
Version++ Protocol Demonstration for

Cryptocurrency Blockchain Handshaking with

Software Assurance

Arijet Sarker
+

, Simeon Wuthier
+

, Jinoh Kim
∗

, Jonghyun Kim
§

, and Sang-Yoon Chang
+

+University of Colorado Colorado Springs
∗Texas A&M University-Commerce

§Electronics and Telecommunications Research Institute

Abstract—Cryptocurrency software implements the cryptocur-
rency operations. We design a software assurance scheme for
cryptocurrency and advance the cryptocurrency handshaking
protocol. More specifically, we focus on Bitcoin for implementa-
tion and integration and advance its Version-message based hand-
shaking and thus call our scheme Version++. The Version++ pro-
tocol provides software assurance, which is distinguishable from
the previous research because it is permissionless, distributed,
and lightweight to fit its cryptocurrency application. Utilizing
Merkle Tree for the verification efficiency, we implement and
test Version++ on Bitcoin software and conduct experiments in an
active Bitcoin node prototype connected to the Bitcoin Mainnet.
This paper for the conference demonstration supplements our
technical paper at CCNC 2023 for synergy but highlights the
prototyping and demonstration components of our research.

Index Terms—Cryptocurrency, Blockchain, Bitcoin, Software
Assurance, Permissionless, Distributed, Merkle Tree

I. INTRODUCTION

Bitcoin is a popular distributed and permissionless cryp-

tocurrency with a market cap of 382.25 billion dollars as of

October 2022. The potential peers in the Bitcoin network can

exchange messages with each other after successfully estab-

lishing connections using the Bitcoin handshaking protocol

based on the Version message. However, the current Bitcoin

handshaking does not provide software assurance for the

Bitcoin software (to verify whether the peer has the claimed

software version or not). We design and build Version++

scheme [1] to include software assurance in such Bitcoin

protocol using the standard cryptographic primitives and make

it permissionless, distributed, and lightweight for Bitcoin peer-

to-peer (P2P) networking compatibility. However, to attain

these properties and enable its cryptocurrency application,

the software assurance achieved by Version++ ensures that

the prover (a Bitcoin peer) holds the correct software code

files and has a tradeoff with remote code attestation [2], [3]

which offers stronger integrity/security assurance including

code execution. The Version++ protocol uses the Bitcoin

software files and the Bitcoin peer’s unique ID as inputs to

compute the Proof using a Merkle tree data structure [4] to

network with other potential Bitcoin peers for software code

assurance of the respective software version. Our Merkle Tree-

based approach prevents an attacker from reusing the Proof of

other Bitcoin peers (due to the use of ID as an input) and from

generating the correct Proof without the necessary code files.

Node APeer A

Version with IDA, Proof 

Version with IDB, Proof

Verack

Verack

Proof 

Verification

with IDB

Peer B

Proof 

Generation

with IDA

Proof 

Generation

with IDB

Proof 

Verification

with IDA

Fig. 1: Version++ handshaking built on the Bitcoin handshak-

ing protocol. The only additions from the current handshaking

protocol are the Version++ Proof in the Version message

(networking) and the Proof verification (computing). The two

peers interchange their roles as prover/verifier in handshaking.

In this demo paper, we describe the implementation details

for the Version++ prototype involving a prover and a verifier

in two virtual machines. We also connect a Bitcoin prototype

to the Mainnet to measure the real-world P2P networking,

including the peer connection duration and the current soft-

ware version distributions providing us with references for the

Version++ overheads. While this paper focuses on the imple-

mentation and demonstration, greater details and analyses of

the Version++ protocol are in [1].

II. VERSION++ SCHEME PROTOCOL

Version++ handshaking protocol builds on the Bitcoin hand-

shaking based on the Version and Verack exchanges and

includes the Proof (a unique 32-byte data field for each peer

because of the dependency on peer ID) for the software

assurance as shown in Fig. 1. When two potential peers (e.g.

peer A and peer B in Fig. 1) involve in the peer connection

establishment process both peers become the prover (prove to

other potential peers that it holds a specific Bitcoin software

version) and verifier (verify whether its potential peer has the

specific Bitcoin software version) to each other during the

Version++ handshaking. In Version++, a prover uses the code

files of its Bitcoin software version and the corresponding

ID (e.g., IP address) as input of the Merkle Tree for Proof

generation. The Merkle Root generated from the Merkle

tree is communicated to the verifier as the Proof, and other



(a) Node information displyaing the num-
ber of connections supporting our scheme
relative to all node connections.

