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Many-body quantum chaos and space-time
translational invariance

Amos Chan 1,2 , Saumya Shivam 3, David A. Huse3 & Andrea De Luca 4

We study the consequences of having translational invariance in space and
time in many-body quantum chaotic systems. We consider ensembles of ran-
domquantum circuits asminimalmodels of translational invariantmany-body
quantum chaotic systems. We evaluate the spectral form factor as a sum over
many-body Feynman diagrams in the limit of large local Hilbert space
dimension q. At sufficiently large t, diagrams corresponding to rigid transla-
tions dominate, reproducing the random matrix theory (RMT) behaviour. At
finite t, we show that translational invariance introduces additional mechan-
isms via two novel Feynman diagramswhich delay the emergence of RMT. Our
analytics suggests the existence of exact scaling forms which describe the
approach to RMT behavior in the scaling limit where both t and L are large
while the ratio between L and LTh(t), the many-body Thouless length, is fixed.
We numerically demonstrate, with simulations of two distinct circuit models,
that the resulting scaling functions are universal in the scaling limit.

Understanding the chaotic properties of quantum systems is a notor-
iously hard problem. A fruitful direction has been opened by the
combination of two ingredients: First, fingerprints of an underlying
chaotic dynamics are visible in the Hamiltonian spectrum of quantum
systems1; second, spectral properties are best discussed in statistical
terms2. This approach eliminates dependence on the microscopic
details of the studied systems and brings out the universal character-
istics of an ensemble of statistically similar Hamiltonians, which are
captured by the random matrix theory (RMT) contrained only by
symmetries3,4. RMT provides a prototype of thermalising dynamics for
which the eigenstate thermalization hypothesis5–7 is confirmed8.

However, RMT fails to reproduce the local structure of interac-
tions of many-body quantum systems which results in a complex
geometry and correlation in the Fock space9–14. For this reason, random
unitary circuits (RUC) have been proposed as toy models which utilize
RMTwhile incorporating a notion of locality and dimensionality. In the
simplest formulation, time evolution of RUC is performed by acting
with randomly generated unitary gates on pairs of nearest neighbors in
a spin lattice (Fig. 1a)15,16. These models have proven fruitful in devel-
oping a unifying picture of the out-of-equilibrium dynamics of generic
many-body systems with predictions for the entanglement

growth15,17–25, and the out-of-time-ordered correlators16,26–28. More
recently, Floquet randomunitary circuits (FRUC)havebeen introduced
by applying repeatedly the same set of random gates (Fig. 1b)29–34.
FRUC have given access to the study of non-trivial spectral properties
in extended many-body systems. In particular, for the spectral form
factor (SFF)29,30,32–49,

Kðt,LÞ � hTr½W ðtÞ�Tr½W yðtÞ�i ð1Þ

whereW(t) is the timeevolution operator for time t, L is the system size
and〈…〉 indicates the ensemble average, it has been argued that the
RMT behavior is recovered only for t > tTh(L), with tTh(L) the SFF
Thouless time. tTh(L) is an intrinsic time scale that generally grows
unbounded with the system size L (with the exception of the dual-
unitary circuits36–38,50). Its origin traces back to the existence of domain
walls separating growing chaotic subregions30,51,52.

Results
In this article, we consider the effect of translational invariance in
space and time on the SFF. We introduce a spatially translational
invariant (TI) version of the random phase model (RPM)30 on a
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d–dimensional lattice of length L, which can also be time-periodic
(Floquet) or not. We will refer to the four setups resulting from the
combination of TI and time-periodicity as cases (a), (b), (c) and (d) as
illustrated in Fig. 1. We show that the SFF is exactly computable in the
limit of large local Hilbert space dimension q via a diagrammatic
expansion made up of contractions between Tr½W ðtÞ� and Tr½W yðtÞ�
(respectively top and bottom layer in Fig. 3b below) of (1). Before
providing the explicit derivation, we outline the main results. At large
t≫ tTh(L) (but still with t≪ tHeis(L), the Heisenberg time which is
exponentially large in the system size), only ladder diagrams, corre-
sponding to rigid translations of the top layer Tr½W ðtÞ� w.r.t. the bot-
tom layer Tr½W yðtÞ�, contribute (see Fig. 3 (a–c) below). This
reproduces exactly the RMT predictions, i.e. K(t, L) ~KRMT(t, L), with

