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Multiple phase transitions shape biodiversity of a migrating population
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In a wide variety of natural systems, closely related microbial strains coexist stably, resulting in high levels of
fine-scale biodiversity. However, the mechanisms that stabilize this coexistence are not fully understood. Spatial
heterogeneity is one common stabilizing mechanism, but the rate at which organisms disperse throughout the
heterogeneous environment may strongly impact the stabilizing effect that heterogeneity can provide. An intrigu-
ing example is the gut microbiome, where active mechanisms affect the movement of microbes and potentially
maintain diversity. We investigate how biodiversity is affected by migration rate using a simple evolutionary
model with heterogeneous selection pressure. We find that the biodiversity-migration rate relationship is shaped
by multiple phase transitions, including a reentrant phase transition to coexistence. At each transition, an ecotype
goes extinct and dynamics exhibit critical slowing down (CSD). CSD is encoded in the statistics of fluctuations
due to demographic noise—this may provide an experimental means for detecting and altering impending
extinction.
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Closely related microbial species, and even strains of the
same species, can stably coexist in many natural systems
[1–8], from phytoplankton living in the ocean or hot springs to
bacteria residing in the human gut and skin. Understanding the
stable coexistence of similar species has been a longstanding
focus in ecology [9–12] and myriad mechanisms that may
stabilize such coexistence have been examined [10,13,14].
Yet, the large extent of biodiversity at fine scales in nearby
spatial locations remains a key puzzle [13,15,16]. Classic
mechanisms that stabilize coexistence involve differences in
resource consumption and asymmetric interactions between
species [10]. However, these mechanisms appear inadequate
to explain fine-scale diversity of closely related strains hav-
ing similar resource requirements and symmetric interactions
[13].

It has recently been proposed that source-sink dynamics
in spatially extended systems [17–19], chaotic coexistence or
asynchrony [13], and feedback from endogenous fluctuations
in highly diverse microbial systems [14] can sustain similar
species for very long times. Common to these mechanisms
is spatial loci connected by migration fluxes. Spatial hetero-
geneity can provide local niches to which different species
or strains specialize [11]. Dispersal of organisms out of their
niches may result in spatial coexistence of related ecotypes—
subpopulations specialized to a spatially local environment.
Intuitively, one would expect a nonmonotonic dependence
of biodiversity on migration rate: although elevated diversity
relies on migration, excessive migration can reduce diversity
because native strains are subject to increased competition
from invaders [15].

But the reality is more complex. In the gut microbiome,
where biodiversity has a strong impact on human health,
evolution takes place on overlapping timescales as ecological
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dynamics. In addition, evidence suggests that the gut may
actively regulate the movement of microbes across structured
compartments [20]. An important challenge is, therefore, to
understand in quantitative terms the influence of migration
on biodiversity under heterogeneous selection pressure over
long timescales. Such understanding could allow control of
biodiversity by modulating migration or heterogeneity.

In this article, we use a simple evolutionary model to show
that the relationship between biodiversity and migration rate
can be surprisingly complex. Our model, similar to that stud-
ied in [21], involves a heterogeneous environment comprising
two habitats coupled by one-way migration. We find that the
biodiversity-migration rate relationship is shaped by multiple
phase transitions at which an ecotype goes extinct and the
dynamics exhibit critical slowing down (i.e., the timescale
of relaxation toward steady state diverges). Resource avail-
ability and selection profile in constituent habitats determine
the number and location of phase transitions that can occur,
which, in turn, determines how migration affects biodiversity.
Multiple phase transitions can occur when the two habitats
are of comparable size; in this regime, biodiversity reaches a
maximum at a modest migration rate, falls to a lower level at
intermediate migration rates, then, after crossing a reentrant
phase transition, returns to the same maximum under high
migration. On the other hand, in the limit that one habitat is
arbitrarily large (as in [21]), only one phase transition occurs.

Critical slowing down (CSD) near ecological tipping
points has been widely studied in ecology, often consid-
ered a warning signal for impending ecological collapse
[22–25]. It was recently argued that evolutionary changes
should be incorporated into this picture [26]. Here, we be-
gin with an evolutionary model where ecotypes emerge
through evolution, instead of being predefined. With suffi-
cient heterogeneity, distinct ecotypes evolve and compete for
resources. At certain critical migration rates, evolutionary
driving forces—mutation, selection, and migration—reach a
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balance, resulting in a vanishing restoring force to the steady
state and hence critical slowing down. At these transitions,
dynamics is driven solely by resource competition between
ecotypes.

