Version++: Cryptocurrency Blockchain
Handshaking With Software Assurance

Arijet Sarker”, Simeon Wauthier', Jinoh Kim", J onghyun Kim®, and Sang-Yoon Chang+

TUniversity of Colorado Colorado Springs
*Texas A&M University-Commerce
$Electronics and Telecommunications Research Institute

Abstract—Cryptocurrency software implements the cryptocur-
rency operations, including the distributed consensus protocol
and the peer-to-peer networking. We design a software assurance
scheme for cryptocurrency and advance the cryptocurrency
handshaking protocol. Since we focus on Bitcoin (the most
popular cryptocurrency) for implementation and integration, we
call our scheme Version++, built on and advancing the current
Bitcoin handshaking protocol based on the Version message. Our
Version++ protocol providing software assurance is distinguish-
able from the previous research because it is permissionless,
distributed, and lightweight to fit its cryptocurrency application.
Our scheme is permissionless since it does not require a cen-
tralized trusted authority (unlike the remote software attestation
techniques from trusted computing); it is distributed since the
peer checks the software assurances of its own peer connections;
and it is designed for efficiency/lightweight due to the dynamic
nature of the peer connections and the large-scale broadcasting
in cryptocurrency networking. Utilizing Merkle Tree for the effi-
ciency of the proof verification, we implement and test Version++
on Bitcoin software and conduct experiments in an active Bitcoin
node prototype connected to the Bitcoin Mainnet. Qur prototype-
based performance analyses demonstrate the lightweight design
of Version++. The peer-specific verification grows logarithmically
with the number of software files in processing time and in
storage. In addition, the Version++ verification overhead is small
compared to the overall handshaking process; our measured
overhead of 2.22% with minimal networking latency between
the virtual machines provides an upper bound in the real-world
networking with greater handshaking duration, i.e., the relative
Version++ overhead in the real world with physically separate
machines will be smaller.

Index Terms—Bitcoin, Software Assurance, Permissionless,
Distributed, Merkle Tree, Bitcoin Core

I. INTRODUCTION

Bitcoin, a distributed and permissionless cryptocurrency, has
gained immense popularity since its inception with the white
paper published by Satoshi Nakamoto in 2008 [13] and has a
market cap exceeding hundreds of billion dollars (450.06 bil-
lion dollars as of August 2022) [5]. The underlying networking
of Bitcoin is based on a peer-to-peer network (P2P). To join the
Bitcoin network, a potential peer needs to download and install
the Bitcoin software and involve in the peer discovery process.
The peer starts establishing connections with the discovered
peers including TCP handshaking protocol in the OSI network
layer and Bitcoin handshaking protocol in the application
layer. Once the connection is successfully established, the peer
can exchange messages with other peers to participate in the
Bitcoin network.

During the Bitcoin handshaking to establish the P2P con-
nections, the two peers identify their current version of the
Bitcoin software with each other by exchanging the Version
messages. We design and advance such Bitcoin protocol to
include the software assurance and call our scheme Version++.
Version++, including the Proof generation and verification
algorithms, is built on the standard cryptographic primitives
and is permissionless, distributed, and lightweight by design
to make it compatible with the Bitcoin P2P networking. In
the Version++ protocol, Bitcoin software files and the Bitcoin
peer’s unique ID are used to compute the Proof using Merkle
Tree [10], [11] to network it to other Bitcoin peers for software
code assurance of the respective software version. Our Merkle
Tree-based approach prevents an attacker from reusing the
Proof of other Bitcoin peers (due to the use of ID as one
of the inputs) and from generating the correct Proof without
the necessary code files.

The permissionless and distributed Bitcoin requires the
mechanisms for its P2P connection establishment to forgo
the reliance on the centralized system, which can provide a
challenge in the cryptocurrency networking in general [8], [7].
More specifically, in our work, a centralized architecture for
software code assurance violates the permissionless structure
in the Bitcoin network. Because of this reason, the remote code
attestation based on a remote trusted server is prohibited in
permissionless cryptocurrencies including Bitcoin. Moreover,
Bitcoin network requires the large-scale broadcasting, which
challenges the real-time networking overheads needed for
the remote code attestation. Therefore, our work Version++
for achieving software assurance is distinguishable from the
remote code attestation in its properties. In contrast to remote
code attestation, software assurance is permissionless (no
need for a centralized trusted execution environment/trusted
computing for software code assurance), distributed (Proof
generation and verification of code assurance are processed
by Bitcoin peers instead of a trusted server) and lightweight
(no real-time networking or hardware requirements). However,
to achieve these properties, the software assurance achieved
by Version++ is only capable of ensuring that a Bitcoin
node/prover holds the software code files and has a trade-
off with remote code attestation which offers stronger in-
tegrity/security assurance including code execution.

