
Computer Networks 219 (2022) 109436

A
1

X
a

b

c

a
f
t
p
r
w
T
a
p

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Robust P2P networking connectivity estimation engine for permissionless
Bitcoin cryptocurrency
Hsiang-Jen Hong a,∗, Wenjun Fan b, Simeon Wuthier a, Jinoh Kim c, C. Edward Chow a,
iaobo Zhou a, Sang-Yoon Chang a,∗
Department of Computer Science, University of Colorado at Colorado Springs, Colorado Springs, CO, USA
Department of Communications and Networking, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
Department of Computer Science, Texas A&M University, Commerce, TX, USA

A R T I C L E I N F O

Keywords:
Bitcoin
Blockchain
Cryptocurrency
Peer-to-peer networking
Permissionless
Robustness

A B S T R A C T

Blockchain relies on the underlying peer-to-peer (P2P) networking to broadcast and get up-to-date on the
blocks and transactions. Because of the blockchain operations’ reliance on the information provided by P2P
networking, it is imperative to have high P2P connectivity for the quality of the blockchain system operations
and performances. High P2P networking connectivity ensures that a peer node is connected to multiple other
peers providing a diverse set of observers of the current state of the blockchain and transactions. However, in
a permissionless Bitcoin cryptocurrency network, using the peer identifiers – including the current approach of
counting the number of distinct IP addresses and port numbers – can be ineffective in measuring the number
of peer connections and estimating the networking connectivity. Such current approach is further challenged
by the networking threats manipulating identities. We build a robust estimation engine for the P2P networking
connectivity by sensing and processing the P2P networking traffic. We take a systematic approach to study
our engine and analyze the followings: the different components of the connectivity estimation engine and
how they affect the accuracy performances, the role and the effectiveness of an outlier detection to enhance
the connectivity estimation, and the engine’s interplay with the Bitcoin protocol. We implement a working
Bitcoin prototype connected to the Bitcoin mainnet to validate and improve our engine’s performances and
evaluate the estimation accuracy and cost efficiency of our connectivity estimation engine. Our results show
that our scheme effectively counters the identity-manipulations threats, achieves 96.4% estimation accuracy
with a tolerance of one peer connection, and is lightweight in the overheads in the mining rate, thus making
it appropriate for the miner deployment.
1. Introduction

Cryptocurrencies based on blockchain technology have become
much more popular in the modern financial market. Trading between
different currencies is also feasible by using cryptocurrency exchange
schemes [1,2]. Cryptocurrency such as Bitcoin replaces a centralized
uthority/bank with a distributed ledger to store and process the
inancial transactions to provide anonymous and censorless financial
ransactions. Enabling such properties are the distributed consensus
rotocol and networking designed to operate in permissionless envi-
onments (which lacks the registration or the identity-based control
hile still achieving fairness across the cryptocurrency participants).
he distributed consensus protocol is based on proof of work (PoW)
nd measures the fairness based on the computational power of the
articipants, called miners, as opposed to their number of identities.

∗ Corresponding authors.
E-mail addresses: hhong@uccs.edu (H.-J. Hong), schang2@uccs.edu (S.-Y. Chang).

For example, in PoW, hundred miners each of which has a compu-
tational power of 𝑥 H/s is designed to have the same probability of
finding the block as one miner having a computational power of 100𝑥
H/s. Such design is the main innovation by Nakamoto in his seminal
Bitcoin paper [3], in which he reinforced the permissionless design and
the anonymity by recommending new identifiers/accounts for every
transaction. Such permissionless design also motivates our work in this
paper, as we challenge the effectiveness of the current approach based
on counting distinct identities and build peer-connectivity estimation
which does not rely on identities but on the networking traffic and
behaviors.

Underlying blockchain and the distributed consensus protocol is
the broadcasting network based on peer-to-peer (P2P) networking. The
vailable online 8 November 2022
389-1286/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2022.109436
Received 22 July 2022; Received in revised form 24 October 2022; Accepted 27 O
ctober 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:hhong@uccs.edu
mailto:schang2@uccs.edu
https://doi.org/10.1016/j.comnet.2022.109436
https://doi.org/10.1016/j.comnet.2022.109436
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109436&domain=pdf

Computer Networks 219 (2022) 109436H.-J. Hong et al.

o
s
s
t
d
r
T
D
e
t
f
I
f
e

e
S
e
r
r

2

c
i
p
b
m
w
e
l
c
o
t
b
p

o
p
a
t
n
v
i
e
i

i
f
o
a
t
a

networking channels are critical because it provides the necessary infor-
mation for the miner peers’ blockchain and consensus operations. More
specifically, the P2P network provides the block and the transaction
information to the PoW-participating peers, and the health of the P2P
network determines when they receive such information. If a miner
has an unhealthy network of peers (limited connectivity) and does not
receive the blocks on time, then it mines on outdated blocks wasting
its resources on blocks without rewards. To mitigate such wastage
issue and increase fairness for the peers with lower P2P connectivity
(e.g., developing regions), newer cryptocurrencies such as Ethereum
provide partial block rewards to PoW on outdated blocks [4–6]. While
these mechanisms highlight the importance of healthy connections for
cryptocurrencies, instead of the mitigation based on partially compen-
sating for mining on the outdated blocks due to poor connectivity, we
take a different approach and our goal is to inform the networking
connectivity.

In this work, we propose a peer connectivity estimation engine,
which provides accurate estimation and is effective even in the cryp-
tocurrencies’ permissionless and anonymous environments. Our work
provides estimations of the peer connectivity even when there is a
spoofing or Sybil attacker present (manipulating the peer connections
based on false identifiers/IP). Such threats driven by malicious peers
represent the worse-case scenario where the Legacy approach of count-
ing the network-layer identities, e.g., IP addresses and port numbers,
becomes ineffective in measuring the peer connection health. In order
to be robust against such identity manipulations, we design and build
our connectivity estimation engine. We focus on statistical analysis
rather than the machine learning approach. Although machine learning
algorithms have been used in similar domains such as anomaly detec-
tion [7,8], the machine learning-based approaches require significant
computational resources and affect the mining performance. We thus
adopt the statistical analysis approach to make the estimation engine
lightweight and easily deployed. While the statistical and machine
learning approaches are both data-driven, statistical analysis is more
interested in uncovering the characteristics of variables and their rela-
tionships. For instance, we use our preliminary analyses conducted in
Section 4.2 to limit the selected parameters used for estimation.

For designing our connectivity estimation engine based on a statis-
tical analysis approach, we first identify the useful networking-sensor
parameters for our connectivity estimation engine by analyzing the
networking traffic. After deciding the parameters, the training phase
algorithm is twofold. First, the algorithm computes the average values
for each parameter under 𝑘 connections as the training references. Sec-
nd, the algorithm uses k-fold cross-validation to find the best weight
etting with the smallest estimation error. After getting the best weight
etting of the estimation equation, the testing phase algorithm takes
he training references, the best weight vector, and the real-time testing
ata as inputs. The algorithm computes the per-parameter estimation
esult by comparing the real-time testing and the training references.
o further build robustness against the threats, we include an Outlier
etection (OD) to detect outliers (Section 3.2.3) before making viable
stimation decisions. Specifically, the testing phase algorithm computes
he outlier scores for testing data. If an outlier is detected, it will be
iltered out and will not be used for the final estimation aggregation.
n contrast, if the testing data is not an outlier, a final estimation
or aggregating the per-parameter estimation result outputs the final
stimation result.
The contributions of this paper can be summarized as follows.

• We design our connectivity estimation engine for permissionless
Bitcoin network. We build the engine on an active Bitcoin node
and improve our engine at multiple components and levels.

• We examine the useful networking-sensor parameters for our
connectivity estimation engine by analyzing the networking traf-
fic. In addition to processing the aggregate networking traffic
2

such as packet counts or received bandwidth (Traffic Analyses), t
we explore distinguishing the incoming networking according
to the Bitcoin applications and message types (Packet Analyses)
(Section 3.2.1).

• Our work involves the improvement and optimization in the ag-
gregation and the weight control of the per-parameter decisions.
(Section 5.2). We also analyze the tradeoff between the time
complexity in the execution and the accuracy performance of the
estimation schemes (Section 5.4.2).

• To validate and evaluate our peer connectivity estimation engine,
we build an implementation prototype on an active Bitcoin node
and test it with the real Bitcoin Mainnet networking (Section 4.1).
To analyze the robustness of our engine in countering the worst-
case networking failures, we prototype three attacks, man-in-the
middle attack, PING DoS attack, and spam transactions flooding
(Section 6.1). The result shows that the proposed OD schemes is
robust against those attacks. Based on our prototype study, we
recommend 2Phases for connection estimation scheme and LoOP
(Local Outlier Probabilities)-Weighted for outlier detection.

The rest of the paper is organized as follows: Section 2 describes
the problem statement and the motivation. Section 3 discusses the
detailed design of our proposed connectivity estimation engine. We
implement our connectivity estimation engine and conduct preliminary
analyses for parameter selection in Section 4. Section 5 presents the
xperimental results on estimation accuracy and cost-efficiency. In
ection 6, we prototype three attacks and show the effectiveness of our
ngine in countering those networking threats. In Section 7, we review
elated work in the literature. Section 8 draws conclusions with future
esearch direction.

. Problem statement & Motivation

As we describe in Section 1, the permissionless property in the
ryptocurrency application (for anonymous transactions) challenges the
dentity-control-based trust in its underlying networking. Due to the
ermissionless property, a networking peer in permissionless
lockchain network can use multiple identities. In fact, generating
ultiple identities per peer-entity is encouraged in such environments
here the recommendation is to generate and use new identities for
very transaction for anonymity [3]. A peer can also generate Sybil-
ike IP addresses and/or use the Tor network to anonymize traffic and
omplement the application-layer anonymity requirements. In the case
f a networking peer with malicious intentions, the peer can manipulate
he peer identities for conducting Sybil threat (constructing multiple
ogus identities) and spoofing threat (masquerading as another existing
eer) [9,10].
The current Bitcoin node only tracks its peer information based

n the peer’s IP address the port number. Specifically, the number of
eers is estimated based on simply counting the identifiers in the IP
ddress and the port number (the number of records/connections in
he peer table). We call such a scheme used for the current bitcoin
etwork the Legacy approach. Unfortunately, the Legacy approach is
ulnerable against the aforementioned threats manipulating the peer
dentities. Our work is motivated to address the above issue. To this
nd, we build a connectivity estimation engine robust against such
dentity manipulations in permissionless Bitcoin network.
We build the connectivity estimation engine without relying on

dentities but based on analyzing the networking traffic and behaviors
or estimating the peer-connection health. We additionally involve an
utlier detection to determine the viability of connectivity estimation
nd only estimate the peer connections when there is no outlier de-
ected. We highlight the effectiveness challenge of the Legacy approach
gainst the identity-manipulating networking threats and demonstrate

he robustness of our connectivity estimation engine in Section 6.2.

Computer Networks 219 (2022) 109436H.-J. Hong et al.
Fig. 1. An overview of the connectivity estimation engine.
3. Our connectivity estimation engine

Our connectivity estimation engine is oblivious to the peer identi-
fiers and is more robust to attacks or identity obfuscation, as described
in Section 2. Our engine is motivated by the permissionless and trust-
less properties and is designed for cryptocurrencies. Even though our
connectivity estimation engine is generally applicable to other permis-
sionless blockchain networks relying on its underlying P2P networking,
our prototyping and experiments focus on the Bitcoin cryptocurrency.