KRMTðt, LÞ �

1, w=o symm:� ðaÞ
t, Floquet � ðbÞ
Ld , TI � ðcÞ
tLd , TI + Floq:� ðdÞ

8>>><
>>>:

: ð2Þ

The first two lines are standard and result from replacing the time
evolution with a random matrix drawn from the circular unitary
ensemble (CUE), either re-drawn at every time step (a), or repeated in
time (b)4. The remaining lines of Eq. (2) can be understood observing
that TI on a square lattice leads to Ld momentum sectors, modeled as
independent unitary blocks (still drawn from the CUE). This justifies
the factors of Ld for cases (c) and (d).

Additionally, we characterize the corrections to RMT at large but
finite t ≳ tTh(L). Our diagrammatic calculations at infinite-q indicate the
existence of scaling forms in the scaling limit where both time t and the
system size L are large but the ratio L/LTh(t) is kept fixed. Here, LTh(t)
denotes the Thouless length, defined as the inverse function of the
aforementioned Thouless time, i.e. LTh(tTh(L)) = L. Specifically, we
obtain for the relevant cases (b), (c) and (d), the scaling forms

lim
L,t ! 1

L=LThðtÞ= x

KFðt,LÞ � t = κFðxÞ,

lim
L,t ! 1

L=LThðtÞ= x

L�1KTI = κTIðxÞ,

lim
L,t ! 1

L=LThðtÞ= x

L�1KTIF � t = κTIFðxÞ:

ð3Þ

ford = 1, and forgeneraldbelow in the "Methods” section. Remarkably,
not only the validity of the scaling forms (3) obtained at q→∞ is con-
firmed by our numerics at finite q, but we also have evidence that the
value of the scaling functions κ(x) in each case is universal, being
independent of themicroscopic details of themodel, which only affect
the non-universal LTh(t). In Fig. 2, we numerically simulate (3) with two
distinct random circuitmodels.While there are discrepencies between
the finite-q data (red and blue) and infinite-q scaling function (light

Fig. 1 | Illustrations of thedifferent typesofRUC for the randomphasemodel. aTemporally and spatially randomRPM;b Floquet (and spatially random)RPM; cTI (and
temporally random) RPM, and d TI Floquet RPM. For each case, gates of the same colors are identical.

Fig. 2 | Numerical simulations of scaling forms of SFF for MBQC systems with
space-time translational invariance. Scaled SFF vs. x = L/LTh at finite q for
a Floquet RPMand BWM,b TI RPMand BWM (middle), and cTI Floquet BWM; in all
panels the RPMhas q = 3,while the BWMhas q = 2 in a, b, and q = 3 in c. The infinite-

q scaling forms are plotted in green. c shows t = 2, 3, 4 from light to dark red.d LTh is
plotted against t for TIF BWM (red) andTIF RPM (blue). The TIFRPM isnot shown in
c because the apparent LTh(t) is too small (as seen in the inset) to be reliably
estimated (see Supplementary Information (SI) for details).

Article https://doi.org/10.1038/s41467-022-34318-1

Nature Communications | (2022)13:7484 2



green) for TI and TIF cases, we see excellent scaling collapses for all
cases, verifying (3).

