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Abstract—Cryptocurrency software implements the cryptocur-
rency operations, including the distributed consensus protocol
and the peer-to-peer networking. We design a software assurance
scheme for cryptocurrency and advance the cryptocurrency
handshaking protocol. Since we focus on Bitcoin (the most
popular cryptocurrency) for implementation and integration, we
call our scheme Version++, built on and advancing the current
Bitcoin handshaking protocol based on the Version message. Our
Version++ protocol providing software assurance is distinguish-
able from the previous research because it is permissionless,
distributed, and lightweight to fit its cryptocurrency application.
Our scheme is permissionless since it does not require a cen-
tralized trusted authority (unlike the remote software attestation
techniques from trusted computing); it is distributed since the
peer checks the software assurances of its own peer connections;
and it is designed for efficiency/lightweight due to the dynamic
nature of the peer connections and the large-scale broadcasting
in cryptocurrency networking. Utilizing Merkle Tree for the effi-
ciency of the proof verification, we implement and test Version++
on Bitcoin software and conduct experiments in an active Bitcoin
node prototype connected to the Bitcoin Mainnet. Our prototype-
based performance analyses demonstrate the lightweight design
of Version++. The peer-specific verification grows logarithmically
with the number of software files in processing time and in
storage. In addition, the Version++ verification overhead is small
compared to the overall handshaking process; our measured
overhead of 2.22% with minimal networking latency between
the virtual machines provides an upper bound in the real-world
networking with greater handshaking duration, i.e., the relative
Version++ overhead in the real world with physically separate
machines will be smaller.

Index Terms—Bitcoin, Software Assurance, Permissionless,
Distributed, Merkle Tree, Bitcoin Core

I. INTRODUCTION

Bitcoin, a distributed and permissionless cryptocurrency, has

gained immense popularity since its inception with the white

paper published by Satoshi Nakamoto in 2008 [13] and has a

market cap exceeding hundreds of billion dollars (450.06 bil-

lion dollars as of August 2022) [5]. The underlying networking

of Bitcoin is based on a peer-to-peer network (P2P). To join the

Bitcoin network, a potential peer needs to download and install

the Bitcoin software and involve in the peer discovery process.

The peer starts establishing connections with the discovered

peers including TCP handshaking protocol in the OSI network

layer and Bitcoin handshaking protocol in the application

layer. Once the connection is successfully established, the peer

can exchange messages with other peers to participate in the

Bitcoin network.

During the Bitcoin handshaking to establish the P2P con-

nections, the two peers identify their current version of the

Bitcoin software with each other by exchanging the Version

messages. We design and advance such Bitcoin protocol to

include the software assurance and call our scheme Version++.

Version++, including the Proof generation and verification

algorithms, is built on the standard cryptographic primitives

and is permissionless, distributed, and lightweight by design

to make it compatible with the Bitcoin P2P networking. In

the Version++ protocol, Bitcoin software files and the Bitcoin

peer’s unique ID are used to compute the Proof using Merkle

Tree [10], [11] to network it to other Bitcoin peers for software

code assurance of the respective software version. Our Merkle

Tree-based approach prevents an attacker from reusing the

Proof of other Bitcoin peers (due to the use of ID as one

of the inputs) and from generating the correct Proof without

the necessary code files.

The permissionless and distributed Bitcoin requires the

mechanisms for its P2P connection establishment to forgo

the reliance on the centralized system, which can provide a

challenge in the cryptocurrency networking in general [8], [7].

