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ARTICLE INFO ABSTRACT
Keywords: Endeavours in species discovery, particularly the characterisation of cryptic species, have been greatly aided by
Biogeography the application of DNA molecular sequence data to phylogenetic reconstruction and inference of evolutionary
Diversification and biogeographic processes. However, the extent of cryptic and undescribed diversity remains unclear in
Chiloglanis . . s . . . . .
Mochokidae tropical freshwaters, where biodiversity is declining at alarming rates. To investigate how data on previously
Species delimitation undiscovered biodiversity impacts inferences of biogeography and diversification dynamics, we generated a
Synodontis densely sampled species-level family tree of Afrotropical Mochokidae catfishes (220 valid species) that was ca.
70 % complete. This was achieved through extensive continental sampling specifically targeting the genus
Chiloglanis a specialist of the relatively unexplored fast-flowing lotic habitat. Applying multiple species-
delimitation methods, we report exceptional levels of species discovery for a vertebrate genus, conservatively
delimiting a staggering ca. 50 putative new Chiloglanis species, resulting in a near 80 % increase in species
richness for the genus. Biogeographic reconstructions of the family identified the Congo Basin as a critical region
in the generation of mochokid diversity, and further revealed complex scenarios for the build-up of continental
assemblages of the two most species rich mochokid genera, Synodontis and Chiloglanis. While Syndontis showed
most divergence events within freshwater ecoregions consistent with largely in situ diversification, Chiloglanis
showed much less aggregation of freshwater ecoregions, suggesting dispersal as a key diversification process in
this older group. Despite the significant increase in mochokid diversity identified here, diversification rates were
best supported by a constant rate model consistent with patterns in many other tropical continental radiations.
While our findings highlight fast-flowing lotic freshwaters as potential hotspots for undescribed and cryptic
species diversity, a third of all freshwater fishes are currently threatened with extinction, signifying an urgent
need to increase exploration of tropical freshwaters to better characterise and conserve its biodiversity.
1. Introduction implications for inferring evolutionary and ecological processes, and is
also critical for conservation planning and management (Hortal et al.,
Determining the drivers of the exceptional levels of species richness 2015), since missing species may have a dramatic effect on inferring
in tropical ecosystems is a key goal in evolutionary biology (Brown, such patterns leading to erroneous interpretation on the processes
2013), in which large densely sampled phylogenies have been increasing shaping biodiversity (Cusimano et al., 2012; Pybus and Harvey, 2000).
used to infer diversification dynamics and/or biogeographic patterns in This is particularly important for groups with hidden diversity where
these systems (e.g., Day et al., 2013; De-Silva et al., 2016; Derryberry underestimation of species richness can greatly hinder understanding.
et al., 2011; Hackel et al., 2022; Liedtke et al., 2016). However, the Species discovery has been transformed through the application of
importance of characterising biodiversity by species richness has DNA molecular sequence data, which has greatly facilitated the
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identification of cryptic species (Bickford et al., 2007), and shown many
taxonomic groups to possess a proliferation of cryptic species (e.g.,
Feulner et al., 2006; Funk et al., 2021; Hebert et al., 2004; Martins et al.,
2020). Tropical freshwaters present potential hotspots for cryptic spe-
cies discovery, since freshwaters harbour high levels of endemism due to
the insular nature of catchments (Strayer and Dudgeon, 2010), with over
half of all freshwater fish species confined to single ecoregions (Abell
et al., 2008). This is particularly pertinent for fast flowing lotic envi-
ronments (rapids, cascades, and headwaters), which remain relatively
underexplored, despite high endemism and genetic structuring identi-
fied in various fish clades inhabiting these high-energy systems (Alter
et al., 2017; Hrbek et al., 2018; Kurata et al., 2022; Morris et al., 2016).
This is likely a consequence of fast-flowing water creating potential
ecological ‘islands’ surrounded by slower-moving waters (Hrbek et al.,
2018). Furthermore, environmental constraints acting on phenotypes
have led to convergent evolution in rheophilic fishes regarding body and
fin shape, mouth form and orientation, among other features (Lujan and
Conway, 2015). High levels of phenetic similarity is frequently observed
among fish (Alter et al., 2017; Hrbek et al., 2018; Schmidt et al., 2016)
and invertebrate clades (Zheng et al., 2020) likely the result of stabil-
ising selection in these systems.

Although the Afrotropics is one of the most diverse regions on Earth
(Collen et al., 2014) it suffers from a lack of comprehensive sampling,
and its freshwater biodiversity remains relatively poorly known (Dar-
wall et al., 2011; Decru et al.,, 2015; Skelton and Swartz, 2011),
particularly within riverine habitats. Regional biodiversity studies are
beginning to address this deficit (e.g., Arroyave et al., 2019; Braganca
et al., 2021; Chakona et al., 2018; Decru et al., 2015; Feulner et al.,
2006; Mbimbi Mayi Munene et al., 2021; Schmidt et al., 2016; Swartz
et al., 2009; van der Merwe et al., 2021; Van Ginneken et al., 2017), but
the extent of undiscovered diversity is unclear without more compre-
hensive sampling across the continent, although broader scale studies (e.
g., Arroyave et al., 2020; Braganca and Costa, 2019; Daniels et al., 2015;
Day et al., 2017; Day et al., 2013; Ford et al., 2019; Goodier et al., 2011;
Liyandja et al., 2022; Mahulu et al., 2021) are beginning to shed light on
continental-scale events that have shaped extant diversity of Afro-
tropical freshwater animal clades.

To investigate how data on previously undiscovered biodiversity
impacts inferences of biogeography and diversification dynamics, we
generated a densely sampled dated species-level family tree of the
Afrotropical Mochokidae catfishes that was ca. 70 % complete. This was
achieved through generation of novel, and harnessing published, mito-
chondrial and nuclear DNA sequence data. We tested if diversification
rates were best supported by the null model of a constant rate, as
opposed to density dependence, and by combining the timetree with
geographical data, it specifically allowed us to investigate the
geographic centre of origin of key clades, and if these clades possessed a
common biogeographic signal. Furthermore, to explore the assumption
that species richness has been underestimated in tropical lotic fresh-
waters considerable efforts were dedicated to extensive sampling across
the African continent of the mochokid genus Chiloglanis, which remains
largely unknown at the continental scale. To evaluate to what extent
species diversity in this genus was underestimated, we applied species
delimitation methods to this group prior to construction of the mochokid
tree. Our biodiversity surveys included underexplored regions in East
Africa, and the Congo Basin, which contains the highest diversity of
freshwater fishes in the Afrotropics (Decru et al., 2015; Snoeks et al.,
2011).