Model. We model a population of asexual organisms, each
characterized by a genotype i ∈ {1, . . . ,M}, that inhabit two
habitats. Habitats 1 and 2 have fitness landscapes �φ1 and �φ2,
respectively, whose components, φl,i, specify the fitness of
genotype i in habitat l . Organisms migrate from habitat 1
to habitat 2 at rate k. This one-way migration mimics the
directed movement of evolving entities guided by a fluid flow
or a chemical gradient. Mutations occur at a rate γ . Each
habitat has a resource constraint of strength ρl , modeled by
a logistic term that limits the growth of all genotypes equally
(i.e., no imposed niches from interactions). As a result, a
stable coexistence of distinct ecotypes, if any, would be due to
heterogeneity. We are working in the strong-selection weak-
mutation regime, where crossing of fitness valleys due to
mutation is negligible. The genotype abundances in each habi-
tat are specified by a vector �nl (l = 1, 2). Before introducing
demographic noise, we first consider population dynamics
under a deterministic model:

d

dt
�n1 = (

V̂1 − ρ1n
tot
1

)
�n1 − k�n1, (1)

d

dt
�n2 = (

V̂2 − ρ2n
tot
2

)
�n2 + k�n1, (2)

where ntotl = ∑M
i=1 nl,i is the total population of habitat l . V̂1

and V̂2 are M × M evolution matrices with elements

V̂l,i j ≡ δi jφl,i + γ

(
Âi j − δi j

M∑
k=1

Âki

)
, (3)

where δi j is the Kronecker delta. The γ -dependent term de-
scribes mutation-induced genotypic turnover. The adjacency
matrix Â specifies the connectivity of genotype space: we
assume that Âi j equals 1 if genotypes i and j differ by a single
mutation and equals 0 otherwise. Importantly, our results are
valid for any symmetric genotype adjacency matrix [27]. In
1D (Figs. 1–3), genotype i can only mutate to i − 1 or i + 1.
This choice allows for easy visualization of the dynamics and
steady states but is not necessary for our conclusions to be
valid.

We will first derive the steady-state populations at varying
migration rates and then examine the effect of fluctuations due
to demographic noise. This approach is motivated by recent
studies showing that populations of bacterial strains in the hu-
man gut often fluctuate around a stable value over the span of
years [28], and that the statistics of fluctuations are accurately
described by a stochastic logistic model [29]. Basing our anal-
ysis on steady-state populations raises the question of whether
the steady state will be reached on relevant timescales. If the
set of M genotypes is taken to be the entire set of genome-
length sequences, it is unlikely that the steady state will be
achieved [30]. Instead, we expect our model to apply when
only a portion of the genome under strong selection (perhaps
a portion of a single gene) is considered; see the Supplemental
Material (SM) [27] for further discussion.

The specific questions we address within our model are as
follows. (1) What condition must spatial heterogeneity satisfy

FIG. 1. Coexistence of genetically distinct ecotypes leads to
phase transitions. (a) Schematic of the two-habitat system. (b) In case
1 (left), native ecotypes �ψ1 (gray diamonds) and �ψ2 (blue squares)
share common genotypes, but in case 2 (right) they are genetically
distinct. Lower panels: fitness landscapes φ1,i (gray diamonds) and
φ2,i (blue squares). (c) Steady-state population in habitat 2 with
R = Rc/2 ≈ 0.41 (k ≈ 0.10) and R̂ = �ψ1 in two cases. In case 1
(left), habitat 2 supports a single ecotype. The genotypes shared by
�ψ1 and �ψ2 have the highest abundance. In case 2 (right), habitat 2
supports coexistence of ecotype 1 (genotypes 1 to 11) and ecotype
2 (genotypes 25 to 31). (d) Habitat 2’s total population in case 1
(black) and case 2 (green, gray in grayscale). In case (2), habitat 2’s
total population remains constant at the carrying capacity K2 until
R reaches Rc. (e) Relaxation time τ . τ → ∞ at R = Rc in case (2),
but not in case (1). Phases of coexistence (R < Rc) and ecotype 1
(R > Rc) are indicated. ρ1 = 0.2, ρ2 = 1, and γ = 0.01.

for multiple ecotypes utilizing the same resource to persist
stably? (2) How does biodiversity depend on migration rate in
heterogeneous environments? (3) What biological mechanism
gives rise to the phase transitions that shape the biodiversity-
migration rate relationship?

