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Particle-surface interactions in a uniform electric field
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The electrostatic force on a spherical particle near a planar surface is calculated for the cases of a uniform
electric field applied in either normal or tangential direction to the surface. The particle and suspending media
are assumed to be weakly conducting, so that that the leaky dielectric model applies. The Laplace equation for
the electric potential is solved in bipolar coordinate system and the potential is obtained in terms of a series
expansion of Legendre polynomials. The force on the particle is calculated using the Maxwell tensor. We find
that in the case of normal electric field, which corresponds to a particle near an electrode, the force is always
attractive but at a given separation it varies nontrivially with particle-suspending medium conductivity ratio; the
force on a particle that is more conducting than the suspending medium is much larger compared to the force on
a particle less conducing than the suspending medium. In the case of tangential electric field, which corresponds
to a particle near an insulating boundary, the force is always repulsive.
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I. INTRODUCTION

Electric fields are a classic means to manipulate and assem-
ble colloidal particles [1-4]. More recently, electric fields have
become a popular tool to energize and create self-propelled
particles [5-7] due to field-induced charge electrophoresis
[8-10] or torque (due to the Quincke effect), which drives
colloids to roll on a surface [11-15]. In these applications
particles are in close proximity to boundaries, and the electro-
static force (and torque) exerted on the particle is significantly
influenced by confinement. The canonical problem of a par-
ticle near an electrode in the presence of a uniform electric
field has been analyzed in the literature theoretically in the
two limiting cases of a conducting or an insulating sphere.
The surface of a conducting particle is equipotential, and
consequently, the electric field inside vanishes. The net charge
and force on a spherical particle are found using the method of
images [16,17] or the equivalent problem of two spheres in a
uniform electric field [18]. If the particle is perfect dielectric,
the boundary condition on the particle-medium interface are
continuity of the electric potential and a jump of the dis-
placement field due to given surface charge. The electrostatic
force has been found either in terms of series expansion in
eigenfunctions of the Laplace equation in bispherical coor-
dinate system [19-22] or from a multipole-moment theory
for the pair-wise dielectrophoretic interactions of dielectric
spheres [23].

In this paper, we solve for the electrostatic force on a
particle with arbitrary conductivity. In this case, the bound-
ary conditions on the particle interface are continuity of the
electric potential and the normal electric current, and the
bulk media is assumed to be charge free. The surface charge
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density needed to satisfy the charge flux continuity is thus
determined as part of the problem. This is the so called
“leaky-dielectric” model [24]. Using this approach, the force
on a sphere straddling a planar interface subjected to either a
normal or tangential uniform electric field has been calculated
[25]. However, the force on a sphere near an interface has not
be derived, even though the electric field for the equivalent
problem of two leaky-dielectric spheres with line-of-centers
parallel or perpendicular to the applied field has been derived
[22,26]. This paper is organized as follows. The problem is
formulated in Sec. II. In Sec. III, the solution methodology
using bispherical coordinates is presented. First, the solution
of the electric field is expressed in terms of a series of Legen-
dre polynomials, and an algorithm to determine its coefficients
is given. Then, the electric field strength, surface charge dis-
tribution on the interface, and the force on the particle are
calculated. Details are presented in the Appendix. In Sec. IV,
we validate the solution with the published results for the
interaction force between two identical dielectric spheres in
a uniform electric field [23] and a conducting sphere near an
electrode [16,17], and study the force dependence on separa-
tion and particle electric properties.

II. PROBLEM FORMULATION

Consider a spherical particle with radius R, conductivity
o1, and permittivity &; suspended in a medium with conduc-
tivity o, and permittivity &,. The mismatch in the particle
and medium conductivities is characterized by the parameter
B2 = (01 — 02)/(01 + 02), which ranges from —1 for a per-
fectly insulating particle to +1 for a for a perfectly conducting
particle. The particle is in the vicinity of a boundary and
the surface-to-surface distance is s. A uniform electric field
is applied in a direction either normal or tangential to the
boundary. The problem is sketched in Fig. 1(a).

©2022 American Physical Society
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FIG. 1. (a) A spherical particle with radius R is suspended above
a planar wall. The gap between the particle and wall surfaces is s.
The applied electric field is either in the normal direction E; = EyZ
with a conducting wall or in the tangential direction E;, = E,§ with
an insulating wall. (b) Sketch of Cartesian coordinates (x, y, z), cylin-
drical coordinates (r, z, ¢) and bipolar coordinates (£, 1, ¢) with unit
coordinate vectors e; and e,, and a pole A,. The isosurfaces of
coordinates 1 and & are obtained by rotating about z axis.

We adopt the leaky dielectric model, which assumes an
irrotational electric field (E = —V®, where ® is the electric
potential), electroneutral bulk fluids, and that electric current
obeys Ohm’s law [27]. Accordingly, the electric potential
inside the particle, ®;, and in the suspending medium, ®,,
satisfy the Laplace equation

Vid, =0, V>d,=0. (1)

At the particle-medium interface, the potential and normal
electric current are continuous

& =o;, om-E;=on-Ey, )

where n is the inward normal to the interface. The current
leads to accumulation of charge Q at the surface, which is cal-
culated a posteriori from the jump in the electric displacement
field at the interface,

0= (gE; — &Ey) - n.