3.1. Overview of connectivity estimation engine

In this section, we give an architecture overview of our connectivity
estimation engine illustrated in Fig. 1. It provides an overview of
deploying and utilizing our connectivity estimation engine on a Bitcoin
node connecting to the Bitcoin Mainnet with real-world Bitcoin traffic.

• Monitor: The Monitor is a built-in function module of the Bit-
coin Core (software version Satoshi 0.18.0 and protocol version
70015) to monitor and collect all Bitcoin traffic from peers.
The Bitcoin traffic provides information like the timestamps, the
number of peers, the identity of those connected peers, the ac-
cumulated number of messages for each Bitcoin message type at
that timestamp, the total bytes received aggregated by Bitcoin
message types at that timestamp, etc. Therefore, our connectivity
estimation engine can utilize this module to collect the data for
our estimation purpose. For obtaining the required Bitcoin traffic
used for training, we collect the Bitcoin traffic under different
1 ≤ 𝑘 ≤ 𝑀 peer connections, where 𝑀 is the maximum number
of peer connections set by the Bitcoin node.

• Pre-processing: In Pre-processing, we use a script to compute
and retrieve the focused parameters of our connectivity estima-
tion engine from the collected data given by Monitor. We discuss
the focused parameters in detail in Section 3.2.1. The reason
why those parameters are selected for our estimation is provided
and analyzed in Section 4.2. After Pre-processing, the data with
𝑇𝑡𝑟𝑎𝑖𝑛 size will first go through the training phase (the upper red
rectangle identified in Fig. 1.) Once the training is finished, the
following testing data with 𝑇𝑡𝑒𝑠𝑡 size go through the testing phase
(the lower red rectangle identified in Fig. 1.)

• PPP-Reference: PPP-Reference is about building the training
references of the focused parameters based on Per-Parameter
Processing (PPP). Specifically, we compute the average values
for each parameter under 𝑘 connections as the training refer-
ences during the training phase. PPP-Reference first outputs the
training references to the Weight Control for selecting the best
weight setting with the minimum estimation error. PPP-Reference
also outputs the training references to PPP-Data involved in the
testing phase to compare with the testing data and obtain the
per-parameter estimation result (𝑘̃𝑥 where 𝑥 is the focused pa-
3

rameter).
• Weight Control: During the Weight Control, we adopt the 𝑘-fold
cross-validation to find the best weight setting with the minimum
estimation error among different weight control algorithms. To
be more specific, the original training data will be split into 𝑘
partitions. The validation will sequentially take one partition as
the testing sample, whereas the remaining partitions are training
data. The Weight Control outputs the best weight setting to
Estimation Aggregator (EA) to aggregate all 𝑘̃𝑥 into the finalized
estimation (𝑘̃).

• PPP-Data: PPP-Data processes each testing data with 𝑇𝑡𝑒𝑠𝑡 size.
For each testing data, PPP-Data computes the average values on
those focused parameters as the testing values. PPP-Data com-
pares the difference between the testing values and the training
references and make a per-parameter estimation decision (𝑘̃𝑥). In
addition, PPP-Data also outputs per-parameter outlier scores (𝑜𝑥)
based on two different approaches, the 1.5 interquartile range
rule and the Local Outlier Probability approach.

• Outlier Detection (OD): We called an outlier as an observation
that appears to be inconsistent with other observations in the
training dataset. To remedy the bias raised by possible existing
abnormal peers, we collect training data from peers and keep
changing the peer sets during the data collection stage in Monitor.
In OD, we aggregate the per-parameter outlier scores (𝑜𝑥) to the
finalized outlier score 𝑜. If the 𝑜 is set to 1 (i.e., the data is
detected as an outlier), The engine will directly set 𝑘̃ = −1 and
notify Bitcoin Core about the outlier. Such data will not go to the
Estimation Aggregator (EA). Only the data that successfully passes
the OD examination is meant to be further estimated.

• Estimation Aggregator (EA) After filtering out the outliers, EA
aggregates the per-parameter estimation 𝑘̃𝑥 into the finalized
estimation result 𝑘̃ based on a weighting function where the
weight setting is provided by the Weight Control. The finalized
result of 𝑘̃ is located within [0,𝑀] and will be sent to the Bitcoin
Core.

Table 1 summarizes the variable notations used to describe and an-
alyze our connectivity estimation engine. Our connectivity estimation
engine is generally applicable to permissionless blockchain networks
(built upon P2P network) and other P2P network applications because
all the parameters we use are obtainable in P2P networks. With dif-
ferent applications, settings, and instances, our connectivity estimation
engine would be tuned differently with different values assigned for
the reference parameters and thresholds. We also align our training
and testing so that they are adjacent in time/days as opposed to being
further apart in days so that the training is the most effective for
the estimation testing. Although generally applicable, in this work, we
focus on using our connectivity estimation engine for the most popular

Bitcoin network.

Computer Networks 219 (2022) 109436H.-J. Hong et al.

t
a

P
r
t
b
b
(
𝑛

Table 1
Variable notations.
Variables Meaning

𝑘 The actual number of peer connections
𝑘̃ Finalized result estimated by the connectivity estimation engine
𝑀 The maximum peer connections set by a Bitcoin node
𝑛 Aggregate message (packet) count rate
𝑠 Networking size rate
𝜆 Frequency distribution between the Bitcoin message types (for testing)
𝑛𝑚𝑖

Message (packet) count rate of 𝑚𝑖 message
𝑛̄𝑘 Count rate reference given 𝑘 peer connections
𝑠̄𝑘 Size rate reference given 𝑘 peer connections
𝛬𝑘 Frequency distribution reference given 𝑘 peer connections
𝑛̄𝑚𝑖 ,𝑘 Message count rate reference for 𝑚𝑖 given 𝑘 peer connections
𝜌 Correlation coefficient
𝜌𝑘 Correlation coefficient between 𝛬𝑘 and 𝜆
𝑘̃𝑥 Estimation decision for 𝑘 by parameter 𝑥
𝑜𝑥 Outlier score based on parameter 𝑥
𝑜 Finalized outlier score
𝑤𝑥 Weight for the parameter 𝑥
𝑇𝑡𝑟𝑎𝑖𝑛 Time duration of the training data
𝑇𝑡𝑒𝑠𝑡 Time duration of the testing data
𝑝 Result of KS test for measuring the similarity
𝜖 Tolerance level
⃖⃖⃗𝑤 A weight vector ⃖⃖⃗𝑤 = [𝑤𝑛 , 𝑤𝑠 , 𝑤𝜆 , 𝑤𝑛ADDR , 𝑤𝑛PONG]
𝑘̃𝐿𝑒𝑔𝑎𝑐𝑦 Number of peer connection obtained by the Legacy approach

*All the networking traffic is filtered to only the Bitcoin message traffic.

3.2. Design of connectivity estimation engine

We introduce the design of our connectivity estimation engine
for the Bitcoin node in detail. Our proposed connectivity estimation
engine estimates the number of healthy peer entities connected. As
motivated in Section 2, our engine does not use the identifier-based
information but rather the networking traffic information (which does
not distinguish between the networking streams from different nodes
but aggregate them for the networking behavior). Our connectivity es-
timation engine is built on the hypothesis that the networking behavior
changes with respect to the number of connected peer entities (rather
than their identities), based on which we design our engine and test it
using a working prototype on the real-world Bitcoin network. Our work
focuses on the connectivity estimation, which can inform other active
measures to improve the connectivity; such active measures are left for
future work.

3.2.1. The selection of estimation parameters
Before going to the operation of PPP, we need to first investigate the

networking traffic parameters that we want to use for our estimation.
Among the networking parameters, we focus on those that can better
inform the peer connectivity. More specifically, we focus on the Traffic
Analyses Parameters and the Packet (Bitcoin-specific) Analyses Parameters.

• Traffic Analyses Parameters, n and s: The networking traffic pa-
rameters are those general networking traffic information which
popularly uses in the traffic analyses: the count (packet) rate,
𝑛, i.e., the number of message arrivals per time; the aggregate
networking size rate, 𝑠, i.e., the bandwidth information.

• Packet (Bitcoin-specific) Analyses Parameters: 𝜆 and 𝑛𝑚𝑖
: To better

capture more useful information for estimation, we further ana-
lyze the Bitcoin-specific packets. In this regard, we focus on two
parameters: the relative frequency distribution across the bitcoin
P2P networking message types, 𝜆, and the per-message count
rate, 𝑛𝑚𝑖

. There are 26 message types (summarized in Table 2),
i.e. 𝑚𝑖, 1 ≤ 𝑖 ≤ 26, used in the Bitcoin protocol for exchanging
information between peers by now, including those for block and
4

transaction propagation.
Table 2
Bitcoin message types.
ID Message type Notion

𝑚1 VERSION HandShake Initiation
𝑚2 VERACK Response to the VERSION
𝑚3 ADDR Send a max of 1000 IP addresses
𝑚4 INV Send a max of 50 000 trans./blocks
𝑚5 GETDATA Response to INV
𝑚6 GETHEADERS Request up to 2000 headers
𝑚7 TX Response to GETDATA with trans.
𝑚8 HEADERS Response to GETHEADERS
𝑚9 BLOCK Response to GETDATA
𝑚10 PING Request PONG
𝑚11 PONG Response to PING
𝑚12 NOTFOUND Response to GETDATA
𝑚13 REJECT Inform the reject of a message
𝑚14 GETADDR Request IP addresses
𝑚15 MEMPOOL Request transactions from peers
𝑚16 SENDHEADERS Request headers
𝑚17 FEEFILTER Ignores trans less than 8bytes
𝑚18 SENDCMPCT Request a compact block
𝑚19 CMPCTBLOCK Response to SENDCMPCT
𝑚20 GETBLOCKTXN Request a BLOCKTXN message
𝑚21 BLOCKTXN Response to GETBLOCKTXN
𝑚22 MERKLEBLOCK For transmitting a merkle block
𝑚23 GETBLOCKS Request up to 500 blocks
𝑚24 FILTERLOAD Set the filter that filters INV
𝑚25 FILTERADD Add a bloom filter
𝑚26 FILTERCLEAR Clear bloom filter

Our estimation uses the above networking parameters which can
be obtained from the Monitor and be retrieved and computed by the
Pre-processing. To analyses the relations between the parameter and
the number of peer connection, we conduct the preliminary analyses
in Section 4.2 to better establish the selection of the parameters as
well as the insights on the parameter choices and how they affect the
estimation engine design and performance.

3.2.2. Per-Parameter Processing (PPP)
PPP-reference. We train those parameters to set the references for
estimation. For the frequency distribution, we introduce the reference
of frequency distribution when 𝑘 peers are connected to the Bitcoin
node, 𝛬𝑘. Similarly, we denote the count rate reference, the size rate
reference, the per-message count rate references given 𝑘 peer connec-
ions as 𝑛̄𝑘 and 𝑠̄𝑘, 𝑛̄𝑚𝑖 ,𝑘 respectively. The above references are derived
nd computed by the average values from the training data.