More specifically, in our work, a centralized architecture for

software code assurance violates the permissionless structure

in the Bitcoin network. Because of this reason, the remote code

attestation based on a remote trusted server is prohibited in

permissionless cryptocurrencies including Bitcoin. Moreover,

Bitcoin network requires the large-scale broadcasting, which

challenges the real-time networking overheads needed for

the remote code attestation. Therefore, our work Version++

for achieving software assurance is distinguishable from the

remote code attestation in its properties. In contrast to remote

code attestation, software assurance is permissionless (no

need for a centralized trusted execution environment/trusted

computing for software code assurance), distributed (Proof

generation and verification of code assurance are processed

by Bitcoin peers instead of a trusted server) and lightweight

(no real-time networking or hardware requirements). However,

to achieve these properties, the software assurance achieved

by Version++ is only capable of ensuring that a Bitcoin

node/prover holds the software code files and has a trade-

off with remote code attestation which offers stronger in-

tegrity/security assurance including code execution.

Our work is generally applicable and useful for any permis-

sionless and distributed cryptocurrencies in principle. How-



ever, we focus on the Bitcoin cryptocurrency for two reasons.

First, Bitcoin is the most popular cryptocurrency. Second,

we implement our work on the concrete Bitcoin protocol to

advance the Version-based handshake, hence the name of our

scheme, Version++.

The rest of the paper is organized as follows. We discuss the

background of the default Bitcoin handshaking protocol and

the related work in Section II and Section III respectively. We

describe our proposed designed scheme, Version++ including

the requirements, Proof generation, and verification in Sec-

tion IV. The implementation and analyses details are illustrated

in Section V and Section VI respectively. We conclude the

paper with Section VII.

II. BACKGROUND

We describe the background information on Bitcoin net-

working and protocol in this section. If two potential peers

want to communicate with each other directly they need to go

through the Bitcoin handshaking process in the P2P network.

New potential peers can start the peer discovery process using

DNS query and existing peers can get information about other

potential peers from the already connected peers [19]. Since

the Bitcoin network architecture is not defined by geographical

location the location of the peers are irrelevant and can be

selected randomly.

We consider two potential peers - peer A and peer B to

describe the Bitcoin handshaking protocol. Peer A establishes

a TCP connection with peer B (using port 8333 generally) to

start Bitcoin handshaking protocol with peer B [17]. After that

peer A sends its own version message to peer B. Though there

are 14 data fields in the Version message [3] our interest lies

in the version and IP data field of the Version message which

defines the highest Bitcoin software version number and the

IP address of the transmitting node (i.e., peer A in this case).

Peer B also sends its own Version message to peer A upon

receiving the Version message from peer A. If peer B accepts

the Version message of peer A then it sends a Verack message

(an acknowledgment message of the received Version message

and has no payload) to peer A. After that, peer B sets the lower

of the two versions (comparing the version of peer A and peer

B) to be used for further communication with peer A. Similarly

peer A also sends the Verack message to peer B after receiving

and accepting the Version message from peer B. However, it

is worth mentioning that either of the peer (peer A or peer B)

should not send a Verack message before receiving the Version

message from the other peer. The connection between peer A

and peer B is established once they send Verack messages to

each other.

III. RELATED WORK IN CODE ATTESTATION AND

MERKLE TREE

Version++ advances the Bitcoin handshaking protocol and

adds the software-assurance functionality, while the current

Bitcoin protocol provides no assurance other than the Ver-

sion message itself identifying the software version. Soft-

ware assurance is related to remote code attestation using
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Fig. 1: Version++ handshaking built on the Bitcoin handshak-

ing protocol. The only additions from the current handshaking

protocol is the inclusion of the Version++ Proof in the Version

message (networking) and the Proof verification on the local

peers (computing). The two peers interchange their roles as

prover and verifier in the handshaking.

hardware or software-based techniques in trusted computing.

We intentionally call the functionality Version++ assurance

(checking whether the peer has the software version) in order

to distinguish from attestation (which additionally include

real-time code execution). The authors in [16] propose a code

attestation approach to attest the piece of code rather than the

entire memory using a trustworthy secure kernel. Delegated

attestation is proposed in [1] involving embedded devices

with low computing power for code attestation. In [15], the

authors propose a remote code attestation approach based

on a challenge-response protocol using a trusted platform

module (TPM). The authors in [6] discuss about obtaining

fresh evidence from a running system for code attestation.