Away from the particle, the electric field is undisturbed. We
consider two cases: (i) an electric field applied in a direction
normal to a boundary that is an equipotential surface, E; =
EyZ at infinity, and &, = 0 at z = 0, and (ii) an electric field

applied in a direction tangential to an insulating boundary,
EH =Eyy,andn-E; =0atz=0.
We introduce disturbance fields ®; and &,

&)1 = & + Epxy,, qA)z = @, + Epxy, 3)

where x, is the direction of the externally applied electric
field. In the case of normal electric field, x, = z, and in the
case of tangential electric field, x, = y. The governing equa-
tion becomes

Vih, =0, V2, = 0. 4

The boundary condition at infinity is now homogeneous,
@, — 0. At the planar boundary, in the case of a normal
electric field,

&, =0atz=0 (normal electric field), (@)
or, in the case of a tangential electric field,
dd, . .
= =0atz =0 (tangential electric field). (6)
2z

The boundary conditions on the particle-medium interface
become

&, =9, @)
and
ad 0d
01— — 03— = Eo(o —02)— (8)
on on on

The problem is solved using separation of variables in bispher-
ical coordinates (&, 1, ¢)[21], defined as

rzgsiné,z:%sinhn,hzcoshn—cosé, 9
where a = [(2R + s)s]'/2. Figure 1(b) illustrates the coordi-
nate systems that are used in this analysis. All isocurves of
coordinate £ pass through poles AL and A_, Ay = (0,0, +a)
in Cartesian coordinates (x, y, z), as n — Fo00. The particle-
medium interface is specified by n = n;,

:ln{l+%+[(2+%>%]]/2}. (10)

The inward normal to the particle surface is e,. Hence,
Egs. (7) and (8) are written as

A

b = &y, atn = n,, (11)

b, b,
01— —ox— = Ey(o —02)—, atn =n,.  (12)
an an an
The planar wall boundary is specified by n = 0. Accordingly,

&, =0, atn =0 (normal electric field), (13)

dd
8_2 =0, atp =0 (tangential electric field). (14)
n

In bispherical coordinates, we require an additional boundary
condition, that is, @, to be finite at pole A™, where n — o0,

|®| < oo, asy — oco. (15)

Finally, note that r — oo corresponds to n — 0 and
cosé — 1. Hence, from Eq. (13), we see that the boundary

034607-2



PARTICLE-SURFACE INTERACTIONS IN A UNIFORM ...

PHYSICAL REVIEW E 106, 034607 (2022)

condition at infinity is satisfied automatically in the case of
normal electric field, while for the tangential electric field, an
auxiliary boundary condition is needed:

A

@, ~0, asn — Oand cosé — 1. (16)

III. ELECTRIC POTENTIAL

In bispherical coordinates, the Laplace’s equation can be
written as

5 B[, . 9 (13F
VF = —— sinf —( -—
a’siné on \ h an

N 9 (sing 8F)i| W 9F —o
aE\ h 03E a2sin?E 32

where F stands for either Ci>1 or ﬁ>2. The general solution is

F =Ry [XIe 4 ¥"e | Pl (cos &) cos(mep)

)

+ Y [Mye 4 Nye Py (cos £) sin(me),

m,n

where A, =n+ 1/2 and P stands for associated Legendre
polynomials of degree n and order m. ), denotes a double
sum Z;O:() Z:O:m

In the case of a uniform electric field, the solution is greatly
simplified. For a normal electric field, the axial symmetry of
the problem leads to

oo
F=vn) [x)" + e P (cos&).  (17)
n=0

The tangential electric field indicates the dependence on ¢ is
sin ¢. In this case, the general solution is

F = JEZ [Mle" + Nle7 P} (cos&)sing.  (18)

n=1

From the general solutions Egs. (17) and (18), applying the
boundary conditions at the wall and at the particle interface for
continuous potential leads to

o0
@) = —Epxy +Vh Y AL F 1e P, (19)

n=ngy

®y = —Epra +Vh Y Al F P, Q0)

n=ngy

where P, (cos &) stands for P,(cos &) and Pn1 (cos &) sin ¢ for
the applied normal and tangential electric fields, respectively.
The minus signs in the second term in Egs. (19) and (20) are
for normal electric field. Note that P!(1) = 0. Accordingly,
Eq. (16) is automatically satisfied. The sum starts at np = 0
and 1 for normal and tangential electric fields, respectively.
Plugging Eqgs. (19) and (20) into the boundary condition
Eq. (12), we get the following recurrence formula of A, after
some algebra:

Ln,lAn—l + Ln,ZAn + Ln.3An+l = Gn~ (21)

Details are listed in Appendix B. Equation (21) is solved
numerically as follows. First, we choose a sufficiently large

number, N, which set the number of terms retained in the
series solution. For n = N, the last equation in the system
Eq. (21)is

Ly_11AN-1 + Ly 2An = Gy — Ly 3AN+1, (22)

where Ay+1 comes from the asymptotic behavior Egs. (B15)
and (B18). Then, coefficients A,, (n < N) are found from the
three-diagonal system [Eq. (21)], whose matrix form is pre-
sented below:

[L]-A =G, (23)

where the left-hand-side coefficient matrix [L] is a triple-
diagonal matrix, A is the column vector of coefficients A,,
and G is the column vector of the right-hand-side terms.