PP-data for outputting 𝑘̃𝑥. For outputting the per-parameter estimation
esult 𝑘̃𝑥 based on 𝑥, we need to make a comparison between the real-
ime testing and the training references. For conducting the comparison
ased on 𝑥 ∈ {𝑛, 𝑠, 𝑛𝑚𝑖

}, we utilize the interpolation approach this is
ecause the reference values have ascending orders when 𝑘 increase
which have been examined in Section 4.2). For example, if the testing
is located between [𝑛̄𝑘, 𝑛̄𝑘+1], 𝑘̃𝑛 = 𝑘 + 𝑛−𝑛̄𝑘

𝑛̄𝑘+1−𝑛̄𝑘
. For the frequency

distribution 𝜆, we use the correlation coefficient denoted as 𝜌 for
comparing 𝜆 and 𝛬𝑘 where 𝛬𝑘 is the frequency distribution across
the different Bitcoin message types. The correlation magnitude of 𝜌 is
between 0 and 1. The higher the 𝜌 is, the greater the similarity (between
the monitored testing data and the reference). We denote 𝜌𝑘 as the
correlation coefficient computed by 𝜆 and 𝛬𝑘. Then, the estimation
decides 𝑘̃𝜆 = argmax𝑘(𝜌𝑘).

PPP-data for outputting 𝑜𝑥. Similar to 𝑘̃𝑥, the engine computes a per-
parameter outlier score (𝑜𝑥) based on parameter 𝑥. For obtaining 𝑜𝑥,
the engine also compare the testing with the training reference. To
be more specific, if the testing sample is estimated as 𝑘̃𝑥 = 𝑧, only
the training reference given by 𝑧 peer connections will be utilized for
computing the 𝑜𝑥. We first propose using the standard 1.5 interquartile
range rule [11] to obtain 𝑜 . Specifically, any testing data that is more
𝑥

Computer Networks 219 (2022) 109436H.-J. Hong et al.

p
p

s
d
a
s
t
b

̃

o
b
c
n
a

t
e
s

4
i

4

r
v
t
T
l
o
n
o
n
c
c
f
p
t
a

e

Algorithm 1 Training Phase
Require: Bitcoin training data with 𝑇𝑡𝑟𝑎𝑖𝑛 size
Ensure: 𝑛̄𝑘, 𝑠̄𝑘, 𝛬𝑘, and 𝑛̄𝑚𝑖 ,𝑘, 1 ≤ 𝑘 ≤ 𝑀 , ⃖⃖⃗𝑤
1: for 1 ≤ 𝑘 ≤ 𝑀 do
2: Compute the references: 𝑛̄𝑘, 𝑠̄𝑘, 𝛬𝑘, and 𝑛̄𝑚𝑖 ,𝑘

3: Assign ⃖⃖⃗𝑤 outputted by the weight control algorithm with smallest MSE

than 1.5 interquartile (Q3-Q1, obtained by the training data) below
the lower quartile (Q1) or more than 1.5 interquartile above the upper
quartile (Q3) are considered as outliers. If the testing sample based on
𝑥 is detected as outlier, than 𝑜𝑥 = 1. Otherwise, 𝑜𝑥 = 0. Since 𝜆 is
not suitable for taking the quartile based approach, we directly utilize
𝜌 because the value has already revealed the similarity between the
testing and the training reference. We directly set 𝑜𝜆 = 1 if 𝜌𝑧 < 0.5.
Otherwise, 𝑜𝜆 = 0. The above quartile-based approach gives a binary
result of 𝑜𝑥. However, 𝑜𝑥 can be a value reflecting the level of outlier-
ness and not have to be a binary factor. To this end, we propose using
the Local Outlier Probabilities (LoOP) [12]. LoOP attempts to tackle the
dilemma that other methods face about choosing the suitable threshold
for outlier scores to distinguish outliers by outputting the result as
outlier probability in [0,1]. LoOP is categorized as a nearest neighbor-
based outlier detection method. We demonstrate the operation of LoOP
as follows. It first computes the density of a testing data point. It
assumes that the testing data point is at the center of its neighborhoods.
The distance to its k-nearest neighbors (denoted as a set 𝑆) follows a
half-Gaussian distribution. With the above assumption, a probabilistic
set distance is defined to estimate density around the data point based
on 𝑆. To normalize the density concerning the average density based
on 𝑆, a Probabilistic Local Outlier Factor (PLOF) is defined to compute
the respective ratio. To achieve a normalization making the scaling
of PLOF independent of the particular data distribution, the aggregate
value nPLOF is obtained during PLOF computation. Finally, a Gaussian
error function is applied to map the result constituted by PLOF and
nPLOF into the LoOP score, which can be directly interpretable as a
probability of a data object being an outlier. To make use of LoOP, we
take the respective training data based on 𝑧 peer connections and split
it to 𝑇𝑡𝑟𝑎𝑖𝑛

𝑇𝑡𝑒𝑠𝑡
data segments. Then, we compute the corresponding data

oints based on the average value of the data segments. Those data
oints generated based on training data are added to 𝑆 and the average
value of the testing data is treated as the testing data point to compute
the respective outlier probability which is assigned as 𝑜𝑥 ∈ [0, 1].

3.2.3. Outlier Detection (OD)
After obtaining 𝑜𝑥 for all parameters 𝑥, we aggregate all 𝑜𝑥 results

into the final result 𝑜. For quartile-based approach, we use the logical-
OR operation. That is, 𝑜 = ∨𝑥∈{𝑛,𝑠,𝜆,𝑛𝑚𝑖 }

𝑜𝑥. In other word, if the testing

ample is treated as an outlier based one of the parameters, then we
irectly treat this sample as an outlier. For LoOP, we propose using
weighted function to compute the finalize 𝑜 to provide flexibility in
etting the weights on the score function for detecting more potential
hreats. That is, a finalized weighted outlier score equation is decided
y 𝑜 = 1 if and only if∑𝑥 𝑤𝑥 ⋅𝑜𝑥 > 0.5 where 𝑥 ∈ {𝑛, 𝑠, 𝜆, 𝑛𝑚𝑖

}. Otherwise,
𝑜 = 0.

3.2.4. Estimation Aggregator (EA)
After filtering the outlier traffic by OD, EA aggregates the results

of 𝑘̃𝑥 and produces the final estimation decision. We use a weighted
function between the networking parameters and make the estimation 𝑘̃
where 𝑥 ∈ {𝑛, 𝑠, 𝜆, 𝑛𝑚𝑖

}. Since there are 26 message types, 𝑖 is an integer
located within [1, 26].

𝑘 =
∑

𝑤𝑥 ⋅ 𝑘̃𝑥, 𝑥 ∈ {𝑛, 𝑠, 𝜆, 𝑛𝑚𝑖
}, 𝑖 ∈ {𝑖|1 ≤ 𝑖 ≤ 26} (1)
5

𝑥

Algorithm 2 Testing Phase
Require: Bitcoin testing data with 𝑇𝑡𝑒𝑠𝑡 size, the training references: 𝑛̄𝑘, 𝑠̄𝑘, 𝛬𝑘,

and 𝑛̄𝑚𝑖 ,𝑘, 1 ≤ 𝑘 ≤ 𝑀 , ⃖⃖⃗𝑤
Ensure: 𝑘̃
1: Retrieve 𝑛, 𝑠, 𝜆, 𝑛𝑚𝑖

of the testing sample
2: Compute 𝑘̃𝑥, 𝑥 ∈ {𝑛, 𝑠, 𝑛𝑚𝑖

} ⊳ interpolation approach
3: Compute 𝑘̃𝜆 ⊳ highest 𝜌 approach
4: Compute 𝑜𝑥, 𝑥 ∈ {𝑛, 𝑠, 𝜆, 𝑛𝑚𝑖

}, and the finalized 𝑜
5: if 𝑜 == 1 then ⊳ Filter out the outlier based on OD
6: 𝑘̃ = −1 ⊳ Detect as outlier and notify the Bitcoin node
7: else ⊳ Go to EA for the final estimation
8: 𝑘̃ =

∑

𝑥 𝑤𝑥 ⋅ 𝑘̃𝑥

Table 3
VM’s specification for running a Bitcoin node.
Operating system Linux Mint 19.2 Tina (64-bit)
Processor number 4
Memory 6144 MB
Network adapter Intel PRO/1000 MT Desktop

All the above weights are summed up to be one. We actually do not
select all the message types for computing 𝑛𝑚𝑖

for our estimation but
nly ADDR and PONG messages. We use ADDR and PONG messages
ecause they have higher capabilities in distinguishing different peer
onnections. In addition, PONG is directly used for connection mainte-
ance and therefore provides good representations of the connectivity,
s we explain in greater details in Section 4.2.3. As we mentioned
in Section 3.1, the best weight setting for the function is provided
by the output of Weight Control. We will further analyze the impact
of the Weight Control in estimation performances in Section 5. While
he actual number of peers connected is 𝑘, the connectivity estimation
ngine decides that there are 𝑘̃ peer connections. Here, 𝑘̃ is not con-
trained to integer. However, one can decide how to utilize the 𝑘̃, such
as computing the rounding number of 𝑘̃ and assuming the rounding
number the finalized estimated peer connection. By default, we assume
that 𝑘̃𝑥 as floating numbers and the finalized 𝑘̃ will be rounded into
integer. We will further discuss the effect of the granularity control in
Section 5.3. To help better understand the training and testing phases
for our connectivity estimation engine, we summarize the operations
in pseudo-codes in Algorithms 1 and 2.

. Prototyping: Bitcoin peer and connectivity estimation engine
mplementation

.1. Prototype implementations

We implement our connectivity estimation engine on a Bitcoin node
unning the Bitcoin Core (software version Satoshi 0.18.0 and protocol
ersion 70015). Our Bitcoin node implementations are based on vir-
ual machines (VM) with equal specifications (which are described in
able 3) and run in private mode(have up to 10 connections and have
imited exposure to the Internet since it cannot be discovered by the
ther peers from the Internet). The estimation for the public Bitcoin
odes with 125 connections is left for future work. In fact, similar
perations and architecture can also be applied to the public Bitcoin
odes. However, the public nodes that have additional inbound peer
onnections bring additional challenges (more unstable traffic). More
omprehensive analysis with additional beneficial parameters is needed
or obtaining an accurate estimation result. In this work, we focus on
rivate nodes to better control the peer connections (for training) and
he networking traffic generated by our own peers (e.g., so that our
ttack simulations are contained within our lab environment).
We implement two Bitcoin nodes, including the one hosting our

stimation engine (𝑋) and another attacking node (𝐴). The operation

Computer Networks 219 (2022) 109436H.-J. Hong et al.

t
c

4

p
(
B
o
t
o

4

𝑛
d
s
𝑘
p
b
t
c
𝑠
e
h
b

4

o
F
t
c
i
p
p
a
t

f
t

of the attacking node 𝐴 will be further demonstrated in Section 6.1.
In this section, we focus on no attack case for 𝑋. From our Bitcoin
peer 𝑋, we collect both the training data and the normal testing dataset
from the real-world Bitcoin Mainnet by controlling the peer connections
of 𝑋. For training, 𝑋 connects to 𝑘 number of peers on the Mainnet
where 0 ≤ 𝑘 ≤ 10 and every training dataset selects random 𝑘 peers on
he Internet due to the randomness in the selected peers’ networking
onditions.