[1], [9], [14] However, these previous works in remote code

attestation require a trusted centralized environment (providing

the root of trust and conducting the verification), which goes

against the permissionless principle of cryptocurrency. The

remote code attestation is also based on a real-time interactive

protocol, which adds additional communication transmissions

challenging its deployment in the global-scale broadcasting

network of cryptocurrency.

Our scheme in the Version++ handshaking protocol uses

the Merkle Tree to compute/generate and verify the Version++

Proof. Such use of the cryptographic hash function combined

with Merkle Tree is found in other applications to ensure

the integrity of the networking payload and locally stored

data, including the block device integrity at kernel level (i.e.,

dmverity [2]) and transaction integrity on blockchains [18],

[13].

IV. VERSION++ SCHEME PROTOCOL

A. Version++ Protocol Overview

Fig. 1 describes the Version++ handshaking protocol which

builds on the Bitcoin handshaking based on the Version and

Verack exchanges. The Version++ protocol includes the Proof

for the software assurance, which is dependent on the peer ID
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Fig. 2: Version message data fields and the Version++ addition (highlighted and shaded in blue).
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Merkle Root

Fig. 3: Merkle Tree

Algorithm 1 Proof Verification Algorithm

Input: ID, mr

Output: B ▷ B is Boolean Variable

B = 0
i = 1
j = 1
n1,1 ← H(ID)
while j < h do

ni,j+1 ← H ( ni,j ∥ ni+1,j )
j ← j + 1

end while
if ni,j+1 == mr then

B = 1
else

B = 0
end if
Return B

and thus unique to the peer; Fig. 2 shows the information/data

fields of the Version message in Version++ protocol (including

the data fields of the Version message in the default Bitcoin

handshaking protocol) and highlight the Version++ addition of

Proof. The two peers exchange the roles of prover and verifier

(e.g., peer A acts as the prover when it sends its Proof, and

peer B acts as the prover when it sends its Proof) because the

Bitcoin handshaking is bidirectional. If the Proof verification

preceding the Verack transmission fails, then the verifier has

no assurance that the prover indeed has the Bitcoin software

version. The rest of this section describes the Version++

protocol in greater details, including the Proof Generation and

the Proof Verification, both of which use Merkle Tree.

Table I: Definition of each variable

Notation Notation Explanation

n A node (hash value) in the Merkle Tree

j Vertical position of n

i Horizontal position of n in same j

ni,j Position of node n at i,j

h Vertical position of Merkle Root

H Hash function

B Boolean variable

mr
Received Merkle Root from a Bitcoin
potential peer

ID ID of a Bitcoin potential peer

B. Variables and Notations

In this section, we describe the variables and notations used

in the paper. n defines a node (hash value) in the Merkle

Tree (shown as a circle in Fig. 3). j defines the vertical

position of node n whereas i defines the horizontal position

of node n according to Fig. 3. Therefore, the subscripts i, j

in ni,j indicate the position of a node in the Merkle Tree. For

example, n2,1 refers to the node whose horizontal and vertical

position is 2 and 1 respectively (denoted by the first orange

circle in Fig. 3 according to the bottom-up approach). h is the

vertical position of a Merkle Root (the final hash computation

of Merkle Tree). H and B denote the hash function and

boolean variable respectively. On the other hand, mr and ID

represent the Merkle Root received from another potential peer

for verification and ID (e.g., IP address) of a Bitcoin peer

respectively.

C. Peers and their roles in Version++

We do not need any additional entity (i.e., a centralized

verifier in case of remote code attestation) other than the

peers in the Bitcoin network for Version++ handshaking to

satisfy the distributed, permissionless structure of bitcoin.

