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GLOBALLY +++-REGULAR VARIETIES AND THE MINIMAL MODEL
PROGRAM FOR THREEFOLDS IN MIXED CHARACTERISTIC

BHARGAV BHATT, LINQUAN MA, ZSOLT PATAKFALVI, KARL SCHWEDE, KEVIN TUCKER, JOE
WALDRON, JAKUB WITASZEK

Abstract. We establish the Minimal Model Program for arithmetic threefolds whose
residue characteristics are greater than five. In doing this, we generalize the theory of
global F -regularity to mixed characteristic and identify certain stable sections of adjoint
line bundles. Finally, by passing to graded rings, we generalize a special case of Fujita’s
conjecture to mixed characteristic.
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1. Introduction

The Kodaira and Kawamata-Viehweg vanishing theorems are among the most important
tools used in algebraic geometry in characteristic zero and are a key component of the
minimal model program [BCHM10]. They are crucial to understanding linear systems as
they allow the lifting of global sections of line bundles from lower dimensional subvarieties.
Unfortunately, these vanishing theorems are false in general when working over fields of
positive characteristic (such as Fp, [Ray78]) or mixed characteristic rings (such as Z or Zp

1).
In characteristic p > 0, the Frobenius morphism and asymptotic Serre vanishing can

be used as a replacement in some contexts. An important class of such applications of
Frobenius goes back to the development of tight closure theory and the notions of F -split
and F -regular varieties [HH90, MR85, RR85]. The discovery of connections between these
notions and birational geometry led to a plethora of applications, for instance: [Smi97a,
MS97, Har98, HW02, HY03, Tak04b, STZ12, Tak04a, Pat14, Zha14, MS14, CHMS14, Hac15,
BST15, Das15, GLP+15, CTW17, CRST18, HP16, HPZ19, AP22, Eji19, Ber21]. In particu-
lar, building on [Kee99] and [Sch14], Hacon and Xu proved the existence of minimal models
for positive characteristic terminal threefolds over algebraically closed fields of characteristic
p > 5 [HX15]; this was then extended in various directions [CTX15, Bir16, Xu15, BW17,
Wal18, HNT20, GNT19, DW22, XZ19, HW22b, HW22a, HW21].

In the mixed characteristic setting, the theory of perfectoid algebras and spaces [Sch12] has
led to spectacular advancements, including proofs of the direct summand conjecture and the
existence of big Cohen-Macaulay algebras by André [And18] (see also [Bha18]). Building on
these techniques, the second and fourth authors developed a mixed characteristic analog of
F -regularity called BCM-regularity in [MS18, MS21], and, together with the fifth, sixth, and
the seventh author, its adjoint (plt) variant (see [MST+22]). In particular, it was shown that
klt surface singularities of mixed characteristic (0, p > 5) are BCM-regular and that inversion

1Burt Totaro [Tot21] has pointed out to us that examples of failure of relative Kawamata-Viehweg vanishing
in mixed characteristic can be obtained via methods similar to those in [Tot19].
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of adjunction holds for three-dimensional plt singularities; the positive characteristic analogs
of these results were key initial ingredients for the aforementioned work of Hacon and Xu.

What is missing is a mixed characteristic analog of the theory of global F -regularity , a
strengthening of the log Fano condition which was introduced in positive characteristic in
[Smi00] (see also [SS10]). We establish such a theory, which we call globally +++-regularity,
based upon the recent work of the first author, [Bha20], who showed that the absolute
integral closure R+ of an excellent domain R is Cohen-Macaulay in mixed characteristic and
deduced a variant of Kodaira vanishing up to finite covers. Like in positive characteristic
one may also define globally +++-regularity by the study of BCM-regularity of section rings
(normalizations of cones); in fact, this point of view will be important in proofs of some of
our results. Note that, while globally +++-regular varieties (and pairs) could also reasonably
be called global splinters, our syntax more closely matches existing terminology for global
F -regularity.

As our main application we develop the mixed characteristic Minimal Model Program for
threefolds when the residual characteristics are zero or bigger than 5.

Theorem A. Let R be a finite-dimensional excellent domain with a dualizing complex and
containing Z whose closed points have residual characteristics zero or greater than 5. Let X
be a klt integral scheme of dimension three which is projective and surjective over Spec(R).
Then we can run a Minimal Model Program on X over Spec(R) which terminates with a
minimal model or a Mori fiber space.

In fact, our results are much stronger (see Section 1.1 for more details). They extend earlier
results on the mixed characteristic case including H. Tanaka’s work on the MMP for excel-
lent surfaces ([Tan18b]) and the work of Y. Kawamata on the MMP for mixed characteristic
semistable threefolds [Kaw94]. Other related work appears in [Lip69, Theorem 4.1], [Lic68]
and [Sha66]. We also point out that some variants of this theorem were obtained indepen-
dently by Takamatsu and Yoshikawa in [TY20] (see Remark 1.1 for additional discussion).

From now on, (R,m) is a Noetherian complete local domain of mixed characteristic (0, p >
0) (although what follows also works when R is of characteristic p > 0). For simplicity, in the
introduction, we present our initial results in the non-boundary-case (∆ = 0) and append
references to full statements.

First, we discuss the analog of global F -regularity. We say that a normal integral scheme X
proper over R is globally+++-regular if OX −→ f∗OY splits for every finite cover f : Y −→ X , and
observe the following as a straightforward consequence of generalizations and reformulations
(see Section 3) of the vanishing theorems of [Bha20].

Theorem B (Corollary 6.12). Suppose that X is globally+++-regular and proper over Spec(R).
If L is a big and semiample line bundle on X, then Kawamata-Viehweg vanishing holds for
L , that is H i(X,ωX ⊗L ) = 0 for i > 0.

In positive characteristic, global F -regularity implies global +++-regularity (Lemma 6.14), but
the converse is an open problem even in the affine setting.

In fact, the previous result is an direct consequence of the following generalization of the
vanishing theorem of Bhatt to more arbitrary excellent local bases [Bha20]. Indeed, this
vanishing theorem will be used multiple times in key ways in this paper.

Theorem C (Corollary 3.7). Suppose that (T, x) is an excellent local ring of residue char-
acteristic p > 0. Let π : X −→ Spec(T ) be a proper map with X integral. Suppose that
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L ∈ Pic(X) is a big and semiample line bundle. Then for all b < 0 and all i < dim(X), we
have that H i(RΓx(RΓ(X+, Lb))) = 0.

Another key notion used in applications in positive characteristic birational geometry is
that of Frobenius stable sections S0(X,M ) ⊆ H0(X,M ), for a line bundle M , and its
variant T 0(X,M ), introduced in [Sch14] and [BST15] respectively. These sections behave
as if Kodaira vanishing was valid for them. In this article, we consider the following mixed
characteristic analog thereof (see Definition 4.2):

B0(X,M ) :=
⋂

f : Y−→X
finite

im
(
H0(Y,OY (KY/X + f ∗M)) −→ H0(X,M )

)
.

We call these global sections +++-stable. We also consider an adjoint (plt-like) versionB0
S(X,S;M )

for an irreducible divisor S and a line bundle M = OX(M).

Theorem D. The following holds for a normal integral scheme X proper over Spec(R):

(a) Under appropriate assumptions,

B0
S(X,S;OX(KX + S + A)) −→ B0(S;OS(KS + A|S))

is surjective, where A is an ample Cartier divisor, see Theorem 7.2.
(b) X is globally +++-regular if and only if B0(X,OX) = H0(X,OX), see Proposition 6.8.
(c) If X is Q-Gorenstein, then

B0(X,M ) :=
⋂

f : Y−→X
alteration

im
(
H0(Y,OY (KY/X + f ∗M)) −→ H0(X,M )

)
,

see Corollary 4.13.
(d) If X = SpecR is Q-Gorenstein and affine, then B0(X,OX) = τR+(R), where the

latter term is the BCM-test ideal defined in [MS21], see Proposition 4.17.
(e) B0 transforms as expected under finite maps and alterations, see Section 4.2.
(f) If L is an ample line bundle on X, and S =

⊕
i≥0H

0(X,L i) is the section ring,
then for i > 0 we have that B0(X,ωX⊗L i) is the ith graded piece of a test submodule
τR+,gr(ωS) on S, see Proposition 5.5.

(g) If X is projective over SpecR, is regular (or has sufficiently mild singularities) and
L is ample, then for n& 0

B0(X,ωX ⊗L n) = H0(X,ωX ⊗L n),

see Theorem 5.8.

The proofs of the above results are based on [Bha20, BL] as well as ideas developed in
[Sch14, BST15, MS21, MST+22]. We should note that (c) shows that B0 agrees with the
notion of T 0 introduced in [BST15] for Q-Gorenstein varieties in characteristic p > 0 and
defined and used in similar ways in mixed characteristic in the independent work [TY20]
mentioned above.

Theorem E (Theorem 5.9). Let X be a d-dimensional scheme that is regular (or has suffi-
ciently mild singularities) and which is flat and projective over R. Set t = dimR and let L

be an ample globally generated line bundle on X. Then ωX ⊗L d−t+1 is globally generated
by B0(X,ωX ⊗L d−t+1).
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We also note that we obtain related global generation results for adjoint line bundles
ωX ⊗L via Seshadri constants, see Theorem 7.11.

One should expect that this variant of the Fujita conjecture would hold for any X ad-
mitting BCM-rational singularities (in the sense of [MS21]), as in [Smi97b, Kee08]. Indeed,
our argument would show this if we knew that the formation of our test ideals commuted
with localization in a sufficiently strong sense. Indeed, a limited localization result from
[MST+22] was how we proved (g) above, which was used in our proof of this theorem. The
question of whether BCM-test ideals localize in general is one of the key remaining open
problems about BCM-singularities. In forthcoming work, we shall prove that localization
holds in certain circumstances and derive geometric consequences.

We warn the reader however that, in general, the localization is false for B0(X,M ) when
X is projective:

Theorem F (Example 4.14). Let E be a smooth elliptic curve over Zp. Then

(a) B0(E,OE) = 0, but
(b) B0(EQp ,OEQp

) = Qp.

This also shows that in contrast to positive characteristic, B0(X,M ) cannot be calculated
on a single finite cover (or an alteration).

Our definition of B0 works most naturally when the base ring is complete. However,
certain partial results on lifting sections can be obtained when the base is not complete, see
Corollary 7.8. Since most geometric results can be deduced from the complete case, we shall
always assume, when talking about B0, that the base is complete. In particular, our setup
allows for running the Minimal Model Program over algebraic and analytic singularities.
Since many results of [Bha20] assume that the base is finitely presented over a DVR, we
provide generalizations thereof in Section 3.

1.1. Minimal Model Program. In this subsection, R is an excellent domain of finite Krull
dimension admitting a dualizing complex. In most theorems, we will also assume that the
closed points of R have residual characteristics zero or greater than 5 (the cases R = Z[1/30]
or R = Zp for p > 5 are already interesting). Let T be a quasi-projective scheme over R.

Theorem G (MMP, Proposition 9.20, Theorem 9.37). Let (X,B) be a three-dimensional
Q-factorial dlt pair with R-boundary, which is projective over T . Assume that the image of
X in T is of positive dimension and that T has no residue fields of characteristic 2, 3 or 5.

If KX + B is pseudo-effective, then we can run a (KX + B)-MMP and any sequence of
steps of this MMP terminates with a log minimal model.

If KX +B is not pseudo-effective, then we can run a (KX +B)-MMP with scaling over T
which terminates with a Mori fiber space.

Note that the assumption on the image of X in T is needed because we do not know
that all flips terminate in purely positive characteristic. In fact, even the MMP with scaling
is not known to terminate when the base field is imperfect, however, log minimal models
exist in this case by [DW22]. Also, we do not know the existence of Mori fibre spaces when
T = Spec(k) for an imperfect field k. Indeed, we do not know the validity of the Borisov-
Alexeev-Borisov conjecture in this setting, the version of which over an algebraically closed
field was used in [BW17].
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Theorem H (Base-point-free theorem, Theorem 9.17, Theorem 9.27). Let (X,B) be a three-
dimensional Q-factorial klt pair with R-boundary admitting a projective morphism f : X −→
T . Let L be an f -nef Q-Cartier divisor on X such that L − (KX + B) is f -big and nef.
Suppose that

(a) L is f -big, or
(b) the image of X in T is positive dimensional and T has no residue fields of character-

istic 2, 3 or 5.

Then, L is f -semiample.

Note that a similar result for R-divisors is proved in Theorem 9.33.

Theorem I (Cone theorem, Theorem 9.28). Let (X,∆) be a three-dimensional Q-factorial
dlt pair with R-boundary, projective over T having no residue fields of characteristic 2, 3 or
5 and such that the image of X in T is of positive dimension. Then there exists a countable
collection of curves2 {Ci} over T such that

(a)

NE(X/T ) = NE(X/T )KX+∆≥0 +
∑

i

R≥0[Ci],

(b) The rays [Ci] do not accumulate in the half space (KX +∆)<0, and
(c) For all i, there is a positive integer dCi such that

0 < −(KX +∆) ·k C ≤ 4dCi

and if L is any Cartier divisor on X, then L ·k Ci is divisible by dCi, where k is the
residue field of the closed point of T lying under C.

Note that we cannot expect the bounds on extremal rays to be as in characteristic zero,
since the residue fields of T might not be algebraically closed (cf. [Tan18a, Example 7.3] and
[Tan18b, DW22]).

Besides the above constructions and results on B0, the proofs of the above results are
based on the recent generalization of Keel’s theorem on the semiampleness of line bundles to
mixed characteristic (see [Wit22]), the MMP for mixed characteristic surfaces (see [Tan18b]),
and all the previous work on the positive characteristic MMP (most notably: [HX15] for
the existence of pl-flips with standard coefficients, [Bir16] for the existence of pl-flips with
arbitrary coefficients, [BW17] for the termination of the MMP with scaling and the existence
of Mori fiber spaces, and [DW22] for the generalization of the cone and contraction theorems
to non-perfect residue fields).

Our proof of the fact that pl-flips, with standard coefficients, exist follows the strategy
of [HX15], see Section 8. Although we employ all key ideas of their work, we are able to
simplify each step. Further, we provide a new proof of the base point free theorem for nef and
big line bundles; we infer it from the mixed characteristic Keel’s theorem by employing the
recent work of Kollár, [Kol21], on the non-Q-factorial MMP, and the ideas of [HW22b]. In
fact, our proof yields the validity of the base point free theorem for big and nef line bundles
for threefolds in any positive characteristic p > 0, a result which was not known before.

The termination of all flips when the image of X in T has positive dimension and when
KX + ∆ is pseudo-effective, is proven by the argument of Alexeev-Hacon-Kawamata, see

2curves in this article are assumed to be projective over the base, see the definition in Section 2.5
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[AHK07]. Our proof of the base point free theorem for non-big line bundles uses this together
with abundance in lower dimensions to provide substantial simplifications over the argument
from [BW17]. Furthermore, our more general set-up also requires a different proof of the
cone theorem. These are used to deduce termination with scaling and the existence of Mori
fiber spaces following [BW17].

Remark 1.1. While finalizing our project, we were contacted by Teppei Takamatsu and Shou
Yoshikawa, who informed us that they were working on related topics (see [TY20]). In their
article, among many other things, they show the validity of some special cases of the three-
dimensional MMP in all (mixed) characteristics p ≥ 0: for semistable threefolds (generalizing
[Kaw94]) and for resolutions of singularities. Aside from [Bha20] and [Kaw94], their work
builds upon ideas from the proof of the existence of some flips discovered recently in [HW21]
and on the results of [HW22b]. They also define and study the notion of global T -regularity
which is very closely related to our global +++-regularity, and obtain results on lifting sections.

1.2. Applications to moduli theory. We have the following sample corollaries to the
moduli theory of surfaces. We recall that stable surfaces are the two dimensional generaliza-
tions of stable curves. In particular, they are supposed to provide a good compactification
of the moduli space of smooth canonically polarized surfaces. The present article concludes
the last step needed to show that their moduli stack exists over Z[1/30] (see [Pat18] for a
historical overview of the subject).

Theorem J. (Existence of M 2,v over Z[1/30], Corollary 10.2)

(a) The moduli stack M 2,v of stable surfaces of volume v over Z[1/30] exists as a separated
Artin stack of finite type over Z[1/30] with finite diagonal.

(b) The coarse moduli space M2,v of stable surfaces of volume v over Z[1/30] exists as a
separated algebraic space of finite type over Z[1/30].

Unfortunately at this point it is not known whether M 2,v is proper, and M2,v is projective
over Z[1/30]. The best we can say is the following.

Theorem K. (Theorem 10.6) Fix an integer v > 0 and let

d =
∏

p prime, p≤f(v)

p, where f(v) =

{
373 if v = 1

213v + 48 if v ≥ 2.

Then, the closure M
sm
2,v of the locus of smooth surfaces in M 2,v is proper over Z[1/d]. Ad-

ditionally, it admits a projective coarse moduli space M
sm
2,v over Z[1/d].

These results are shown in Section 10.

1.3. Applications to commutative algebra. We highlight one more standard corollary
of the minimal model program which we expect to be useful in commutative algebra. It
follows from the above results as in [Kol08, Exercises 108, 109].

Corollary L. Suppose (X = SpecR,∆) is a three-dimensional klt pair where R is an excel-
lent local domain of residue characteristic p for p > 5. Then for every Weil divisor D on X
we have that the local section ring

⊕
i≥0 OX(iD) is finitely generated. In other words, if I is

an ideal of pure height one in R, then the symbolic power algebra

R⊕ I ⊕ I(2) ⊕ I(3) ⊕ . . .
7



is finitely generated.

This result in characteristic p has applications to tight closure theory. In fact, combining
the above Corollary with [AP22, Theorem B] yields a generalization of [AP22, Theorem A]
from rings essentially of finite type over a field to the case of excellent local rings.

Corollary M. Let (R,m) be a four-dimensional excellent local ring of equal characteristic
p > 5. If R is F -regular then R is strongly F -regular.

1.4. Applications to four-dimensional Minimal Model Program and liftability. In
[HW21], it is shown that a variant of the four-dimensional semistable Minimal Model Pro-
gram over curves and over singularities is valid in positive characteristic p > 5 contingent
upon the existence of resolutions of singularities. Using the techniques and results of our pa-
per as well as the generalisation of the result of Cascini and Tanaka on relative semiampleness
(now proven in [Wit21]), this semistable MMP may be extended to mixed characteristic. In
turn, this may be used to show that liftability of three-dimensional varieties of characteristic
p > 5 is stable under the Minimal Model Program. These results are now contained in an
update to [HW21].

1.5. Technical notes. We summarize here the major technical points of the article.

(a) Most of the theory developed in the article assumes we are working over a complete
local base. This lets us show, in Lemma 4.8, that elements of B0(X,OX(M)) have
compatible systems of pre-images in H0(Y,OY (KY/X + f ∗M)). In fact, even in char-
acteristic p > 0, [DM20] gives examples of excellent regular local (non-F -finite) rings
that are not F -split. It follows that there cannot be compatible systems of pre-images
for these examples for X = SpecR. Our proofs crucially use this compatibility (or
Matlis dual versions). In proofs, typically completeness comes as the necessary con-
dition to apply Matlis-duality, e.g., Corollary 4.13 and Theorem 7.2.

(b) A priori plt pairs in the non-Q-factorial setting could have intersecting boundary
components, cf., Lemma 2.33.

(c) We needed Bertini-type statements over a local ring of mixed characteristic, see
Section 2.4.

(d) The known resolution theorems for Noetherian excellent schemes of dimension 3
do not produce resolutions by sequences of blow-ups of non-singular centers. See
Remark 2.35.

(e) When we pass to the localization or the completion of the base, then Q-factoriality or
the Picard number being 1 may be lost. In particular certain theorems and definitions
had to be adapted, e.g., the paragraphs after Definition 2.28 and Definition 8.4, as
well as the proof of Corollary 8.26.

(f) When working over arbitrary Noetherian excellent schemes, it can happen that the
codimension and the dimension of a closed subscheme does not add up to the dimen-
sion of the ambient scheme, cf., Remark 2.23.

(g) For the technical advances related to the Minimal Model Program, see the beginnings
of Section 8 and Section 9.
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2. Preliminaries

For much of the article we work over an excellent domain R of finite Krull dimension with a
dualizing complex. Unless otherwise specified, we shall write R+ to denote an absolute integral
closure of R in the sense of [Art71] (i.e., the integral closure of R in an algebraic closure of
Frac(R)); this object is unique up to isomorphism, and our constructions will be independent
of the specific choice. Moreover, except for Section 2, Section 3 and Section 9 or where
otherwise noted, we will also assume that (R,m) is a complete local Noetherian domain whose
residual characteristic is p > 0 (in this case R is excellent [Sta, Tag 07QW], it has finite Krull
dimension [Sta, Tag 0323], and it admits a dualizing complex as discussed in Section 2.1).
Most typically, we are interested in the case that R is of mixed characteristic (0, p > 0). Now
suppose that a scheme S is excellent with a dualizing complex (most typically S = SpecR).
Observe that any scheme X with a map f : X −→ S of finite type is also excellent [Sta,
Tag 07QU] and has a dualizing complex induced from S, see [Sta, Tag 0AUA], which we take
as ω

!

X = f !ω
!

S when f is separated (our typical case). Furthermore, in Section 9 we will
sometimes assume that our schemes X have XQ non-trivial.

In this article, we say that a scheme over R is n-dimensional if its absolute dimension
is equal to n (as opposed to the relative dimension). Furthermore, the underlying scheme
of a pair is always assumed to be normal, excellent, Noetherian, integral and admitting a
dualizing complex (see Definition 2.27 for the precise statement).

If X is a normal integral scheme over R, then Xm denotes the fiber over m ∈ SpecR.

Definition 2.1. Given an integral Noetherian scheme X , an alteration π : Y −→ X is a
surjective generically finite proper morphism with Y integral. (We shall often be in the
situation where Y is normal.)

9



Note that constructibility of the level sets and the upper semi-continuity of the dimension
of fibers function holds in the setting of Definition 2.1 [Sta, Tag 05F9], [Sta, Tag 0D4I].
Similarly, it holds that over the locus where the fibers are finite, π is finite [Sta, Tag 02OG].
In particular, if π is an alteration, then there exists a non-empty open set over which π is
finite. Additionally, the additivity of dimension also holds here [Sta, Tag 02JX], and so we
have dimX = dimY .

Throughout this article, we will frequently use that local cohomology on the Noetherian
ring R commutes with direct limits (in other words, filtered colimits) just as sheaf cohomol-
ogy does on Noetherian topological spaces, see [Har77, Chapter III, Proposition 2.9] [Sta,
Tag 01FF]. In particular, we have for a directed system of R-modules Mα that

lim−→
Mα

H i
m(Mα) = H i

m(lim−→
Mα

Mα),

see [BS98, Theorem 3.4.10]. More generally, ifX is a Noetherian scheme and E ⊆ X is closed,
by mimicking the argument of [Har77, Chapter III, Proposition 2.9], one immediately sees
for a directed system of sheaves of OX-modules Fα that

(2.1.1) lim−→
Fα

H i
Z(X,Fα) = H i

Z(X, lim−→
Fα

Fα).

Recall also that tensor products commute with arbitrary colimits [Sta, Tag 00DD].

2.1. Dualizing complexes and local duality. Recall that any complete Noetherian local
ring (R,m) has a dualizing complex ω

!

R, since such an R is a quotient of a regular ring
([Sta, Tag 032A], [Sta, Tag 0A7I], [Sta, Tag 0A7J]). We always choose ω !

R to be normalized
in the sense of [Har66], that is H−iω

!

R = 0 for i > dimR and H−dimRω
!

R += 0. If then
π : X −→ SpecR is a proper morphism (or even separated morphism), we define the dualizing
complex ω

!

X of X to be π!ω
!

R and the dualizing sheaf ωX to be H−dimX(ω
!

X). We make
these choices so that Grothendieck local duality can be applied as described below. Before
doing that however, we observe that when R is an excellent regular domain of finite Krull
dimension, we can define ω

!

X and ωX similarly. We shall work in this non-local generality in
Section 9.

Back in the complete local case, fix E = ER(R/m) to be an injective hull of the residue
field. This provides an exact Matlis duality functor (−)∨ := HomR(−, E) which induces
an anti-equivalence of categories of Noetherian R-modules with Artinian R-modules [Sta,
Tag 08Z9]; by exactness, Matlis duality extends to the derived category as well, and we
continue to denote it by (−)∨. In particular, since E is injective, we may harmlessly identify
HomR(−, E) and RHomR(−, E). Note that here, and when working in the derived category
in general, we shall also simplify notation by writing E (rather than E[0]) for the relevant
complex concentrated in degree zero.

There is also a Matlis duality when (R,m) is not complete (but still local and Noetherian).
In this, we still define E = ER(R/m) to be the injective hull of the residue field. Then (−)∨ :=
HomR(−, E) is an exact functor which takes Noetherian modules to Artinian modules (which

are then canonically modules over R̂). Note that for M Noetherian, (M∨)∨ ∼= M̂ . For
additional discussion see [BS98, 10.2.18].

Since we work with normalized dualizing complexes, we have an isomorphism RΓm(ω
!

R) -
E [Sta, Tag 0A81]. Using this isomorphism and the complete-torsion equivalence ([Sta,
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Tag 0A6X]) shows the following compatibility of Grothendieck and Matlis duality: for any
K ∈ Db

coh(R), the following natural maps give isomorphisms

RHomR(K,ω
!

R) - RHomR

(
RΓm(K),RΓm(ω

!

R)
)
- HomR

(
RΓm(K), E

)
= RΓm(K)∨.

As R is complete and HomR(−, E) induces an anti-equivalence of Noetherian and Artinian
R-modules, this yields (

RHomR(K,ω
!

R)
)∨
- RΓm(K)

forK ∈ Db
coh(R). For more details see for instance [Har67, Har66, BH93] and [Sta, Tag 0A81].

We will be particularly interested in applying the above considerations in the following
situation.

Lemma 2.2. Suppose that (R,m) is a Noetherian complete local ring, X is an integral
scheme proper over SpecR, and that L is a line bundle on X. Then

RΓmRΓ(X,L ) ∼= Hom
(
RΓ(X,L −1 ⊗ ω

!

X), E
)
.

In the case that X is Cohen-Macaulay, the right side becomes Hom
(
RΓ(X,L −1⊗ωX [dimX ]), E

)
.

Furthermore,
RΓmRΓ(X,ω

!

X ⊗L −1) ∼= Hom
(
RΓ(X,L ), E

)

and if X is Cohen-Macaulay, the left side becomes RΓm(RΓ(X,ωX ⊗L −1))[dimX ].

Proof. Both statements follow by combining Grothendieck and local duality with the ob-
servations made above. In the first case take K = RΓ(X,L ) and in the second take
K = RΓ(X,ω

!

X ⊗L −1). !

We will also use the following consequence of local duality frequently.

Lemma 2.3. Suppose that (R,m) is a Noetherian complete local ring, X is an integral
scheme proper over SpecR, and that F is a coherent sheaf on X. Then we have an isomor-
phism of R-modules (

HdRΓmRΓ(X,F )
)∨ ∼= HomOX (F ,ωX),

where d = dimX.

Proof. The fact that X −→ SpecR is proper is essential in what follows. By local duality
([Sta, Tag 0A84]) and Grothendieck duality (cf. [Sta, Tag 0AU3(4c)]), we have

(2.3.1)
(
HdRΓm

(
RΓ(X,F )

))∨ ∼= H−dRHomR

(
RΓ(X,F ),ω

!

R

)

∼= H−dRΓ ◦RH omOX (F ,ω
!

X)
∼= H−dRHomOX (F ,ω

!

X).

If X was Cohen-Macaulay so that ω
!

X = ωX [d], then we would be done. However, we are
taking the bottom cohomology, so the higher cohomologies of the dualizing complex do not

interfere, as we work out in detail now. Form a triangle ωX [d] −→ ω
!

X −→ C
+1
−→. Applying

RHomOX (F ,−) to this triangle we get:

RHomOX (F ,ωX [d]) −→ RHomOX (F ,ω
!

X) −→ RHomOX (F , C)
+1
−→ .

Note that C and hence RHomOX (F , C) only live in cohomological degree ≥ −d + 1, thus
we have

(2.3.2) H−dRHomOX (F ,ω
!

X) ∼= H−dRHomOX (F ,ωX [d]) ∼= HomOX (F ,ωX).

Combining (2.3.1) and (2.3.2) yields exactly the statement of the claim. !
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2.2. Big Cohen-Macaulay algebras. Let (R,m) be a Noetherian local ring of dimen-
sion d and let M be a (not necessarily finitely generated) R-module. A sequence of el-
ements x1, . . . , xn of R is called a regular sequence on M if xi+1 is a nonzerodivisor on
M/(x1, . . . , xi)M for each i. We consider the following conditions on M (which are equiva-
lent when M is finitely generated).

(a) H i
m(M) = 0 for all i < d.

(b) There is a system of parameters x1, . . . , xd of R that is a regular sequence on M .
(c) Every system of parameters of R is a regular sequence on M .
(d) H i

P (MP ) = 0 for all P ∈ Spec(R) and all i < dim(RP ).

It is straightforward to see that (c)⇒ (b)⇒ (a). IfM satisfies condition (a) andM/mM +=
0, then the m-adic completion M̂ satisfies condition (c) by [BH93, Exercise 8.1.7, Theorem
8.5.1]. We will see below (Lemma 2.6) that, under mild assumptions on R, condition (c) and
condition (d) are equivalent. These implications are summarized in the diagram below.

(
(a) H i

m(M) = 0
for i < d

)

if M &= mM

and M := M̂

!!

(
(b) ∃x1, . . . , xd s.o.p. of R,

which is a reg. seq. on M

)

""

(
(c) ∀x1, . . . , xd s.o.p. of R,

is a reg. seq. on M

)

""

""

if R is

equidimensional

& catenary

##(
(d) H i

P (MP ) = 0
for i < dimRP

)

The module M is called:

◦ big Cohen-Macaulay if M satisfies condition (b) and M/mM += 0, see [Hoc75],
◦ balanced big Cohen-Macaulay if M satisfies condition (c) and M/mM += 0, see [BH93,
Chapter 8].
◦ cohomologically Cohen-Macaulay if M satisfies condition (d), see [Bha20].

If B is an R-algebra that is (big/balanced big/cohomologically) Cohen-Macaulay as an
R-module, then it is called a (big/balanced big/cohomologically) Cohen-Macaulay algebra.
Note that, in the definition of cohomologically Cohen-Macaulay, we do not require the non-
triviality condition M/mM += 0, so this definition passes to localization, which is convenient
for some inductive arguments in [Bha20].

Remark 2.4. For our purpose, even the weakest notion (a) above suffices for most of our
applications. In fact, we can usually replace B by its m-adic completion to obtain the

12



strongest notion. Thus, for most practical purposes, the distinctions between these notions
can be ignored.

Balanced big Cohen-Macaulay algebras always exist: in equal characteristic, this is a
result of Hochster-Huneke [HH92, HH95], and in mixed characteristic, this is settled by
André [And18]. For our purposes, the following theorem (due to Hochster-Huneke in equal
characteristic p > 0, and the first author in mixed characteristic (0, p > 0)) gives an explicit
construction of balanced big Cohen-Macaulay algebras, and is the key behind our definitions
and constructions.

Theorem 2.5. Let (R,m) be an excellent local domain of residue characteristic p > 0. Let
R+ be an absolute integral closure of R. Then H i

m(R
+) = 0 for i < dimR and the p-adic

completion of R+ is a balanced big Cohen-Macaulay algebra.

Proof. In positive characteristic, the p-adic completion of R+ is R+ and this is [HH92, Theo-
rem 1.1]. In mixed characteristic, the statement about local cohomology is [Bha20, Theorem
5.1]. The extension to the p-adic completion is explained below in Corollary 2.10, also see
[Bha20, Corollary 5.17]. !

We caution the reader that if R has equal characteristic 0 (i.e., contains Q) with dim(R) ≥
3, then R+ is never big Cohen-Macaulay in any of the senses discussed above because of a
simple trace obstruction. For example, one may first construct a finite normal domain
extension S of R that is not Cohen-Macaulay and H i

m(S) += 0 for some i < dimR. Since the
normalized (field) trace splits the inclusion S −→ S+ = R+, H i

m(S) is a direct summand of
H i

m(R
+) and thus R+ fails to satisfy condition (a). See also [ST21, Proof of Proposition 2.1]

for a collection of explicit constructions.
We next want to explain how to drop the additional assumptions on the existence of

Noether normalization in [Bha20, Corollary 5.17] in the local case.

Lemma 2.6. Let (R,m) be a Noetherian, equidimensional, catenary local ring and let M be
an R-module. Then every system of parameters of R is a regular sequence on M if and only
if H i

P (MP ) = 0 for all P ∈ Spec(R) and all i < dim(RP ). In particular, M is balanced big
Cohen-Macaulay if and only if M is cohomologically Cohen-Macaulay and M/mM += 0.

Proof. The if direction follows from [Bha20, Corollary 2.8]. For the only if direction, let P be
a prime ideal of height h. There exists x1, . . . , xh part of a system of parameters such that P
is a minimal prime of (x1, . . . , xh). Thus we know that x1, . . . , xh is a regular sequence on M
and hence a regular sequence on MP . But the image of x1, . . . , xh is a system of parameters
on RP , and thus H i

P (MP ) = 0 for all i < h as desired. !

Lemma 2.7. Suppose R is a commutative ring and f, g ∈ R is a regular sequence on an
R-module N . Then g, f is a regular sequence on N̂f , the f -adic completion of N .

Proof. First of all, f is a nonzerodivisor on N and hence a nonzerodivisor on N̂f . Because
N/fN ∼= N̂f/fN̂f , f, g is a regular sequence on N̂f . This implies that f is a nonzerodivisor
on N̂f/gN̂f . It remains to prove that g is a nonzerodivisor on N̂f . So suppose ga = 0 where
a =

∑∞
i=0 aif

i where ai ∈ N . Then for each k,

g ·
k∑

i=0

aif
i = −g ·

∞∑

j=k+1

ajf
j ∈ fk+1N̂f .
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Thus we actually have g ·
∑k

i=0 aif
i ∈ fk+1N and hence

∑k
i=0 aif

i ∈ fk+1N for each k since
f, g is a regular sequence on N . But then we have

a =
∞∑

i=0

aif
i =

k∑

i=0

aif
i +

∞∑

j=k+1

ajf
j ∈ fk+1N̂f

for all k, which implies a = 0 since N̂f is f -adically separated. !

Lemma 2.8. Suppose N is f -adically complete and f is a nonzerodivisor on N/gN , then
N/gN is f -adically complete.

Proof. N/gN is always derived f -adically complete. Since f is a nonzerodivisor on N/gN ,
we know that the f -adic completion of N/gN is the same as the derived f -adic completion
of N/gN , which is N/gN . Hence N/gN is f -adically complete. !

Theorem 2.9. Let (R,m) be a Noetherian, equidimensional, catenary local ring and let M
be an R-module. Suppose t ∈ R is a parameter such that

(a) t is a nonzerodivisor on M
(b) M/tM is balanced big Cohen-Macaulay over R/tR.

Then M̂ t, the t-adic completion of M , is balanced big Cohen-Macaulay over R.

Proof. We prove by induction on d = dim(R). So we assume the conclusion of the theorem
holds whenever the local ring has dimension < d.

We first prove that every system of parameters x1, . . . , xd of R such that xi = t for some
i is a regular sequence on M . This is clear if i = 1 and so we assume x1 += t. We claim that

(c) t is a nonzerodivisor on M̂ t/x1M̂ t.

(d) M̂ t/(x1, t)M̂ t is balanced big Cohen-Macaulay over R/(x1, t).

Here (d) is obvious since M̂ t/(x1, t)M̂ t = M/(t, x1)M , and (c) follows from Lemma 2.7 since
t, x1 is a regular sequence on M .

By induction, we know that the t-adic completion of M̂ t/x1M̂ t is balanced big Cohen-

Macaulay over R/x1R. Since t is a nonzerodivisor on M̂ t/x1M̂ t, by Lemma 2.8 M̂ t/x1M̂ t is

t-adically complete. Therefore M̂ t/x1M̂ t is balanced big Cohen-Macaulay over R/x1R. But

since x1 is a nonzerodivisor on M̂ t by Lemma 2.7, x1, . . . , xd is a regular sequence on M̂ t.
Now let P be a prime ideal of height h. Suppose t ∈ P , then since M̂ t/tM̂ t = M/tM , we

have H i
P ((M̂

t)P/t(M̂ t)P ) = H i
P ((M/tM)P ) = 0 for all i < h − 1, which by the long exact

sequence of local cohomology implies that H i
P (M̂

t) = 0 for all i < h. Now suppose t /∈ P ,
by prime avoidance, we can pick x1, . . . , xh and xh+2, . . . , xd such that

(e) P is a minimal prime of (x1, . . . , xh)
(f) x1, . . . , xh, t, xh+2, . . . , xd is a system of parameters of R.

By what we have already proved, x1, . . . , xh, t, xh+2, . . . , xd and hence x1, . . . , xh is a regular
sequence on M̂ t. Thus x1, . . . , xh is a regular sequence on (M̂ t)P and so H i

P ((M̂
t)P ) = 0 for

all i < h. Therefore M̂ t is cohomologically Cohen-Macaulay. Since M̂ t/mM̂ t = M/mM += 0

(by condition (b)), M̂ t is balanced big Cohen-Macaulay as desired. !

Now we can prove the promised extension of [Bha20, Corollary 5.17].
14



Corollary 2.10. Let (R,m) be an excellent local domain of mixed characteristic (0, p > 0).

Then R̂+
p
, the p-adic completion of R+, is a balanced big Cohen-Macaulay.

Proof. This follows from [Bha20, Corollary 5.11] and Theorem 2.9. !

As we mentioned before, one advantage of the notion of cohomologically Cohen-Macaulay
is that it behaves well under localization. It is not clear that (balanced) big Cohen-Macaulay
algebras behave well under localization, we record the following partial result for psycholog-
ical comfort; it will not be used in this paper.

Proposition 2.11. Suppose R is a complete Noetherian local domain and B is a balanced
big Cohen-Macaulay algebra, then BP is balanced big Cohen-Macaulay for RP for all P ∈
Spec(R).

Proof. Let x1, ..., xh be a system of parameters in RP , by prime avoidance, we may assume
that x1, ..., xh is also part of a system of parameters of R, thus it is a regular sequence on B
and hence a possibly improper regular sequence on BP . But since B is big Cohen-Macaulay
and R is a Noetherian complete local domain, B is a solid R-algebra (see [Hoc94, Corollary
2.4]) and thus Spec(B) −→ Spec(R) is surjective, so BP/PBP += 0 and hence x1, . . . , xh is a
regular sequence on BP . !

We conclude our discussion with a definition related to the discussion above.

Definition 2.12 (Splinters). A Noetherian reduced ring R is called a splinter if for every
finite extension of rings R ⊆ S we have that R ↪→ S splits as a map of R-modules.

As mentioned above, in characteristic zero, every normal ring is a splinter (the trace can
be used to split the inclusions). However, in characteristic p > 0 or mixed characteristic
(0, p > 0), if a local ring (R,m) is a splinter, then H i

m(R) −→ H i
m(R

+) = H i
m(lim−→S⊆R+

S) is

injective for every i > 0. In particular, by Theorem 2.5 we see that splinters are Cohen-
Macaulay.

2.3. Resolution of singularities. In this section, we recall known results about resolutions
of singularities for mixed characteristic three-dimensional schemes. Note that resolutions of
singularities exist for Noetherian excellent surfaces in full generality by [Lip78].

Theorem 2.13 ([CP19, Theorem 1.1] and [CJS20, Corollary 1.5]). Let X be a reduced and
separated Noetherian scheme which is quasi-excellent and of dimension at most three, and
let T be a subscheme of X. Then there exists a proper birational morphism g : Y −→ X from
a regular scheme Y such that both g−1(T ) and Ex(g) are divisors and Supp(g−1(T )∪Ex(g))
is simple normal crossing.

Proof. By [CP19, Theorem 1.1], there is a projective morphism f : Z −→ X such that X is
regular. Then applying [CJS20, Corollary 1.5] to (Z, T ′) with T ′ = f−1(T ) gives the required
g. !

Proposition 2.14. Let X be a reduced scheme of dimension 3, quasi-projective over a
Noetherian quasi-excellent affine scheme Spec(R). Let T be a subscheme of X. Then there
exists a projective birational morphism g : Y −→ X from a regular scheme Y such that
both g−1(T ), and Ex(g) are divisors, Supp(g−1(T )∪Ex(g)) is simple normal crossing and Y
supports a g-ample g-exceptional divisor.
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Proof. By taking normalization, we may assume that X is normal and integral. Let g′ :
Y ′ −→ X be the proper birational morphism given by Theorem 2.13. By Chow’s lemma
[Gro61, Theorem 5.6.1(a)] applied to g, there exists a projective birational map g̃ : Ỹ −→ X
which factors through f : Ỹ −→ Y ′, and which is the blow up of some ideal sheaf I by [Liu02,
Theorem 1.24]. By the universal property of blow-ups [Sta, Tag 0806], Ỹ is also the blow-up
of I ′ = I OY ′ , which is the ideal sheaf of a subscheme Z. Now let h : Y −→ Y ′ be the
projective embedded resolution of (Y ′, Z ∪ (g′)−1(T ) ∪ Ex(g′)) given by [CJS20, Corollary
1.5], which is projective since it is a composition of blowups. Then g : Y −→ X factors
through Ỹ by the universal property of blow-ups, and so g is projective by [Sta, 0C4P] since
Y is projective over Ỹ and Ỹ is projective over X . Given this Y , we may replace it with a
resolution supporting a g-ample g-exceptional divisor by [KW21, Theorem 1]. !

