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Abstract7

A probabilistic approach is needed to address systems with uncertainties arising in natural pro-8

cesses and engineering applications. For computational convenience, however, the stochastic effects9

are often ignored. Thus, numerical integration routines for stochastic dynamical systems are rudi-10

mentary compared to those for the deterministic case. In this work, the authors present a method11

to carry out stochastic simulations by using methods developed for the deterministic case. Thereby,12

the well-developed numerical integration routines developed for deterministic systems become avail-13

able for studies of stochastic systems. The convergence of the developed method is shown and the14

method’s performance is demonstrated through illustrative examples.15

1 Introduction16

Natural processes are inevitably uncertain, and systems in engineering commonly have uncertainties. To17

capture this stochasticity, one needs a probabilistic approach. Thus, stochastic models are widely used in18

physics (e.g., Gardiner [13]), engineering (e.g., Wirsching et al. [46]), and biology (e.g., Wilkinson [45]).19

Uncertain parameters are classically related to manufacturing imperfections, finite measurement reso-20

lution, or incomplete data, whereas random loads arise in complex environments due to wind, ocean21

waves, seismic excitations, or road roughness. However, for computational convenience, stochasticity is22

often ignored in studies of associated systems. Thus, a variety of methods exist to simulate deterministic23

systems, while the same is not true for carrying out simulations of stochastic systems. In particular, for24

high dimensional systems, methods are still in their infancy.25

The response of stochastic dynamical systems is fully prescribed by the time evolution of the prob-26

ability density function (PDF). If the stochasticity is generated by a Wiener process, then the PDF is27

governed by the Fokker-Planck equation, a partial differential equation (e.g., Risken [32]). Exact solu-28

tions have been obtained by, for example, Soize [35], Caughey [7], and Lin and Cai [22]. To obtain these29

results one requires a balance between dissipative terms and white noise perturbations. This balance,30

however, is hardly met in realistic systems (Lin and Cai [22]).31

In the absence of exact solutions to the Fokker-Planck equation, it can be solved with numerical32

methods. In principle, space and/or time can be discretized to obtain a finite-dimensional dynamical33

system. Examples include methods based on finite differences (e.g., Pichler et al. [30]), the path integral34

method (e.g., Wehner and Wolfer [44] or Yu et al. [47]) and a finite element discretization formulated by35

Spencer and Bergman [36]. However, Masud and Bergman [24] point out that the computational burden36

is so significant, that the applications of those methods are limited to two or three-dimensional systems.37

In fact, the memory requirements of such methods generally grow exponentially with the dimensions of38

the considered dynamical system.39
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The most common and effective approach to approximate solutions to stochastic differential equations40

are discrete-time approximations (cf. Kloeden and Platen [20]). With this approach, the computational41

costs and memory requirements grow only polynomially with respect to number of dimensions. However,42

for example, as remarked by Rüemelin [33], numerical time integration schemes derived to approximate43

solutions of deterministic ordinary differential equations do not carry over to the stochastic setting in a44

straightforward manner. An underlying reason is that additional terms arise when solutions to stochastic45

differential equations are expanded in a Taylor series. These terms lead to the so-called Wagner-Platen46

formula (cf. Wagner and Platen [42] or Milstein [26]). Therefore, numerical integration of stochastic47

differential equations requires fundamentally different algorithms.48

Schurz through his chapter in [18], Kloeden and Platen [20], and the introductory treatment by49

Platen [31] offer an extensive list of available integration schemes. The most prominent and basic ones50

are the Euler-Maruyama scheme and Milstein’s method (e.g. Milstein [26]). Higher order schemes51

include the stochastic Runge-Kutta in which a predictor-corrector scheme is employed similar to the52

deterministic equivalent to enhance numerical stability (Schurz in [18]). Moreover, Boyce [4] developed53

a scheme with adaptive step size control. Milstein and Tret’yakov [25, 27] present integration methods54

for stochastic differential equations with small noise terms. Such a setting is especially relevant for55

engineering applications, wherein the stochastic part can often be considered as small or weak. However,56

the computational expense of such higher-order schemes can be significant (e.g., Schurz in [18]), so much57

so, that these costs outweigh their benefits (cf. Mannella [23]).58

In terms of the current state of the art, the available numerical methods to solve the Fokker-Plank59

equation suffer from the curse of dimensionality, whereas the discrete-time approximations of stochastic60

differential equations are often limited to the stochastic equivalent of the forward Euler scheme. However,61

in many applications, accurate and effective approximations of solutions to the deterministic part already62

require intricate numerical integration routines employing, for example, adaptive step-size control (cf.63

Gear [14]), predictor-corrector schemes (cf. de Jalon and Bayo [9]), and customized methods such as64

Newmark’s method for structural dynamics (cf. Géradin and Rixen [15]). Unfortunately, these well-65

developed routines are not applicable in a stochastic setting.66

Here, the authors propose an algorithm to extend any deterministic numerical integrator to a stochas-67

tic setting. To that end, they proceed as follows. In many applications, especially in engineering, the68

noise intensity is small and one can perform a parameter expansion (cf. Section 3). In this setting, the69

authors formulate a small noise integrator (SNI), which relies on an appropriate resampling of distri-70

butions along sample paths (cf. Section 4.1). Within this algorithm, any deterministic integrator can71

be used to approximate the sample paths of stochastic dynamical systems. After proving the strong72

convergence of the SNI, the algorithm performance is demonstrated by considering various nonlinear me-73

chanical systems with up to one hundred degrees of freedom in Section 4.2. Furthermore, in Section 5.1,74

a Gaussian kernel is presented to rigorously deduce a smooth distribution from a finite number of samples75

and the corresponding performance is shown for nonlinear mechanical systems (cf. Section 5.2).76

2 System Setting77

The authors consider the general dynamical system78

ẋ = f(x, t) + σb(x, t), 0 < σ ≪ 1, x ∈ RN , (1)

where the vector x denotes the states and the integer N is the numbers of degrees of freedom. The79

parameter σ in equations (1) is small and scales the stochastic excitation defined in differential form as80

db(x, t) = B(x, t)dW =
M∑

m=1

Bm(x, t)dWm, B : RN × R 7→ RN×M , (2)

where W1,W2, ...,WM denote uncorrelated one dimensional standard Wiener processes (e.g., Kloeden81

and Platen [20]). The m-th column of the matrix B(x, t) prescribes the direction in which the m-th82

Wiener process acts. The directions can generally depend on the states as indicated in equations (2).83