Discussion
The numerics shown in Fig. 2 (middle and right) shows a discrepancy
between the infinite-q analytics, derived in "Methods” and SI, repro-
duced here,

κd = 1
F ðxÞ= ex � x � 1, ð4Þ

κd = 1
TI ðxÞ= e�xð1� lnð1� xÞÞ, ð5Þ

κd = 1
TIF ðxÞ= ln

e�x

1� x

� �
: ð6Þ

and the finite-q numerics in the presence of space translation invar-
iance. There can be different justifications behind this discrepancy:
One possibility is that finite t corrections decay very slowly for TI
systems. This is qualitatively confirmed in the infinite-q case, inspect-
ing how the limit in (5) is approached increasing t (see SI). A slow
convergence is also to be expected due to the presence of singularities
at finite x in ((5), (6)). More probably, we have indications that Eq. (4) is
more robust than (5): By looking at the Floquet/TI RPMwith p-site unit
cell at infinite-q, we find that the scaling function (4) is independent of
p while (5) is not (see SI). Still, it might appear puzzling that finite-q
numerics shows a collapse to a scaling function indepedent of q, which
is nonetheless not in agreement with the infinite-q analytics. To elu-
cidate this aspect, we propose a simple qualitative scenario. First, we
observe that in the RPM, the two parameters ϵ and q control respec-
tively the coupling in the space and time directions and the RMT
behavior emerges when long-range order is established in both
directions. In d = 1, corrections to RMT are then controlled by dilute
excitationswhichbreakordereddomains, either in spaceor time, i.e. in
the leading order, we have K(t, L) ~KRMT(t, L) + g0(L/LTh,0(t)) +
g1(L/LTh,1(t)); where the subscript 0 and 1 refer respectively to the
time and space directions, with the corresponding correlation lengths
LTh,0/1(t). The functions g0(x) and g1(x) tend to zero as x→0, and
are expected to be model independent and only dependent on the
symmetries. In the large q limit atfixed L and t, the coupling in the time
direction becomes infinitely strong with LTh,0ðtÞ �!

q!11 so that only
the function g1(x) survives in thedecompositionabove. For the Floquet
RPM,we expect the relevant length scale to be LTh(t) ~ LTh,1(t)≪ LTh,0(t),
so that the scaling function is dominated by spatial domain walls, i.e.
κd = 1
F ðxÞ∼ g1,FðxÞ. However, for TI systems, LTh(t) ~ LTh,0(t)≪ LTh,1(t), and

therefore κd = 1
TI ðxÞ∼ g0,TIðxÞ. However, as pointed out above, this

scaling function is not accessible if q→∞before L and t, thus explaining
the observed discrepancy between the numerics and the analytics. In
practice, the universal scaling function g0,TI(x) observed in Fig. 2
results from temporal domain walls where contractions in different
time slices take different permutation values. We stress that, because
of unitarity, the SFF cannot diverge exponentially in t, therefore
temporal domainwallsmust contribute both positively and negatively,
in distinct contrast to the spatial domainwalls discussed in30,51. Thiswill
be discussed in an upcoming work53.

A few additional comments are in order. Firstly, it would be ben-
eficial to justify the universality which emerges from our work by
means of a well-defined renormalization procedure. The main diffi-
culty in this direction is the lack of locality and positivity of the
resulting stat-mech model. Secondly, it is natural to expect that the
scaling regime we identified is also visible in other quantities, as time-
dependent correlation functions like out-of-time-ordered correlators.
Thirdly, quasimomentum is conserved in TI lattice systems and affects
its spectral properties but does not lead to the transport of an exten-
sive conserved quantity because of Umklapp scattering; it is therefore

interesting to explore its interplay with U(1) conserved charges. This
will be discussed in an upcoming work53.

Methods
Models
The random phasemodel (RPM) is defined by a quantum circuit which

is a matrix product W ðtÞ= Qt
t0 = 1 wðt0Þwhere w(t) =w2(t)w1(t) is a

qN ×qN operator, with N the number of sites. The model can be
defined on arbitrary lattices, but here we focus on integer lattices L in
d-dimension with periodic boundary conditions and length L, so that

L � Zd
L and N = Ld . w1ðtÞ=

N
r2Luðr,tÞ generates transformations at

each site, with q × q unitary matrices u(r, t) chosen from the CUE;w2(t)
couples neighboring sites and is diagonal in the basis of site orbitals

with matrix elements ½w2ðtÞ�a1 ,...aN ;a1 ,...aN
= exp {

P
hr,r0iφar ,ar0

ðr,r0,tÞ
h i

,

where hr,r0i are the nearest neighbors in L and ar∈ {1,…, q}. We take
each coefficient φar ,ar0

ðr,r0,tÞ to be a Gaussian random variable with

mean zero and variance ϵ, which effectively controls the coupling
between neighboring spins.