Coexistence of distinct ecotypes under sufficient hetero-
geneity. Evolutionary dynamics described by Eqs. (1) and
(2) lead to populations that depend on the dissimilarity be-
tween the fitness landscapes. Sufficient heterogeneity allows
for coexistence of genetically distinct ecotypes, contributing
to biodiversity and giving rise to phase transitions. We will
analyze the steady states and simulate the dynamics (see the
movies in the Supplemental Material [27]).

In habitat 1, from any initial condition, �n1 tends towards a
steady state �n∗

1 (with asterisks denoting steady-state quantities
hereafter) given by

�n∗
1 =

{(
1 − k

λ1

)
K1 �ψ1, k � λ1,

0, k > λ1,
(4)
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where �ψ1—the eigenvector of V̂1 associated with the largest
eigenvalue λ1—represents a normalized distribution of geno-
type frequencies (i.e.,

∑
i ψ1,i = 1). K1 ≡ λ1/ρ1 is the car-

rying capacity of habitat 1. Migration discounts the total
population to below the value at k = 0. Figure 1(b) shows �ψ1

(proportional to �n∗
1) for two example systems.

An essential observation is that �ψ1 defines a distribution of
genotypes that is exponentially localized around the most-fit
region of the fitness landscape �φ1 (see SM [27]). In other
words, �ψ1 represents a localized cluster in genotype space.
We identify such clusters as ecotypes. A population with dis-
tribution �ψ1 (which we call ecotype 1) represents the native
ecotype of habitat 1, in that it fills the spatially localized
niche formed by this habitat. The corresponding eigenvalue
λ1 measures the intrinsic growth rate of ecotype 1, i.e., the
growth rate at low abundance when resource limitation poses
no constraint. Similarly, habitat 2 has a carrying capacity
K2 = λ2/ρ2 and native ecotype (ecotype 2) described by �ψ2,
where λ2 is the largest eigenvalue of V̂2 and �ψ2 its eigenvector.

The behavior of habitat 2 is more interesting because of the
influx of migrants from habitat 1. It is useful to consider the
migrant flux �R = k�n1, which gives the number of organisms
of each genotype that enter habitat 2 per unit time. �R can
be decomposed as �R = R(k)R̂, where R̂ (normalized so that∑

j R̂ j = 1) indicates the genotype composition and R(k) the
flux magnitude at migration rate k. Equation (4) implies that

R(k) =
{
k(λ1 − k)/ρ1, k � λ1,

0, k > λ1
(5)

when the population of habitat 1 is at steady state [Fig. 2(a)].
While flux R must increase with migration rate k for low k,
habitat 1’s population is depleted as k is increased, so that
R(k) decreases with k for k > λ1/2. We will show that this
nonmonotonic dependence of R on k gives rise to the reentrant
phase transition.

The effect of influx magnitude R on the receiver population
(habitat 2) has an intriguing dependence on environmental
contrast between the two habitats (dissimilarity between �φ1

and �φ2). Consider two cases. Case (1): the two habitats have
sufficiently similar selection pressure so that their native eco-
types (represented by �ψ1 and �ψ2) share common genotypes,
implying that �ψ1 · �ψ2 > 0 [Fig. 1(b), left panel]. In other
words, �ψ1 and �ψ2 form a single cluster in genotype space.
As we will show, in this case, the system does not undergo a
transition that requires competition between distinct ecotypes.
Case (2): the two habitats have sufficiently different selection
pressure so that their native ecotypes have no genotype in
common, implying that �ψ1 · �ψ2 = 0 [Fig. 1(b), right panel].
In this case, �ψ1 and �ψ2 represent genetically distinct ecotypes;
their competition for resources underlies the slow relaxation
near a phase transition. Since genotype frequencies are con-
tinuous variables, �ψ1 · �ψ2 = 0 is never satisfied exactly in our
model; nevertheless, it is often an excellent approximation for
biologically realistic fitness landscapes [27].