Remark 2.15. Note that the construction in Proposition 2.14 does not result in a morphism g
which is an isomorphism over the simple normal crossing locus of (X, T ). Cossart and Piltant
[CP19] prove Theorem 2.13 with this hypothesis, but they do not have the requirement that
g is projective or that Y supports a g-ample g-exceptional divisor as in Proposition 2.14.

Furthermore, we do not know if Proposition 2.14 is valid over non-affine bases (due to the
assumptions of [Liu02, Theorem 1.24]). For this reason, we assume in Section 9 that all the
schemes are quasi-projective over an affine scheme.

We also need the following version of the negativity lemma from birational geometry
[KM98, Lem 3.39].

Lemma 2.16. Let f : Y −→ X be a projective birational morphism of normal excellent
integral schemes and Γ is a Q-Cartier Q-divisor on Y such that f∗Γ is effective and −Γ is
f -nef. Then Γ is effective.

Proof. Note first that f -nefness is preserved by localisation on X [CT20, Lem 2.6], and so is
the birationality of f . Additionally, effectivity of divisors can be checked on all localizations
of X . Hence, we may assume that X = SpecA, where (A,m) is local. In particular then Y
has finite Krull dimension. If dimY ≤ 2, then we are done by [Tan18b, Lem 2.11]. Hence we
may assume that dimY > 2 and that the statement of the lemma is known for all dimensions
smaller than dimY .

Assume then that Γ is not effective. Let E be the prime divisor on Y which has a negative
coefficient in Γ. By localizing at the points of positive codimension, and using the induction
hypothesis, we see that the components of Γ that are mapping to the non-closed point of X
have non-negative coefficients. In particular, E lies over the closed point of X . As dimY > 2
we can find a hypersurface H ⊆ Y such that

(a) H ∩ E += ∅, and
(b) no component of H is contained in any irreducible component of Exc(f).

We introduce the following notation:

◦ Y ′ is the normalization of an irreducible component of H that intersects E,
◦ h : Y ′ −→ Y is the induced morphism,
◦ X ′ is the normalization of f(Y ′), where f(Y ′) is also local as it is a closed subscheme
of X , and then X ′ is semi-local,
◦ f ′ : Y ′ −→ X ′ is the induced morphism, which is birational due to assumption (b) and
the fact that codimY h(Y ′) = 1, we have h(Y ′) +⊆ Exc(f),
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◦ Γ′ := h∗Γ, for which we have that f ′
∗Γ

′ is effective as we know that the coefficients
of Γ′ are already positive over the non-closed points of X .

By the above observations we may apply the induction hypothesis to f ′ : Y ′ −→ X ′ and to
Γ′. By our choice of Y ′, Γ′ has a negative coefficient, which is a contradiction. !

2.4. Bertini. We will need certain Bertini theorems in mixed characteristic.

Theorem 2.17. Let R be a Noetherian local domain. Fix an integer N ≥ 1. Let X1, ..., Xn ⊂
PN

R be a finite collection of regular closed subschemes. Then there exist some d & 0 and
0 += h ∈ H0(PN

R ,O(d)) such that V (h) ∩Xi is regular for all i.

Proof. Let k denote the residue field of R, and let Xs = ∪iXi,s ⊂ PN
k be the subscheme of

PN
k obtained by taking the scheme-theoretic union of the special fibres Xi,s ⊂ Xi. Choose

a stratification {Uj}j∈J of Xs by locally closed subschemes such that each Uj is connected,
regular (and so k-smooth if k is perfect, for instance if k is finite), and such that each
Xi,s ⊂ Xs is (set-theoretically) a union of strata: this is clearly possible without assuming
connectedness/regularity of the strata, and the connectedness/regularity can be ensured a
posteriori by further refining the stratification.

Next, we claim that there exists some d & 0 and some 0 += a ∈ H0(PN
k ,O(d)) such

that V (a) ∩ Ui is regular for all i. If k is infinite, then this follows with d = 1 from the
classical Bertini theorem (see, e.g., [FOV99, Corollary 3.4.14]): there is a Zariski dense open
inside V(H0(PN

k ,O(1))) parametrizing the sections a that solve the problem for each Ui

separately, and intersecting these opens gives a Zariski dense open inside V(H0(PN
k ,O(1)))

parametrizing the sections a solving the problem for all the Ui’s simultaneously; we then
conclude by noting that any k-rational variety has a k-point as k is infinite. When k is
finite, this follows with d & 0 from the variant of Poonen’s Bertini theorem presented in
[GK19, Proposition 5.2] applied with Z = Y = Vi = ∅ and T = {0}, noting that ζUi(s) does
not have a zero or a pole at s = dim(Ui) + 1 (e.g., by the Weil conjectures).

Pick a section 0 += a ∈ H0(PN
k ,O(d)) as constructed in the previous paragraph, and pick

a lift 0 += h ∈ H0(PN
R ,O(d)) of a. We shall show that h solves our problem. First, by

construction, for any closed point u of any Uj , the image of a in O(d) ⊗O
PN
k

OUj/m
2
Uj ,u is

nonzero. Now each Xi,s is a union of strata, so for each closed point x ∈ Xi,s, we can find
some stratum Uj ⊂ Xi,s containing x. As there is a natural restriction map OXi,s/m

2
Xi,s,x −→

OUj/m
2
Uj ,x

, we conclude that the image of a in O(d) ⊗O
PN
k

OXi,s/m
2
Xi,s,x

is also nonzero for

all closed points x ∈ Xi,s. But closed points of Xi and Xi,s are the same by properness of
Spec(R). By the same reasoning used to pass from Uj to Xi,s and functoriality of restriction
maps, we learn that for any index i and any closed point x ∈ Xi, the image of h in O(d)⊗O

PN
R

OXi/m
2
Xi,x is also nonzero. This means exactly that V (h)∩Xi is regular at all closed points

of Xi that it contains, i.e., V (h) ∩Xi is regular at its closed points. As the regular locus is
stable under generalization, we conclude that V (h) ∩Xi is regular, as wanted. !

Remark 2.18. Now suppose that X −→ SpecR is projective, X is regular and B is a snc
divisor on X . If we apply Theorem 2.17 to X itself and the finitely many strata of B, then
we obtain an H = V (h) such that (X,H +B) and (H,B ∩H) are also snc pairs.
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2.5. Log minimal model program. We refer the reader to [KM98] for the standard defi-
nitions and results in the Minimal Model Program. Here we briefly recall some basic notions,
in particular highlighting the adjustments required by our generality.

Definition 2.19. Given a Cartier divisor D on a Noetherian normal separated scheme X ,
we define Mob(D) = D − Fix(D), where the divisor Fix(D) is defined by requiring that for
each prime divisor E on X

coeffE Fix(D) = min
D′∈|D|

coeffE D′

Note that as D is Cartier the above coefficients are integers and hence the minimum exists.
We also note that here, and in general in the article, the linear system |D| simply means
the set of all effective divisors linearly equivalent to D. That is, we do not put any scheme
structure on |D|.

Remark 2.20. In the situation of Definition 2.19, there is a natural identification ofH0(X,OX(D))
with H0(X,OX(Mob(D))). Note also that if D′ = D + F for a Cartier divisor F ≥ 0, then
Mob(D′) ≥ Mob(D). Further observe that when D is effective, so is Mob(D).

A Q-divisor (resp. R-divisor) is a finite formal sum
∑n

i=1 diDi where Di is an integral
codimension one subscheme of X , and di ∈ Q (resp. di ∈ R). Two divisors are Q-linearly
(resp. R-linearly) equivalent if their difference is a Q-linear (resp. R-linear) combination
of principal divisors. A Q-divisor (resp. R-divisor) is Q-Cartier (resp. R-Cartier) if some
multiple of it is a Cartier divisor (resp. if it can be written as an R-linear combination of
Cartier divisors). Note that a Q-divisor which is R-Cartier is automatically Q-Cartier.

An R-Cartier R-divisor D is R-ample if it is R-linearly equivalent to
∑
αiDi, where

αi ∈ R>0 and Di are ample Cartier divisors (not necessarily effective). Note that if D is R-
ample, it is in fact equal to an R-linear combination

∑
αiDi of ample Di with αi ∈ R>0 (no

R-combination of principal divisors is necessary as we may perturb them to ample divisors).
Note that a R-ample Q-Cartier divisor is automatically ample. Henceforth, we will refer to
R-ample R-Cartier divisors as ample R-Cartier divisors, as no confusion can arise.

Lemma 2.21 (Nakai-Moishezon Criterion, cf. [Tan18b, Remark 2.3]). Let π : X −→ Y be a
proper morphism from an algebraic space X to a Noetherian scheme Y . Let D be a Q-Cartier
Q-divisor on X. Then D is ample over Y if and only if DdimV · V > 0 for every y ∈ Y and
every positive dimensional closed integral subscheme V of the fiber Xy over y.

If X is scheme, then the same condition characterizes ampleness of R-Cartier divisors D.

Proof. It is enough to show that D|Xy is ample for every y ∈ Y ([Sta, Tag 0D3A]). By [Sta,
Tag 0D2P], we can assume that the residue field k(y) is algebraically closed. Then, the
statement follows from [Kol90, Theorem 3.11].

As for R-divisors on schemes, the statement over algebraically closed fields follows from
[FM21, Theorem 1.3]; the reduction to that case can be done similarly to [FM21, Lemma
6.2]). !

Given a projective morphism f : X −→ Z, we define a curve over Z to be a scheme C
of dimension 1 such that C is proper over some closed point z ∈ Z. Define N1(X) to be
the vector space generated by integral curves over Z modulo numerical equivalance: that is∑

aiCi = 0 in N1(X) if and only if (
∑

aiCi) ·D = 0 for every Cartier divisor D on X . We
say that a R-Cartier divisor D is f -nef if D ·C ≥ 0 whenever C is an integral curve over Z.
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Remark 2.22 (The relative Picard rank). Let f : X −→ S be a proper morphism of Noetherian
schemes. Write Picτ (X/S) ⊂ Pic(X) for the subgroup of line bundles L on X which are
numerically trivial on all fibres Xs of f , i.e., for every point s ∈ S and every irreducible
curve C ⊂ Xs, the restriction L|C has degree 0 (in fact, it is enough to verify this for closed
points only). Define N1(X/S) = (Pic(X)/Picτ (X/S)) ⊗Z R. This R-vector space is finite
dimensional: the case of varieties over a field is explained in [Kle66, §4, Proposition 2], and
the same arguments go through in the general case (we learnt of the reference [Kle66] from
[TY20]). The integer ρ(X/S) := dimR N1(X/S) is called the relative Picard rank of f .

Remark 2.23. We warn the reader that in some situations we consider, a Cartier divisor may
not have the expected dimension: for example ifX = SpecZp[t] and Z = SpecZp[t]/(pt−1) -
SpecQp, then dimX = 2, but dimZ = 0 despite Z being a divisor.

Furthermore, we make the following related observation. Although it is enough to check
nefness of line bundles on proper curves only, it may still happen in mixed characteristic
that some of these proper curves map to points of characteristic zero. For example, let
X = SpecZp[x, y], let π : Y −→ X be the blow-up of X along the subscheme Z given by the
ideal (x, y), with the relatively ample line bundle OY (1). Let O be the point given by (p, x, y),
and let η be the generic point of Z. Here Z = {O, η}. Let X ′ = X \ {O} and Y ′ = π−1(X ′).
In particular, η is a characteristic zero closed point of X ′. Then OY ′(−1) is non-negative (in
fact, zero) on all positive characteristic proper curves, but it is not relatively nef. This may
be checked on the proper characteristic zero curve π−1(η). Note that when X = Z[x, y], the
situation is different as there are many closed points of positive characteristic on Z.

Definition 2.24. We say that a proper map f : X −→ Z is small if Exc(f) is of codimension
at least two (all flips and flipping contractions are assumed to be small) and that it is
divisorial if Exc(f) is of codimension one (but it could still happen that dimExc(f) ≤
dimX − 2 as in Remark 2.23). Note that the codimension of a subscheme Y in X is equal
to dim(OX,ξ), where ξ is the generic point of Y [Sta, Tag 02IZ].

Remark 2.25. The fact that curves on a three-dimensional scheme can be of codimension
one may be a source of understandable confusion. However, when T is a spectrum of an
excellent local domain (denote the closed point of T by s), it is always true that divisors on
a proper integral scheme X over T are of dimension dimX − 1.

To see this, first the following computation shows that every closed point x ∈ Xs has
codimension dimX :

dimOX,x = dimT + trdegK(T )K(X)− trdegκ(s)κ(x) = dim T + trdegK(T )K(X) = dimX,

where

◦ in the first equality, we used [Sta, Tag 02JT]
◦ in the second equality, we used that trdegκ(s)κ(x) = 0 since Xs is a scheme of finite
type over κ(s) and x is a closed point, and
◦ the last equality is given by [Sta, Tag 02JX].

Now, if D is a divisor of X , then f(D) is closed, where f : X −→ T is the structure morphism.
Hence f(D) contains s ∈ T , and so D intersects Xs in a non-empty closed subset of X . In
particular, X contains a closed point x ∈ Xs, which must necessarily map to s ∈ T since f
is proper: the argument gives this by construction. Then,

dimX > dimD ≥ dimOD,x = dimOX,x − 1 = dimX − 1.
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where in the first equality we used that X is catenary. We obtain that dimD = dimX − 1.
Since the existence of contractions and flips in the Minimal Model Program can be checked

after localisation at each point, in their proofs we may always assume that T is a spectrum
of a local domain. However, we cannot reduce to the local situation in the case of the cone
theorem and termination of flips.

Remark 2.26. Let T be a quasi-projective scheme over a finite dimensional excellent ring. The
reader should be wary that dimTQ may be equal to dim T even when T += TQ. For example,
take T = (SpecZp[[x, y]])\(p, x, y) which is two-dimensional, as so is TQ = SpecZp[[x, y]]⊗Qp.
In particular, it may happen that given a three-dimensional proper scheme X over T , the
localisation XQ is still three-dimensional.

However, it is always true that dimXQ ≥ dimX − 1 when all the generic points of X
have characteristic 0. Pick a point x ∈ X such that d := dimX = dimOX,x = dim(OX,x/P )
where P is a minimal prime of OX,x. Now if the residue field OX,x/mx has characteristic
zero, then OX,x contains Q and hence dimXQ ≥ dim(OX,x⊗Q) = dimOX,x = dimX . If the
residue field OX,x/mx has characteristic p > 0, then by our assumption on generic points, we
know that p /∈ P and thus we can complete p to a system of parameters (p, x2, . . . , xd) of the
excellent local domain OX,x/P and we have (OX,x/P )⊗ Q ∼= (OX,x/P )[1/p]. Since p is not
in any minimal prime Q of (x2, . . . , xd) and any such Q has height d−1 in OX,x/P , it follows
that dimXQ ≥ dim((OX,x/P )⊗Q) = dim(OX,x/P )[1/p] ≥ dim(OX,x/P )Q = dimX − 1.

Given a projective morphism f : X −→ Z, we say that a Q-Cartier divisor D is f -big if
D|Xη is big where η is the generic point of f(X). Equivalently, rank f∗OX(kD) > ckdimXη

for some constant c for k sufficiently large and divisible. If D is f -nef, then D is f -big if
and only if Ddim(Xη)|Xη += 0. We say that an R-Cartier divisor is f -big if it can be written
as
∑
αiDi, where αi ∈ R>0 and Di are f -big Cartier divisors.

Definition 2.27. In this article, (X,∆) is a (log) pair if X is a normal Noetherian excel-
lent integral d-dimensional scheme with a dualizing complex, ∆ is an effective R-divisor.
Frequently, but not always, we also assume that KX +∆ is R-Cartier.

If ∆ is a Q-divisor (resp. R-divisor), we call it a Q-boundary (resp. R-boundary). Outside
of Section 9, we will assume that our boundaries are Q-boundaries unless otherwise stated.
We say that ∆ has standard coefficients if they are contained in {1− 1

m | m ∈ Z>0} ∪ {1}.

Before the next definition note that if X is a Noetherian excellent integral scheme of
dimension d with a dualizing complex, then the canonical sheaf ωX introduced in Section 2.1
is S2 by [Sta, Tag 0AWN]. Additionally ω

!

X is compatible with localization [Sta, Tag 0A7G].
In particular, taking into account the normalization of dualizing complexes (also explained
in Section 2.1) we obtain that for the generic point η ∈ X we have ω !

X,η
∼= ω !

η [−d] ∼= Oη[d]
and for any codimension 1 point x ∈ X we have ω !

X,x
∼= ω !

SpecOX,x
[−(d − 1)]. So, if X is

normal, then also at the points of the latter type we have ω
!

X,x
∼= OSpecOX,x [d], and hence ωX

is a rank 1 divisorial sheaf [Har94]. We denote the corresponding linear equivalence class of
divisors by KX .

If f : Y −→ X is a proper birational morphism of Noetherian excellent integral schemes of
finite Krull dimension with dualizing complexes, and ∆ is an R-divisor on X with KX +∆
R-Cartier, then we can find an R-divisor ∆ satisfying the equation

(2.27.1) f ∗(KX +∆) = KY +∆Y .
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Note that ∆Y is uniquely defined if we add the assumption f∗KY = KX , which we will
always assume in such situations.

Definition 2.28. Consider a pair (X,∆) with KX + ∆ being R-Cartier such that every
coefficient in ∆ is at most 1. If for every birational morphism f : Y −→ X from a normal
scheme, divisor ∆Y as in (2.27.1) and for every prime divisor E on Y which is exceptional
over X , we have

◦ multE(∆Y ) < 0, then (X,∆) is terminal,
◦ multE(∆Y ) ≤ 0, then (X,∆) is canonical,
◦ multE(∆Y ) < 1 and 5∆6 = 0, then (X,∆) is kawamata log terminal (klt),
◦ multE(∆Y ) < 1, then (X,∆) is purely log terminal (plt),
◦ multE(∆Y ) < 1 unless the generic point of the image of E on X is contained in the
simple normal crossing locus of (X,∆), then (X,∆) is divisorially log terminal (dlt),
◦ multE(∆Y ) ≤ 1, then (X,∆) is log canonical (lc).

In the first definition, 5∆6 = 0 is automatic. Further, notice that (X,∆) being plt does not
imply 5∆6 is irreducible for (X,∆) plt. This is not merely a technical subtlety, as otherwise
plt would fail to be stable under certain base-changes. On the other hand, the irreducibility
of 5∆6 is at times required in a number of standard arguments, which then we have to revise
with extra care (c.f. Section 8).

We call the number a(E,X,∆) = 1−multE(∆Y ) the log discrepancy of (X,∆) along E (the
number −multE(∆Y ) is called discrepancy). If (X,∆) admits a log resolution f : Y −→ X ,
then it suffices to verify the above definitions (except the terminal and the plt case) for the
divisors on Y only [Kol13, Section 2.10].

The base-change properties of the notions defined in Definition 2.28 can be deduced from
the following lemma.

Lemma 2.29. Suppose π : X −→ SpecR is a log resolution of some pair (SpecR,∆). If
R −→ R′ is a flat map to an excellent ring with geometrically regular fibers (for instance, an
étale cover, the strict henselization at some point of SpecR, or the completion thereof), then
the base change

π′ : X ′ = XR′ −→ SpecR′

is a log resolution of the base changed pair (SpecR′,∆R′).

Proof. Since X is regular and X ′ −→ X is flat with regular fibers, we see that X ′ is regular
(and in particular reduced). But this also applies to all strata of the simple normal crossings
divisor π−1∆ and so its base change is also simple normal crossings. This proves the lemma.

!

Remark 2.30. Let (X,∆) be a three-dimensional klt pair and let D be an effective divisor.
Then (X,∆+ εD) is klt for 0 < ε7 1 as proper resolutions exist in this setting.

Definition 2.31. We say that a projective birational morphism g : Y −→ X is a terminal-
ization of a klt pair (X,B) if when writing KY + BY = f ∗(KX + B), the pair (Y,BY ) is
terminal.

Lemma 2.32. Let f : (X,∆) −→ Z = SpecR be a projective birational morphism from a
three-dimensional plt (resp. klt, dlt) pair to the spectrum of an excellent base ring R with
a dualizing complex, and let h : R −→ R′ be a flat map between excellent local ring s with
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dualizing complexes and suppose that h has geometrically regular fibers (for instance, an étale
cover, or the strict henselization at a maximal ideal, or the completion thereof). Then the
base changed pair (XR′ ,∆R′) is plt (resp. klt, dlt).

Proof. This follows from Lemma 2.29 since we can check these conditions on a single log
resolution. !

Note that the above lemmas in the smooth case are discussed in [Kol13, 2.14 and 2.15].
We say that a scheme is normal up to a universal homeomorphism if its normalization is

a universal homeomorphism.

Lemma 2.33. Let (X,∆) be a dlt pair such that all the irreducible components S1, . . . , Sk of
5∆6 are Q-Cartier. Then all Si are normal up to a universal homeomorphism (and normal
in codimension one). Moreover, if (X,∆) is plt, then 5∆6 = S1 8 . . . 8 Sk.

The same holds for (X ′,∆′), where φ : X ′ −→ X is a flat map with geometrically regular
fibers (for example, a completion at a point x ∈ X) and ∆′ = φ∗(∆).

Proof. The first part follows by exactly the same proof as [HW21, Lemma 2.1] (we learnt
this result from János Kollár). Suppose that (X,∆) is plt and Si ∩ Sj += ∅ for some i += j.
Since both Si and Sj are Q-Cartier, then Si ∩ Sj contains a codimension two point η. By
localizing at η, we may assume that X is two-dimensional, and so the result follows from
the classification of plt surfaces (cf. [Kol13, Theorem 2.31]). By the same argument Si are
normal in codimension one.

To prove the last statement, we may assume that x ∈ Si. Since normalizations are stable
under flat maps with geometrically regular fibers (cf. S2 is preserved under flat maps by
[Mat89, 15.1, 23.3], R1 is preserved by the argument of Lemma 2.29), we get that S ′

i = φ∗(Si)
is normal up to a universal homeomorphism. In particular, S ′

i is a disjoint union of its
irreducible components. !

Lemma 2.34 ([Bir16, Lemma 9.2]). Let g : (X,B) −→ SpecR be a projective morphism
from a klt (resp. plt, dlt) pair with a Q-boundary over a Noetherian local domain. Suppose
that there exists g : W −→ X, a log resolution of (X,B) and of Xm such that there exists a
g-exceptional divisor E ≥ 0 on W such that −E is ample. In the case that (X,B) is dlt,
additionally assume that this resolution has no exceptional divisors with discrepancy −1 (this
condition is automatic for the other cases). Finally suppose that A is an ample divisor on
X. Then there exists a divisor 0 ≤ A′ ∼Q A such that (X,B + A′) is klt (respectively plt,
dlt)

Proof. The proof follows [Bir16, Lemma 9.2] (mimicking his argument from the dlt case)
with the following adjustments: we set E ′ := E

m for some m & 0, and we use our Bertini
theorems Theorem 2.17 (in particular Remark 2.18) where the “general” A′

W is chosen. !

Remark 2.35. If X is a Q-factorial threefold, then any projective resolution π : Y −→ X in
the klt/plt case will satisfy the hypotheses of Lemma 2.34. Indeed, if H on Y is relatively
ample, thenH−π∗π∗H will be relatively ample and π-exceptional. WhenX is not necessarily
Q-factorial, the existence of such a resolution locally is guaranteed for Noetherian quasi-
excellent three-dimensional reduced schemes by Proposition 2.14. Unfortunately, in contrast
to positive or zero characteristics, we do not know if the resolution as in the dlt case above
exists in dimension three.
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Given a proper birational map f : Y −→ X between normal integral schemes over SpecR, a
Cartier divisorD onX , and an exceptional effective divisor E on Y , we have that f∗OY (f ∗D+
E) = OX(D). The following result, used extensively throughout this paper, is an easy
generalisation of the above fact to Q-Cartier divisors.

Lemma 2.36. Let f : Y −→ X be a proper birational morphism between normal Noetherian
schemes. Let DY and DX be Q-Cartier Weil divisors on Y and X, respectively, such that
f∗DY = DX and DY ≥ 5f ∗DX6 (equivalently, 9DY − f ∗DX: ≥ 0). Then f∗OY (DY ) =
OX(DX).

The aim of the log minimal model program is to take a projective scheme with mild
singularities and perform certain birational operations on it, to arrive at a projective scheme
of the one of the following two special kinds. Here, a morphism f : X −→ Z is called a
contraction if it is projective and satisfies f∗OX = OZ .

Definition 2.37. Let (X,∆) be a pair and f : X −→ Z a projective contraction. We say
that (Y,∆Y ) with projective contraction g : Y −→ Z is a log birational model of (X,∆) over
Z if X is birational to Y and ∆Y is the sum of the birational transform of ∆ and the reduced
exceptional divisor of Y ""# X .

We say that a log birational model (Y,∆Y ) is a log minimal model of (X,∆) over Z if

(a) (Y,∆Y ) is Q-factorial dlt,
(b) KY +∆Y is nef over Z,
(c) for any divisor E on X which is exceptional over Y , a(E,X,∆) < a(E, Y,∆Y ), and
(d) the induced map Y ""# X does not contract any divisors.

We say that a log birational model (Y,∆Y ) is a Mori fiber space for (X,∆) over Z if

(a) (Y,∆Y ) is Q-factorial dlt,
(b) there is a projective contraction φ : Y −→ V over Z such that

◦ the contraction φ is (KY +∆Y )-negative,
◦ dim(V ) < dim(Y ),
◦ ρ(Y/V ) = 1,

(c) for any divisor E on X which is exceptional over Y , a(E,X,∆) < a(E, Y,∆Y ), and
(d) the induced map Y ""# X does not contract any divisors.

If (X,∆) is klt, then so is (Y,∆Y ). We say that a log minimal model (Y,∆Y ) of (X,∆) is
good if KY +∆Y is semiample.

Remark 2.38. Note that for some authors e.g. [Bir16], Definition 2.37(d) is not assumed in
these definitions. We include this assumption since the log minimal models and Mori fiber
spaces we construct will satisfy this.

Definition 2.39. A flipping contraction f : X −→ Z of a pair (X,∆) is a small projective
birational morphism such that −(KX +∆) is f -ample.

Note that it is usually assumed, and is the case when running the usual LMMP, that
ρ(X/Z) = 1. However, we will need to make use of the above more general notion.

Definition 2.40. Given a flipping contraction f : X −→ Z of a pair (X,∆), the flip of f (if
it exists) is a small projective birational morphism f+ : X+ −→ Z such that KX+ +∆X+ is
f+-ample.3

3Notice that this X+ is not the one corresponding to the absolute integral closure of OX .
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2.6. Minimal Model Program for Noetherian excellent surfaces. We review the
Minimal Model Program for Noetherian excellent surfaces following [Tan18b]. Throughout
this subsection the base ring R is assumed to be a finite dimensional, excellent ring admitting
a dualizing complex, and T to be a quasi-projective scheme over R. In particular, this covers
the key cases from the viewpoint of applications such as when

◦ T is a quasi-projective scheme over a field or a Dedekind domain, or
◦ T = SpecA for any complete Noetherian local domain A (see [Sta, Tag 032D]).

Remark 2.41. Note that the assumption in [Tan18b] is that the base ring R is regular.
However all the arguments go through with the weaker assumption that R admits a dualizing
complex [Tan20c].

Theorem 2.42 (MMP, [Tan18b, Theorem 1.1]). Let (X,∆) be a log canonical pair over R
of dimension two with R-boundary and admitting a projective morphism f : X −→ T . Then
we can run a (KX + ∆)-MMP over T which terminates with a minimal model or a Mori
fibre space.

Theorem 2.43 (Q-factoriality of dlt singularities, [Tan18b, Corollary 4.11], cf. [Lip69]). Let
(X,∆) be a two-dimensional dlt pair with R-boundary. Then X is Q-factorial.

Theorem 2.44 (Base point free theorem, [Tan18b, Theorem 4.2]). Let (X,B) be a klt pair
of dimension two with R-boundary and admitting a projective morphism f : X −→ T over R.
Let L be an f -nef Q-Cartier divisor such that L− (KX +B) is f -nef and f -big. Then L is
f -semiample.

Proof. When X is projective over a field, this follows from abundance ([Tan20a, Theorem
1.1]). Specifically, let E be an effective divisor such that Aε = L− (KX +B)− εE is ample
for all ε sufficiently small. Fix ε such that (X,B + εE) is klt and by Lemma 2.34 choose
0 ≤ A′ ∼Q Aε such that (X,B+εE+A′) is klt. Then we can conclude by [Tan20a, Theorem
1.1] using the fact that L ∼Q KX +B+ εE+A′. If X is not projective over a field the result
is implied by [Tan18b, Theorem 4.2]. !

Note that when X is not defined over a field we even know that nL is base point free for all
n& 0 and not just divisible enough. Unfortunately, this does not hold in general, specifically
when the numerical dimension of L is equal to one and the base field has characteristic two
and three (see [Tan20b, Theorem 1.2]).

The following theorem is well-known in characteristic zero, and has been recently estab-
lished for varieties which are projective over a field of positive characteristic [Tan20a]. We
prove the general case later on.

Theorem 2.45 (Theorem 9.24). Let (X,∆) be a log canonical pair of dimension 2, projective
over T with Q-boundary. Assume in addition that T is the spectrum of a local ring with
positive residue characteristic. If KX +∆ is nef over T , then it is semiample over T .

We present a strengthening of [Tan18b, Theorem 2.14] following [DW22, Theorem 4.3].
As our residue fields are not necessarily algebraically closed, the bound on the length of
extremal rays involves a term dC introduced in [op. cit.].

Theorem 2.46 (Cone theorem). Let π : X −→ T be a projective morphism with X integral,
normal, and of dimension at most two. Let ∆ ≥ 0 be such that KX +∆ is R-Cartier. Then
there exist countably many curves {Ci}i∈I on X such that
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(a) π(Ci) is a closed point4.
(b)

NE(X/T ) = NE(X/T )KX+∆≥0 +
∑

i∈N

R≥0[Ci].

(c) For any ample R-divisor A, there is a finite n such that

NE(X/T ) = NE(X/T )KX+∆+A≥0 +
∑

i≤n

R≥0[Ci].

(d) For each Ci, either
i. Ci is contained in the non-lc locus of (X,∆).
ii. 0 < −(KX +∆) ·k Ci ≤ 4dCi where dCi is as in Lemma 2.47.

Proof. If dim(X) = 1, then the result is obvious. So we assume dim(X) = 2. Furthermore if
dim(π(X)) = 0, the result is proved in [DW22, Theorem 4.3]. Note that this did not assume
that the field had positive characteristic, and while our phrasing of (d|i) is slightly stronger
than that of [DW22], it is actually what is given by the proof there.

So we may assume that dim(π(X)) ≥ 1. The first three parts are implied by the stronger
[Tan18b, Lemma 2.13], so it remains to prove (d). For this we must show that each (KX+∆)-
negative extremal ray Σ contains a curve satisfying the bound or contained in Supp(∆)
Using the argument of [DW22, Proposition 4.5, Step 1] we may assume that X is regular
and (X,∆≤1) is dlt.

The extremal ray Σ contains some curve C by [Tan18b, Lemma 2.13], and as X is regular
we claim that C2 ≤ 0. If π is birational this follows from Lemma 2.16, while if π has image
of dimension 1, it follows because C · F = 0 for F a fiber of π. Let D be the normalization
of an irreducible component of (C ⊗k k)red. Then

(KX +∆) ·k C ≥ (KX +∆ + aC) ·k C = degk(KC +∆C) ≥ dC degk(KD +∆D) ≥ −2dC

where a is chosen such that C has coefficient one in ∆ + aC, and ∆C and ∆D are effective
divisors on C and D respectively. !

We used the following lemma in the proof of the above theorem.

Lemma 2.47. Let X be a scheme over a Dedekind domain V containing a proper curve
C over a point v ∈ Spec(V ) with residue field k. Let φ : Xv ⊗k k −→ Xv be the natural
projection. Then there is a positive integer dC such that for any R-Cartier divisor D, if Ck

is any integral curve on Xv ⊗k k whose image on Xv is C we have

D ·k C = dC(φ
∗D ·k C

k)

In particular if L is any Cartier divisor on X, then L ·k C is divisible by dC.

Proof. This is [DW22, Lemma 4.1] applied to C ⊂ Xv. Note that the statement of [DW22,
Subsection 3] required that Xv be proper, however the proofs only require that the curve C
be proper. !

4this is automatic by definition of a curve over T
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2.7. Characteristic zero base point free theorem. We note that the base point free
theorem for Noetherian excellent schemes of characteristic zero follows from the vanishing
theorems in [Mur21].

Proposition 2.48. Suppose that T is a scheme which is quasi-projective over a finite di-
mensional excellent ring R admitting a dualizing complex and containing Q.

Let (X,∆) be a Q-factorial klt pair with R-boundary. Let f : X −→ T be a projective
morphism, and let L be an f -nef Q-Cartier Q-divisor on X such that L−KX −∆ is f -nef
and f -big. Then L is f -semiample.

Proof. By a perturbation we may assume that ∆ is a Q-divisor and L −KX −∆ is ample.
We may assume that T is integral, and then use the argument of [KMM87, Theorem 3-1-1].
This has three main imputs: relative Kawamata-Viehweg vanishing [Mur21], the existence
of a projective resolution with ample exceptional divisor ([Tem11]), and the non-vanishing
theorem on the generic fiber Xη of X −→ T (that is, H0(Xη,OXη(mL)) += 0 for some m ≥ 1).
As this generic fiber is a variety over a field of characteristic zero, the non-vanishing theorem
[KMM87, Theorem 2-1-1] applies directly via the base change of its Stein factorization to
the algebraic closure of K(T ). !

2.8. Mixed characteristic Keel’s theorem. In what follows, we say that a nef Cartier
divisor L on a scheme X proper over a Noetherian excellent base scheme T is EWM over T
if there exists a proper morphism f : X −→ Y to a proper (over T ) algebraic space Y such
that a closed integral subscheme V ⊆ X is contracted (that is, dim f(V ) < dimV ) if and
only if L|V is not big.

Remark 2.49. The original definition of EWM in [Wit22] differed from the one above (which
is the same as in [CT20, Kee99]). It was weaker, as it only required f to contract proper
curves C such that L · C = 0. This was corrected in an update to [Wit22].

We start by recalling the main results of [Wit22].

Theorem 2.50 ([Wit22, Theorem 6.1]). Let L be a nef Cartier divisor on a scheme X
projective over a Noetherian excellent base scheme T . Then L is semiample (EWM. resp.)
over T if and only if L|E(L) and L|XQ

are semiample (EWM. resp.) over T .

Here, XQ denotes the characteristic zero fiber of X −→ SpecZ and E(L) denotes the union
of closed integral subschemes V ⊆ X such that L|V is not relatively big over T .

Proof. This is [Wit22, Theorem 6.1]. Note that the EWM case of this theorem assumed
that the base scheme T is of finite type over a mixed characteristic Dedekind domain. This
assumption was needed to invoke [Art70, Theorem 3.1 and Theorem 6.2], but the only reason
Artin stated it in his article was because the Popescu approximation theorem was not known
at that time ([Sta, Tag 07GC]). This assumption was retained in [Wit22] out of abundance
of caution. !

Proposition 2.51. Let T be a quasi-projective scheme over a finite dimensional excellent
ring R admitting a dualizing complex. Let (X,S +B) be a three-dimensional dlt pair which
is projective over T , where S is a prime divisor and B is an effective Q-divisor. Suppose
that each irreducible component of 5S + B6 is Q-Cartier. Let L be a nef Cartier divisor on
X such that L− (KX + S +B) is ample and E(L) ⊆ S. Then L is semiample.
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Moreover, if φ : X −→ Z is the associated semiample fibration, then every relatively nu-
merically trivial Q-Cartier Q-divisor D on X descends to Z.

Proof. By means of perturbation, we can assume that (X,S + B) is plt and S = 5S + B6.
By Lemma 2.33, we also know that S is normal up to a universal homeomorphism. Since
L|XQ

is semiample by Proposition 2.48, it is enough to show that L|E(L) is semiample by

Theorem 2.50, and so that L|S is semiample. First, note that L|S̃ is semiample, where S̃ is
the normalization of S. Indeed, write KS̃ +BS̃ = (KX + S +B)|S̃. Since (S̃, BS̃) is klt and
dim S̃ ≤ 2, we have that L|S̃ is semiample by Theorem 2.44. Then L|S is semiample in view
of S̃ −→ S being a universal homeomorphism by [Wit21, Theorem 2.22].

The second part follows by applying the first part to L+D over Z. !

Proposition 2.52. Let (X,S + B) be a pair with KX + S + B R-Cartier, and with X
projective over a Noetherian excellent scheme T admitting a dualizing complex such that S
is a Weil divisor not contained in Supp(B) whose image in T is a closed point with residue
field k. Let Z be the normalization of Sk. Then there are effective divisors C, M and F ,
and a R-divisor BZ on Z such that

(KX + S +B)|Z ∼R KT + C +M + F +BZ

where

◦ Supp(C) is the pullback to Z of the locus on which the normalization Sν −→ S fails
to be an isomorphism.
◦ Supp(F ) is the locus on which Z −→ ((Sν)k)red fails to be an isomorphism.
◦ Supp(M) = 0 if and only if Sk is reduced.

Proof. First, by adjunction, (KX + S + B)|Sν = KSν + CSν + BS where CSν ≥ 0 is the
conductor of the normalization Sν −→ S and BS ≥ 0. Then we have KSν |Z = KZ +M + F
where M and F are elements of the linear systems (p− 1)F and (p− 1)M from [JW]. Note
that [JW] assumes that the ground field is a function field, but our situation can be reduced
to this as explained in [JW, Subsection 2.1] and [DW22, Theorem 4.12, Step 1, (1)]. !

Corollary 2.53. Let (X,B) be a klt pair of dimension three admitting a projective morphism
f : X −→ T to a finite dimensional Noetherian excellent scheme T . Let L be an f -nef and
f -big Cartier divisor such that L − (KX + B) is f -nef and f -big as well. Then L is EWM
over T .

Proof. This is proven in [Wit22, Corollary 6.7] under the assumption that T is a spectrum
of a mixed characteristic Dedekind domain with perfect residue fields.

The fact that the base is a Dedekind domain was used three times in the proof: to employ
the mixed characteristic Keel theorem, to invoke [Wit22, Proposition 6.6], and to deduce
that L|XQ

is semiample. These results hold in our more general setting by Theorem 2.50,
Lemma 2.54, and by Proposition 2.48, respectively. Note that L is semiample over every
non-closed point of T by Theorem 2.44.

The assumption on the residue fields was used to deduce that L restricted to an appro-
priately chosen surface Di ⊆ X , which is projective over a field of positive characteristic, is
EWM. This can be resolved by arguing as in Case 1 of [DW22, Theorem 4.12]. Indeed, the
semiampleness of L|(Di)k

follows by the same argument as that of L|Di in [Wit22, Corollary
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6.7] thanks to Proposition 2.52. Here k is the algebraic closure of the base field k. Then
L|Di is semiample by [Kee99, Lemma 2.2]. !

Lemma 2.54 ([Wit22, Proposition 6.6]). Let X be a two-dimensional normal integral scheme
projective and surjective over a Noetherian excellent scheme T such that dimT ≥ 1. Let L
be a line bundle on X which is nef over T and suppose that L|Xη (and L|XQ

if XQ += ∅) are
semiample for the fiber Xη over the generic point η ∈ T . Then L is EWM over T .

Proof. Replacing T by the Stein factorization of f : X −→ T , we may assume that T is
normal and f∗OX = OT . If L|Xη is big or dimT = 2, then dimE(L) = 1. Thus L|E(L)
is EWM, and so L is EWM by Theorem 2.50. Otherwise, dimT = 1, dimXη = 1, and
L|Xη ∼Q 0. In this case, the normality of T ensures that T is regular and so we can apply
[CT20, Lemma 2.17] to deduce that L is relatively torsion. !

2.9. Seshadri constants. Recall that for a projective scheme X over a Noetherian excellent
base scheme T , a nef and big Q-Cartier Q-divisor A, and a closed point x ∈ X , we define
the Seshadri constant

ε(A; x) = sup {t ∈ Q | π∗A− tE is nef } ,

where π : X ′ −→ X is the blow-up of x and OX(−E) = mx · OX′ is the exceptional divisor.
When A is in addition semiample, then, with notation as above, we also define the semiample
Seshadri constant

εsa(A; x) = sup {t ∈ Q | π∗A− tE is semiample } .

In particular, the Seshadri and the semiample Seshadri constants are non-negative, and
positive if A is ample. Further, note that ε(A+B; x) ≥ ε(A; x)+ε(B; x) (resp. εsa(A+B; x) ≥
εsa(A; x) + εsa(B; x)), where A and B are nef and big (resp. semiample and big) Q-Cartier
Q-divisors on X .

For the proof of the existence of flips, we will need the following results.

Lemma 2.55. Let f : Y −→ X be projective birational morphism, where Y is a two-dimensional
regular integral scheme, and X is affine and klt. Assume that the reduced exceptional divisor
F is of positive characteristic.