Our work is generally applicable and useful for any permis-
sionless and distributed cryptocurrencies in principle. How-

ever, we focus on the Bitcoin cryptocurrency for two reasons.
First, Bitcoin is the most popular cryptocurrency. Second,
we implement our work on the concrete Bitcoin protocol to
advance the Version-based handshake, hence the name of our
scheme, Version++.

The rest of the paper is organized as follows. We discuss the
background of the default Bitcoin handshaking protocol and
the related work in Section II and Section III respectively. We
describe our proposed designed scheme, Version++ including
the requirements, Proof generation, and verification in Sec-
tion IV. The implementation and analyses details are illustrated
in Section V and Section VI respectively. We conclude the
paper with Section VII.

II. BACKGROUND

We describe the background information on Bitcoin net-
working and protocol in this section. If two potential peers
want to communicate with each other directly they need to go
through the Bitcoin handshaking process in the P2P network.
New potential peers can start the peer discovery process using
DNS query and existing peers can get information about other
potential peers from the already connected peers [19]. Since
the Bitcoin network architecture is not defined by geographical
location the location of the peers are irrelevant and can be
selected randomly.

We consider two potential peers - peer A and peer B to
describe the Bitcoin handshaking protocol. Peer A establishes
a TCP connection with peer B (using port 8333 generally) to
start Bitcoin handshaking protocol with peer B [17]. After that
peer A sends its own version message to peer B. Though there
are 14 data fields in the Version message [3] our interest lies
in the version and IP data field of the Version message which
defines the highest Bitcoin software version number and the
IP address of the transmitting node (i.e., peer A in this case).
Peer B also sends its own Version message to peer A upon
receiving the Version message from peer A. If peer B accepts
the Version message of peer A then it sends a Verack message
(an acknowledgment message of the received Version message
and has no payload) to peer A. After that, peer B sets the lower
of the two versions (comparing the version of peer A and peer
B) to be used for further communication with peer A. Similarly
peer A also sends the Verack message to peer B after receiving
and accepting the Version message from peer B. However, it
is worth mentioning that either of the peer (peer A or peer B)
should not send a Verack message before receiving the Version
message from the other peer. The connection between peer A
and peer B is established once they send Verack messages to
each other.

III. RELATED WORK IN CODE ATTESTATION AND
MERKLE TREE

Version++ advances the Bitcoin handshaking protocol and
adds the software-assurance functionality, while the current
Bitcoin protocol provides no assurance other than the Ver-
sion message itself identifying the software version. Soft-
ware assurance is related to remote code attestation using

Peer A Peer B
1 T
Proof : ! Proof
Generation | 1 Generation
with ID, : : with IDg
1 Version with ID, Proof K
I -1
5 Version with IDy, Proof 1
Proof " I Proof
Verification : 1 Verification
. , -
with IDg 3 Verack i with ID ,
N Verack R
1 1
v v

Fig. 1: Version++ handshaking built on the Bitcoin handshak-
ing protocol. The only additions from the current handshaking
protocol is the inclusion of the Version++ Proof in the Version
message (networking) and the Proof verification on the local
peers (computing). The two peers interchange their roles as
prover and verifier in the handshaking.

hardware or software-based techniques in trusted computing.
We intentionally call the functionality Version++ assurance
(checking whether the peer has the software version) in order
to distinguish from atfestation (which additionally include
real-time code execution). The authors in [16] propose a code
attestation approach to attest the piece of code rather than the
entire memory using a trustworthy secure kernel. Delegated
attestation is proposed in [1] involving embedded devices
with low computing power for code attestation. In [15], the
authors propose a remote code attestation approach based
on a challenge-response protocol using a trusted platform
module (TPM). The authors in [6] discuss about obtaining
fresh evidence from a running system for code attestation.
[1], [9], [14] However, these previous works in remote code
attestation require a trusted centralized environment (providing
the root of trust and conducting the verification), which goes
against the permissionless principle of cryptocurrency. The
remote code attestation is also based on a real-time interactive
protocol, which adds additional communication transmissions
challenging its deployment in the global-scale broadcasting
network of cryptocurrency.