2. Materials and methods
2.1. Study system
Comprising ca. 220 valid species, the endemic African family

Mochokidae is by far the most species rich of the eleven Siluriformes
families present on the continent (Fricke et al., 2022). Relationships
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within the family have recently been evaluated based on all protein-
coding mt-DNA genes (Schedel et al., 2022), with results supporting
the two sister subfamilies (Chiloglanidinae and Mochokinae), with the
Chiloglanidinae containing Atopodontus, Aptopochilus, Chiloglanis,
Euchilichthys, and the Mochokinae containing Acanthocleithron, Micro-
synodontis, Mochokiella, Mochokus, and Synodontis. Species richness is
highly unbalanced across the family and the basis of this disparity is
unknown. By far the greatest diversity is within the larger sized and
often distinctively marked Synodontis (squeaker catfish) ca. 130 valid
species (Fricke et al., 2022) that principally occur in large rivers, but are
also found in rift lakes, having radiated in Lake Tanganyika (Day and
Wilkinson, 2006). In contrast, Chiloglanis (African suckermouth catfish)
contains approximately half this diversity, with 62 valid species (Fricke
et al., 2022). Chiloglanis are rheophilic specialists, occurring in fast-
flowing lotic waters (Friel and Vigliotta, 2011). They are mostly found
in upper catchment tributary streams, but do occur in large lower
catchment river systems where there are suitable habitats, with a single
taxon known from the rocky surge zone of Lake Malawi (Seegers, 2008).
Both Synodontis and Chiloglanis have fully continental distributions,
while the remaining genera are relatively depauperate with far more
restricted ranges (Froese and Pauly, 2022).

Despite resolution of mochokid generic-level interrelationships
(Schedel et al., 2022) a large-scale continent-wide phylogenetic analysis
has not yet been conducted. To date several studies have focused on
Synodontis (Day et al., 2013; Pinton et al., 2013) across the generic
range, while only regional studies have been conducted for Chiloglanis
(Chakona et al., 2018; Morris et al., 2016; Schmidt et al., 2016; Schmidt
et al., 2014). Thus, there remains a substantial knowledge gap for this
genus that hinders a family-wide interrogation of diversification dy-
namics and biogeography. Moreover, extensive hidden diversity within
Chiloglanis is highly likely as previous studies have demonstrated high
levels of (cryptic) species diversity at regional scales (Chakona et al.,
2018; Morris et al., 2016; Schmidt et al., 2016; Schmidt et al., 2014). The
genus provides an attractive study system to examine cryptic diversity
and endemism in the tropical riverine environment as species are: 1)
camouflaged in colouration and generally phenotypically similar, and
all are 2) small in size (<100 mm SL, (Friel and Vigliotta, 2011)). Despite
Chiloglanis species exhibiting highly similar overall appearance, a
number of morphological characters have been used to distinguish valid
species, including the number and distribution of maxillary and
mandibular teeth, barbel lengths, oral disc shapes and sizes, body pro-
portions, fin spines, and male caudal shapes (e.g., Friel and Vigliotta,
2011; Schmidt et al., 2017).

2.2. Specimen sampling

Approximately 350 mochokid samples were included in this study,
including 227 Chiloglanis samples (representing 38 of 62 valid species,
Fricke et al. (2022)), as well as considerable potential undescribed di-
versity. Multiple individuals of Chiloglanis were included for most spe-
cies and sampling locations to test species validity (Appendix A,
Table S1). Samples of Chiloglanis were collected from across the generic
range (Fig. 1), including from all ichthyofaunal provinces encompassed
in their range. Valid Chiloglanis species not included here are not region
specific, with most (>70 %) from regions that were otherwise well-
sampled in this study, including the Congo Basin, Lower Guinea For-
est, and East Africa. For the majority of mochokid species, with the
exception of Microsynodontis and Atopochilini, we included a single
exemplar taxon based on previous findings (Day et al., 2013). For a list
of all included mochokid samples, outgroups, voucher numbers, locality
information, and Genbank numbers, see Appendix A, Table S1.

2.3. Sequence data

We sequenced two mitochondrial (mt)DNA genes: CO1 (676 bp) and
Cyt b (1138 bp) and the nuclear (nu)DNA loci: recombination activating



J.J. Day et al.

Molecular Phylogenetics and Evolution 182 (2023) 107754

Fig. 1. Map of Africa displaying all Chiloglanis samples used in species delimitation analyses, along with insets of heavily sampled regions. Blue circles = described
valid species; red circles = putative novel candidate species; dark red circles = previously identified potential candidate species. Numbers refer to species/candidate
names (see Fig. 2a,b; Appendix A, Table S4, column H). Ichthyo-provinces are included, which are used for subsequent biogeographic analyses: Congo Basin (CB),
East Africa (EA), Quanza (Q), Zambezi (Z), Nilo-Sudan (N-S), Upper Guinea Forest (UGF), Lower Guinea Forest (LGF), and Lake Tanganyika (LT) and Lake Malawi
(LM)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

gene-2 (Rag2) (921 bp) enabling these data to be combined with pub-
lished data for other mochokids. The number of Chiloglanis individuals
included for each locus was as follows: CO1 n = 188, Cyt bn =126, Rag2
n = 108 (for other mochokids see Appendix A, Table S1). DNA was
extracted from ethanol preserved fin clips or muscle tissue using QIA-
GEN DNeasy Blood and Tissue kit. We followed Day et al. (2013) for PCR
conditions, and primers (see Appendix A, Table S2 for published and
novel primers). Samples were cleaned and cycle sequenced using stan-
dard protocols and analysed using an ABI13730xl sequencer.

2.4. Phylogenetic inference

Sequences were cleaned, contiged, and aligned in Geneious v. 10.0.8
(Kearse et al., 2012) using ClustalW (Larkin et al., 2007). Alignments
were further checked manually, and tRNAs were removed from Cyt b
sequences. Analyses of sequence data included the following matrices:
1) concatenated mtDNA Chiloglanis matrix (1817 bp), 2) Rag 2 Chilo-
glanis matrix (921 bp), and 3) concatenated mt- and nuDNA mochokid
matrix (2737 bp). All matrices were partitioned by gene and codon
position to evaluate substitution models. Bayesian inference was applied
to all matrices. As the concatenated mt- and nuDNA mochokid matrix
(matrix 3) included some distant outgroups and not all outgroup species
had full coverage of sequence data, we also ran a further analysis
applying Maximum Likelihood (ML) to matrix 3 to check concordance
between methods. For Bayesian analyses we applied PartitionFinder2
v2.1 (Lanfear et al., 2016) to identify the best substitution models
(Appendix A, Table S3), implementing the Bayesian Information

Criterion (BIC), unlinking branch lengths, and selected the greedy
search algorithm. Matrices were subsequently analysed using MrBayes
v3.2.6 (Ronquist et al., 2012), with two independent MrBayes analyses
run for 10 million generations, sampled every 100 generations (chain
temperature 0.2, 4 chains) with branch support evaluated using
Bayesian posterior probabilities (BPPs). Run convergence was assessed
in Tracer v1.7.1 (Rambaut et al., 2018) and to ensure effective sample
size (ESS) values were > 200, with burn-in set to 10 %. Bayesian ana-
lyses were performed using CIPRES (Miller et al., 2010). For the ML
analysis IQ-TREE 2.2.0 (Nguyen et al., 2015) was implemented,
applying ModelFinder (Kalyaanamoorthy et al., 2017) to identify
optimal partition models, with branch support evaluated using an ultra
fast bootstrap (bs) approximation (Minh et al., 2013) (1000 replicates).
All trees were visualised in FigTree v1.4.3 (Rambaut, 2016).