In case (1), habitat 2’s steady-state population can be
obtained by solving d

dt �n∗
2 = 0, which yields �n∗

2 = (ρ2n∗tot
2 −

V̂2)−1 �R [Fig. 1(c), left panel]. As one would expect, habitat
2’s total population n∗tot

2 increases smoothly with R [Fig. 1(d),

FIG. 2. Phase transitions shape the relationship between biodi-
versity and migration rate. (a) Migrant flux R(k) as a function of k for
a system with Rmax < Rc (left), Rmax = Rc (middle), and Rmax > Rc

(right). (b) Steady state total population of ecotype 1, E1 (dark blue)
and ecotype 2, E2 (light orange) in habitat 2, and habitat 2’s total
population n∗tot

2 (thin black). (c) Biodiversity of habitat 2, H [�n2],
defined by the second-order Renyi entropy (solid black) and Shan-
non entropy (dotted red). (d) Phases in different regimes. Diagrams
indicate the coexistence phase and phases with only ecotype 1 or
ecotype 2 (E. 2). The regime of Rmax > Rc is characterized by the
presence of ecotype 1 phase and the reentrance of coexistence phase
at intermediate k values, both of which are absent in other regimes.
All panels show the same setting as in Fig. 1 case (2), except with
ρ1 = 0.4 for Rmax < Rc (left), ρ1 = 0.304 for Rmax = Rc (middle),
and ρ1 = 0.2 for Rmax > Rc (right).

black curve] and, as R → ∞, n∗tot
2 → √

R/ρ2. Although the
exact genetic makeup of �n∗

2 varies with R, certain genotypes
are present for all values of R.

In case (2), as R increases, surprisingly, n∗tot
2 remains con-

stant at the value K2 until R surpasses a critical value Rc ≡
ηλ2K2/4, where η is a constant [27] [Fig. 1(d), lower green
curve]. As a result, the expression for �n∗

2 given for case (1)
is inapplicable, because (ρ2n∗tot

2 − V̂2) is no longer invertible.
Instead,

�n∗
2 =

(
1 − R

Rc

)
K2 �ψ2 + R

Rc

�J (6)

for R � Rc [Fig. 1(c), right panel]. Here, �J = (λ2 − V̂2)+ �Rc

with the symbol + denoting pseudoinverse, and �Rc = R̂Rc.
A key intuition from this result is that (λ2 − V̂2)+ is a lin-
ear filter that accounts for the selection pressure faced by
immigrant organisms in habitat 2. �J is the result of filtering
�Rc, the migrating population at critical flux, and represents
ecotype 1 in habitat 2. Due to the filter, �J is modified from
its native distribution �ψ1. However, �J is localized around the
same region of genotype space as �ψ1 and, like �ψ1, shares no
common genotypes with �ψ2 [as seen from Fig. 1(c), right
panel]. Equation (6) shows that ecotypes 1 and 2 coexist in
habitat 2 for R < Rc. As R is increased, ecotype 1 steadily
displaces ecotype 2 and, when R � Rc, ecotype 2 goes extinct
and ecotype 1 achieves competitive exclusion. Quantitatively,
�n∗
2 = (ρ2n∗tot

2 − V̂2)−1 �R for R > Rc.
Figure 1(e) shows that τ , the timescale of relaxation toward

steady state (discussed in detail below), is sharply peaked
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around Rc in case (2). In contrast, τ in case (1) remains
constant. The peak in τ arises due to interaction between
genetically distinct ecotypes and, therefore, only systems with
sufficient heterogeneity to fall under case (2) will exhibit this
phenomenon. Hence, spatial heterogeneity able to support
distinct ecotypes using the same resource will significantly
alter steady-state populations and dynamics near steady state.

The concurrence of ecotypes 1 and 2 in the same spatial
location is an example of adaptive diversity, characterized by
coexistence of genotypes that fill distinct ecological niches.
In our model, each habitat creates a niche, and migration
causes ecotypes of different niches to coexist spatially. In
contrast, as shown by Eq. (6), neutral diversity within each
ecotype is independent of migration flux (distributions �ψ2 and�J are independent of R). Hence, changing migration rate alters
adaptive diversity while leaving neutral diversity unchanged.
Such adaptive diversity exists only in a case (2) system. Thus,
to the question of “how much” heterogeneity is needed to sup-
port adaptive diversity, our answer is sufficient heterogeneity
to satisfy case (2).

Biodiversity–migration rate relationship. As seen above,
migration has a strong impact on genotypic diversity of the
steady-state populations. In particular, the relationship be-
tween biodiversity and migration flux appears to be shaped
by the phase transition that occurs at R = Rc. To quantify this
relationship, we measure biodiversity using the second order
Renyi entropy:

H[�n] = −ln
M∑
i=1

(
ni∑
j n j

)2

. (7)

Intuitively, H[�n] measures the (negative) log likelihood of
finding two randomly picked individuals to have an identical
genotype. Since we are primarily interested in how spatial
heterogeneity supports adaptive diversity, we focus on case (2)
hereafter. Interestingly, for case (2) systems, the flux that max-
imizes biodiversity is found to be RH = Rc/(1 + eH [ �ψ2]−H [ �J] ),
which depends only on the difference in neutral diversity
between the two ecotypes [27]. This establishes that there is
a nonmonotonic dependence of biodiversity on migrant flux,
with H reaching a unique maximum at RH . However, the
dependence of biodiversity on k is more complex.

