Version++ Protocol Demonstration for
Cryptocurrency Blockchain Handshaking with
Software Assurance

Arijet Sarker”, Simeon Wuthier', Jinoh Kim", Jonghyun Kim®, and Sang-Yoon Chang+

TUniversity of Colorado Colorado Springs
*Texas A&M University-Commerce
$Electronics and Telecommunications Research Institute

Abstract—Cryptocurrency software implements the cryptocur-
rency operations. We design a software assurance scheme for
cryptocurrency and advance the cryptocurrency handshaking
protocol. More specifically, we focus on Bitcoin for implementa-
tion and integration and advance its Version-message based hand-
shaking and thus call our scheme Version++. The Version++ pro-
tocol provides software assurance, which is distinguishable from
the previous research because it is permissionless, distributed,
and lightweight to fit its cryptocurrency application. Utilizing
Merkle Tree for the verification efficiency, we implement and
test Version++ on Bitcoin software and conduct experiments in an
active Bitcoin node prototype connected to the Bitcoin Mainnet.
This paper for the conference demonstration supplements our
technical paper at CCNC 2023 for synergy but highlights the
prototyping and demonstration components of our research.

Index Terms—Cryptocurrency, Blockchain, Bitcoin, Software
Assurance, Permissionless, Distributed, Merkle Tree

I. INTRODUCTION

Bitcoin is a popular distributed and permissionless cryp-
tocurrency with a market cap of 382.25 billion dollars as of
October 2022. The potential peers in the Bitcoin network can
exchange messages with each other after successfully estab-
lishing connections using the Bitcoin handshaking protocol
based on the Version message. However, the current Bitcoin
handshaking does not provide software assurance for the
Bitcoin software (to verify whether the peer has the claimed
software version or not). We design and build Version++
scheme [1] to include software assurance in such Bitcoin
protocol using the standard cryptographic primitives and make
it permissionless, distributed, and lightweight for Bitcoin peer-
to-peer (P2P) networking compatibility. However, to attain
these properties and enable its cryptocurrency application,
the software assurance achieved by Version++ ensures that
the prover (a Bitcoin peer) holds the correct software code
files and has a tradeoff with remote code attestation [2], [3]
which offers stronger integrity/security assurance including
code execution. The Version++ protocol uses the Bitcoin
software files and the Bitcoin peer’s unique ID as inputs to
compute the Proof using a Merkle tree data structure [4] to
network with other potential Bitcoin peers for software code
assurance of the respective software version. Our Merkle Tree-
based approach prevents an attacker from reusing the Proof of
other Bitcoin peers (due to the use of ID as an input) and from
generating the correct Proof without the necessary code files.

Peer A Peer B
T T
Proof : : Proof
Generation | 1 Generation
withID, | : with IDg
1 Version with ID ,, Proof K
r d
! Version with IDg, Proof !
Proof : 1 Proof
Verification | : Verification
. h .
with IDg 3 Verack i with ID,
' Verack ,
1 "l
v v

Fig. 1: Version++ handshaking built on the Bitcoin handshak-
ing protocol. The only additions from the current handshaking
protocol are the Version++ Proof in the Version message
(networking) and the Proof verification (computing). The two
peers interchange their roles as prover/verifier in handshaking.

In this demo paper, we describe the implementation details
for the Version++ prototype involving a prover and a verifier
in two virtual machines. We also connect a Bitcoin prototype
to the Mainnet to measure the real-world P2P networking,
including the peer connection duration and the current soft-
ware version distributions providing us with references for the
Version++ overheads. While this paper focuses on the imple-
mentation and demonstration, greater details and analyses of
the Version++ protocol are in [1].

II. VERSION++ SCHEME PROTOCOL

Version++ handshaking protocol builds on the Bitcoin hand-
shaking based on the Version and Verack exchanges and
includes the Proof (a unique 32-byte data field for each peer
because of the dependency on peer ID) for the software
assurance as shown in Fig. 1. When two potential peers (e.g.
peer A and peer B in Fig. 1) involve in the peer connection
establishment process both peers become the prover (prove to
other potential peers that it holds a specific Bitcoin software
version) and verifier (verify whether its potential peer has the
specific Bitcoin software version) to each other during the
Version++ handshaking. In Version++, a prover uses the code
files of its Bitcoin software version and the corresponding
ID (e.g., IP address) as input of the Merkle Tree for Proof
generation. The Merkle Root generated from the Merkle
tree is communicated to the verifier as the Proof, and other

Node window - o0 ®

Information | Console | NetworkTraffic | Peers | Versions+ File Tree
General
Client version V2300

User Agent [satoshi23.0.0/
Datadir /home/ubuntu1/.bitcoin
Blocksdir /home/ubuntu1/.bitcoin/blocks
Startup time
Network

Sat Oct 8 14:22:09 2022

Name
Number of connections 10 (1n:0/ Out: 10)
Number of Version++ connections. ot of 10 connections
Block chaln

Current block height 757756

Last block time Sat Oct 8 14:21:38 2022
Memory Pool

Current number of transactions 664

Memory usage 124M8 2 0pen

Debug log file

(a) Node information displyaing the num-
ber of connections supporting our scheme
relative to all node connections.