.2. Preliminary analyses

As described in Section 3.2, we keep track of the networking traffic
arameters: message (packet) count rate, 𝑛, networking size rate, 𝑠
both of which are aggregated over all the message types), and the
itcoin-specific message parameters: the relative frequency distribution
f the message types, 𝜆 (distinguishing between the message types), and
he per message count rate, 𝑛𝑚𝑖

, 1 ≤ 𝑖 ≤ 26. This section focuses on the
bservation and the analysis for these parameters.

.2.1. Analyses for 𝑛 and 𝑠
In Fig. 2, we examine the cumulative distribution function (CDF) of

and 𝑠 to see whether the distribution shifts when 𝑘 increases. The CDF
istributions of 𝑛 and 𝑠 are plotted based on the training datasets. More
pecifically, the time duration of training datasets we collected for each
is 800 min, i.e. 𝑇𝑡𝑟𝑎𝑖𝑛 = 800min. Undoubtedly, if the distribution of the
arameter shifts significantly, it represents that this parameter might
e more beneficial for distinguishing different 𝑘. The result shows that
he CDF of 𝑛 shifts as 𝑘 grows. However, the CDF of 𝑠 does not have a
lear shifting pattern. By this observation, one can imagine that the
parameter might have a negative impact on the peer connectivity
stimation. Note that 𝑘 = 0 case is omitted because it corresponds to
aving no connectivity and yields 𝑛 = 0 packets per second and 𝑠 = 0
ytes per second.

.2.2. Analyses for 𝜆
The frequency distribution 𝜆 keeps track of the frequencies/

ccurrences across the different message types of the monitored data.
or the 𝜆 from the testing dataset, the per-parameter estimation in
urn compares it with the 𝛬𝑘 from the training references using the
orrelation coefficient, 𝜌. Here, 𝑇𝑡𝑟𝑎𝑖𝑛 is still set as 800 min, and 𝑇𝑡𝑒𝑠𝑡
s set as 20 min. In addition, for each testing dataset with different
eer connections, we have 10 testing samples for each of them. Fig. 3
resents a scenario using the testing samples from one peer connection
nd ten peers connection and the correlation coefficient 𝜌 with the
raining reference datasets (𝛬𝑘 where 1 ≤ 𝑘 ≤ 10). The vertical axis
plots the 𝜌 between the testing and the training while the horizontal
axis varies the training reference with respect to the connected number
of peers 𝑘. To be more specific, for each point in Fig. 3, the 𝜌 value is
the average 𝜌 computed among 10 testing samples and the compared
reference. For clarification, the datasets between testing and training
are collected at separate, non-overlapping time periods, i.e., the train-
ing and the testing are separate and do not overlap in time. When
testing one-peer (𝜆|𝑘 = 1), 𝜌 is greatest and has a decreasing trend
as the 𝑘 increases from the 𝛬𝑘 in training. Even though the trend is
not monotonically decreasing, the 𝑘𝜆 is still equal to 𝑘 because the
corresponding 𝜌 has the highest value. If the estimation uses 𝛬 only
and makes its estimation decision based on that, then 𝑘̃ = 𝑘̃𝜆 = 1 for
the one-peer testing. However, for the ten-peers testing case (𝜆|𝑘 = 10),
the relation between 𝑘 and the 𝜌 is not clear. The estimation for the
ten-peer testing based on 𝛬 can result in a poor estimation. Therefore,
some other parameters are needed for obtaining a better estimation
accuracy. In this regard, the selection of the message types for using the
respective per message count rate is strongly required for this purpose
6

and is introduced in the following section. a
Fig. 2. CDF of 𝑛 and 𝑠 while varying 𝑘 (from 𝑘 = 1 to 𝑘 = 10)

Fig. 3. 𝛬 comparison.

4.2.3. Analyses for 𝑛𝑚𝑖
For analyzing which per message count rate 𝑛𝑚𝑖

is more beneficial
or our connectivity estimation engine, we first determine the message
ypes 𝑚𝑖, which do not increase proportionally with 𝑘 in principle and
avoid using them in our estimation. Take the SENDHEADERS message
as an example. The count rate will not proportionally increase with
𝑘 because the rate is mainly controlled by whether the node’s peers
enable some techniques or not. The remaining 𝑚𝑖, whose packet counts
re 𝑛̄ given 𝑘 peer connections. are plotted in Fig. 4. Based on the
𝑚𝑖 ,𝑘

Computer Networks 219 (2022) 109436H.-J. Hong et al.

a
t
s
t
a
i
t
w
t
d
c
s
𝑚
t
a
r

̃

t
t
t
a
p
u
o
P
e
t
𝑘
s
t
e
p
N
e
i
t
p

Fig. 4. 𝑚𝑖 with ascending order of 𝑛̄𝑚𝑖 ,𝑘.

Table 4
KS test of the targeted message types.
Message type 𝑝̄𝑚𝑖

PONG 0.1482e−08
PING 0.4991e−08
VERACK 0.0311
ADDR 0.0905
VERSION 0.1565
GETHEADERS 0.2098
HEADERS 0.3223

results, we can observe that the per message count rate of PING, PONG
and ADDR have bigger slopes than other message types.

To better select the message types for our estimation, we use the
empirical distributions of the message-specific counts given 𝑘, 𝑛̄𝑚𝑖 ,𝑘
nd apply to Kolmogorov–Smirnov test (KS test), which is a standard
echnique in statistical analysis [13,14] for identifying whether two
amples’ distribution are quite different or not. The KS test examines
he shape and distance of the two samples’ CDF distribution and outputs
𝑝 value to measure how similar they are. Higher 𝑝 where 𝑝 ∈ [0, 1]
ndicates that they have more similar distributions. To be more specific,
o use KS test, we compute the CDF for distribution 𝑛𝑚𝑖 ,𝑘, 1 ≥ 𝑘 ≥ 10
here 𝑚𝑖 are those messages that have the monotonically increasing
rend. For each consecutive pair (𝑛𝑚𝑖 ,𝑘 and 𝑛𝑚𝑖 ,𝑘+1, 1 ≥ 𝑘 ≥ 9) of the CDF
istributions, we compute their 𝑝 value, denoted as 𝑝𝑚𝑖 ,𝑘,𝑘+1. Then, we
ompute the average 𝑝 value for this nine 𝑝 values computed for one
pecific message type 𝑚𝑖 denoted as 𝑝̄𝑚𝑖

. We summarize the 𝑝̄𝑚𝑖
for those

𝑖 that have the monotonically increasing trends in Table 4. According
o the conducted 𝑝̄𝑚𝑖

listed in Table 4, we only select PONG and ADDR
s the message types that we want to utilize its per message count
ate. As we stated earlier, the lower the 𝑝̄𝑚𝑖

has, the more capability
it has for distinguishing different peer connections. By observing the
result, PING, PONG, and VERACK are the three smallest ones. However,
the VERACK will only be transmitted on the Bitcoin peer connection
establishment stage, i.e., one-time transmission. Hence, it is not suitable
for selecting it as a parameter for estimation. We then select ADDR,
which is located in the fourth place as the parameter. In addition, for
PING and PONG, since PONG is the responded message types which
reveal more information about the peer’s liveness, we only select PONG
as a parameter. Other message types are filtered out for our estimation
since they might obfuscate the estimation of peer connections. In
this regard, we use the estimation equation listed in Eq. (2) for final
estimation.

𝑘 =
∑

𝑥
𝑤𝑥 ⋅ 𝑘̃𝑥, 𝑥 ∈ {𝑛, 𝑠, 𝜆, 𝑛ADDR, 𝑛PONG} (2)
7

n

5. Evaluation results

This section shows the experimental results about the estimation
performance and the cost-efficiency using our estimation engine. Our
evaluation analysis builds on the prototype implementation and the
preliminary analyses in Section 4. As mentioned in Section 4.1, we
vary the number of connections and use fresh, randomly selected peers
every 50 min to generate the datasets to remedy the bias raised by
possible existing abnormal peers. The training and testing datasets are
different with no overlap. Our experiment collects 1000 min of data
for each 𝑘 peer dataset and divides them into 800 min for training the
references and 200 min for the testing purpose. For the 200 min testing
data, we set 𝑇𝑡𝑒𝑠𝑡 = 20 min (which is twice the expected period for
Bitcoin block arrivals since Bitcoin blocks get mined every ten minutes
in expectation by design). In other words, we use ten testing samples
with each dataset. Our work follows the ratio of 80% training and
20% testing because it is popularly used in both statistical analysis and
machine learning [15,16].

5.1. Estimation metrics

For evaluating the estimation performance, we use two different
metrics, Mean Square Error (MSE) and 𝜖-Tolerance Accuracy. Both MSE
and 𝜖-Tolerance Accuracy measure the estimation accuracy; however,
MSE is continuous, while 𝜖-Tolerance Accuracy is based on the discrete
decision.

• Mean Square Error (MSE): The main metric used for evaluating
the estimation performance of our proposed method is the Mean
Square Error denoted as MSE, a common criterion for evaluating
the quality of an estimation.

• 𝜖-Tolerance Accuracy: We also define an 𝜖-Tolerance Accuracy
as an auxiliary metric for our estimation. Because each testing
sample results in a decision which is either correct or erroneous,
the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − Pr[𝐸𝑟𝑟𝑜𝑟] where Pr[.] is the empirical prob-
ability. We define the 𝐸𝑟𝑟𝑜𝑟 events to incorporate a tolerance
level of 𝜖 and call such accuracy ‘‘𝜖-Tolerance Accuracy’’ More
specifically, our estimation engine allows the estimation to be off
by ±𝜖 and 𝐸𝑟𝑟𝑜𝑟 occurs if |𝑘̃ − 𝑘| > 𝜖. For example, if 𝜖 = 0, then
the estimation is correct only when 𝑘̃ = 𝑘 and, if 𝜖 = 1, then the
estimation can be off by ±1 so that the estimation is correct when
|𝑘̃ − 𝑘| ≤ 𝜖 = 1. In our experiments, we focus on 𝜖 = 0 and 𝜖 = 1
cases because we already get very high accuracy performances
using 𝜖 = 1.

Undoubtedly, the MSE metric provides relatively richer informa-
ion compared to 𝜖-Tolerance Accuracy and does not need to identify
he tolerance level (𝜖) beforehand. In view of this, we only examine
he 𝜖-Tolerance Accuracy for the schemes using the additional packet
nalyses (which outperforms the schemes only use the traffic analysis
arameters) in Fig. 6(b). One might notice that the tolerance level 𝜖
sed for is a design parameter for our estimation engine and depends
n the cryptocurrency peer state in the randomness/variance in the
2P networking and the number of peer connections supported. For
xample, in default Bitcoin protocol, while a private node (such as
he one used in our experiment) has up to 10 connections so that
∈ {0, 1, 2,… , 10}, a public node can have up to 125 peer connections
o that 𝑘 ∈ {0, 1, 2,… , 125}. The greater the options for 𝑘, the greater
he tolerance level, 𝜖 to have comparable accuracy performances. In our
xperiment, we mainly focus on the peer connectivity estimation for the
rivate nodes. The analysis for the public nodes is left for future work.
otably, the private nodes occupy a large portion of the nodes in the
ntire Bitcoin network. Even though the vulnerability of private nodes
s less than the public nodes, the victim node is still suffered from the
hreats of Sybil attack or other attacks that manipulates the victim’s
eer connections if the attacker is located within the same local area

etwork.