2.5. Time calibrated trees

Several time calibrated trees were generated using BEAST 2 v2.6.6
(Bouckaert et al., 2014). These included 1) concatenated mtDNA tree
(matrix 1) containing all Chiloglanis individuals (intra-species sampling,
Appendix A, Table S1), required for general mixed Yule coalescent
(GMYC) species delimitation models (Chiloglanis n = 227, mochokid
outgroups n = 12); and 2) concatenated mt- and nuDNA mochokid
species tree (matrix 3), including one exemplar individual per species
(Mochokidae n = 195, outgroups “Big Africa”(sensu Sullivan et al.
(2006)) n = 16, non-“Big-Africa” n = 1) (Appendix A, Table S1, see
Table S4 for Chiloglanis individuals included) for downstream
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biogeographic and diversification analyses. The BEAST 2 package
bModelTest v1.2.1 (Bouckaert and Drummond, 2017) was used to esti-
mate substitution models, and tree and birth rate priors were set to Yule
and uniform respectively for both analyses. For matrix 1, a strict clock
was applied to the mtDNA dataset based on low coefficient of variation
(CV) scores, and substitution rates were estimated. These data were
partitioned only by loci regarding the site models (to reduce the pa-
rameters), in which TN93 + G + I and GTR + G + I were best fit to the
COI and Cytb partitions respectively. For matrix 3 (the concatenated mt-
and nuDNA data set), loci were partitioned by genome, and clock models
were unlinked (independent clock rates automatically mean substitution
rates are not estimated). For this matrix, a strict clock was selected for
the mtDNA data (based on an low CV 0.274 and overall convergence
from an initial run) and a relaxed log-normal clock (Drummond et al.,
2006) applied to the nuDNA data (CV 0.945). To reduce parameter-
isation of site models, by genome partitions were also implemented,
with the models TIM + G + I and TN93 + G + I selected as best fit to the
mtDNA, and nuDNA partitions respectively. The oldest known fossil of
the Mochokidae, a Synodontis dating to 34 Ma, was selected to calibrate
this clade (following Day et al., 2013) using a log-normal prior (34 Ma
with a 0.8 % tail probability) with ‘user originate’ option selected which
is recommended for fossil calibrations. All other priors were default. For
the mochokid dataset, a further calibration was applied to the node
including all “Big-Africa” taxa using a normal prior (71.11 Ma, M =
0.01, S = 0.5) based on a secondary calibration from a mitogenomic
siluriform phylogeny (Kappas et al., 2016). Analyses were run three
times for 50 million generations for matrix 1 (concatenated mtDNA
data), and four times for 100 million generations for matrix 3 (concat-
enated mt- and nuDNA data), sampling every 5000 generations, with
run convergence assessed using Tracer v1.7.1 (Rambaut et al., 2018). All
ESS values were > 200, except for the concatenated tree where the Yule
Model prior was 177. Tree files were subsequently combined in Log-
Combiner v2.5.1 and trees summarised in TreeAnnotator v2.5.1
(Bouckaert et al., 2014) with burn-in was set to 10 %. Trees were again
visualised in FigTree v1.4.3 (Rambaut, 2016).

2.6. Quantitative species delimitation

Species delimitation methods, particularly harnessing single-locus
sequencing, provide a useful approach for determining potential spe-
cies limits in clades containing large numbers of undescribed species
(Talavera et al., 2013). Given this, and since broad agreement in de-
limitation across methods provides reasonable confidence in correct
assignment of candidate species (Dellicour and Flot, 2018), we apply
multiple approaches to our single-locus (mtDNA) dataset (matrix 1).
Although we were unable to sequence as many samples at the Rag 2
gene, phylogenetic trees generated from these data (matrix 2) were
largely congruent with those generated from mtDNA data (Appendix A,
Fig. S1).

Tree-based methods were applied to the concatenated mtDNA
dataset (matrix 1) since these methods have been shown to perform well
over a wide range of assumptions (Fujisawa and Barraclough, 2013;
Reid and Carstens, 2012; Talavera et al., 2013). These included the
following: 1) ML general mixed Yule coalescent (GMYC) (Fujisawa and
Barraclough, 2013) single-model using ‘splits’ v1.0 (Ezard et al., 2017);
2) Bayesian ‘DGMYC’ v1.0 (Reid and Carstens, 2012) in R v3.5.2 (R
Development Core Team, 2018); 3) ML Poisson tree process (PTP) v1.0
and 4) Bayesian PTP v1.0 (Zhang et al., 2013) analyses using the Exelixis
Server (Zhang et al., 2013).

The bGMYC and GMYC analysis used the BEAST2 mtDNA consensus
tree (from 10,000 trees), while the ML and Bayesian PTP analyses used
the MrBayes mtDNA consensus tree. For all analyses, outgroups were
removed as they have been shown to skew threshold values (Reid and
Carstens, 2012) leaving 227 Chiloglanis individuals. For bGMYC the log
(coalescence rate/Yule rate) ratio was checked to ensure no sub-zero
values. Values above zero show model appropriateness as coalescence
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rate is higher than speciation rate (Reid et al., 2019). User-defined
thresholds in bGMYC included 0.1 (highly conservative/lumping) —
0.9 (high splitting). Bayesian PTP analysis were run for 100 thousand
generations, sampling every 100 trees with burn-in at 10 %, with run
convergence assessed from a resulting trace file.

Based on the results from the four species delimitation analyses we
produced a table of candidate species (Appendix A, Table S4). Valid
species were used as a baseline for the correct splitting of OTUs by
bGMYC thresholds. As our analyses included ca. 60 % of valid species
diversity and many unidentified taxa, we further evaluated undescribed
diversity based on the type locality and range data from Fricke et al.,
(2022), for species not included in our analyses. This allowed us to assess
whether any potential candidate species were in fact collected from
within the ranges of described species, and therefore should best be
discounted in our evaluation of undescribed species diversity.

2.7. Ancestral range estimation

Geographic range evolution was estimated using the dated mochokid
tree (generated from matrix 3), comparing the models: Dis-
persal-Extinction—-Cladogenesis (DEC), DIVALIKE (Dispersal-Vicariance
Analysis) and BAYAREALIKE (Bayesian Analysis of Biogeography), with
the latter two models likelihood implementations of the original DIVA
and BayArea models. In modelling a continental system we did not
implement modifications of these models using the + J parameter,
which adds the process of jump dispersal at speciation, and is more
applicable to island systems (Matzke, 2014). The three models were
unconstrained (allowing dispersal to and from each region), selecting
max areas = 4, and were run using the R package BioGeoBEARS
(Matzke, 2013). The delta Akaike Information Criterion (AAIC) was
used to select the best model from the resulting model set.