Node window - o0 @
Information | Console | NetworkTraffic Peers | Version++ File Tree
< trus,
~: 1665260797,

": 1665260797,
": 1665260797,

(b) The node console showing getpeer-
info with “using_version++” and “ver-
sion++_status”.

Node window - o0 @®

Information Console Network Traffic peers | Versions+ File Tree

Name size
| dbwrapperh 1021Ki8

deploymentinfo.cpp 1.00Ki8
| deploymentinfo.h 848 bytes
-/ deploymentstatus.cpp 1.53Ki8
| deploymentstatus.h 2.06Ki8
dummywallet.cop 176 KiB
external_signer.cop 4.44Ki8
external_signerh 2.66KiB
flatfile.cpp 299KiB
1 fatile.h 285Ki8

fs.cop 387Ki8
v fsh 7.61Ki8

handshake_proof.cop 6.81KiB
hash.cpp 240Ki8
hashh 5.58KiB
hetprpc.cpp 1136 KiB
httprpch 867 bytes
P 2117k
1 httpserverh 4.13KiB
i20.cpp 12.13Ki8
vl i2ph 8.62Ki8
. indirectmap.h 2.49Ki8
init.cpp 10045 KiB -

SHA256 Hash 1 19

(c) Our newly added tab, Verack++ File
Tree, that enables exploring the files with
each corresponding hash.

Fig. 2: Our Version++ implementation’s user interface in Bitcoin Core.

hash nodes/outputs within the Merkle tree remain on the
local machine of the prover. The verifier checks the Bitcoin
software version number received from the Version message
of the prover, recomputes the Proof for that version using the
prover’s ID, and compares the recomputed Proof with the
Proof received from the prover. However, the verifier only
needs to store the nodes/hash outputs of the Merkle tree that
are affected by the ID and update those nodes with the prover’s
ID during the Proof verification. Both the peers send Verack
message to each other only after successful verification and
establishes connection with each other thereafter.

III. IMPLEMENTATION

We implement our Version++ prototype! in C++ and em-
bed it into Bitcoin Core V0.23.0 (however, other Bitcoin
implementations can be used). We make minimal protocol
modifications to net_processsing.cpp (responsible for handling
incoming and outgoing Bitcoin messages) and net.h (respon-
sible for defining node connections). In net_processing.cpp,
we add the Proof data field in the Version message arguments
and call our Proof generation/verification functions when a
Version message is received. In net.h, we store the Merkle
Tree manager, HandshakeProof in the connection manager
and add two flags in each node connection (CNode object):
isUsingHandshakeProof flag and handshakeProofStatus to
specify if the node is supporting the handshake Proof, and the
status of the connection respectively. We also add a logging
category to Bitcoin, “handshakeproof” that prints the status
of each handshake to the console, including the Proofs being
compared, and the state of the connection. For user interaction,
we add an RPC call, getversionproofhash, and update the
current getpeerinfo call to include our node state information,
as shown in Fig. 2b, and update the user interface accordingly
(Fig. 2a and Fig. 2c).

IV. CONFERENCE DEMOSTRATION
Our demonstration is mostly software-based so we only
require wireless connectivity to the Internet and an area for our

'We make our implementation available at https:/github.com/bitcoin-
version-plus-plus/bitcoin-version-plus-plus.

laptop. During the demonstration, we will show our Bitcoin
Core implementation and how it gets updated when other peers
are using our Version++ scheme but resorts back to the default
Version protocol when either of the nodes does not support
Version++ (i.e. backward compatibility when Version++ can-
not be performed). In Version++, when we modify any portion
of the source code (thus changing the hash) the verification
becomes unsuccessful (because the computed Proof and the
received Proof from the prover does not match) and therefore
the handshake fails. In the conference demo, we will highlight
the functionalities of our interface and show how it affects the
connection state within each peer connection.
V. CONCLUSION

We design and build a Version++ protocol for distributed,
permissionless and lightweight solution of software assurance
in a Bitcoin P2P network. Our Version++ protocol is gen-
erally applicable to the software-implemented permissionless
and distributed cryptocurrencies in principle. However, in
this paper, we demonstrate the functionalities and application
behavior of Version++ on Bitcoin.

ACKNOWLEDGEMENT

This work was supported by National Science Foundation under Grant
No. 1922410 and by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(No. 2021-0-02107, Collaborative research on element Technologies for 6G
Security-by-Design and standardization-based International cooperation). This
demonstration paper supplements our main technical paper at CCNC 2023 [1]
but highlights the prototyping and demonstration components of our research.

REFERENCES

[1] A. Sarker, S. Wuthier, J. Kim, J. Kim, and S.-Y. Chang, “Version++: Cryp-
tocurrency blockchain handshaking with software assurance,” in 2023
IEEE 20th Annual Consumer Communications & Networking Conference
(CCNC). IEEE, 2023, pp. 1-6.

[2] M. Ammar, B. Crispo, I. De Oliveira Nunes, and G. Tsudik, “Delegated
attestation: scalable remote attestation of commodity cps by blending
proofs of execution with software attestation,” in Proceedings of the
14th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2021, pp. 37-47.

[3] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik,
“{APEX}: A verified architecture for proofs of execution on remote
devices under full software compromise,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 771-788.

[4] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369-378.