Such multiplicative noise commonly arises, for example, in micro-electro-mechanical devices (MEMS, cf.84

Vig and Yonkee [41]). The parameter σ can be considered to be representative of small uncertainities85
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that arise in various settings, including high precision manufacturing, measurements, and environmental86

modeling.87

The time dependence of the deterministic part f(x, t) and the stochastic part B(x, t) is general. Thus,88

system (1) includes autonomous (i.e., time-invariant) systems as well as systems with time-periodic,89

quasi-periodic, and even more general, possibly aperiodic, time dependence. Moreover, it is assumed90

that the matrix B(x, t) and the vector f(x, t) are at least twice continuously differentiable with respect91

to the spatial coordinate x.92

This study is motivated by, but not limited to, the general nonlinear mechanical system93

Mq̈+Cq̇+Kq+ S(q, q̇, t) = σg(q, q̇, t), 0 < σ ≪ 1, q ∈ RN∗
, dg(q, q̇, t) =

M∑
m=1

gm(q, q̇, t)dWm,

(3)
where q is the vector of coordinates and the integer N∗ denotes the numbers of degrees of freedom. The94

mass M ∈ RN∗×N∗
is assumed to be invertible, whereas the damping C ∈ RN∗×N∗

and stiffness K ∈95

RN∗×N∗
matrix are assumed to be general matrices. In many engineering applications the aforementioned96

matrices, however, are assumed to be positive definite (cf. Géradin and Rixen [15] or Balachandran and97

Magrab [2]). The vector S(q, q̇, t) includes nonlinear terms depending on positions and velocities as98

well as time varying terms such as external and/or parameteric excitation. Introducing the state-space99

coordinate x :=
[
q⊤, q̇⊤]⊤, the notation100

A :=

[
0 I

M−1K M−1C

]
∈ R2N∗×2N∗

, G(q, q̇, t) :=

[
0

M−1S(q, q̇, t)

]
∈ R2N∗

, (4)

and defining the columns of the matrix B as101

Bm(q, q̇, t) :=

[
0

M−1gm(q, q̇, t)

]
, m = 1, ...,M, (5)

the mechanical system (3) can be reformulated in the form of equations (1) with f(x, t) = Ax+G(x, t).102

As customary with the treatment of stochastic differential equations, for the forthcoming develop-103

ment, the stochastic dynamical system is most conveniently formulated as the differential equivalent of104

system (1); that is,105

dx = f(x, t) dt+ σB(x, t) dW, x(t = t0) = x0, 0 < σ ≪ 1, (6)

where x0 denotes a deterministic initial condition.106

3 Small Noise Expansion107

Similar to approximate solutions obtained through perturbation analysis in the deterministic case (e.g., Ver-108

hulst [40] or Nayfeh [28]), approximate solutions to system (6) can be obtained through an expansion in109

the small parameter σ. The convergence of such a series can be guaranteed by the following result due110

to Blagoveshchenskii [3]:111

Theorem 3.1. Assume that f(x, t) and B(x, t) and their partial derivatives with respect to the coordinate112

x up to order two are bounded and Lipschitz continuous for t0 < t < t1. Then, there exists σ0 > 0 such113

that114

x(t) = x0(t) + σx1(t) + σ2r(t, σ), for all 0 ≤ σ ≤ σ0, (7)

holds, whereby the remainder r(t, σ) is bounded in the mean square sense; that is,115

E

 sup
0≤σ≤σ0
t0<t<t1

|r(t, σ)|2
 ≤ K < ∞. (8)

Proof. This is a restatement of a Theorem by Blagoveshchenskii [3] for the current setting of the paper.116

Related versions have alo been stated by Freidlin and Wentzell [11] and Kaszás and Haller [19].117
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Remark 3.1. Polynomial nonlinearities appearing in common nonlinear oscillator prototypes such as118

Duffing’s equation (cf. Kovacic and Brennan [21]) or the van der Pol oscillator (e.g., Guckenheimer and119

Holmes [16]) are neither bounded nor globally Lipschitz continuous. These nonlinearities generally grow120

unbounded for infinite states. Hence, Theorem (3.1) is not applicable in those cases. On the other hand,121

realistic systems, do not allow for arbitrarily large states. Thus, equations (1) are necessarily only valid122

for states inside a bounded domain; that is, the model’s domain of validity. Thus, for example, one can123

follow an argument of Breunung [5] and modify equations (1) outside its domain of validity such that124

the requirements of Theorem 3.1 are met.125

After substituting the expansion (7) into equations (6) and equating terms of equal order in σ, the
result is the following hierarchy of equations for the first two orders:

O(1) : dx0 = f(x0, t) dt, x0(t0) = x0, (9)

O(σ) : dx1 = ∂xf(x
0, t)x1 dt+B(x0, t) dW, x1(t0) = 0, (10)

The zeroth order (9) is simply the deterministic limit of equation (6) (σ → 0). It can be solved or126

approximated by standard methods available for deterministic systems such as numerical time integra-127

tion. Moreover, the stochastic process x0 + σx1 is Gaussian (cf. Blagoveshchenskii [3] or Freidlin and128

Wentzell [11]) and the linear stochastic differential equation (10) can be solved in closed form. To this129

end, the flow map; that is, the map mapping the initial condition x0 at the time t = t0 to their position130

at time t is denoted by Ft
t0(x0). The gradient of Ft

t0(x0) with respect to the initial condition is denoted131

by DFt
t0(x0). The linearized flow map DFt

t0(x0) is also the fundamental solution to the deterministic132

part of the first order equations (10) , i.e. it satisfies133

d

dt
DFt

t0(x0) = ∂xf(x
0(t), t)DFt

t0(x0), DFt0
t0(x0) = I. (11)

With this notation, the first two moments of the stochastic process (10) are given by the explicit formulae134

E
[
x1(t)

]
= 0, E

[
x1(t)(x1(t))⊤

]
=

∫ t

t0

DFs
t0(x0)B(x0, s)

[
DFs

t0(x0)B(x0, s)
]⊤

ds =: Σ(t;x0, t0),

(12)
which have been obtained by van Kampen [39]. Caughey [7] and Risken [32] present solutions for the135

special case of a constant Jacobian ∂xf(x
0, t) = A1 in equations (10).136

In the following, the probability density of the stochastic process (10) is obtained. The matrix137

Σ(t;x0, t0) defined in equation (12) is positive semi-definite. Thus, it admits the decomposition Σ(t;x0, t0) =138