For the normal applied electric field, their components are
listed below:

Loo Logs
Liy Lo Lij
Lyy Ly, L3

(L] = ,
Ly_11 Ly-1p2 Ln-i3
Ly Ly>

Ag Gy
Ay G
A G

A=| 7 |.g= 2

An_i Gn-1

An Gy — Lyj3An+1

The expressions for L, G, and Ay are given by Egs. (B7),
(B14), and (B15).
For the tangential electric field, subscripts start from 1,

L, L3
Lyy Ly Lp3
Lyy Lyp L33

[L] = ,
Ly_11 Ly-12 Ly
Ly Ly,

Ay Gy
A Gy

A= ® le= “

An_q Gy

Ay Gy — Ly3ANn+

The expressions for L, G, and Ay are given by Eqs. (B16)—
(B18).

Figure 2 illustrates the electric potential computed from
Eqgs. (19)—(23). The solution appears spectrally convergent at
sufficiently high N. As N increases, we observe that the error
decreases as 1/N? and approaches near plateau as N increases
[28]. We find that the number of terms N needed for the force
coefficient Cy = F;/ (82E§R2) to reach 107> relative error,

IC,(N 4+ 1) = Cp(N)I

< 1073,
|Cr(N)I b
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FIG. 2. Equipotential contours for particle-wall separation
s/R = 0.1 and perfectly insulating particle 8, = —1. For the tan-
gential electric field, the equipotential contours are on x = 0 plane.
(N = 50).

scales as 108~!/2, independently of the conductivity and per-

mittivity ratios. We validated our solution for a conducting
particle with the result derived using electrostatic images [16],
see Fig. 4. We also compared with the two-sphere solution of
[23]. In both cases, the agreement is excellent. The numerical
computation is very fast, taking a fraction of a minute even at
small separations, § ~ 107>,

IV. ELECTRIC FIELD AND INDUCED SURFACE
CHARGE DISTRIBUTION

The electric field is obtained by calculating the gradient of
the electric potential,

E,’ = —Vq)l = E,-’,,e,] + E,'ygeg + E,~y¢e¢, (24)

where the subscript i is the index of the phases. E; and E;
are the electric field strengths inside and outside the particle,

respectively. Substituting Eq. (3) into Eq. (24) yields the com-
ponent form

h (9, 9
Eig=——( " = E2). (25)
’ a\ an an
h(ad; B
Eie=——( - E2). (26)
' a\ 9 JE
o (b i o
BT T asing \ ap Ve )

The discontinuity of the electric field across the particle-
medium interface leads to accumulation of charge Q. The
surface density of this induced charge is calculated from

Q= (e1E1y — 2B, - (28)

In the case a normal applied field, due to the symmetry of
the problem, E; 4 = 0. Explicit expressions for E;, and E; ¢
are listed in Appendix A. For a net charge-neutral particle, we
find the following identity satisfied by the coefficients A,:

ZA,, =0, (29)

see Appendix C for details.
In the case of the tangential applied electric field, the elec-
tric field components are given by

Ei’,’ = EA‘,',,] Sil’l (P,
Ei,& = Ei,é SiIl ¢,

Ei,d) = Ei,¢ COS ¢,
and E; , E; ¢, and E; 4 are listed in Appendix A. Equation (28)
shows that Q for a tangential electric field has the sine depen-
dence of ¢,

0 = Osin¢. (30)

Figure 3 illustrates the dependence of the dimensionless
surface charge distribution, ¢ = Q/(&2Ep), on dimension-
less particle-wall separation § = s/R and conductivity ratio
X = o1/0, with permittivity ratio k = /e, = 1. If € > g,
i.e., &1/01 > &/0, the surface charge distribution indicates a
free-charge dipole which is antiparallel to the applied electric
field. In the opposite case, k < x, the dipole is in the same
direction as the applied electric field. At large separations
(s/R = 10), the distribution is symmetric. The wall proximity
introduces asymmetry in the charge distribution. However,
the surface integral over the particle-medium interface (a unit
sphere in dimensionless form), is zero and the particle is net
charge neutral.

V. INTERACTION FORCE

The electrostatic force on the particle is calculated from the
Maxwell stress

F=/ (T, — T,) - €,dS, 31)
SP

where e, is the inward normal on the interface, and T and
T, are Maxwell stress tensor in the particle and media phases,
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FIG. 3. Dimensionless surface charge density, ¢ = Q/(2Ey), as
a function of the polar angle 8 for various values of the conductivity
ratio x = o/0, and particle-wall separations § = s/R. In the case of
the tangential applied field, ¢ = § sin ¢ and the 6 dependence of § is
shown. 6 is the angle between the positive z axis and the line from the
particle center to a point on the interface, see Fig. 1(b). Permittivity
ratioxk = &;/e, = 1.