To understand the effect of migration rate k, as opposed to
flux R, we reexamine the steady-state populations in terms of
k. Equation (6) shows that ecotype 2 will go extinct if R is
held above Rc; but does habitat 1 have the capacity to output
such a flux of migrants? Recall that R = k(λ1 − k)/ρ1, which
has a maximum Rmax = λ1K1/4. If Rmax < Rc, then habitat 1
lacks the capacity to allow ecotype 1 to invade habitat 2 and
wipe out its native ecotype (Fig. 2, left column). However, if
Rmax > Rc (Fig. 2, right column), then there are two critical
migration rates, k+ and k−, at which R = Rc, given by

k± = λ1

2
(1 ±

√
1 − ηλ2K2/λ1K1). (8)

The condition Rmax > Rc can be restated as λ1K1 > ηλ2K2

[this is also the condition under which Eq. (8) is real valued].
Intuitively, this reflects the fact that habitat 1’s carrying capac-
ity K1 and intrinsic growth rate λ1 must be sufficiently large
relative to habitat 2’s in order for habitat 1 to produce suffi-

TABLE I. Conditions for phase transitions and critical migration
rates, at which an ecotype goes extinct or emerges. (∗) At k = λ1,
τ → ∞ always. However, in case (1) this does not indicate a genuine
extinction, because �ψ1 and �ψ2 do not represent genetically distinct
ecotypes.

Extinction Criteria Critical k

Ecotype 1 (∗) Always occurs λ1

Ecotype 2 �ψ1 · �ψ2 = 0 &

⎧⎪⎨
⎪⎩

λ1K1 > ηλ2K2

λ1K1 = ηλ2K2

λ1K1 < ηλ2K2

k+ and k−
λ1/2

None

cient migrant flux to eliminate ecotype 2. When this condition
is met, a migration rate between k− and k+ will drive ecotype 2
to extinction and ecotype 1 will achieve competitive exclusion
in the two-habitat system.

From the steady-state behavior, we can characterize the
system by defining three distinct phases [Fig. 2(d)]: the co-
existence phase, where ecotypes 1 and 2 stably coexist, and
two single-ecotype phases, where only ecotype 1 or ecotype 2
persists. If Rmax < Rc (Fig. 2, left), then the coexistence phase
occurs over the wide range 0 < k < λ1. On the other hand,
if Rmax > Rc (Fig. 2, right), then the coexistence phase first
occurs within the narrower range 0 < k < k−. For k− < k <

k+, the system exhibits the ecotype 1 phase (only ecotype 1
persists stably); then for k+ < k < λ1 the system reenters the
coexistence phase through the reentrant transition at k = k+.
In the singular case that Rmax = Rc (Fig. 2, middle), coexis-
tence is stable over the entire range 0 < k < λ1, except at a
single point k = 1

2λ1 where ecotype 2 vanishes. In all three
cases (Fig. 2, left, middle, and right), the ecotype 2 phase
occurs for k � λ1. As expected, biodiversity [Fig. 2(c), solid
black curves] is generally high in the coexistence phase. In
the ecotype 1 and 2 phases, biodiversity is merely the neu-
tral diversity of the single ecotype that survives in habitat 2
and the system cannot support stable adaptive diversity. To
demonstrate the robustness of results to the choice of bio-
diversity measure, we also plot Shannon entropy [Fig. 2(c),
dotted red curves], which shows a close qualitative agreement
with Renyi entropy. The conditions for phase transitions and
critical migration rates are summarized in Table I.

As Fig. 2 shows, the relationship between biodiversity and
migration rate is largely determined by whether the critical
migration rates k+ and k− exist (i.e., whether Rmax > Rc) and,
if they do, by their values. One can tune Rmax and Rc by
adjusting the resource constraints. As a result, studying the
phase transitions can provide useful insight into biodiversity
and its sensitivity to migration rate.