Then every nef Cartier divisor L on Y is relatively semiample over X. In particular, if
A is a semiample Q-Cartier Q-divisor on Y , then εsa(A; x) = ε(A; x) for every closed point
x ∈ F .

Since f is birational, every Q-Cartier Q-divisor is automatically big over X .

Proof. Since semiampleness is stable under strict henselization, we can assume that X is
strictly henselian. Note that F is simple normal crossing and is a tree of regular conics, be-
cause the morphism f may be constructed from the minimal resolution of X by successively
blowing up closed points, and the claim holds for the minimal resolution of X by [Kol13, Sec-
tion 3]. With notation as in Section 2.8, we have that E(L) ⊆ F . Hence, by Theorem 2.50, it
is enough to show that L|F is semiample. To do this we may assume that F is contracted to a
single point x with separably closed residue field k. By [DW22, Lemma 4.4], L is semiample
on every irreducible component of F , and so L|F is semiample by [Kee99, Corollary 2.9] as
F is a tree of regular conics over a separably closed field, and so the intersection points are
geometrically connected. !
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Lemma 2.56. Let f : Y −→ X be a projective birational morphism, where Y is a two-
dimensional regular integral scheme, and X is affine and klt. Assume that the reduced ex-
ceptional divisor F is of positive characteristic.

Let M be an effective semiample Cartier divisor on Y with no exceptional curve of Y −→ X
in its support, and let x ∈M ∩ F be of multiplicity k ∈ Z>0 in M . Then

εsa(M ; x) = ε(M ; x) ≥ k.

More generally, let D be a fixed divisor and let A be a semiample Q-Cartier Q-divisor
such that A ∼Q M + Λ, where M is an effective Cartier divisor with no exceptional curve
of Y −→ X in its support, and −δD ≤ Λ ≤ δD for δ > 0. Take x ∈ F ∩M of multiplicity
k ∈ Z>0 in M . Then εsa(A; x) converges to k when δ −→ 0.

Proof. We show the second statement. Then the first one follows by the same argument.
Suppose that 0 < δ 7 γ 7 1 and let π : W −→ Y be the blow-up at x. Since x ∈ M is of
multiplicity k, we have that π∗M = MW + kE, where MW is the strict transform of M and
E is the exceptional divisor of the blow-up π.

By Lemma 2.55, it is enough to verify that ε(A; x) ≥ k − γ, that is

π∗A− (k − γ)E

is nef. Let C be an exceptional irreducible curve on W over X . We need to check that
(π∗A− (k − γ)E) · C ≥ 0. We consider the following cases:

◦ C = E, then

(π∗A− (k − γ)E) · C = −(k − γ)E2 > 0,

◦ C += E and C ∩ E += ∅, then

(π∗A− (k − γ)E) · C = (π∗(M + Λ)− (k − γ)E) · C

= (MW + γE + π∗Λ) · C

≥ (γE + π∗Λ) · C

= γE · C + Λ · π∗C

≥ γE · C − δ|D · π∗C|

≥ 0,

for 0 < δ 7 γ 7 1 where the last inequality follows as E · C ≥ 1, D is fixed, and
there are only finitely many possible curves C. The first inequality follows as MW

contains no curves in its support which are exceptional over X , and so C +⊆ SuppMW .
◦ C += E and C ∩ E = ∅, then

(π∗A− (k − γ)E) · C = A · π∗C ≥ 0

as A is nef.

!
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3. Vanishing in mixed characteristic

The goal of this section is to extend the first author’s vanishing theorem [Bha20, Theorem
6.28(b)] from the case of essentially finitely presented algebras over excellent henselian DVRs
in mixed characteristic5 to the case of arbitrary excellent local domains of mixed characteris-
tic. As in the corresponding local story in [Bha20, §5], our main tools are Popescu’s approx-
imation theorem [Sta, Tag 07BW] together with limit arguments [Sta, Tag 01YT]. We follow
the notation from [Bha20] in this section; in particular, we writeXp=0 := X×Spec(Z)Spec(Z/p)
for any scheme X .

Proposition 3.1. Suppose that (T, x) is an excellent local domain of mixed characteristic
(0, p > 0) that admits a dualizing complex. Let π : X −→ Spec(T ) be a proper surjective map
with X reduced, equidimensional and p-torsion free. Suppose that L ∈ Pic(X) is a semiample
line bundle.

(a) There exists a finite surjective map Y −→ X such that

τ>0RΓ(Xp=0, L
a) −→ τ>0RΓ(Yp=0, L

a)

is 0 for all a ≥ 0. In particular,

Hj(RΓ(X+
p=0, L

a)) = 0

for all j > 0 and all a ≥ 0.
(b) If L is also big, then for all b < 0 there exists a finite surjective map Y −→ X such

that

RΓx(RΓ(Xp=0, L
b)) −→ RΓx(RΓ(Yp=0, L

b))

is the zero map on Hj for j < dim(Xp=0). In particular,

Hj(RΓx(RΓ(X+
p=0, L

b))) = 0

for all j < dim(Xp=0) and all b < 0.

In what follows, we will only explain part (b) carefully. Part (a) follows from a similar and
slightly easier argument so we omit it. We begin by proving a variant of [Bha20, Theorem
6.28(b)] where we allow non-closed points and do not require that the base DVR is henselian.

Proposition 3.2. Let V be an excellent DVR of mixed characteristic (0, p > 0) and let
π : X −→ Spec(T ) be a proper surjective map of integral flat finitely presented V -schemes.
Fix a (not necessarily closed) point x ∈ Spec(T )p=0 and a big and semiample line bundle
L ∈ Pic(X). Then for all b < 0 there exists a finite surjective map Y −→ X such that

RΓx(RΓ(Xp=0, L
b)⊗T Tx) −→ RΓx(RΓ(Yp=0, L

b)⊗T Tx)

is the zero map on H i for i < dim((X ×T Tx)p=0). Here Tx is the localization of T at the
prime ideal x.

Proof. Without loss of generality, we can assume X is normal. We first assume x is a closed
point. Let V h be the henselization of V . So V h = lim−→Vj where each Vj is a pointed étale

5In fact, any DVR of mixed characteristic (0, p > 0) is excellent, see [Sta, Tag 07QW].
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extension of V . We have a commutative diagram

X !! Spec(T ) !! Spec(V )

Xj
!!

""

Spec(Tj) !!

""

Spec(Vj)

""

X ′ !!

""

Spec(T ′) !!

""

Spec(V h)

""

such that each square is Cartesian. By [Bha20, Theorem 6.28(b)] applied to the bottom
row of the above diagram,6 there exists a finite surjective map Y ′ −→ X ′ such that the map
RΓx(RΓ(Xp=0, Lb)) −→ RΓx(RΓ(Y ′

p=0, L
b)) is zero on H i for i < dimX ′

p=0 (here we abuse
notation and use L to denote the corresponding line bundle on Y ′

p=0). Moreover, we may
assume Y ′ = Yj ×Xj X

′ is the base change of a finite surjective map Yj −→ Xj for some
index j. Since V/p = Vj/p = V h/p, we have Xp=0

∼= Xj,p=0
∼= X ′

p=0 and Yj,p=0
∼= Y ′

p=0.
Thus the map RΓx(RΓ(Xj,p=0, Lb)) −→ RΓx(RΓ(Yj,p=0, Lb)) is zero on H i for i < dimXp=0.
Next we note that by [Bha20, Lemma 4.4]7, there exists a finite cover Y −→ X such that the
base change Y ×X Xj −→ Xj factors through Yj. Therefore the map RΓx(RΓ(Xp=0, Lb)) −→
RΓx(RΓ(Yp=0, Lb)) is zero on Hj for i < dimXp=0 as it factors through RΓx(RΓ(Yj,p=0, Lb)).

We next handle the case that x is not necessarily a closed point. By [Bha20, Lemma 4.8],
there exists an extension of DVRs V −→W that is essentially of finite type and a (flat) finite
type W -algebra S such that Tx

∼= Sy where y ∈ Spec(S)p=0 is a closed point. Choose X̃ an
integral finitely presented scheme over S (and flat over W ) such that X̃ ×Spec(S) Spec(Sy) ∼=
X ×Spec(T ) Spec(Tx), which is possible as the latter is finitely presented over Sy which is a
localization of S. Consider the diagram

X ×Spec(T ) Spec(Tx) !! Spec(Tx) !! Spec(V )

X̃ ×Spec(S) Spec(Sy) !!

∼=

""

##

Spec(Sy) !!

∼=

""

##

Spec(W )

""

=

##

X̃ !! Spec(S) !! SpecW

By applying the first part above to X̃ −→ Spec(S) −→ Spec(W ) and the closed point y ∈
Spec(S)p=0, we learn that there exists a finite surjective map Ỹ −→ X̃ such that the map

RΓy(RΓ(X̃p=0, L
b)) −→ RΓy(RΓ(Ỹp=0, L

b))

is zero on H i for i < dim(X̃ ×S Sy)p=0. Finally, by taking suitable integral closures, we can
choose a finite surjective map Y −→ X such that Y ×Spec(T )Spec(Tx) factors through (in fact,
equals) Ỹ×Spec(S)Spec(Sy), so that the mapRΓx(RΓ(Xp=0, Lb)⊗TTx) −→ RΓx(RΓ(Yp=0, Lb)⊗T

Tx) is zero on H i for i < dim((X ×T Tx)p=0). !

6Since X is normal, each connected component of X ′ is integral so technically we are applying [Bha20,
Theorem 6.28(b)] to each connected component of X ′.
7Here we are using the scheme version of [Bha20, Lemma 4.4], the proof is the same.
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This directly leads to the following statement.

Corollary 3.3. Let V be an excellent DVR of mixed characteristic (0, p > 0) and let π :
X −→ Spec(T ) be a proper surjective map of integral flat finitely presented V -schemes. Fix
a big and semiample line bundle L ∈ Pic(X). Then for all b < 0, and all x ∈ Spec(T )p=0,
H i(RΓx(RΓ(X+

p=0, L
b)⊗T Tx)) = 0 for all i < dim(X ×T Tx)p=0.

Proof. Simply notice that

RΓx(RΓ(X+
p=0, L

b)⊗T Tx) = lim−→Y !X
RΓx((RΓ(Y, Lb))p=0 ⊗T Tx)

where the colimit is over all finite surjective maps Y −→ X . Now the statement follows from
Proposition 3.2. !

Remark 3.4. In the case that dimX = dimT , we may interpret Corollary 3.3 as saying that
RΓ(X+

p=0, L
b) is a Cohen-Macaulay complex over T/p in the sense of [Bha20, Definition 2.1].

We now extend our results to Noetherian complete local bases.

Proposition 3.5. Let T be a complete Noetherian local domain of mixed characteristic
(0, p > 0). Let π : X −→ Spec(T ) be a proper surjective map such that X reduced, equidi-
mensional, and p-torsion free. Fix a big and semiample line bundle L ∈ Pic(X). Then for
all b < 0 and all j < dimXp=0, Hj(RΓx(RΓ(X+

p=0, L
b))) = 0 where x ∈ Spec(T ) is the closed

point.

Proof. The strategy is similar to that of [Bha20, Theorem 5.1]. By Cohen’s structure the-
orem, we may assume that T is finite over a power series ring V !x2, . . . , xn" where V is
a coefficient ring of T (hence a complete DVR). Thus without loss of generality, we may
assume T = V !x2, . . . , xn". Moreover, we may replace X by its normalization and work with
each connected component to assume X is normal and integral.

By Popescu’s theorem [Sta, Tag 07GC], we can write T = lim−→Qi such that Q0 =
V [x2, . . . , xn] and each Qi is smooth over Q0. Since X −→ Spec(T ) is proper and surjec-
tive, we may assume that there exists a proper surjective map Xi −→ Spec(Qi) such that
X ∼= Xi×Spec(Qi) Spec(T ) and the line bundle L is pulled back from some big and semiample
line bundle Li on Xi, see for instance [Mur21, Lemma 4.1]. Now by Corollary 3.3 applied to
Xi −→ Spec(Qi) −→ Spec(V ), we know that for all b < 0 and all y ∈ Spec(Qi)p=0, we have
Hj(RΓy(RΓ(X+

i,p=0, L
b
i)⊗Qi Qi,y)) = 0 for all j < dim(Xi×Qi Qi,y)p=0. In particular, for any

y ∈ Spec(Qi) that contains (p, x2, . . . , xn), the Hj vanish for all

j < dimXi,p=0 − dim(Qi/(p, x2, . . . , xn)Qi) = n+ dimXi − dimQi − 1.

Note that for i& 0, we have dimXi − dimQi = dimX − dimT by [Sta, Tag 0EY2]. Thus
for i & 0, the Hj vanish for all j < dimX − 1 = dimXp=0. At this point, we apply
[FI03, Proposition 2.10] or [Gab04, Section 3] to the Qi-complex RΓ(X+

i,p=0, L
b
i) and the

ideal I = (p, x2, . . . , xn) ⊆ Qi, we see that Hj(RΓ(p,x2,...,xn)(RΓ(X+
i,p=0, L

b
i))) = 0 for all

j < dimXp=0.
Finally, fix j < dimXp=0, for each η ∈ Hj(RΓx(RΓ(Xp=0, Lb))), it is the image of some

η′ ∈ Hj(RΓ(p,x2,...,xn)(RΓ(Xi,p=0, Lb
i))) for some index i. The previous paragraph shows that

there is a finite cover Yi −→ Xi such that η′ maps to zero in Hj(RΓ(p,x2,...,xn)(RΓ(Yi,p=0, Lb
i))).

Base change along Spec(T ) −→ Spec(Qi), we see that there exists a finite cover Y −→ X such
that the image of η is zero in Hj(RΓx(RΓ(Yp=0, Lb))). Therefore Hj(RΓx(RΓ(X+

p=0, L
b))) =

0 for all j < dimXp=0. !

32



Now we can prove the case of an excellent local base. This is precisely part (b) of
Proposition 3.1.

Proposition 3.6. Suppose that (T, x) is an excellent local domain of mixed characteristic
(0, p > 0). Let π : X −→ Spec(T ) be a proper surjective map with X reduced, equidimensional
and p-torsion free. Suppose that L ∈ Pic(X) is a big and semiample line bundle. Then for
all b < 0, Hj(RΓx(RΓ(X+

p=0, L
b))) = 0 for all j < dim(Xp=0). If, in addition, (T, x) admits

a dualizing complex ω
!

T , then there exists a finite cover Y −→ X such that

RΓx(RΓ(Xp=0, L
b)) −→ RΓx(RΓ(Yp=0, L

b))

is the zero map on Hj for j < dim(Xp=0).

Proof. We first assume (T, x) is normal and henselian. By Popescu’s theorem again, we can
write T̂ = lim−→ Ti where each Ti is smooth over T , and T̂ is a Noetherian complete local

domain. Let X̂ and Xi be the base change of X along T −→ T̂ and T −→ Ti respectively
(note that X̂ and Xi are still reduced, equidimensional and p-torsion free). Given a class η ∈
Hj(RΓx(RΓ(Xp=0, Lb))), by Proposition 3.5, there exists a finite cover Ŷ of X̂ such that the

image of η is 0 in Hj(RΓx(RΓ(Ŷp=0, Lb))). We can descend Ŷ to a finite cover Yi over Xi for
i& 0, and enlarging i if necessary, we know the image of η is 0 in Hj(RΓx(RΓ(Yi,p=0, Lb))).
Now (T, x) is henselian and the map T −→ Ti is smooth with a specified section over the
residue field (via the map to the completion); thus, the map T −→ Ti admits a section Ti −→ T
by [Sta, Tags 07M7, 04GG]. Base change Yi −→ Spec(Ti) along this section yield a finite cover
Y of X such that the image of η is 0 in Hj(RΓx(RΓ(Yp=0, Lb))). Running this argument for
all finite covers X ′ of X and taking a direct limit, we find that Hj(RΓx(RΓ(X+

p=0, L
b))) = 0

for all j < dim(Xp=0).
Next we assume T is an excellent normal local domain. We may assume X is nor-

mal. Let T −→ T h be the henselization of T . Then X ×T T h is also normal, by working
with each connected component, we simply assume that X ×T T h is normal and integral.
Consider X+ ×T T h, this is a cofiltered limit of étale X+-schemes (in particular it is nor-
mal). Since X+ is absolute integrally closed, each connected component of X+ ×T T h is
absolute integrally closed. But each connected component is also integral over X ×T T h,
thus can be identified with (X ×T T h)+. By the henselian case we already proved, we
have that Hj(RΓx(RΓ((X ×T T h)+p=0, L

b))) = 0 for all j < dim(Xp=0). This implies
Hj(RΓx(RΓ((X+ ×T T h)p=0, Lb))) = 0 by [Bha20, Lemma 5.9]. Since T h is faithfully flat
over T , this implies Hj(RΓx(RΓ(X+

p=0, L
b))) = 0.

Finally, if (T, x) is an excellent local domain, then the normalization T ′ of T is a excellent
semi-local domain finite over T . Moreover, for any y ∈ Spec(T ), we have an isomorphism

RΓy((−)y) = ⊕y′RΓy′((−)y′)

of functors on T ′-complexes, where y′ ∈ Spec(T ′) runs over the finitely many preimages of
y in Spec(T ′). Applying the above isomorphism when y = x, we can obtain the first part of
the proposition from the excellent normal case (applied to localizations of T ′ at preimages of
x). Applying the above isomorphism for all y ∈ Spec(T/p), the last conclusion follows from
[Bha20, Lemma 2.17 and Lemma 2.18] applied to the ind-object {RΓ(Yp=0, Lb)}Y where Y
runs over all finite covers of X in X+. !
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Finally, we reformulate the above result in a form that does not require passing to the
p = 0 fibre; this will be convenient for us and also allows us to give a uniform statement that
includes the equal characteristic p > 0 case.

Corollary 3.7. Suppose that (T, x) is an excellent local ring of residue characteristic p > 0.
Let π : X −→ Spec(T ) be a proper map with X integral. Suppose that L ∈ Pic(X) is a
big and semiample line bundle. Then for all b < 0 and all i < dim(X), we have that
H i(RΓx(RΓ(X+, Lb))) = 0.

Proof. Since X −→ Spec(T ) is proper and X is integral, we can replace T by π∗OX to
assume X −→ Spec(T ) is proper and surjective and that T is a domain. If (T, x) has mixed
characteristic, then we consider the exact sequence

0 = H i−1(RΓx(RΓ(X+
p=0, L

b))) −→ H i(RΓx(RΓ(X+, Lb)))
p
−→ H i(RΓx(RΓ(X+, Lb))).

This implies that the multiplication-by-p map on H i(RΓx(RΓ(X+, Lb))) is injective, which
is impossible unless H i(RΓx(RΓ(X+, Lb))) = 0 since any element of the module is xn-torsion
and so pn-torsion for n& 0.

Now suppose (T, x) has equal characteristic p > 0. By the same argument as in Proposition 3.6,
we may assume (T, x) is a Noetherian complete local domain, and then by the same reduc-
tion as in Proposition 3.5 and Proposition 3.2 (the steps are easier as we are working over
a field and not a mixed characteristic DVR), we may assume (T, x) is essentially finite type
over a field k. We can write k as a filtered colimt of finite type fields kj and thus T is a
filtered colimit of Tj essentially finite type over kj. Note that X descends to Xj over Tj

for large j (and similarly for the big and semiample line bundle L, for instance see [Mur21,
Lemma 4.1]), and the dimension is preserved. If we can find a finite cover Yj −→ Xj such
that H i(RΓx(RΓ(Xj, Lb))) −→ H i(RΓx(RΓ(Yj, Lb))) is zero, then after base change to X we
see that the image of H i(RΓx(RΓ(Xj, Lb))) is zero in H i(RΓx(RΓ(X+, Lb))) and we will be
done. Therefore, replacing T by Tj and X by Xj, we may assume that T is essentially finite
type over an F -finite field k. In particular, X and T are F -finite.

The rest argument essentially follows from the proof of [Bha20, Theorem 6.28], replacing
the mixed characteristic results there by their equal characteristic counterparts in [Bha12].
We can replace X by a finite cover to assume L = f ∗N where f : X −→ Z is a proper
surjective map (of proper integral schemes over Spec(T )) and N is ample on Z. Now by
[Bha12, Theorem 1.5], there is a finite cover Y −→ X such that the map Rf∗OX −→ Rg∗OY

factors through g∗OY , where g is the composition map Y −→ Z. Set Z ′ = SpecZ(g∗OY ), we
find that RΓxRΓ(X,Lb) −→ RΓxRΓ(Y, Lb) factors through RΓxRΓ(Z ′, N b). Since L is big,
dimX = dimZ and hence by the above discussion, to show there is a finite cover of X such
that H i(RΓx(RΓ(X,Lb))) maps to zero for i < dim(X), it is enough to show there is a finite
cover of Z such that H i(RΓx(RΓ(Z,N b))) maps to zero for i < dim(Z). Thus replacing X
by Z and L by N , we may assume L is ample.

By local duality, for any finite cover Y of X , H iRΓx(RΓ(Y, Lb)) is the Matlis dual of

H−iRHomT (RΓ(Y, Lb),ω
!

T ) ∼= H−iRΓ(Y,ω
!

Y ⊗ L−b)

Applying [Bha12, Proposition 6.2], there exists a further finite cover Y ′ of Y such that the
map

H−iRΓ(Y ′,ω
!

Y ′ ⊗ L−b) −→ H−iRΓ(Y,ω
!

Y ⊗ L−b)
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factors through H−iRΓ(Y,ωY [dim(X)]⊗L−b). Since X is F -finite, we can take Y to be the
e-th Frobenius of X so H−iRΓ(Y,ωY [dim(X)] ⊗ L−b) = 0 for e & 0 and i < dim(X) by
Serre vanishing (note that L is ample and b < 0). Therefore the composition map

H−iRΓ(Y ′,ω
!

Y ′ ⊗ L−b) −→ H−iRΓ(X,ω
!

X ⊗ L−b)

is the zero map. Thus its Matlis dual H iRΓx(RΓ(X,Lb)) −→ H iRΓx(RΓ(Y ′, Lb)) is also the
zero map. Running this argument for all finite covers of X and taking a colimit, we find
that H i(RΓx(RΓ(X+, Lb))) = 0 as desired. !

Remark 3.8. In the context Corollary 3.7, if H i(RΓx(RΓ(X,L−1))) is bounded p-power-
torsion, then it follows that there exists a finite cover that Y −→ X that annihilates that
cohomology group. Dual versions can then be phrased in terms of canonical modules and du-
alizing complexes; see Remark 3.9 for the characteristic p analog. This approach is explored
in [TY20].

Remark 3.9 (Kodaira vanishing up to finite covers in positive characteristic). Continue in
the setup and notation of Corollary 3.7 and assume that T has characteristic p. The proof
given above then shows the following finer statement: there exists a finite surjective map
Y −→ X such that the induced trace map

H−iRΓ(Y,ω
!

Y ⊗ L−b) −→ H−iRΓ(X,ω
!

X ⊗ L−b)

is the 0 map for i < dim(X).

4. The subset of +++-stable sections (B0)

Let X , ∆ and M be as in Definition 4.2 below. In this section, we define special global
sections inside H0(X,OX(M)), which will be important especially when M − KX − ∆ is
ample (or big and semiample). Like S0 and T 0 in characteristic p > 0 from [BST15, Sch14],
these special linear systems behave as though Kawamata-Viehweg vanishing is true. We will
use this extensively later in the paper.

Convention 4.1. In the remainder of the paper, we will often work with intersections, limits
or colimits over the category of all finite covers of an integral scheme X . In this situation,
we always mean the following: fix an algebraic closure K(X) of the function field of X , and
consider the category of all finite integral covers f : Y −→ X equipped with an embedding
K(Y ) ⊂ K(X) over X (in particular, the morphisms must respect this embedding). Thus,
our intersections, limits or colimits take place over a poset. Note that a cofinal collection in
this category is given by the finite covers with Y normal when X is excellent. Moreover

X+ = lim←−
f : Y−→X

finite

Y,

see [Sta, Tag 01YV]. A similar convention applies to categories of alterations.

Definition 4.2 (+++-stable sections). Consider the following situation:

◦ X is a normal, integral scheme proper over a complete Noetherian local domain (R,m)
with characteristic p > 0 residue field,
◦ ∆ ≥ 0 is a Q-divisor on X , and
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◦ M is a Z-divisor and M = OX(M). In fact, the following definition only depends on
the linear equivalence class of M .

Then, define

B0(X,∆;M ) :=
⋂

f : Y−→X
finite

im
(
H0(Y,OY (KY + 9f ∗(M −KX −∆):)) −→ H0(X,M )

)

where the intersection is taken as R-submodules of H0(X,M ), and runs over all f : Y −→ X
as in Convention 4.1 where Y is normal. One sees by Galois conjugation that the above
module is independent of the choice of geometric generic point of X .

We call the global sections B0(X,∆;M ) the +++-stable sections of H0(X,M ) (with respect
to (X,∆)).

Additionally, assuming that M − (KX +∆) is Q-Cartier, define also

B0
alt(X,∆;M ) :=

⋂

f : Y−→X
alteration

im
(
H0(Y,OY (KY + 9f ∗(M −KX −∆):)) −→ H0(X,M )

)

where the intersection runs over all alterations f : Y −→ X from a normal integral schemes
as in Convention 4.1.

If∆ = 0, then we use the simplified notation: B0(X ;M ) := B0(X,∆;M ) andB0
alt(X ;M ) :=

B0
alt(X,∆;M ).

Remark 4.3 (B0 for non-integral X). If X is not integral but still normal where each com-
ponent has the same dimension d, we define B0(X,∆;M ) as the direct sum of B0 for each
connected (hence irreducible) component of X .

Remark 4.4. Alternately, we may assume that Y −→ X factors through some finite h : W −→
X such that h∗(M −KX −∆) is integral. In that case, the roundings are also not needed.
If M −KX −∆ is Q-Cartier, we may also assume that h∗(M −KX −∆) is Cartier (see, for
example, [KM98, Section 2.4] or [TW89]; cf. [BST15, Lemma 4.5]). In this latter case, we
do not even need to restrict to normal Y .

Remark 4.5. Frequently, one applies Definition 4.2 to M = ωX ⊗L and ∆ = 0 with L a
line bundle, in which case the first notion of Definition 4.2 simplifies to

B0(X ;ωX ⊗L ) :=
⋂

f : Y−→X
finite

im
(
H0(X,L ⊗ f∗ωY ) −→ H0(X,L ⊗ ωX)

)
.

Remark 4.6 (Non-complete R). If (R,m) is an excellent non-complete local ring, with com-
pletion R̂, we may base change by the completion R̂ of R to obtain XR̂, and define B0

and B0
alt as above but restrict to finite covers (respectively, alterations) that arise as the

base change of a finite cover of X . In this case, the resulting intersection, which we de-
note by B̂0, is a subset of H0(XR̂,L ⊗R R̂) and so is a finitely generated R̂-module since

XR̂ −→ Spec R̂ is proper and R̂ is Noetherian. However, this intersection need not be finitely

generated as an R-module as R̂ is not. See also Section 4.4 where we show that B̂0 is equal
to B0(XR̂,∆|XR̂

,L ⊗R R̂)

The following basic property of B0 is immediate from the definition.
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Lemma 4.7. With notation as in Definition 4.2, we have that

B0(X,∆;M ) ⊆ B0(X,∆′;M )

for every effective Q-divisor ∆′ ≤ ∆.

Our next goal is to identify B0 with a Matlis dual of a direct limit, and also with a certain
inverse limit. These alternate descriptions of B0 will be both convenient and crucial in what
follows. Before doing that, we make the following observations related to passing direct
limits through cohomology in our setting:

lim−→
f : Y−→X

finite

HdRΓmRΓ(Y,OY (5f
∗(KX+∆−M)6)) = lim−→

f : Y−→X
finite

Hd
g−1m(X, f∗OY (5f

∗(KX+∆−M)6))

which, in view of (2.1.1) may be identified with

Hd
g−1m(X, π∗OX+(π∗(KX +∆−M))) = HdRΓmRΓ(X+,OX+(π∗(KX +∆−M)))

where g : X −→ SpecR is the given map and π : X+ −→ X is the induced map. In other
words,

(4.7.1)

lim−→
f : Y−→X

finite

HdRΓmRΓ(Y,OY (5f
∗(KX +∆−M)6))

= HdRΓmRΓ(X+,OX+(π∗(KX +∆−M))).

Of course, this identification can be obtained in other ways as well.

Lemma 4.8 (Alternate descriptions of B0). Work in the situation of Definition 4.2 and
suppose d = dimX.

(a) We then have that B0(X,∆;M ) is the R-Matlis dual of

im
(
HdRΓmRΓ(X,OX(KX−M)) −→ lim−→

f : Y−→X
finite

HdRΓmRΓ(Y,OY (5f
∗(KX +∆−M)6))

)

or equivalently, by (4.7.1), the R-Matlis dual of:

im
(
HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(X+,OX+(π∗(KX +∆−M)))

)
.

(b) Dually, we have that:

B0(X,∆;M ) = im





(
lim←−

f : Y−→X
finite

H0(Y,OY (KY + 9f ∗(M −KX −∆):))

)
−→ H0(X,M )



 .

(c) Similarly, when M − (KX +∆) is Q-Cartier, B0
alt is the R-Matlis dual of

im
(
HdRΓmRΓ(X,OX(KX−M)) −→ lim−→

f : Y−→X
alteration

HdRΓmRΓ(Y,OY (5f
∗(KX +∆−M)6))

)

where Y runs over alterations.
37



(d) Dually, we have that

B0
alt(X,∆;M ) = im





(
lim←−

f : Y−→X
alteration

H0(Y,OY (KY + 9f ∗(M −KX −∆):))

)
−→ H0(X,M )



 .

An alternate description of (b), is that for every s ∈ B0(X,∆;M ) there exists a compatible
system as follows such that sX = s:
(

sY ∈ H0
(
Y,OY

(
KY + 9f ∗(M −KX −∆):

))

∀f : Y −→ X finite

∣∣∣∣∣
such that sZ =→ sY for any factorization
of finite maps Z −→ Y −→ X

)
.

Similarly for (d).

Proof. For each finite map f : Y −→ X with Y normal, we have a natural map OX(KX −
M) −→ f∗OY (5f ∗(KX +∆−M)6) (for alterations, where the argument will be the same, we
also require that KX +∆−M is Q-Cartier). Thus we have

(4.8.1) HdRΓmRΓ(X,OX(KX −M)) $ imY ↪→ HdRΓmRΓ(Y,OY (5f
∗(KX +∆−M)6)).

Taking filtered colimit for all Y , we have
(4.8.2)
HdRΓmRΓ(X,OX(KX −M)) $ lim−→

Y

imY ↪→ lim−→
Y

HdRΓmRΓ(Y,OY (5f
∗(KX +∆−M)6)).

Notice also that lim−→Y
imY is the image of the map (a). We shall show that the Matlis dual

of the limit of the images satisfies the following:

(4.8.3) (lim−→
Y

imY )
∨ = lim←−

Y

im∨
Y = B0(X,∆;M ).

To see this, first observe that the Matlis dual of HdRΓmRΓ(X,OX(KX −M)) is H0(X,M )
by Lemma 2.3. Similarly, and using the fact that H omOY (OY (5f ∗(KX +∆−M)6),ωY ) ∼=
OY (KY+9f ∗(M−KX−∆):) since Y is normal, the Matlis dual ofHdRΓmRΓ(Y,OY (5f ∗(KX+
∆−M)6)) is H0

(
Y,OY (KY + 9f ∗(M −KX −∆):)

)
by Lemma 2.3. Hence, applying Matlis

duality to (4.8.2), and noticing that Matlis duality turns colimits into limits, we obtain
(4.8.4)

H0(X,M ) = H0(X,OX(M))←↩ lim←−
Y

im∨
Y % lim←−

Y

H0
(
Y,OY (KY + 9f ∗(M −KX −∆):)

)
.

It follows that
(4.8.5)

lim←−
Y

im∨
Y = im





(
lim←−

f : Y−→X
finite

H0(Y,OY (KY + 9f ∗(M −KX −∆):))

)
−→ H0(X,M )



 .

But since applying Matlis-duality to (4.8.1) yields

im∨
Y = im

(
H0(Y,OY (KY + 9f ∗(M −KX −∆):)) −→ H0(X,M )

)
,
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we know that

lim←−
Y

im∨
Y =

⋂

f : Y−→X
finite

im
(
H0(Y,OY (KY + 9f ∗(M −KX −∆):)) −→ H0(X,M )

)
= B0(X,∆;M )

Now (a) follows from (4.8.2) and (4.8.3), and (b) follows from (4.8.3) and (4.8.5). The
argument for B0

alt(X,∆;M ) is the same. !

Remark 4.9. The proof above uses that (R,m) is complete in an essential way since the Matlis
dual of local cohomology modules supported at the maximal ideal m are finitely generated
R̂-modules (and not necessarily finitely generated over R).

Furthermore, without the complete hypothesis Lemma 4.8 (b) is false. Even in equal
characteristic p > 0, suppose (R,m) is as in [DM20, Corollary C] an excellent regular local
ring, X = SpecR, M = 0, and ∆ = 0. Then we have

lim←−
R⊆S

ωS/R = lim←−
R⊆S

HomR(S,R) = HomR( lim−→
R⊆S

S,R) = HomR(R
+, R) = 0

where R ⊆ S runs over finite extensions of R in R+. Hence the image in Lemma 4.8 (b)
is zero. On the other hand, each map ωS/R = HomR(S,R) −→ R is surjective for any finite
extension R ⊆ S by the direct summand theorem in characteristic p > 0 [Hoc73].

We will also need completeness in the proof of our section-lifting result Theorem 7.2 (which
uses the vanishing of Section 3). For our geometric applications, this will not be a substantial
restriction as we can reduce to this case. Also see Remark 4.6.

Lemma 4.8 essentially asserts that the formation of images and inverse limits commutes
in certain situations. Such an assertion would be automatic if the relevant inverse limits
were exact functors. This is in fact true more generally, and we extrapolate the following
observation from the method of proof8 of Lemma 4.8 above:

Lemma 4.10. Let R be a complete Noetherian local ring. Let {Ki}i∈I be a projective sys-
tem of finitely generated R-modules with cofiltered indexing category I. Then R lim←−i

Ki is
concentrated in degree 0. Consequently, the functor {Mi} =→ lim←−i

Mi is exact on I-indexed
diagrams of finitely generated R-modules.

Proof. Let E be the injective hull of the residue field of R. Write (−)∨ := RHomR(−, E)
for the Matlis duality functor regarded as a functor on the derived category D(R), so (−)∨ :
D(R) −→ D(R) is t-exact (because E is an injective R-module), and we have a natural
isomorphism K - (K∨)∨ for K ∈ Db

coh(R). Now take {Ki} as in the lemma. We then have

R lim←−
i

Ki = R lim←−
i

((K∨
i )

∨) = R lim←−
i

RHomR((K
∨
i ), E) = RHomR(lim−→i

(K∨
i ), E).

As (−)∨ is t-exact, each (Ki)∨ lies in degree 0. But filtered colimits are exact, so lim−→i
(K∨

i )
also lies in degree 0. Finally, E is injective, so the last term above also lies in degree 0,
whence R lim←−i

Ki lies in degree 0, as wanted in the first part.
The second part is formal given the first part. For instance, say {fi} : {Mi} −→ {Ni} is an

I-indexed diagram of surjections of finitely generated R-modules. To show lim←−i
Mi −→ lim←−i

Ni

is surjective, we simply use that R lim←−i
ker(fi) is concentrated in degree 0 by the first part,

8Specifically, the observation comes from extracting what is needed to ensure the surjective arrow in (4.8.4).
39



and that R lim←−i
takes any short exact sequence of I-indexed diagrams of R-modules to an

exact triangle in D(R). !

Applying this lemma to I being the category of all finite covers (resp. alterations) and
the map of projective systems

{
H0(Y,OY (DY ))

}
Y−→X

$
{
im
(
H0(Y,OY (DY )) −→ H0(X,OX(M ))

)}
Y−→X

with DY = KY + 9f ∗(M − KX − ∆):, appearing in Lemma 4.8 then gives an alternative
proof of the lemma.

Remark 4.11. The proofs of Lemma 4.10 and Corollary 4.13 below feature filtered colimits in
the derived category. Literally interpreted in the triangulated category setting, this does not
give a sensible object. For example, the formation of filtered colimits in the derived category
D(R) of a commutative ring R (when they exist) does not commute with taking cohomology
groups (even when everything is in a degree 0), making the former a rather obscure notion9.
Instead, to obtain the notion of filtered colimits for which passing to cohomology is exact, one
can work with ∞-categories. Alternate approaches include dg-categories, or a 1-categorical
substitute such as the notion of homotopy colimits over suitable diagram categories, e.g., see
[Sta, Tag 0A5K] for colimits over the poset N). We will elide this issue in the sequel.

Remark 4.12. We explain why the completeness of R is essential to Lemma 4.10; we shall use
the theory of derived completions, see [Sta, Tags 091N,0BKF,0BKH]. Suppose (R,m) is a
Noetherian local ring. Then R is m-adically complete exactly when it is derived m-complete
(since R is Noetherian and m is finitely generated), and the latter happens exactly when

R is derived f -complete for every f ∈ m, i.e., R1 lim←−(· · ·R
f
−→ R

f
−→ R) = 0 (noting that

R0 lim←− always vanishes in this case by Krull’s intersection theorem). Therefore if (R,m) is

not m-adically complete, then there exists f ∈ m such that R1 lim←−(· · ·R
f
−→ R

f
−→ R) += 0,

i.e., R lim←−(· · ·R
f
−→ R

f
−→ R) is not concentrated in degree 0 so Lemma 4.10 is false.

The next result relies on deep results on p-adic Riemann-Hilbert correspondence [BL] in
the form of [Bha20, Theorem 3.12].

Corollary 4.13 (Alterations vs finite covers). With notation as above, and assuming that
M −KX −∆ is Q-Cartier, we have that

B0(X,∆;M ) = B0
alt(X,∆;M ).

9At the request of the referee, we give an example where colimits in the triangulated category D(R) work
poorly. Given a countable diagram M0 −→ M1 −→ M2 −→ ... in D(R), if the colimit M := lim−→i

Mi

in D(R) exists, then the map ⊕iMi −→ M must be a categorical epimorphism as HomD(R)(M,−) −→∏
i HomD(R)(Mi,−) is injective by the defining property of a colimit. But any epimorphism f : x −→ y

in a triangulated category splits: the canonical map g : y −→ cone(f) is 0 as g ◦ f is 0. So we learn that
⊕iMi −→M admits a right inverse. This is clearly not the case for colimits of interest, e.g., if we take R = Z

and Mi = Z/pi with maps Mi −→Mi+1 determined by 1 =→ p, then the “correct” colimit is Qp/Zp, but the
map ⊕iZ/pi −→ Qp/Zp does not have a right inverse: the right side admits a nonzero map from Qp while
the left side does not.
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Proof. We follow the notation of the statement and proof of Lemma 4.8, keeping in mind
Remark 4.11. It suffices to demonstrate that

lim−→
f : Y−→X

finite

HdRΓmRΓ(Y,OY (5f
∗(KX+∆−M)6)) = lim−→

f : Y−→X
alteration

HdRΓmRΓ(Y,OY (5f
∗(KX+∆−M)6)).

Since p ∈ m, we have RΓm(M̂) = RΓm(M) for all R-complexes M , where M̂ denotes the
derived p-completion (see [Sta, Tag 091N] for definitions and details about derived comple-
tion). Since filtered colimits are exact (cf. [Sta, Tag 00DB]), it is thus enough to show that
the natural map identifies

HdRΓm



 ̂lim−→
f : Y−→X

finite

RΓ(Y,OY (5f∗(KX +∆−M)6))



 = HdRΓm



 ̂lim−→
f : Y−→X
alteration

RΓ(Y,OY (5f∗(KX +∆−M)6))



 .

At this point, we recall that derived p-complete complexes obey a derived Nakayama lemma,
i.e., in order to show a given map M −→ N of derived p-complete objects in D(Ab) is an
isomorphism, it is enough to show that M ⊗L Z/p −→ N ⊗L Z/p is an isomorphism (cf. [Sta,
Tag 0G1U]). Therefore, it is enough to show that

lim−→
f : Y−→X

finite

RΓ(Y,OY (5f
∗(KX+∆−M)6))⊗LZ/p = lim−→

f : Y−→X
alteration

RΓ(Y,OY (5f
∗(KX+∆−M)6))⊗LZ/p

via the natural map. As a corollary of the p-adic Riemann-Hilbert functor from [BL] (see
[Bha20, Theorem 3.12]), we know that

lim−→
f : Y−→X

finite

Rf∗OY ⊗
L Z/p = lim−→

f : Y−→X
alteration

Rf∗OY ⊗
L Z/p

via the natural map. Because twisting by a divisor and applying RΓ(X,−) commutes with
filtered colimits, we are done. !

In characteristic p > 0, the analogs of B0 typically stabilize, in other words we might
expect that there exists a finite cover or alteration such that the image of

H0(Y,OY (KY + 9f ∗(M −KX −∆):)) −→ H0(X,M )

is exactly equal to B0. In characteristic p > 0, when one restricts the finite covers to
iterates of Frobenius, this is essentially Hartshorne-Speiser-Gabber-Lyubeznik stabilization
[HS77, Gab04, Lyu06], see for instance [HX15, Section 2.4] for a version of this in the
relative setting. If one instead considers arbitrary finite covers in characteristic p > 0,
certain stabilization results in the case where X −→ SpecR is an alteration can be found in
[BST15, ST14, CEMS18], these are then all consequences of the equational lemma [HH92,
HL07, Bha12].