(b) The node console showing getpeer-
info with “using version++” and “ver-
sion++ status”.

(c) Our newly added tab, Verack++ File
Tree, that enables exploring the files with
each corresponding hash.

Fig. 2: Our Version++ implementation’s user interface in Bitcoin Core.

hash nodes/outputs within the Merkle tree remain on the

local machine of the prover. The verifier checks the Bitcoin

software version number received from the Version message

of the prover, recomputes the Proof for that version using the

prover’s ID, and compares the recomputed Proof with the

Proof received from the prover. However, the verifier only

needs to store the nodes/hash outputs of the Merkle tree that

are affected by the ID and update those nodes with the prover’s

ID during the Proof verification. Both the peers send Verack

message to each other only after successful verification and

establishes connection with each other thereafter.

III. IMPLEMENTATION

We implement our Version++ prototype1 in C++ and em-

bed it into Bitcoin Core V0.23.0 (however, other Bitcoin

implementations can be used). We make minimal protocol

modifications to net processsing.cpp (responsible for handling

incoming and outgoing Bitcoin messages) and net.h (respon-

sible for defining node connections). In net processing.cpp,

we add the Proof data field in the Version message arguments

and call our Proof generation/verification functions when a

Version message is received. In net.h, we store the Merkle

Tree manager, HandshakeProof in the connection manager

and add two flags in each node connection (CNode object):

isUsingHandshakeProof flag and handshakeProofStatus to

specify if the node is supporting the handshake Proof, and the

status of the connection respectively. We also add a logging

category to Bitcoin, “handshakeproof” that prints the status

of each handshake to the console, including the Proofs being

compared, and the state of the connection. For user interaction,

we add an RPC call, getversionproofhash, and update the

current getpeerinfo call to include our node state information,

as shown in Fig. 2b, and update the user interface accordingly

(Fig. 2a and Fig. 2c).

IV. CONFERENCE DEMOSTRATION

Our demonstration is mostly software-based so we only

require wireless connectivity to the Internet and an area for our

1We make our implementation available at https://github.com/bitcoin-
version-plus-plus/bitcoin-version-plus-plus.

laptop. During the demonstration, we will show our Bitcoin

Core implementation and how it gets updated when other peers

are using our Version++ scheme but resorts back to the default

Version protocol when either of the nodes does not support

Version++ (i.e. backward compatibility when Version++ can-

not be performed). In Version++, when we modify any portion

of the source code (thus changing the hash) the verification

becomes unsuccessful (because the computed Proof and the

received Proof from the prover does not match) and therefore

the handshake fails. In the conference demo, we will highlight

the functionalities of our interface and show how it affects the

connection state within each peer connection.

V. CONCLUSION

We design and build a Version++ protocol for distributed,

permissionless and lightweight solution of software assurance

in a Bitcoin P2P network. Our Version++ protocol is gen-

erally applicable to the software-implemented permissionless

and distributed cryptocurrencies in principle. However, in

this paper, we demonstrate the functionalities and application

behavior of Version++ on Bitcoin.

ACKNOWLEDGEMENT

This work was supported by National Science Foundation under Grant
No. 1922410 and by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(No. 2021-0-02107, Collaborative research on element Technologies for 6G
Security-by-Design and standardization-based International cooperation). This
demonstration paper supplements our main technical paper at CCNC 2023 [1]
but highlights the prototyping and demonstration components of our research.

REFERENCES

[1] A. Sarker, S. Wuthier, J. Kim, J. Kim, and S.-Y. Chang, “Version++: Cryp-
tocurrency blockchain handshaking with software assurance,” in 2023
IEEE 20th Annual Consumer Communications & Networking Conference
(CCNC). IEEE, 2023, pp. 1–6.

[2] M. Ammar, B. Crispo, I. De Oliveira Nunes, and G. Tsudik, “Delegated
attestation: scalable remote attestation of commodity cps by blending
proofs of execution with software attestation,” in Proceedings of the
14th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2021, pp. 37–47.

[3] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik,
“{APEX}: A verified architecture for proofs of execution on remote
devices under full software compromise,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 771–788.

[4] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369–378.

2