J

respectively:
1
T, = |:EiEi - E(Ei : Ei)I]- (32)

The divergence of the Maxwell strength is zero, V - T; =0,
because of the bulk media are charge-free. Using the diver-
gence theorem leads to

F = —/ TY - e,dS,
SP

where Sp stands for the wall boundary and T? is the distur-

bance Maxwell stress tensor,

T = & [EOEQ + EJEy + EYE?
1 D D D
— E(21«:0-152 +ES -ED)I|.

Here, E, is the applied electric field and E? is the disturbance
field due to the particle. The detailed calculation process can
be found in Appendix C. For both normal and tangential
applied fields, the force has only a component in the direction
normal to the wall surface (in the z direction).

For a normal electric field, the force on the particle is

o0
F, = —derm Z [1,A2 — (n + DAA1]. (33)
n=0
For a tangential electric field, the force on the particle is
F=jern(ll +1)), (34)

where

o0
A2 AA, m
Il = Z—n(n—i— 1)—32 Hn(n—i- 1)(n+2)+ZZA;1Am Lit1ms
n=1 = n n+ n=1 m=1 mn
n+1)*(m+1)>% n + 1)°m?
£33 A4, ﬁnlml—zzzzw O 35)
n=1 m=1 n=1 m=1
oo oo
0 =4%"%"Adnlm. (36)
n=1 m=1
[
I, ,, stands for the following integral: Eq. (2) is replaced by ®, = ®,. Here, ®, is an unknown
- | which we will determine using the zero net charge condition.
Ly = / P, P, (u) du = {n(n +_1) n=m The solution approach for @, parallels the approach at the
’ 1 14w (=DPq(g+1) n#m beginning of this section. Equation (17) still represents the

where p = max(n, m) and ¢ = min(n, m).

A. Special case: Perfectly conducting sphere in normal electric
field

A perfectly conducting sphere occurs in the limit of o] —
oo. This requires a special solution because B, — 1 and
causes the denominator in Eq. (B15) to become zero. Here,
we outline this special solution.

A perfectly conducting sphere implies a constant poten-
tial @, along the interface. In this case, boundary condition

solution ®,. Using the constant potential boundary condition,
it is straightforward to show that

o0
= ~h Y By sinh (A,n)P,(cos &),
n=0
where

exp(—Anns)

By, = V2(®, + 2Epan,) Ll
V2, + 2E0ak) G S
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Now, paralleling the charge calculation in Appendix C, we
find the net charge on the particle,

Oner = 4m82a®,81 () + 8me2a” EpSa (1) = 0,

where S| and S, are two sums

oo

exp (—Ann;s)
Sing) = — .
1(15) nXZ(; sinh (A, n;)

o0

An €XP (=An1s)
00 =2~ oy
2(15) ; sinh (A,,7;)

Setting Q,,.; to zero we can solve for @, to find

SZ(ns)
b, = -2Fya .
? S ()

From Eq. (31) with T| = 0, we can calculate the vertical force
on the particle to find

o
F = —em Z [nB% — (n+ 1)B,Bys1]. (37)

n=0

B. Variation of the force with separation and media electric
properties

In the absence of a wall, the force on a charge-free par-
ticle in a uniform electric field is zero. The wall breaks the
symmetry and, as shown below, gives rise to attraction in the
case of a normal applied field and repulsion in the case of a
tangential applied field. In Fig. 4, we plot the force coefficient
Cy = F,/(5,E3R?) as a function of particle-wall separation
8. In both cases, the magnitude of the force increases with
decreasing separation.

The dependence on the dimensionless conductivity mis-
match B, however, is nonmonotonic. Figure 5 shows that
the force vanishes for 81, = 0, as expected since the particle
and suspending media have the same electric properties. The
variation with B, is asymmetric with respect to B, = 0. In
the case of a normal applied field, a conducting particle is
attracted more strongly by the electrode compared to an insu-
lating particle. A similar trend is observed also in the case of
a tangential applied field: the conducting particle experiences
stronger repulsion compared to the insulating particle.

C. Asymptotic behavior of the force at large particle-wall
separations

In this section, we present the asymptotic behavior of the
force coefficient C; for large separations. In the case of normal
electric field, the numerical solution for A, suggests a two-
term approximation. For § = s/R > 1, from Eq. (10), n, ~
In(258). Applying this result in Eqs. (B7) and (B14), we find
the leading-order asymptotic form of the system Eq. (21):

1
V2(B12 — DAy + 2324, ~ EopR <, (38)

V240 + 2v2(B1n — 3)8%A; ~ —2EoBinR.  (39)

—~10 10

........ Bra = —1
- = fip=-05
—107%¢ Bz =0.2
——-fi2=1
- O P2 = —0.5 (Washizu)
O 1061 O Bu=1 (Pérez)
=1
5]
K3}
£ 107"
[
<)
<
8
= —107%¢
Lg O A
b - 0 - 0= -0 7 "L -
100 Brsreerrrrressrrassnesiaseasesss
10 : ’_4-0'
LT
—102¢—" . \ ) :
-2 -1 0 1 2
10 10 10 10 10
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(a)Normal electric field
10° i«:ni:: v
o)
. 102
<
15)
g
£ 107¢
<)
o
3
3 10'6* ........ Bra=—1
~ - = Bu=-05
Fra =0.2
108 F|-—-pu =1
B2 = 0.2(Wazhizu)
O Bz = —1 (Young)
-10 I | |
10
1072 107" 10° 10 10?