Our scheme in the Version++ handshaking protocol uses
the Merkle Tree to compute/generate and verify the Version++
Proof. Such use of the cryptographic hash function combined
with Merkle Tree is found in other applications to ensure
the integrity of the networking payload and locally stored
data, including the block device integrity at kernel level (i.e.,
dmverity [2]) and transaction integrity on blockchains [18],
[13].

IV. VERSION++ SCHEME PROTOCOL

A. Version++ Protocol Overview

Fig. 1 describes the Version++ handshaking protocol which
builds on the Bitcoin handshaking based on the Version and
Verack exchanges. The Version++ protocol includes the Proof
for the software assurance, which is dependent on the peer ID

Version | Services | Timestamp Receiver Receiver Receiver | Transmitter | Transmitter | Transmitter | Nonce User Start Relay ID Proof
services address port services address port agent height
4 Bytes 8 Bytes 8 Bytes 8 Bytes 16 Bytes 2 Bytes 8 Bytes 16 Bytes 2 Bytes 8 Bytes Size 4 Bytes 1 Byte 8 Bytes 32 Bytes
varies
Fig. 2: Version message data fields and the Version++ addition (highlighted and shaded in blue).
Merkle Root Table I: Definition of each variable
Notation Notation Explanation
S n A node (hash value) in the Merkle Tree
i Vertical position of n
@ (2 @
1 Horizontal position of n in same j
® ®, ®, A ® A ® N Position of node n at ¢,j
h Vertical position of Merkle Root
QOO O OO0 OOOOOOOO H Hash function
B Boolean variable
I i - Received Merkle Root from a Bitcoin
ID F, F, F, F, F; F, F, F F, F, F, F, F, F, F; m, potential peer
Fig. 3: Merkle Tree ID ID of a Bitcoin potential peer

Algorithm 1 Proof Verification Algorithm

Input: ID, m,
Output: B

B=0

i=1

7=1

ni1 < H(D)

while j < h do
nij+1 < H (ng; H Nit1,5)
J+—g+1

end while

if Ni,j+1 == My then
B=1

else
B=0

end if

Return B

> B is Boolean Variable

and thus unique to the peer; Fig. 2 shows the information/data
fields of the Version message in Version++ protocol (including
the data fields of the Version message in the default Bitcoin
handshaking protocol) and highlight the Version++ addition of
Proof. The two peers exchange the roles of prover and verifier
(e.g., peer A acts as the prover when it sends its Proof, and
peer B acts as the prover when it sends its Proof) because the
Bitcoin handshaking is bidirectional. If the Proof verification
preceding the Verack transmission fails, then the verifier has
no assurance that the prover indeed has the Bitcoin software
version. The rest of this section describes the Version++
protocol in greater details, including the Proof Generation and
the Proof Verification, both of which use Merkle Tree.

B. Variables and Notations

In this section, we describe the variables and notations used
in the paper. n defines a node (hash value) in the Merkle
Tree (shown as a circle in Fig. 3). j defines the vertical
position of node n whereas i defines the horizontal position
of node n according to Fig. 3. Therefore, the subscripts i, j
in n; ; indicate the position of a node in the Merkle Tree. For
example, no 1 refers to the node whose horizontal and vertical
position is 2 and 1 respectively (denoted by the first orange
circle in Fig. 3 according to the bottom-up approach). h is the
vertical position of a Merkle Root (the final hash computation
of Merkle Tree). H and B denote the hash function and
boolean variable respectively. On the other hand, m, and ID
represent the Merkle Root received from another potential peer
for verification and ID (e.g., IP address) of a Bitcoin peer
respectively.