Mochokids occur in seven of the nine ichthyo-provinces that have
been identified for continental Africa (Roberts, 1975) covering all but
the Maghreb (Northwest Africa) and Southern African, and include:
Congo Basin (CB), East Africa (EA), Quanza (Q), Zambezi (Z), Nilo-
Sudan (N-S), Upper Guinea Forest (UGF), Lower Guinea Forest (LGF).
Lake Tanganyika and Lake Malawi were added as separate ‘areas’ due to
high levels of lacustrine endemicity following Day et al. (2013) (Fig. 1).
Only Chiloglanis and Synodontis are present in all seven areas, while the
remaining genera have more restricted ranges (Fricke et al., 2022;
Froese and Pauly, 2022). Distributional data was taken from FishBase
(Froese and Pauly, 2022), except for the potential candidate species
where distribution was based only on specimens included in this study
due to their high levels of endemicity (Appendix A, Table S5).

2.8. Diversification rates

The dated mochokid tree (generated from matrix 3) was used for
downstream diversification analyses, with all non-mochokid outgroups
pruned from the tree using the R package ape 3.4 (Paradis et al., 2004)
resulting in n = 195 taxa. BAMM 2.5 (Bayesian Analysis of Macroevo-
lutionary Mixtures) (Rabosky et al., 2013) was used to investigate if the
family diversified under a null hypothesis of constant rate, and if any
rate shifts were identified across the tree. The following priors were
generated (expected number of shifts = 1; A Init.Prior = 2.828;
AShiftPrior = 0.018; p Init.Prior = 2.829; AIsTimeVariablePrior = 1) and
a global sampling fraction of 0.68 applied. Three independent MCMC
runs were each run for 10 million generations sampling every 1,000th.
BAMMTtools 2.0 (Rabosky et al., 2014) was used to test if MCMC simu-
lations converged (effective sizes were > 200 (log-likelihoods > 3400;
number of shift events present > 4900)) and to analyse and plot the
BAMM output. The gamma (y) statistic, and Monte Carlo constant rates
(MCCR) test (Pybus & Harvey, 2000) were also computed to test if there
were deviations from the pure birth model and the effect of missing
species, using ape 3.4 (Paradis et al., 2004) and phytools 1.2 (Revell,
2012).
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Fig. 2. Phylogeny of Chiloglanis based on mtDNA (Cyt b and CO1) data, highlighting putative novel species (red) and previously identified candidates (dark red),
recovered across all four methods detailing: a) clades A and C; b) clade D. Insets for each figure shows the entire tree, with the pale grey box highlighting the clade of
interest. Support values BPP are given below the branches, BS above the branches. Outgroups (grey branches), apart from the sister taxa to Chiloglanis, have been
removed for clarity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. (continued).
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3. Results
3.1. Species delimitation

Overall, tree-based species delimitation methods gave similar re-
sults, identifying 92-99 operational taxonomic units (OTUs) (Appendix
A, Table S4). The GMYC (single) model yielded 99 OTUs, the bGMYC
model applying an intermediate 0.5 threshold (a default in many
studies) estimated 92 OTUs (relative thresholds of 0.1-0.9 yielded
84-99 OTUs respectively, data not shown), and PTP methods identified
95 (ML) and 96 (Bayesian) OTUs.

Samples assigned to described species (38 of 63 species (Fricke et al.,
2022)) were mostly delineated across all four tree-based methods, with
no species being lumped, and only seven species identified as warranting
splitting (Fig. 2a, b, Appendix A, Table S4). Two of these were previously
investigated, C. anoterus (Morris et al., 2016) and C. neumanni (Chakona
et al., 2018), with our results largely supporting these studies as sug-
gestive of further cryptic species. Of the remaining taxa, C. aff. micro-
pogon and C. brevibarbis were resolved as monophyletic, with the latter
split into two OTUs, although it has not previously been considered
polyspecific (Schmidt et al., 2014). Samples assigned to Chiloglanis aff.
micropogon from the Congo Basin (no specimens from the type locality
Nzokwe River, Democratic Republic of Congo were available) was
delimited into nine OTUs across all methods (only five supported by
bGYMC 0.1-0.9 thresholds, data not shown), indicating potentially high
levels of hidden diversity within that taxon. Samples assigned to Chilo-
glanis congicus, C. niloticus, C. cameronensis, and C. pretoriae were
resolved as non-monophyletic (Fig. 2a, b), a finding supported by the
nuDNA tree (for the former two taxa common to both trees, Appendix A,
Fig. S1). Further assessment is needed of all four taxa, but particularly
C. niloticus and C. pretoriae since one of the OTUs of both taxa cluster
with a described and candidate species respectively. The Sudanian vs.
Ethiopian C. niloticus samples nested within clades A and D respectively
(Fig. 2a, b). However, the latter samples were only supported as a
distinct OTUs in 2/4 methods, and otherwise clustered with C. kerioensis,
despite the geographic distance separating them (see Fig. 1). We also
found samples of C. pretoriae clustered as a distinct OTU with C. aff.
anoterus from the Mlumati + Komati Rivers, while a further C. pretoriae
sample (Olifants River) is sister to C. emarginatus. (Fig. 2b).

Despite these few exceptions, the recovery of most described species
as distinct OTUs (>80 %) provides a reasonably high level of confidence
in the delimitation of unidentified/undescribed (i.e., those given
informal names) taxa included in our dataset. Based on a conservative
estimation across species-delimitation methods, where we delimit taxa
based on congruence across all four implemented tree-based methods,
we suggest 90 OTUs are represented in our phylogeny (Fig. 2a, b, Ap-
pendix A, Table S4). The localities of putative novel species recognized
here were subsequently checked against type localities of all described
species to ensure that they had not been misdiagnosed. Based on this
information we did not find any match regarding the type localities of
described species with unassigned taxa, and as Chiloglanis generally have
highly restricted ranges (Morris et al., 2016; Schmidt et al., 2016;
Schmidt et al., 2017) it seems unlikely that any of these novel candidates
represent currently recognized species. If correct, we estimate a stag-
gering ca. 50 putative novel species (56 putative species including pre-
viously identified candidates split using delimitation methods or
morphometric data), representing an 80-90 % increase in species di-
versity for the genus. While our study includes several taxa with
distinctive phenotypes as indicated by their informal names (e.g.,
“spotted”, “Kinsuka” blind, “thick-barbels” “white-lips”, Fig. 2a, b), the
majority display limited phenotypic differences among them, high-
lighting that while morphologically conservative, the genus contains
considerable hidden diversity.
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3.2. Mochokid phylogenetic relationships and divergence estimates

Monophyly of the Mochokidae was well supported in both Bl and ML
analyses (0.99 BPP and 97 % BS, Appendix A, Fig. S2), with an estimated
origin 64.8 Ma (95 % HPD: 60.69-68.09 Ma) based on the BEAST tree
(Appendix A, Fig. S3). Two main clades are resolved, strongly support-
ing the subfamilies, Chiloglanidinae and Mochokinae (Appendix A,
Fig. §2), with the former clade estimated to be older 52.50 Ma (HPD:
48.91-55.90 Ma) than the latter 39.72 Ma (95 % HPD: 37.18-42.14 Ma)
(Appendix A, Fig. S3). Disparity in divergence estimates for these sub-
families is mirrored in the ages of the most species rich genera, with the
MRCA of Synodontis estimated at 25.63 Ma (95 % HPD: 23.87-27.50
Ma), making it a much younger clade than Chiloglanis estimated at
47.53 Ma (95 % HPD: 44.65-50.8 Ma), with other mochokid clades also
much younger than Chiloglanis (Appendix A, Fig. S3). As single fossil
calibrations on internal nodes may impact divergence estimates stem-
ward and to node(s) of interest (Duchene et al., 2014), we also investi-
gated if the age disparity between these clades is an artifact of a single
fossil calibration. An additional analysis applying only the secondary
calibration to the root of the ‘Big Africa’ clade was performed and
supported this result, with similar age estimates generated (data not
shown).