Dimensionless separation, ¢

(b)Tangential electric field

FIG. 4. Force coefficient Cy = F,/ (ezEng) as a function of di-
mensionless separation é = s/R. Circles: Washizu’s solution using
the equivalent multipole method [23]. Diamonds in (a): Pérez so-
lution using the method of images for a conducting particle [16]
Diamonds in (b): Young’s solution using bispherical coordinates for
a insulating particle [29].

The asymptotic behavior of coefficients Ay and A is found
from these two equations by balancing the order of &,

B EoBi2R i
V23 - Bi2) 8%

Substituting into Eq. (33) yields the asymptotic behavior of
the force coefficient Cy for the normal electric field,

Ag ~ —Ap ~ (40)

6wpl, 1
(3 — Bn)* 8
In the case of a tangential applied electric field, the numer-

ical solution for A, suggests a one-term approximation. The
asymptotic form of Eq. (21) is

Cr~— 41

V2(B12 — 3)8°?A; ~ EoBi2R8"?, (42)
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FIG. 5. Force coefficient as a function of B, (separation
s/R = 1). The dashed line corresponds to the perfectly conducting
solution (B, = 1).

from which we find the asymptotic behavior of Aj,
___EoBnR 1
V2(B12 —3) 82

Substituting into Eq. (34) yields the asymptotic behavior of
the force coefficient Cy for the tangential electric field

(43)

3 ﬁlzz 1
(Bia —3)° 8+
To a leading order, the effect of the wall is equivalent to plac-
ing a mirror image dipole. The 1/8* dependence is consistent
with the dipole-dipole interaction [30].

The exact and asymptotic solutions are compared in Fig. 6.

The agreement is excellent when § > 10. Equation (41) is also
valid for the special case 8, = 1.

o~ (44)

VI. CONCLUSIONS

In this paper, the interaction of a spherical particle and
a planar wall in the presence of a uniform electric field is

1020
40715}
o)
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5 _10-10 L
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o -107
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(b)Tangential electric field

FIG. 6. Force coefficient asymptotic (8, = —0.5).

studied in the framework of the leaky dielectric model. The
bulk media are assumed to be charge free; charge brought
by conduction is only present at the surfaces separating me-
dia with different conductivities and permittivities. Analytical
solutions of the Laplace equation for the electric potential
are derived using separation of variables in bispherical co-
ordinates. The force on the particle is calculated using the
Maxwell stress tensor. We find that in the case of normal
electric field, which corresponds to a particle near an elec-
trode, the force is always attractive but at a given separation
it varies nonmonotonically with particle-suspending medium
conductivity ratio; the force on a particle that is more con-
ducting than the suspending medium is much larger compared
to the force on a particle less conducing than the suspending
medium. In the case of tangential electric field, which cor-
responds to a particle near an insulating boundary, the force
is always repulsive. In both cases, the force decreases with
increasing separation between the particle and the wall and
its asymptotic behavior at large separation is given by the
force between the particle dipole and its mirror image. The
results provide a comprehensive understanding of the effect of
particle conductivity on the wall-induced electrostatic force.
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APPENDIX A: COMPONENTS OF THE ELECTRIC
FIELD STRENGTH

In the case of the normal electric field, the components of
the electric field strength are given by

E hsinh 7y «— w2 &
Eun = 2201 = coshycos) — LS D Anle = 1NeTH P (c0sE) + —— 3 Audle ™ — 1]e TPy (cosE) (A1)
, h 2a n=0 n=0
Ey . : Vhsing ., o NPE . d
Eig == "sinhnsing — ~——— ;An[e % 1le P, (cos &) — — nX(;An[e % 1e ”EP,,(COSE) (A2)
E hsinh 7 «— 203? &
Ey, =—2(1 — coshrjcos &) — Vhsinhp " A, sinh (4,m)Py(cos ) — 3" Aukycosh (mPy(cosd)  (A3)
h a n=0 n=0
E hsing 2103 &
Eyy =— 70 sinhnsiné — @ gAn sinh (A,n)P,(cos &) — ZA sinh (A,,n) EP ) (cos &) (A4)
E\ 4 and E; 4 are both zero due to the symmetry.
In the case of the tangential electric field, the components of the electric field strength are given by
EiJ? = Ei,n sin ¢, E,'qg = EA',',E sin ¢, Ei,¢ = Ei,¢ COS ¢,
. E hsinh 7 32 &
Ei,=- =0 sinh 7 sin & — m ZAn[l + P m]e—lnﬂp (cos&) + — ZA A1 + e2lnm]e—lnnp (cos &), (A5)
’ h 2a n=1 n=1
. E h si > 32 & d
Ei¢ =70(coshncos$ -1 - % ;An[l + eZA,,ns]e—)mnP (cos&) — — ;A A1+ ezmn:]e—kmdgpi(coss)’ (A6)
S 2 A,ll 2AnNs7 =AMl A7
By _Eo_asmsz [1 + ¢ ]e P} (cos £), (A7)
. E hsinh 7 «— 2132 &
Eyp=— =0 sinh nsiné — m ZA” cosh ()»nn)Pn' (cos&) — ZAM sinh ()»,m)P (cos &), (A8)
h a o
. E hsing 2037 &
Ey; =70(cosh ncosé — 1) — @ ;A,, cosh (A,n)P(cos £) — ;A cosh (A1) SP (cos&),  (A9)
. 2037 & .
Eyy =Eo— e ;An cosh (A,n)P! (cos &). (A10)
[
APPENDIX B: RECURRENCE FORMULA FOR A, where
Here, we outline the derivation of the recurrence formula 00
which is used to determine coefficients A, in the expression of o, = ZA,,[ez’\””‘ — 1]e™"P,(cos &), B2)
the electric potential. n=0
o0
= Z 24, sinh (A,n)P, (cos £). (B3)