C. Peers and their roles in Version++

We do not need any additional entity (i.e., a centralized
verifier in case of remote code attestation) other than the
peers in the Bitcoin network for Version++ handshaking to
satisfy the distributed, permissionless structure of bitcoin.
The peers generate and verify the Proof by themselves in
Version++ handshaking for the software assurance. A peer
becomes a prover when it needs to prove to other peers that it
holds a specific Bitcoin software version. On the other hand,
it becomes a verifier when it verifies whether its potential
peer has the specific Bitcoin software version that the peer
is trying to prove. When two potential peers (e.g. peer A
and peer B) involve in the peer connection establishment
process both the peers become the prover and verifier to

each other during the Version++ handshaking as shown in
Fig. 1. A peer needs to generate the Proof using its ID for the
Bitcoin software version before proceeding to the Version++
handshaking protocol with another peer. For example, peer
A and peer B generate the proof for its Bitcoin software
version with ID and IDg, respectively, before sending the
Version message as depicted in Fig. 1. During the Version++
handshaking, both the potential peers exchange the Version
message with its own ID and Proof for the Bitcoin software
version it holds. After that, the peers check the version data
field from the received Version message and regenerate the
received Proof for that version with the receive ID for Proof
verification. As shown in Fig. 1, peer A and peer B use the
received ID (IDg and IDp, respectively) from the Version
message for Proof verification. If the verification is successful
then the verifier sends the Verack message to the prover.
Version++ handshaking succeeds when both the peers involved
in the handshaking has successful Proof verification and sent
the Verack message to each other.

D. Prerequisites and Approaches

This section describes the prerequisites and the approaches
to fulfill them. In our scheme, a peer can generate and
provide the Proof of a Bitcoin software version only if it has
that software version. An attacker is defined as a peer who
generates or provides the Proof without having the specific
software version. We build our scheme on the cryptographic
primitives, i.e., one-way and the collision-resistance properties
of the cryptographic hash function. The cryptographic hash
functions’ weak collision-resistance property (also known as
the secondary preimage resistance) enforces that the prover
uses the correct/unmodified software code files and its ID. It
specifically disables the following two threats by an attacker:
first, an attacker who does not have the software codes or has
the modified software codes cannot generate the Proof of the
current software codes; second, an attacker cannot manipulate
the ID to generate the Proof so that the ID changes while
retaining the same Proof.

We employ the following two methods to provide security
that prevents an attacker from reusing the Proof of other
Bitcoin peers (for example, after eavesdropping). First, peer ID
(e.g., IP address) is included as the input for Proof generation
process to make the Proof unique to each Bitcoin peer and ID-
dependent. Second, the Proof (Merkle Root) is only networked
and all the other intermediate branch values of the Merkle
Tree are processed and stayed in the local machine (similarly
to a private key in public-key cryptography). To make the
Proof consistent and the same across Bitcoin peers (which is
required because the Proof generation and verification happen
on separate Bitcoin peers), we establish a rule of ordering the
files (as input to our scheme) according to the file size.

E. Proof Generation

In Version++, a prover uses code files of a Bitcoin software
version and its ID (IP address) as input for Proof generation.
The Proof generation involves creating a Merkle Tree using

the code files and ID as shown in Fig. 3. The code files
and hash values are represented as rectangles and circles
respectively in Fig. 3. The Merkle Root generated from the
Merkle tree is communicated to the verifier as the Proof, and
other hash nodes/outputs within the Merkle tree remain on the
local machine of the prover.

We denote F to be an ordered collection of the code files
while appending the ID in the first element, and F the cyclic
extension of F. F is required to make a balanced tree from F
having the number of leaves to be a power of two, thus |F| =
oMo, [FIT For example, the bottom row in Fig. 3 shows the F
elements when there are ten code files and |F| = 11. Therefore,
we round this F to the next power of two using the previous
files in cyclic order so that |13| = 16. The prover generates
the complete Merkle Tree including the Merkle Root from
F, where the computing progression moves upward in Fig. 3
using the one-way hash functions.