For the temporally and spatially randomRPM (Fig. 1a), all unitaries
u(r, t) and phases φðr,r0,tÞ are drawn independently. Correlation exists
only between unitaries in Tr½W ðtÞ� and their unique conjugates in
Tr½W yðtÞ�, which gives K(t, L) = 1 for all q. In30, the Floquet RPM (Fig. 1b)
was considered where all gates are drawn independently in space but
are constant in t. Here, we also consider the TI RPM (Fig. 1c), where the
gates are such that uðr,tÞ=uðtÞ,ϕðr,r0,tÞ=ϕðμÞðtÞ, whenever r� r0 = eμ,
with eμ the unit vector in the μ spatial direction. The Floquet TI RPM
(Fig. 1d), where the gates are also constant in time, is arguably themost
realistic set-up.

Numerics
To test the universality of the scaling forms in (3), we numerically
evaluate the SFF for RPM and additionally the brick wall model (BWM)
defined in the SI at finite q = 2, 3, t ≤ 8, and large L. Because of the
computational cost, higher d are currently out-of reach andwe restrict
to d = 1. The comparison between two different models is shown in
Fig. 2, togetherwith the infinite-q analytical predictions shown ingreen
(see ((10), (13), (16)) below). In all cases, we see an excellent collapse
among the different models and times, consistent with the scaling
form and pointing at the existence of a universal scaling function. We
stress that the only free parameter in this procedure is the Thouless
length LTh(t), which rescales the horizontal axis for each t. In our
procedure, we fix it by imposing that the numerical data at different t’s
all cross at a reference value x0 = ~L=LThðtÞ and equal the infinite-q
expression (see SI). For Floquet circuits (Fig. 2a), using (3),weobtainan
exceptionally good collapse for both models with the analytic infinite-
q calculation (see (13) below). Note that while the SFF for the Floquet
RPM had already been computed in ref. 30, the universality of the
corresponding scaling function in the scaling limit had not been
observed before. However, for both TI (non-Floquet) and TI Floquet
circuits (Fig. 2b, c), the scaling functionswhich emerge fromnumerical
data are not well described by those computed at infinite-q. The phy-
sical mechanism behind the discrepancies are described in the
“Discussion” above.

Analytics
Now we sketch the exact large-q analytics of SFF for the TI, Floquet,
and TI FLoquet cases systematically. The analytics allows us to derive
the emergence of the RMT behavior (2) in large-t, and the existence of
scaling forms (3) describing the approach towards such emergence.
Remarkably, as demonstrated in the numerics, the scaling forms are
largely universal and depend only on q, spatial dimensionality, and the
space-time symmetries. The dependence of universality classes in the
spatial dimensionalitywasfirst observed in30 for Floquet systems and is
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even more striking for TI ones: In d = 1, corrections are controlled by
crossed diagrams where sub-intervals in the top layer are rigidly con-
tracted with those in the bottom layer (Fig. 3 d–f); instead, in d≥2,
corrections are generated by deranged defect diagrams, where con-
finement forces excitations (on top of ladder diagrams) to be dilute
(Fig. 3 g, h).

Translational invariant case. Herewe compute the SFF of the TI–RPM
in the limit q→∞. To compute the SFF, we perform the ensemble
averages in two steps: (i) ensemble average over the CUE-s uðr,t0Þ; (ii)
ensemble averages over the randomphases.Within afixed timeslice t0,
there are N copies of uðr,t0Þ / uyðr0,t0Þ on the top/bottom layer.
Following29 (see SI), at the leading order in large q (throughout the
manuscript, we will always take the order of limits where the limit of
large q is takenbefore the limit of large t and L are taken), the ensemble
average is expressed as a sum over permutations, σ 2 SðN Þ, pairing

uðr,t0Þ with uyðσðrÞ,t0Þ. Additionally, at leading order in large q, one is
forced to take the same permutation on all t time slices, i.e. SFF is a
single sum over σ 2 SðN Þ (see SI). We now turn to the average over the
random phases and we will see that it is natural to interpret it as a cost
function associated to each σ. Expanding the orbital sum from phases
at time slice t0, we have