1. Normal electric field

For the normal applied electric field, the disturbance fields
&, and &, can be written as

&) = Vhd,, & = Vhd,, (BD)

n=0
Substituting Eq. (B1) into the boundary condition for the
continuity of the normal electric current,
b, 3d,

0z
o1—— —o0y— = Ey(oy — 02)—
on an on
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leads to
(o] aci>l [op) aé

oy +oy On

2(coshns—u)< o1+ 02 01
1 2

) + sinh 1,81, P, = 2EoB12(cosh 1, — u)‘/2 (B4)

an’

where u = cos §. Plugging Egs. (B2) and (B3) into the left-hand side (L.H.S.) of Eq. (B4), one gets

LHS. = Z [(,812 sinh Ns — 2)‘41 cosh ns) eXp ()‘11773) - /312(51111’1 Ns — 2)‘41 cosh ns) eXp (_)\nns)]AnPn(u)

n=0

+ Y Aulexp (hans) — Bra exp (—hun) 1 2h, P ().
n=0

Note that A, =n + 1/2 and By, = (01 — 02)/(01 + 02). With
the help of the recurrence formula for Legendre polynomials,

@2n+ Dub,(u) = (n+ DPyy1(u) + nby—y (w), (BS)

the second sum of L.H.S. could be written as

oo

> nlexp (un—ins) = Bra exp (—Auo11:)1An—1 P(u)

n=1

+ Z(” + 1)[3XP ()\n-Hns) - ﬁlZ exp (_)"n-&-lns)]An-ﬁ-an(u)
n=0

Putting these terms together, we have

LHS. =) LuiAu1Pa) + ) Lu2AnPu(u)

n=loo n=0 (B6)
+ Y LysAnp1 Pau).
n=0

Coefficients L, 1, L, », and L, 3 are listed below:

Ly = n(e" " — Brpe 1),

L, = (B2 sinh n, — 22, cosh 5, )e™

— Bia(sinh n, — 24, cosh ny)e ™",
Lys = (n+ 1) — proe™ 1), (B7)

The next step is to expand the right-hand side of Eq. (B4) in
terms of Legendre polynomials. Note that

a . h
= —sinh 7.
z Y n
Substituting it into the right-hand side (R.H.S.) of Eq. (B4),
we have

1 — ucosh n;

R.H.S. = 2E0a,312 )
i

(B3)
where iy = cosh 1y — u. The generating function of Legendre
polynomials is

Zz P,(u). (B9)

12
(1 —2ut +t2) -

(
Letting ¢ = exp(—n;) yields

1 o0
W = \/EX;GXP (=2nns) Py (u). (B10)
Calculating the derivative with respect to 7,, we get
1 232
17 Sinh ;/\ n €XP (=115 ) By (10). (B11)

Multiplying Eq. (B11) by u and using the recurrence formula
Eq. (BS5), we obtain

2
# = 511\1{1_;7 Z[ne*)»u s 4 (n+ l)e*lnuns]p ).

(B12)
Using Egs. (B11) and (B12), we could expand Eq. (B8) as

o0
RHS. = Z G,P,(u),

(B13)
n=0
where G, is
osh 7,
— —2\/—anﬁ12{ 08 :77 [n efku_mx_k(n_,_ 1)67%“71;]
. xne—w}. (B14)
sinh 7

Equating Eqs. (B6) and (B13) leads to the recurrence formula
we need.
For n > 1, Eq. (21) has the following asymptotic form:

—2nt?A, 1 +[2n+ D1 +12) — Bro(1 — 1%)]

E
Ay — 201+ DAyys ~ 432 oaﬁt122 2n+1
X [n—(2n+1)t +(n+1)t 1,

where t = exp(—n;). It gives the asymptotic behavior of co-
efficients A,, for large n > 1,

E 1
A, ~ 4320012 2"“[ - (l—tz)——t2:|.
1_ 3_:3]2 1_/312

(B15)
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2. Tangential electric field

For the tangential electric field, the recurrence formula
could be obtained following similar steps. Results are listed
below:

; l(e)\n—lﬂx + ‘Blzefkn_mx)’