The peers generate and verify the Proof by themselves in

Version++ handshaking for the software assurance. A peer

becomes a prover when it needs to prove to other peers that it

holds a specific Bitcoin software version. On the other hand,

it becomes a verifier when it verifies whether its potential

peer has the specific Bitcoin software version that the peer

is trying to prove. When two potential peers (e.g. peer A

and peer B) involve in the peer connection establishment

process both the peers become the prover and verifier to

3



each other during the Version++ handshaking as shown in

Fig. 1. A peer needs to generate the Proof using its ID for the

Bitcoin software version before proceeding to the Version++

handshaking protocol with another peer. For example, peer

A and peer B generate the proof for its Bitcoin software

version with IDA and IDB, respectively, before sending the

Version message as depicted in Fig. 1. During the Version++

handshaking, both the potential peers exchange the Version

message with its own ID and Proof for the Bitcoin software

version it holds. After that, the peers check the version data

field from the received Version message and regenerate the

received Proof for that version with the receive ID for Proof

verification. As shown in Fig. 1, peer A and peer B use the

received ID (IDB and IDA, respectively) from the Version

message for Proof verification. If the verification is successful

then the verifier sends the Verack message to the prover.

Version++ handshaking succeeds when both the peers involved

in the handshaking has successful Proof verification and sent

the Verack message to each other.

D. Prerequisites and Approaches

This section describes the prerequisites and the approaches

to fulfill them. In our scheme, a peer can generate and

provide the Proof of a Bitcoin software version only if it has

that software version. An attacker is defined as a peer who

generates or provides the Proof without having the specific

software version. We build our scheme on the cryptographic

primitives, i.e., one-way and the collision-resistance properties

of the cryptographic hash function. The cryptographic hash

functions’ weak collision-resistance property (also known as

the secondary preimage resistance) enforces that the prover

uses the correct/unmodified software code files and its ID. It

specifically disables the following two threats by an attacker:

first, an attacker who does not have the software codes or has

the modified software codes cannot generate the Proof of the

current software codes; second, an attacker cannot manipulate

the ID to generate the Proof so that the ID changes while

retaining the same Proof.

We employ the following two methods to provide security

that prevents an attacker from reusing the Proof of other

Bitcoin peers (for example, after eavesdropping). First, peer ID

(e.g., IP address) is included as the input for Proof generation

process to make the Proof unique to each Bitcoin peer and ID-

dependent. Second, the Proof (Merkle Root) is only networked

and all the other intermediate branch values of the Merkle

Tree are processed and stayed in the local machine (similarly

to a private key in public-key cryptography). To make the

Proof consistent and the same across Bitcoin peers (which is

required because the Proof generation and verification happen

on separate Bitcoin peers), we establish a rule of ordering the

files (as input to our scheme) according to the file size.

E. Proof Generation

In Version++, a prover uses code files of a Bitcoin software

version and its ID (IP address) as input for Proof generation.

The Proof generation involves creating a Merkle Tree using

the code files and ID as shown in Fig. 3. The code files

and hash values are represented as rectangles and circles

respectively in Fig. 3. The Merkle Root generated from the

Merkle tree is communicated to the verifier as the Proof, and

other hash nodes/outputs within the Merkle tree remain on the

local machine of the prover.

We denote F to be an ordered collection of the code files

while appending the ID in the first element, and F̂ the cyclic

extension of F. F̂ is required to make a balanced tree from F

having the number of leaves to be a power of two, thus |F̂| =

2⌈log2 |F|⌉. For example, the bottom row in Fig. 3 shows the F̂

elements when there are ten code files and |F| = 11. Therefore,

we round this F to the next power of two using the previous

files in cyclic order so that |F̂| = 16. The prover generates

the complete Merkle Tree including the Merkle Root from

F̂, where the computing progression moves upward in Fig. 3

using the one-way hash functions.