P
a1 ,...,aN

exp {
P

hr,r0iφar ,ar0
ðt0Þ � φaσðrÞ ,aσðrÞ

ðt0Þ
h i

where the sum is over nearest neighbor pair of sites. We see that, in
large q, cancellations of the phases are only possible whenever σmaps
nearest neighbor sites onto nearest neighbors (preserving the orien-
tation). Using that 〈eıφ〉 = e−ϵ/2 and that all time slices contribute
equally, we arrive at the expression

KTI =
X
σ2SN

e�ϵtðdN�NpbðσÞÞ ð7Þ

where Npb(σ) = #{r, μ ∣ σ(r + eμ) − σ(r) = eμ} is the number of preserved
bonds in any direction by the permutation σ (# denotes the cardinality
of a set). The sum in Eq. (7) can be reorganized by grouping all σ 2 SN
with the same Npb(σ). We observe that Npb(σ) =Npb(τσ) for all transla-
tions τ 2 SN . Since the subgroup of translations is isomorphic to the
lattice itself L, we arrive at

KTI =N
XdN
n =0

AdðN ,nÞe�nϵt , ð8Þ

where AdðN ,nÞ=#fσ 2 SN =L ∣NpbðσÞ=dN � ng and n =dN � NpbðσÞ
is the number of broken bonds. Computing exactly the AdðN ,nÞ
poses a non-trivial combinatorial problem, which nevertheless
simplifies in d = 1 or for large N , as we show below. However, it is
easy to see that AdðN ,n =0Þ= 1, corresponding to the identity
equivalence class. Therefore in the limit t → ∞, we recover the RMT
result for this case in Eq. (2). Generalizing this construction, one
can see that K converges to the dimension of the group of spatial
symmetries. As example, for a two-dimensional TI circuit on a
square lattice with rotational symmetry by angles of π/2,
KTI =N =4 in the limit of large t.

Ford = 1, σ 2 SL=ZL canbe represented as cyclic permutations of L
elements: Represent σ 2 SL=ZL as σ0 � ðσð1Þ,σð2Þ, . . .Þ and define an
associated cyclic permutation with cycle σ0. Then, σ with a fixed
number of broken bonds n can be obtained as follows: We first parti-
tionL � ZL = I1 ∪ I2 . . . In into n adjacent non-empty intervals. Thenwe
take any cyclic permutation ~σ of n elements such that
~σðiÞ≠ ~σði+ 1Þ+ 1 ðmod nÞ and rigidlymap Ii ! I~σðiÞ. Clearly, the resulting
mapping breaks exactly n bonds and all possible mappings can be
uniquely constructed in this way. As an example, see Fig. 3e where
L = 8, n = 3 and ~σ = ð132Þ. This leads to

A1ðL,nÞ=
L
n

� �
an ð9Þ

where the binomial factor counts the partitionings of L and an the
possible ~σ. Although an explicit expression for the an is not available,
they correspond to a well-studied sequence whose exponential
generating function is known54,55. For both L, t large with fixed
x = L/LTh(t) < 1, LTh(t) = eϵt, we can take L

n

� �
an ∼ Ln=n! using the domi-

nated convergence theorem56 and sum over n to obtain the scaling
form

lim
L,t ! 1

L=LThðtÞ= x

L�1Kd = 1
TI = e�xð1� lnð1� xÞÞ � κd = 1

TI ðxÞ:
ð10Þ

LTh(t) denotes the Thouless length. Note also that throughout the
article, the limit of large q is always taken before the limits of large t
and L.