U⊤ΛU, where the matrix U is orthogonal and the matrix Λ is diagonal containing the L ≤ N posi-139

tive eigenvalues of Σ(t; t0,x0). The pseudo inverse of Λ is defined elementwise by Λ̃−1
jl := δjl/Λll for140

1 ≤ j, l ≤ L and Λ̃−1
jl := 0 otherwise. With this notation, the pseudo inverse of Σ(t; t0,x0) is given by141

Σ̃(t;x0, t0)
−1 := U⊤Λ̃

−1
U. (13)

Moreover, the pseudo determinant of Σ(t; t0,x0) is defined as142

|Σ(t;x0, t0)| :=

{
Λ11Λ22...ΛLL, L ≥ 1,

1, otherwise.
(14)

With the definition of the pseudo-inverse (13) and determinant (14), the time varying probability density143

of the stochastic process (10) is given by144

p1(x, t;x0, t0) =
1√

(2π)L|Σ(t;x0, t0)|
exp

(
−1

2
x⊤Σ̃(t;x0, t0)

−1x

)
, (15)

which generally depends on the solution to the first order x0.145

In summary, the solutions to system (6) can be approximated as146

x(t) = Ft
t0(x0) + σx1(t;x0, t0) +O(σ2), x1(t;x0, t0) ∼ p1(x, t;x0, t0), (16)
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where the symbol ∼ indicates that the random variable x1(t;x0, t0) has the distribution p1(x, t;x0, t0)147

(cf. equation (15)). Moreover, the probability density function of x0 + σx1; that is, the first order148

approximation of solutions to system (6), is given by149

pσ(x, t;x0, t0) =
1

σ
√
(2π)L|Σ(t;x0, t0)|

exp

(
− 1

2σ2
(x− Ft

t0(x0))
⊤Σ̃(t;x0, t0)

−1(x− Ft
t0(x0))

)
. (17)

Thus, the PDF can be approximated by a Gaussian distribution whereby the mean is determined by150

solution to the deterministic limit Ft
t0(x0) and the variance is given in equation (12). The authors151

emphasize that both, the mean and variance, are defined through purely deterministic equations and152

hence, they can be computed without relying on stochastic integration methods.153

Before continuing with the development, it is revealing to evaluate the validity of approximation (16)154

based on Theorem 3.1. To this end, the classical Duffing equation155

q̈ + cq̇ + kq + κq3 = a sin(Ωt) + σf, df = dW, (18)

with the dimensionless parameters156

c = 0.02, k = 1, κ = 0.5, a = 0.1, (19)

is considered. First, the deterministic limit (σ → 0) is analyzed. Varying the excitation frequency Ω157

in the vicinity of the natural frequency, the frequency response curve is computed with the numerical158

continuation package coco [8] and shown in Figure 1a. For the forcing frequency Ω = 1.2, two stable159

periodic responses exist for system (18). After selecting the initial condition x0 to be at the orbit with160

higher amplitude, the variances (12) are computed and depicted in Figure 1b. For comparison, 104161

approximations of solutions to the stochastic differential equation (18) are calculated with the Euler-162

Maruyama scheme (e.g., Kloeden and Platen [20]) with the noise intensity σ = 0.01. Subsequently, the163

variances are calculated from the Euler-Maruyama samples.164
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(a) Frequency response of the deterministic limit of sys-
tem (18)
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(b) Comparison of the computed variances (12) with
variances computed from 104 Euler-Maruyama approx-
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Figure 1: Deterministic and stochastic solutions to Duffing’s equation (18) with parameters (19).

From Figure 1b, it is evident that the approximation (16) is only accurate for about a quarter of the165

period T . After half a period, the computed variances (12) differ significantly from the results obtained166

through Monte Carlo sampling. This discrepancy is not an artifact of the obtained numerical approxi-167

mation, as increasing the sample size or decreasing the step size in the Euler-Maruyama approximation168

does not alter Figure 1b. Furthermore, Fig. 1b is not in contradiction with Theorem 3.1, according to169

which, for any final time t1 there exists some σ0 such that the series (7) converges and the remainder170

is bounded in the mean square sense (cf. estimate (8)). It can be said that Figure 1b solely indicates171
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that for t1 = T and σ = 0.01, the series (7) either does not converge or the remainder is unacceptably172

large. However, for t1 = T/4, the approximation (16) is found to be acceptable. This observation is in173

line with experience from deterministic dynamical systems. In this setting, Nayfeh [28] has noted that174

the straightforward expansions in the form of equation (7) are often limited to small time intervals and175

more sophisticated methods need to be employed to obtain solutions valid over larger time intervals.176

4 Approximation of Sample Paths177

In the previous section, it was demonstrated that the explicit formula (16) works well for small enough178

times, but the formula’s accuracy deteriorates significantly for longer time spans. To address this short-179

coming, the small noise integrator (SNI) is proposed in Section 4.1. Subsequently, the integrator’s180

performance is evaluated on nonlinear mechanical systems with up to one hundred degrees of freedom.181

4.1 Small Noise Integrator182

To overcome the small time horizon of the approximation (16), the Algorithm 1 is proposed next. After183

fixing a time step τ and providing an initial condition x0 at t0, the distribution (15) for t = τ is computed184

and then this distribution is sampled to generate the new initial condition xτ according to equation (16).185

Then, the algorithm is restarted with the initial condition xτ to generate a new sample x2τ . By repeating186

these two steps, samples are generated at later time instances xkτ .187

Algorithm 1: Small noise integrator (SNI)

Result: x(Kτ ;x0, t0)
Set time step τ and provide initial condition x0;
k=1;
while k < K do

Solve equation (9) to obtain the deterministic solution Fkτ
(k−1)τ (xk−1);

Compute the variance (12) ;
Sample the distribution p1(x, kτ ;xk−1, (k − 1)τ) (cf. equation (15)) to obtain
x1(kτ ;xk−1, (k − 1)τ);

xk = Fkτ
(k−1)τ (xk−1) + σx1(kτ ;xk−1, (k − 1)τ);

k = k + 1;

end

188

The SNI is motivated by the fact that the small noise expansion is accurate only for a limited time189

span. Thus, by selecting τ to be within this time span, one can ensure that the approximation (16)190

is accurate. Repeated sampling removes the limited time horizon of the small noise expansion and the191

following Lemma guarantees the accuracy of the SNI 1 for longer time spans:192

Lemma 4.1. Assume that the flow map of the deterministic limit (9) is approximated with an accuracy193

not less than O(τ). Then the SNI 1 strongly converges to the sample paths of the stochastic system (6)194

with order O(τ
1
2 ); that is, the following holds195

E
[
|x(kτ)− xSNI

k |
]
< C

√
τ , 0 ≤ k ≤ K, (20)

where x(kτ) denotes a solution to system (6), xSNI
k is an approximation obtained by the SNI 1, and C196

is a finite constant.197

Proof. The above Lemma 4.1 is proven by showing that for system (6) the SNI 1 converges to the198