F. Proof Verification

Handshake w/ verification involves sending Version mes-

sage between the peers, Proof verification and responding back

with Verack message given that Proof verification is successful

and does not include Proof generation. In this section, we

describe about the Proof verification in-details. The verifier

checks the Bitcoin software version number received from

the Version message of the prover and recomputes the Proof

for that version using the prover’s ID. The locally stored

nodes/hash outputs that are affected by the ID (marked as

orange circular in Fig. 3) are known to the verifier if it has

already generated the Merkle Tree and Merkle Root from the

code files of that specific version. The verifier only needs

to store these nodes (Stored Hashes) of a Bitcoin software

version for Proof verification. However, the verifier regenerates

the Merkle Root using the prover’s ID with those Stored

Hashes and only needs to update the nodes/hash outputs that

are affected by the ID. Therefore Proof verification involves

regenerating the Proof using prover’s ID and comparing the

regenerated Proof with the Proof received from the prover.

The details description of the Proof verification algorithm are

shown in Algorithm 1 which takes ID and mr as input and

outputs B. It computes H(ID) and puts it in n1,1 position of the

Merkle Tree. It keeps concatenating the hash value in ni,j and

ni+1,j position, hashing the concatenated value and putting the

hashed value in the ni,j+1 position till j reaches to the height

of the Merkle Root, h. If the computed Merkle Root in final

ni,j+1 position matches with mr then Algorithm 1 returns B

= 1 (successful verification) otherwise B = 0 (unsuccessful

verification).

V. IMPLEMENTATION

We take a hybrid approach for our implementation and

experimentation. For the Version++ prototype, we implement

a prover and a verifier in two virtual machines in one physical

machine. This experimental setup involves the minimum net-

working latency (the handshake protocol time duration will

be greater in the real-world networking scenarios) and thus
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Fig. 5: The distribution/CDF of duration that peers stay

connected using real-world Bitcoin data.

provide the worst-case overhead analyses for our paper (the

real-world overhead for Version++ will be even smaller than

our measurements when the networking latency increases the

handshaking duration). We also connect a Bitcoin prototype

to the Mainnet to measure the real-world P2P networking,

including the peer connection duration and the current soft-

ware version distributions providing us with references for the

Version++ overheads.

The implementation inside of Bitcoin software is embed-

ded within the connection manager (CONNMAN), utilizing

Bitcoin’s native SHA-256 hash generator and widespread

implementation of a Merkle Tree [12]. Our software creates an

instance of the Proof generation, Proof verification and Merkle

Tree using C++, built-in recursive directory iterator and a

regular expression to retrieve all relevant files in the src folder

associated with C++, C, and shell1. For Version++ prototype,

we use a network isolated from the internet and set two

machines to run our Bitcoin Core instance. One machine uses

Python 3.9 to repeatedly connect and disconnect from the other

peer, with a 500ms delay between samples. Both machines

have 16 GB DDR4 RAM with the AMD Ryzen Threadripper

3960X processor. We use tcpdump to capture the network

traffic of Bitcoin, and extract the handshake information for

each sample. Though we implement Version++ using Bitcoin

1For consistency of the Proof inputs across the peer nodes, we exclude the
files that are dynamic across Bitcoin instances, e.g. configuration files and
those depending on configurations.
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axis is in logarithmic scale. Green, yellow and red color

indicate the Bitcoin Core software versions, Bitcoin Core

alternatives versions, and Bitcoin Core exceptions versions,

respectively.

Core software other Bitcoin softwares (fork from the Bitcoin

Core software) can also be used for the implementation given

that they have the code files.

VI. ANALYSES

In this section, we provide latency analysis for Proof gener-

ation, verification and handshake with verification, comparison

of Version++ handshaking duration with the average peer con-

nection duration and storage overhead for Proof verification to

demonstrate the overhead of implementing Version++ in the

default Bitcoin handshaking protocol.

