3 are listed below:

Ln,1 = n(eλn−1ηs − β12e
−λn−1ηs ),

Ln,2 = (β12 sinh ηs − 2λn cosh ηs)e
λnηs

− β12(sinh ηs − 2λn cosh ηs)e
−λnηs ,

Ln,3 = (n + 1)(eλn+1ηs − β12e
−λn+1ηs ). (B7)

The next step is to expand the right-hand side of Eq. (B4) in
terms of Legendre polynomials. Note that

z = a

h
sinh η.

Substituting it into the right-hand side (R.H.S.) of Eq. (B4),
we have

R.H.S. = 2E0aβ12
1 − u cosh ηs

h3/2s

, (B8)

where hs = cosh ηs − u. The generating function of Legendre
polynomials is

1

(1 − 2ut + t2)1/2
=

∞∑
n=0

t nPn(u). (B9)

Letting t = exp(−ηs) yields

1

h1/2s

=
√
2

∞∑
n=0

exp (−λnηs)Pn(u). (B10)

Calculating the derivative with respect to ηs, we get

1

h3/2s

= 2
√
2

sinh ηs

∞∑
n=0

λn exp (−λnηs)Pn(u). (B11)

Multiplying Eq. (B11) by u and using the recurrence formula
Eq. (B5), we obtain

u

h3/2s

=
√
2

sinh ηs

∞∑
n=0

[ne−λn−1ηs + (n + 1)e−λn+1ηs ]Pn(u).

(B12)
Using Eqs. (B11) and (B12), we could expand Eq. (B8) as

R.H.S. =
∞∑
n=0

GnPn(u), (B13)

where Gn is

Gn = −2
√
2E0aβ12

{
cosh ηs

sinh ηs
[ne−λn−1ηs + (n + 1)e−λn+1ηs ]

− 2

sinh ηs
λne

−λnηs

}
. (B14)

Equating Eqs. (B6) and (B13) leads to the recurrence formula
we need.

For n � 1, Eq. (21) has the following asymptotic form:

− 2nt2An−1 + [(2n + 1)(1 + t2) − β12(1 − t2)]

× An − 2(n + 1)An+1 ∼ 4
√
2
E0aβ12

1 − t2
t2n+1

× [n − (2n + 1)t2 + (n + 1)t4],

where t = exp(−ηs). It gives the asymptotic behavior of co-
efficients An for large n � 1,

An ∼ 4
√
2
E0aβ12

1 − t2
t2n+1

[
n

3 − β12
(1 − t2) − 1

1 − β12
t2
]
.

(B15)
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2. Tangential electric field

For the tangential electric field, the recurrence formula
could be obtained following similar steps. Results are listed
below:

Ln,1 = n − 1

2

(
eλn−1ηs + β12e

−λn−1ηs
)
,

Ln,2 =
(

β12

2
sinh ηs − λn cosh ηs

)
eλnηs

+ β12

(
1

2
sinh ηs − λn cosh ηs

)
e−λnηs ,

Ln,3 =n + 2

2

(
eλn+1ηs + β12e

−λn+1ηs
)
, (B16)

Gn =2
√
2E0aβ12 sinh ηse

−λnηs , (B17)

where n � 1. For n � 1,

An ∼ 4
√
2E0aβ12

β12 − 3
t2n+1. (B18)

APPENDIX C: ELECTRIC FORCE

Consider the case of a normal applied field E0 = E0ẑ. At
η = 0, the disturbance field is given by

ED
2,η = −h3/20

a

∞∑
n=0

2AnλnPn(cos ξ ), (C1)

ED
2,ξ = ED

2,φ = 0, (C2)

where h0 = 1 − cos ξ . Due to the symmetry of this problem,
the force is in z direction,

Fz = −
∫
SB

ez · TD
2 · ndS

= −ε2

∫
SB

E0E
D
2,η + 1

2

(
ED
2,η

)2
dS

= −ε2πa
2
∫ π

0

sin ξ

h20

[
2E0E

D
2,η + (

ED
2,η

)2]
dξ

= ε2πa
2
(
IN1 − IN2

)
, (C3)

where IN1 and IN2 are two integrals

IN1 = −2
∫ π

0

sin ξ

h20
E0E

D
2,ηdξ, (C4)

IN2 =
∫ π

0

sin ξ

h20

(
ED
2,η

)2
dξ . (C5)

Substituting Eq. (C1) into Eq. (C4), we have

IN1 = ∫ 1
−1

2E0

a
√
1−u

∑∞
n=0 2AnλnPn(u)du

= 4E0
a

∑∞
n=0 Anλn

∫ 1
−1

Pn(u)√
1−u

du.

From the generating function Eq. (B9), we have∫ 1

−1

1

(1 − 2ut + t2)1/2
Pndu=

∞∑
m=0

tm
∫ 1

−1
Pm(u)Pn(u)du= t n

λn
.

Here, the orthogonality of Legendre polynomials is used,∫ 1

−1
Pm(u)Pn(u)du = 2

2n + 1
δn,m = δn,m

λn
. (C6)

Letting t = 1 yields∫ 1

−1

Pn(u)√
1 − u

du =
√
2

λn
.

Substituting it into IN1 , we get

IN1 = 4
√
2
E0

a

∞∑
n=0

An. (C7)

For IN2 , substituting Eq. (C1) into Eq. (C5) yields

IN2 =
∫ 1

−1

1 − u

a2

( ∞∑
n=0

2AnλnPn(u)

)2

du

=
∞∑
m=0

∞∑
n=0

4

a2
AmAnλmλn

∫ 1

−1
(1 − u)Pn(u)Pm(u)du.

Using the recurrence formula Eq. (B5) and orthogonality
Eq. (C6), the integral in IN2 could be calculated explicitly,∫ 1

−1
(1 − u)Pn(u)Pm(u)du

=
∫ 1

−1
Pn(u)Pm(u)du − n + 1

2n + 1

∫ 1

−1
Pn+1(u)Pm(u)du

− n

2n + 1

∫ 1

−1
Pn−1(u)Pm(u)du

= δn,m

λn
− n + 1

2n + 1

δn,m+1

λm
− n

2n + 1

δn,m−1

λm
.

Plugging into IN2 , we have

IN2 = 4

a2

∞∑
n=0

[
λnA

2
n − (n + 1)AnAn+1

]
. (C8)

From Eq. (C3), we could get the solution for the electric force.
A similar calculation can be done for a tangential electric field.

It is interesting to note that because E is divergence free,
plus the boundary condition (2), the net charge on the particle
is

Qnet =
∮
Sp

(ε1E1 − ε2E2) · eηdS = 0.

Also since
∮
Sp
E2 · eηdS = ∫

SB
ED
2 · eηdS = 0, we have, from

integrating Eq. (C1), that
∑∞

n=0 An = 0. Hence, IN1 = 0.
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