Chiloglanidinae included a monophyletic Atopochilini (Vigliotta,
2008), composed of Atopodontus, Aptopochilus and Euchilichthys, which is
the sister to Chiloglanis (Appendix A, Fig. S2). Within the tribe, Atopo-
dontus is supported as sister to Aptopochilus and Euchilichthys, however
the latter two genera are resolved as non-monophyletic (Appendix A,
Fig. S2). Mochokinae is composed of Microsynodontis, Mochokus,
Mochokiella, and Synodontis, with each genus the successive sister in the
taxon order listed. Support for the major mochokid relationships is high,
typically receiving maximum support (Appendix A, Fig. S2), and re-
lationships broadly supporting those of the mitogenome tree of Schedel
et al. (2022). A single conflict between the resulting trees is the position
of Acanthocleithron chapini. This monotypic taxon is either resolved as
sister to Mochokinae in the Bayesian (0.56 BPP) and BEAST trees (latter
tree depicted in Appendix A, Fig. S3), supporting (Schedel et al., 2022),
or as the sister to Chiloglanidinae in the ML tree (61 % bs, Appendix A,
Fig. §2), however neither hypothesis is well supported, possibly a
consequence of a lack of nuclear data and/or its long branch. Irre-
spective of its position, Acanthocleithron is considerably older than the
two mochokid subfamilies, and in our study, it is estimated to have
diverged from the Mochokinae at 59.10 Ma (95 % HPD: 53.58-62.60
Ma, Appendix A, Fig. S3).

The species rich genera, Chiloglanis and Synodontis, are resolved into
distinct subclades, with relationships generally well supported (Ap-
pendix A, Fig. S2). For Chiloglanis two main clades were resolved (Fig. 1,
Appendix A, Fig. S2 clades A and B), with clade B further divided into
two subclades C and D, all with maximum support, except clade C (0.85
BPP and 96 % BS). Overall, only some internal relationships (e.g.,
several nodes along the backbone of clade D) are not well resolved. The
relationships within Synodontis are generally congruent to those docu-
mented in Day et al. (2013).

3.3. Biogeography of the Mochokidae

Results from our ancestral range reconstruction analyses find the
DEC model (Fig. 3a, b) a significantly better fit than the other models,
with the delta AIC > 2 units lower than the DIVALIKE model (the
second-best model), while the BAYESAREALIKE model did not perform
well (Table 1). The DEC and DIVALIKE models are very similar
regarding ancestral area reconstructions for internal nodes differing
only by a few nodes for the major mochokid lineages (see Table 2). The
DEC model reconstructed the origin of the Mochokidae combining the
Congo Basin (CB) and the super-region of West Africa (Nilo-Sudan (N-S),
Lower Guinea Forest (LGF), and Upper Guinea Forest (UGF)), whereas
the DIVALIKE model supported only the Congo Basin at the ancestral
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Fig. 3. Biogeographic range inheritance based on the DEC unconstrained model for the family Mochokidae using the BEAST dated concatenated mt- and nuDNA gene
tree detailing: a) Chiloglanidinae, and b) Mochokinae. Insets for each figure shows the entire tree, with the pale grey box highlighting the clade of interest. Putative
novel candidate species in bold. Ichthyo-provinces are as follows: Congo Basin (CB), East Africa (EA), Quanza (Q), Zambezi (Z), Nilo-Sudan (N-S), Upper Guinea
Forest (UGF), Lower Guinea Forest (LGF), Lake Tanganyika (LT), Lake Malawi (LM). See Fig. S3 for 95 % confidence intervals (HPD).
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Fig. 3. (continued).

node (Table 2). The Congo Basin is reconstructed as ancestral for the
subfamily Chiloglanidinae, and its constituent major clades, Chiloglanis
and the Atopochilini and is also reconstructed as ancestral for the
Mochokinae + Acanthocleithron indicating, if the DEC model is correct, a
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range contraction early in the history of the family. Both models
reconstructed the origin of the subfamily Mochokinae as comprising
several areas including the Congo Basin and a combination of other West
African ichthyo-provinces (Table 2). Constituent Mochokinae genera
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Table 1
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Comparisons of unconstrained models (dispersal to and from an area) for the three models implemented in BioGeoBEARS: DEC, DIVALIKE, and BAYAREALIKE.
Parameters are as follows: dispersal (d); extinction (e); number of parameters (k); Akaike Weights (AW). The optimal model is denoted in bold.

Model InL Parameters AIC analysis
k d e AIC AAIC AW
DEC —327.39 2 0.0020 0.0013 658.78 0.00 0.913
DIVALIKE —329.74 2 0.0027 0.0016 663.48 4.70 0.087
BAYAREALIKE —399.15 2 0.0015 0.0365 802.30 143.52 <0.001
3.4. Diversification rates
Table 2

Ancestral area reconstruction of the major Mochokidae lineages comparing the
best fit model DEC vs. the second best DIVALIKE model.

Node Model

Family/Subfamily Genus/Tribe DEC DIVALIKE

Mochokidae NS UGF LGF CB CB
Acanthocleithron CB CB

Chiloglanidinae CB CB
Chiloglanis CB CB
Atopochilini CB CB

Mochokinae NS UGF LGF CB NS LGF CB
Microsynodontis CB CB
Mochokus NS NS
Mochokiella NS NS UGF
Synodontis NS LGF CB NS

Mochokiella and Synodontis are hypothesised to originate from a similar
set of areas, as for the subfamily, for the DEC model, which differ to the
single area origins reconstructed by the DIVALIKE model (Table 2).
Mochokus and Microsynodontis are hypothesized to originate from single
areas (N-S and CB respectively) under both models indicating range
contractions.

Both models support contrasting biogeographic patterns for the two
species rich genera Synodontis and Chiloglanis, which both have conti-
nental wide distributions (Fig. 3a, b). The ichthyo-provinces for Syno-
dontis are largely aggregated into distinct biogeographic clades, with
fewer dispersal events (Fig. 3b), supporting the findings of Day et al.
(2013) and are not further described here. Conversely, a more complex
biogeographic signal is inferred for Chiloglanis, in which clades have
larger biogeographic distributions (Fig. 3a). Most of the areas occur
repeatedly across the main clades (A, C, D), with many subsequent
recolonisation’s of the Congo Basin. Clade (A) is dominated by taxa from
the CB, and to a lesser extent LGF. The latter area (LGF) includes the
sister taxon (C. disneyi) to all other members of this clade, and a distinct
geographic subclade nesting deeply within this clade, indicating that the
CB has seeded the LGF in both cases (Fig. 3a). Several instances of in-
dependent dispersals from CB into other regions are inferred, including a
dispersal into the Zambezi early in the clade’s history, several inde-
pendent colonisations into East Africa (EA), with further dispersal from
this region into Nilo-Sudan (N-S) occurring much later. Clade C com-
prises taxa principally from the UGF and the Congo Basin, supporting a
disjunct distribution between these subclades (C1, C2, Fig. 3a). In clade
C there is a single dispersal event into the N-S, mirroring the timeframe
of dispersal into this region observed in clade A, and also a single
dispersal to the Zambezi early in the history of the clade. Clade D
comprises taxa mainly from EA, Zambezi (Z) and CB ichthyo-provinces
(which are reconstructed as ancestral), with diversification dominated
within the former areas, with several dispersal events from EA to the
Zambezi, but also from the Congo Basin to the Zambezi and subsequent
recolonisation back into the Congo (Fig. 3a). There is also a single
instance of dispersal from the Congo Basin to the Quanza (Q), and from
the Zambezi to Lake Malawi, as identified for Synodontis, although
colonisation of the Quanza is indicated to have occurred much earlier in
Chiloglanis.