However, in mixed characteristic such stabilization is not possible.

Example 4.14. Let E −→ Spec(Zp) be an elliptic curve10, so ωE/Zp
∼= OE andH0(E,ωE/Zp) -

Zp. We claim that

(a) B0
(
E,ωE/Zp

)
= 0, but

10That is, E −→ Spec(Zp) is a proper smooth morphism whose geometric fibers are connected curves of
genus one together with a prescribed section.
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(b) im(Trf : H0(Y,ωY/Zp) −→ H0(E,ωE/Zp)) += 0 for every alteration f : Y −→ E.

To prove (a), fix an integer n ≥ 1 and consider the pn-power map [pn] : E −→ E. We claim
that the corresponding trace map Tr[pn] : H0(E,ωE/Zp) −→ H0(E,ωE/Zp) is multiplication by
pn; this will imply that

B0(E,ωE/Zp) ⊂
⋂

n

pnH0(E,ωE/Zp) =
⋂

n

pnZp = 0,

as wanted. By duality, the claim for Tr[pn] is equivalent to showing that the pullback map
[pn]∗ : H1(E,OE) −→ H1(E,OE) is given by pn. But this is a general and standard fact
about multiplication maps on abelian schemes, as we briefly recall. The map [pn] : E −→ E

factors as E
∆
−→ E×pn µ

−→ E, where µ denotes the addition map and ∆ is the diagonal, so we
have [pn]∗ = ∆∗ ◦ µ∗. Now the Künneth formula gives H1(E×pn,OE×pn ) - H1(E,OE)⊕pn,
with projection to the i-th summand (resp. inclusion of the i-th summand) on the right
given by the inclusion E −→ E×pn in the i-th factor (resp. the projection E×pn −→ E to the
i-th factor). It is then immediate that µ∗ : H1(E,OE) −→ H1(E×pn,OE×pn) - H1(E,OE)⊕pn

is the diagonal map, so postcomposing with ∆∗ gives pn, as asserted.
To prove (b), it suffices to show that for every integral alteration f : Y −→ E, the map

Trf : H0(Y,ωY/Zp) −→ H0(E,ωE/Zp) is surjective after inverting p. Let η ∈ Spec(Zp) be the
generic point. As fη : Yη −→ Eη is an alteration of integral curves over Qp, it is in fact a finite
map. The claim now follows as Eη is a global splinter; explicitly, the map Trfη = (Trf)[1/p]
is dual to the pullback map f ∗

η : H1(Eη,OEη) −→ H1(Yη,OYη), and the latter is injective
since the map on sheaves OEη −→ fη,∗OYη is split injective, with splitting coming from the
normalized trace map on functions.

Remark 4.15. The phenomenon in Example 4.14 is not specific to elliptic curves and in fact
generalizes significantly. Indeed, for any mixed characteristic DVR V and a normal integral
proper flat V -scheme X of relative dimension d ≥ 1 such that H0(X,ωX/V ) += 0, we have
the following:

(a) B0(X,ωX/V ) = 0.
(b) im(Trf : H0(Y,ωY/V ) −→ H0(X,ωX/V )) += 0 for every finite cover f : Y −→ X . (More

generally, the same holds true for every alteration if we additionally assume that Xη

has rational singularities.)

The proof of (b) is identical to that of Example 4.14 (b). For (a), observe that the duality
RHomV (RΓ(X,OX), V ) - RΓ(X,ω

!

X/V ) and the fact that RΓ(X,OX) ∈ D≤d imply that

H0(X,ωX/V ) - H−d(X,ω !

X/V ) is naturally identified with HomV (Hd(X,OX), V ), and simi-
larly for all finite normal covers of X . Following the argument in the proof of Example 4.14
(a), it is enough to show that for each n ≥ 1, there exists a finite normal cover f : Y −→ X
such that the pullback map f ∗ : Hd(X,OX) −→ Hd(Y,OY ) is divisible by pn as a map. This
follows from [Bha20, Theorem 3.12].

Working in equicharacteristic p > 0, we may form an analog of Example 4.14 by consid-
ering a family of elliptic curves over k!t". However, such an example does not satisfy (b).
Indeed, the generic fiber of E over k((t)) is not globally F -regular, and so there exists an
alteration which is zero on global sections.
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4.1. B0 in the affine case. In the case where X = Spec(R), our definition produces a test
ideal which we denote by τ+(R,∆) := B0(Spec(R),∆;OX) ⊂ OX . We prove here that this
agrees with a special case of the big Cohen-Macaulay test ideal defined in [MS21], which we
first recall.

Definition 4.16. Suppose Γ ≥ 0 is a Q-Cartier divisor on X = Spec(R), where (R,m) is a
Noetherian complete local normal domain, such that div(f) = nΓ for some f ∈ R. We also
fix a canonical divisor KX ≥ 0 and a big Cohen-Macaulay R+-algebra B. Then define

0B,Γ
Hd

m(R)
:= ker(Hd

m(R)
·f1/n

−−−→ Hd
m(B))

and the BCM-test submodule of (ωR,Γ) with respect to B:

τB(ωR,Γ) := AnnωR 0B,Γ
Hd

m(R)
.

Equivalently, τB(ωR,Γ) is the Matlis dual of the image of Hd
m(R)

·f1/n

−−−→ Hd
m(B).

Now given ∆ ≥ 0 such that KX+∆ is Q-Cartier we define the BCM-test ideal with respect
to B to be τB(R,∆) := τB(ωR, KR + ∆). Via our embedding OX ⊆ OX(KR), τB(R,∆) is
contained in R. Note this definition requires that KX +∆ is Q-Cartier.

In this article we are interested in the particular big Cohen-Macaulay algebra B = R̂+, the
p-adic completion of the absolute integral closure of R, see Corollary 2.10. Since Hd

m(R
+) =

Hd
m(R̂

+), we can ignore the p-adic completion for the purposes of defining τB(X,∆) and thus
in what follows we will write τR+(R,∆) for τ

R̂+(R,∆).

Proposition 4.17. τR+(R,∆) = τ+(R,∆) := B0(Spec(R),∆;OX) if KR +∆ is Q-Cartier.

Proof. Set X = SpecR and assume that KX ≥ 0. Define Γ = KX +∆ and write divX(f) =
nΓ = n(KX + ∆). By Lemma 4.8 (a), we see that B0(X,∆;OX) is the Matlis dual of the
image, where d = dimR, of

Hd
m(OX(KX)) −→ lim−→

Y

Hd
m

(
OY (5f

∗(KX +∆)6)
)
= Hd

m

(
lim−→
Y

OY (5f
∗(KX +∆)6)

)
.

where Y = SpecS
f
−→ SpecR = X is finite, in other words R ⊆ S ⊆ R+ is a finite

extension. Because R −→ ωR has cokernel ωR/R of dimension < d, we see that Hd
m(ω/R) = 0

by [Sta, Tag 0DXC] which implies that Hd
m(R) $ Hd

m(ωR) surjects. Hence their images in
Hd

m

(
lim−→Y

OY (5f ∗(KX+∆)6)
)
are the same. By restricting to those S which are large enough

to contain f 1/n, we see that OY (5f ∗(KX+∆)6) = 1
f1/n ·OY . Finally, putting this all together,

R+ = lim−→S we see that B0(X,∆;OX) is Matlis dual to the image of

Hd
m(R)

·f1/n

−−−→ Hd
m(R

+).

But this image is Matlis dual to τR+(R,∆). !

4.2. Transformation of B0 under alterations. In this section we record for later use a
number of transformation rules for B0 as we pass from an alteration to the base X .

The first transformation rule allows us to do away with the divisor ∆ by absorbing it into
M , at least on some cover.

43



Lemma 4.18. With notation as in Definition 4.2. Suppose that π : Y −→ X, where Y is
normal, is either:

(a) a finite surjective map, or
(b) M −KX −∆ is Q-Cartier and π is an alteration.

In either case, assume that π∗(M −KX −∆) has integer coefficients and consider the map

Tr : H0(Y,OY (KY + π∗(M −KX −∆))) −→ H0(X,M ).

Then we have that

Tr
(
B0(Y,OY (KY + π∗(M −KX −∆)))

)
= B0(X,∆,M ).

Proof. This is an immediate consequence of Lemma 4.8. !

We now record a transformation for a birational π : W −→ X .

Lemma 4.19. Let X be a normal integral scheme proper over Spec(R) as in Definition 4.2
and B ≥ 0 a Q-divisor on X such that KX + B is Q-Cartier. Let π : W −→ X be a proper
birational morphism from a normal integral scheme W and write KW +BW = π∗(KX +B).
Let B′ ≥ 0 be an effective Q-divisor such that B′ ≥ BW . Then for every Cartier divisor L
on X, we have

B0(X,B;OX(L)) ⊇ B0(W,B′;OW (π∗L)).

Furthermore, if B′ = BW (in particular, this assumes that BW is effective), then this con-
tainment is an equality.

Proof. For every alteration f : Y −→W we have the following diagram

H0
(
Y,OY (KY + 9f ∗(π∗L− (KW +B′)):)

)
H0(W, π∗L)

H0
(
Y,OY (KY + 9(π ◦ f)∗(L− (KX +B)):)

)
H0(X,L).

⊆ =

Note that in the case that B′ = BW , the left vertical containment is an equality. An
application of Corollary 4.13 completes the proof. !

In the proof of the existence of flips, we will need a technical variant of Lemma 4.19. We
record it here.

Lemma 4.20. Let X be a normal integral scheme proper over Spec(R) as in Definition 4.2
and B ≥ 0 a Q-divisor on X such that KX + B is Q-Cartier. Let π : Y −→ X be a proper
birational morphism from a normal integral scheme Y and write KY +BY = π∗(KX+B). Let
L be a Q-Cartier Q-divisor on X such that (X,B + {−L}) is klt. Then H0(X,OX(9L:)) =
H0(Y,OY (9π∗L+ AY :)) and

B0(X,B + {−L};OX(9L:)) = B0(Y, {BY − π
∗L};OY (9π

∗L+ AY :)),

where AY := −BY = KY − π∗(KX +B). Here {∆} = ∆− 5∆6 is the fractional part of ∆.
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Proof. First, since (X,B + {−L}) is klt, implicitly {−L} is also Q-Cartier. Thus so is
9L: = L+ {−L}. Notice that

9π∗L+ AY : − (KY + {BY − π∗L})
= 9π∗L+ AY : −KY −BY + π∗L+5BY − π∗L6
= 9π∗L+ AY : −KY −BY + π∗L− 9π∗L+ AY :
= π∗(L−KX −B)
= π∗(9L: − (KX +B + {−L})).

Therefore, for every sufficiently large alteration f : W −→ Y we have the following diagram

H0
(
W,KW + f ∗(9π∗L+ AY : − (KY + {BY − π∗L}))

)
H0
(
Y,OY (9π∗L+ AY :)

)

H0
(
W,KW + (π ◦ f)∗(9L: − (KX +B + {−L}))

)
H0
(
X,OX(9L:)

)
.

= κ, =

The equality of the left vertical arrow follows from our chain of equalities above. However,
we need to justify the equality, and in fact existence, of the right vertical arrow labeled κ
(this is where we use that (X,B + {−L}) is klt).

Now, since (X,B + {−L}) is klt, the components of −B − {−L} = −B + L + 5−L6 =
L − B − 9L: have coefficients ≤ 0 and > −1. Thus 9L − B: = 9L: and so since π∗ of a
divisor simply removes exceptional components, we have that:

π∗9π
∗L+ AY : = π∗9π

∗L− BY : = 9L−B: = 9L:.

This at least implies that the map κ exists.
Next, again because (X,B+{−L}) is klt, 9AY −π∗{−L}: = 9KY −π∗(KX +B+{−L}):

is effective and exceptional over X . Therefore:

99π∗L+ AY : − π
∗9L:: ≥ 9π∗L+ AY − π

∗9L:: = 9AY − π
∗{−L}: ≥ 0.

Hence the map κ is an isomorphism (Lemma 2.36) and the diagram exists as claimed. Once
we have the diagram in place, the result follows immediately by Corollary 4.13. !

4.3. Adjoint analogs. The subspace B0 of H0 provides a global analog of the test ideal in
positive characteristic and the multiplier ideal in mixed characteristic. In fact, we will see
it frequently as a graded piece of the R+-test ideal for a cone. Therefore, the subspace B0,
in contrast to S0 of [Sch14] (a global analog of a non-F -pure ideal / lc ideal), cannot satisfy
the sharpest possible adjunction to a divisor. To address this problem we will create an
adjoint-ideal version of B0, to which we can lift sections. With notation as in Definition 4.2
assume that ∆ = S + B where S is a reduced divisor whose components do not appear in
B.

For each irreducible component Si of S (i = 1, . . . , t), choose an integral subscheme S+
i

of X+ which lies over S. Notice that this S+
i is indeed an absolute integral closure of S so

this is not an abuse of notation. Equivalently this means that for every normal finite cover
Y −→ X we pick a compatible choice of prime divisor Si,Y lying above Si. In that case, we
set SY to be the sum of the Si,Y . We define:

S+ :=
t∐

i=1

S+
i .
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There is an affine map f : S+ −→ X+ but it is not in general a closed immersion unless
t = 1. Indeed, we notice that when S has multiple irreducible components, the map OX+ −→
f∗OS+

∼= ⊕t
i=1OS+

i
is not surjective (the isomorphism follows since S+ is a disjoint union).

From here on out, we abuse notation slightly and omit the f∗ on OS+. Notice that OX+ −→
OS+

i
is surjective for each i.

We will define the adjoint-ideal version of B0 as the R-Matlis dual of the image of

HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(X+,
t⊕

i=1

OX+(−S+
i + π∗(KX + S +B −M))).

The origin of this map is carefully described below. This dual is also identified with the
intersection

B0
S(X,S+B;M ) =

⋂

Y

Image

(
H0
(
Y,

t⊕

i=1

OY (KY+Si,Y+f ∗(M−KX−S−B))
)
−→ H0(X,M )

)

see Lemma 4.24.
Consider the short exact sequence (a direct sum of short exact sequences):

0 !!
⊕t

i=1 OX+(−S+
i ) !!

⊕t
i=1 OX+ !!

⊕t
i=1 OS+

i

!! 0

OS+

where OX+(−S+
i ) is the colimit of the OY (−SYi). We notice that there is a map of short

exact sequences where the bottom vertical maps correspond to the diagonals:

0 !! OX(−S)

##

!! OX
!!

##

OS
!!

##

0

0 !! OY (−SY )

##

!! OY
!!

##

OSY
!!

##

0

0 !!
⊕t

i=1 OX+(−S+
i ) !!

⊕t
i=1 OX+ !! OS+ =

⊕t
i=1 OS+

i

!! 0.

Assume that f ′ : Y ′ −→ X is such that f ′∗(KX + S + B) is integral. Twisting the top row
by KX + S −M and the second and third by f ′∗(KX + S + B −M) (and using that B is
effective for the second map), we obtain a factorization

(4.20.1)

OX(KX −M) −→ OY ′(−SY ′ + f ′∗(KX + S −M))
−→ OY ′(−SY ′ + f ′∗(KX + S +B −M))
−→

⊕t
i=1 OY ′(−Si,Y ′ + f ′∗(KX + S +B −M))

−→ lim−→Y

⊕t
i=1 OY (−Si,Y + f ∗(KX + S +B −M))

=
⊕t

i=1 OX+(−S+
i + π∗(KX + S +B −M)).
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Definition 4.21. With notation as above, and in particular fixing S+ =
∐t

i=1 S
+
i −→ X+,

define B0
S(X,S +B;M ) to be the R-Matlis dual of the image of

HdRΓmRΓ(X,OX(KX−M)) −→ lim−→
Y

HdRΓmRΓ(Y,
t⊕

i=1

OY (−Si,Y + f ∗(KX + S +B −M)))

︸ ︷︷ ︸
HdRΓmRΓ(X+,

⊕t
i=1 OX+ (−S+

i +π∗(KX+S+B−M)))

where d = dimX and Y runs over finite maps with Y normal and f ∗(KX + S + B) has
integer coefficients. Notice that B0

S(X,S + B;M ) ⊆ H0(X,M ) since its Matlis dual is a
quotient of HdRΓmRΓ(X,OX(KX −M)), see Lemma 2.3.

Similarly, we define B0
S,alt(X,S +B;M ) to be the R-Matlis dual of the image of

HdRΓmRΓ(X,OX(KX−M)) −→ lim−→
Y

HdRΓmRΓ(Y,
t⊕

i=1

OY (−SY,i+5f
∗(KX +S+B−M)6))

where Y runs over all normal alterations and we define SY,i to be the strict transform
of the corresponding divisors on the Stein factorization. We may restrict to those where
f ∗(KX + S +B) is Cartier if desired.

A priori, these definitions depend on the choice of S+ =
∐t

i=1 S
+
i −→ X+. Thus, our first

order of business is to show that this choice does not matter. We begin with the case that
S is integral.

Lemma 4.22. Suppose S is integral. The objects B0
S(X,∆;M ) and B0

S,alt(X,∆;M ) are
independent of the choice of S+ ⊆ X+.

Proof. We prove only the case of B0
S(X,∆;M ) as the alteration case is very similar. For

any two choices S+ and S ′+ mapping to X+, pick an element σ of Gal(X+/X) which sends
S+ to S ′+. Then one obtains the trace maps in the tower computing B0

S′ by precomposing
those computing B0

S by the isomorphism σ. Therefore the images are pairwise equal and the
intersections are the same. !

The following lemma allows us to assume that S is integral in some cases, and finishes the
proof that B0

S is independent of S+ −→ X+.

Lemma 4.23. With notation as above,

B0
S(X,S +B;M ) =

t∑

i=1

B0
Si
(X,S +B;M ).

Likewise with B0
S,alt(X,S + B;M ) when KX + S + B is Q-Cartier. As a consequence,

B0
S(X,S +B;M ) and B0

S,alt(X,S +B;M ) are independent of the choice S+ =
∐t

i=1 S
+
i −→

X+.

Proof. The first statement is a direct application of Matlis duality. Indeed suppose that
A $ B ↪→

⊕t
i=1Ci is a surjective map followed by a injective map of R-modules. The

Matlis dual B∨ is then the sum of the images of of the C∨
i −→ A∨. The alteration statement

is proven in the same way. The statement about independence of choice now follows from
Lemma 4.22 as each Si is integral. !

Our next goal is to study several alternate characterizations of B0
S.
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Lemma 4.24. With notation as above, then

B0
S(X,S+B;M ) =

⋂

Y

Image

(
H0
(
Y,

t⊕

i=1

OY (KY+Si,Y+f ∗(M−KX−S−B))
)
−→ H0(X,M )

)

where d = dimX and Y runs over finite maps where f ∗(KX + S + B) is a Weil divisor.
Likewise with B0

S,alt (with alterations instead of finite maps). Furthermore, the elements in
those sets correspond to compatible systems of elements

sY ∈ H0
(
Y,

t⊕

i=1

OY (KY + Si,Y + f ∗(M −KX − S − B))
)

as in Lemma 4.8.

Proof. The statement about compatible systems and Matlis duality follows exactly as in
Lemma 4.8. !

Lemma 4.25. With notation as above, and assuming that KX + S +B is Q-Cartier, then

B0
S(X,S +B;M ) = B0

S,alt(X,S +B;M ).

Proof. By Lemma 4.23, we may assume that S is integral. For each alteration f : Y −→ X
we have an exact sequence

0 −→ OY (−SY ) −→ OY −→ OSY −→ 0.

Notice that SY −→ S is an alteration as well.
For the equality of B0

S with B0
S,alt, by the same argument as in Corollary 4.13, it is enough

to show the following:

OX+(−S+)⊗L Z/p ∼= lim−→
f : Y−→X
alteration

Rf∗OY (−SY )⊗
L Z/p.

Now, we have an exact triangle

Rf∗OY (−SY )⊗
L Z/p −→ Rf∗OY ⊗

L Z/p −→ Rf∗OSY ⊗
L Z/p

+1
−→ .

By taking filtered colimits and applying the isomorphism:

lim−→
f : W−→Z
alteration

Rf∗OW/p = OZ+/p,

implied by [Bha20, Theorem 3.12] (which in turn relies on [BL]) as in Corollary 4.13, to both
Z = X and Z = S, gives an exact triangle

lim−→
f : Y−→X
alteration

Rf∗OY (−SY )⊗
L Z/p −→ OX+ ⊗L Z/p −→ OS+ ⊗L Z/p

+1
−→,

so the desired quasi-isomorphism follows. !

We now compare B0
S with B0.

Lemma 4.26. With notation as in Definition 4.21, we have that

B0
S(X,S +B;M ) ⊆ B0(X, aS +B;M )

for every 0 ≤ a < 1.
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Proof. By Lemma 4.23, we may assume that S is integral. Fix such an 0 ≤ a < 1. For
sufficiently large finite covers f : Y −→ X with f ∗(KX + S + B) Cartier and f ∗(aS + B)
having integer coefficients, observe that

f ∗(aS +B) ≤ f ∗(S +B)− SY .

Therefore, by (4.20.1) the map

HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Y,OY (−SY + f ∗(KX + S +B −M)))

factors through HdRΓmRΓ(Y,OY (f ∗(KX + aS + B −M))). The result follows by Matlis
duality. !

Next we point out that B0
S behaves well with respect to birational maps, in analogy with

Lemma 4.19.

Lemma 4.27. Let X be a normal integral scheme, proper over Spec(R) as in Definition 4.2,
S a reduced divisor and B ≥ 0 a Q-divisor on X with no common components with S, such
that KX + S + B is Q-Cartier. Let π : W −→ X be a proper birational morphism from a
normal integral scheme W and write KW + SW + BW = π∗(KX + S + B) where SW is the
strict transform of S. Let B′ ≥ 0 be an effective Q-divisor such that B′ ≥ BW . Then for
every Cartier divisor L on X, we have

B0
S(X,S +B;OX(L)) ⊇ B0

SW
(W,S +B′;OW (π∗L)).

Furthermore, if B′ = BW (in particular, this assumes that BW is effective), then this con-
tainment is an equality.

Proof. The proof is analogous to that of Lemma 4.19. For every alteration f : Y −→W with
Si,Y as above, we have the following diagram

H0(Y,
⊕t

i=1 OY (KY + Si,Y + 9f ∗(π∗L− (KW + SW +B′))):) H0(W, π∗L)

H0(Y,
⊕t

i=1 OY (KY + Si,Y + 9(π ◦ f)∗(L− (KX + S +B)):)) H0(X,L).

⊆ =

Note that in the case that B′ = BW , the left vertical containment is an equality. An
application of Lemma 4.24 and Lemma 4.25 completes the proof. !

4.3.1. Comparison with alternate versions. In the first arXiv version of this article, we did
not take a direct sum of O+

X(−S
+
i ). Instead, we primarily worked by forming an exact

triangle:

D
!

Y −→ OY −→
t⊕

i=1

OSi,Y

+1
−→

for each finite cover Y −→ X . We then used lim−→D
!

Y instead of
⊕t

i=1 OX+(−S+
i ). Of course,

when S has only one component, these two definitions agree.
In general case, this had several disadvantages compared to our current approach. First,

it was not clear whether B0
S was independent of the choice of S+ when S was not integral.

Furthermore, we ended up working with a complex instead of a sheaf in all essential proofs.
In particular, the lemma that said we could work with a sheaf (Lemma 4.25 of that first
arXiv version) was incorrect, although it was not used in a crucial way. We notice the object
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B0
S defined in this paper is always at least contained in the one from the first arXiv version,

essentially since the map to
⊕t

i=1 OX+ factors through the diagonal map OX+ −→
⊕t

i=1 OX+

(see Lemma 4.28).
Back to the first arXiv version of this article, when working with alterations to define

B0
S,alt we could restrict ourselves to alterations f : Y −→ X that separated the individual

components of S. This also yields a satisfactory theory although it is still not clear whether
it depends on the choice of S+.

However, when M − (KX + S + B) is big and semiample, it turns out that the two
approaches coincide (a fact we will not use).

Lemma 4.28. With notation as above, assume additionally that M − (KX + S + B) is big
and semiample. Then

B0
S(X,S+B,M ) =

⋂

Y

Image
(
H0
(
Y,OY (KY +SY +f ∗(M−KX−S−B))

)
−→ H0(X,M )

)

where f : Y −→ X runs over alterations such that f ∗(KX + S +B) is a Cartier divisor.

Proof. The containment⊆ follows from the dual of the diagonal maps OY (−SY ) −→
⊕t

i=1 OY (−Si,Y )
so we prove the reverse.

Fix π : W −→ X a birational map that separates the components of S. We have the
commutative diagram where the vertical maps are induced by the diagonal:

0 !! OW+(−SW+)

##

!! OW+ !!

##

OSW+
!!

∼
##

0

0 !!
⊕t

i=1 OW+(−Si,W+) !!
⊕t

i=1 OW+ !!
⊕t

i=1 OSi,W+
!! 0

Note that the right vertical map is an isomorphism and the middle vertical map is split
injective (simply project onto one of the coordinates). We cannot say something similar
about the left vertical arrow however. Twisting by the pullback L + to W+ of the line
bundle OY (f ∗(M − (KX + S + B))) (for some finite cover f : Y −→ W ), and taking local
cohomology, we obtain:

0 !! H
d−1

RΓmRΓ(OS
W+

⊗ L
+) !!

∼

##

H
d
RΓmRΓ(OW+(−SW+)⊗ L

+) !!

##

H
d
RΓmRΓ(L +)

!
"

##

0 !! H
d−1

RΓmRΓ(OS
W+

⊗ L
+) !! H

d
RΓmRΓ(

⊕t
i=1 OW+ (−Si,W+)⊗ L

+) !! H
d
RΓmRΓ(

⊕t
i=1 L

+)

The left zeros are due to Corollary 3.7 and the fact that L + is the pullback of a big and
semiample line bundle. The five lemma then shows that the middle arrow is injective.
Dualizing and applying Lemma 4.25 implies the containment ⊇ as desired. !

4.4. +++-stable sections and completion. The importance of working over a complete base
has been highlighted in the presentation above. The goal of this subsection is to show that,
when working over a non-complete excellent local base, the base change to the completion
can still reasonably be used to define B0 and B0

alt. However, if one wishes to work without
base changing to the completion, there are a number of (potentially non-equivalent) analogs
of B0 and B0

alt that one might consider; see also [DT21].
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Proposition 4.29. Consider

◦ (R,m, k) is a normal local excellent domain with a dualizing complex and with char-
acteristic p > 0 residue field,
◦ X is a normal, integral scheme proper over R with H0(X,O) = R,
◦ ∆ ≥ 0 is a Q-divisor on X, and
◦ M is a Z-divisor and M = OX(M).

and for any flat R-algebra S denote by ( )S the corresponding base change to S. We have
that

B0
(
XR̂,∆R̂;MR̂

)
=

⋂

f : Y−→X
finite

im
(
H0(Y,OY (KY + 9f ∗(M −KX −∆):))⊗R R̂ −→ H0(X,M )⊗R R̂

)

where the intersection is taken as R̂-submodules of H0(X,M )⊗R R̂, and runs over finite cov-
ers f : Y −→ X as in Convention 4.1, and where Y is normal. Equivalently, this intersection
is the Matlis dual of

im

(
HdRΓmRΓ(X,OX(KX−M)) −→ lim−→

f : Y−→X
finite

HdRΓmRΓ(Y,OY (5f
∗(KX+∆−M)6))

)
.

If additionally M −KX −∆ is Q-Cartier, we also have

B0
(
XR̂,∆R̂;MR̂

)
=

⋂

f : Y−→X
alteration

im
(
H0(Y,OY (KY + 9f ∗(M −KX −∆):))⊗R R̂ −→ H0(X,M )⊗R R̂

)

where the intersection is taken as R̂-submodules of H0(X,M ) ⊗R R̂, and runs over all
alterations f : Y −→ X as in Convention 4.1 and where Y is normal. In other words, when
computing B0(XR̂,∆R̂;MR̂), it suffices to consider only the completions of the finite covers
(respectively, alterations) of X.

Proof. We prove only the statement for finite covers, as the alteration version follows in a
similar fashion. For any coherent sheaf F on X , applying Lemma 2.3 to F ⊗R R̂ gives that

(
HdRΓmRΓ(X,F ))∨ ∼= HomOX (F ⊗R R̂,ωXR̂

)

where d = dimX and (−)∨ denotes Matlis duality HomR(−, ER(k)). Arguing as in the proof
of Lemma 4.8, we see that

⋂

f : Y−→X
finite

im
(
H0(Y,OY (KY + 9f ∗(M −KX −∆):))⊗R R̂ −→ H0(X,M )⊗R R̂

)

is Matlis dual to the image of

HdRΓmRΓ(X,OX(KX −M))
α

!! lim−→
f : Y−→X

finite

HdRΓmRΓ(Y,OY (5f
∗(KX +∆−M)6) .
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On the other hand, we have that B0(XR̂,∆R̂;MR̂) is Matlis dual to the image of

HdRΓmRΓ(X,OX(KX −M))
β

!! lim−→
g : Z−→XR̂

finite

HdRΓmRΓ(Z,OZ(5g
∗(KXR̂

+∆R̂ −MR̂)6).

To show the desired equality, it suffices to verify that the kernels of α and β coincide. Since
a finite cover of X completes to one for XR̂, we need only check that the kernel of β is
contained in the kernel of α.

We shall do this in three steps. An element η of the kernel of β is necessarily in the kernel
of

HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Z,OZ(5g
∗(KXR̂

+∆R̂ −MR̂)6)

for some finite g : Z −→ XR̂. We first pass from the completion R̂ down to the henselization
Rh, showing that there is some finite f ′ : Y ′ −→ XRh with η in the kernel of

HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Y ′,OY ′(5f ′∗(KX +∆−M)6).

Second, we pass from Rh down to a certain pointed ètale extension Si of R, showing that
there is a finite f ′

i : Y
′
i −→ XSi so that η is in the kernel of

HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Y ′
i ,OY ′

i
(5f ′∗

i (KXSi
+∆Si −MSi)6).

Finally, in the third and last step, we find a normal and finite f : Y −→ X so that

HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Y,OY (5f
∗(KX +∆−M)6)

verifying that η is in the kernel of α.

Step 1: Passing from R̂ down to Rh. An element η of the kernel of β is necessarily in the
kernel of

HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Z,OZ(5g
∗(KXR̂

+∆R̂ −MR̂)6)

for some finite g : Z −→ XR̂. Consider first the henselization Rh of R. By Popescu’s Theorem

[Sta, Tag 07GC] applied to the regular morphism Rh −→ R̂, we have that R̂ = lim−→Ri is the
filtered colimit of smooth Rh-algebras Ri. We can descend Z to a finite level, so say without
loss of generality that there is a finite cover g0 : Z0 −→ XR0 that completes to g : Z −→ XR̂.
Base change to Ri for all i ≥ 0 gives a finite cover gi : Zi −→ XRi so that Z = lim←−Zi. As

HdRΓmRΓ(Z,OZ(5g∗(KXR̂
+∆R̂ −MR̂)6)

= lim−→i
HdRΓmRΓ(Zi,OZi(5g

∗
i (KXRi

+∆Ri −MRi)6)

we must have that η is in fact in the kernel of

HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Zi,OZi(5f
∗
i (KXRi

+∆Ri −MRi)6)

for some i. Now, Rh −→ Ri is a smooth map, and using Ri −→ R̂ −→ k we have a surjection
Ri −→ k = Rh/mRh. By [Sta, Tag 07M7], there is an étale Rh-algebra Ri and Rh-algebra
homomorphism Ri −→ Ri so that the surjection Ri −→ k = Rh/mRh factors as Ri −→ Ri −→
k = Rh/mRh. In particular, Ri −→ k = Rh/mRh is surjective, so there is a prime q of Ri

lying over mRh with residue field k. By [Sta, Tag 04GG] as Rh is henselian, Rh −→ Ri has a
section, and so also (pre-composing that section with Ri −→ Ri) Rh −→ Ri must have a section
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Ri −→ Rh. Base change along this section yields a finite cover f ′ : Y ′ = Zi⊗Ri R
h −→ XRh so

that η is in the kernel of

HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Y ′,OY ′(5f ′∗(KX +∆−M)6).

Step 2: Passing from Rh down to a pointed ètale extension. Now, Rh = lim−→Si is the directed
colimit of pointed étale extensions Si of R, which in turn are localizations of finite extensions
of R with R ⊆ Si ⊆ Rh ⊆ R̂. Once again, the finite cover f ′ : Y ′ −→ XRh must descend to a
finite level, so say without loss of generality that there is a finite cover f ′

0 : Y
′
0 −→ XS0 that

henselizes to f ′. Base change to Si for all i ≥ 0 gives a finite cover f ′
i : Y

′
i −→ XSi for all

i ≥ 0 so that Y ′ = lim←−Y ′
i . As

HdRΓmRΓ(Y ′,OY ′(5f ′∗(KXRh
+∆Rh −MRh)6)

= lim−→i
HdRΓmRΓ(Y ′

i ,OY ′
i
(5f ′∗

i (KXSi
+∆Si −MSi)6)

we must have that η is in fact in the kernel of

(4.29.1) HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Y ′
i ,OY ′

i
(5f ′∗

i (KXSi
+∆Si −MSi)6)

for some i.

Step 3: Passing from the pointed ètale extension down to R. Let S be the integral closure of
R in the fraction field of Si, so that S is a finite extension of R and Si is the localization of
S at one of the (finitely many) maximal ideals mi lying over m in R. Take L to be normal
closure of the function field of Y ′

i inside the fixed geometric generic point of X , with G the
corresponding group of automorphisms of L over the function field of X . The fixed field LG

is then such that LG ⊆ L is a Galois extension with Galois group G, and LG is a purely
inseparable extension of the function field of X . Set f : Y −→ X to be the normalization of
X inside of L. We have that T = H0(Y,OY ) is a finite normal extension of S, and hence
also of R. The group G acts on Y and hence also on T , and the invariant ring TG ⊆ LG

is a finite and purely inseparable extension of R. Letting n0, . . . , n+ denote the (finitely
many) maximal ideals of T lying over m, we have that G acts transitively on the nj ’s [Sta,
Tag 0BRK]. Without loss of generality, we may assume that n0 ∩ S = mi.

We have that Y is normal and finite over X , and we will argue that η is in the kernel of

(4.29.2) HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Y,OY (5f
∗(KX +∆−M)6).

To do so, it suffices to show that η is in the kernel of

(4.29.3) HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(Ynj ,OYnj
(5f ∗(KX +∆−M)6).

for j = 0, . . . , 3, where Ynj = Y ⊗T Tnj . Moreover, using the transitive action of G on the set
of the nj ’s, it suffices to show that η is in the kernel of (4.29.3) for j = 0. By construction,
we have a factorization

fn0 : Yn0 −→ Y ′
i

f ′
i−→ XSi −→ X

so that (4.29.3) factors through (4.29.1). Thus, we conclude η is in the kernel (4.29.2) and
hence too of α as desired, completing the proof. !
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Remark 4.30. With X as in Proposition 4.29, suppose we can write ∆ = S + B where
S =

∑t
i=1 Si is reduced and B has no common components with S. Fixing S+

i in X+ as in
Section 4.3, it would be natural to hope that
(4.30.1)
⋂

f : Y−→X
finite

im

(
t⊕

i=1

H0(Y,OY (KY + Si,Y + 9f ∗(M −KX −∆):))⊗R R̂ −→ H0(X,M )⊗R R̂

)

or equivalently the Matlis dual of

im

(
HdRΓmRΓ(X,OX(KX −M)) −→ HdRΓmRΓ(X+,

t⊕

i=1

OX+(−S+
i + π∗(KX +∆−M)))

)

agrees with B0
S(XR̂, SR̂ +BR̂;MR̂). However, we do not see how to prove that – even when

S is irreducible (which may not be preserved under completion). The problem is we do
not seem to have fine enough control over the Galois actions to mimic the end of the proof
of Proposition 4.29 (the reduction to the Henselian case) since we have to simultaneously
control Si,Y and maximal ideals lying over m ⊆ R. In other words, and in the notation used at
the end of the proof of Proposition 4.29, one must be able to use the Galois action to permute
the ideals nj independently of the Si,Y . Regardless however, we do define B̂0

S(X,S +B;M )
to be the R-Matlis dual of the displayed image above.

We finally explain what happens when H0(X,OX) is only semi-local.

Remark 4.31. With notation as in Proposition 4.29, instead assume that H0(X,OX) =: T
is semi-local with a finite map R −→ T . For each maximal ideal ni of T let Ti = Tni denote
the localization and set Xi = XTi = X ×Spec T SpecTi. Then H0(Xi,OXi) = Ti and since

T ⊗R R̂ =
⊕

i T̂i, we obtain that XR̂ =
∐

XT̂i
. Now by Proposition 4.29

B0(XT̂i
,∆T̂i

;MT̂i
) =

⋂

f : Yi−→Xi
finite

im
(
H0(Yi,OYi(KYi + 9f

∗(M −KXi −∆):))⊗Ti T̂i −→ H0(Xi,MTi)⊗Ti T̂i

)

where the finite covers f : Yi −→ Xi are as in Convention 4.1 and each Yi is normal. Each
finite cover Yi −→ Xi is the localization of a finite cover Y −→ X . Therefore, we have that

B0(XR̂,∆R̂;MR̂) =
⊕

i B
0(XT̂i

,∆T̂i
;MT̂i

) =
⋂

f : Y−→X
finite

im
(
H0(Y,OY (KY + 9f ∗(M −KX −∆):))⊗R R̂ −→ H0(X,M )⊗R R̂

)

where the intersection runs over finite covers f : Y −→ X as in Convention 4.1, and where
Y is normal.

5. Section rings and +++-stable sections

The goal of this section to relate B0 with the test ideal of the section ring S (the affine
cone). As a consequence, we will deduce thatH0 = B0 at least when working with sufficiently
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ample divisors on non-singular schemes since we know that the test ideal agrees with S on
the nonsingular locus by [MST+22].

To avoid dealing with technical issues, we make some simplifying assumptions. In par-
ticular, we assume that ∆ = 0 and we work with M = ωX ⊗ L as in Remark 4.5. By
Lemma 4.18, one may frequently reduce to this case.

Setting 5.1. With notation as in Section 2, suppose that π : X −→ Spec(R) is a projective
morphism whereX is a normal integral d-dimensional scheme and R is a complete Noetherian
local domain of mixed characteristic (0, p). Choose L an ample line bundle. Write

S = R(X,L ) :=
⊕

i≥0

H0(X,L i).

It is important to note that S is normal, see [Har77, Chapter III, Exercise 5.14]. We notice
that R′ := H0(X,OX) is a finite R-algebra which is integral and normal (as X is so), so R′

is itself a complete Noetherian local domain.
By [Bha20], once we fix an absolute integral closure X+ −→ X , we have graded algebras

S+,gr ⊆ S+,GR defined as follows. First, set

S+,gr := lim−→
f : Y−→X

R(Y, f ∗L ) =
⊕

i∈Z≥0

H0(X+,L i)

where the colimit runs over all finite normal covers of X dominated by X+. Likewise after
fixing a compatible system of roots {L 1/n}n≥1 of L pulled back to X+ (such systems exist
and are unique up to isomorphism, see [Bha20, Lemma 6.6]), we can define

S+,GR :=
⊕

i∈Q≥0

H0(X+,L i),

Notice that S+,gr is a S+,gr-module direct summand of S+,GR. In [Bha20, Section 6], it is
proved that S+,gr/p and S+,GR/p are big Cohen-Macaulay over S/p under the set up that
X is projective over R which is finite type and flat over a henselian DVR. Here we need a
version when R is a Noetherian complete local domain and we deduce it from [Bha20].

Theorem 5.2. With notation as in Setting 5.1, we have Hj
m+S>0

(S+,gr) = 0 for all j < d+1.

Therefore, Ŝ+,gr is a balanced big Cohen-Macaulay algebra over Ŝ, where the completion is
at the ideal m + S>0. Here S>0 denotes the irrelevant ideal, i.e., the ideal generated by all
homogeneous elements in S of degree > 0.

Proof. We have an exact triangle RΓS>0(S
+,gr) −→ S+,gr −→ ⊕i∈ZRΓ(X+,L i) coming from

[Sta, Tag 0G71] and using the fact that ⊕i∈ZRΓ(X+,L i) ∼= RΓ(SpecS \ V (S>0), S̃+,gr);
which can be seen from a computation of Čech cohomology (cf. [Eis95, Theorem A.4.1]).
After derived tensoring with Z/p we have

RΓS>0(S
+,gr/p) −→ S+,gr/p −→ ⊕i∈ZRΓ(X+

p=0,L
i).

Claim 5.3. S+,gr/p ∼= ⊕i∈Z≥0
RΓ(X+

p=0,L
i).