Mechanism of critical slowing down. The three phases
discussed above are separated by transitions where an ecotype
goes extinct or emerges as k increases. At each transition,
the dynamics exhibit critical slowing down [CSD, like in
Fig. 1(e), case 2]. Such slowing relaxation is apparent from
simulated dynamics. In the SM [27] we show simulations
for k below, at, and above each phase transition. One can
see that, after early transients that depend on initial condi-
tion, populations gradually relax to steady state. At the phase
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FIG. 3. Resource competition between ecotypes causes critical
slowing down. (a) Relaxation time τ = −1/w1 (thick teal, gray
in grayscale), ecological relaxation time τE (thin black), and time
constant of autocorrelation decay τA (red crosses). Vertical dashed
lines indicate critical migration rates. Same setting as Fig. 1, case
(2). (b) Closeup of the peak in τ at k = k−. Similar peaks occur
at k = k+ and k = λ1. (c) The zero mode in habitat 2, �ζ2. The two
terms �ψ2 and −a(λ2 − V̂2)+ �J (indicated in the figure) comprise the
same genotypes as ecotype 2 and ecotype 1, respectively. Due to
the opposite sign, they describe a reallocation of population from
ecotype 2 to ecotype 1, as a result of resource competition.

transitions, CSD slows not only the extinction of a vanish-
ing ecotype (k = k−, movie 2A) but also the growth of a
reemerging ecotype (k � k+, movies 8 and 9). On the other
hand, the emergence of an ecotype via mutations from the
other ecotype, through fitness valley crossing, can also be very
slow, regardless of whether k is near a critical value. This slow
mutational process is distinct from the critical slowing down
that we discuss here and is not our focus. In what follows,
we elucidate the mechanistic origin of CSD in our context
and discuss its implications for preserving biodiversity and
detecting impending extinction.

Mathematically, CSD refers to a situation where an eigen-
value of the system’s stability matrix (the Jacobian of the
system of ODEs) vanishes as the control parameter reaches
a critical value, resulting in slow (subexponential) relaxation
to steady state. In our model, CSD occurs at each critical
migration rate, i.e., k = k−, k+, or λ1, if the proper criteria
are satisfied (Table I). Figure 3(a) shows the migration rate
dependence of the system’s relaxation time τ (thick teal curve)
defined as τ ≡ −1/w1, wherew1 is the largest (least negative)
eigenvalue of the stability matrix; as w1 approaches zero at
each transition, τ peaks sharply [Fig. 3(b)].

Interestingly, the transition at R = Rc (k = k− or k+) oc-
curs only in case (2), when the two ecotypes have zero
overlap in genotype. This suggests that ecotypes compete
as distinct ecological units and that this competition might
be the origin of CSD. To explore this possibility, we exam-
ine the slow relaxation dynamics of genotype abundances at
R = Rc. At this critical flux, the stability matrix has a zero

mode ζ ≡ [�ζ1 �ζ2]T ∈ R2M (the superscript T denotes trans-
pose) associated with the vanishing eigenvalue w1. Deviations
from the steady state along the zero mode decay subexpo-
nentially (∼1/t , as we will show), while those along any
other eigenvector decay exponentially fast. Specifically, con-
sider a deviation from the steady state along the zero mode:
[�n1(t ) �n2(t )]T = [�n∗

1 �n∗
2]

T + c(t )[�ζ1 �ζ2]T . As the coefficient
c(t ) decays slowly to zero, �ζ1 and �ζ2 describe how the distri-
bution of genotypes in habitats 1 and 2 change, respectively.
We find that [27] �ζ1 = �0 and

�ζ2 = �ψ2 − a(λ2 − V̂2)
+ �J, (9)

where a is a constant; Fig. 3(c) shows �ζ2. Importantly, the two
terms �ψ2 and a(λ2 − V̂2)+ �J represent clusters comprising the
same genotypes as ecotype 2 and ecotype 1, but with opposite
sign [Fig. 3(c)]. Because of this, a decrease in the coefficient
c(t ) causes the population of ecotype 1 to increase and the
population of ecotype 2 to decrease. In other words, the zero
mode ζ describes a reallocation of population from ecotype 2
to ecotype 1 within habitat 2.