Euler-Maruyama approximation for a small enough time step τ . Then, the convergence follows from199

well-established convergence results (e.g., Kloeden and Platen [20] or Schurz’s chapter in [18]). The200

details are presented in Appendix A.201

Remark 4.1. Notably, the convergence result of Lemma 4.1 does not depend on the size of the noise202

intensity σ. More specifically, in Appendix A only a parameter expansion in the time step τ is performed203

and no restrictions on the noise intensity σ are imposed. For small enough time step τ , the SNI 1204

resembles the Euler-Maruyama scheme, which is valid for arbitrarily large σ. Hence, the SNI 1 will also205

converge for large σ.206
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Remark 4.2. As utilized in the Euler-Maruyama scheme and also shown by Risken [32], solutions to207

equation (6) can be approximated by a Gaussian process on small time scales regardless of the size of208

the noise intensity. With the SNI 1 one arrives at a similar conclusion and exploits the convergence of209

the expansion (7) for small noise intensities. Within the SNI (1) a non-Gaussian distribution arises on210

longer time scales when multiple sample paths are computed.211

If the directions along which the Gaussian white noise act are constant; that is, Bm(x, t) = Bm for212

m = 1, ...,M < N , one can reduce the computational costs of obtaining the variance (12). Instead of213

computing the linearized flow map DFt
t0(x0), which requires N integrations of the equations of variation,214

the new variable V(t) := DFt
t0(x0)B is introduced. Then, the variance (12) can be reformulated as215

Σ(t; t0,x0) =

∫ t

t0

V(t)V⊤(t) ds, (21)

and differentiation of V(t) yields216

V̇ =
d

dt

(
DFt

t0(x0)B
)
=

d

dt

(
DFt

t0(x0)
)
B = ∂xf(x, t)DFt

t0(x0)B = ∂xf(x, t)V, V(t0) = B. (22)

Thus, it suffices to compute the matrix V which requires only M integrations of the linearized flow.217

The fact, that for small times solutions of system (6) can be approximated by a Gaussian process218

is well-known (see, e.g., Risken [32] or Freidlin and Wentzell [11]) and has also been exploited in the219

construction of solution schemes that repeatedly resample an arising Gaussian distribution in a similar220

manner as the SNI 1. For example, Sun and Hsu [37] introduce a short-time Gaussian approximation221

for the cell mapping method or Yu et al. [47] and Wehner and Wolfer [43] use a Gaussian transition222

probability density function in the formulation of a path integral solution to the Fokker-Planck equation.223

In these schemes, however, the mean and variance of the Gaussian approximation are obtained differently224

from the SNI 1. Wehner and Wolfer [43] utilize the short time propagator also used in the Euler-225

Maruyama scheme and Sun and Hsu [37] and Yu et al. [47] rely on moment equations with heuristic226

closure schemes. Contrarily, the SNI 1 utilizes the rigorously deduced mean and variance (16) for the227

arising Gaussian processes.228

For further understanding, the SNI 1 can be compared with the classical Euler-Maruyama scheme229

which applied to system (6) yields230

xe
k = xe

k−1 + τ f(xe
k−1, (k − 1)τ) + σ

√
τB(xe

k−1, (k − 1)τ)∆W, (23)

where ∆W denotes the increments of the m-dimensional of the normalized Wiener process. In this231

setting, the SNI 1 replaces the forward Euler scheme of the deterministic part in the Euler-Maruyama232

scheme (xe
k−1 + τ f(xe

k−1, (k − 1)τ)) by the deterministic flow map Fkτ
(k−1)τ (xk−1) at each time step.233

Moreover, instead of sampling the normal distribution with zero mean and234

variance τB(xe
k−1, (k−1)τ)

[
B(xe

k−1, (k − 1)τ)
]⊤

the variance (12) is sampled for the stochastic increment235

in the SNI 1 at each time step.236

Although the order of convergence of the SNI is only one-half, which is the order of the classic237

Euler-Maruyama scheme, the SNI 1 has inherent advantages making it an appealing alternative to238

existing techniques to solve equation (6) numerically. First, the SNI requires only sampling of normal239

distributions and hence it does not require sampling of intricate distributions as some competing method240

(e.g., Schurz’s chapter in [18]). Second, the SNI allows for the use of deterministic integration routines.241

More specifically, the flow-map Ft
t0(x0) can be approximated by any deterministic numerical integrator.242

This is especially appealing in applications, where accurate and effective approximations of solutions to243

the deterministic limit of equation (6) already require sophisticated numerical integration routines. For244

example, the forward Euler approximation of the deterministic flow map in the Euler-Maruyama scheme245

or Milstein’s scheme (e.g., Kloeden and Platen [20]) can be unstable for simple linear equations (see,246

e.g., Butcher [6]).247

Most importantly, the SNI’s performance is drawn from not only the limit of an asymptotically248

small time step, but this algorithm is also accurate for large time steps, given that the noise terms are249

sufficiently small. Thus, it is anticipated that the time step τ can be chosen considerably larger than in250

the available numerical integration routines for stochastic differential equations.251
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Overall, a possible increase in speed and accuracy gained by using a deterministic integrator for252

system (1) is counteracted by the necessity of computing the linearized flow map DFt
t0(x0) and the253

variance (12). In special cases, this burden can be reduced by computing the matrix V instead (cf.254

equation (22)). These observations lead to the conclusion that the SNI 1 is superior to other stochastic255

integration methods if the deterministic limit is challenging enough such that the speed up gained by256

the deterministic numerical integration routines is larger than the computational effort of computing the257

linearized flow map DFt
t0(x0) and the variance (12). In the next section, it is shown that this can be258

the case, through many examples.259

4.2 Numerical Investigations260

As a benchmarking study, the SNI 1 is compared to Euler-Maruyama (EM) approximations of solutions261

to equation (6) (e.g., Kloeden and Platen [20]). Although many higher-order schemes are available (cf.262

Schurz’s overview in [18]), as reported by Mannella [23], the performance gain can be insignificant at263

the expense of additional computational expense. Thus, for a first comparison, the widely-used Euler-264