Proof. This is essentially [Bha20, Proposition 6.12]. We briefly recall the argument. Using
our chosen compatible system {L 1/n} of roots of L over X+, for each n we have a proper
birational map Tn := SpecX+(⊕i∈Z≥0

L
i
n ) −→ Spec(⊕i∈Z≥0

H0(X+,L
i
n )), where the latter
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is considered as an affine scheme over R, see [Bha20, Notation 6.7]. By compatibility we
have a system of maps indexed by divisible n with affine transition maps thus we can take
limit: f : T∞ −→ Spec(S+,GR), which is pro-proper. Note that f is an isomorphism outside
Spec(R+) ⊂ Spec(S+,GR), and when pulled back along Spec(R+) ⊂ Spec(S+,GR), it gives g:
X+ −→ Spec(R+). Since X+ and R+ are absolute integrally closed, Rg∗Fp,X+

∼= Fp,Spec(R+)

by [Bha20, Proposition 3.10] and so Rf∗Fp,T∞
∼= Fp,Spec(S+,GR). Now the p-adic completion of

T∞ and S+,GR are perfectoid by [Bha20, Lemma 6.10 and 6.11] (these results do not require
we are working over an absolute integrally closed DVR). Therefore we have

S+,GR/p = RH
∆
(Fp,Spec(S+,GR)) ∼= RH

∆
(Rf∗Fp,T∞)) ∼= Rf∗RH∆

(Fp,T∞)

= Rf∗OT∞/p ∼= RΓ(X+,OT∞)/p ∼= ⊕i∈Q≥0
RΓ(X+

p=0,L
i).

Here RH
∆

denotes the p-adic Riemann-Hilbert functor of Bhatt-Lurie [BL] (see [Bha20,
Section 3]), the two equalities above follow from [Bha20, Theorem 3.4 (1)] as the p-adic
completion of T∞ and S+,GR are perfectoid, and the last isomorphism on the first line follows
from [Bha20, Theorem 3.4 (2)] and taking colimit (each Tn −→ Spec(⊕i∈Z≥0

H0(X+,L
i
n )) is

proper). Now passing to the summand, we get S+,gr/p ∼= ⊕i∈Z≥0
RΓ(X+

p=0,L
i) as desired. !

By Claim 5.3 we have

RΓS>0(S
+,gr/p) ∼= ⊕i<0RΓ(X+

p=0,L
i)[−1].

Applying RΓm(−) and taking cohomology, we thus have

HjRΓmRΓS>0(S
+,gr/p) ∼= ⊕i<0H

j−1RΓmRΓ(X+
p=0,L

i).

Since L is ample, by Proposition 3.1, Hj−1RΓmRΓ(X+
p=0,L

i) = 0 for all j < d. Thus

HjRΓmRΓS>0(S
+,gr/p) = Hj

m+S>0
(S+,gr/p) = 0 for all j < d. But note that we have

· · · −→ Hj−1
m+S>0

(S+,gr/p) −→ Hj
m+S>0

(S+,gr)
·p
−→ Hj

m+S>0
(S+,gr) −→ Hj

m+S>0
(S+,gr/p) −→ · · · .

SinceHj
m+S>0

(S+,gr) is p∞-torsion, multiplication by p is not injective onHj
m+S>0

(S+,gr) unless

it vanishes. Thus it follows from the long exact sequence above that Hj
m+S>0

(S+,gr) = 0 for
all j < d+ 1. !

We recall, as explained in [HS03, 2.6.2], that the graded canonical module ωS is the graded
dual of Hd+1RΓmRΓS>0S and that in degree i > 0, [ωS]i = H0(X,ωX⊗L i). Other potential
definitions of the graded canonical have a different shift but we use this choice.

As in [MS21], we define τS+,gr(ωS) ⊆ ωS to be the graded Matlis dual of

Image(Hd+1RΓmRΓS>0S −→ Hd+1RΓmRΓS>0S
+,gr).

Note that S+,gr and S+,GR are not complete (or perfectoid) but since we are taking local
cohomology we can ignore this detail. Notice that we can also define τS+,GR(ωS) analogously,
but since S+,gr −→ S+,GR splits, this provides no new information.

Definition 5.4. With notation as in Setting 5.1, we define for i > 0

B0
gr(X,ωX ⊗L i) := [τS+,gr(ωS)]i ⊆ [ωS]i = H0(X,ωX ⊗L i).

Proposition 5.5. In the above situation, B0
gr(X,ωX ⊗L i) = B0(X,ωX ⊗L i) for all i > 0.
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Proof. By graded local duality, we have

B0
gr(X,ωX ⊗L i) = [im(Hd+1RΓmRΓS>0(S) −→ Hd+1RΓmRΓS>0(S

+,gr))]∨−i

where (−)∨ is Matlis duality over R.
Note that we have a commutative diagram of exact triangles:

RΓS>0(S) !!

##

S !!

##

⊕i∈ZRΓ(X,L i)
+1

!!

##

RΓS>0(S
+,gr) !! S+,gr !! ⊕i∈ZRΓ(X+,L i)

+1
!!

.

Applying RΓm and taking cohomology, we have

[HdRΓm(S)]−i
!!

##

HdRΓmRΓ(X,L −i) !!

##

[Hd+1RΓmRΓS>0(S)]−i

##

!! 0

[HdRΓm(S+,gr)]−i
!! HdRΓmRΓ(X+,L −i) !! [Hd+1RΓmRΓS>0(S

+,gr)]−i
!! 0

Note that, [HdRΓm(S)]−i = [HdRΓm(S+,gr)]−i = 0 when i > 0: this is because m ⊆ R lives
in degree 0 so [HdRΓm(S)]−i = HdRΓm([S]−i) = 0 and similarly for S+,gr. Therefore the
diagram shows that

[im(Hd+1RΓmRΓS>0(S) −→ Hd+1RΓmRΓS>0(S
+,gr))]−i

= im(HdRΓmRΓ(X,L −i) −→ HdRΓmRΓ(X+,L −i))

Taking Matlis dual over R and using (a) in Lemma 4.8, we see that B0
gr(X,ωX ⊗ L i) =

B0(X,ωX ⊗L i) for all i > 0 as desired. !

In what follows, we will be studying H0(X,ωX⊗L N) for N sufficiently large when X has
sufficiently mild singularities. For our purposes, sufficiently mild means the following.

Definition 5.6. We say that a Noetherian ring R has finite summand singularities if there
exists a finite extension R ⊆ S such that S is regular and the map splits as a map of
R-modules.

We note that by [CRMP+21], 2-dimensional klt singularities of residual characteristic
p > 5 are finite summand singularities. For an excellent ring, the locus of finite summand
singularities is readily verified to be open. We also note that if a Noetherian ring R has finite
summand singularities, then any finite extension R ↪→ S splits as a map of R-modules as a
consequence of the direct summand theorem [And18]. In particular, using the notation from
the next section Definition 6.1, we see that SpecR is globally +++-regular (that is R ⊆ S splits
for every finite extension, in other words R is a splinter). Note in equal characteristic p > 0,
being globally +++-regular is quite closely related to F -regularity (and they are conjectured
to be equivalent), an analog of klt singularities. Not all rings R that are globally +++-regular
have finite summand singularities however, even in equal characteristic p > 0.

In [MST+22, Theorem 4.1] it was shown that if (R,∆) has simple normal crossings at Q
with 5∆Q6 = 0, then τB(R,∆)Q = RQ. We will use this below, which will later help us study
H0(X,ωX ⊗L N).
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In the next theorem we assume that X has finite summand singularities, which implies
that S has finite summand singularities (and so globally +++-regular singularities) away from
the irrelevant ideal S>0. It is natural to try to compute the some (local) +++-test ideal on S to
measure this. However, we don’t know that such ideals commute with localization. On the
other hand, the ideal im(∗HomS(S+,gr, S) −→ S), which can be viewed as a sort of test ideal,
can be thought of as a measure of the obstruction to the global +++-regularity of S (again, its
formation does not obviously commute with localization since S+,gr is note finitely presented
over S). Regardless of these difficulties, we are able to that that image ideal contains S>m

for some m& 0.
In what follows, we use graded Hom and graded injective hulls, denoted ∗Hom and ∗E

respectively, see [BH93, Chapter 3, Section 6].

Theorem 5.7. Suppose that X, L , R and S are as in Setting 5.1. Let mS = m · S + S>0

denote the homogeneous maximal ideal of S. Suppose X has finite summand singularities.
Then for m& 0, S>m annihilates the kernel of

∗ES −→
∗ES ⊗ S+,gr

where ∗ES = Hd+1RΓmS(ωS) is the graded injective hull of the residue field of S. Dually,

S>m ⊆ im(∗HomS(S
+,gr, S) −→ S).

Proof. Begin by choosing a finite affine cover {Ui} of X , such that for each such Ui there
exists a finite surjective map fi : Vi −→ Ui where Vi is regular and such that OUi −→ (fi)∗OVi

splits. Without loss of generality, we may assume that L |Ui
∼= OUi, ωVi

∼= OVi, and Ui

is the complement of some V (ti) with ti ∈ H0(X,L n) for some n (which we may pick
independently of i). For each i, let Xi denote the normalization of X in K(Vi) and fix
πi : Xi −→ X to be the induced map. Let Si denote the graded section ring of Xi with
respect to π∗

i L , let mi denote the homogeneous maximal ideal, and note that S ⊆ Si is
finite. Set Ŝi to be the mi-adic completion of Si. Notice we also abuse notation to view
ti = π∗

i ti as an element of Si and also as an element of Ŝi. Forgetting the grading for now,

embed ω(−1)

Ŝi
⊆ Ŝi such that ω(−1)

Ŝi
[t−1
i ] = Ŝi[t

−1
i ]. By Flenner’s local Bertini theorem (see

[Fle77, Satz 2.1], [Vij94, Theorem 1] and [Tri97]), there exists f ∈ ω(−2)

Ŝi
, such that f is not

contained in Q(2) for all Q ∈ Spec(Ŝi) not containing ω
(−2)

Ŝi
. In particular f is not contained in

Q(2) for all Q ∈ Spec(Ŝi[t
−1
i ]), it follows that Ŝi[t

−1
i ]/(f) is regular. Set Di to be the effective

divisor corresponding to f ∈ ω(−2)

Ŝi
and let ∆i =

1
2Di. By construction, (Ŝi,∆i) is simple

normal crossing at all Q ∈ Spec(Ŝi[t
−1
i ]) and KŜi

+ ∆i =
1
2 div(f) is Q-Cartier. Applying

[MST+22, Theorem 4.1] with the perfectoid big Cohen-Macaulay Si-algebra Ŝ+
i = Ŝ+, we

have that τ
Ŝ+(Ŝi,∆i)Q = ŜiQ for all Q ∈ Spec(Ŝi[t

−1
i ]). In particular, there exists a such

that tai ∈ τ
Ŝ+(Ŝi,∆i).

Now since Ŝi
·f1/2

−−−→ Ŝ+ factors through Ŝi(KŜi
) ∼= ωŜi

by construction, we have induced
maps

·f 1/2 : Hd+1
mS

(ωŜi
) −→ Hd+1

mS
(ωŜi
⊗ Ŝ+) −→ Hd+1

mS
(Ŝ+).
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Applying Matlis duality, we have

Hd+1
mS

(ωŜi
)∨

∼=
##

Hd+1
mS

(ωŜi
⊗ Ŝ+)∨

∼=
##

$$ Hd+1
mS

(Ŝ+)∨$$

∼=
##

Ŝi HomŜi
(Ŝ+, Ŝi)$$ HomŜi

(Ŝ+,ωŜi
)$$

Since the image of the composition map is equal to τ
Ŝ+(Ŝi,∆i) by [MS21, Proof of Theorem

6.12], we see that im(HomŜi
(Ŝ+, Ŝi) −→ Ŝi) contains τŜ+(Ŝi,∆i), so it contains tai , i.e., there

exists a map ψi : Ŝ+ −→ Ŝi such that tai is in the image.
Now if we view S as a subring of Si, then by hypothesis, tbi is in the image of some

ρi : Si −→ S. Completing, we see that ta+b
i is in the image of Ŝ+ ψi−→ Ŝi

ρi−→ Ŝ. Since S −→ Ŝ+

factors through S+,gr, we see that ta+b
i annihilates the kernel of

∗ES −→
∗ES ⊗ S+,gr.

Finally, since the Ui = D(ti) cover X , we see that the ta+b
i generate the prime ideal S>0 up

to radical. Thus Sm1
>0 ⊆ 〈t

a+b
1 , . . . , ta+b

n 〉 for some m1. But since S is Noetherian, a sufficiently
high veronese subalgebra S(e) ⊆ S is generated in degree 1, [Bou98a, Chapter III, Proposition
3]. Thus by [Bou98a, Chapter III, Proposition 2, Lemma 2], for all l & 0 and k ≥ 0 we have
that Ske · Sl = Ske+l. It follows that S>m ⊆ Sm1

>0 for some sufficiently large m > 0. This
completes the proof of the first statement.

For the final statement, by graded Matlis duality, we know that the cokernel of ∗HomS(S+,gr, S) −→
S is annihilated by S>m, i.e., S>m ⊆ im(∗HomS(S+,gr, S) −→ S) as desired. !

Theorem 5.8. Suppose that X, L , R and S are as in Setting 5.1. Let mS = m · S + S>0

denote the homogeneous maximal ideal of S. Suppose X has finite summand singularities.
Further suppose that L is ample on X. Then there exists m > 0 such that S>m · ωS ⊆
τS+,gr(ωS). As a consequence, for n& 0, we have that

B0(X,ωX ⊗L n) = H0(X,ωX ⊗L n).

Proof. By Theorem 5.7, we know S>m ⊆ im(∗HomS(S+,gr, S) −→ S). This means for all
(homogeneous) x ∈ S>m, there is a (homogeneous) map φ ∈ ∗HomS(S+,gr, S) such that
φ(1) = x. Therefore the composition map:

Hd+1
mS

(S) −→ Hd+1
mS

(S+,gr)
Hd+1

mS
(φ)

−−−−−→ Hd+1
mS

(S)

is multiplication by x onHd+1
mS

(S). Thus we find that S>m annihilates the kernel ofHd+1
mS

(S) −→
Hd+1

mS
(S+,gr). By the definition of τS+,gr(ωS) and using graded local duality, it follows

S>m · ωS ⊆ τS+,gr(ωS).
Finally, since ωS is finitely generated, for all n & 0, [ωS]n ⊆ S>m · ωS ⊆ τS+,gr(ωS).

Therefore [ωS]n = [τS+,gr(ωS)]n. Hence by Proposition 5.5, we have

B0(X,ωX ⊗L n) = H0(X,ωX ⊗L n)

for all n& 0 as desired. !
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5.1. An application to Fujita’s conjecture in mixed characteristic. We conclude
with a mixed characteristic version of a special case of Fujita’s conjecture, analogous to the
main result of [Smi97b]. Indeed, our proof very closely follows the strategy of K. Smith.

Theorem 5.9. Let X be a d-dimensional regular scheme (or a scheme with finite summand
singularities) which is flat and projective over R. Set t = dimR and let L be an ample
globally generated line bundle on X. Then ωX ⊗L d−t+1 is globally generated by B0(X,ωX ⊗
L d−t+1).

We first prove the following result, whose proof is nearly the same as, and heavily inspired
by, [Smi97b, Proposition 3.3].

Proposition 5.10. With notation as in Theorem 5.9, let (S,mS) be the section ring of X
with respect to L as above. Further suppose that y0, . . . , yt−1 are a system of parameters for
R and xt, . . . , xd ∈ S1 are such that y0, . . . , xd are a system of parameters for S.

Then there exists N0 ∈ N such that every homogeneous 0 += η ∈ Hd+1
mS

(S) of degree less
than −N0 (deg η < −N0) admits a non-zero multiple η′ of degree −d − 1 + t = − dimX −
1+dimR = − dimS+dimR. Furthermore, any such η′ has non-zero image in Hd+1

mS
(S+,gr).

Proof. We begin with a claim.

Claim 5.11. There exists N0 ∈ N such that the kernel K of Hd+1
mS

(S) −→ Hd+1
mS

(S+,gr) is zero
in degrees < −N0.

Proof of claim. Let K be the kernel of Hd+1
mS

(S) −→ Hd+1
mS

(S+,gr). The graded Matlis dual K∨

fits into an exact sequence 0 −→ τS+,gr(ωS) −→ ωS −→ K∨ −→ 0. Now, Theorem 5.8 implies
that [K∨]i = 0 for i& 0. Thus [K]n = 0 for n7 0, which proves Claim 5.11. !

We now come to our main computation.

Claim 5.12. Suppose η ∈ Hd+1
mS

(S) is a homogeneous element of degree −N < −d + t − 1
such that every S-multiple of degree −d + t − 1 has zero image in Hd+1

mS
(S+,gr) (that is

Image(SN−d+t−1 · η) = 0 ∈ Hd+1
mS

(S+,gr)). Then the image of η in Hd+1
mS

(S+,gr) is zero.

Proof of claim. Write η = [ z
yvxv ] where x = xt · · ·xd and y = y0 · · · yt−1 and z is homogeneous

of degree (d− t+ 1)v−N . Because SN−d+t−1 · η has zero image in Hd+1
mS

(S+,gr), there exists
some s ≥ 0 so that

(5.12.1) (xt, . . . , xd)
N−d+t−1 · (ysxs) · z ⊆ (yv+s

0 , . . . , xv+s
d )Ŝ+,gr.

Thus, since Ŝ+,gr is Cohen-Macaulay and y0, . . . , xd is a regular sequence on it, we have that

z ∈ (yv0 , . . . , x
v
d)Ŝ

+,gr : (xt, . . . , xd)
N−d+t−1.

Now working modulo yv0 , . . . , y
v
t−1, we see that

z ∈ (xv
t , . . . , x

v
d)(Ŝ

+,gr/(yv0 , . . . , y
v
t−1)) : (xt, . . . , xd)

N−d+t−1

=
(
(xv

t , . . . , x
v
d) + (xt, . . . , xd)

(d−t+1)v−N+1
)
(Ŝ+,gr/(yv0 , . . . , y

v
t−1))

where the equality follows because xt, . . . , xd is a regular sequence on (Ŝ+,gr/(yv0, . . . , y
v
t−1))

so the computation of colon ideal is the same as if the xi’s are indeterminates in a polynomial
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ring (see [Smi97b, (3.3.3)]). It follows that

z ∈
(
(yv0 , . . . , x

v
d) + (xt, . . . , xd)

(d−t+1)v−N+1
)
Ŝ+,gr.

However, since z has degree (d − t + 1)v − N , we see that z ∈ (yv0 , . . . , x
v
d)Ŝ

+,gr. Thus the
image of η in Hd+1

mS
(S+,gr) is zero, proving Claim 5.12. !

To finish the proposition, choose N0 as in Claim 5.11 and a nonzero η ∈ Hd+1
mS

(S) of
degree < −N0. Hence η /∈ K = ker

(
Hd+1

mS
(S) −→ Hd+1

mS
(S+,gr)

)
by Claim 5.11. But now

by the contrapositive of Claim 5.12, we see that η has a nonzero S-multiple η′ of degree
−d + t− 1 = − dimS + dimR whose image in Hd+1

mS
(S+,gr) is also nonzero. This completes

the proof. !

Proof of Theorem 5.9. We first show that there exists a finite étale extension R′ of R such
that the section ring S ′ of X ′ := X×RR′ with respect to L |X′ admits a homogeneous system
of parameters y0, . . . , yt−1, xt, . . . , xd as in the statement of Proposition 5.10. Let Rsh be the
strict hensalization of R (so Rsh has an infinite residue field). Then Xsh := X ×R Rsh is flat
and projective over Rsh of relative dimension d − t and so Xsh

0 := Xsh ×Rsh (Rsh/mRsh) is
projective over an infinite field of dimension d− t. Since L is globally generated on X , the
image of the linear system |L | inH0(Xsh

0 ,L |Xsh
0
) is base point free. AsXsh

0 is projective over
an infinite field, we can pick general linear combinations of sections in the image of |L |, call
them xt, . . . , xd, such that they form a homogeneous system of parameters in R(Xsh

0 ,L |Xsh
0
).

Since Rsh is a colimit of finite étale extensions ofR, there exists a finite étale complete domain
extension R′ of R such that xi is the image of xi ∈ H0(X ′,L |X′). Now it is straightforward
to check that y0, . . . , yt−1, xt, . . . , xd form a system of parameters in S ′ = R(X ′,L |X′) for
every system of parameters y0, . . . , yt−1 of R: modulo m (the radical of (y0, . . . , yt−1)), S ′/mS ′

is a homogeneous coordinate ring of X ′
0 and so R(Xsh

0 ,L |Xsh
0
) is integral over S ′/mS ′ of the

same dimension, thus by our choice, xt, . . . , xd form a homogeneous system of parameters in
S ′/mS ′ (as they are so in R(Xsh

0 ,L |Xsh
0
)).

Next we claim that in order to show ωX ⊗L d−t+1 is globally generated by B0(X,ωX ⊗
L d−t+1), it is enough to prove this when we base change X to X ′. Indeed, we have a
surjective map of sheaves T : ωX′ ⊗L d−t+1 −→ ωX ⊗L d−t+1. Furthermore, if B0(X ′,ωX′ ⊗
L d−t+1) (globally) generates the left side its image via T generates the right sheaf. But
B0(X ′,ωX′ ⊗L d−t+1) $ B0(X,ωX ⊗L d−t+1) surjects by Lemma 4.18. Therefore, without
loss of generality, we now replace R and X by R′ and X ′ to assume that S = R(X,L ) admits
a homogenous system of parameters y0, . . . , yt−1, xt, . . . , xd as in Proposition 5.10. Note that
X ′ is still regular (or has finite summands singularities) since it is finite étale over X .

By the discussion above, it is enough to show that the multiplication map (which is well
defined since τS+,gr(ωS) is an S-module)

H0(X,L N−d+t−1)︸ ︷︷ ︸
SN−d+t−1

⊗R B0(X,ωX ⊗L d−t+1)︸ ︷︷ ︸
[τS+,gr(ωS)]d−t+1

−→ B0(X,ωX ⊗L N)︸ ︷︷ ︸
[τS+,gr(ωS)]N

= H0(X,ωX ⊗L N)︸ ︷︷ ︸
[ωS ]N
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is surjective for N & 0. By graded local duality on S, this is equivalent to the injectivity of
the map

[Hd+1
mS

(S)]−N
∼=

[
Image

(
Hd+1

mS
(S) −→ Hd+1

mS
(S+,gr)

)]
−N

−→ HomR

(
SN−d+t−1 ⊗R [τS+,gr(ωS)]d−t+1, E

)

∼= HomR

(
SN−d+t−1, Image

(
[Hd+1

mS
(S)]−d+t−1 −→ [Hd+1

mS
(S+,gr)]−d+t−1

))

where E is the injective hull of the residue field of the complete local ring (R,m) and the
final isomorphism is Hom-tensor adjointness and duality. Just as in [Smi97b, Lemma 1.3],
this map sends η ∈ [Hd+1

mS
(S)]−N to the map which is multiplication by η. Hence this map is

injective by Proposition 5.10 and our proof is complete. !

Remark 5.13. It would be natural to try to obtain the following stronger result. Suppose that
X has the property that for each closed point x ∈ X , we have that Hd

x(OX) −→ Hd
x(OX+)

injects (in other words, OX,x is O+
X,x-rational in the sense of [MS21], but without the Cohen-

Macaulay hypothesis). We expect that if L is a globally generated ample line bundle on X ,
then

ωX ⊗L d−t+1

is globally generated by B0(X,ωX ⊗L d−t+1). The missing piece is a proof that τS+,gr(ωS)
agrees with ωS except at the irrelevant ideal (a generalization of Theorem 5.8).

6. Globally +++-regular pairs

In this section we define and discuss various properties of globally +++-regular pairs; anal-
ogous to globally F -regular pairs in positive characteristic. The reader interested in the
results on globally F -regular pairs is referred to [SS10]. The reader unfamiliar with this
story is invited to imagine that this means the section ring / cone has singularities which are
a mixed characteristic analog of klt singularities. Throughout this section, we work under
the following assumptions unless otherwise stated:

(a) X is a normal, integral, d-dimensional, excellent scheme with a dualizing complex
where every closed point has residue field of positive characteristic.

(b) ∆ ≥ 0 is a Q-divisor on X .

Whenever there is a base scheme SpecR, we also assume that R is excellent with a dualizing
complex and that every closed point of SpecR has positive characteristic residue field.

Frequently, we also assume that R is complete and X is proper over SpecR. However,
the above setting also applies when the base is a positive or mixed characteristic Dedekind
domain.

Definition 6.1. We say that (X,∆) is globally +++-regular if for every finite dominant map
f : Y −→ X with Y normal, the map OX −→ f∗OY (5f ∗∆6) splits as a map of OX-modules.

If we have X −→ SpecR proper, then we say that (X,∆) is completely globally +++-regular
over R if for every closed point z of SpecR, the base change (XR̂z

,∆R̂z
) is globally +++-regular.

If R is clear from the context, we will omit the “over R”.

Notice that globally +++-regular is an absolute notion but completely globally +++-regular
requires a base.

62



Remark 6.2. In the above definition, we may restrict ourselves to f : Y −→ X such that f ∗∆
has integer coefficients, since any f ′ : Y ′ −→ X is dominated by such a Y .

Remark 6.3 (Characteristic zero). If we did not require that our closed points have residual
characteristic p > 0, then our definition would not always yield what the reader might
expect. For instance, when X is purely of characteristic zero, our condition defining global
+++-regularity simply means that X is normal and that the coefficients of ∆ are < 1. If one
additionally assumes that KX +∆ is Q-Cartier, then one could alternately require that for
every alteration π : Y −→ X the map OX −→ Rπ∗OY (5π∗∆6) splits. In characteristic zero,
this again does not provide any global information and only means that (X,∆) has rational
singularities in the sense of [ST08]. Lastly, one could require the trace map

(6.3.1) H0(Y,OY (KY − 5π
∗(KX +∆)6)) −→ H0(X,OX)

to be surjective for every alteration (as discussed in [TY20], where they called it global T -
regularity). This in characteristic zero is equivalent to (X,∆) being klt. When X −→ SpecR
is proper and R only admits positive characteristic closed points (the latter is always assumed
throughout this section), we see that global +++-regularity is equivalent to global T -regularity
(the surjection of (6.3.1)). This follows from Proposition 6.8 in view of Proposition 4.29.

Remark 6.4 (Non-integralX). IfX is not integral, but still normal with all connected compo-
nents d-dimensional, we define (X,∆) to be globally+++-regular if all its connected components
are. This coincides with the variant of B0 in this setting as explained in Remark 4.3. The
results of this section go through since they may all be checked working one component at
a time.

Remark 6.5. If (R,m) is complete local, X −→ SpecR is proper, and X is integral, then
R −→ H0(X,OX) is a finite map of rings. Since X is integral, we see that H0(X,OX) is an
integral domain. But since R is complete and in particular henselian, we also know that
H0(X,OX) is a product of local rings [Sta, Tag 04GG (9)]. Such a product cannot be an
integral domain unless it only has one factor, thus we know that H0(X,OX) is a local ring.

On the other hand if (R,m) is not complete but only a Noetherian local ring, then
H0(X,OX) is only semi-local (it has finitely many maximal ideals). In many cases though,
we localize T = H0(X,OX) at a maximal ideal to obtain a local ring T ′ (and perhaps even
take completion of that if desired) and consider the base change XT ′ = X ×T T ′. Replacing
R by T ′ and X by XT ′ we have that H0(X,OX) = R.

Lemma 6.6. Suppose we are given X −→ Spec(R), the following are equivalent:

(a) (X,∆) is globally +++-regular.
(b) for each closed point z ∈ m-SpecR we have that the base change to the localization

(XRz ,∆Rz) is globally +++-regular.

Proof. The pair is globally +++-regular if and only if the evaluation-at-1 map

(6.6.1) HomOX (f∗OY (5f
∗∆6),OX) −→ H0(X,OX)

surjects for each finite dominant f : Y −→ X with Y normal. Indeed, that map is surjective
if and only if there exists φ ∈ Hom(f∗OY (5f ∗∆6),OX) sending 1 to 1.

Now, we observe that since Hom(f∗OY (5f ∗∆6),OX) = H0(X,H omOX (f∗OY (5f ∗∆6)) and
f∗OY is a coherent OX-module, the formation of this Hom-set commutes with localization

63



on the base (a flat base change). In other words:

Hom(f∗OY (5f ∗∆6),OX)⊗R Rz
∼= Γ(X,H omOX (f∗OY (5f ∗∆6),OX)⊗R Rz)
∼= Γ(XRz ,H omOX (f∗OY (5f ∗∆6)⊗R Rz,OXRz

))
∼= Γ(XRz ,H omOXRz

(f∗OYRz
(5f ∗∆|XRz

6),OXRz
)).

Note the evaluation-at-1 map also base changes to the evaluation-at-1 map of the localization.
Hence, since a map of modules is surjective if and only if it is surjective after localization at
all maximal ideals, for each Y −→ X finite surjective, we see that (6.6.1) surjects if and only
if

HomOXRz
(f∗OYRz

(5f ∗∆|XRz
6),OYRz

) −→ H0(XRz ,OXRz
)

surjects for each z ∈ m- SpecR.
Finally, notice that a finite surjective h : Y ′ −→ XRz with Y ′ integral produces a finite

surjective Y −→ X that localizes to h (simply take the normalization of OX in the fraction
field Y ′) and we are indexing over the same set of finite surjective maps (which we can take
with a fixed geometric generic point). !

Lemma 6.7. If (X,∆) is globally +++-regular and 0 ≤ ∆′ ≤ ∆, then (X,∆′) is globally
+++-regular as well.

Proof. This follows from the definition. !

Proposition 6.8. Suppose that X −→ SpecR is proper and (R,m) is local. Then (X,∆) is
globally +++-regular if and only if B0(XR̂,∆R̂;OXR̂

) = H0(XR̂,OXR̂
). In the case that KX +∆

is Q-Cartier, this is also equivalent to B0
alt(XR̂,∆R̂;OXR̂

) = H0(XR̂,OXR̂
).

Proof. Notice that the map R −→ H0(X,OX) =: T is finite (although it will not be injective
if X −→ SpecR is not dominant) and so its base change T ⊗R R̂ to the completion of R
may break up into a product of normal domains

∏
Ti. In particular, the normal scheme XR̂

may have several connected components. In such a case, working one component at a time,
we may replace R by Ti, a localization of T at a maximal ideal, and X by the base change
X ⊗T Ti and so assume that H0(X,OX) = R, also see Remark 4.31.

By Proposition 4.29 we have that B0(XR̂,∆R̂;OXR̂
) equals

⋂

f : Y−→X
finite

im
(
H0(Y,OY (KY − 5f

∗(KX +∆)6))⊗R R̂ −→ H0(X,OX)⊗R R̂
)
.

Suppose that B0(XR̂,∆R̂;OXR̂
) = H0(XR̂,OXR̂

) and let f : Y −→ X be a normal finite
cover. Then, Tr : f∗OY (KY − 5f ∗(KX + ∆)6) −→ OX is surjective on global sections (after
completion, hence also before it), and so there exists a map φ such that

OX
φ
−→ f∗OY (KY − 5f

∗(KX +∆)6)
Tr
−→ OX

is the identity (to define φ, send 1 ∈ Γ(X,OX) to a global section which Tr sends to 1).
Hence, Tr is split surjective. But now apply H om(−,OX) to Tr and observe that the
obtained map OX −→ f∗OY (5f ∗∆6) also splits, as desired.
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For the converse, note that when the map OX −→ f∗OY (5f ∗∆6) splits, then the dual map11

Tr : f∗OY (KY −5f ∗(KX+∆)6) −→ OX is split surjective, and so surjective on global sections.
Hence, B0(XR̂,∆R̂;OXR̂

) = H0(XR̂,OXR̂
) by Proposition 4.29.

The final assertion follows from Corollary 4.13. !

Corollary 6.9. Suppose that X −→ SpecR is proper. Then (X,∆) is globally +++-regular if
and only if it is completely globally +++-regular over R.

Proof. By Lemma 6.6 we may assume that R is local. We then see that (X,∆) is globally
+++-regular if and only if B0(XR̂,∆R̂;OXR̂

) = H0(XR̂,OXR̂
) by Proposition 6.8. But this latter

statement is also equivalent to requiring that (XR̂,∆R̂) is globally +++-regular. !

We now show that globally +++-regular pairs have controlled singularities.

Proposition 6.10 (Global to local). Suppose X is globally +++-regular. Then X is pseudo-
rational and in particular Cohen-Macaulay (and so has rational singularities in the sense of
[Kov17]). Further, suppose that (X,∆) is globally +++-regular and KX+∆ is Q-Cartier. Then
(X,∆) is klt (and Cohen-Macaulay).

Proof. Since the question is local, we may localize X at a closed point x ∈ X and take
R = OX,x so that X = SpecR. Furthermore, we may assume that R is complete by
Corollary 6.9.

First suppose that X is globally +++-regular and ∆ = 0. By definition, R is a splinter, hence
it is Cohen-Macaulay and pseudo-rational ([Bha20, Corollary 5.10 and Remark 5.14(1)]).
This proves the first statement.

Now suppose that (X = SpecR,∆) is globally +++-regular and KX + ∆ is Q-Cartier. By
Proposition 6.8 the trace map

H0(Y,OY (KY − 5f
∗(KX +∆)6)) −→ H0(X,OX) = R

is surjective for every projective birational morphism f : Y −→ X from a normal integral
scheme Y . This is the case exactly when 9KY − f ∗(KX + ∆): is effective and exceptional
over X , which, in turn, is equivalent to 5∆6 = 0 and all the exceptional divisors on Y having
log discrepancy greater than 0. As this is true for every projective birational morphism,
(X,∆) is klt. Further, X is Cohen-Macaulay by our work above since X is globally +++-
regular by Lemma 6.7. !

Lemma 6.11. Suppose that (X,∆) is globally +++-regular, X −→ SpecR is proper and R is
local. Then for any line bundle L = OX(L) we have B0(XR̂,∆R̂;LR̂) = H0(XR̂,LR̂). In
particular, if R is complete then B0(X,∆;L ) = H0(X,L ).

Proof. Without loss of generality, using Proposition 4.29 and Corollary 6.9, we may assume
that R is complete. Since OX −→ f∗OY (5f ∗∆6) splits for every normal finite cover f : Y −→
X , then so does OX(KX − L) −→ f∗OY (5f ∗(KX +∆− f ∗L)6). Hence

HdRΓmRΓ(X,OX(KX − L)) −→ HdRΓmRΓ(Y,OY (5f
∗(KX +∆− f ∗L)6))

is injective and so by Lemma 4.8, we see that B0(X,∆;L ) = H0(X,L ) as desired. !

11obtained by applying H om(−,OX)
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Corollary 6.12 (Relative Kawamata-Viehweg vanishing for globally +++-regular varieties).
Suppose that X −→ SpecR is proper, (X,∆) is globally +++-regular and L is a Cartier divisor
such that L− (KX +∆) is Q-Cartier, big, and semiample. Then H i(X,OX(L)) = 0 for all
i > 0.

Proof. Via Corollary 6.9 and flat base change for cohomology, we may assume that R is
complete and local. By Lemma 2.2, to show that H i(X,OX(L)) = 0 for i > 0, it suffices to
show that H−iRΓmRΓ(X,OX(−L) ⊗ ω

!

X) = 0. Since X is globally +++-regular, it is Cohen-
Macaulay by Proposition 6.10. Hence, we must show that Hd−iRΓmRΓ(X,OX(KX−L)) = 0
for all i > 0 where d = dimX . Consider the map

OX(KX − L) −→ lim−→
f : Y−→X

f∗OY (f
∗(KX +∆− L)) = π∗OX+(π∗(KX +∆− L))

where π : X+ −→ X and we restrict ourselves to finite f : Y −→ X such that f ∗∆ has integer
coefficients. Note that while π is not finite, it is affine so its higher direct images vanish for
quasi-coherent sheaves by [Sta, Tag 01XC]. This is a colimit of split maps since X is globally
+++-regular and hence

Hd−iRΓmRΓ(X,OX(KX − L)) −→ Hd−iRΓmRΓ(X, π∗OX+(π∗(KX +∆− L)))

injects. But the right side is zero for all i > 0 by Corollary 3.7, completing the proof.
!

We also obtain vanishing of the structure sheaf.

Proposition 6.13. Suppose that X is globally +++-regular and X −→ SpecR is proper. Then
H i(X,OX) = 0 for all i > 0.

Proof. We may assume R is local with residue field R/m of characteristic p > 0. By
Proposition 3.1(a), taking L = OX , we can find a finite cover π : Y −→ X where the map
H i(Xp=0,OX) −→ H i(Yp=0,OY ) is zero, but it is also split injective, thereforeH i(Xp=0,OX) =

0. Since we have an exact sequence H i(X,OX)
·p
−→ H i(X,OX) −→ H i(Xp=0,OX) = 0, it fol-

lows that H i(X,OX) is p-divisible, but as H i(X,OX) is a finitely generated R-module and
p ∈ m, thus H i(X,OX) = 0 by Nakayama’s lemma. !

Lemma 6.14. Suppose that X is an F -finite normal integral scheme of characteristic p > 0.
If (X,∆) is globally F -regular, then it is globally +++-regular.

Proof. Suppose that (X,∆) is globally F -regular and that π : Y −→ X is a finite dominant
map with Y normal and integral. By replacing Y by a higher cover if necessary, we may
assume that π∗∆ has integer coefficients.

Claim 6.15. There exists a divisor D ≥ 0 on X and a map

φ ∈ HomOX (π∗OY (π
∗∆),OX(D))

which sends 1 =→ 1.

Proof of claim. We begin by explaining what the claim is asserting. Let K(X) and K(Y )
denote the constant sheaves associated to the fraction fields of X and Y respectively. Notice
that π∗OY (π∗∆) is a subsheaf of π∗K(Y ). Since ∆ is effective, 1 = 1Y is a global section of
π∗OY (π∗∆). Likewise since D is effective, 1 = 1X is a global section of OX(D). The claim
asserts that we can find a φ that sends 1 to 1.
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Now, working on an affine chart j : U ↪→ X whose complement is a divisor D′ ≥ 0, set V =
π−1(U). It follows from [BST15, Proposition 4.2]12 that there exists φU ∈ Hom(π∗OV (π∗∆),OU) ∼=
π∗OV (KY −π∗(KX +∆)) sending 1 =→ 1. By working from the stalk of the generic point, we
see that φU induces a map φK : π∗K(Y ) −→ K(X). Note, restricting φK to U and restricting
the domain to π∗OV (π∗∆) ⊆ (π∗K(Y ))|U we recover φU since both X and Y are integral
schemes. Next, restrict the source of φK to π∗OY (π∗∆) ⊆ π∗K(Y ) to obtain

φ′ : π∗OY (π
∗∆) −→ j∗OU =

⋃

n≥0

OX(nD
′).

But since the source of φ′ is coherent, the image of φ′ is contained in OX(nD′) for some
sufficiently large n > 0. Set D = nD′. This proves the claim. !

Now, since (X,∆) is globally F -regular, there exists e > 0 and

ψ ∈ Hom(F e
∗OX(9(p

e − 1)∆:+D),OX)

which sends F e
∗ 1 to 1. Twisting the φ from the claim by 9(pe − 1)∆:, and pushing forward

by Frobenius, we obtain a map

φ′ : F e
∗π∗OY ((F

e)∗π∗∆) ⊆ F e
∗π∗OY (π

∗∆+ π∗9(pe − 1)∆:) −→ F e
∗OX(9(p

e − 1)∆: +D)

sending F e
∗ 1 =→ F e

∗ 1. Composing with ψ we see that the composed map ψ ◦ φ′ sends F e
∗ 1 to

1. Thus OX −→ F e
∗π∗OY ((F e)∗π∗∆) splits, and since this map factors through π∗OY (π∗∆),

we have OX −→ π∗OY (π∗∆) splits. This proves that (X,∆) is globally +++-regular. !

Remark 6.16. It is reasonable to expect that there is a converse to Lemma 6.14. Even in
the local case where X = SpecR and ∆ = 0 (but R is not Q-Gorenstein) this is an open
question. It specializes in that setting to the conjecture that splinters are strongly F -regular,
see for instance [Sin99, CEMS18]. Note that we do not even know that splinters are klt for
some appropriate boundary if R is not Q-Gorenstein. In the non-local case, we expect that
(X,∆) is of log Fano type but we do not know how to show that.

We also state a related open question, analogous to the main result of [SS10].

Conjecture 6.17. With notation as in the start of the section, suppose that X is globally
+++-regular and that X −→ SpecR is projective. Then there exists an effective Q-divisor ∆ on
X such that (X,∆) is globally +++-regular and −KX −∆ is ample.

This conjecture is open in characteristic p > 0, even in the local case when X = SpecR.
In mixed characteristic, even if X is nonsingular, we do not even know how to construct a
boundary ∆ where (X,∆) is lc and KX +∆ ∼Q 0.

Corollary 6.18. Suppose that (X,∆) is proper over a complete Noetherian local ring (R,m, k)
of characteristic p > 0. Let R′ := R⊗̂kk1/p∞ be the complete tensor product (so R′ is an
F -finite complete local ring). If (XR′ ,∆R′) is globally F -regular, then (X,∆) is globally
+++-regular.

12In that paper, it was assumed that KX + ∆ is Q-Cartier, but that hypothesis is not needed when π is
finite.