The observation that the zero mode reallocates population
between the ecotypes is key to understanding the subexponen-
tial decay of c(t ). In particular, it suggests that the dynamics of
c(t ) reflect ecological competition between ecotypes. Indeed,
at R = Rc, the dynamics governed by Eqs. (1) and (2) satisfy

d

dt
c(t ) = −ρ2ζ

tot
2 c(t )2, (10)

where ζ tot
2 is the sum of components of �ζ2. The significance of

this result is that, under a critical flux, reproduction, mutation,
and migration exactly balance out, leaving only the resource
limitation driving the dynamics. In other words, resource com-
petition, rather than evolution, governs the slow relaxation.
This raises the question: does evolution play any role in the
phase transitions? In fact, fitness landscapes and mutation rate
do affect the characteristics of the ecotypes ( �ψl , λl ) as well as
the value of Rc (see Eq. SM7). However, once these character-
istics are set, CSD can be understood as an ecological process.

Solving Eq. (10) yields c(t ) = 1/(ρ2ζ
tot
2 t + c−1

0 ), where
c0 is the initial magnitude of deviation, thus confirming a
slow 1/t relaxation. A similar analysis can be done for the
transition at k = λ1, where the zero mode also reallocates pop-
ulation between the ecotypes and obeys c(t ) = 1/(ρ1ζ

tot
1 t +

c−1
0 ) [27]. In fact, both transitions result from transcritical
bifurcation in the steady-state populations, like those in a
simple logistic model (see SM [27] for details). Note that,
in our evolutionary model, a balance of mutation, selection,
and migration only occurs at the critical flux, and this balance
reduces the dynamics to being solely driven by a logistic
term that describes ecological interaction between evolved
ecotypes. Simulations in the SM [27] compare the slow dy-
namics at transitions to the exponentially fast relaxation at
other migration rates.

The existence of a zero mode at k = k−, k+, and λ1 im-
plies diverging τ at each critical k. However, away from the
critical rates [flat portion of the thick teal curve in Fig. 3(a)],
relaxation modes describe a different process insensitive to
k: within-ecotype evolution [27]. To study ecotype interac-
tion away from the transitions, we consider the relaxation
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of each ecotype’s total population in habitat 2, which we
denote by E1 ≡ ∑

i∈G1
n2,i and E2 ≡ ∑

i∈G2
n2,i, whereG1 and

G2 are the set of genotypes composing ecotypes 1 and 2,
respectively. Starting from the native populations �n1 = K1 �ψ1

and �n2 = K2 �ψ2 (i.e., steady-state populations with k = 0),
we simulate Eqs. (1) and (2) and compute the time con-
stant by which E1 and E2 relax to their steady-state values.
We call this time constant the ecological relaxation time, τE
[Fig. 3(a), thin black curve]. As expected, τ and τE agree
near the transitions but disagree far from the transitions, where
the relaxation modes describe within-ecotype evolution. The
broader peaks in τE make them potentially easier to detect in
experiment.

From an ecological perspective, τE , rather than τ , might be
of greater relevance, as it describes the dynamics of ecotype
interaction while ignoring any within-ecotype evolution (i.e.,
changes in genotypic makeup). Furthermore, the behavior of
τE suggests an intriguing ecological consequence of critical
slowing down. Suppose two ecotypes coexist stably (0 < k <

k− or k+ < k < λ1). As k is varied to above k− or below k+,
ecotype 2 is no longer stable. The ecological relaxation time
τE quantifies the timescale over which ecotype 2 approaches
extinction. As a consequence, peaks in τE may act as a “bar-
rier” to extinction during transient variations in the migration
rate; for instance, peaks in τE at k− and k+ [Fig. 3(b)] could
protect ecotype 2 from extinction.

To explore the effect of CSD in a more realistic setting, we
introduce demographic noise by adding α

√�n1ξ1(t ) to Eq. (1)
and α

√�n2ξ2(t ) to Eq. (2), where the square root is elemen-
twise. ξ1(t ) and ξ2(t ) are noise terms that obey 〈ξl (t )〉 = 0
and 〈ξl (t )ξl (t ′)〉 = δ(t − t ′) for l = 1, 2; the parameter α con-
trols the strength of noise. Demographic noise causes the
populations to fluctuate around their long-time averages. The
statistics of these fluctuations encode the relaxation times of
the system. To be more precise, let δEl be the deviation of
ecotype l’s total population El from its mean value. If δEl (t )
were to obey a linear Langevin equation, then the time con-
stant τA for the decay of the autocorrelation 〈δEl (0)δEl (t )〉
would equal the time constant τE for the relaxation of El to its
steady-state value. In our model, this picture is complicated
by the nonlinearity of the dynamics and the fact that multi-
ple eigenmodes may contribute to relaxation. Nevertheless,
τA provides a good estimate of τE in the coexistence phase
[Fig. 3(a), red crosses]. The close agreement suggests that
measuring autocorrelation might be a viable approach for de-
tecting impending extinction in experimental systems. In the
single-ecotype phases, fluctuations due to demographic noise
do not generate ecological competition because one ecotype is
absent. Thus τA is unrelated to τE in these phases (see SM [27]
for further discussion). Although the evolutionary dynamics
described by Eqs. (1) and (2) are generally quite complex, the
simple mechanism that causes critical slowing down permits
a simple indicator τA that can be measured in noisy systems to
reveal the phase transitions.