Fig. 3 | Many-body Feynmandiagrams of SFFofMBQC systemswith space-time
translational invariance. a A representation of the set of ladder diagrams that
appear in SFF of a TI RUC according to the rules presented in29,30. The top and
bottom layers denote Tr½W ðtÞ� and Tr½W yðtÞ� respectively. The thick line denote a
group of parallel contractions between unitary gates and their conjugates (repre-
sented as dashed lines and dots in (b)). This set contains t ladder diagrams which
are related to each other by a rigid translations of (say) the top layer, and are of the
same order in q29,30. b A ladder diagram belonging to the set in (a). c A many-body
Feynman diagram that contributes to the SFF of a TI RUC. The (colored) planes
represent a group of parallel contractions. d The simplest set of crossed diagrams
that appear in SFF for TI RUC in 1D. e A diagrambelonging the set represented in d.
f Amany-body diagram that contributes to the SFF of TI RUC. g A spatial deranged
defect diagrams that contributes to the SFF for TI RUC in 2D. The left and right
square represents Tr½W ðtÞ� and Tr½W yðtÞ� respectively. Most sites in Tr½W ðtÞ� (dots
in the left square) are contracted (gray dashed lines)with the same sites in Tr½W yðtÞ�
(dots in the right square). We omit these contractions except four of them on the
top left corner. The sites that do not contract with their counterpart are called
spatial defects (labeled with colors).hAnother crossed diagrams that appear in SFF
for TI RUC in 2D. The phenomenon of confinement suppresses this diagram with a
factor of e−ϵt∂, where ∂ is the size of the boundary of the defects (colored in red
and blue).
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For d > 1, evaluating the multiplicities AdðN ,nÞ is a much harder
task as they result from the interplay between permutations and the
geometry of L. Nevertheless, the problem simplifies in the limit of
large L at fixed n, as it corresponds to a dilute regime where a fixed
number of bonds is broken in a very large system. Consider first a
transposition which exchanges two sites. This will generally break 4d
bonds (2d neighbors for each site), and therefore Ad > 1ðN ,4dÞ∼N 2

=2.
More generally, we first pick the positions of k well-separated spatial
defects and then we consider the possible ways of permuting them
without leavingfixedpoints, so thatpreciselyn = 2dkbonds arebroken
(Fig. 3g). These deranged defect diagrams lead to the asymptotic
expansion

AdðN ,n=2dkÞ =
N!1N k

k!
dk , d > 1 ð11Þ

where dk are the number of derangements55,57 (i.e. permutation with no
fixed points) of k elements. The error we make in (11) is related to
situations where the defects are close to one another thus breaking
less bonds, but these are sub-leading inN . Once again, we consider the
limit t, L→∞ at fixed x =N =N ThðtÞ, with N ThðtÞ= e2dϵt the Thouless
volume, and obtain

lim
L,t ! 1

N =N ThðtÞ= x

N �1Kd > 1
TI =

e�x

1� x
� κd > 1

TI ðxÞ
ð12Þ

We stress that the apparent difference between the scaling functions
(10) and (12) has a fundamental origin: In d = 1, extended intervals can
be rigidly exchanged paying a cost only at their boundary; instead, in
d > 1, exchanging two extended domains has a cost which grows with
their boundary, i.e. extended defects are suppressed by confinement.
Therefore, the leading contribution at large L and t is given by well-
separated single-site excitations.

Floquet case. Before analyzing the effect of combining time-
periodicity and translation invariance, we review the calculation
of KF(t, L) for the Floquet RPM (Fig. 1a)30. Here the single-site unitary
gates are constant in time but are random in space u(r, t) = u(r).
Thus, in the diagrammatic expansion of the SFF, we can choose any
permutation σ∈ St to pair the t–copies of u(r) in the top layer with
those of u†(r) in the bottom one. In the limit of large q, only time
translations contribute, i.e. σtðkÞ= k + t ðmod tÞ with t = 0,…, t − 130.
Therefore, we get a many-body diagram by choosing a configura-
tion t(r) (color) for each site r 2 L. After averaging over the random
phases, it was shown that KF(t, L) = ZPotts, with ZPotts the partition
function of a t-state Potts model with a Boltzmann weight across all
bondsW t,t0 = e