67



Proof. The natural maps X+
R′ −→ XR′ −→ X induce:

HdRΓmRΓ(X,OX(KX))
−→ HdRΓmRΓ(XR′,OXR′ (KXR′ ))
−→ HdRΓmRΓ(X+

R′,OX+

R′
(π′∗(KXR′ +∆R′)))

where π′ : X+
R′ −→ XR′ and d = dimX . Notice that the base change of ωX is ωXR′ . The

first map is injective by faithfully flat base change, and the second map is injective since
(XR′ ,∆R′) is globally +++-regular by Lemma 6.14 and using duality (see Proposition 6.8 and
Lemma 4.8). Therefore the composition is injective. But as X+

R′ −→ X factors through X+,
we obtain that

HdRΓmRΓ(X,OX(KX)) −→ HdRΓmRΓ(X+,OX+(π∗(KX +∆)))

is injective where π : X+ −→ X . So using Proposition 6.8 and Lemma 4.8 again we see that
(X,∆) is globally +++-regular. !

Proposition 6.19. If f : X −→ Y is a proper birational morphism between schemes satis-
fying the conditions at the start of this section, and ∆ ≥ 0 is a Q-divisor on X such that
(X,∆) is globally +++-regular, then so is (Y, f∗∆). Hence Y is also pseudo-rational (and so
rational in the sense of [Kov17]), and if KY + f∗∆ is Q-Cartier, then (Y, f∗∆) is klt.

Proof. Set ∆Y = f∗∆. Let g : Z −→ Y be a normal finite cover and let W be the normaliza-
tion of X ×Z Y . We have that following diagram:

X

f
##

W

h
##

ξ
$$

Y Z.g
$$

Since X is globally +++-regular, the map OX −→ ξ∗OW (5ξ∗∆6) splits. Let U ⊆ Y be an open

subset with complement of codimension at least two and such that V := f−1(U)
f
−→ U is an

isomorphism. By restricting the above splitting to V , we get that the map

OU −→ g∗Og−1(U)(5g
∗∆Y |U6)

splits as well, and so does OY −→ g∗OZ(5g∗∆Y 6), since Y \ U is of codimension two and
the sheaves are S2. Hence, (Y,∆Y ) is globally +++-regular. The last assertion follows from
Proposition 6.10. !

In the opposite direction, we have the following for étale covers.

Proposition 6.20. Suppose that (X,∆) is globally +++-regular, X −→ SpecR is proper and
f : Y −→ X is a finite quasi-étale13 cover from a normal integral scheme Y . Then (Y, f ∗∆)
is also globally +++-regular.

Proof. We may assume that H0(X,OX) = R. Then we may assume that R is complete and
local by Corollary 6.9, possibly working component by component on Y after completion so
that H0(Y,OY ) is also local. Since f is quasi-étale, we know that f ∗KY = KX . Hence by
Lemma 4.8 we see that

B0(Y, f ∗∆;OY ) $ B0(X,∆;OX) = H0(X,OX)

13Meaning étale in codimension 1
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surjects. But the induced trace map H0(Y,OY ) −→ H0(X,OX) sends the maximal ideal of
H0(Y,OY ) to the maximal ideal of H0(X,OX), hence B0(Y, f ∗∆;OY ) = H0(Y,OY ). !

The local case. We conclude the section by briefly describing some of the key features of
local +++-regularity.

Definition 6.21. Suppose that (A,m) is an excellent normal local ring whose residue field
A/m has positive characteristic and set Y = SpecA. Further suppose that ∆ ≥ 0 is a
Q-divisor on Y . We say that (Y,∆) is +++-regular if it is globally +++-regular in the sense of
Definition 6.1.

Notice that the m-adic completion Â of A is +++-regular if and only if so is A (this is
Corollary 6.9 applied to the identity map X = SpecA −→ SpecA). Furthermore, if ∆ = 0,
then A is +++-regular if and only if it is a splinter. Lastly, if (A,∆) is +++-regular, then it is
Cohen-Macaulay by Proposition 6.10.

Lemma 6.22. If (X,∆) as in the start of the section is globally +++-regular, then for x ∈ X
whose stalk A = OX,x has positive characteristic residue field, (SpecA,∆|SpecA) is globally
+++-regular.

Remark 6.23. Suppose that KA+∆ is Q-Cartier. It follows from Proposition 4.29 by taking
X = SpecA that (A,∆) is globally +++-regular if and only if (Â,∆Â) is BCMÂ+-regular.

6.1. Purely globally +++-regular schemes.

Definition 6.24. With notation as in the start of the section, suppose that there exists
a reduced divisor S such that ∆ = S + B for B ≥ 0 with no common components with
S. Fix a reduced subscheme S+ in X+ as in the the second paragraph of Section 4.3 with
corresponding

∑t
i=1 Si,Y = SY −→ Y on each finite dominant map f : Y −→ X with Y

normal. We say that (X,S + B) is purely globally +++-regular (along S), if for every finite
dominant f : Y −→ X with Y normal, the following map splits

OX −→ f∗

t⊕

i=1

OY (−Si,Y + 5f ∗(S +B)6).

If we have X −→ SpecR proper as in the start of the section, then we say that (X,S +B) is
completely purely globally +++-regular over R (along S) if the base change to the completion
(XR̂z

,∆R̂z
) along every closed point z ∈ m- SpecR is purely globally +++-regular.

Note in the case that S is integral and f ∗(S + B) has integer coefficients, this is simply
asking that

OX −→ f∗OY (f
∗(S +B)− SY )

splits.
This definition is still meaningful even when R is not complete although we will primarily

work in the complete case, see the issues discussed in Remark 4.30. In particular, we do
not have a full analog of Proposition 6.8 or any analog of Corollary 6.9. However, see
Corollary 7.6 where we prove the equivalence of completely purely globally +++-regular pairs
with purely globally +++-regular pairs when −KX −∆ is big and semiample.

Lemma 6.25. Suppose we have X −→ Spec(R), the following are equivalent:

(a) (X,S +B) is purely globally +++-regular.
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(b) for each closed point z ∈ m-SpecR we have that the base change to the localization
(XRz , (S +B)Rz) is purely globally +++-regular.

Proof. We restrict to Y large enough so that f ∗∆ = f ∗(S +B) has integer coefficients. The
pair is globally +++-regular if and only if the sum of the evaluation-at-1 maps

t⊕

i=1

Hom(f∗OY (−Si,Y + f ∗(S +B)),OX) −→ H0(X,OX)

surjects for each finite dominant f : Y −→ X with Y normal. Again, this surjectivity can be
checked after localizing at closed points of R. !

Similar to Proposition 6.8, we have the following alternate characterization of purely glob-
ally +++-regular. We recall the following notation from Remark 4.30. If H0(X,OX) = R is
local and X −→ SpecR is proper then B̂0

S(X,S + B;OX) ⊆ H0(XR̂,OXR̂
) is the R-Matlis

dual of

Im

(
HdRΓmRΓ(X,OX(KX)) −→ HdRΓmRΓ(X+,

t⊕

i=1

OX+(−S+
i + π∗(KX +∆)))

)
.

Proposition 6.26. With notation as in Definition 6.24, suppose R = H0(X,OX) is local
and X −→ SpecR is proper. Then (X,S + B) is purely globally +++-regular if and only if
B̂0

S(X,S +B;OX) = H0(XR̂,OXR̂
).

In particular, if R is complete, then (X,S +B) is purely globally +++-regular if and only if
B0

S(X,S +B;OX) = H0(X,OX).

Proof. We work with covers large enough so that f ∗(KX + S + B) has integer coefficients.
The strategy is the same as in Proposition 6.8. If

OX −→ f∗

t⊕

i=1

OY (−Si,Y + f ∗(S +B))

splits for all Y , then twisting by KX and taking local cohomology, we see that each

(6.26.1) HdRΓmRΓ(X,OX(KX)) −→ HdRΓmRΓ(Y,
t⊕

i=1

OY (−Si,Y + f ∗(KX + S +B)))

is injective. Hence B̂0
S(X,S +B;OX) = H0(XR̂,OXR̂

).
Conversely, if each map of the form (6.26.1) injects, then

H0(YR̂,
t⊕

i=1

OY (KY + Si,Y − f ∗(KX + S +B))R̂) −→ H0(XR̂,OXR̂
)

surjects. Since R −→ R̂ is faithfully flat, each

H0(Y,
t⊕

i=1

OY (KY + Si,Y − f ∗(KX + S +B))) −→ H0(X,OX)
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surjects. Hence there exists

z ∈ H0(Y,
t⊕

i=1

OY (KY + Si,Y − f ∗(KX + S +B)))

mapped to 1 ∈ H0(X,OX). Thus we have a map

OX −→ f∗

t⊕

i=1

OY (KY + Si,Y − f ∗(KX + S +B))

induced by sending 1 =→ z giving us a splitting. Apply H om(−,OX) to obtain the desired
result. !

Lemma 6.27. If (X,S + B) is purely globally +++-regular along a reduced divisor S then
(X, aS +B) is globally +++-regular for every 0 ≤ a < 1.

Proof. This follows from Lemma 4.26 when R is complete and X −→ SpecR is proper.
Alternately, for the general case, note that for large enough covers Y −→ X we have a
factorization:

OX −→ OY (f
∗(aS +B)) −→ f∗

t⊕

i=1

OY (−Si,Y + f ∗(S +B)).

The splitting of the composition implies splitting of the left map. !

Proposition 6.28. Suppose X −→ SpecR is proper. Additionally, let f : Y −→ X be a
proper birational morphism between normal schemes. Let ∆ ≥ 0 be a Q-divisor on X such
that (X,∆) is globally+++-regular (completely purely globally+++-regular over R, resp.). Suppose
that ∆Y ≥ 0, where KY +∆Y = f ∗(KX +∆). Then (Y,∆Y ) is globally +++-regular ( ly globally
+++-regular, resp.).

Proof. We can assume that R is local and complete by Corollary 6.9. Then this follows from
Lemma 4.19 and Lemma 4.27. !

Remark 6.29. If (X,S +B) is purely globally +++-regular, then we will see in Proposition 7.7
that it is plt, and in Corollary 7.9 that S is normal.

6.2. Summary of terminology. We conclude this section by summarizing the terminology
we have introduced.

Recall, saying that (X,∆) is globally +++-regular means that every finite surjective map
f : Y −→ X between integral schemes, one has that OX −→ OY (5f ∗∆6) splits as a map of
OX-modules. We then potentially add two different modifiers to this term.

(a) purely, which should be thought of as a plt variant of +++-regularity.
(b) completely, which makes (purely) globally +++-regular a relative notion (over a base

SpecR), meaning that after completing at each closed point of the base, we have
(pure) globaly +++-regularity.
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7. Lifting +++-stable sections from divisors

In this section we aim to prove that we may lift global sections of B0 from hypersurfaces
in many cases. In order to lift sections we need vanishing theorems, and the key vanishing
theorem we use in this case is Corollary 3.7.

Setting 7.1. In this section, R is an excellent local domain with a dualizing complex and
positive characteristic residue field.

Frequently, R will even be complete.

Theorem 7.2. Let X be a normal integral scheme of dimension d that is proper over a
complete local Noetherian base SpecR with positive characteristic residue field. Let ∆ ≥ 0
be a Q-divisor such that KX +∆ is Q-Cartier. Suppose that ∆ = S +B where S =

∑
Si is

a sum of prime components of ∆ of coefficient one with normalization ν : SN −→ S, and M
is a Cartier divisor such that M −KX −∆ is big and semiample.

Set M = OX(M). Then the restriction map H0(X,M ) −→ H0(SN,M |SN) induces a
surjection

B0
S(X,∆;M ) $ B0(SN,∆SN;M |SN)

where ∆SN is the different of KX + S + B along SN and the right side is defined as in
Remark 4.3 in the case where SN has multiple connected components (taking the direct sum).

For more information on the different (of KX + S +B along SN), see for instance [Kol13,
Section 4.1].

Proof. This argument is very closely related to, and inspired by, the proof of [MST+22,
Theorem 3.1]. In the proof below, we frequently abuse of notation in the following way. Let
where π : X+ −→ X be the natural map. For a quasi-coherent sheaf F on X+ we will also
write F for π∗F . This is essentially a harmless notational device as Riπ∗F = 0 for all
i > 0 since π is an affine morphism, [Sta, Tag 01XC], and in particular RΓmRΓ(X+,F ) ∼=
RΓmRΓ(X,Rπ∗F ) ∼= RΓmRΓ(X, π∗F ). The same notational consideration applies to the
affine morphisms S −→ X , SN −→ X , S+ −→ X , etc.

With this abuse of notation in mind, we have the following diagram

OX(−S) !!

##

OX

##⊕t
i=1 OX+(−Si,X+) !!

⊕t
i=1 OX+

of quasi-coherent sheaves on X as in Section 4.3.
Set

L := OX+(L) = OX+(π∗(KX + S +B −M))

to be the line bundle on X+ corresponding to KX + S + B −M . Twist the top row of the
above diagram by KX + S −M and reflexify, then twist the bottom row by L . Using the
additional downward inclusions given that B is effective, we obtain the leftmost square in

72



the commutative diagram with exact rows:

0 !! OX(KX −M) !!

##

OX(KX + S −M)

##

!! OX(KX + S −M)/OX (KX −M) !!

##

0

0 !!
⊕t

i=1 OX+(L− Si,X+) !!
⊕t

i=1 OX+(L) !! OS+ ⊗L !! 0

Recall that S+ is the disjoint union of the S+
i as in Section 4.3. Taking cohomology then

gives the following commutative diagram, where the factorization of the left vertical arrow
into surjective maps will be explained below.

Hd−1RΓmRΓ(S,OX(KX + S −M)/OX (KX −M))

ρ
####

!! HdRΓmRΓ(X,OX(KX −M))

####

Hd−1RΓmRΓ(S,ωS ⊗ (M−1|S))

####

ImageS
#
! κ

!!
!
"

##

ImageX!
"

##

Hd−1RΓmRΓ(S+,L |S+) #
!

!! HdRΓmRΓ(X+,
⊕t

i=1 OX+(L− Si,X+))

Here we define ImageS to be:

Image
(
Hd−1RΓmRΓ(S,OX(KX + S −M)/OX(KX −M)) −→ Hd−1RΓmRΓ(S+,L |S+)

)
.

Note that ImageX is the R-Matlis dual of B0
S(X,∆,M ) by definition, see Definition 4.21. A

main goal of the rest of the proof is to show that ImageS is dual to B0(SN,∆SN ,M |SN).
We first explain the injection of κ. Observe that

Hd−1RΓmRΓ(X+,
t⊕

i=1

L )

surjects onto the kernel of the bottom row, and so, since L −1 is big and semiample, we may
apply Corollary 3.7 and see that the bottom row injects. Thus κ : ImageS ↪→ ImageX also
injects and hence its R-Matlis dual

B0
S(X,∆,M ) $ (ImageS)

∨

surjects.
We now explain origin and surjectivity of ρ. Because X is normal and so Cohen-Macaulay

in codimension 2, the S2-ification on S of OX(KX +S −M)/OX(KX −M) is ωS ⊗ (M−1|S)
(see [MST+22, Subsection 2.1]) and so we have a factorization of sheaves on S

OX(KX + S −M)/OX(KX −M) −→ ωS ⊗ (M−1|S) −→ L |S+

as well since L |S+ = OS+(L|S+) is a colimit of S2 coherent sheaves. Applying local coho-
mology explains the origin of the map ρ. We now explain the surjectivity of ρ (in fact, we
will show that ρ is an isomorphism). Applying RHom(−,ω !

X) to 0 −→ OX(−S) −→ OX −→
OS −→ 0 and taking cohomology, we obtain

0 −→ OX(KX) −→ OX(KX + S) −→ ωS −→ H−(d−1)(ω
!

X) −→ · · ·
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Since X is normal and hence S2, we know that dimH−(d−1)(ω
!

X) < d− 2. After twisting by
M−1, we observe that the cokernel C of

(7.2.1) OX(KX + S −M)/OX(KX −M) −→ ωS ⊗ (M−1|S)

satisfies dimSuppC < d− 2 (alternatively, one sees that (7.2.1) is precisely the S2-ification
map and thus an isomorphism in codimension one). It follows that Hd−2RΓmRΓ(S,C) =
Hd−1RΓmRΓ(S,C) = 0 by [Sta, Tag 0A4R]. This implies that ρ is an isomorphism. There-
fore ImageS is also the image of

Hd−1RΓmRΓ(S,ωS ⊗ (M−1|S)) −→ Hd−1RΓmRΓ(S+,L |S+).

Next notice that dual to OS −→ OSN we obtain ωSN −→ ωS which induces a map of sheaves
on S

OSN(KSN −M |SN) −→ ωS ⊗ (M−1|S).

The cokernel of this map is supported in dimension < d − 1, and so, arguing as above, we
see that

Hd−1RΓmRΓ
(
SN,OSN(KSN −M |SN)

)
$ Hd−1RΓmRΓ(S,ωS ⊗ (M−1|S))

surjects.
In particular, we have the following composition:

Hd−1RΓmRΓ
(
SN,OSN(KSN −M |SN)

)
$ Hd−1RΓmRΓ(S,ωS ⊗ (M−1|S))
$ ImageS
↪→ Hd−1RΓmRΓ

(
S+,L |S+

)

Since S+ = (SN)+, it should be expected, using Lemma 4.8 (a), that the R-Matlis dual of
ImageS is B0(SN,∆′,M |SN) for some Q-divisor ∆′ on SN. We wish to show that this is
true where ∆′ = ∆SN is the different of KX + S + B along SN, see [Kol13, Section 4.1] or
[MST+22, Section 2.1] for more discussion of the different. In other words, we will show
that the composition OSN(KSN −M |SN) −→ ωS ⊗ (M−1|S) −→ L |S+ may be identified with
the canonical map (since the different ∆SN is effective) viewed as sheaves on either S (or
equivalently on SN)

(7.2.2) OSN((KSN −M)|SN) −→ OS+(π∗
SN(KS +∆SN −M)|S+)

where πSN : S+ = (SN)+ −→ SN is the usual map.
To conclude the proof, we must show that we have an isomorphism of OS+-modules

L |S+
∼= OS+(π∗

SN(KSN +∆SN −M |SN)),

and that the map OSN(KSN −M |SN) −→ LS+ we obtained by composition is the same as
the map (7.2.2). The first isomorphism is an immediate consequence of the definition of the
different which guarantees that

(KX + S +B)|SN ∼Q KSN +∆SN .

The second assertion is local on S. In particular, we may forget about R, set M = 0 and
assume that X = SpecA is normal and local, S = Spec(A/I) is reduced and local so that
SN = Spec(A/I)N is the spectrum of a semi-local normal ring. At this point, the argument
is essentially identical to the argument of [MST+22, Theorem 3.1] which we now explain in
a slightly different way.
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We first need a precise definition of the different. We may write KX = −S + G where
G ≥ 0 does not contain any component of S within its support. This in fact determines a
canonical divisor on SN. Consider a global section y ∈ OX(KX + S) = OX(G) determining
G (note we may take y = 1 ∈ OX(G)). The image of y, y ∈ ωS becomes a rational section of
ωSN via the map ωSN −→ ωS, this rational section determines the divisor we call KSN . Write
KX + S + B = 1

m div f for some f ∈ A. Then, setting f ∈ (A/I)N as the image of f , we
define the different as

∆SN :=
1

m
divSN f −KSN .

It is independent of our choices and always effective, see [Kol13, Section 4.1]. With this in
place, and the careful choice of KSN described above, the map we constructed earlier in the
proof

(7.2.3) OSN(KSN) −→ ωS −→ L |S+ = OS+(π∗(KX + S +B)|S+)

sends the rational section y to an honest section of ωS which came from the section 1 ∈
OX(KX +S) ⊆ OX+(π∗(KX +S+B)) = 1

f1/m OX+. In particular, in the composition (7.2.3),

y is sent to 1 ∈ 1

f
1/m OS+ = L |S+. On the other hand, the map

OSN(KSN) −→ OS+(π∗(KSN +∆SN)) =
1

f
1/m

OS+

also sends y to 1 by construction, and so the two maps agree since they are maps between
rank-1 sheaves and so are determined by where they send any single nonzero (on any irre-
ducible component) rational section. !

Remark 7.3. One may also obtain an alternative proof in the case where M − KX − ∆ is
ample, by passing to the affine cones, and using Theorem 5.2 and [MST+22].

Recall from Remark 4.30 that when R is not necessarily complete, we define B̂0
S(X,∆;M )

to be the the Matlis dual of

Im

(
HdRΓmRΓ(X,OX(KX−M)) −→ HdRΓmRΓ(X+,

t⊕

i=1

OX+(−S+
i +π∗(KX +∆−M)))

)
.

Corollary 7.4. With the same assumptions as in Theorem 7.2, but with H0(X,OX) = R
and R not necessarily complete but satisfying Setting 7.1, we have that the restriction map

H0(X,M )⊗R R̂ = H0(XR̂,MR̂) −→ H0(SN
R̂
,M |SN

R̂
) = H0(SN,M |SN)⊗R R̂

induces a surjection
B̂0

S(X,∆;M ) $ B0(SN
R̂
;∆SN

R̂
;M |SN

R̂
).

Proof. The proof is the same as that of Theorem 7.2 in view of Proposition 4.29 since
Corollary 3.7 does not require that R is complete. !

When S is globally +++-regular, we obtain the following important consequence.

Corollary 7.5 (Adjunction and inversion of adjunction). Let (X,∆ = S + B) be a pair
proper over R = H0(X,OX) satisfying Setting 7.1. Assume additionally that S is a reduced
Weil divisor having no common components with B, and such that −KX − ∆ is big and
semiample. Let ∆SN denote the different of KX + S +B on SN with respect to (X,S +B).
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Then (X,S +B) is purely globally +++-regular (along S) if and only if (SN,∆SN) is globally
+++-regular (in the sense of Remark 6.4 if S is not irreducible).

When R is complete, notice that R = R̂ and B0
S = B̂0

S.

Proof. By and using the notation of Corollary 7.4, we have a surjection

B̂0
S(X,∆,OX) $ B0(SN

R̂
,∆SN

R̂
;OSN

R̂
).

Notice that B̂0
S(X,S +B;OX) ⊆ H0(XR̂,OXR̂

) = R̂.
First suppose that (SN,∆SN) is globally +++-regular. Then so is the base change to the

completion (SN
R̂
,∆SN

R̂
) by Corollary 6.9. Notice that a priori, SN

R̂
may have even more com-

ponents than SN since if SN
i is such a component of SN, we may have that H0(SN

i ,OSN
i
)

is only semilocal. However, this will not cause a problem for us; SN already perhaps had
multiple components.

Regardless, B0(SN
R̂
,∆R̂;OXR̂

) = H0(SN
R̂
,OSN

R̂
). Our surjectivity then implies that B̂0

S(X,∆,OX)

must contain an element z of H0(XR̂,OXR̂
) = R̂ mapping to 1 ∈ H0(SN

R̂
,OSN

R̂
). But such a

section z is necessarily a unit of R̂ and so B̂0
S(X,S + B;OX) = R̂ = H0(XR̂,OXR̂

). Hence
(X,∆) is purely globally +++-regular along S.

Conversely, if (X,S + B) is purely globally +++-regular then B̂0
S(X,S + B;OX) contains

a unit, and hence so does its image B0(SN
R̂
,∆SN

R̂
;OSN

R̂
) ⊆ H0(SN

R̂
,OSN

R̂
). Thus (SN,∆SN) is

globally +++-regular by Proposition 6.8. !

Corollary 7.6. Let X −→ SpecR be a proper morphism of schemes such that H0(X,OX) =
R satisfies Setting 7.1. Suppose that (X,S + B) is a pair where S and B have no common
components and S is reduced. Finally, assume that −KX −S−B is big and semiample over
SpecR. Then (X,S +B) is purely globally +++-regular along S if and only if it is completely
purely globally +++-regular over R along S.

Note that the assumptions of this corollary are satisfied when X = SpecR.

Proof. By Corollary 7.5, we see that (X,S + B) is purely globally +++-regular if and only if
(SN,∆SN) is globally +++-regular. That is equivalent to (SN

R̂
,∆SN

R̂
) being globally +++-regular

by Corollary 6.9. Hence applying Corollary 7.5 again, we see that this is equivalent to
(XR̂, (S +B)R̂) being purely globally +++-regular as desired. !

Proposition 7.7 (Global to local). Suppose X is a normal Noetherian excellent integral
scheme with a dualizing complex and where every closed point of X has positive characteristic
residue field. Further suppose that (X,S+B) is purely globally+++-regular for a reduced divisor
S and that KX + S +B is Q-Cartier. Then (X,S +B) is plt.

Proof. Choose x a closed point and let R = ÔX,x. By Corollary 7.6 we may assume X =
SpecR. By Lemma 4.25, the map induced by Grothendieck duality:

H0(Y,OY (KY + SY−9f
∗(KX + S +B):)) −→ H0(X,OX)

is surjective for every projective birational morphism f : Y −→ X from a normal integral
scheme Y . This is the case exactly when 9KY + SY − f ∗(KX + S + B): is effective and
exceptional over X (cf. Lemma 2.36), which, in turn, is equivalent to the requirement that
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5B6 = 0 and that all the exceptional divisors on Y have discrepancy greater than −1. As
this is true for every projective birational morphism, (X,∆) is plt. !

Our result also implies a surjectivity of H0 under certain hypotheses, which implies that
SN is connected. Also compare with [KM98, Theorem 5.48] and [Sho92, 5.7].

Corollary 7.8. Assume X −→ SpecR is proper where R satisfies Setting 7.1 and such that
H0(X,OX) = R. Suppose that (SN,∆SN) is globally +++-regular (in the sense of Remark 6.4
if S is not integral) and M −KX −∆ is big and semiample. Then

H0(X,M ) −→ H0(SN,M |SN)

is surjective. As a consequence, if additionally −KX −∆ is big and semiample, then SN
R̂
is

connected and thus integral and thus so is SN.

Proof. By Corollary 7.4, the map

B̂0
S(X,∆;M ) −→ B0(SN

R̂
,∆SN

R̂
;M |SN

R̂
)

is surjective. By Proposition 6.8, we know that B0(SN
R̂
,∆SN

R̂
;M |SN

R̂
) = H0(SN

R̂
,M |SN

R̂
) and so

since B0
S(XR̂, S

N
R̂
+∆R̂;MR̂) ⊆ H0(XR̂,MR̂), we obtain that H0(XR̂,MR̂) −→ H0(SN

R̂
,M |SN

R̂
)

is surjective. Thus H0(X,M ) −→ H0(SN,M |SN) is surjective as well, since R̂ is faithfully
flat over R.

For the statement that SN
R̂

is connected, notice that we have that H0(XR̂,OXR̂
) −→

H0(SN
R̂
,OSN

R̂
) =: A surjects and that H0(XR̂,OXR̂

) = R̂ is a local domain. Thus A is a

normal local ring as well. This implies that A is an integral domain. On the other hand
SN
R̂

is a disjoint union of normal integral schemes say
∐

Si. Thus A =
∏

H0(Si,OSi) is a
product of domains, and so cannot be a domain itself unless there is only one Si, meaning
that SN

R̂
is connected and integral as desired. !

In fact, we frequently also have that S is normal.

Corollary 7.9. Suppose (X,S +B) is a pair where KX +S +B is Q-Cartier, S is reduced,
and B ≥ 0 is a Q-divisor with no common components with S. We assume that all closed
points of X are of positive characteristic. Let ∆SN denote the different of KX + S + B on
SN with respect to (X,S +B).

Suppose that (SN,∆SN) is globally +++-regular or that (X,S+B) is purely globally +++-regular
along S. In either case, S is normal.

Proof. Fix a closed point x ∈ S ∈ X . It suffices to show that OS,x is normal (note that
such localizations still imply the various pairs are globally +++-regular). Thus we assume that
X = SpecOX,x = SpecR.

In view of Corollary 7.5, in either case we have that (SN,∆SN) is globally +++-regular.

Observe that
(
SN
R̂
,∆SN|SN

R̂

)
is still globally +++-regular by Corollary 6.9. Now, if SR̂ is normal

then so is S, so we may assume that R = R̂, X = Spec R̂ and observe that −(KX + S +B)
is big and semiample since we are working locally. But now by Corollary 7.8 we see that the
composition OX −→ OS −→ OSN is a surjection, implying that S is normal. !
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Note in the above we needed to assume every closed point has positive characteristic residue
field since we do not believe that the globally +++-regular hypothesis necessarily implies plt
without it, see Remark 6.3 for some additional discussion.

Corollary 7.10. Suppose that X −→ SpecR is proper where H0(X,OX) = R and R satisfies
Setting 7.1. Next assume that (X,S+B) is a purely globally +++-regular (or completely purely
globally +++-regular over R) pair along S and −KX − S −B is big and semiample. Then S is
normal and integral.

Proof. Since X is proper over R, every closed point of X has positive characteristic residue
field (since they must all map to the closed point of SpecR). We may now replace R by its
completion by Corollary 7.6 since if SR̂ is normal and integral so is S. We see that (SN,∆SN)
is globally +++-regular by Corollary 7.5 hence S is normal by Corollary 7.9. Furthermore, S
is connected by Corollary 7.8. This proves that S is integral. !

As a corollary, we also recover the standard global generation result on Seshadri constants
[Dem93] (cf. Section 2.9, [Laz04, Chapter 5]).

Theorem 7.11. Let (X,B) be a pair of dimension n proper over SpecR where R is Noe-
therian complete local and has positive characteristic residue field. Let x ∈ X be a closed
point such that at the point x, (X,B) is klt, X is regular, and SuppB is simple normal
crossing. Let M be a Cartier divisor with M = OX(M) such that A := M − (KX + B) is
big and semiample. Further suppose that εsa(A; x) > a(E,X,B) where a(E,X,B) is the log
discrepancy of (X,B) along the exceptional divisor E of the blow-up π : X ′ −→ X at x.

Then B0(X,B;M ) globally generates M at x. In particular, x is not a base point of |M |.

If X is nonsingular and B = 0, then a(E,X,B) = dimOX,x = dimX under our hypothe-
ses. Hence we recover the usual formulation of global generation via Seshadri constants:
namely that εsa(M −KX ; x) > dimX implies that M is globally generated at x.

Proof. Denote the log discrepancy a(E,X,B) by a. By definition, KX′ +π−1
∗ B+(1−a)E =

π∗(KX + B). Notice that for each rational 0 ≤ t < εsa(A; x) we have that π∗A − tE is big
and semiample. Thus since εsa(A) > a, we have that

π∗M − (KX′ +E+π−1
∗ B) = π∗A+KX′ +π−1

∗ B+(1− a)E− (KX′ +E+π−1
∗ B) = π∗A− aE

is big and semiample, and so

(7.11.1) B0
E(X

′, E + π−1
∗ B; π∗M ) −→ B0(E,BE;OE)

is surjective by Theorem 7.2, where KE +BE = (KX′ +E+π−1
∗ B)|E. Notice that E - Pn−1

since X is regular at x. Furthermore, since SuppB is simple normal crossings, the compo-
nents of B are defined locally by part of a system of parameters of mx. Hence the support of
BE is made up of coordinate hyperplanes, which thus remain coordinate hyperplanes even
after base change of the residue field of x. We would like to assert that (E,BE) is globally F -
regular but the residue field k(x) need not be F -finite and so neither is E. However, because
the coefficients of BE are < 1, we have that the base change of (E,BE) to the perfection
of k(x) is globally F -regular; indeed notice that the base change BE remains coordinate
hyperplanes with coefficients < 1 and so (E,BE) is globally F -regular by [SS10, Proposi-
tion 5.3] (since the section ring pair is strongly F -regular). Therefore (E,BE) is globally
+++-regular by Corollary 6.18. Thus, the right hand side of (7.11.1) is equal to H0(E,OE).
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Hence B0
E(X

′, E + π−1
∗ B; π∗M ) ⊆ H0(X ′, π∗M ) contains a section which does not vanish

at x. But now, for 1& ε > 0

B0
E(X

′, E + π−1
∗ B; π∗

M ) ⊆ B0(X ′, (1− ε)E + π−1
∗ B; π∗

M ) ⊆ B0(X,B;M ).

where first containment follows from Lemma 4.26 and the second follows from Lemma 4.19.
This completes the proof. !

Remark 7.12. The condition that B is simple normal crossing at x was only used to guarantee
that the exceptional divisor pair (E,BE) was globally F -regular (up to appropriate base
change to make it F -finite). One can weaken the simple normal crossing hypothesis if one
instead assumes that (E,BE) is globally F -regular, the proof is unchanged.

7.1. Globally +++-regular birational morphisms of surfaces. In this subsection, we give
new proofs of [MST+22, Theorem 7.11 and Theorem G], in the case when the fixed big Cohen-

Macaulay algebra is equal to R̂+. Explicitly, we show that, locally, two-dimensional klt
and three-dimensional plt pairs (X,∆) with standard coefficients and residue characteristics
p > 5 are globally +++-regular and purely globally +++-regular, respectively. In fact, we will
show much stronger results, which we shall need in the proof of the existence of flips: that
two-dimensional klt and three-dimensional plt Fano pairs are globally +++-regular and purely
globally +++-regular relative to a birational map. Our approach for proving these results is
the same as in [HW22a] which simplified the original strategy of [HX15].

In what follows, we continue to assume Setting 7.1 that (R,m) is an excellent local domain
with residue characteristic p > 0 and a dualizing complex.

We start by stating the following lemma, which generalizes the existence of Kollár’s com-
ponent for surfaces (c.f. [MST+22, Proof of Theorem 7.11]).

Lemma 7.13. Let (X,B) be a two-dimensional klt pair admitting a projective birational
map f : X −→ Z = SpecR such that −(KX + B) is relatively nef, assuming that R is as
in Setting 7.1 and additionally has infinite residue field . Then there exist an f -exceptional
irreducible curve C on a blow-up of X and projective birational maps g : Y −→ X and h : Y −→
W over Z such that:

(a) g extracts C or is the identity if C ⊆ X,
(b) (Y, C +BY ) is plt,
(c) (W,CW +BW ) is plt and −(KW + CW +BW ) is ample over Z,
(d) h∗(KW + CW +BW )− (KY + C +BY ) ≥ 0,

where KY + bC +BY = g∗(KX +B) for C +⊆ SuppBY , CW := h∗C += 0, and BW := h∗BY .

We warn the reader that it may happen that g is the identity and C lies on X . Further,
we added the assumption that R/m is infinite to avoid potential issues with tie-breaking (cf.
Remark 8.6).

Proof. This follows by exactly the same proof as [HW22a, Lemma 2.8]. This is a consequence
of the two dimensional Minimal Model Program in mixed characteristic, see [Tan18b]. Note
that tie-breaking employs Bertini’s theorem for regular schemes, which in our setting is
known by Theorem 2.17. !

In this and the next result, we add an additional εD to the boundary as it will be important
in the proof of the existence of flips.
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Theorem 7.14. Let (X,B) be a two-dimensional klt pair admitting a projective birational
map f : X −→ Z = SpecR such that −(KX + B) is relatively nef. Here the ring R is as
in Setting 7.1 and has residual characteristic p > 5. Suppose further that B has standard
coefficients. Then, for every divisor D ≥ 0 and 0 ≤ ε 7 1 depending on D, we have that
(X,B + εD) is globally +++-regular.

Proof. We may assume that R = H0(X,OX) is normal. By Corollary 6.9 we may also
assume that R is complete. If the residue field of the complete ring R is not infinite, we
may further pass to the completion of the strict Henselization R′. Indeed, checking that
OX −→ f∗OY (5f ∗(B + εD)6) splits for a finite dominant map f : Y −→ X can be checked
after such a base change. Hence we may assume that the residue field of R is infinite.

We apply Lemma 7.13 and use its notation. First, write KC +BC = (KW +CW +BW )|C
where C is identified with CW . Further, write DY = g−1

∗ D and pick a divisor DW on
W such that CW +⊆ SuppDW and DY ≤ h∗DW + C. Since −(KC + BC) is ample and
BC has standard coefficients, we must have that Ck

∼= P1 since by [Sta, Lemma 0C19],
g(C) = 0, and if Ck was not normal, then degBCk

≥ 2 for the anti-ample Q-Cartier divisor
KCk

+ BCk
= (KW + CW + BW )|Ck

by [PW22, Theorem 1.1]. Furthermore BCk
also has

standard coefficients, since coefficient of BCk
is either equal to a coefficient of BC or is at

least p times such a coefficient (hence it is at least p
2), and with p > 5, the presence of such

a coefficient would prevent ampleness of −(KCk
+BCk

). Therefore, (Ck, BCk
) is globally F -

regular, see [Wat91], and so is (Ck, BCk
+ εDW |Ck

) for 0 ≤ ε7 1. Hence by Corollary 6.18,
(C,BC + εDW |C) is globally +++-regular. Thus, by inversion of adjunction in the form of
Corollary 7.5, (W,CW +BW + εDW ) is purely globally +++-regular.

Proposition 6.28 and Condition (d) imply that (Y, C + BY + εh∗DW ) is purely globally
+++-regular. By Lemma 6.7 and Lemma 6.27, (Y, bC +BY + εDY ) is globally +++-regular, and
so is (X,B + εD) by Proposition 6.19 where the notation is as in Lemma 7.13. !

Corollary 7.15. Let (X,S+B) be a three-dimensional plt pair and let f : X −→ Z = SpecR
be a projective birational map such that −(KX + S + B) is relatively semiample, where R
satisfies Setting 7.1 and is of residue characteristic p > 5. Assume further that B has
standard coefficients, 5B6 = 0, and S is reduced. Then S is a normal prime divisor and
setting KS + BS = (KX + S + B)|S (with BS the different), we have that (S,BS + εD) is
globally +++-regular for every Cartier divisor D and 0 < ε7 1. Finally, (X,S +B) is purely
globally +++-regular.

Proof. By Corollary 6.9 and Corollary 7.6 we may assume that R is complete. Let SN −→ S
be the normalization of S and writeKSN+BSN = (KX+S+B)|SN . Theorem 7.14 implies that
each component of (SN, BSN + εD|SN) is globally +++-regular (and hence (SN, BSN + εD|SN) is
globally +++-regular in the sense of Remark 6.4). Hence S is normal and integral and (X,S+B)
is purely globally +++-regular by Corollary 7.5 and Corollary 7.10. !

In fact, the proof even shows that (X,S +B + εH) is purely globally +++-regular for every
Cartier divisor H on X not containing any component of S, for 1& ε > 0.

We also observe that Theorem 7.14 gives a new proof of the following results of a subset
of the authors, in the case when the fixed big Cohen-Macaulay algebra is equal to R̂+.
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Corollary 7.16 ([MST+22, Theorem 7.11]). Let (S,∆) be a klt pair with standard coefficients
where S = SpecA for an excellent two-dimensional normal local domain (A,m) of mixed
characteristic (0, p) for p > 5. Then (S,∆) is globally +++-regular.

Proof. Apply Theorem 7.14 to (X,B) = (S,∆) and f the identity map. !

We also recall a special case of [MST+22, Theorem G] in our setting. The following proof
shows that the divisor S of a three-dimensional plt pair (X,S+B) is normal at every closed
point where the residual characteristic is greater than 5 as long as either B has standard
coefficients or X is Q-factorial

Corollary 7.17. Let (X,S + B) be a three-dimensional plt pair where S is reduced, B has
standard coefficients and 5B6 = 0. Then at every closed point x ∈ X where char k(x) > 5,
we have that S is normal at x and if Sx = SpecOS,x, then (Sx, BS|Sx) is globally +++-regular
at (here BS is the different of KX + S +B along S).

Moreover, S is normal at every closed point x ∈ X of residue characteristic p > 5 even
when B does not have standard coefficients, if we assume that X is Q-factorial.

Proof. Note first that since (X,S+B) is plt, and since log resolutions exist for 3-dimensional
excellent schemes see Section 2.3, the completion of (X,S + B) at any closed point is also
plt. Hence replacing X by its completion at a closed point x ∈ X , we may assume that
X = SpecR for a three-dimensional complete local domain (R,m) of residual characteristic
p > 5. Here we used that the completion of a ring is faithfully flat, and normality descends
under faithfully flat extensions. Notice that X −→ SpecR is projective since it is the identity.
Let SN −→ S be the normalization of S and set BSN to be the different of KX +S +B along
SN. By [Kol13, Lemma 4.8] (SN, BSN) is klt and so Corollary 7.16 implies that (SN, BSN) is
globally +++-regular. Hence S is normal by Corollary 7.10.

The last part follows as (X,S) is plt when X is Q-factorial. !

Remark 7.18. Suppose (X,S+B) is aQ-factorial three dimensional plt pair over any excellent
finite dimensional domain R with a dualizing complex and whose residue characteristics at
closed points have characteristic zero or greater than 5. Then S is normal. Indeed, the above
result implies that S is normal at the closed points of positive residual characteristics. At
characteristic zero points this follows from the standard arguments [KM98, Proposition 5.51]
in view of [Mur21].

8. Existence of flips

Notation 8.1. All schemes in this section are defined over a complete normal Noetherian
local domain (R,m) with residue field R/m of characteristic p > 0. We set Z = Spec(R),
which will serve as the base of our flipping contractions.

For pairs (X,∆) in this section, we will always assume that ∆ is a Q-divisor and KX +∆
is Q-Cartier.

Remark 8.2. In this remark, fix the fraction field K of some excellent domain A. We say
that V =

⊕
i Vi is a function algebra if it is an N-graded A-algebra with A ⊆ V0 being a

finite extension, Vi ⊆ K finitely generated over A, and the multiplication on V induced from
K (that is, V is a subalgebra of K[T ]). We call V (j) =

⊕
j|i Vi the j-Veronese subalgebra of

V . We say that two function algebras V and V ′ are Veronese equivalent, if some Veronese
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subalgebra of V is isomorphic to some Veronese subalgebra of V ′. Finite generation of
function algebras is stable under Veronese equivalence (cf. [Cor07, Lemma 2.3.3]).