Lyy = (% sinh 1, — A, cosh ns> e

Ln,l ==

1
+ /312<§ sinh 7y — A, cosh 7, ) Aals

2
3 =S o), (B16)
G, =2+/2Eyapi, sinh n,e ", (B17)
wheren > 1. Forn > 1,
4+/2FE
4, ~ H2E0aBr2 (B18)
B2 —3
APPENDIX C: ELECTRIC FORCE
Consider the case of a normal applied field Ey = Eyz. At
n = 0, the disturbance field is given by
h3/2 00
EP =" ZZA AnP(cos €), (C1)
n=0
Efs =E}, =0, (C2)

where hy = 1 — cos&. Due to the symmetry of this problem,
the force is in z direction,

Fzz—/ e, - T -ndS

Sp
— oo [ EEP + L (EP)as
= —& 5, 052 5 ) 2.

= —eznaZ/ SI}ZLZS[ZEOE% + (Eéj.n)z]dS
o hg
=end (I - 1)), €3)

where I{¥ and I3’ are two integrals

(C4)
(C5)
Substituting Eq. (C1) into Eq. (C4), we have

=/ = 20 2Anha P u)du
= Ly A, [l T du.

From the generating function Eq. (B9), we have

1 tn
= P.(u)P, -
/1 (1 —2ur +;2)1/2 Podu= Zt / n (WP, ()du = :

n

Here, the orthogonality of Legendre polynomials is used,

! 2 Snm
P,(w)P,(w)du = ———8,,, = —. C6
| Pawr o= 220, =2 (o
Letting ¢ = 1 yields
/l Py (u) J V2
u= .
—1 1—u )‘n
Substituting it into IV, we get
N \/—EO =
I =4v2— ZAH. (C7)
n=0
For 13, substituting Eq. (C1) into Eq. (C5) yields
2
N "1 —u
= ZZAAP(M) du
-1 a 0
o.¢] o0 4
=ZZ—A Anhmn f (1 = w)P,(u)Py(u)du.
a?

m=0 n=0

Using the recurrence formula Eq. (B5) and orthogonality
Eq. (C6), the integral in I3’ could be calculated explicitly,

1
/ (I = w)P, ()P (u)du
-1

= lP(u)P(u)du—u 1 (WP, (u)d
—/ 2 PeaoPodu
n 1
Tt [an71(M)Pm(u)du
8n,m I’l+1 8n,m+1 n an,mfl
a2+l A, 241 A,

Plugging into 7)Y, we have

4 o]
L= = § [AnAr = (n 4 DAAL -
n=0

(C8)

From Eq. (C3), we could get the solution for the electric force.
A similar calculation can be done for a tangential electric field.

It is interesting to note that because E is divergence free,
plus the boundary condition (2), the net charge on the particle
is

Qnet = % (81E1 - 82E2) . e,’dS =0.
S

P
Also since f¢ E; -e,dS = [ E7 -e,dS =0, we have, from
integrating Eq. (C1), that ) .2, A, = 0. Hence, I = 0.

[1] M. Motosuke, Electric Field-Induced Arrangement of Colloidal
Materials in Microfluidic Devices, in Stimuli-Responsive Inter-
faces (Springer, Berlin, 2017), pp. 297-313.

[2] D. C. Prieve, P. J. Sides, and C. L. Wirth, 2-d assembly of
colloidal particles on a planar electrode, Curr. Opin. Colloid
Interface Sci. 15, 160 (2010).

034607-10


https://doi.org/10.1016/j.cocis.2010.01.005

PARTICLE-SURFACE INTERACTIONS IN A UNIFORM ...

PHYSICAL REVIEW E 106, 034607 (2022)

[3] O. D. Velev and K. H. Bhatt, On-chip micromanipulation and
assembly of colloidal particles by electric fields, Soft Matter 2,
738 (2006).

[4] B. Bharti and O. D. Velev, Assembly of reconfigurable col-
loidal structures by multidirectional field-induced interactions,
Langmuir 31, 7897 (2015).

[5] J. Yan, M. Han, J. Zhang, C. Xu, E. Luijten, and S. Granick,
Reconfiguring active particles by electrostatic imbalance, Nat.
Mater. 15, 1095 (2016).

[6] K. Han, C. Wyatt Shields IV, and O. D. Velev, Engineer-
ing of self-propelling microbots and microdevices powered by
magnetic and electric fields, Adv. Funct. Mater. 28, 1705953
(2018).

[7] M. Driscoll and B. Delmotte, Leveraging collective effects in
externally driven colloidal suspensions: Experiments and simu-
lations, Curr. Opin. Colloid Interface Sci. 40, 42 (2019).

[8] S. Gangwal, O. J. Cayre, M. Z. Bazant, and O. D. Velev,
Induced-Charge Electrophoresis of Metallodielectric Particles,
Phys. Rev. Lett. 100, 058302 (2008).

[9] E. Ma, X. Yang, H. Zhao, and N. Wu, Inducing Propulsion of
Colloidal Dimers by Breaking the Symmetry in Electrohydro-
dynamic Flow, Phys. Rev. Lett. 115, 208302 (2015).