Latency We show the latency in Fig. 4 for Proof generation,

Proof verification and handshake with verification which are

281.91 ms, 0.63 ms and 28.41 ms respectively. We also

observe that Proof verification latency is 0.63
28.41

= 2.22% of

handshake with verification latency. Since the implementation

of Version++ is done in one virtual machine this overhead will

be much smaller in the real-world considering the networking

latency between two peers which are isolated by different

geographical locations and machines.

Update Frequency We calculate the average Bitcoin Core

software version update frequency considering the release

date of the first version (Bitcoin Core v0.10.0), the latest

version (Bitcoin Core v23.0.0), and the number of Bitcoin

Core versions updated during this period. The Bitcoin Core

software update frequency on average is 1650911904−1231526304
38

= 419385600
38

= 11036463.1579 seconds = 127.7368421 days or

127 days 17 hours 41 minutes 3.1579 seconds. Therefore, a

peer needs to go through the Proof generation once taking

281.91 ms every 127.7368421 days on average.

Time Overhead We show the peer connection duration

distribution in Fig. 5 by extracting the public node infor-

mation from Bitnodes [4]. The average peer connection in

the Bitcoin networking lasts for approximately 5.62 days

(which is 485568000 millisecond) before it gets disconnected.

Therefore, the verification overhead compared to the peer-

connection duration only takes 310.32
485568000

= 6.39 × 10−7 of

the average peer connection duration. The numerator values
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Table II: The storage overhead of the top 90% distribution of

Bitcoin software versions

Bitcoin Software Storage Overhead (MB)

Bitcore Core 1.29

Bitcore Core alternatives 0.55

Bitcore Core exceptions N/A

are in Fig. 4 while the denominator is from Fig. 5. Therefore,

the Version++ handshaking overhead is significantly small

compared to the peer connection duration.

Storage Overhead We show the distribution of top 90% of

Bitcoin software versions used by the peers in the Bitcoin

network in Fig. 6. The green color indicates the Bitcoin

Core Software versions (Bitcoin Core), the yellow color in-

dicates the software versions which create a fork from the

default Bitcoin Core (Bitcoin Core alternatives) and the red

color indicates the software versions (Bitcoin Core exceptions)

which do not have the publicly available executables/code files

for the implementation of Merkle Tree (i.e., Bitcoin v22.0.0

RoninDojo) or is still making updates (i.e., Bitcoin Core

v23.99.0). We show the storage overhead for Proof verification

of Bitcoin software versions (among the top 90% distribution)

in Table II for Bitcoin Core, Bitcoin Core alternatives and

Bitcoin Core exceptions. We do not calculate the storage

overhead for Bitcoin Core exceptions since those versions

do not have the publicly available executables/code files or

still updating its files. Among the distribution of the top 90%

of Bitcoin softwares, Bitcoin Core, Bitcoin Core alternatives

and Bitcoin Core exceptions have 7 versions, 3 versions and

2 versions respectively. Bitcore Core softwares are used by

approximately 83% peers in the Bitcoin network and storage

overhead is 1.29 MB (Megabytes). Therefore, a Bitcoin node

can verify approximately 83% of Bitcoin nodes by storing

1.29 MB of Merkle Tree. Bitcore Core alternatives is used by

6.61% peers and storage overhead is 0.55 MB. Therefore, a

verifier can verify 89.61% of peers in the Bitcoin network by

having a storage overhead of only 1.849 MB.

VII. CONCLUSION

Our proposed scheme, Version++ provides a distributed,

permissionless and lightweight solution for software assurance

in a Bitcoin P2P network. Version++ differs from the remote

code attestation in terms of centralized execution, centralized

verification, and extensive networking/hardware requirements

to make it compatible with the distributed permissionless

architecture of Bitcoin network. The analyses result for Ver-

sion++ demonstrates that it can be integrated with the default

Bitcoin handshaking protocol with very little overhead. For

example, Version++ handshaking overhead is 6.39 × 10−7

times smaller than the average peer-connection duration.
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