We encourage the reader to recall Definition 2.19 and Remark 2.20.

Outline 8.3. The goal of the present section is to prove the existence of flips for threefolds
in the situation of Notation 8.1 when p > 5.

Let us start with presenting the general idea of our proof, which largely follows the argu-
ment of Hacon and Xu in positive characteristic [HX15] (in turn motivated by the strategy
of Shokurov in characteristic zero, see [Cor07]). As explained in [KM98, Lem 6.2], the main
goal is to show that for a pair (X,∆) with mild singularities (such as klt) and with a flipping
contraction f : X −→ Z of relative Picard rank one14, the sheaf of OZ-algebras⊕

m∈N

f∗OX(5m(KX +∆)6)

is finitely generated; the flip is then given as the Proj of this algebra. For this purpose we
may assume that Z is affine, which reduces the problem to showing that the section ring

(8.3.1) R(X,KX +∆) =
⊕

m∈N

H0(X,OX(5m(KX +∆)6))

is finitely generated over R = H0(Z,OZ). An obvious way to approach this is to prove that
KX +∆ is semiample over R. Unfortunately, this will never happen as, by the definition of
a flipping contraction, KX +∆ is anti-ample. This suggests that we should find a semiample
Q-divisor to which R(X,KX+∆) can be related. More precisely, we want to find a projective
birational morphism π : Y −→ X and i > 0 such that

(8.3.2) Mi := Mob
(
iπ∗(KX +∆)

)
is base point free, and kMi = Mik for all k > 0.

Then R(X,KX + B) and R(Y,Mi) are Veronese equivalent by the definition of the mobile
part and by the stabilization. In particular, since the latter algebra is finitely generated by
base-point-freeness, so is the former.

It turns out that it is very hard to prove such a statement. For every i we can find a
resolution for which Mi is base point free, but the resolution will a priori depend on i, and
there are not enough tools to prove that kMi = Mik directly on Y . As usual in birational
geometry we address this problem by restricting to a divisor.

Suppose that there exists an irreducible relatively anti-ample divisor S with singularities
so mild (and being sufficiently transversal to ∆) that we can increase its coefficient at ∆ so
that 5∆6 = S and (X,∆) is plt. Since the relative Picard rank is one and S is anti-ample,
−(KX +∆) is still ample and the new canonical ring is Veronese equivalent to the old one.
Hence, it is enough to show that our new R(X,KX + ∆) is finitely generated. Flipping
contractions for which such S exists are called pl-flipping; note that this is quite a restrictive
condition: in the spirit of Bertini, we should be able to find a very ample divisor with mild
singularities, but not necessary an anti-ample one. Nevertheless, it is a standard argument
that if you can prove the existence of flips for pl-flipping contractions (called pl-flips), then
you can use them to construct all flips (cf. Proposition 9.13); briefly speaking, you pick an
arbitrary anti-ample S and then improve its singularities by running a special MMP on a
log resolution and this only needs pl-flips. The huge advantage of pl-flipping contractions is

14in our actual proof this assumption will be weakened
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that (KX +∆)|S = KS +∆S for a klt pair (S,∆S) which suggests a possibility for applying
induction.

Alas, the finite generation of R(S,KS +∆S) is not enough to deduce the finite generation
of R(X,KX + ∆) as the restriction map R(X,KX + ∆) −→ R(S,KS + ∆S) need not be
surjective. It is easy to see, however, that if

RS = image
(
R(X,KX +∆) −→ R(S,KS +∆S)

)

is finitely generated, then so is R(X,KX +∆) (see the proof of Theorem 8.25). To this end,
we apply the idea mentioned earlier: we find a projective birational morphism π : Y −→ X
such that Mi|S′ satisfies the conditions of (8.3.2), where S ′ is the strict transform of S, and
so R(S ′,Mi|S′) is finitely generated. It turns out, after some work, that RS is Veronese
equivalent to R(S ′,Mi|S′), and so is finitely generated as well, concluding the proof.

The finite generation of (8.3.1) for pl-flips is shown in the present section (Corollary 8.26),
and the next section contains the reduction to pl-flips. Below, we introduce the notation
needed to make the present outline more precise. Then, we give a more detailed explanation
in Outline 8.12. The assumption that p > 5 and ∆ has standard coefficients will be needed
so that (S,BS) is globally +-regular.

Definition 8.4. In the situation of Notation 8.1, a pl-flipping contraction over Z = SpecR
is a projective birational morphism f : X −→ Z of a plt pair (X,S + B) with 5B6 = 0 and
S irreducible such that f is small (that is, Exc(f) is of codimension at least two), and −S
and −(KX + S +B) are f -ample.

Note that we do not assume in Definition 8.4, as is usually the case, that ρ(X/Z) = 1.

8.1. Finite generation of the restriction algebra. In the entire present subsection we
work in the framework of the following notation. We do not state separately that this setting
is assumed.

Setting 8.5. In the situation of Notation 8.1, we assume additionally that R/m is infinite.
Let f : X −→ Z be a three-dimensional pl-flipping contraction of a plt pair (X,S+B), where
dimR = 3 and Z = SpecR. Since X admits a small birational morphism to an affine
scheme, we can replace KX by a linearly equivalent divisor so that KX +S+B is an effective
Q-divisor and does not contain S in its support. This choice of KX is fixed for the whole
section.

We also assume that S is normal and (S,BS + εD) is globally +++-regular for every effective
divisor D on S and 0 ≤ ε7 1 (depending on D), where KS +BS = (KX + S +B)|S. This
is the case, for example, if B has standard coefficients and p > 5 (Corollary 7.15).

Under the above hypothesis, KX is not effective and KX + S + B may contain some
components of B in its support. We choose KX in the way as above so that BS is the
different of (X,S +B) along S, where (KX + S +B)|S = KS +BS.

Remark 8.6. The residue field R/m in Setting 8.5 is assumed to be infinite for the sole
purpose so that if we have

◦ a normal Noetherian excellent separated scheme X over R,
◦ a base-point-free line bundle L on X , and
◦ finitely many points x1, . . . , xn ∈ Xm,
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then there is an element in the linear system |L| which does not vanish at any of the points
xi.

Notation 8.7. For a log resolution π : Y −→ X of (X,S+B) as in Setting 8.5, we introduce
the following notation:

◦ S ′ is the strict transform of S,
◦ KY + S ′ +B′ = π∗(KX + S +B),
◦ KS′+BS′ = (KY +S ′+B′)|S′, where we choose forKS′ the representative (KY +S ′)|S′,
◦ A′ = −B′, and
◦ AS′ = −BS′ , so that AS′ = A′|S′.

Furthermore, for every integer i > 0 such that i(KX + S +B) is Cartier, we set

Mi := Mob(i(KY + S ′ +B′)), and(8.7.1)

Mi,S′ := Mi|S′,

which makes sense as Mi does not have S ′ within its support. We note that it is vital to
remember that Mi,S′ is the restriction of the mobile part, as opposed to the mobile part of
the restriction. Additionally write

Di :=
1

i
Mi, Di,S′ :=

1

i
Mi,S′.

By definition, Dj ≤ Di whenever j(KX + S +B) is Cartier and j | i.

Remark 8.8. As π is a log resolution of (X,S + B), the induced morphism π|S′ : S ′ −→ S
is a log-resolution as well. Additionally, BS is defined in a way such that KS′ + BS′ =
π|∗S′(KS + BS) holds. This implies that AS′ = −BS′ is the discrepancy divisor of the pair
(S,BS) on the log resolution S ′ −→ S.

Since (X,S + B) is plt, (S,BS) is also klt. Therefore, by the definition of A′ and by the
previous paragraph, we have that 9A′: and 9AS′: are effective and exceptional over X and S,
respectively. We will also repeatedly use that every line bundle on Y or S ′ is automatically
big (as Y −→ SpecR and S ′ −→ f(S) are birational).

Definition 8.9. In the situation of Notation 8.7, let π : Y −→ X be a log resolution of
(X,S +B). We say that it is good if

◦ it is also a log resolution of (X,S + B + (KX + S + B)) for KX + S + B being the
explicit effective Q-divisor fixed in Setting 8.5, and
◦ S ′ −→ S factors through the terminalization S of (S,BS) (which is unique as S is
two-dimensional)

Let i > 0 be an integer such that i(KX + S + B) is Cartier. Then we say that π : Y −→ X
is compatible with i, if it is good and it is a resolution of the linear system |i(KX + S +B)|.
The latter condition is equivalent to |Mi| being base point free.

Observe that S is a terminal surface hence it is regular.

Remark 8.10. If π : Y −→ X is a good log resolution of (X,S+B), then Supp(S ′+B′+Mi+
Ex(π)) is simple normal crossing for every integer i > 0 such that i(KX + S +B) is Cartier.

When Y is compatible with i, which essentially will always need to be the case for us, then
the choice of π, Y , and S ′ depends on i. Note that given i, j ∈ N, we can always construct
Y which is compatible with both i and j (cf. [CP19, Lemma 4.5]). However, a priori, it
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might not be possible to construct Y which is compatible with all i ∈ N simultaneously; a
posteriori such Y exists as a consequence of the existence of flips.

Remark 8.11. Given a sequence of maps Ỹ
h
−→ Y −→ X such that Ỹ −→ X and Y −→ X are

resolutions compatible with i, we have that h∗Di = D̃i, where D̃i is calculated for Ỹ exactly
as Di is calculated for Y . The same property holds for Di,S′.

We emphasize that if Y −→ X is not compatible with i, then although Di = h∗D̃i, it
need not even be true that Di,S′ = (h|S̃′)∗D̃i,S̃′, where S̃ ′ is the strict transform of S ′ and

D̃i,S̃′ = D̃i|S̃′ (pushing forward for divisors does not commute with restrictions).

Outline 8.12. Having introduced the above notation, we are able to provide a more detailed
version of Outline 8.3. As explained therein, our goal is to show that

RS = image
(
R(X,KX + S +B) −→ R(S,KS +BS)

)

is finitely generated. We will prove that, up to taking a Veronese subalgebra,

(8.12.1) RS =
⊕

i

H0
(
S,OS(iDS)

)

for a semiample Q-divisor DS on S, where (S,BS) is the terminalization of (S,BS). In
particular, this implies that RS is finitely generated.

The Q-divisor DS is constructed as follows. First, for a log resolution π : Y −→ X compat-
ible with i ∈ N we show that Di,S′ is a pullback of a Q-divisor Di,S on S (Proposition 8.15).
Then, we define an R-divisor DS as the limit of Di,S for i −→ ∞ and show that, in fact, it is
a Q-divisor (Theorem 8.20). Next, we show that Di,S coincides with DS for divisible enough
i > 0 (Proposition 8.22). Last, we prove the validity of (8.12.1) (Claim 8.24), and conclude
that RS is finitely generated (Proposition 8.23).

Let us emphasize that we use in an essential way that S is a surface, and so we cannot
run the above limiting process directly on a birational model of X .

The key to our strategy is to understand the divisors Mi|S′ which are restrictions of mobile
parts of iπ∗(KX+S+B) to S ′. Since Mob does not commute with restrictions in general, we
want to find a property of the divisors Mi that could also be shared by Mi|S′. The following
technical lemma identifies such a property.

Lemma 8.13. For every log resolution π : Y −→ X of (X,S + B), if i, j > 0 are integers
such that i(KX + S +B) and j(KX + S +B) are Cartier, then Mob9jDi + A′: ≤ jDj.

Let us point out that from the viewpoint of Kawamata-Viehweg or B0-lifting, the divisors
of the form 9jDi + A′: work well, see (8.18.1).

Proof. Since 9A′: ≥ 0 is exceptional over X , we have that π∗OY (j(KY + S ′ +B′) + 9A′:) =
OX(j(KX + S + B)) = π∗OY (j(KY + S ′ + B′)) (cf. Lemma 2.36). This implies that D =→
D + 9A′: yields a bijection between |j(KY + S ′ + B′)| and |j(KY + S ′ +B′) + 9A′:|, which
is what we use in the first equality of the following computation:

Mob(9jDi + A′:) ≤ Mob(j(KY + S ′ +B′) + 9A′:) = Mob(j(KY + S ′ +B′)) = jDj. !

In fact, to deduce the properties ofDS mentioned in Outline 8.12, it is enough to show that
the identity of Lemma 8.13 holds also after restricting to S ′, and the rest of the argument for
the existence of flips would be mostly characteristic free except for some technical issues with
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Bertini. In characteristic zero, this can be achieved by the Kawamata-Viehweg vanishing.
More precisely, the surjectivity of H0(Y,OY (9jDi + A′:)) −→ H0(S ′,OS′(9jDi,S′ + AS′:)) in
characteristic zero (cf. (8.18.1)) immediately implies that Mob9jDi,S′ + AS′: ≤ jDj,S′ Alas,
it seems impossible to show this surjectivity directly in positive and mixed characteristic, so
we obtain the above surjectivity only towards the end of this subsection in Proposition 8.22.

Remark 8.14. In the following proof we will use that the normalization f(S)N of f(S) is Q-
factorial. Indeed, by Lemma 2.34 in dimension two, we can pick an effective ample Q-divisor
HS ∼Q −(KS + BS) such that (S,BS +HS) is klt. Hence (f(S)N, (f |S)∗BS + (f |S)∗HS) is
klt as well.

Proposition 8.15. Let i > 0 be an integer such that i(KX + S + B) is Cartier and let
π : Y −→ X be a log resolution of (X,S + B) which is compatible with i. Then the divisor
Mi,S′ descends to S: it is a pullback of some divisor Mi,S on S.

We emphasize here that Mi,S is not defined as Mi,S′ was defined in (8.7.1), i.e. by restricting

a divisor from an ambient space; it is the pushforward of Mi,S′ to S.

Proof. As Mi and Mi,S′ are integral, we have that

9Mi + A′: = KY + S ′ + {B′}+Mi − π
∗(KX + S +B), and(8.15.1)

9Mi,S′ + AS′: = KS′ + {BS′}+Mi,S′ − (π|S′)∗(KS +BS).(8.15.2)

Since Mi − π∗(KX + S + B) is big and semiample (as both Mi and −π∗(KX + S + B) are
big and semiample), Theorem 7.2 yields a surjection

(8.15.3) B0
S′(Y, S ′ + {B′};OY (9Mi + A′:)) $ B0(S ′, {BS′};OS′(9Mi,S′ + AS′:)).

Applying Lemma 8.13 with j = i yields Mob(Mi+9A′:) = Mi. Combining this with (8.15.3)
we obtain that every section in the vector space B0(S ′, {BS′};OS′(9Mi,S′ + AS′:)) vanishes
along 9AS′:.

As the support of 9AS′: is equal to the exceptional locus of g : S ′ −→ S (by definition of
terminalization), to prove the proposition it is enough to show that there exists an element
of |Mi,S′| which does not intersect 9AS′:. Assume by contradiction the opposite. Then, as
|Mi,S′| is free, there exists an element M ∈ |Mi,S′| which does not contain any component of
9AS′: in its support, see Remark 8.6. By our contradiction assumption we may then choose
x ∈ SuppM ∩ Supp9AS′:.

Note that the exceptional locus of S ′ −→ f(S) is simple normal crossing and the normal-
ization of f(S) is Q-factorial by Remark 8.14. Therefore, we can pick an effective Q-divisor
F on S ′ which is anti-ample and exceptional over f(S) and such that (S ′, {BS′}+F ) is both
klt at x and simple normal crossing at x. Furthermore, by taking a suitable positive multiple
of F , for any 0 < δ 7 1 (to be determined later) we may find Fδ ≥ F such that at least
one of the exceptional divisors passing through x has coefficient 1 − δ in {BS′} + Fδ (and
(S ′, {BS′}+Fδ) is still klt at x). In particular, the log discrepancy of the exceptional divisor
of the blow-up at x with respect to this pair is at most 1 + δ. Then,

B0(S ′, {BS′};OS′(9Mi,S′ + AS′:)) ⊇ B0(S ′, {BS′}+ Fδ;OS′(9Mi,S′ + AS′:)),
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and the latter space, hence also the former, is free at x for sufficiently small δ by Theorem 7.11.
Indeed,

(8.15.4) εsa(9Mi,S′ + AS′: − (KS′ + {BS′}+ Fδ); x) ≥ εsa(M − Fδ; x)

≥ εsa(M − F ; x) > εsa(M ; x) ≥ 1,

where 9Mi,S′+AS′:−(KS′+{BS′}+Fδ) ∼Q M−Fδ−(π|S′)∗(KS+BS) is semiample (8.15.2),
and

◦ in the first inequality we used that −(π|S′)∗(KS +BS) is big and semiample,
◦ in the second and third inequality we used that −F is ample, and that Fδ is a positive
multiple of F , and
◦ the last inequality is a direct consequence of Lemma 2.56.

Using (8.15.4), we may now choose 0 < δ 7 1 to be such that εsa(M−F, x) > 1+δ, resulting
in Fδ satisfying εsa(M − Fδ, x) > 1 + δ, which allows us to apply Theorem 7.11.

The freeness of B0(S ′, {BS′};OS′(9Mi,S′ + AS′:)) at x is a contradiction to the fact that
every section of this linear system vanishes along 9AS′:. !

Note that Mi,S is independent of the choice, in the above proposition, of a log resolution
π : Y −→ X compatible with i by Remark 8.11, and so it exists and is unique for every
integer i > 0 such that i(KX +S+B) is Cartier. Therefore, we may introduce the following
notation, which is assumed until the end of this subsection.

Notation 8.16. We set

Di,S :=
1

i
Mi,S, DS := lim

i−→∞
Di,S,

where the limit is taken over all integers i > 0 such that i(KX + S +B) is Cartier; it exists
by Lemma 8.17. Note that Di,S is an R-divisor.

Further, for any good log resolution π : Y −→ X of (X,S + B) (in the situation of

Notation 8.7), write DS′ := g∗DS, where S ′ g
−→ S

h
−→ S is the given factorization. Last,

set KS +BS = h∗(KS +BS).

We emphasize that DS′ cannot be defined as a limit of Di,S′ directly on S ′ as Di,S′ does
not have good properties unless the log resolution π : Y −→ X is compatible with i (cf.
Remark 8.11), in which case S ′ depends on i.

We need the following lemmas.

Lemma 8.17. The limit DS, as defined in Notation 8.16, exists. It is a nef R-divisor, and
moreover, Dj,S ≤ Di,S when j(KX + S +B) is Cartier and j | i. In particular, Dj,S ≤ DS.

Proof. Let i, j > 0 be integers such that i(KX + S + B) and j(KX + S + B) are Cartier.
Pick a log resolution π : Y −→ X which is compatible with i, j, and i + j. By definition,
Mi +Mj ≤Mi+j . Hence, Mi,S′ +Mj,S′ ≤Mi+j,S′, and so Mi,S +Mj,S ≤ Mi+j,S. In turn, this
gives

i

i+ j
Di,S +

j

i+ j
Dj,S ≤ Di+j,S.

Further, note that Di,S ≤ KS +BS (recall that KX +S+B is an explicit effective Q-Cartier

Q-divisor without S in its support; by restricting to S and pulling back to S this determines
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the right hand side as an effective Q-divisor). In particular this ensures that there is a fixed
finite set of irreducible divisors which contain the support of every Di,S.

The existence of the limit now follows from the fact that any sequence of real numbers
{ai}i∈Z>0 which is bounded from above and satisfies i

i+jai +
j

i+jaj ≤ ai+j is convergent.
Moreover, this condition implies that aj ≤ ai when j | i, and so aj ≤ limi−→∞ ai. !

Lemma 8.18. Let i > 0 be an integer such that i(KX+S+B) is Cartier and let π : Y −→ X
be a log resolution of (X,S + B) which is compatible with i. Then the following map is
surjective for every j > 0:

B0
S′(Y, S ′ + {B′ − jDi};OY (9jDi + A′:)) −→ B0(S ′, {BS′ − jDi,S′};OS′(9jDi,S′ + AS′:)).

Proof. Using the identity 9L: = L+ {−L} for any Q-divisor L, we have that

9jDi + A′: = KY + S ′ + {B′ − jDi}+ jDi − π
∗(KX + S +B), and(8.18.1)

9jDi,S′ + AS′: = KS′ + {BS′ − jDi,S′}+ jDi,S′ − (π|S′)∗(KS +BS).(8.18.2)

Since jDi− π∗(KX + S +B) is big and semiample, we obtain the sought-after surjection by
Theorem 7.2. Here, we used that (KY + S ′ + {B′ − jDi})|S′ = KS′ + {BS′ − jDi,S′} which
follows from Remark 8.10. !

Lemma 8.19. Fix a1, . . . , ak ∈ R, and let G be the image of the additive semigroup
{
(ja1, . . . , jak)

∣∣ j ∈ Z≥0

}

under the natural projection λ : Rk −→ Rk/Zk of topological groups. Let G be the closure of
G and set T := Rk/Zk. Then:

(a) G is a closed topological subgroup of T , and hence it is a disconnected union of finitely

many translates of the connected component G
0
of the identity, and

(b) λ−1(G
0
) = Zk + L for an R-linear subspace L of Rk,

In particular, for every ε > 0 we can find a natural number j > 0 and integers m1, . . . , mk

such that |mi − jai| < ε for every i.

Proof. By the main theorem of [Wri56], G is a closed subgroup of T . In particular it is
compact, which implies (a). The rest follows from [Bou98b, Ch. 7.2, Thm. 2]. !

Theorem 8.20. The R-divisor DS is in fact a semiample Q-divisor.

Proof. First, as (S,BS) is klt, it is Q-factorial. Second, by the base point free theorem for
Noetherian excellent surfaces [Tan18b, Theorem 4.2 and Remark 4.3] and since −(KS+BS) is
nef and big, we know that every nef Q-divisor on S is not only Q-Cartier, but also semiample.
This we will use multiple times during the proof. Additionally, it also reduces our goal to
showing that DS is a Q-divisor.

As S −→ f(S) is a projective birational morphism of Noetherian excellent surfaces, there
are finitely many irreducible curves E1, . . . , Es on S that are exceptional over f(S). Addi-
tionally, we can reorder them so that E1, . . . , Er for some integer r > 0 are exactly the curves
for which Ei ·DS = 0. As DS is nef, we have that DS · Ei > 0 for r < i ≤ s. Set

V =
{
D
∣∣ D ·Ei = 0 for 1 ≤ i ≤ r

}
⊆ Div(S)⊗Z R,
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where Div(S) is a free abelian group on all (not necessarily exceptional) prime divisors on
S. We endow Div(S)⊗ R with the standard Euclidean metric by setting ‖G‖ = 1 for every
irreducible divisor G.

Since V is defined over Q, we can pick Z-divisors N1, . . . , Nk ∈ V such that DS =
∑

aiNi

for some positive real numbers a1, . . . , ak. Moreover, we can re-choose Ni to be in a δ-
neighborhood of qDS for some q & 0, where δ is the diameter of the fundamental paral-
lelepiped in the lattice spanned by the originally chosen Ni, so that we obtain:

(8.20.1)
∥∥∥DS −

Ni

q

∥∥∥7 1,

Explicitly, q is chosen big enough so that (DS −
Ni
q ) · Ej < DS · Ej for all r < j ≤ s (this

is possible as the right hand side is positive). In particular, Ni · Ej > 0 for all r < j ≤ s.
Moreover, since Ni ∈ V , we have that Ni · Ej = 0 for all 1 ≤ j ≤ r. This implies:

◦ for every 1 ≤ j ≤ s we have Ni ·Ej = 0 if and only if DS · Ej = 0, and
◦ Ni are nef (and hence semiample) over f(S).

Therefore, by replacing Ni by their multiples (this might render
∥∥DS −

Ni
q

∥∥ 7 1 invalid
but we will not need this going forward), we may assume that:

◦ the linear systems |Ni| define the same birational morphism a : S −→ S+,
◦ a contracts exactly the curves E1, . . . , Er, and
◦ Ni = 3a∗N+

i , where N+
i is a very ample divisor on S+.

Recall that DS =
∑

aiNi. Thus DS = a∗DS+ for the R-divisor DS+ =
∑

3aiN
+
i on S+. We

also set BS+ = a∗BS and AS+ = a∗AS.
Assume by contradiction that DS is not a Q-divisor. Under this assumption, we claim

that we can find an integer j > 0 and a base point free Weil divisor N on S such that

(a) ‖jDS −N‖ 7 1, and
(b) jDS −N is not effective.

For condition (a), we can just set N = m1N1 + . . .mkNk for positive integers m1, . . . , mk

and j > 0 as in Lemma 8.19. However to guarantee also condition (b) we have to do a more
involved argument. We consider the image W ⊆ V of the vector space L from Lemma 8.19
under the linear map φ : Rk −→ Div(S) ⊗ R given by φ : (x1, . . . , xk) =→ x1N1 + . . . + xkNk.
Note that W is a non-trivial vector space; indeed, otherwise the classes of jDS =

∑
jaiNi

in Div(S)⊗ R
/
Div(S) for integers j > 0 would belong to a finite subset. Hence, DS would

be a Q-divisor, contradicting our assumption.
The effective cone in W (that is, the subset of all R-divisors in W with coefficients at

prime divisors being at least 0) is a closed cone which does not contain a line. Hence,
we can pick Γ ∈ W in a small neighborhood of 0 which is not effective. Additionally, by
the definition of L in Lemma 8.19 and by the closedness of the effective cone, we can find
j > 0 and positive integers m1, . . . , mk such that jDS − N is sufficiently close to Γ, where
N = m1N1+ . . .+mkNk. Hence, jDS −N is not effective and additionally ‖jDS−N‖ 7 1.
This concludes the above claim and the proof of conditions (a) and (b). Since both jDS

and N are pullbacks from S+, we obtain that in fact jDS+ − a∗N is not effective. Further
we remark that in the above construction we may assume that j is divisible enough so that
j(KX + S + B) is Cartier. Indeed, for this we just have to replace (a1, . . . , ak) with an
adequate multiple at the beginning of the argument.
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Since Ni = 3a∗N+
i for every i, we see that 1

3N is a pullback of a very ample divisor from
S+, and we can pick a curve C ∼ 1

3N on S which does not contain any of the exceptional
divisors of S −→ f(S) in its support (Remark 8.6).

Claim 8.21. 9jDi,S + AS: − jDj,S is a-exceptional for all i ∈ N such that i& j and j | i.

Explicitly, we pick i& j so that ||jDi,S −N ||7 1. Note that since the images of Di,S and
Dj,S agree on f(S), we have that 9jDi,S + AS: − jDj,S is automatically exceptional over
f(S).

Proof of claim. Let π : Y −→ X be a log resolution compatible with i and j and let S ′ be
the strict transform of S on Y as before. By re-choosing C we can assume that it does not
contain the image of Exc(S ′ −→ S) under the map S ′ −→ S in its support. Let C ′ be the
strict transform of C on S ′. By the above, we can assume that C ′ is a pullback of C, contains
no curves exceptional over f(S) in its support, and is disjoint from the exceptional locus of
S ′ −→ S+. Note that C ′ intersects every curve which is exceptional over f(S) but horizontal
over S+.

Since Mob9jDi + A′: ≤ jDj (see Lemma 8.13), every section of H0(Y,OY (9jDi + A′:))
vanishes along 9jDi + A′: − jDj ≥ 0 (here, jDj = Mj is integral, Di ≥ Dj , and 9A′: ≥ 0).
Thus, by Lemma 8.18, all the sections of

B0(S ′, {BS′ − jDi,S′};OS′(9jDi,S′ + AS′:))

vanish along E := 9jDi,S′ + AS′: − jDj,S′ ≥ 0. But the above space is base point free at
every point x ∈ C ′∩E by Theorem 7.11, and so there is no such point, concluding the proof.
We can invoke Theorem 7.11, because

εsa(9jDi,S′ + AS′: − (KS′ + {BS′ − jDi,S′}); x) ≥ εsa(jDi,S′; x)

= εsa(jDi,S; y),

= εsa((jDi,S −N) + 3C; y) > 2,

where y is the image of x on S. Here:

◦ the first inequality holds, because 9jDi,S′ +AS′: − (KS′ + {BS′ − jDi,S′})− jDi,S′ is
big and semiample (see (8.18.2) in the proof of Lemma 8.18)
◦ the first equality holds, because Di,S′ is a pullback of Di,S and x is not contained in

the exceptional locus of S ′ −→ S,
◦ the second equality holds, because 3C ∼ N , and
◦ the second inequality holds by Lemma 2.56 for k = 3 as y ∈ C and ‖jDi,S−N‖ 7 1.

!

Claim 8.21 implies that a∗N ≤ 9jDS+ +AS+: = jDj,S+ ≤ jDS+ , where the first inequality
follows from 0 < ‖jDS+ − a∗N‖ 7 1 and the fact that AS+ has coefficients in (−1, 0). Here
we put the norm on Div(S+) the same way as on Div(S), and hence 0 < ‖jDS+−a∗N‖ 7 1
follows from 0 < ‖jDS−N‖ 7 1, as the former contains a subset of the non-zero coefficients
of the latter.

Therefore, we obtained a∗N ≤ jDS+, which contradicts the fact that jDS+ − a∗N is not
an effective R-divisor. !
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Proposition 8.22. Let i, j > 0 be integers such that i is divisible by j and i & j. Further
assume that j(KX + S + B) and jDS are Cartier. Let π : Y −→ X be a log resolution
compatible with i and j. Then the following identity holds:

Mob9jDi,S′ + AS′: ≤ jDj,S′.

In particular, if j is chosen so that jDS is base point free, then Dj,S = DS.

Explicitly, we pick i& j so that 9jDi,S: = jDS and the coefficients of {−jDi,S} are 7 1.

Proof. Since Mob9jDi + A′: ≤ jDj by Lemma 8.13, it suffices to show that

H0(Y,OY (9jDi + A′:)) −→ H0(S ′,OS′(9jDi,S′ + AS′:))

is surjective. By Lemma 8.18, we have a surjection

B0
S′(Y, S ′ + {B′ − jDi};OS′(9jDi + A′:)) −→ B0(S ′, {BS′ − jDi,S′};OS′(9jDi,S′ + AS′:)),

and so we will be done if we show that the right hand side equals H0(S ′,OS′(9jDi,S′+AS′:)).

Since jDS is integral, jDi,S ≤ jDS (Lemma 8.17), and for j 7 i, we obtain that 9jDi,S: =

jDS and the coefficients of {−jDi,S} are 7 1. In particular, (S,BS + {−jDi,S}) is klt and
globally +++-regular for i & 0. Indeed, this follows from Proposition 6.28 as (S,BS + εG) is
globally +++-regular for every effective divisor G and 0 < ε7 1 by assumptions. Therefore,

B0(S ′, {BS′ − jDi,S′};OS′(9jDi,S′ + AS′:)) = B0(S,BS + {−jDi,S};OS(9jDi,S:))

= B0(S,BS + {−jDi,S};OS(jDS))

= H0(S,OS(jDS))

= H0(S ′,OS′(9jDi,S′ + AS′:)),

where the first equality follows by Lemma 4.20 and Proposition 8.15, the third one by
the global +++-regularity of (S,BS + {−jDi,S}) (see Lemma 6.11), and the fourth one by
Lemma 4.20 again. This concludes the proof of the first part of the proposition.

Since H0(S,OS(jDS)) = H0(S ′,OS′(9jDi,S′ + AS′:)) by Lemma 4.20, we get that

Mob(jDS) = g∗Mob9jDi,S′ + AS′: ≤ jDj,S.

As jDS is base point free, we thus get jDS ≤ jDj,S. By Lemma 8.17, the other inequality
holds true, too, hence jDj,S = jDS. !

An important difficulty in the proof of the above result is that a priori {−jDi,S′} 7 1
and 9jDi,S′: = jDS′ need not hold for i& 0 (because S ′ depends on i).

Proposition 8.23. With notation as above, the restricted algebra

RS =
⊕

i∈N

im
(
H0(X,OX(5i(KX + S +B)6)) −→ H0(S,OS(5i(KS +BS)6))

)

is finitely generated.

Proof. The proof proceeds as in characteristic zero and is based purely on Proposition 8.22
(see [Cor07, Chapter 2]). For the convenience of the reader, we provide a slightly different
argument that avoids a direct use of b-divisors.
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First, it is enough to show that any Veronese subalgebra of RS is finitely generated
(cf. [Cor07, Lemma 2.3.3]). We will show that R

(j)
S is finitely generated for j > 0 as in

Proposition 8.22, that is, satisfying that j(KX + S + B) is a Cartier divisor and jDS is a
Cartier base point free divisor.

Claim 8.24. For every i > 0 divisible by j and resolution π : Y −→ X compatible with i, the
following map is surjective

H0(X,OX(i(KX + S +B))) = H0(Y,OY (9iDi + A′:))
−→ H0(S ′,OS′(9iDi,S′ + AS′:)) = H0(S,OS(iDi,S)).

Assuming the claim, we finish the proof. Using Proposition 8.22 we have that iDi,S = iDS

and so R
(j)
S is equal to

⊕

j|i

H0(S,OS(iDS)) ⊆
⊕

j|i

H0(S,OS(i(KS +BS))) =
⊕

j|i

H0(S,OS(i(KS +BS))).

Since DS is semiample (Theorem 8.20), R(j)
S is finitely generated.

Proof of Claim 8.24. The proof is completely analogous to that of Proposition 8.22. Note
that iDi and iDi,S′ = iDS′ are integral, and so it is not necessary to assume that i & 0.
Moreover, the first equality in the statement of the claim holds by Lemma 8.13 for i = j,
while the second identity is a consequence of Lemma 2.36 as 9AS′: ≥ 0.

Recall that (S,BS) is globally +++-regular, and so is (S,BS) by Proposition 6.28. Therefore,

B0(S ′, {BS′};OS′(9iDi,S′ + AS′:)) = B0(S,BS;OS(iDi,S))

= H0(S,OS(iDi,S))

= H0(S ′,OS′(9iDi,S′ + AS′:)),

where the first equality is a very special case of Lemma 4.20, the second one follows by the
global +++-regularity of (S,BS) (see Lemma 6.11), and the third one by Lemma 2.36.

By Lemma 8.18, we have a surjection

B0
S′(Y, S ′+{B′};OS′(9iDi+A′:)) −→ B0(S ′, {BS′};OS′(9iDi,S′+AS′:)) = H0(S ′, 9iDi,S′+AS′:)

which concludes the proof of the claim. !

The claim completes the proof. !

8.2. Conclusion. In this subsection we conclude the proof of the existence of flips. For
the sake of precision, we abandon the notions introduced in Subsection 8.1, but we keep
Notation 8.1 introduced at the beginning of Section 8. That is our base is a complete Noe-
therian local domain (R,m) with residue field R/m of characteristic p > 0, and Z = Spec(R).

Theorem 8.25. Let f : X −→ Z be a three-dimensional pl-flipping contraction of a plt pair
(X,S + B) with Q-boundary over the affine scheme Z = SpecR with S = 5S + B6 an
irreducible, normal, Q-Cartier divisor. Suppose that R/m is infinite, KX + S + B ∼Z,Q bS
for some b ∈ Q, and that (S,BS + εD) is globally +++-regular for every effective divisor D and
0 < ε7 1, where KS +BS = (KX + S +B)|S. Then the canonical ring

R(X,KX + S +B) =
⊕

m∈N

H0(X,OX(5m(KX + S +B)6))
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is finitely generated. In particular, the pl-flip of (X,S +B) over Z exists.

Proof. This is a consequence of RS being finitely generated by Proposition 8.23 (note that
the assumptions of Setting 8.5 are satisfied). Explicitly, we follow the explanation from
[Cor07, Lemma 2.3.6]. Consider a divisor G ∼ S which does not contain S in its support. Let
k, l ∈ N be such that k(KX+S+B) ∼ lS. It is enough to show that the Veronese subalgebra
R(k)(X,KX+S +B) is finitely generated, and so that R(l)(X,S) is finitely generated. Finally,
this reduces to showing that R := R(X,G) is finitely generated. From Proposition 8.23 we
can deduce, following a similar argument to that above, that

R
0 = image(R(X,G) −→

⊕

i∈N

K(S))

is finitely generated, where K(S) is the fraction field of S. Here, the map is induced by the
restriction OX(iG) −→ K(S).

Let K(X) be the fraction field of X and choose t ∈ K(X) such that div(t) + G = S. By
definition t ∈ R1. We claim that the kernel of the above map R(X,G) −→ R(S,G|S) is the
principal ideal generated by t which concludes the proof. Indeed, then R(X,G) is generated
by t and any homogeneous lifts of the homogeneous generators of R0. To show the claim
suppose that the image of φ ∈ Rn is equal to 0 ∈ R0. Then div(φ) +nG− S ≥ 0. Hence, we
can write φ = tφ′, where div(φ′)+ (n− 1)G ≥ 0. In particular, φ′ ∈ Rn−1, and φ ∈ (t)R. !

Corollary 8.26. Let f : X −→ Z be a pl-flipping contraction of a three-dimensional plt pair
(X,S+B) over the affine scheme Z = SpecR where S = 5S+B6 is a Q-Cartier irreducible
divisor, B has standard coefficients and p > 5. Suppose that KX + S +B ∼Z,Q bS for some
b ∈ Q. Then the pl-flip of (X,S +B) over Z exists.

Proof. This follows from Theorem 8.25 and Corollary 7.15, except that the former result
assumes that R/m is infinite. However, one can reduce the statement to the case when R/m
is infinite by applying the base change to the completion of the strict henselization of R, see
Lemma 2.32. This works first because of the statement of Lemma 2.32, and second because
this is a faithfully-flat base-change, so R(X,KX + S + B) is finitely generated if and only
if R(X ′, KX′ + S ′ + B′) is finitely generated, where X ′, S ′ and B′ are the base-changes of
X , S and B, respectively. Moreover, S ′ is irreducible; indeed, since it is anti-ample over the
base change Z ′ of Z, it must contain the exceptional locus of X ′ −→ Z ′ which is the fiber
over m′ and is necessarily connected. As S ′ is a disjoint union of its irreducible components
by Lemma 2.33, each of which must intersect the fiber over m′, S ′ can only have a single
irreducible component. !

As it will be needed for running a non-Q-factorial MMP, we also prove the following
proposition inspired by [HW22b]. It shows the existence of “one-complemented” flips for
arbitrary residual characteristics even when the coefficients are not standard. It is called
one-complemented because the divisor A in the boundary has coefficient 1.

Proposition 8.27. Let f : X −→ Z be a small projective birational contraction of a three-
dimensional dlt pair (X,S+A+B) over the affine scheme Z = SpecR such that S and A are
effective Q-Cartier Weil divisors, S is irreducible, and B is an effective Q-divisor satisfying
5B6 = 0. Assume that −(KX + S +A+B), −S, and A are f -ample. Further, suppose that
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KX + S + A +B ∼Z,Q bS ∼Z,Q cA for some b, c ∈ Q. Then the canonical ring

R(X,KX + S + A+B) =
⊕

m∈N

H0(X,OX(5m(KX + S + A+B)6))

is finitely generated.

Proof. By the same argument as in Corollary 8.26 (applying Lemma 2.32 and Lemma 2.33
to (X,S + B)) we can assume that R/m is infinite. Further, since KX + S + B is f -anti-
ample and Q-linearly equivalent to a multiple of KX + S +A+B, it is enough to show that
R(X,KX + S +B) is finitely generated.

Write KS̃ +AS̃ +BS̃ = (KX + S +A+B)|S̃, where AS̃ = A|S̃ and S̃ is the normalization
of S. By adjunction, (S̃, AS̃ + BS̃) is dlt. Since S̃ is Q-factorial, we may perturb AS̃ a
bit, to a Q-divisor A′

S̃
such that C = 5A′

S̃
6 is a prime divisor which is not contracted,

(S̃, A′
S̃
+BS̃) is plt, and −(KS̃ +A′

S̃
+BS̃) is ample. By Lemma 8.28, (S̃, A′

S̃
+BS̃ + εD) is

purely globally +++-regular for every effective Cartier divisor D with no common component
with C and 0 < ε7 1. Hence the log Fano pair (S̃, BS̃ + εD) is globally +++-regular for every
Cartier divisor D and 0 < ε 7 1; in particular, S is normal by Corollary 7.9. Therefore,
R(X,KX + S +B) is finitely generated by Theorem 8.25. !

Lemma 8.28 (cf. [HW21, Lemma 4.1]). Let (S,C + B) be a two-dimensional plt pair ad-
mitting a projective birational (onto its image) morphism f : S −→ SpecR such that C is not
contracted and −(KS + C +B) is f -ample. Then (S,C +B) is purely globally +++-regular.

Proof. We replace SpecR by the normalization of the image of S. To show that (S,C +B)
is purely globally +++-regular, it suffices to apply Corollary 7.5 and the following claim (here
KC +BC = (KS + C +B)|S).

Claim 8.29. The pair (C,BC) is globally +++-regular.

Proof. If there was no pair, this would just be the direct summand theorem for 1-dimensional
rings15. In general, we pass to a finite cover to remove the boundary BC . Note C is affine,
one-dimensional, normal and hence regular, and 5BC6 = 0. It suffices to show that for
any finite cover κ : C ′ −→ C (with C ′ integral and κ∗BC integral), OC −→ κ∗OC′(κ∗BC)
splits. Since C is affine, this may be checked at the stalk of a closed point Q of C. Thus
consider a DVR V = OC,Q with uniformizer v and BC |Spec V = a

b div(v) with a < b coprime
integers. Form the extension V ′ = V [v1/b]. The map V −→ V ′ sending 1 =→ va/b splits by
construction. Since V ′ is also regular, any further finite extension V ′ ⊆ W is split. Hence
the map V −→ W sending 1 =→ va/b splits. This shows that OC,Q −→ (κ∗OC′(κ∗BC))Q splits
and proves the claim. !