Discussion. In this work, we quantify the relationship
between biodiversity and migration rate using a simple
evolutionary model, aimed at elucidating to what extent spa-
tial heterogeneity alone can maintain fine-scale diversity of
closely related species or strains. We find this relationship
to be nontrivial even for one-way migration between two

habitats. While diversity within an ecotype is independent of
migration rate, diversity of the whole population is low for
both low and high migration rates, with one or two max-
ima at intermediate rates. Ecotypes go extinct or emerge at
critical migration rates, where critical slowing down results
from resource competition between ecotypes. Such diverging
relaxation times may act to protect biodiversity from transient
variations in migration rate. These results go beyond the work
of [21] by elucidating the mechanism (resource competition
between coexisting ecotypes) and consequence (ecotype ex-
tinction) of the phase transitions and critical slowing down,
and by showing how the finite size of the upstream habi-
tat can generate multiple phase transitions and a complex
biodiversity–migration rate relationship.

Our results make a series of predictions testable by ex-
periment (for example, using bioreactors or chemostats [31]
or synthetic microenvironments [32] as the connected habi-
tats), even when the fitness landscapes are unknown. First,
by probing if the native ecotypes of the two habitats share
common genotypes, one can determine whether or not to
expect phase transitions (signified by diverging relaxation
times). Further, if transitions were expected, one can tune the
number and location of transitions by varying resource supply
(e.g., nutrient concentration) to the upstream habitat (tuning
Rmax) and/or the downstream habitat (adjusting Rc) so as to
alter the relation between Rmax and Rc. Lastly, if Rmax > Rc is
satisfied, one can linearly ramp up the migration rate (e.g., via
controlling the flow speed) and seek nonmonotonic changes
in biodiversity calculated from genotype frequencies obtained
by sequencing. The reentrant transition can be detected from
recurrence of the native ecotype in the downstream habitat at
high migration rates, at which the decay of autocorrelations
becomes subexponential.

To apply our analysis in such experiments, near-steady-
state populations are required. Natural populations, such as
gut microbiota, are likely to be well adapted to their envi-
ronment, but they are almost certainly not exactly in steady
state and the timescale for evolution of individual bacterial
strains in the gut is an open question. However, in experiments
probing the evolution of antibiotic resistance, resistance lev-
els were observed to stabilize quickly (over days or weeks)
and mutations relevant to resistance were localized to small
portions of the genome [33]. This suggests that our results
may be testable in similar experiments. Alternatively, exper-
iments may be viable with rapidly mutating viruses, whose
populations have been shown to evolve into quasispecies that
resemble ecotypes in our model [34]. Lastly, our finding that
the phase transitions result from an ecological process implies
that CSD might be observed in experiments even when the
competing ecotypes are not in an evolutionary steady state.
The fact that CSD occurs even in two-habitat logistic models
that neglect evolution (see SM) is suggestive of this possibil-
ity, but verification would require further exploration of the
nonlinear dynamics.

While we have considered the simplest scenarios, the
scope of the biodiversity-migration relationship of an evolving
metapopulation can be broadened considerably through two
extensions. First, two-way migration would allow feedback
between habitats and might result in ecotypes distinct from
those native to any individual habitat. It will be interesting to
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seek signatures of feedback from features of phase transitions.
Second, generalizing our analysis to a network of habitats
or a spatial continuum would allow a closer comparison
with specific natural or laboratory systems, revealing ways
in which spatial architecture of migration flux and selection
profile might impact global biodiversity. Moreover, critical
slowing down identified at particular migration rates might
have important implications for the catastrophic onset of drug
resistance in metastatic cancers [35], i.e., the takeover of
adapted mutants in secondary tumors. Meanwhile, it might

suggest potential means to sense and avoid tipping points
by tuning the migration rate away from the critical values,
via altering intrinsic motility of cells (e.g., motor activity or
metabolism) or tuning environmental properties (e.g., matrix
stiffness or fiber alignment).
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