[10] D. Nishiguchi and M. Sano, Mesoscopic turbulence and local
order in janus particles self-propelling under an ac electric field,
Phys. Rev. E 92, 052309 (2015).

[11] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, and D.
Bartolo, Emergence of macroscopic directed motion in popula-
tions of motile colloids, Nature (London) 503, 95 (2013).

[12] A. Bricard, J.-B. Caussin, D. Das, C. Savoie, Vijayakumar
Chikkadi, K. Shitara, O. Chepizhko, F. Peruani, D. Saintillan,
and D. Bartolo, Emergent vortices in populations of colloidal
rollers, Nat. Commun. 6, 7470 (2015).

[13] H. Karani, G. E. Pradillo, and P. M. Vlahovska, Tuning the
Random Walk of Active Colloids: From Individual Run-and-
Tumble to Dynamic Clustering, Phys. Rev. Lett. 123, 208002
(2019).

[14] G. E. Pradillo, H. Karani, and P. M. Vlahovska, Quincke rotor
dynamics in confinement: rolling and hovering, Soft Matter 15,
6564 (2019).

[15] B. Zhang, H. Karani, P. M. Vlahovska, and A. Snezhko, Per-
sistence length regulates emergent dynamics in active roller
ensembles, Soft Matter 17, 4818 (2021).

[16] A. T. Pérez, Charge and force on a conducting sphere between
two parallel electrodes, J. Electrost. 56, 199 (2002).

[17] A. M. Drews, M. Kowalik, and K. J. M. Bishop, Charge and
force on a conductive sphere between two parallel electrodes:
A Stokesian dynamics approach, J. Appl. Phys. 116, 074903
(2014).

[18] M. H. Davis, Two charged spherical conductors in a uniform
electric field: Forces and field strength, Q. J. Mech. Appl. Math.
17, 499 (1964).

[19] W. Lin, A critical study of a dielectric sphere near a grounded
plane, J. Electromagn. Waves. Appl. 8, 195 (1994).

[20] C. Xiaoping, The electrostatic problem of a dielectric sphere
near a plane, J. Electrost. 19, 201 (1987).

[21] K. D. Danov, P. A. Kralchevsky, K. P. Ananthapadmanabhan,
and A. Lips, Particle-interface interaction across a nonpolar
medium in relation to the production of particle-stabilized
emulsions, Langmuir 22, 106 (2006).

[22] R. D. Stoy, Solution procedure for the laplace equation in
bispherical coordinates for two spheres in a uniform external
field: Parallel orientation, J. Appl. Phys. 65, 2611 (1989).

[23] M. Washizu and T. B. Jones, Dielectrophoretic interaction
of two spherical particles calculated by equivalent multipole-
moment method, IEEE Transactions on Industry Applications
32,233 (1996).

[24] G.I. Taylor, Studies in electrohydrodynamics. I. The circulation
produced in a drop by an electric field, Proc. R. Soc. London A
291, 159 (1966).

[25] Y. Hu, P. M. Vlahovska, and M. J. Miksis, Dielectric spherical
particle on an interface in an applied electric field, SIAM J.
Appl. Math. 79, 850 (2019).

[26] R. D. Stoy, Solution procedure for the laplace equation in
bispherical coordinates for two spheres in a uniform external
field: Perpendicular orientation, J. Appl. Phys. 66, 5093 (1989).

[27] J. R. Melcher and G. I. Taylor, Electrohydrodynamics: a review
of the role of interfacial shear stresses, Annu. Rev. Fluid Mech.
1, 111 (1969).

[28] Zhanwen. Wang, Ph.D. thesis, Northwestern University, in
preparation.

[29] E. W. K. Young and D. Li, Dielectrophoretic force on a sphere
near a planar boundary, Langmuir 21, 12037 (2005).

[30] E. Yariv, “force-free” electrophoresis? Phys. Fluids 18, 031702
(2006).

034607-11


https://doi.org/10.1039/b605052b
https://doi.org/10.1021/la504793y
https://doi.org/10.1038/nmat4696
https://doi.org/10.1002/adfm.201705953
https://doi.org/10.1016/j.cocis.2018.10.002
https://doi.org/10.1103/PhysRevLett.100.058302
https://doi.org/10.1103/PhysRevLett.115.208302
https://doi.org/10.1103/PhysRevE.92.052309
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/ncomms8470
https://doi.org/10.1103/PhysRevLett.123.208002
https://doi.org/10.1039/C9SM01163C
https://doi.org/10.1039/D1SM00363A
https://doi.org/10.1016/S0304-3886(02)00063-3
https://doi.org/10.1063/1.4893308
https://doi.org/10.1093/qjmam/17.4.499
https://doi.org/10.1163/156939394X00038
https://doi.org/10.1016/0304-3886(87)90007-6
https://doi.org/10.1021/la052273j
https://doi.org/10.1063/1.342791
https://doi.org/10.1109/28.491470
https://doi.org/10.1098/rspa.1966.0086
https://doi.org/10.1137/18M1195668
https://doi.org/10.1063/1.343737
https://doi.org/10.1146/annurev.fl.01.010169.000551
https://doi.org/10.1021/la0518546
https://doi.org/10.1063/1.2185690