F. Proof Verification

Handshake w/ verification involves sending Version mes-
sage between the peers, Proof verification and responding back
with Verack message given that Proof verification is successful
and does not include Proof generation. In this section, we
describe about the Proof verification in-details. The verifier
checks the Bitcoin software version number received from
the Version message of the prover and recomputes the Proof
for that version using the prover’s ID. The locally stored
nodes/hash outputs that are affected by the ID (marked as
orange circular in Fig. 3) are known to the verifier if it has
already generated the Merkle Tree and Merkle Root from the
code files of that specific version. The verifier only needs
to store these nodes (Stored Hashes) of a Bitcoin software
version for Proof verification. However, the verifier regenerates
the Merkle Root using the prover’s ID with those Stored
Hashes and only needs to update the nodes/hash outputs that
are affected by the ID. Therefore Proof verification involves
regenerating the Proof using prover’s ID and comparing the
regenerated Proof with the Proof received from the prover.
The details description of the Proof verification algorithm are
shown in Algorithm 1 which takes ID and m, as input and
outputs B. It computes (ID) and puts it in 121 ; position of the
Merkle Tree. It keeps concatenating the hash value in n; ; and
njy1,; position, hashing the concatenated value and putting the
hashed value in the n; ;41 position till j reaches to the height
of the Merkle Root, h. If the computed Merkle Root in final
n; j+1 position matches with m, then Algorithm 1 returns B
= 1 (successful verification) otherwise B = 0 (unsuccessful
verification).

V. IMPLEMENTATION

We take a hybrid approach for our implementation and
experimentation. For the Version++ prototype, we implement
a prover and a verifier in two virtual machines in one physical
machine. This experimental setup involves the minimum net-
working latency (the handshake protocol time duration will
be greater in the real-world networking scenarios) and thus

Proof Generation 281.91
Proof Verification 0.63
Handshake w/ Verification 28.41
0.5 5 50 500

Latency (ms)

Fig. 4: The latency measurements for the different operations
of Version++

CDF

0 10 20 30 40 50 60 70
Time (days)
Fig. 5: The distribution/CDF of duration that peers stay
connected using real-world Bitcoin data.

provide the worst-case overhead analyses for our paper (the
real-world overhead for Version++ will be even smaller than
our measurements when the networking latency increases the
handshaking duration). We also connect a Bitcoin prototype
to the Mainnet to measure the real-world P2P networking,
including the peer connection duration and the current soft-
ware version distributions providing us with references for the
Version++ overheads.

The implementation inside of Bitcoin software is embed-
ded within the connection manager (CONNMAN), utilizing
Bitcoin’s native SHA-256 hash generator and widespread
implementation of a Merkle Tree [12]. Our software creates an
instance of the Proof generation, Proof verification and Merkle
Tree using C++, built-in recursive_directory_iterator and a
regular expression to retrieve all relevant files in the src folder
associated with C++, C, and shell'. For Version++ prototype,
we use a network isolated from the internet and set two
machines to run our Bitcoin Core instance. One machine uses
Python 3.9 to repeatedly connect and disconnect from the other
peer, with a 500ms delay between samples. Both machines
have 16 GB DDR4 RAM with the AMD Ryzen Threadripper
3960X processor. We use fcpdump to capture the network
traffic of Bitcoin, and extract the handshake information for
each sample. Though we implement Version++ using Bitcoin

!For consistency of the Proof inputs across the peer nodes, we exclude the
files that are dynamic across Bitcoin instances, e.g. configuration files and
those depending on configurations.

Bitcoin v22.0.0 RoninDojo
Bitcoin Core v23.99.0
Bitcoin v22.0.0 Knots

Bitcoin Core v0.20.0
Bitcoin Core v0.18.0
Bitcoin v23.0.0 Knots
Bitcoin Core v0.20.1
Bitcoin v22.0.0 FutureBit
Bitcoin Core v0.21.0
Bitcoin Core v0.21.1
Bitcoin Core v23.0.0
Bitcoin Core v22.0.0

0.5 50

5
Distribution (%)

Fig. 6: The distribution (%) of Bitcoin software versions
among the nodes (top 90%) in Bitcoin network. The horizontal
axis is in logarithmic scale. Green, yellow and red color
indicate the Bitcoin Core software versions, Bitcoin Core
alternatives versions, and Bitcoin Core exceptions versions,
respectively.

Core software other Bitcoin softwares (fork from the Bitcoin
Core software) can also be used for the implementation given
that they have the code files.