10

The BAMM analysis supported a near constant diversification rate for
the Mochokidae, with no rate shifts identified (a possible rate shift on
the node leading to Synodontis had a Bayes Factor of only 2.67 after
removing all outgroups) (Fig. 4a, b). The gamma (y) statistic (Pybus and
Harvey 2000) computed for the Mochokidae was slightly negative
—1.184, but this value was non-significant (p = 0.237, two-tailed test)
further supporting a constant diversification rate for the family. The
impact of missing species was also investigated by applying the MMCR
test (Pybus and Harvey, 2000), simulating 5000 trees for 285 taxa
(including valid and possible candidate species across the family) was
again non-significant (p = 0.644, two-tailed test). Inspection of the in-
ternal clade Synodontis appeared to show a declining rate (Fig. 4c)
compared to the constant rate of Chiloglanis (Fig. 4d), which is supported
by a significantly negative y-statistic (—2.08 p = 0.038 vs. —0.282 p =
0.778 respectively), however, the MCCR test is non-significant (p =
0.216 vs. p = 0.788 respectively). Mean speciation rate (A) for the family
was estimated at 0.107 (0.091-0.128, upper/lower 95 % highest prob-
ability density [HPD], and where genera comprise > 10 species, A was
marginally lower for Chiloglanis 0.092 (0.071-0.119, upper/lower 95 %
HPD) and Microsynodontis 0.093 (0.071-0.123, upper/lower 95 % HPD),
but slightly higher for Synodontis 0.142 (0.094-0.213 upper/lower 95 %
HPD).

4. Discussion
4.1. Exceptional levels of species discovery among rheophilic fishes

We identified exceptional levels of potential species discovery and
endemicity in tropical fast flowing freshwaters based on our analysis of
spatially extensive Chiloglanis sampling, supporting previous regional
studies (Chakona et al., 2018; Morris et al., 2016; Schmidt et al., 2016;
Schmidt et al., 2014; Schmidt et al., 2017). Although some of the
undescribed diversity reported here was expected given the distinctive
phenotypes of some specimens (e.g., “spotted”, “Kinsuka blind”, “thick
barbels”, “white-lips”), the majority was surprising, and likely reflects
widespread and extensive cryptic diversity. Species richness estimates
greatly expands current diversity to a putative ca. 119 species, repre-
senting > 80 % increase in species richness. The staggering increase in
potential novel candidate species is, to our knowledge, one of the most
substantial findings of undescribed diversity from molecular analysis in
any vertebrate genus reported to date, although see other studies (e.g.,
Gehara et al., 2014; Van Ginneken et al., 2017).

While our estimates of proposed species diversity could be inflated
due to over-splitting of taxa, the delimitation of described species in our
dataset are broadly congruent across tree-based methods, which suc-
cessfully recovered > 80 % of described species. That described species
are generally consistently recovered (with no lumping) provides a robust
baseline for unidentified candidates, with results broadly congruent
across methods. Complete congruence across species-delimitation
methods is rare (Dellicour and Flot, 2018), and although we have not
applied allele-sharing or distance methods here, our findings provide an
overall high level of confidence in biodiversity assessment, which is
reassuring given that high degrees of discordance have been reported in
some studies (Blair and Bryson, 2017).
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Described species that species-delimitation methods suggested may
actually contain multiple species typically had large biogeographic
ranges (Froese and Pauly, 2022). Four of these were identified as non-
monophyletic, and although non-monophyly is a potential issue with
single-locus data since it could indicate ancient lineage sorting or
introgression (Talavera et al., 2013), our findings were supported by our
nuclear data, and therefore are unlikely to be the result of mito-nuclear
discordance. Non-monophyly was further supported by both the mt- and
nuDNA for many unidentified candidate Chiloglanis species from drain-
ages in Tanzania and Malawi, although a number of these candidates
(notably from Tanzania) are based on single individuals since we opted
for spatial coverage across rivers. Despite methods such as GMYC being
shown to be stable with high singleton presence (Talavera et al., 2013),
further sampling of these candidates will be needed to confirm their
status.

Where valid taxa were resolved as monophyletic, but were split into
separate OTUs (C. anoterus, C. brevibarbus, C. aff. micropogon) these
likely represent cases of true cryptic species as defined in Bickford et al.
(2007) (i.e., two or more phenotypically similar species incorrectly
classified as a single species). Indeed, the suggested delimitation of
C. anoterus into five candidates, each with narrow ranges, was suggested
by a previous study based on three independent datasets (male caudal
fin morphology, mtDNA and AFLP data) (Morris et al., 2016). We note
that while our identification of potential species-complexes are made
solely with genetic data, they are likely valid given the ages of their
divergences (Appendix A, Fig. S3). However, a recent study using a large
exon genomic dataset suggested that the increasing levels of cryptic
diversity (in frogs) based on distance and tree based methods could be
due to gene flow as opposed to species divergence leading to inflated
estimates (Chan et al., 2022). Certainly, the seven candidates identified
within C. aff. micropogon warrant further attention regarding additional
sampling and morphological investigation to confirm our hypothesis.

While we endeavoured to include dense sampling across the generic
range, the high endemicity of Chiloglanis species in single river systems,
indicates that this study may only be scratching the surface of their true
diversity. Our results clearly underscore the need for more intensive
sampling in poorly explored tropical freshwaters and highlights lotic
habitats as potential hotspots for cryptic species discovery. Certainly,
the environmental constraints acting on the phenotype in these habitats,
has led to the generation of morphological conservatism and/or
convergence across the clade resulting in widespread cryptic diversity in
these diminutive, rapids-adapted fishes. Cryptic taxa are an increasingly
common phenomenon reported in recent molecular studies of African
riverine fish groups e.g., mormyrids (Feulner et al., 2006; Sullivan et al.,
2002); Pseudobarbus (Chakona and Skelton, 2017), Mastacembelus spiny-
eels (Day et al., 2017); Enteromius, and labeonine cyprinids (Van Gin-
neken et al., 2017), Hydrocynus African tigerfish (Goodier et al., 2011),
tetras (Arroyave et al, 2019) and procatopodid cyprinodontiforms
(Braganca et al., 2021) with some examples even in lacustrine fish ra-
diations e.g., claroteine catfishes (Peart et al., 2018; Peart et al., 2014)
and Mastacembelus spiny-eels (Brown et al., 2010) - where adaptive ra-
diation via disruptive selection is a more typical mechanism, high-
lighting a deficiency in our taxonomic knowledge of the continent. In
particular, the concept that the Congo Basin and East Africa are highly
under-sampled regions of Africa that likely harbour substantial unde-
scribed freshwater diversity (Darwall et al., 2011; Stiassny et al., 2011),
is supported here.