Computer Networks 219 (2022) 109436H.-J. Hong et al.

̃

̃

h
g
F
m
l
𝛬
𝑘
t
𝛬
u
e
v
r
f
p
i
W
i
p

Fig. 5. Effect of the weight control.

5.2. Effect of the weight control

In this section, we analyze the effect of Weight Control (during the
training phase) using different weight control algorithms proposed as
follows.

The greedy approach: We first propose the greedy approach. For ease
of our exposition, we denote a weight vector ⃖⃖⃗𝑤 = [𝑤𝑛, 𝑤𝑠, 𝑤𝜆, 𝑤𝑛ADDR ,
𝑤𝑛PONG] to represent the weight control result. We examine the mean
of 𝑘̃𝑥 to see which 𝑥 provides the closest mean to 𝑘 and select it as a
primary factor. We then examine the weight setting of 𝑤𝑥 from 0 to 1
with a granularity 0.01. The remaining weights are equally distributed
to all the other parameters. For instance, if 𝑤𝑛 is the primary factor with
𝑤𝑛 = 0.8, then ⃖⃖⃗𝑤 = [0.8, 0.05, 0.05, 0.05, 0.05]. We then examine which
weight of 𝑤𝑛 can conduct the lowest MSE; we directly fix the weight of
𝑤𝑛 with the lowest MSE. And then, we select the next primary factor
and make a similar approach until we fix all the weights.

The optimized approach: We use exhaustive search to examine the
best weight settings that obtains the lowest MSE. The efficiency of
obtaining the optimized weight setting by using exhaustive search
should be exponentially increased when the number of used parameters
increases. However, we just use five parameters in our scheme so
we can still obtain the result within a reasonable time. In the later
section, we will investigate the cost-efficiency by comparing the time
consumption in different weight control approaches.

To evaluate the estimation performance using different weight con-
trol algorithms, we use the k-fold cross-validation. To be more specific,
for each training data under 𝑘 peer connection, we split it into eight
partitions. We sequentially select one of the partitions as the validation
set, and the remaining partitions as the training set while using differ-
ent weight control algorithms. To further highlight the improvement
on estimation performance provided by the Packet (Bitcoin-specific)
Analyses Parameters, we called the above schemes with additional
use of the Packet (Bitcoin-specific) Analyses Parameters as Greedy-PA,
Optimized-PA. The schemes using only the Traffic Analyses Parameters
are denoted as Greedy-TA, Optimized-TA. We also include three no
weight control cases including Random (randomly guessing 𝑘̃ from
a uniform distribution), Equal-TA, and Equal-PA (two schemes using
equal weights). As a result shown in Fig. 5, the accuracy performance
is significantly improved for PA compared to TA. To be more specific,
the MSE of different weight control algorithms using PA approach are
lower than 2.282. In contrast, using only Traffic Analyses Parameters
has MSE performance greater than 13.214. The optimized approach in
finding the best weight setting outperforms the greedy approach, so we
mainly use the optimized approach for outputting the finalized weight
8

setting in later section. s
We also measure the times spent during the weight control al-
gorithms for Greedy-PA and Optimized-PA which are 0.0474 s and
102.1649 s respectively. Even though the costs on Optimized-PA are
significantly higher than the greedy approach in the weight control
stage, the estimation accuracy still outperforms the greedy one. In other
words, this is a trade-off between the estimation performance and the
pre-processing (weight control training) cost. Suppose one wants to
obtain a better estimation performance. In that case, the pre-processing
cost of Optimized-PA (yielded during the training phase) based on the
exhaustive search is still acceptable.

5.3. Effect of the granularity control

Since the MSE is computed by the estimation result and its real
number of peer connections which should be an integer. If we further
round 𝑘̃𝑥 or finalized 𝑘̃ into integers, it has a higher chance of further
decreasing the error. For instance, if a testing sample with 𝑘̃ = 4.7
and its actual peer connection 𝑘 = 5, then the rounding value of
𝑘 = 4.7 can make the error equal to zero. A similar situation can also be
applied to 𝑘̃𝑥 is rounded into an integer. To verify this claim, we show
three different cases with the granularity control: Case 1: 𝑘̃𝑥 and 𝑘̃ are
floating-point numbers; Case 2: 𝑘̃𝑥 are still floating-point numbers but
𝑘 are rounded into integers; Case 3: 𝑘̃𝑥 and 𝑘̃ are all integers. Note that
we use the Optimized-PA to check the MSE for all cases and verify the
claim. The results of MSE among different cases are 0.2483, 0.2245,
and 0.1923, respectively. It thus reciprocates our claim. However, the
experiments demonstrated in the following sections are based on Case 2
to provide the users some flexibility in making their own final decision.

5.4. Estimation performance

5.4.1. Estimation schemes
Based on the discussion in Section 5.2, the Optimized-PA has the

lowest MSE, so we take the average among the weight vectors obtained
during the training phase as the finalized weight vector for the final
aggregation in EA. For simplicity, we called it Optimized in the fol-
lowing discussion. However, based on our observation, the parameters
useful for the lower peer connections might not still be beneficial for the
higher peer connections cases. In view of this, we proposed a 2Phases
optimized approach. As the name indicates, the 2Phases scheme has
two phases: (i) the EA first classifies the networking traffic being tested
between low connectivity case vs. high connectivity case and (ii) Based
on the binary classification, EA uses different weight vectors obtained
by the Weight Control for different cases respectively. Specifically, we
separate them into the relatively lower peer connectivity case (1 to
5 peers or 1 ≤ 𝑘 ≤ 5) and higher peer connectivity case (6 to 10
peers or 6 ≤ 𝑘 ≤ 10). 𝑘 = 0 produces zero networking traffic. The
igh connectivity case presents a more significant challenge because
reater peer connections yield more randomness on the Bitcoin traffic.
or the first phase, we utilize 𝛬 for the binary classification. To be
ore specific, we compute the frequency distribution references for
ower and higher peer connectivity, which are denoted as 𝛬𝑙𝑜𝑤 and
ℎ𝑖𝑔ℎ, respectively. These references are computed by averaging the
cases, that is, 𝛬𝑙𝑜𝑤 = (

∑𝑖=5
𝑖=1 𝛬𝑖)∕5 and 𝛬ℎ𝑖𝑔ℎ = (

∑𝑖=10
𝑖=6 𝛬𝑖)∕5. We

hen compare the frequency distribution of the testing data, 𝛬𝑡𝑒𝑠𝑡 with
𝑙𝑜𝑤 and 𝛬ℎ𝑖𝑔ℎ using the correlation coefficient 𝜌, similarly to how we
tilize the frequency distribution references for the peer connectivity
stimation. The first-phase classification decides the low connectivity
s. the high connectivity by choosing the case with the higher cor-
elation 𝜌. For the second phase, we use the finalized weight vector
or the corresponding case obtained during the weight control to com-
ute the final estimation. We also incorporate some naive approaches,
.e., Random and Equal (i.e., Equal-PA in Section 5.2), for comparison.
e randomly guess 𝑘 from a discrete uniform distribution within [1,10]
n the Random scheme. The Equal scheme chooses equal weights for the
arameters. We measure the estimation performances to all the above

chemes to reveal the estimation performances using different schemes.

Computer Networks 219 (2022) 109436H.-J. Hong et al.

5

a
T
b
E
u
t
c
b
c
t
t
e
i
a
e

5

s
p
a
T
a
l
t
t
t
r

Fig. 6. Estimation performance.

.4.2. Performance comparison in MSE and 𝜖-tolerance accuracy
As a result shown in Fig. 6(a), the accuracy performance is sig-

nificantly improved with a careful selection of the weight vectors
conducted during the Weight Control. More importantly, the 2Phases
approach in using different weight vectors for different cases (low and
high connectivity) can further improve the estimation performance.
The MSE of the 2Phases is only 0.1832, which significantly outperforms
the MSE obtained by Random and Equal. Undoubtedly, the Random
scheme makes a blind guess at 𝑘 and performs the worst among
all schemes. Fig. 6(b) compares the performances of the estimation
schemes (we exclude the Random scheme in this comparison because
of its poor MSE result) while varying 𝜖 from 1 to 4. All schemes increase
ccuracy performances when there is greater tolerance (increasing 𝜖).
he 2Phases scheme obtains a 96.4% 1-Tolerance Accuracy which is
etter than other accuracy results obtained by all other schemes. The
qual scheme does not attempt to optimize the weight but simply
ses equal weights among the performances and therefore performs
he worst accuracy performance with only 37.3% in 1-Tolerance Ac-
uracy. We also measure the testing cost of 2Phases and Optimized
ecause the 2Phases require additional binary classification. The testing
osts of 2Phases and Optimized are 0.1057 s and 0.0825 s, respec-
ively. Even though 2Phases requires additional effort in distinguishing
he low/high peer connections of the testing sample, the cost differ-
nces between them are relatively small. Since 2Phases can further
mprove the estimation performance, we recommend using the 2Phases
pproach as the estimation scheme of our connectivity estimation
ngine.
9

.5. Comparison with the Legacy approach

As we mentioned in the introduction, the current Legacy approach
imply counts the network-layer identities for getting the number of
eers. Therefore, it cannot detect an existence of a spoofing or Sybil
ttacker manipulating the peer connection based on false identifiers/IP.
he comparison of our connectivity estimation engine and the Legacy
pproach thus focuses on the scenario under different attacks manipu-
ating the peer connection (conducted in Section 6). In addition, under
he normal traffic case, the actual number of peer connections is equal
o the number outputted by the Legacy approach, i.e., 𝑘 = 𝑘̃𝐿𝑒𝑔𝑎𝑐𝑦. It
hus makes the MSE equaled to zero. Therefore, we did not include the
esult in Fig. 6 which is under the normal case. However, the provided
networking traffic can be affected by the networking environment of
the peers. Our connectivity estimation based on the traffic can capture
this. Specifically, if there is any inconsistency between 𝑘̃𝐿𝑒𝑔𝑎𝑐𝑦 and 𝑘̃
where 𝑘̃ ∈ [0,𝑀], it implies that some of peers under a bad network
environment. The user of the Bitcoin node could take action such as
changing peers to obtain normal traffic and get the up-to-date block as
soon as possible.

We also conduct experiments to analyze the impact on the mining
rate to see whether the CPU utilization of the connectivity estimation
engine during testing can affect the node’s mining rate. The results
we obtained for using our engine and using the Legacy approach are
4.963 ⋅ 105 and 4.965 ⋅ 105 hashes per second, respectively. In fact, the
mining rate without using any estimation scheme is 4.974 ⋅ 105 hashes
per second. In other words, the mining rate reduction is limited to only
0.43% in using our engine. It reveals the lightweight property of our
estimation engine.