VI. ANALYSES

In this section, we provide latency analysis for Proof gener-
ation, verification and handshake with verification, comparison
of Version++ handshaking duration with the average peer con-
nection duration and storage overhead for Proof verification to
demonstrate the overhead of implementing Version++ in the
default Bitcoin handshaking protocol.

Latency We show the latency in Fig. 4 for Proof generation,
Proof verification and handshake with verification which are
28191 ms, 0.63 ms and 28.41 ms respectively. We also
observe that Proof verification latency is 72 = 2.22% of
handshake with verification latency. Since the implementation
of Version++ is done in one virtual machine this overhead will
be much smaller in the real-world considering the networking
latency between two peers which are isolated by different
geographical locations and machines.

Update Frequency = We calculate the average Bitcoin Core
software version update frequency considering the release
date of the first version (Bitcoin Core v0.10.0), the latest
version (Bitcoin Core v23.0.0), and the number of Bitcoin
Core versions updated during this period. The Bitcoin Core
software update frequency on average is 1650911904:;81231526304
= 419385600 = 11036463.1579 seconds = 127.7368421 days or
127 days 17 hours 41 minutes 3.1579 seconds. Therefore, a
peer needs to go through the Proof generation once taking
281.91 ms every 127.7368421 days on average.

Time Overhead We show the peer connection duration
distribution in Fig. 5 by extracting the public node infor-
mation from Bitnodes [4]. The average peer connection in
the Bitcoin networking lasts for approximately 5.62 days
(which is 485568000 millisecond) before it gets disconnected.
Therefore, the verification overhead compared to the peer-
connection duration only takes fgarxses = 6.39 x 1077 of

85568000
the average peer connection duration. The numerator values

Table II: The storage overhead of the top 90% distribution of
Bitcoin software versions

Bitcoin Software Storage Overhead (MB)
Bitcore Core 1.29
Bitcore Core alternatives 0.55
Bitcore Core exceptions N/A

are in Fig. 4 while the denominator is from Fig. 5. Therefore,
the Version++ handshaking overhead is significantly small
compared to the peer connection duration.

Storage Overhead We show the distribution of top 90% of
Bitcoin software versions used by the peers in the Bitcoin
network in Fig. 6. The green color indicates the Bitcoin
Core Software versions (Bitcoin Core), the yellow color in-
dicates the software versions which create a fork from the
default Bitcoin Core (Bitcoin Core alternatives) and the red
color indicates the software versions (Bitcoin Core exceptions)
which do not have the publicly available executables/code files
for the implementation of Merkle Tree (i.e., Bitcoin v22.0.0
RoninDojo) or is still making updates (i.e., Bitcoin Core
v23.99.0). We show the storage overhead for Proof verification
of Bitcoin software versions (among the top 90% distribution)
in Table II for Bitcoin Core, Bitcoin Core alternatives and
Bitcoin Core exceptions. We do not calculate the storage
overhead for Bitcoin Core exceptions since those versions
do not have the publicly available executables/code files or
still updating its files. Among the distribution of the top 90%
of Bitcoin softwares, Bitcoin Core, Bitcoin Core alternatives
and Bitcoin Core exceptions have 7 versions, 3 versions and
2 versions respectively. Bitcore Core softwares are used by
approximately 83% peers in the Bitcoin network and storage
overhead is 1.29 MB (Megabytes). Therefore, a Bitcoin node
can verify approximately 83% of Bitcoin nodes by storing
1.29 MB of Merkle Tree. Bitcore Core alternatives is used by
6.61% peers and storage overhead is 0.55 MB. Therefore, a
verifier can verify 89.61% of peers in the Bitcoin network by
having a storage overhead of only 1.849 MB.

VII. CONCLUSION

Our proposed scheme, Version++ provides a distributed,
permissionless and lightweight solution for software assurance
in a Bitcoin P2P network. Version++ differs from the remote
code attestation in terms of centralized execution, centralized
verification, and extensive networking/hardware requirements
to make it compatible with the distributed permissionless
architecture of Bitcoin network. The analyses result for Ver-
sion++ demonstrates that it can be integrated with the default
Bitcoin handshaking protocol with very little overhead. For
example, Version++ handshaking overhead is 6.39 x 1077
times smaller than the average peer-connection duration.