Maruyama method is used1 2. Within the SNI 1 the following numerical routines are used. Equations (9)265

and (10), and in turn equation (22), are solved using Matlab’s ode45 routine. Moreover, the integral266

to compute the variance (12), respectively equation (21), is approximated by using the trapezoidal rule.267

268

For an initial demonstration of the accuracy of the SNI, the Duffing system (18) with parameter269

values (19) and excitation frequency Ω = 1.2 is investigated for two different choices of the time step τ .270

For the first choice, τ = T/5 is selected, and subsequently, for the second choice, it is increased to T for271

comparison. The results of the SNI are shown in Figure 2. While the distribution obtained with the272

SNI 1 with time step τ = T/5 shown in Figure 2a matches the distribution from the EM-approximations,273

the SNI does not yield an accurate approximation for the time step τ = T (cf. Figure 2b). The accuracy274

can be quantified by computing the first two statistical moments for all three distributions. In Figure 2a,275

the mean and standard deviation of the EM-approximation and the SNI agree up to an accuracy of 10−3,276

whereas the standard deviations differ by more than 0.01 in Figure (2b). With the SNI 1, one computes277

the 103 samples shown in Figure 2 about 20-times faster than the Euler-Maruyama approximation.278
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(a) SNI-algorithm 1 with τ = T/5
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Figure 2: Deterministic and stochastic solutions to Duffing’s equation (18) with parameters (19).

1The Matlab provided Euler-Maruyama approximation is not utilized. Instead, a self-written code, freely available at
an appropriate repository, is employed. For the cases tested the self-written code outperforms the Matlab provided code.
Moreover, various optimizations of the Euler-Maruyama scheme summarized by Higham [17] (especially vectorization) have
been tested and a version was selected that seemed optimal in terms of speed and memory requirements for the purposes
of this study.

2It is noted that for the investigated systems, the first order equivalent of systems (18) and (24), the matrix B (cf.
equation (6)) does not depend on the coordinates. Hence, the Euler-Maruyama scheme is equivalent to Milstein’s scheme
(e.g., Kloeden and Platen [20]). Thus, it convergences to the sample path of system (24) with order one.
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In Figure 3a, the authors show the convergence of the SNI relative to the step size τ . The errors in279

the first two statistical moments, that is the mean and variance, computed with the SNI 1 are compared280

to those associated with from an Euler-Maruyama approximation with step size of τ = T/(2 · 105). For281

the selected step sizes, the mean computed with the SNI 1 remains accurate with an error of the order282

of about 10−3. This accuracy is also recognizable in Fig. 2. For both step sizes τ = T and τ = T/5,283

the sample populations are centered at the same phase space location indicating that both distributions284

have a similar mean. However, the accuracy of sample variance computed with the SNI 1 increases285

significantly between τ = T/2 and τ = T/3. This observation is also discernible in Fig. 2. The sample286

population computed with the SNI 1 for the step size τ = T spans an evidently larger area than the287

converged sample distribution (cf. Fig. 2b). The same numerical convergence analysis is also performed288

for the Euler-Maruyama scheme and shown in Fig. 3a. A converged result from the Euler-Maruyama289

scheme requires a significantly higher number of time steps per period compared to that for SNI 1.290
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Figure 3: Convergence analysis for the Duffing equation (18) with parameters (19).

The performance of the SNI 1 is further demonstrated in a series of numerical experiments on an291

array of N∗ coupled oscillators shown in Fig. 4. The equation of motion of the nth mass is292

mnq̈n + cnq̇n + knqn + κnq
3
n + sn−1(qn − qn−1) + sn(qn − qn+1) = fn,

fn = an sin(Ωt) + σbn, dbn = gn dW1, n = 1, ..., N∗,
(24)

where q0 ≡ qN∗+1 ≡ 0 and s0 = sN∗ = 0 holds. The springs with stiffness sn induce coupling between293

the individual degrees of freedom of system (24). The quantity an is the amplitude of the deterministic294

harmonic component in the nth forcing, and the quantity gn is the level of the noise term W1 in the nth295

coordinate. It is noted that considering the oscillator array (24) with a single mass (N∗ = 1) yields the296

Duffing equation (18) investigated in Figs. (2) and (3). Next, identical parameters for each oscillator are297

chosen with the following dimensionless values298

mn = 1, kn = 1, sn = 0.1, cn = 0.02, κn = 0.5, an = 0.1, gn = 1, n = 1, .., N∗, (25)

and the noise intensity is set to σ = 0.01.299

The excitation frequency Ω is set to 1.2 and for each oscillator, the same initial condition x0 shown in300

Figure 1a is selected. Then, the sample paths of the oscillator array (24) are approximated for 1, 10, and301

100 forcing periods. To ensure that the Euler approximation yields the correct deterministic limit, the302

step size of the EM-approximation is decreased until it matches the solution of Matlab’s ode45 with303

an error less than 10−3. For the SNI 1, τ = T/5 is selected and Matlab’s ode45 algorithm is used to304

solve equations (6) and (22). For both approximations, 103 sample paths are obtained and the first two305

statistical moments are compared. It is observed that in all cases there is an agreement with an accuracy306

of 10−3. The run-time comparison of the EM-approximation and the SNI 1 is shown in Table 1.307
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Figure 4: Oscillator array with cubic nonlinearities κ and linear coupling sn.

Table 1: Run-time comparison for the SNI 1 with τ = T/5 and the Euler-Maruyama approximation for
the oscillator array (24). The sample size is 103 and the convergence of the two methods is ensured by
computing the first two statistical moments. The excitation frequency Ω is 1.2.

final time t = T final time t = 10T final time t = 100T
# dof (N∗) EM: Steps per T Speed-up EM: Steps per T Speed-up EM: Steps per T Speed-up

1 4 · 104 21 6 · 104 32 1 · 105 47
2 6 · 104 32 8 · 104 45 2 · 105 95
5 8 · 104 37 1 · 105 52 4 · 105 194
10 1 · 105 46 2 · 105 195 6 · 105 259
20 2 · 105 72 3 · 105 115 6 · 105 1751

50 3 · 105 46 4 · 105 45 8 · 105 1021

100 4 · 105 21 6 · 105 32 1 · 106 621

The computations have been performed using MATLAB 2020a installed on a Windows PC with Intel Xeon CPU E5-2687
W @ 3.1 GHz and 64 GB RAM.
1 Due to the excessive computation time of the Euler-Maruyama scheme (more than one day), the run-time for the full
sample size is estimated by extrapolating the run-time for one sample.