4.2. The importance of the Congo Basin in the generation of mochokid
diversity

The Congo Basin, occupying 10 % of the African continent (Kadima
et al., 2011), is the most biodiverse African ichthyo-province (Harrison
et al., 2016; Snoeks et al., 2011), although it is unclear to what extent
this region is a centre of origin for freshwater fish clades since there are a
limited number of studies attempting to quantitatively reconstruct the
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historical biogeography of pan-African fish clades (but see, Arroyave
et al., 2020; Day et al., 2017; Day et al., 2013; Pinton et al., 2013). Our
phylogeny, and the inclusion of previously unrecognised diversity,
highlights the importance of the Congo Basin in the generation of di-
versity for a major African fish family. Certainly, drainage evolution of
the proto-Congo since the end of the Cretaceous (proposed age of origin
of the family, see Section 4.4) has been complex, with major river cap-
ture events occurring during the Oligocene-Eocene 30-40 Ma (Stan-
kiewicz and de Wit, 2006), which may have facilitated diversification
events. Irrespective as to whether the Congo Basin is combined with the
‘West African’ super-region (including N-S, LGF and UGF), as the sole
centre of origin for the Mochokidae, there has been extensive diversi-
fication in this region early in the clade’s history, and it is here
hypothesised to be the centre of origin for the subfamily Chiloglanidinae
and its constituent genera, along with subsequent repeated colonisations
and diversifications events throughout the family’s history. In contrast,
ancestral ranges for the subfamily Mochokinae are more varied (within
the ‘West African’ and Congo Basin ichthyo-provinces), with the Nilo-
Sudan playing a prominent role. The Congo Basin has also been
hypothesised as a centre of origin for several other fish clades including
the characiform genera Distichodus (Arroyave et al. 2020) and Hydro-
cynus (Goodier et al., 2011), with considerable subsequent diversifica-
tion within the region, and has been shown to harbour higher genetic
diversity than other regions for continentally distributed species (Van
Steenberge et al., 2020). Conversely, West Africa has been hypothesised
to be the ancestral area for Synodontis (Day et al., 2013), African
members of the synbranchiform genus Mastacembelus (Day et al. 2017),
and a broad West African region (combined from the Upper Guinea and
Western Nilo-Sudan) for the African potamonautine crabs (Daniels et al.,
2015). Despite West Africa being inferred as a centre of origin for these
other freshwater groups, the Congo Basin has clearly played a pivotal
role in the generation of their diversity, with evidence of repeated col-
onisations and diversification within the basin for Mastacembelus spiny
eels (Day et al., 2017), and several invertebrate groups, e.g., Lanistes
gastropods (Mahulu et al., 2021) and potamonautine crabs (Daniels
et al., 2015), and Synodontis catfish have diversified in situ in the Congo
Basin to a significant degree (Fig. 3b). Certainly, our family-level study
mirrors other pan-African freshwater clades in suggesting a complex
scenario regarding the source of geographic diversity of the continent’s
freshwater communities, but further supports a central role for the
Congo Basin.

4.3. Contrasting biogeographic histories of continental-wide African
clades, and the role of dispersal

Our study qualitatively revealed contrasting biogeographic histories
for the principal mochokid genera in the degree of geographic constraint
of their constituent clades. While Synodontis has remarkably constrained
biogeographic clades (Day et al. 2013, and this study) indicating rela-
tively limited dispersal, Chiloglanis has a far more complex biogeo-
graphic history. In Chiloglanis most constituent clades were typically less
geographically constrained, indicating dispersal as the major driver of
diversification. The contrasting biogeographical signatures of these two
genera, which have both colonised most of tropical Africa and diversi-
fied to a similar degree, likely reflect their differing ecologies that
facilitated successful exploitation of the different freshwater habitats
that they inhabit (Synodontis mainly large river/lake species vs. Chilo-
glanis almost exclusively rheophilic species) but may also be a conse-
quence of their age differential. Interestingly, Mastacembelus (broadly
co-occurring with Synodontis) revealed a more mixed biogeographic
pattern, as while there have been multiple colonisation into the Congo
Basin, all other regions were likely colonised once, indicating
geographic constraint (Day et al., 2017). Chiloglanis occur almost
exclusively in rapid flowing, high energy habitats and are characterised
by high levels of endemicity; nonetheless the genus appears to have
enhanced ability for dispersal, likely facilitated by their small size,
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adhesive suckermouths, and broadly expanded pectoral/pelvic fins.
Utilizing this anatomy some species have been observed to travel up-
stream across rapids and waterfalls (Morris et al., 2016; Roberts, 1975;
Schmidt et al., 2016), which are typically effective barriers to dispersal
to most fish clades. Enhanced dispersal ability alongside geomorpho-
logical processes such as river capture, and palaeoclimatic events, may
have facilitated repeated colonisation of regions thus promoting allo-
patric speciation in this group (Schmidt et al., 2016).

The discovery of previously unrecognised Chiloglanis diversity,
particularly in East African and the Zambezian ichthyo-provinces, sug-
gest that these regions have been subjected to multiple colonisation
events often with subsequent diversification, occurring late in the his-
tory of the group. At least five independent colonisations of the Zam-
bezian region occurring at different times are inferred across all major
Chiloglanis clades, although our constrained models (data not shown)
could not determine if dispersal was both into and out of the Zambezi, or
if the region has acted as a sink (i.e., dispersal has only occurred into this
region), regardless the region has clearly not acted as a source. This
contrasts with just a few recent colonisations of the region by Synodontis,
indicating the Zambezi has played a more important role in the gener-
ation of diversity in Chiloglanis. Given the ecology of these two taxo-
nomic groups, this finding is not surprising, as we would expect to see
more colonisation events by species that typically occur in small tribu-
tary streams since river capture events of these environments are far
more frequent than large river course changes. Multiple faunal transfers
of the Zambezian ichthyo-province also appears to have occurred late in
the history of various other freshwater clades (Arroyave et al., 2020;
Daniels et al., 2015; Day et al.,, 2017; Mahulu et al., 2021; Ortiz-
Sepulveda et al., 2020) either from East Africa and/or the Congo
Basin, with varying degrees of subsequent diversification. Certainly,
Chiloglanis, has repeatedly been able to colonise this region throughout
the history of the clade, from the adjoining Congo Basin, and/or East
Africa. Further evidence of multiple regional colonisations has also
occurred with respect to the Nilo-Sudanic province. However, these
events do not appear to have led to subsequent diversification, which
contrasts to the colonisation of this region by other fish clades (Day
et al., 2017; Day et al., 2013).