6. Outlier detection for countering threats

We analyze the robustness of our connectivity estimation engine in
countering the worse-case networking failures caused by the security
threats. To simulate the failures caused by security attacks, we simulate
and prototype three attacks: the man-in-the-middle attack (which is
related to the recent networking threats in blockchain such as Eclipse
attack [10], routing attack [17], and Erebus attack [18]. Specifically,
our man-in-the-middle attack builds on and uses Sybil attack for greater
threat impact. It also has the same effect as the Eclipse attack from
the receiver’s perspective since the attacker control all the traffic seen
by the victim). We also prototype a PING DoS attack and a spam
transaction flooding attack for verifying the effectiveness of OD.

6.1. Prototyping

6.1.1. Man-in-the-middle attack
We prototype a man-in-the-middle attack where an attacker 𝐴

located between the victim 𝑋 and the Bitcoin Mainnet. All traffic
communicated between 𝑋 and the Bitcoin Mainnet can be manipulated
by 𝐴. Because we try to emulate the worst case for 𝑋 where 𝑘 and 𝑘̃ has
a large difference, the man-in-the-middle attacker in our prototyping
generates𝑀 (the maximum peer connection of 𝑋) fake identities (Sybil
IPs) and links to the victim. Note that 𝑋 only links to these 𝑀 peer
connections controlled by the attacker 𝐴. If 𝑋 tries to link to some other
peers, the attacker can manipulate the traffic and make it unachievable.
The above case should be the most harmful case to the victim. In this
scenario, if the victim only utilizes the peer connection information
provided by the 𝐿𝑒𝑔𝑎𝑐𝑦 approach, the value should be totally different
from the actual peer connection 𝑘. For ease of our exposition, we denote
the estimation provided by the 𝐿𝑒𝑔𝑎𝑐𝑦 approach as 𝑘̃𝐿𝑒𝑔𝑎𝑐𝑦. In such
a case, 𝑘 should be zero and 𝑘̃𝐿𝑒𝑔𝑎𝑐𝑦 = 𝑀 where 𝑀 = 10 in our
experiment. In addition, the attacker will not relay any packet from the
Mainnet to the victim (to harm the victim by restricting its information
from the Mainnet) and will not respond any message to 𝑋. However,

𝑋 will send the PING messages to all of its peers (controlled by 𝐴) to

Computer Networks 219 (2022) 109436H.-J. Hong et al.

o

t
n
i

6

e
c
p
a
o
a
a
r
I
r
t
1
W
b
s

6

t
p
n
i
i
f
t
f
t
t
m
t
e

7

w
n
r

check the liveness of the connections. The connection will be stopped
by 𝑋 if 𝐴 does not respond by the PONG message. In such a case, if one
f the connections is disconnected by 𝑋, 𝐴 will immediately establish a
new connection to 𝑋 with another Sybil IP to maintain the worst case
scenario.

6.1.2. Bitcoin PING DoS attack
We prototype the PING DoS Attack using the Bitcoin PING messages.

The attacker 𝐴 establishes one connection to the victim 𝑋. After the
connection is established, the attacker keeps sending Bitcoin PING
messages to the victim, trying to flood the victim’s bandwidth, memory
or CPU usage. In this scenario, 𝑋 can still accept the information from
the Mainnet through other healthy peer connections. However, the
PING DoS flooding occupies the bandwidth of 𝑋 and causes slower
healthy traffic received from the healthy peers.

6.1.3. Spam transactions flooding attack
We also prototype a spam transactions flooding attack, a particular

case of mempool flooding attack [19]. We consider the case that an
attacker 𝐴 establishes one connection to the victim 𝑋. After the connec-
tion is established, the attacker keeps sending spam transactions with a
minimum relay fee to the victim, trying to flood the victim’s mempool.
Since the transactions are legal, it will pass the ban score mechanism
in examining invalid transactions. 𝑋 can still receive the Bitcoin traffic
from the Mainnet through other healthy peer connections. Similar to
the PING DoS attack, this attack also causes slower healthy traffic
received from healthy peers.

6.2. OD effectiveness

In this prototyping, we collect 200 samples with 𝑇𝑡𝑒𝑠𝑡 = 20 min for
each attack mentioned earlier. To examine whether our OD schemes
will trigger false alerts on the normal traffic data, we also collect 200
samples with 𝑇𝑡𝑒𝑠𝑡 = 20 min under the normal networking (called
Normal case in the following discussion). To show the robustness of our
connectivity estimation engine, we compare the detection performance
obtained by the Legacy approach (based on counting the network-layer
identities) with the results obtained by our connectivity estimation
engine facilitated with OD schemes. We evaluate the detection perfor-
mance using the confusion matrix, i.e., true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). Based on them, we
use sensitivity (also called recall or true positive rate) as the primary
metric for the testing case under attacks and specificity (also called true
negative rate) as the metric for the testing case without attacks. This
is because all the testing cases under attack only have TP and FN, and
TP and FN constitute sensitivity. In contrast, the testing cases without
attacks yield only TN and FP, and specificity is composed of TN and
FP. The detection performance is summarized in Table 5.

Under the Normal case, all the schemes reach 100% specificity. It
implies there are no false alerts during the testing. For the under-attack
cases, the sensitivity values are all zeros using the Legacy approach
because the current approach did not facilitate any defense mechanism
in countering those attacks. Both OD schemes perform well in detecting
those prototyped attacks. For countering the man-in-the-middle attack,
both OD schemes reach 100% sensitivity because of a significant dif-
ference between the training reference and testing data. For the PING
DoS attack and spam transaction flooding attack, the victim can still
receive traffic from healthy peer connections. Therefore, the difference
is mainly affected by the DoS attack’s impact on the victim’s resources.
Since a Bitcoin transaction has a bigger size compared to a Bitcoin
PING message, it wastes more resources on the victim and makes a
more significant difference between training reference and testing data.
Therefore, it is easier to detect spam transactions flooding attack than a
PING DoS attack. The result shows that both OD schemes can still reach
100% specificity. However, for the PING DoS attack, the impact is not
as harmful as transaction flooding, so it is relatively hard to detect. The
10
Table 5
OD Effectiveness (The metric of the column for the Normal case is specificity; The
metric of the columns under three different attacks is sensitivity; MitM represents
man-in-the-middle; txs represents transactions).

Schemes

Legacy 1.5 interquartile LoOP-Weighted

Testing
cases

Normal 100% 100% 100%
MitM attack 0% 100% 100%
PING DoS attack 0% 98.5% 99.5%
spam txs flooding 0% 100% 100%

result shows that we still obtain 98.5% specificity and 99.5% specificity
for the 1.5 interquartile range rule and LoOP-Weighted, respectively.
The performance of LoOP-Weighted is slightly better than the 1.5
interquartile range rule because of a more comprehensive operation
of LoOP in quantifying the outlier probability based on the nearest
neighbor approach. In summary, the result reveals the effectiveness of
our OD schemes to counter those threats and set the 𝑘̃ to −1. In contrast,
he Legacy approach will blindly trust all peers and estimate the
umber of healthy peer entities by simply counting the network-layer
dentities.

.3. Cost analysis of outlier detection

We also measure the testing cost of the OD schemes using differ-
nt approaches (1.5 interquartile range rule and LoOP-Weighted) in
omputing 𝑜𝑥 and aggregate the finalized 𝑜. In the LoOP-Weighted ap-
roach, we use equal weights in this work. More sophisticated analysis
nd setting are left for future research direction. The testing overheads
f the 1.5 interquartile range rule and LoOP-Weighted are 2.17 ms
nd 224.15 ms, respectively. The cost difference is mainly because of
simple comparison-based approach using the 1.5 interquartile range
ule, where the thresholds for detecting outliers can be pre-computed.
n contrast, the LoOP-Weighted approach requires a more complicated
eal-time computation for outputting the 𝑜𝑥 and thus has more compu-
ational overhead during testing. In summary, we recommend using the
.5 interquartile range rule due to its cost-efficiency. However, LoOP-
eighted could be more beneficial for detecting other potential threats
ecause it provides the flexibility for the weight-setting on the outlier
core.

.4. More discussion about other threats

Even if malicious peers can collude or an attacker controls the peers
o dissimulate their malicious behavior by simulating the pattern and
assing the detection, what malicious peers can do to harm a Bitcoin
ode is craft the invalid data. However, the ban score mechanism used
n the current Bitcoin core application can detect such a threat if there
s an oversize data payload/or an invalid block. Our OD evaluation
ocuses on networking failures caused by the security threats, including
he man-in-the-middle attack, PING DoS attack, and spam transactions
looding attack. While we can provide more results, we prioritize
he rest of the estimation algorithm design and evaluations because
hey have greater research contributions. Our OD design and imple-
entation are standard in statistical processing, although we control
he detection parameters to apply to securing the Bitcoin networking
stimations.

. Related work

Bitcoin and other cryptocurrencies rely on a distributed P2P net-
ork and its connectivity. In this section, we review the literature about
etworking and the P2P connectivity for cryptocurrencies related to our
esearch.

Computer Networks 219 (2022) 109436H.-J. Hong et al.
7.1. Reliability in P2P network

For dynamic distributed network systems such as P2P network, the
connectivity reliability issue is of paramount importance as a significant
performance metric for the network system. In [20], the authors pro-
posed a highly reliable P2P system to ensure the effectiveness and effi-
ciency of resource sharing in the P2P network. In [21], Xiong and Liu
presented PeerTrust, a reputation-based trust supporting framework,
to estimate peers’ trustworthiness. They also explored mechanisms to
make the PeerTrust model more robust against malicious behaviors in
P2P online communities. Unfortunately, only a few literature addresses
the connectivity reliability in the context of permissionless blockchain
networks. Hao et al. [22] presented a trust-enhanced blockchain P2P
topology that accelerates the transmission rate and retains transmission
reliability. They clearly mentioned that the transmission reliability
specifically refers to network trust connection. However, they focus on
the reliability issue from the network-view, whereas our work focuses
on the host-view. The permissionless property can make dynamic be-
havior even further and decrease the network system’s reliability. Thus,
we propose our connectivity estimation engine to address the reliability
concern in permissionless Bitcoin cryptocurrency networks explicitly.

7.2. Dynamics in peer connectivity

In cryptocurrency P2P networking, Churn corresponds to the con-
tinuous arrival, departure, and failure of processes on peer-to-peer
network and is often used to describe the dynamic peer connectivity.
In [23], Stutzbach and Rejaie work on the churn models by character-
izing different aspects of peer dynamics. Imtiaz et al. [24] study the
intermittent network connectivity in the Bitcoin network and shows
that it significantly affects the failure on compact block propagation. In
addition, they perform the characterization of churn and the statistical
fitting of the distributions of the lengths of up and down session. From a
different point of view, Wang et al. [25] evaluate the quality of Bitcoin
networks by several key metrics mainly focused on transactions and
blocks. Decker et al. [26] mention that when the connectivity increases,
the information propagation on the Bitcoin network can be improved.
However, their research focuses on measuring the block propagation
delay. In our approach, we focus on measuring the peer connectivity
of a Bitcoin node at the time rather than the dynamic changes in the
networking state.