�ϵtð1�δt,t0 Þ. At large t, the partition function is dominated
by the t ferromagnetic groundstates where all sites have the same
color, leading to the RMT prediction KF ~ t. As t approaches tTh from
above, excitations from the t ferromagnetic groundstates – the
lowest-lying excitation being the domain wall states30 – become
important. To access such corrections, in 1D, one makes use of the
transfer matrix to write ZPotts = Tr½WL�. Computing the spectrum of
W and evaluating ZPotts in the scaling limit, this leads to the scaling
form (see SI)

lim
L,t ! 1

L=LThðtÞ= x

Kd = 1
F � t = ex � x � 1 � κd = 1

F ðxÞ
ð13Þ

with x = L/LTh(t) and LTh(t) = eϵt/t. In higher dimension, ZPotts cannot be
easily computed for finite L and t. Nevertheless, in the scaling limit
where L, t are both large, corrections to the RMT SFF are associated
with diluted excitations where the color is changed with respect to the

ground state’s one. The position of the excitation can be chosen in
∼N n

=n! ways and each of them can be assigned any of the t − 1
remaining color, with a cost e−2nϵdt. As a consequence, setting
x =N =N ThðtÞ and N ThðtÞ= e2dϵt=t,

lim
L,t ! 1

N =N ThðtÞ= x

t�1Kd > 1
F = ex � κd > 1

F ðxÞ:
ð14Þ

Intriguingly, note that, in contrast with Eqs. (10) and (12) which are
divergent for any x ≥ 1, Eqs. (13) and (14) remain always smooth for
finite x. This can be understood observing that infinite-q TI systems are
mappedonto stat-mechmodelswith non-local interactions, so that the
scaling function is associated with the exchange of distant domains
(d = 1) or defects (d > 1); on the contrary for Floquet systems, the
resulting Potts model has purely local interactions.

Translational invariant Floquet case. We can now turn to the TI
Floquet case. The same matrix CUE matrix u and u† appear tN times
respectively in the top and bottom layer. However, at large q only the
subgroup SN ×ZN

t � StN , corresponding to arbitrary spatial permu-
tations σ and time translations t(r) at each site. In d = 1, as explained in
the TI case, the permutation σ corresponds to crossed diagrams,
where spatial intervals in the top layer Tr½W ðtÞ� are mapped onto
intervals in the bottom one Tr½W yðtÞ� (e.g. Fig. 3e). Then, the cost
associated to the average over the phases depends on the choices of
t(r): within the same interval, the cost is given by the Boltzmann
weights W as in the Floquet case; instead, between different inter-
vals, the cost is always e−ϵt irrespectively of the choice of t’s at the
interface. To account for the resulting combinatorics, it is useful to
introduce the partition function Z ðωÞ=TrððW +ωRÞLÞ=Pnω

nZnðt,LÞ,
where Rt,t0 = e

�ϵt is a rank 1 matrix with constant coefficients. In
words, n counts the number of intervals and the factors Zn(t, L)
contain the sum over all possible the colors with a n intervals. This
leads to the explicit formula valid for arbirtrary t and L

Kd = 1
TIF ðt,LÞ=

X1
n=0

anZnðt,LÞ: ð15Þ

In the scaling limit, we obtain the behavior (see SI)

lim
L,t ! 1

L=LThðtÞ= x

L�1Kd = 1
TIF � t = ln

e�x

1� x

� �
� κd = 1

TIF ðxÞ:
ð16Þ

In d > 1, the large-t dominant contribution corresponds to ladder
diagrams in space and a ferromagnetic ground state in the color,
leading as expected toKd > 1

TIF ðt,LÞ∼ tLd . Corrections at large L, t are once
again obtained by diluted excitations which can have two different
origins: derangements as in (12), which are now deranged defect dia-
grams in space-time; or color changes as in (14). The two effects
combine multiplicatively (see SI)

lim
L,t ! 1

N =N ThðtÞ= x

ðN tÞ�1Kd > 1
TIF =

1
1� x

� κd > 1
TIF ðxÞ,

ð17Þ

with N ThðtÞ= e2dϵt=t.

Data availability
All relevant data are available from the authors.

Code availability
Codes used for this study are available upon request by contacting the
authors.
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