ACKNOWLEDGEMENT

This work was supported by National Science Foundation
under Grant No. 1922410 and by Institute of Information

& communications Technology Planning & Evaluation (II'TP)
grant funded by the Korea government (MSIT) (No. 2021-0-
02107, Collaborative research on element Technologies for 6G
Security-by-Design and standardization-based International
cooperation). Our software implementation of the Version++
protocol is available at https://github.com/bitcoin-version-plus-
plus/bitcoin-version-plus-plus.

REFERENCES

[1] M. Ammar, B. Crispo, I. De Oliveira Nunes, and G. Tsudik, “Delegated
attestation: scalable remote attestation of commodity cps by blending
proofs of execution with software attestation,” in Proceedings of the
14th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2021, pp. 37-47.

[2] M. Baines and W. Drewry, “Integrity-checked block devices with device
mapper,” in Linux Security Symposium, 2011.

[3] Bitcoindeveloper, “P2P Network,” https://developer.bitcoin.org/

reference/p2p_networking. html#version, 2022, [Online; accessed
20-August-2022].
[4] Bitnodes, “Global bitcoin nodes distribution,” https://bitnodes.io/

dashboard/, 2022, [Online; accessed 1-August-2022].

[5] CoinMarketCap, “trending cryptocurrencies,” https://coinmarketcap.
com/trending-cryptocurrencies/, 2022, [Online; accessed 20-August-
2022].

[6] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” International Journal of Information Security, vol. 10, no. 2,
pp. 63-81, 2011.

[71 W. Fan, H.-J. Hong, J. Kim, S. J. Wuthier, M. Nakashima, X. Zhou,
E. Chow, and S.-Y. Chang, “Lightweight and identifier-oblivious engine
for cryptocurrency networking anomaly detection,” IEEE Transactions
on Dependable and Secure Computing, 2022.

[8] W. Fan, H.-J. Hong, S. Wuthier, X. Zhou, Y. Bai, and S.-Y. Chang,
“Security analyses of misbehavior tracking in bitcoin network,” in
2021 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). IEEE, 2021, pp. 1-3.

[9] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and

J. Butterworth, “New results for timing-based attestation,” in 2012 I[EEE

Symposium on Security and Privacy. 1EEE, 2012, pp. 239-253.

R. C. Merkle, “A digital signature based on a conventional encryption

function,” in Conference on the theory and application of cryptographic

techniques. Springer, 1987, pp. 369-378.

, “Protocols for public key cryptosystems,” in Secure communica-

tions and asymmetric cryptosystems. Routledge, 2019, pp. 73-104.

Microsoft, “Microsoft/merklecpp: A C++ library for creation and manip-

ulation of Merkle Trees,” https://github.com/microsoft/merklecpp, 2021,

[Online; accessed 20-July-2022].

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-

tralized Business Review, p. 21260, 2008.

I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik,

“{APEX}: A verified architecture for proofs of execution on remote

devices under full software compromise,” in 29th USENIX Security

Symposium (USENIX Security 20), 2020, pp. 771-788.

R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and

implementation of a tcg-based integrity measurement architecture.” in

USENIX Security symposium, vol. 13, no. 2004, 2004, pp. 223-238.

E. Shi, A. Perrig, and L. Van Doorn, “Bind: A fine-grained attestation

service for secure distributed systems,” in 2005 IEEE Symposium on

Security and Privacy (S&P’05). 1EEE, 2005, pp. 154-168.

J. Tapsell, R. N. Akram, and K. Markantonakis, “An evaluation of the

security of the bitcoin peer-to-peer network,” in 2018 IEEE international

conference on internet of things (IThings) and IEEE green computing
and communications (GreenCom) and IEEE cyber, physical and social

computing (CPSCom) and IEEE smart data (SmartData). 1EEE, 2018,

pp. 1057-1062.

G. Wood et al., “Ethereum: A secure decentralised generalised trans-

action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.

1-32, 2014.

Y. Zhang, R. Tan, X. Kong, Q. Tan, and X. Liu, “Bitcoin node discovery:

Large-scale empirical evaluation of network churn,” in International

Conference on Artificial Intelligence and Security. Springer, 2019,

pp. 385-395.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