Overall, from Table 1, it can be discerned that a significant speed-up of the SNI 1 is obtained in308

comparison to the classical Euler-Maruyama scheme. In all cases, the speed-up is at least one order of309

magnitude. Especially large is the speed-up for oscillator arrays with 5 to 50 oscillators. Moreover, the310

efficiency of the SNI 1 increases with the time span, which makes it an appealing choice for long time311

horizons.312

To further demonstrate the versatility of the SNI 1, the excitation frequency is increased to Ω = 1.9313

and for each oscillator, the initial condition is selected to be on the upper stable branch depicted in314

Figure 1a. At this frequency, Matlab’s ode45 algorithm can be used to compute the stable periodic orbit315

effectively, whereas the step size of the primitive EM-approximation needs to be decreased significantly316

to converge to a stable periodic orbit of the deterministic limit. Proceeding as previously described for317

the stochastic simulations, the SNI 1 yields a significant computational gain compared to the Euler-318

Maruyama scheme (cf. Table 2).319

To verify that the performance of the SNI 1 is independent of specific parameter values (25), the320

parameter values of system (24) are assigned randomly as described in Appendix B. Also for this nu-321

merical experiment the SNI 1 is found to outperform the Euler-Maruyama approximation (cf. Table 2).322

Overall, from Table 2, one can discern a speed-up of about two orders in magnitude. Moreover, for longer323

simulation times an even higher speed-up of the SNI 1 is expected, since the small step size to be used324

for the EM-approximation will increase the computational burden excessively.325

Although the SNI 1 relies on a repeated sampling of Gaussian distributions, the resulting sample326

distribution is not necessarily Gaussian. To demonstrate this, the oscillator array (24) with two masses327

N∗ = 2 and a coupling spring stiffness kc = 0.025 is considered. For these parameter values, four stable328

periodic orbits exist. For one of there orbits, both masses oscillate with a high amplitude (i.e., the329

high amplitude orbit), whereas along the low amplitude orbit, the displacements of both masses are330

low. Moreover, two localized modes exist. Along one of the localized modes, the first mass oscillates331

considerably, whereas the amplitude of the second mass is low. For the other localized mode, the energy332

distribution is reversed; that is, the amplitude of the first mass is low and the second mass oscillates with333

a high amplitude. Such energy localization phenomena have been previously investigated, for example,334
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Sievers and Takeno [34], Vakakis and Cetinkaya [38] and Dick et al. [10]. Recently, there has been an335

interest to study the effects of noise on such energy localization (e.g., Perkins et al. [29] and Balachandran336

et al. [1]). Selecting the high amplitude orbit as an initial condition, 103 sample paths for 100 periods337

have been computed with the SNI 1. The sample locations are shown in Figure 5. The projections show338

that some samples remained in the neighborhood of the high amplitude orbit, whereas other realizations339

have escaped towards the low amplitude periodic orbit. Overall, the distribution shown in Figure 5 is340

clearly non-Gaussian.341
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Figure 5: Samples of the oscillator array (24) with localized modes after 100 periods.

5 Approximation of the Probability Density Function342

A straightforward method to compute probability densities is to discretize the state space into volumes,343

compute sample paths (e.g., with the SNI 1 or the EM-approximation) and then count the number344

of realizations within each volume. The result of this Monte Carlo approach is an invariably non-345

smooth approximation of the probability density function. This requires a high number of samples to346

accurately represent the PDF. To overcome these shortcomings a more effective method is proposed in347

Table 2: Run-time comparison for the SNI 1 with τ = T/5 and the Euler-Maruyama approximation for
the oscillator array (24): i) Ω = 1.9 and uniform parameters (25) and ii) random parameters (cf. also
Appendix B). The sample size is 103 and the convergence of the two methods is ensured by computing
the first two statistical moments.

Ω = 1.9 random parameters
final time t = T final time t = T final time t = 10T

# dof (N∗) EM: Steps per T Speed-up EM: Steps per T Speed-up EM: Steps per T Speed-up
1 2 · 105 87 6 · 104 21 3 · 105 89
2 3 · 105 130 2 · 104 16 2 · 105 161
5 5 · 105 156 2 · 104 13 2 · 105 163
10 8 · 105 303 5 · 104 27 5 · 105 270
20 1 · 106 257 5 · 105 60 4 · 106 4881

50 2 · 106 270 5 · 106 22 1 · 107 2501

100 3 · 106 153 5 · 105 7 5 · 106 2011

The computations have been performed using MATLAB 2020a installed on a Windows PC with Intel Xeon CPU E5-2687
W @ 3.1 GHz and 64 GB RAM.
1 Due to the excessive computation time of the Euler-Maruyama scheme (more than one day), the run-time for the full
sample size is estimated by extrapolating the run-time for one sample.
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Section 5.1. This approach relies on the rigorously deduced Gaussian kernel (12) to smoothly approximate348

the probability density function. Next, the performance of the proposed method is examined through349

examples in Section 5.2.350

5.1 Gaussian Kernel Approximation351

To approximate the probability density function of system (6) at t = Kτ , it is assumed that R realizations352

xr(Kτ) = xr(Kτ ;x0, t0) of the stochastic process (6) have been computed. At time t = (K − 1)τ , the353

sample locations are given by xr((K−1)τ) = xr((K−1)τ ;x0, t0). Now advancing the sample population354

from time t = (K − 1)τ to the final time t = Kτ , each individual sample results in the generation of the355

Gaussian distribution356

pr(x,Kτ ;xr((K − 1)τ), (K − 1)τ) := pσ(x,Kτ ;xr((K − 1)τ), (K − 1)τ), (26)

where the distribution pσ is defined in equation (17). Averaging the distributions (26) over the samples357

yields358

p(x,Kτ ;x0, t0) ≈
1

R

R∑
r=1

pr(x,Kτ ;xr((K − 1)τ), (K − 1)τ), (27)

that is, a Gaussian kernel approximation (GKA) to the probability density at the final time. Equa-359

tion (27) is an approximation of the probability density p(x,Kτ ;x0, t0) obtained by a sum of Gaussian360

distributions centered at FNτ
(N−1)τ (xr((K − 1)τ)) with variance (12), which generally differ for each re-361

alization r. Hence, it can also be viewed as kernel smoothening method (e.g., Friedman et al. [12]).362