In contrast to other regions there is a single diversification event in
the Upper Guinea Forest region, which may be due to it being separated
by a savanna corridor (the Dahomey Gap) from the Lower Guinea Forest.
However, this clade is estimated to have begun diversification in the
Miocene (26.3 Ma [95 %HPD: 23.3-29.0 Ma]) long before the emer-
gence of this landscape feature in the Holocene (Salzmann and Hoelz-
mann, 2005). An epicontinental sea has been suggested to have been a
causative factor in the separation of killifish clades from east and west of
the Dahomey Gap (Murphy and Collier, 1997), but this feature lasted
only until the Early Eocene. While the disjunct distribution of clade C
(Fig. 3a) may indicate a vicariant event, it is also plausible that there are
missing species and/or multiple species that have since gone extinct
from the Nilo-Sudan that subsequently seeded the Upper Guinea Forest.
Certainly, rivers of the West African coast need further exploration to
determine if this pattern represents a sampling gap rather than a
reflection of biogeographic history.

4.4. Age estimates of the Mochokidae and constituent genera

We estimated the age of origin of the Mochokidae as ca. 66 Ma
placing the emergence of the family around, or just after, the K-Pg
boundary, while mochokid genera typically originated much more
recently, except the monotypic Acanthocleithron. Cladogenesis of these
principal mochokid lineages appears to have occurred asynchronously,
with key divergence events estimated from the Early Eocene through the
early Miocene, although much of the diversification within the constit-
uent genera is suggested to have occurred during middle Miocene and
onwards. The Miocene epoch is considered a key episode in the diver-
sification of African fishes (Arroyave et al., 2020; Day et al., 2017; Day
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et al., 2013; Schwarzer et al.,, 2009) and freshwater invertebrates
(Daniels et al., 2015; Mahulu et al., 2021; Ortiz-Sepulveda et al., 2020).
This is thought to be due to widespread geotectonic uplift on the
continent, along with major climatic shifts, such as the Middle Miocene
climatic optimum, leading to increased river discharge, as well as
repeated aridification events (Zachos et al., 2001). Such dynamic hy-
drological landscapes during this period likely facilitated widespread
allopatric speciation across these diverse groups (Daniels et al., 2015).
Of note is the disparity in ages of the two transcontinental genera, with
Chiloglanis estimated to have diverged considerably earlier than Syno-
dontis. The relatively recent diversification of Synodontis, along with
biotic and abiotic factors, may explain their differing biogeographic
histories. Despite the placement of a single calibration for the MRCA of
Synodontis, the disparity in ages of these clades, and similar divergence
times across the tree, were estimated when data was reanalysed
enforcing only a secondary calibration on the ‘Big Africa’ node. How-
ever, as with many studies investigating lower taxonomic groups, dating
may be more contentious since single calibrations and/or secondary
calibrations can strongly influence estimated ages (Rutschmann et al.,
2007), and we acknowledge that our study will require refinement
before definitive conclusions may be reached.

4.5. Unexceptional diversification rates despite high species richness

The potential increase in mochokid species richness, specifically
within the Chiloglanidinae, provides novel information to test evolu-
tionary and biogeographic hypotheses more accurately. Here we
demonstrated that missing taxa can have a significant effect on
biogeographic reconstruction. Yet despite the discovery of numerous
potential candidate species greatly augmenting species richness within
Chiloglanis, diversification rates across the family remained unchanged
(Fig. 4) and are similar to those generated for other riverine fishes
(Miller, 2021). A near constant rate was previously identified for the
mochokid genus Synodontis (Day et al. 2013), and unsurprisingly we find
this model best supports the entire family. This pattern contrasts with
the general pattern in larger species-level clades that typically show an
early burst followed by a slow-down (Phillimore and Price, 2008). The
early burst model is hypothesized to have been a result of the rapid
saturation of available niches, often interpreted in terms of adaptive
radiation and is typically reported for insular systems (e.g., Day et al.,
2008; Reddy et al., 2012; Seehausen, 2004), although this signal may
occur in the absence of ecology (Pigot et al., 2010). However, a constant
/ near-constant rate has been identified across other tropical continental
faunas, including several other African terrestrial and aquatic clades
(Liedtke et al., 2016; Day et al. 2017), and has been interpretated as a
consequence of these clades not yet reaching their ecological carrying
capacity, and/or tropical continental diversification not being as limited
by ecological opportunities.

The precise factors that have promoted speciation in Chiloglanis and
Synodontis have yet to be investigated. However, Chiloglanis have clearly
specialised to live in extreme, high-flow habitats, likely leading to
reduced competition allowing for exploitation of this extreme niche,
while other mochokids are typically found in large, slower flowing rivers
and lacustrine conditions (Froese and Pauly, 2022). However, in the case
of Synodontis prior occupancy by other mochokid lineages appears not to
have inhibited subsequent diversification within the genus. Clearly,
future studies investigating details of habitat occupancy, trophic
biology, and morphology, as well as genomic interrogation will help to
clarify the noteworthy disparities in species richness across this large,
endemic African family.

5. Conclusions
We highlight exceptional levels of undiscovered biological diversity

in the form of cryptic species from African freshwaters, specifically in
high-energy, lotic habitats, and show how such species discovery can
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impact our understanding of evolutionary patterns and processes within
lineages. Including sampling from across the range of described and
newly discovered taxa, our study suggests a near 80 % increase in spe-
cies diversity in the diminutive catfish genus Chiloglanis. Our results
highlight the need for intensified exploration of African rivers, which
remain woefully under surveyed (Snoeks et al., 2011), including a focus
on different freshwater regimes, such as headwaters and rapids as po-
tential centres of species richness and endemism. Our study, along with
previous regional studies, highlights exceptionally high levels of ende-
micity within Chiloglanis, with species/candidate species often narrowly
restricted to fast flowing sections of single river systems. Such a signif-
icant increase in endemic diversity also has implications for species
conservation, particularly in the light of expected range contractions
due to global climate change, and dam construction (Winemiller et al.,
2016), indicating higher losses of cryptic evolutionary lineages as
opposed to described morphospecies (Balint et al., 2011). Currently, ca.
65 % of Chiloglanis species listed by IUCN have a conservation status of
‘Least concern’ or ‘Data deficient’ (IUCN, 2022). However through more
detailed sampling of described taxa, we and others (Chakona et al.,
2018; Morris et al., 2016; Schmidt et al., 2016) show that many species
considered of ‘Least concern’ with large ranges likely represent species-
complexes in which actual range sizes are considerably reduced, which
would likely alter their risk of endangerment and conservation status.
Greater sampling effort of tropical freshwaters is especially pertinent
given that around a third of all freshwater fishes are now threatened
with extinction (Hughes, 2021). Given these predictions and the un-
discovered diversity based on our, and other, studies, it is likely that the
biodiversity of this major ecological vertebrate grouping is disappearing
before species diversity, as well as population diversity or connectivity,
has been fully characterised. Furthermore, our results provide a much-
needed phylogenetic framework for ongoing and future taxonomic
studies. Detailed morphological study will be a necessary augmentation
of our molecular data for the characterization and formal taxonomic
description of many of these previously unrecognized Chiloglanis line-
ages and species.
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