7.3. Peer selection strategies

Prior literature related to the peer selection aim for optimizing the
propagation delay in Bitcoin Network. Previous research control and
analyze the optimal number of the outgoing connections, including
based on in-computer simulations [27] and Bitcoin node implemen-
tation [28]. In [29], Fadhil et al. propose a Bitcoin Clustering Based
Ping time protocol, evaluating the proximity of connectivity based on
ping time latency. By using the protocol, the peers are self-cluster
based on proximity. By the clustering approach, the bitcoin network
can effectively decrease the transaction propagation delay.

7.4. Traffic measurement and Formal analysis

Some literature also focus on measure the traffic but have different
purposes compared to our work. The healthy peer connection of a
node that are responsible for information propagation is of paramount
importance in the P2P network. However, most of work focuses on
the topology or uncover the nodes hidden in the ecosystem. Wang
and Pustogarov [30] analyze unreachable peers who do not allow
inbound connections (i.e., Private node). Based on the data collected
by their deploying node, they found that 86.8% of the collected IPs
are unreachable. In [31], Kim et al. propose a Nodefinder tool for
11

scanning and monitoring Ethereum’s P2P network. The tool uncovers a
cluttered network containing a large amount of nodes running various
non-Ethereum services. Franzoni et al. [32] propose an algorithm called
AToM (Active Topology Monitor) to obtain a continuously up-to-date
state of the topology. The authors review network-level attacks and
argue that the benefits of an open topology potentially outweigh its
risks. Formal analysis of Blockchain system in asynchronous networks
have also received significant attention from academic communities.
In [33], Zhao et al. derive a neat bound of mining latencies to ensure
the consistency property of the Nakamoto protocol. In contrast to
prior literature focus on the entire cryptocurrency network, our work
focus on the healthy assess of peer connection on single node for
permissionless Bitcoin network.

7.5. Network-based attacks

Building on Sybil (described in Section 2), Heilman et al. [10]
propose an Eclipse attack on the bitcoin network where the attacker
manipulates the victim’s peer connections for controlling the informa-
tion flow. Such peer-connection control enables the attacker to control
the block/transaction information delivery to the victim, and further
launch selfish mining [34] or double-spending attack [10]. Tran et al.
propose an Erebus attack [18] to conduct a persistent eclipse attack
using a malicious autonomous system (AS), creating large numbers of
peer identities. In [35], Tran et al. conduct follow-up research regarding
a more fundamental solution called routing-aware peering (or RAP) as
a promising countermeasure against the Erebus attack. Unfortunately,
the result shows that no practical RAP implementations for Bitcoin can
prevent the Erebus attacks. As discussed in Section 2, our work is robust
against identity control threats because we estimate the connectivity
from the peer itself and use the networking traffic information (as
opposed to the finer-granular identifier-based or packet-based informa-
tion). Alangot et al. [36] proposed two lightweight protocols to detect
the Eclipse attack. One protocol monitors the suspicious block times-
tamps. The other gossip-based protocol using the natural connections
of a node to the Internet to gossip about their blockchain views with
contacted servers and other clients. The threat model in [36] is different
from the threat we targeted in Section 6. In our prototyping, we focus
on the worst case scenario that a man-in-the middle attacker controls
(eclipses) all connections between the victim and the Bitcoin Mainnet
and does not relay any packet to the victim.

There are some other network-based attacks in the bitcoin net-
work, such as routing attack [17], partitioning attack [18], mempool
flooding [19], DDoS attack by spam transactions [37], Bitcoin Message-
based DoS (BM-DoS) attack, and Defamation attack [38]. Those attacks
enabled by changing the normal traffic behavior, such as increasing the
per-message count rate, can possibly be detected by our connectivity
estimation engine. The verification for detecting such attacks is left for
future work. Our work mainly focuses on the reliability issue raised
by permissionless Bitcoin network by accurately estimating the healthy
peer connections and filtering out abnormal (malicious) traffic.

8. Conclusion and future work

The permissionless blockchains such as those used for Bitcoin and
other cryptocurrencies forgo the reliance on a centralized entity for
providing the trust/registration and enable anonymous and censorless
transactions. However, the permissionless nature of cryptocurrencies
challenges the reliance on peer identities because the peers can and
are even encouraged to use multiple identities for anonymity. In such
environment, the prior legacy approach for measuring and estimating
the peer connectivity by using the peer identifier information can
become ineffective, e.g., against identity manipulations. In this paper,
we propose a robust connectivity estimation engine by analyzing the
networking traffic and behaviors. While our connectivity estimation
engine is generally applicable to P2P networking (with fine-tuning

Computer Networks 219 (2022) 109436H.-J. Hong et al.

Z
r

D

c
i

D

A

b
w
F
T
p
S
u
i
b
p
c

R

of the parameters), our work focuses on permissionless Bitcoin cryp-
tocurrency network because of the aforementioned challenge in using
identity-based connectivity estimation. Based on our implementations,
we recommend the 2Phases scheme to optimize the accuracy perfor-
mance as it achieves 96.4% estimation accuracy with a tolerance of
one peer connection and has the MSE of 0.1832. Moreover, we show
the effectiveness of our outlier detection (OD), especially against the
networking threats, and use it as a part of the estimation engine to
enhance the connectivity estimation.

Future research will be directed toward a more challenging public
Bitcoin node case where each node can have up to 125 connections us-
ing the default setting. The case has more significant dynamic changes
in peer connectivity. Therefore, more comprehensive analysis with ad-
ditional beneficial parameters is required for obtaining good estimation
accuracy. Another interesting research direction would be analyzing the
traffic on each connection individually to see whether it is a good peer.
Monitoring dynamical changes in estimation parameters in time series
could be essential for the analysis.

CRediT authorship contribution statement

Hsiang-Jen Hong: Conceptualization, Methodology, Software, For-
mal analysis, Investigation, Writing – original draft, Writing – review
& editing, Visualization. Wenjun Fan: Methodology, Funding acqui-
sition. Simeon Wuthier: Investigation. Jinoh Kim: Methodology, Su-
pervision. C. Edward Chow: Supervision, Funding acquisition. Xiaobo
hou: Supervision, Funding acquisition. Sang-Yoon Chang: Writing –
eview & editing, Supervision, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This research was supported by Colorado State Bill 18-086 and
y the National Science Foundation under Grant No. 1922410. This
ork was also supported in part by XJTLU Research Development
unding RDF-21-02-012 and XJTLU Teaching Development Funding
DF21/22-R24-177. This paper is an extended version of the short
aper published at IEEE/ACM International Symposium on Quality of
ervice (IWQoS), 2021 [39]. The authors extend the previous work by
sing a more standard approach for the outlier detection component,
ncluding the 1.5 interquartile range rule and the Local Outlier Proba-
ilities (LoOP). Additionally, we conduct preliminary analyses for the
arameters we monitor for our estimation, which better establishes the
ontrol parameters’ selection.

eferences

[1] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, W. Knottenbelt,
XCLAIM: Trustless, interoperable, cryptocurrency-backed assets, in: 2019 IEEE
Symposium on Security and Privacy (S&P), 2019, pp. 193–210.

[2] H. Tian, K. Xue, X. Luo, S. Li, J. Xu, J. Liu, J. Zhao, D.S.L. Wei, Enabling
cross-chain transactions: A decentralized cryptocurrency exchange protocol, IEEE
Trans. Inf. Forensics Secur. 16 (2021) 3928–3941.

[3] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2009, Cryptography
Mailing List at https://Metzdowd.Com.

[4] G. Wood, Ethereum: A secure decentralised generalised transaction ledger, 2014,
URL http://gavwood.com/paper.pdf.

[5] F. Ritz, A. Zugenmaier, The impact of uncle rewards on selfish mining in
ethereum, in: Proceedings of the 2018 IEEE EuroS&P Workshops, 2018, pp.
12

50–57, http://dx.doi.org/10.1109/EuroSPW.2018.00013.
[6] S.-Y. Chang, Y. Park, S. Wuthier, C.-W. Chen, Uncle-block attack: Blockchain
mining threat beyond block withholding for rational and uncooperative miners,
in: Proceedings of the 17th International Conference on Applied Cryptography
and Network Security, 2019, pp. 241–258.

[7] J. Kim, M. Nakashima, W. Fan, S. Wuthier, X. Zhou, I. Kim, S.-Y. Chang, Anomaly
detection based on traffic monitoring for secure blockchain networking, in: 2021
IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2021,
pp. 1–9, http://dx.doi.org/10.1109/ICBC51069.2021.9461119.

[8] J. Kim, M. Nakashima, W. Fan, S. Wuthier, X. Zhou, I. Kim, S.-Y. Chang, A
machine learning approach to anomaly detection based on traffic monitoring
for secure blockchain networking, IEEE Trans. Netw. Serv. Manag. (2022) 1,
http://dx.doi.org/10.1109/TNSM.2022.3173598.

[9] G.O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, S. Čapkun, Misbehavior
in bitcoin: A study of double-spending and accountability, ACM Trans. Inf. Syst.
Secur. 18 (1) (2015).

[10] E. Heilman, A. Kendler, A. Zohar, S. Goldberg, Eclipse attacks on bitcoin’s peer-
to-peer network, in: Proceedings of 24th USENIX Security Symposium, 2015, pp.
129–144.

[11] P. Rousseeuw, M. Hubert, Robust statistics for outlier detection, Wiley Interdisc.
Rew.: Data Min. Knowl. Discov. 1 (2011) 73–79, http://dx.doi.org/10.1002/
widm.2.

[12] H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek, LoOP: Local outlier probabilities,
in: Proceedings of the 18th ACM CIKM, New York, NY, USA, 2009, pp.
1649–1652.

[13] H.W. Lilliefors, On the Kolmogorov-Smirnov test for normality with mean and
variance unknown, J. Amer. Statist. Assoc. 62 (318) (1967) 399–402.

[14] D. dos Reis, P. Flach, S. Matwin, G. Batista, Fast unsupervised online drift
detection using incremental Kolmogorov-Smirnov test, in: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016, pp. 1545–1554.

[15] Z. Li, H. Zhang, M. Masum, H. Shahriar, H. Haddad, Cyber fraud prediction
with supervised machine learning techniques, in: Proceedings of the 2020 ACM
Southeast Conference, 2020, pp. 176–180.

[16] Y. Ding, Y. Du, Y. Hu, Z. Liu, L. Wang, K. Ross, A. Ghose, Broadcast yourself:
Understanding YouTube uploaders, in: Proceedings of the ACM SIGCOMM
Internet Measurement Conference, IMC, New York, NY, USA, 2011, pp. 361–370.

[17] M. Apostolaki, A. Zohar, L. Vanbever, Hijacking bitcoin: Routing attacks on
cryptocurrencies, in: Proceedings of the 2017 IEEE S&P, 2017, pp. 375–392.

[18] M. Tran, I. Choi, G. Moon, A.V. Vu, M. Kang, A stealthier partitioning attack
against bitcoin peer-to-peer network, in: Proceedings of the 2020 IEEE S&P,
2020, pp. 515–530.

[19] M. Saad, L. Njilla, C. Kamhoua, J. Kim, D. Nyang, A. Mohaisen, Mempool op-
timization for defending against ddos attacks in PoW-based blockchain systems,
in: Proceedings of the 2019 IEEE International Conference on Blockchain and
Cryptocurrency, 2019, pp. 285–292.