Compared to the usual adhoc chosen kernel distributions, the kernel (27) is rigorously chosen based on363

the Gaussian kernel (12). Moreover, since (27) is the standard Monte-Carlo estimator, the correspond-364

ing convergence can be guaranteed under appropriate assumptions; that is, small enough τ and small365

enough σ.366

5.2 Numerical Investigations367

In the following, the time-varying probability density function of the stochastic process (6) is computed368

with the Gaussian kernel approximation (27) and compared with the probability density obtained by369

using the straight forward Monte-Carlo simulations, wherein the state space is discretized into volumes370

and the number of realizations in each volume is counted.371

For a first comparison, the single degree of freedom oscillator (18) with the parameters (19) is rein-372

vestigated. The initial condition is depicted in Figure 1a and the solutions of the stochastic process (18)373

are approximated via the SNI 1 for one period. In Figure 6, the authors show the obtained probability374

density functions for various sample sizes. For 105 samples, the probability density function of both375

methods, Monte Carlo and GKA (27) match very well. Reducing the sample size in the GKA to include376

only 103 samples, still yields a PDF, which matches the PDF obtained at convergence with 105 samples.377

However, with a reduced number of samples in the Monte-Carlo method, there is a significant deviation378

from the converged results.379

To quantify the superior convergence of the GKA, the L2-error relative to Monte-Carlo simulations380

with 106 samples is visualized for both approximations and various sample sizes. The relative error of381

the GKA shown in Figure 7 is about two orders of magnitude smaller than that of the Monte-Carlo382

approximation. Only for the largest sample size (Ns = 105), the error of the GKA is one order of383

magnitude less than that of the Monte-Carlo simulations. However, the error with the Monte-Carlo384

simulations with 105 samples is still larger than the error with the GKA with only 103 samples. Thus,385

in this example, the sample size of the GKA-approximation can be reduced by two orders of magnitude386

compared to the Monte-Carlo method.387

Before proceeding with a high dimensional oscillator array (24), it is insightful to emphasize the388

enormous sample size needed for the Monte Carlo simulations to obtain a converged PDF. For the one389

degree-of-freedom oscillator considered in Figures 6 and 7, about 105 samples were necessary to com-390

pute a converged PDF with the Monte Carlo method. Thus, an estimated number of 105N
∗
samples391

would be required to obtain a converged PDF for an N∗-oscillator array (24). Even for three oscilla-392
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Figure 6: Comparisons of computed probability density function with the proposed Gaussian kernel
approximation (27) and Monte-Carlo sampling for different sample sizes for Duffing’s equation (18) with
parameters (19).
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Figure 7: Relative error of Gaussian kernel approximation (27) and Monte Carlo approximation for
Duffing’s equation (18) with parameters (19).

tors in system (24), the computational effort necessary to generate such a high number of samples is393

overwhelming3.394

To verify whether one obtains the correct results with the GKA-approximation (27) in higher dimen-395

sions, an perturbation scheme is employed. For the weak coupling spring stiffness sn, the time evolution396

the oscillator array (24) can be estimated with N uncoupled oscillators; that is, the uncoupled limit397

sn → 0. More precisely, it is assumed that the coupling spring stiffness sn is of order O(σ2). Then, for398

the uniform parameters (25) each oscillator qj and q̇j are identical up to order O(σ2). Thus, in this limit,399

it is sufficient to simulate a single degree-of-freedom oscillator to infer about the full oscillator array (24).400

3To give an idea of the computational effort, the following is mentioned: the storage required to store 1015 samples
with double precision floating point numbers is 48 petabytes (= 1015 · 3 · 2 · 8 bytes). With the current advances in
high-performance computing and data storage systems, such simulations may not be impossible but one requires a serious
commitment in computing power and data storing capabilities, which is beyond the scope of this paper.
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In Figure 8, the authors depict the PDF of the oscillator array (24) with three masses N = 3 along401

the two dimensional plane where the positions and velocities of the second and third mass are at their402

sample mean; that is, q2 = q̄2, q3 = q̄3, q̇2 = ¯̇q2 and q̇2 = ¯̇q2, where the bar indicates the mean values.403

Both approximations match with an relative L2-error of less than 0.01. It is emphasized, that for the404

Monte Carlo simulations approximate symmetries of system (24) are explicitly exploited, whereas no405

such reduction technique has been employed for the GKA4. Similar to the single degree-of-freedom case,406

with the GKA (27), one converges to a significantly lower number of samples than with the Monte-Carlo407

sampling.408
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Figure 8: Comparison of the computed probability density function via the proposed Gaussian kernel
approximation (GKA) (27) and Monte-Carlo sampling at the uncoupled limit for the oscillator array (24)
with parameters (25) and a sample size of 105.

Finally, the two-degree-of-freedom system with localized modes from Section 4.2 is reinvestigated to409

verify whether samples escaped from the high amplitude orbit to the other stable periodic orbits. With410

the two-dimensional projection shown in Figure 5, one invariably ignores the other directions and hence411

such projections are of limited use to infer about an escape from the high amplitude orbit. Accordingly,412

measuring distances of samples to the periodic orbits is more appropriate. For each periodic orbit, the413

distance is a random variable, whose PDF can be approximated with the GKA. The arising four PDFs414

are shown in Figure 9 for 105 samples. The peak in Figure 9 is due to the initial condition, whose distance415

to the localized modes and the low amplitude orbit is about 2.7. The distances to the high amplitude416

orbit and the low amplitude orbit (blue and red lines in Figure 9) confirm the impression from Figure 5417

that realizations do not stay close to the high amplitude orbit and escape towards the low energy orbit.418

6 Conclusions419

In this work, the small noise expansion (cf. equation (7)) is exploited to propose a method to obtain420

approximations for the following: i) the sample paths of the stochastic dynamical system (1) and ii)421

the associated time-varying probability density function. With the formulated small noise integrator 1,422

one removes the limited time horizon of the small noise expansion, by using an appropriate resampling423

of the Gaussian distribution (12) along sample paths. For the SNI 1, one only requires the solution to424

deterministic differential equations, which means that deterministic integration routines can be used in425

the stochastic setting. Additionally, the authors have proven convergence of the proposed algorithm,426

which notably also holds for arbitrarily large noise intensities.427

The computational benefit of the proposed SNI is examined with a series of coupled oscillator arrays428

with up to one hundred degrees of freedom, including a randomly parameterized array. Compared to429

4Without using the approximate symmetries, not a single realization out of the 105 samples ended up in the discretized
state space volume used to compute the results for Figure 8. Hence, the Monte-Carlo approximation for the PDF is
identically zero.
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Figure 9: Distances of samples to the four stable periodic orbits of the oscillator array (24) with localized
modes after 100 periods.

the standard Euler-Maruyama scheme, a speed-up of two orders of magnitude is observed for a wide430

range of investigated systems. Especially for longer simulation times, the computational gain of the SNI431

is significant.432

Moreover, the Gaussian kernel approximation (27) yields a justified approach to recover a smooth433

probability density function from samples, without relying on adhoc kernel choices or interpolation. With434

this method, the necessary sample size to accurately approximate the probability density function can435

be reduced drastically. For a single degree-of-freedom oscillator, the number of samples can be reduced436

by three orders of magnitude compared to established Monte-Carlo methods. For a three degree-of-437

freedom system, the GKA (27) is found to yield an accurate PDF, while a computation with Monte-Carlo438

methods is simply infeasible with reasonable computational resources. Thus, the GKA (27) opens up a439

new horizon to compute PDFs for higher dimensional systems beyond the current limitation to two or440

three dimensions.441

While the SNI 1 can be used to extend the validity of the straightforward expansion (7) to longer442

time intervals, it does not yield a steady-state distribution, which can be of interest in applications.443

The underlying theory 3.1, unfortunately, is fundamentally restricted to finite time intervals. Thus,444

an extension of the underlying theory as well as computational algorithms is desirable to compute a445

statistical steady state, if it exists.446

The probability density function, a time-varying scalar quantity in a usually high dimensional space,447

is often difficult to understand, visualize or access. In many applications, the quantities of interest,448

for example, the exceedance probability, escape times, or frequency of occurrence, can, in principle be449

answered by computing the PDF, but this might not always be the most efficient approach. Thus, it450

would be of interest to tailor the method presented in such specific contexts.451
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A Convergence Proof of the SNI 1551

In the following, it is shown that the SNI 1 has the same order of convergence as the Euler-Maruyama552

scheme. The Euler-Maruyama approximation to system (10) with step size τ is given by553

xe
k = xe

k−1 + τ f(xe
k−1, (k − 1)τ) + σ

√
τB(xe

k−1, (k − 1)τ)∆W, (28)

where ∆W denotes the increments of the m-dimensional of the normalized Wiener process; that is, they554

are independent and identically normal-distributed random variables with zero mean and variance one.555

First, the variance (12) is expanded for small τ yielding556

Σ(kτ ;xk−1, (k − 1)τ)

=

∫ kτ

(k−1)τ

DFs
(k−1)τ (xk−1)B(Fs

(k−1)τ (xk−1), s)
[
DFs

(k−1)τ (xk−1)B(Fs
(k−1)τ (xk−1), s)

]⊤
ds

=τDF
(k−1)τ
(k−1)τ (xk−1)B(F

(k−1)τ
(k−1)τ (xk−1), (k − 1)τ)

[
DF

(k−1)τ
(k−1)τ (xk−1)B(F

(k−1)τ
(k−1)τ (xk−1), (k − 1)τ)

]⊤
+O(τ2)

=τB(xk−1, (k − 1)τ) [B(xk−1, (k − 1)τ)]
⊤
+O(τ2),

(29)

where the integral is approximated by the values of the integrand at time s = (k − 1)τ . Equation (29)557

reveals that the variance of distribution (15) is τB(xk−1, (k − 1)τ)B⊤(xk−1, (k − 1)τ). The sampling of558

the normal distribution with variance τB(xk−1, (k− 1)τ)B⊤(xk−1, (k− 1)τ) is equivalent to scaling the559

M columns of
√
τB(xk−1, (k − 1)τ) by samples drawn from the standard distribution. Thus, one time560

step of the SNI can be written as561

xSNI
k = F̃kτ

(k−1)τ (x
SNI
k−1 ) + σ

√
τB(xSNI

k−1 , (k − 1)τ)∆W +O(τ), (30)

where F̃
(k−1)τ
nτ (xk) denotes an appropriate approximation to the flow map of the deterministic system (9).562

The error of the SNI has the following upper bound563

E
[
|x(kτ)− xSNI

k |
]
≤ E [|x(kτ)− xe

k|] + E
[
|xe

k − xSNI
k |

]
≤ E [|x(kτ)− xe

k|] + |xe
k−1 + τ f(xe

k−1, (k − 1)τ)− F̃
(k−1)τ
kτ (xSNI

k−1 )|+O(τ),
(31)

wherein equations (28) and (30) have been used. By adding and subtracting the flow map Fkτ
(k−1)τ (x((k − 1)τ)),564

the arising error can be split into three parts565

E
[
|x(kτ)− xSNI

k |
]
≤ E [|x(kτ)− xe

k|]︸ ︷︷ ︸
error of stochastic Euler approximation

+ |F̃kτ
(k−1)τ (x

SNI
k−1 )− F

(k−1)τ
kτ (x((k − 1)τ))|︸ ︷︷ ︸

approximation error of deterministic flow map

+ |Fkτ
(k−1)τ (x((k − 1)τ))− (xe

k−1 + τ f(xe
k−1, (k − 1)τ))|︸ ︷︷ ︸

error of deterministic explicit Euler scheme

+O(τ)

≤ C
√
τ ,

(32)

where the following is used: i) the convergence result of the stochastic Euler-Maruyama approxima-566

tion (28) to the solutions of equation (10) (e.g., Kloeden and Platen [20]), ii) the assumption that the567
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approximated flow map F̃
(n−1)τ
kτ (xSNI

k ) is O(τ) close to the true flow map F̃
(n−1)τ
kτ (xSNI

k ) (cf. assump-568

tion in Lemma 4.1), and iii) the convergence of the deterministic forward Euler scheme. The required569

estimate for Lemma 4.1 is given in equation (31).570

B Random Parameter Selection for Oscillator Array (24)571

To assign values for the parameters of the oscillator array (24) either the standard distribution N (µ, σN )572

with mean µ and variance σN or the uniform distribution U [a, b] with a denoting the minimum and b573

the maximum value are sampled. The parameter values are drawn from the following distributions:574

mn ∼ U [0.5, 2] , kn ∼ U [0.5, 2] , sn ∼ U [0.05, 0.2] , cn ∼ U [0.01, 0.03] ,

κn ∼ U [0, 0.1] , fj ∼ N (0, 0.1), gj ∼ N (0, 1), Ω ∼ U [1, 2] .
(33)

The distributions (33) are selected such that the linear unforced limit of the oscillator array (24) (κ → 0575

and σ → 0) is a weakly damped oscillator customary in the structural dynamics literature (cf. Géradin576

and Rixen [15]). The parameter values for the numerical experiments presented in Table 2 are freely577

available from an appropriate repository .578
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