[20] G. Wepiwe, P.L. Simeonov, A concentric multi-ring overlay for highly reliable
P2P networks, in: Fourth IEEE International Symposium on Network Computing
and Applications, 2005, pp. 83–90.

[21] L. Xiong, L. Liu, PeerTrust: supporting reputation-based trust for peer-to-peer
electronic communities, IEEE Trans. Knowl. Data Eng. 16 (7) (2004) 843–857.

[22] W. Hao, J. Zeng, X. Dai, J. Xiao, Q. Hua, H. Chen, K. Li, H. Jin, Towards a
trust-enhanced blockchain P2P topology for enabling fast and reliable broadcast,
IEEE Trans. Netw. Serv. Manag. 17 (2) (2020) 904–917.

[23] D. Stutzbach, R. Rejaie, Understanding churn in peer-to-peer networks, in:
Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC,
2006, pp. 189–202.

[24] M.A. Imtiaz, D. Starobinski, A. Trachtenberg, N. Younis, Churn in the bitcoin
network, IEEE Trans. Netw. Serv. Manag. 18 (2) (2021) 1598–1615.

[25] B. Wang, S. Chen, L. Yao, B. Liu, X. Xu, L. Zhu, A simulation approach for
studying behavior and quality of blockchain networks, in: Proceedings of the 1st
IEEE International Conference on Blockchain, 2018, pp. 18–31.

[26] C. Decker, R. Wattenhofe, Information propagation in the bitcoin network, in:
Proceedings of the 2013 IEEE P2P, 2013, pp. 1–10.

[27] A. Sudhan, M.J. Nene, Peer selection techniques for enhanced transaction
propagation in bitcoin peer-to-peer network, in: Proceedings of 2018 Second
International Conference on Intelligent Computing and Control Systems, 2018,
pp. 679–684.

[28] S. Wuthier, P. Chandramouli, X. Zhou, S.-Y. Chang, Greedy networking in
cryptocurrency blockchain, in: W. Meng, S. Fischer-Hübner, C.D. Jensen (Eds.),
ICT Systems Security and Privacy Protection, Springer International Publishing,
Cham, 2022, pp. 343–359.

[29] M. Fadhil, G. Owenson, M. Adda, Locality based approach to improve propa-
gation delay on the bitcoin peer-to-peer network, in: Proceedings of the 2017
IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
2017, pp. 556–559.

[30] L. Wang, I. Pustogarov, Towards better understanding of bitcoin unreachable

peers, in: CoRR, 2017, URL https://arxiv.org/abs/1709.06837.

http://refhub.elsevier.com/S1389-1286(22)00470-4/sb1
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb1
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb1
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb1
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb1
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb2
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb2
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb2
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb2
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb2
https://Metzdowd.Com
http://gavwood.com/paper.pdf
http://dx.doi.org/10.1109/EuroSPW.2018.00013
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb6
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb6
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb6
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb6
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb6
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb6
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb6
http://dx.doi.org/10.1109/ICBC51069.2021.9461119
http://dx.doi.org/10.1109/TNSM.2022.3173598
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb9
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb9
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb9
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb9
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb9
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb10
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb10
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb10
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb10
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb10
http://dx.doi.org/10.1002/widm.2
http://dx.doi.org/10.1002/widm.2
http://dx.doi.org/10.1002/widm.2
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb12
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb12
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb12
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb12
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb12
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb13
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb13
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb13
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb14
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb14
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb14
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb14
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb14
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb14
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb14
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb15
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb15
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb15
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb15
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb15
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb16
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb16
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb16
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb16
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb16
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb17
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb17
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb17
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb18
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb18
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb18
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb18
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb18
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb19
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb19
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb19
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb19
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb19
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb19
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb19
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb20
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb20
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb20
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb20
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb20
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb21
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb21
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb21
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb22
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb22
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb22
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb22
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb22
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb23
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb23
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb23
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb23
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb23
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb24
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb24
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb24
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb25
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb25
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb25
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb25
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb25
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb26
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb26
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb26
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb27
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb27
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb27
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb27
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb27
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb27
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb27
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb28
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb28
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb28
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb28
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb28
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb28
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb28
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb29
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb29
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb29
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb29
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb29
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb29
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb29
https://arxiv.org/abs/1709.06837

Computer Networks 219 (2022) 109436H.-J. Hong et al.
[31] S.K. Kim, Z. Ma, S. Murali, J. Mason, A. Miller, M. Bailey, Measuring ethereum
network peers, in: Proceedings of the ACM SIGCOMM Internet Measurement
Conference, IMC, 2018, pp. 91–104.

[32] F. Franzoni, X. Salleras, V. Daza, Atom: Active topology monitoring for the
bitcoin peer-to-peer network, Peer-To-Peer Netw. Appl. 15 (2022) 408–425.

[33] J. Zhao, J. Tang, Z. Li, H. Wang, K.-Y. Lam, K. Xue, An analysis of blockchain
consistency in asynchronous networks: Deriving a neat bound, in: 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS), 2020, pp.
179–189.

[34] K. Nayak, S. Kumar, A. Miller, E. Shi, Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack, in: Proceedings of the 2016 IEEE
EuroS&P, 2016, pp. 305–320, http://dx.doi.org/10.1109/EuroSP.2016.32.

[35] M. Tran, A. Shenoi, M.S. Kang, On the routing-aware peering against network-
eclipse attacks in bitcoin, in: 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, USENIX Association, 2021, pp. 1253–1270.

[36] B. Alangot, D. Reijsbergen, S. Venugopalan, P. Szalachowski, K.S. Yeo, Decen-
tralized and lightweight approach to detect eclipse attacks on proof of work
blockchains, IEEE Trans. Netw. Serv. Manag. 18 (2) (2021) 1659–1672, http:
//dx.doi.org/10.1109/TNSM.2021.3069502.

[37] J. Zhang, Y. Cheng, X. Deng, B. Wang, J. Xie, Y. Yang, M. Zhang, Preventing
spread of spam transactions in blockchain by reputation, in: Proceedings of the
2020 IEEE/ACM 28th International Symposium on Quality of Service, 2020, pp.
1–6.

[38] W. Fan, S. Wuthier, H.-J. Hong, X. Zhou, Y. Bai, S.-Y. Chang, The security
investigation of ban score and misbehavior tracking in bitcoin network, in: 2022
IEEE 42nd International Conference on Distributed Computing Systems (ICDCS),
2022, pp. 191–201.

[39] H.-J. Hong, W. Fan, S. Wuthier, J. Kim, X. Zhou, C.E. Chow, S.-Y. Chang,
Robust P2P connectivity estimation for permissionless bitcoin network, in: 2021
IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), 2021,
pp. 1–6.

Hsiang-Jen Hong received the Ph.D. degree from the De-
partment of Computer Science and Information Engineering
at National Taiwan University of Science and Technology,
Taiwan, in 2018. He is currently a post-doctoral research
associate at the University of Colorado, Colorado Springs.
His research interests are computer networking, blockchain,
cybersecurity, and combinatorial optimization.

Wenjun Fan is currently an assistant professor with
Xi’an Jiaotong-Liverpool University (XJTLU). Before joining
XJTLU, he worked with University of Kent, Canterbury as
postdoc 2017–2019, and University of Colorado, Colorado
Springs as research associate 2019–2021, respectively. He
received the Ph.D. degree in telematics systems engineering
from Technical University of Madrid (UPM) in 2017. His
research interests include cybersecurity, cloud computing,
network softwarization, blockchain and machine learning.
13
Simeon Wuthier is a Ph.D. student from the Department of
Computer Science at the University of Colorado, Colorado
Springs. His research is in theoretical computer science,
cryptography, and distributed ledger technology.

Jinoh Kim received his Ph.D. degree in Computer Science
from University of Minnesota, Twin Cities. He is currently
an Associate Professor of Computer Science at Texas A&M
University-Commerce and an Affiliate Faculty Scientist at
Lawrence Berkeley National Laboratory. His main research
interest lies in the area of networked/distributed systems
with the focuses on performance, reliability, scalability, vis-
ibility, and security, with data-driven analytics and machine
intelligence.

C. Edward Chow is Professor of Computer Science at the
University of Colorado Colorado Springs. He got his Ph.D.
in Computer Science Degree from University of Texas at
Austin 1985. He served as a Member of Technical Staff with
Bell Communications Research 1986–1991. His research is
focused on the improvement of the security, reliability and
performance of network systems.

Xiaobo Zhou obtained the BS, MS, and Ph.D. degrees in
Computer Science from Nanjing University, in 1994, 1997,
and 2000, respectively. Currently he is a professor of the
Department of Computer Science, University of Colorado,
Colorado Springs. His research lies in Cloud computing
and datacenters, BigData parallel and distributed processing,
autonomic and sustainable computing. He was a recipient
of the NSF CAREER Award in 2009.

Sang-Yoon Chang received the B.S. and Ph.D. degrees from
the Department of Electrical and Computer Engineering at
University of Illinois at Urbana–Champaign in 2007 and
2013, respectively. He is an associate professor at the
Computer Science Department at University of Colorado
Colorado Springs. He was a postdoctoral fellow with the
Advanced Digital Sciences Center. His research is in security,
networking, wireless, cyber–physical systems, and applied
cryptography.

http://refhub.elsevier.com/S1389-1286(22)00470-4/sb31
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb31
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb31
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb31
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb31
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb32
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb32
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb32
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb33
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb33
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb33
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb33
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb33
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb33
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb33
http://dx.doi.org/10.1109/EuroSP.2016.32
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb35
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb35
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb35
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb35
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb35
http://dx.doi.org/10.1109/TNSM.2021.3069502
http://dx.doi.org/10.1109/TNSM.2021.3069502
http://dx.doi.org/10.1109/TNSM.2021.3069502
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb37
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb37
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb37
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb37
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb37
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb37
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb37
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb38
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb38
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb38
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb38
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb38
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb38
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb38
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb39
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb39
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb39
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb39
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb39
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb39
http://refhub.elsevier.com/S1389-1286(22)00470-4/sb39

	Robust P2P networking connectivity estimation engine for permissionless Bitcoin cryptocurrency
	Introduction
	Problem Statement & Motivation
	Our Connectivity Estimation Engine
	Overview of Connectivity Estimation Engine
	Design of Connectivity Estimation Engine
	The Selection of Estimation Parameters
	Per-Parameter Processing (PPP)
	Outlier Detection (OD)
	Estimation Aggregator (EA)

	Prototyping: Bitcoin Peer and Connectivity Estimation Engine Implementation
	Prototype Implementations
	Preliminary Analyses
	Analyses for n and s
	Analyses for λ
	Analyses for nmi

	Evaluation Results
	Estimation Metrics
	Effect of the Weight Control
	Effect of the Granularity Control
	Estimation Performance
	Estimation Schemes
	Performance Comparison in MSE and ε-Tolerance Accuracy

	Comparison with the Legacy approach

	Outlier Detection for countering threats
	Prototyping
	Man-in-the-middle attack
	Bitcoin PING DoS attack
	Spam transactions flooding attack

	OD Effectiveness
	Cost Analysis of Outlier Detection
	More Discussion about Other Threats

	Related Work
	Reliability in P2P Network
	Dynamics in Peer Connectivity
	Peer Selection Strategies
	Traffic measurement and Formal analysis
	Network-based Attacks

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