The claim completes the proof. !

9. Minimal Model Program

We develop the Minimal Model Program for arithmetic threefolds.

15This just uses that if C ⊆ D is a finite extension, then D is finite flat and hence C ⊆ D splits.
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Setting 9.1. In this section we work over a base scheme T which (for us) is always quasi-
projective over a finite dimensional excellent ring R admitting a dualizing complex. Note
that this includes the cases where T is purely of zero or positive characteristic.

Throughout this section, the dualizing complex on R is fixed. This in turn defines a unique
dualizing complex, and so a canonical sheaf, on all schemes which are quasi-projective (or
constructed therefrom by ways of localisation or completion) over R.

Whenever we use the word curve, it will implicitly mean curve over T , that is a one
dimensional scheme which is proper over a closed point of T . Recall that curves can be of
codimension one even when X is of dimension three (cf. Remark 2.23).

Unless otherwise stated, a field k will refer to the residue field of T at a suitable closed
point. Furthermore, in this section, all boundary divisors ∆ will be R-divisors, unless other-
wise stated. Notions such as semiampleness or nefness are assumed to be relative, typically
over the base T .

Recall from Section 2.6, that the key examples of T include quasi-projective schemes over
Dedekind domains or spectra of complete Noetherian local domains.

The argument has the following steps:

Step 1 We prove the cone theorem and the existence of pl-contractions in the pseudo-
effective case.

Step 2 We construct flips with arbitrary coefficients in the Q-factorial setting using the
existence of pl-flips with standard coefficients proven in the previous section.

Step 3 We prove the base point free theorem for nef and big line bundles using the existence
of “one-complemented” pl-flips (Proposition 8.27).

Step 4 We show the termination of any sequence of flips when KX +∆ is pseudo-effective
using [AHK07], and conclude the proof of the MMP in this case.

Step 5 We prove the base point free theorem in its most general form, for non-big line
bundles.

Step 6 We show the full cone theorem, and deduce termination with scaling and the exis-
tence of Mori fiber spaces when KX +∆ is not pseudo-effective.

Steps 2 and Step 3 are independent: Step 2 is based on Corollary 8.26. It requires the
assumptions of Q-factoriality and characteristics different than 2,3 or 5, but otherwise has
no special requirements.

On the other hand, in Step 3 we need to run a non-Q-factorial MMP in the case relative
to a birational morphism [Kol21]. This means that we cannot apply Corollary 8.26 directly,
because it assumes that the coefficients are standard, and we cannot apply the existence of
flips with arbitrary coefficients obtained in Step 2 either due to the Q-factoriality restrictions.
Since we work with a special MMP relative to a birational morphism, the flipping contractions
occurring in this MMP are “one-complemented”, and so we can apply Proposition 8.27.

Also, observe that the argument of [AHK07] used in Step 4 works when KX + ∆ ∼R

M for some effective R-divisor M and terminalizations exist. The former condition holds
automatically when KX + ∆ is pseudo-effective, (X,∆) is klt, and X is not defined over
a closed point of T (for example, when X is of mixed characteristic) by applying the non-
vanishing theorem for varieties of dimension at most 2 over the generic point of the image
of X in T [Fuj12, Theorem 7.2]. To construct a terminalization we run an MMP which
terminates for terminal pairs by Shokurov’s argument.
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Remark 9.2. The cone theorem in the pseudo-effective case holds by the same arguments as
in [Kee99, DW22] while the existence of pl-contractions follows from [Wit22]. The argument
behind Step 2 is due to [Bir16]. The base point free theorem for nef and big line bundles
was proven in characteristic p > 0 in [Bir16] and [Xu15] based on Keel’s theorem and the
generalized MMP ([HX15, Bir16]). The existence of log minimal models in the pseudo-
effective case in positive characteristic was proven in [Bir16]. The general version of the cone
theorem, the termination with scaling, the existence of Mori fiber spaces, and the base point
free theorem for nef line bundles in positive characteristic is due to [BW17] (see [CTX15]
for partial results). The generalization of some of the above results from algebraically closed
fields to arbitrary F -finite fields is due to [DW22] (cf. [GNT19] for the case of perfect fields).
We give different proofs for most of these results in the relative situation.

Remark 9.3. In [HW22b] it is proven that the Minimal Model Program is valid over three-
dimensional singularities and in semi-stable families in all characteristics p > 0. In the
process of showing the base point free theorem, we generalize the former result to mixed
characteristic (Theorem 9.15), and the latter should go through with almost no modifica-
tions. Similarly, most of our results can be extended to include p = 5 in the general case
using the arguments of [HW22a] as has been verified in [XX21].

Remark 9.4. The only place in this section where the theory of R-divisors is used in an
essential way is the proof of the non-Q-factorial MMP (Theorem 9.15) which in turn is
employed to show the base point free theorem in the big case (Theorem 9.17). In particular,
readers interested in the case of Q-boundaries only, may assume in the remaining steps that
all the boundaries are Q-divisors (in Theorem 9.34 which is used to prove termination with
scaling, Theorem 9.35, one should only consider points of the polytope which are rational).
Note that in [BW17] it was essential to consider the full power of the MMP for R-divisors
as they come up as limits of Q-boundaries in an essential way. This is not the case in our
arguments in Steps 5–6, as we employ a different strategy of proof.

Before proceeding, we recommend the reader to review Remark 2.23, Remark 2.25, and
Remark 2.26, which discuss the unexpected behaviour of the dimension of Cartier divisors
and localisation at Q.

9.1. Existence of flips and background on termination. We start by stating the exis-
tence of pl-flips in our setting, and recalling the statement of special termination. First we
tackle the case in which X is a scheme of pure characteristic zero – we must deal with the
generalization from varieties to Noetherian excellent schemes. Our argument above can be
adapted to this situation, where we would use the fact that B0

alt = H0 for a klt scheme of
characteristic zero and deduce the relevant liftings from [Mur21]. However, we believe it is
more straightforward for the reader to follow the original argument as explained in [Cor07]
which goes through verbatim, given the appropriate vanishing theorems:

Proposition 9.5. Suppose in addition to Setting 9.1 that R is a domain with all residue
characteristics being zero. Let f : X −→ Z be a three-dimensional pl-flipping contraction
where Z is quasi-projective over R, (X,S + B) is plt, S = 5S + B6 is a Q-Cartier prime
divisor, B is an effective Q-divisor, and KX + S + B is Q-linearly equivalent to a multiple
of S. Then the pl-flip of (X,S +B) over Z exists.
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Proof. As mentioned above, this follows from the proof of [Cor07, Theorem 2.2.25] (it is
assumed therein that X is Q-factorial and ρ(X/Z) = 1, but our weaker assumptions are
sufficient). There are various ingredients, which mirror the steps used in Section 8, and
all of which go through using the existing proofs as application of [Mur21, Theorem A] in
characteristic zero. We have normality of plt centers [Kc92, Corollary 17.5], plt inversion
of adjunction [KM98, Theorem 5.50] and existence of projective resolutions of singularities
with ample exceptional divisors (Proposition 2.14). !

Proposition 9.6. Let f : X −→ Z be a three-dimensional pl-flipping contraction of a plt pair
(X,S+B) where S = 5S+B6 is a Q-Cartier prime divisor, B is an effective Q-divisor with
standard coefficients, KX+S+B is Q-linearly equivalent to a multiple of S, and Z is a quasi-
projective scheme over R. Suppose that none of the residue fields of R have characteristic 2,
3 or 5. Then the pl-flip of (X,S +B) over Z exists.

Proof. By Proposition 9.5 and localisation, we may assume that Z is the spectrum of a local
ring with positive residue characteristic (note that it will not be quasi-projective over R any
more). We need to show that some Veronese subalgebra of the canonical ring R(X,KX +
S + B) =

⊕
i∈N H

0(X,OX(5i(KX + S + B)6)) is finitely generated. This is equivalent to
verifying that there exists a divisible enough j > 0 such that the multiplication map

(9.6.1) f∗OX(j(KX + S +B))⊕i/j −→ f∗OX(i(KX + S +B))

is surjective for every i > 0 divisible by j. Let
(
X̂, Ŝ + B̂

)
be the completion of (X,S +B)

at z = f(Exc(f)) ∈ Z. By Lemma 2.32,
(
X̂, Ŝ + B̂

)
is plt. Moreover, by Lemma 2.33, Ŝ is

a disjoint union of its irreducible components. Since Ŝ is anti-ample over the completion Ẑ
of Z at z, it must contain the exceptional locus of X̂ −→ Ẑ which is the fiber over the closed
point of Ẑ and is connected. As every component of Ŝ must also intersect this exceptional
locus, this is only possible when Ŝ is irreducible.

The condition that KX + S +B ∼Z,Q −bS, for some b ∈ Q>0, is preserved under comple-
tion. Hence, (9.6.1) is surjective after completion by Corollary 8.26, and since surjectivity
of finitely generated modules can be verified after completion, the proposition follows. !

Theorem 9.7. Let (X,∆) be a three-dimensional Q-factorial dlt pair with R-boundary which
is projective over T , and let

(X,∆) ""# (X1,∆1) ""# (X2,∆2) ""# · · ·

be a sequence of (KX +∆)-flips and divisorial contractions over T . Then after finitely many
steps all the maps are flips and the flipped and flipping loci are disjoint from 5∆i6.

Proof. Since divisorial contractions decrease the Picard rank (cf. Remark 2.22), we can as-
sume that the above sequence consists only of flips.

The result then follows by the same argument as in [Fuj07, Theorem 4.2.1]. The proof
employs the two dimensional MMP (Theorem 2.42). Implicitly, this reference assumes the
normality of the irreducible components of 5∆6, but what is only needed is normality up to
a universal homeomorphism (see [HW22b]) which follows from Lemma 2.33. We point out
that the irreducible components Y ⊆ Xi of the flipping and flipped loci cannot be contained
in the prime divisors D ⊆ Supp∆i satisfying dimD = 1 (otherwise, D = Y , and so Y
would be a divisor). Similarly, the flipped contraction is small ([KM98, Lemma 6.2]), thus
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the flipped locus must also have codimension at least 2 and therefore it cannot contain a
divisor of dimension 1. Thus, no new phenomena show up and the proof is really exactly as
in [Fuj07, Theorem 4.2.1]. !

Theorem 9.8. Let (X,∆) be a three-dimensional Q-factorial dlt pair with R-boundary which
is projective over T , and suppose that all three-dimensional Q-factorial klt pairs projective
over T and with underlying scheme birational to X admit terminalizations. Let

(X,∆) ""# (X1,∆1) ""# (X2,∆2) ""# · · ·

be a sequence of (KX +∆)-flips and divisorial contractions over T . Then after finitely many
steps all the flipped and flipping loci in the above sequence are disjoint from Supp∆i.

Proof. Suppose by contradiction that there exists an infinite sequence of flips (X,∆) ""#

(X1,∆1) ""# (X2,∆2) ""# · · · for which the statement fails. By Theorem 9.7, we can
assume that the flipping loci are disjoint from 5∆i6. Hence, by decreasing the coefficients of
∆, we can assume that (X,∆) is klt; the sequence X ""# X1 ""# · · · is still a (KX+∆)-MMP
as all the flipping loci are disjoint from the divisors whose coefficients were decreased.

Now the proof follows from the argument of Alexeev-Hacon-Kawamata ([HW21, Proposi-
tion 2.10], [AHK07]); although the statement assumes that the schemes are defined over a
field and the boundaries are Q-divisors, it is valid in our setting as well (in particular, the
proof of [HW21, Lemma 2.11] goes through for arbitrary Noetherian excellent surfaces). Note
that [HW21, Proposition 2.10] requires the existence of terminalizations (which is assumed
in Theorem 9.8), and the existence of proper resolutions of singularities (Theorem 2.13). Fi-
nally, we point out that, as explained in the proof of Theorem 9.7, the divisors D ⊆ Supp∆i

satisfying dimD = 1 do not cause any problems. !

9.2. Step 1: Partial cone and contraction theorems. In what follows, given a ray Σ
and a Q-Cartier divisor D, we shall write, by abuse of notation, that Σ · D > 0 when Σ is
D-positive (and analogously for Σ ·D = 0 and Σ ·D < 0), although the number D ·Σ is not
well defined.

Theorem 9.9. Let (X,∆) be a normal Q-factorial three-dimensional pair with R-boundary
and coefficients in [0, 1], which is projective over T . If KX + ∆ ≡T M for some effective
R-Cartier divisor M , then there exists a countable set of curves over T , denoted {Ci}, such
that

(a)

NE(X/T ) = NE(X/T )KX+∆≥0 +
∑

i

R≥0[Ci].

(b) The rays [Ci] do not accumulate in the half space (KX +∆)<0, and
(c) For all but finitely many i,

0 < −(KX +∆) ·k Ci ≤ 4dCi

where k is the residue field of the closed point on T which is the image of Ci, dCi is
the constant from Lemma 2.47 such that if L is any Cartier divisor on X, then L ·kCi

is divisible by dCi.

Remark 9.10. Note that the condition KX +∆ ≡T M ≥ 0 is automatic whenever KX +∆
is pseudo-effective and the image of X in T is at least one-dimensional, by non-vanishing
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applied to the generic fiber of X −→ T (see [Fuj12] and [Tan20a]). In particular, the latter
condition holds when X has mixed characteristic.

Proof. Let Σ be a (KX +∆)-negative extremal ray. Choose an irreducible component E of
SuppM which is negative on Σ. If dimE = 1, then Σ = RE. Since there are only finitely
many irreducible components of M , we may assume that E is among the set of curves {Ci}.
Thus, we are henceforth free to assume that dimE = 2.

We first aim to show that Σ contains a curve satisfying the required bound.

Claim 9.11. Σ is in the image of NE(Ẽ) −→ NE(X) where Ẽ is the normalization of E.

Proof of claim. Fix an ample Q-divisor H sufficiently small that Σ is also (KX + ∆ + H)-
negative. Fix a non-zero cycle Γ in Σ, and write Γ as a limit of effective cycles: Γ = limj Γj .
Further, write Γj =

∑
i ai,jCi+

∑
i bi,jDi where Ci ·E < 0 and Di ·E ≥ 0 for each i. Letting

A by an ample Cartier divisor, and after replacing by a subsequence, we may assume that
∑

i

ai,j +
∑

i

bi,j ≤
∑

i

ai,jCi · A+
∑

i

bi,jDi · A = Γj · A < Γ · A+ 1

for some fixed ample Cartier divisor A. This shows that the ai,j and bi,j are all bounded
independently of i and j. Let aE be such that ∆ + aEM has coefficient 1 in E. Then by
Theorem 2.46(c) and adjunction of KX + ∆ + aEM + H to the normalization Ẽ of E, Ci

may be taken to be from finitely many extremal rays on E. It follows that we may take all
the Ci to come from a fixed finite set, and so after replacing by a subsequence, ai = limj ai,j
is a well defined non-negative number.

It follows that limj(
∑

i ai,jCi) is a well defined pseudo-effective 1-cycle, and it is non-
zero since it intersects negatively with E. As a result, limj(

∑
i bi,jDi) exists as a class in

N1(X) as it is the difference of Γ and a converging sequence. Then as Γ = limj(
∑

i ai,jCi) +
limj(

∑
i bi,jDi) is a decomposition into a sum of pseudo-effective cycles, we must have that

limj(
∑

i ai,jCi) is in Σ by extremality. Then the fact that Ci · E < 0 for each i means that

each Ci is contained in Supp(E) and so Σ is contained in the image of NE(Ẽ) −→ NE(X),
and the claim is proved. !

Returning to the proof of the Cone Theorem, by adjunction there is an effective divisor
∆Ẽ on Ẽ satisfying (KX +∆ + aEM)|Ẽ = KẼ +∆Ẽ , where aE is such that ∆ + aEM has
coefficient 1 in E. Thus Σ is in the image of some (KẼ +∆Ẽ)-negative extremal ray ΣẼ via

the map NE
(
Ẽ
)
−→ NE(X). By Theorem 2.46, any (KẼ+∆Ẽ)-negative extremal ray either

contains a curve satisfying the required bound or a curve in Supp(∆Ẽ). Note that there are
only finitely many possibilities for the latter curves independently of the choice of E as they
lie in Sing(Supp(∆+M))∪Sing(X). We have proved that every (KX+∆)-negative extremal
ray Γ contains a curve C such that C either satisfies the bound in (c) or is an element of a
fixed finite set of curves.

Next we show that the extremal rays do not accumulate in NE(X/T )KX+∆<0. Suppose
otherwise, so we have a sequence of distinct (KX + ∆)-negative extremal rays Σi which
converge to a (KX +∆)-negative ray Σ. Fix a component E of M which is negative on Σ.
By passing to a subsequence we may assume that E is also negative on Σi for all i, and so
by Claim 9.11, Σ and Σi are all in the image of ι∗ : NE

(
Ẽ
)
−→ NE(X) where Ẽ is the

normalization of E. For each i, choose a (KẼ + ∆Ẽ)-negative extremal ray ΣE
i such that
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ι∗ΣE
i = Σi where ι∗ : NE

(
Ẽ
)
−→ NE(X). By Theorem 2.46, the rays ΣE

i do not accumulate

to a (KẼ +∆Ẽ)-negative ray. But by compactness of NE(Ẽ) intersected with the unit ball,

by again taking a subsequence we may assume that ΣE
i do converge in NE

(
Ẽ
)
, and so

converge to a ray ΣE satisfying

0 ≤ (KẼ +∆Ẽ) · Σ
E = (KX +∆ + aEM) · ι∗Σ

E ≤ (KX +∆) · ι∗Σ
E .

This shows that the rays Σi could not converge to a (KX +∆)-negative ray. This concludes
the proof of (b).

It remains to prove the countability of the set of curves in (a). Fix an ample divisor H . For
each n ∈ N, the previous paragraph implies that there are only finitely many (KX+∆+ 1

nH)-
negative extremal rays. Then there can be only countably many (KX + ∆)-negative rays
because each is (KX +∆+ 1

nH)-negative for some n. !

Proposition 9.12 (cf. [HW21, Proposition 4.4]). Let (X,S + B) be a Q-factorial three-
dimensional projective dlt pair over T , where S is a prime divisor and B is an effective
R-divisor. Suppose that KX + S + B is pseudo-effective over T . Let Σ be a (KX + S +B)-
negative extremal ray over T such that Σ is S-negative. Then the contraction f : X −→ Z of
Σ exists so that f is a projective morphism with ρ(X/Z) = 1.

Proof. First, we reduce to the plt case with Q-boundary. By graded prime avoidance (see
[Sta, Tag 00JS]), we may pick an ample Cartier divisor A which does not contain any log
canonical center of (X,S+B), so that (X,S+B+εA) is dlt for ε7 1 and KX +S+B+εA
is big and negative on Σ. Now replacing (X,S + B) with (X,S + B′ + εA) where B′ is a
Q-divisor which is a small perturbation of B such that KX + S + B′ + εA is still big and
negative on Σ, we may assume that B is a Q-divisor. Furthermore, by decreasing all the
coeficients of 5B6, we may assume that (X,S +B) is plt.

By Theorem 9.9, we may pick an ample (over T )Q-divisorH such that L = KX+S+B+H
is nef and L⊥ ⊆ NE(X/T ) is spanned by Σ. Let A be another ample Q-divisor such that
(S+A)·Σ = 0. Again, by Theorem 9.9, we have that Lε = KX+S+B+Hε is nef over T and
(Lε)⊥ is spanned by Σ for any 0 < ε7 1, where Hε = H + ε(S +A) is an ample Q-divisor.
Explicitly, by Theorem 9.9(b), there are finitely many (KX +S+B+ 1

2H)-negative extremal
rays: Σ,Σ1, . . . ,Σl. For every ε such that Hε −

1
2H is ample, Lε is positive on all extremal

rays except possibly these Σ,Σ1, . . . ,Σl. By decreasing ε further we can assume that Lε is
also positive for on Σj for all 1 ≤ j ≤ l. Last, Lε · Σ = 0 holds for all ε.

Moreover, we have that E(Lε) ⊂ S. Indeed, if V ⊂ X is a an integral subscheme not
contained in S, then Lε|V = (L+ ε(S +A))|V is nef and big over T . Replacing L by Lε, we
may assume that E(L) ⊂ S.

Now, over closed points of residual characteristic p > 0 the proposition follows from
Proposition 2.51, and over closed points of residual characteristic zero from Proposition 2.48
applied to a klt perturbation of (X,S +B) . !

9.3. Step 2: Construction of flips with arbitrary coefficients. We recall the standard
argument for reducing the existence of flips to pl-flips.

Proposition 9.13. Let (X,B) be a Q-factorial klt pair of dimension three, where B is a
Q-divisor with standard coefficients. Let f : X −→ Z be a flipping contraction over an affine
scheme Z = SpecR such that ρ(X/Z) = 1. Suppose that none of the residue fields of R have
characteristic 2, 3 or 5. Then, the flip X+ −→ Z of f exists.
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Proof. We closely follow the presentation from [HW22b, Theorem 4.1]. Fix BZ = f∗B and
let HZ be a reduced Cartier divisor on Z where the following hold:

(a) f ∗HZ contains the exceptional set of f ,
(b) HZ and BZ have no irreducible components in common,
(c) for any projective birational morphism h : Y −→ Z where Y is Q-factorial, N1(Y/Z) is

generated by the h-exceptional divisors and the irreducible components of the strict
transform of HZ .

For the (non-trivial) condition (c), we use that the relative group of divisors up to numerical
equivalence of a birational morphism of Q-factorial varieties is generated by the exceptional
divisors. In view of this, we may pick HZ so that it satisfies (c) for a single resolution of
singularities, and condition (c) is then satisfied for every larger resolution of singularities as
well. The statement follows since h as above is a factor of some resolution and the group of
divisors on Y over Z is the image of the group of divisors of any projective birational cover.

Fix a log resolution h : Y
p
−→ X

f
−→ Z of (Z,BZ + HZ) which factors through X . We

may assume that HZ contains the image of each h-exceptional divisor, and we claim that
we can run a (KY + BY + HY )-MMP over Z where HY is the strict transform of HZ and
BY := h−1

∗ BZ + Exc(h). The cone theorem is valid by Theorem 9.9, and note that every
extremal ray Σ over Z is contained in the support of h∗HZ . By condition (c), there is a
component of the support of h∗HZ having non-zero intersection with Σ. Since Σ ·h∗HZ = 0,
there is a component E of the support of h∗HZ with Σ · E < 0. In particular, we have
E ⊆ 5BY + HY 6. Hence, contractions exist by Proposition 9.12, the necessary flips exist
by Proposition 9.6 applied to a plt perturbation of (Y,BY + HY ), and special termination
follows by Theorem 9.7.

Now replace (Y,BY +HY ) by its minimal model over Z, and HY by its pushforward under
the map to the minimal model. While Y need no longer admit a map to X , it still necessarily
maps to Z, which we denote by h : Y −→ Z.

Write BY = D+B<1
Y , where D =

∑m
i=1Di is the sum of exceptional divisors and 5B<1

Y 6 =
0. As HY is contained in the pullback of HZ from Z, we have

HY ≡h −
∑

j

bjDj,

where bj ∈ Q≥0. Run a (KY + BY )-MMP over Z with scaling of HY , noting that an MMP
with scaling is well-defined by the existence of bounds on extremal rays from Theorem 9.9.
Arguing as above, to show that such an MMP can be run, it suffices to show that flips
and contractions exist. Let 0 < λ ≤ 1 be such that KY + BY + λHY is h-nef and there
exists a (KY + BY )-negative extremal ray Σ satisfying (KY + BY + λHY ) · Σ = 0. Since
(KY + BY ) · Σ < 0, we have that HY · Σ > 0, and the equivalence above implies that
Dj · Σ < 0 for some j. It follows that the contraction of Σ exists by Proposition 9.12, and
in the case that the contraction is small the flip exists by Proposition 9.6. Once again, the
MMP terminates by special termination as above.

Denote by (X+, B+) an output of this MMP, so that KX+ +B+ is nef over Z, and notice
that the projection f+ : X+ −→ Z is small. Indeed, the negativity lemma applied to a
resolution of indeterminacies π1 : W ′ −→ X and π2 : W ′ −→ X+ shows that

G := π∗
1(KX +B)− π∗

2(KX+ +B+),
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is effective (and non-zero) which is only possible when 5B+6 = 0 since (X,B) is klt. As
all of the exceptional divisors on X+ over Z are contained in 5B+6, this shows that f+ is
small. Moreover, KX+ +B+ is ample over Z; otherwise, as ρ(X+/Z) = 1 (here X and X+

are Q-factorial and f, f+ are small over Z, so ρ(W/X) = ρ(W/X+) is equal to the number
of exceptional divisors, thus16 ρ(X+/Z) = ρ(W/Z) − ρ(W/X+) = ρ(W/Z) − ρ(W/X) =
ρ(X/Z) = 1), KX++B+ would be numerically trivial over Z, and so G would be numerically
trivial over X . As G is exceptional and non-zero, this contradicts the negativity lemma (over
X). Hence, f+ is the flip of f . !

The following technique was discovered in [Bir16]; we closely follow the presentation from
[HW22a, Proof of Theorem 1.1]. We emphasize that ∆ is allowed to have arbitary R-
coefficients.

Theorem 9.14. If (X,∆) is a dlt pair with R-boundary and f : X −→ Z is a three-
dimensional Q-factorial flipping contraction to a quasi-projective scheme Z over R, whose
residue fields do not have characteristic 2, 3 or 5, with ρ(X/Z) = 1, then the flip of (X,∆)
exists.

Proof. We begin with a number of reductions. By perturbing B and using that X is Q-
factorial, we may assume that ∆ is a Q-divisor. After replacing ∆ with ∆− 1

l 5∆6 for l & 0,
we can further assume that (X,∆) is klt. Finally, we may also assume that every component
of Supp∆ is relatively antiample, as removing the ample and numerically-trivial components
will not affect the anti-ampleness of KX +∆.

In case ∆ has standard coefficients, the theorem follows from Proposition 9.13. In the
remainder, we proceed with a proof by induction on the number ζ(∆) of components of ∆
with coefficients outside of the standard set {1 − 1

m | m ∈ N} ∪ {1}. Assuming ζ(∆) > 0,
write ∆ = aS +B where a +∈ {1− 1

m | m ∈ N} ∪ {1}.
Consider a log resolution π : W −→ X of (X,S + B) with reduced exceptional divisor E.

Setting BW := π−1
∗ B + E and SW := π−1

∗ S, since KX +∆ ≡Z µS for some µ > 0 and S is
relatively anti-ample as it is a component of Supp∆, we have that

KW + SW +BW = π∗(KX +∆) + (1− a)SW + F ≡Z (1− a+ µ)SW + F ′,

where F , F ′ are effective exceptional Q-divisors over X .
We now run a (KW +SW +BW )-MMP over Z. As ζ(SW +BW ) < ζ(∆) and by decreasing

the coefficients by 1
l 5SW +BW 6 for l& 0 so as to make the pair klt without affecting ζ , all

flips exist in this MMP. Additionally, as every extremal ray is negative on (1−a+µ)SW +F ′

(and so on an irreducible component of 5SW +BW 6), all contractions in this MMP exist by
Proposition 9.12. The cone theorem is valid by Theorem 9.9, and the MMP terminates by
the special termination in Theorem 9.7. Let h : W ""# Y be an output of this MMP where
SY , BY , and F ′

Y are the strict transforms of SW , BW , and F ′ on Y , respectively.
Next, we run a (KY + aSY + BY )-MMP over Z with scaling of (1 − a)SY . If Σ is an

extremal ray, then Σ · SY > 0 and (KY +BY ) ·Σ < 0. As ζ(BY ) < ζ(∆), again decrease the
coefficients by 1

l 5BY 6 for l & 0 to make the pair klt without affecting ζ , all the flips in this
MMP exist by induction. Noting

KY + aSY +BY ≡Z µSY + F ′
Y ,

16The additivity of the Picard rank here follows again from the Q-factoriality of X and X+

102



every extremal ray is negative on µSY + F ′
Y , hence on F ′

Y (as Σ · SY > 0) and so on an
irreducible component of 5BY 6. It follows from Proposition 9.12 that all contractions in this
MMP exist. As in the paragraph above, the cone theorem and termination are both valid in
this setting. Set (X+, aS+ +B+) to be an output of this MMP.

To conclude the proof, we show that (X+, aS+ + B+) is the flip of (X, aS + B). Notice
that the negativity lemma applied to a common resolution of indeterminacies π1 : W −→ X
and π2 : W −→ X+ implies that

G := π∗
1(KX + aS +B)− π∗

2(KX+ + aS+ +B+)

is effective and non-zero. Since (X, aS + B) is klt, we get that 5B+6 = 0, and so all the
exceptional divisors were contracted and X ""# X+ is an isomorphism in codimension one.
Moreover, since X and X+ are Q-factorial we have that ρ(W/X) = ρ(W/X+) is equal to
the number of exceptional divisors, and it follows that ρ(X+/Z) = 1 using that ρ(W/X) +
ρ(X/Z) = ρ(W/Z) = ρ(W/X+) + ρ(X+/Z) and ρ(X/Z) = 1. Again we must now have that
KX+ + aS+ +B+ is relatively ample over Z, else KX+ + aS+ +B+ is relatively numerically
trivial over Z and then G is exceptional and numerically trivial over X , contradicting the
negativity lemma once more. It follows that (X+, aS++B+) is the flip of (X,∆) as desired.

!

9.4. Step 3: Base point free theorem for nef and big line bundles. The following
theorem is key in our proof of the base point free theorem. Here, condition (e) may be
thought of as numerical klt-ness of (X, π∗∆). When X is Q-factorial, then this is a mixed
characteristic variant of [HW22b, Theorem 1.1] (cf. [TY20, Theorem 4.6]).

Theorem 9.15 ([Kol21, Theorem 1]). Let (Y,∆) be a three-dimensional dlt pair with Q-
boundary and let π : Y −→ X be a projective birational map of quasi-projective schemes over
R with irreducible exceptional divisors E1, . . . , Er. Suppose that

(a) there exists an ample exceptional Q-divisor Λ on Y ,
(b) all Ei are Q-Cartier,
(c) 5∆6 = E1 + . . .+ Er,
(d) KY +∆ ≡X

∑
eiEi for ei ∈ Q, and

(e) (X, π∗∆) is klt, or more generally that there exists a sub-klt17 pair (Y,∆′) such that
KY +∆′ ≡X 0 and ∆−∆′ is exceptional.

We can run a (KY + ∆)-MMP over X in the sense of [Kol21] and it terminates with X.
In particular, every Q-Cartier Q-divisor D on Y such that D ≡X 0 satisfies D ∼Q,X 0 (in
other words, some multiple of D descends to X).

We decompose Y −→ X into pl-contractions and pl-flips, such that D descends under each
operation. This uses Kollár’s non-Q-factorial MMP [Kol21, Theorem 1], in which all con-
tractions behave as if they were of Picard rank one with respect to exceptional divisors, and
so their Q-Cartierness is in fact preserved. For the convenience of the reader we write down
a detailed explanation below. Unless otherwise stated, the exceptionality and ampleness
below is always relative to X .

17satisfying the same conditions as klt but not requiring that the boundary divisor is effective.
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Proof. It is enough for the last sentence of the statement to show that π∗D is Q-Cartier, as
then D = π∗π∗D ∼Q,X 0 by the negativity lemma. By Conditions (a) and (b), we can pick
an R-divisor H and h′ ∈ R>0 such that

(f) H =
∑
γiEi where {γ1, . . . , γr} are linearly independent over Q, and

(g) KY +∆ + h′H is R-ample.

To this end, we may initially take H to be R-ample, but we will not use that in proofs since
it will not be stable under the procedure described below. Further, note that Condition
(a) implies that Exc(Y/X) is a divisor (and hence equal to 5∆6 by Condition (c)); indeed,
−Λ is effective by the negativity lemma (Lemma 2.16), and so if there exists an irreducible
component C ⊆ Exc(Y/X) such that C +⊆ SuppE1 ∪ . . . ∪ SuppEr (in particular, C is a
component of codimension at least two, and since it cannot be a point it must be a curve),
then C · Λ ≤ 0, contradicting the ampleness of Λ.

We start by establishing the cone theorem. Set (KY + ∆)|Ẽi
= KẼi

+ ∆Ẽi
for the nor-

malization Ẽi of Ei, which makes sense as Ei ⊆ 5∆6. Since Exc(Y/X) is a divisor, the map∑r
i=1NE(Ẽi/X) −→ NE(Y/X) is surjective and by applying Theorem 2.46 we get

NE(Y/X) = NE(Y/X)KY +∆≥0 +
∑

t≥0

R≥0[Ct],

for a countable set of curves {Ct} and positive integers dCt such that 0 < −(KY +∆Y ) ·Ct ≤
4dCt , and L ·k Ct is divisible by dCt for every Cartier divisor L. We also obtain that the rays
R≥0[Ct] do not accumulate in the half space NE(Y/X)KY +∆<0. This concludes the proof of
the cone theorem.

We run a (KY +∆)-MMP with scaling of H as in [Kol21] and explain that this determines
the choice of extremal faces so that they behave as if they were one-dimensional with respect
to exceptional divisors. We construct it explicitly. Let h ∈ R≥0 be the smallest number such
that KY +∆+ tH is nef for all h ≤ t < h′. If h = 0, then move to the last paragraph of the
proof.

Since

(9.15.1) KY +∆ + hH = (1− h/h′)(KY +∆) + (h/h′)(KY +∆+ h′H)

and KY +∆+h′H is R-ample, we see that KY +∆+hH is positive on NE(Y/X)KY +∆≥0 and
on all but a finite number of extremal rays by the non-accumulating property of extremal
rays. In particular, (KY + ∆ + hH) · Σj = 0 for all such extremal rays Σ1, . . . ,Σc. Set
V = span(Σ1, . . . ,Σc) = (KX +∆+ hH)⊥. We have H · Σj = −

1
h(KY +∆) · Σj , and so

∑
i γiEi · Σj = H · Σj ∈

1
hQ.

Since γi are linearly independent over Q, the number 1
h has a unique presentation as a linear

combination of γi, and so we get that the vectors (E1 · Σj , . . . , Er · Σj) ∈ Qr are colinear
(that is, Q-multiples of one another) for different j. It follows then that Ei ∈ W for every i,
where W ⊆ DivQ(X) is the subspace of Q-Cartier Q-divisors which are colinear with E1 as
functionals on V . Since KY +∆ ≡

∑
eiEi, we also have that KY +∆ ∈ W .

As the ample Q-divisor Λ is exceptional over X , we get that Λ ∈ W , too. In particular,
every exceptional divisor Ei is colinear with a multiple of Λ as a functional on V , and so is
either entirely positive, trivial, or negative on V . Since Λ is ample, and so anti-effective by
the negativity lemma, it cannot happen that every exceptional divisor is positive or trivial
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on V . Hence there must exist an exceptional irreducible divisor S ⊆ Supp5∆6 such that S
is negative on V .

We construct the contraction of V . First, we claim that there exists an ample Q-divisor
G such that V = (KY +∆ +G)⊥. To this end, define the R-divisor

G′ =
h/h′

1− h/h′

∑
(ei + h′γi)Ei ≡X

h/h′

1− h/h′
(KY +∆+ h′H).

Note that KY +∆+G′ ≡X
1

1−h/h′ (KY +∆+hH) by (9.15.1). So, G′ satisfies all the require-
ments for G, except that it is not a Q-divisor. However, since the irreducible components
of G′ are contained in W we can perturb it in W to obtain the claimed Q-divisor G. Note
that as the perturbation happens in W , we can make KX + ∆ + G trivial on V . Addi-
tionally, by the non-accumulating property of extremal rays for small enough perturbation,
KX + ∆ + G is still positive on all extremal rays not in (KX + ∆ + G′)⊥ = V , and hence
(KX +∆ +G)⊥ = V holds.

Having shown the claim, we can invoke Proposition 9.16 to construct a contraction f : Y −→
Z of V . Moreover, KY +∆+hH ∈ W ⊗Q R descends to an R-Cartier R-divisor on Z, which
must be R-ample by the Nakai-Moishezon criterion Lemma 2.21. Indeed, to apply the Nakai-
Moishezon criterion we need to check that a closed integral subscheme Q ⊆ Y over a field is
contracted by f if and only if (KY +∆+hH)|Q is not big. This is automatic when dimQ = 1
as (KY +∆ + hH)⊥ = V , and so we can assume that Q = Ei for some i and Ei is defined
over a field.

But (KY +∆+ hH)|Ei is semiample (by (9.15.1) and [Tan20a, Theorem 1.1]), and hence
it is big if and only if Ei is not contracted.

We construct the flip. Suppose that f is small. We have that KY +∆+ hH ≡X,R
∑

(ei +
hγi)Ei and the R-divisor on the right descends to an R-Cartier R-divisor

∑
(ei + hγi)f∗Ei

on Z by Proposition 9.16.(a) (with f∗Ei += 0, as f is small), which is R-ample. Hence,
by the negativity lemma, ei + hγi < 0 for all i. If C is a curve contracted by f , then
C ·
∑

(ei+hγi)Ei = 0. As C ·S < 0, there must exist another irreducible exceptional divisor
A such that C · A > 0. Since A ∈ W , we get that A is f -ample. We use the divisors A and
S to construct the flip f+ : Y + −→ Z of f .

By Proposition 9.16.(a) (applied to T = Z), all R-divisors in W ⊗QR are in fact R-linearly
equivalent over Z to multiples of each other; similarly for Q-divisors. Hence, the existence
of f+ follows from Proposition 8.27 as in the proof of Proposition 9.6 (we can peform a
necessary perturbation so that 5∆6 = S + A as the irreducible components of 5∆6 are
Q-Cartier and contained in W ).

Additionally, we note that

(9.15.2) the strict transform D+ of D ∈ W ⊗Q R is R-Cartier.

In fact, in this situation D+a(KX+∆) ≡Z 0 for some a ∈ R. Hence, D+a(KX+∆) descends
to Z by Proposition 9.16.(a), and so D+ + a(KX+ +∆+) is R-Cartier. Since KX+ +∆+ is
Q-Cartier, so is D+. Let φ : Y ""# Y + be the induced rational map.

We show that the above procedure can be repeated. Pick g : Y ""# Y as follows: Y = Z
(with g = f) when f is divisorial and Y = Y + (with g = φ) when f is small. We claim
that we can replace Y , ∆, ∆′, D, H , h′ by Y , ∆Y , ∆

′
Y
, DY , HY , h − ε, respectively (with

0 < ε7 1 and the corresponding divisors being their strict transforms on Y ), so that (a)-(g)
hold and the algorithm can be run again:
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◦ note that g∗M is Q-Cartier for every Q-divisor M ∈ W by Proposition 9.16.(b) and
(9.15.2). In particular, if M ≡X 0, then M ∈ W , and so g∗M ≡X 0 is Q-Cartier
(cf. Proposition 9.16.(a)). This immediately yields (b),(d),(e) shows that KY + ∆Y

is Q-Cartier and that DY ≡X 0 and is Q-Cartier (by setting M = Ei, KY + ∆ −∑
eiEi, KY +∆′, KY +∆, D, respectively).

◦ we have HY =
∑
γig∗Ei, and those γi for which g∗Ei += 0 comprise a subset of

{γ1, . . . , γr}, and so are linearly independent over Q; hence (f) holds,

◦ the R-divisor KY +∆Y + (h− ε)HY is R-ample, and so (g) holds. This is automatic
in the divisorial case as f∗(KY +∆+hH) is ample, and in the flipping case it follows
from KY + + ∆Y + + (h − ε)HY + = (f+)∗(KZ + ∆Z + hHZ) − εHY + , where HY + is
anti-ample over Z as H ∈ W was ample over Z. Here, divisors with subscripts denote
appropriate strict transforms.

◦ (a) is satisfied for Λ =
∑

(ei+(h−ε)γi)g∗Ei ≡X g∗(KY +∆+(h−ε)H) by the above
paragraph. Note that such a chosen Λ is only an R-divisor, but since each irreducible
component of SuppΛ is Q-Cartier, we can perturb it so that it is an ample Q-divisor.

However, note that HY is not necessarily R-ample any more.
Now, repeat the above procedure. It eventually stops by the same argument as in special

termination ([Fuj07, Theorem 4.2.1], cf. Theorem 9.7).
Thus, we can assume that KY +∆ is nef. Then KY +∆− (KY +∆′) is nef, effective, and

exceptional, hence zero by the negativity lemma. Since Exc(Y/X) = 5∆6, this implies that
Y = X and conclude the proof as D is Q-Cartier. !

In the above proof, we used the following results. First, we state a variant of the contraction
theorem. Here we say that the cone theorem is valid for a pair (X,∆) over T if there exists a
countable set of curve {Ci} such that conditions (a), (b), and (c) of Theorem 9.9 are satisfied.

Proposition 9.16. Let (X,∆) be a three-dimensional dlt pair which is projective over T ,
and let G be an ample Q-divisor on X such that :

◦ KX +∆ is pseudo-effective over T .
◦ ∆ is a Q-divisor such that all irreducible components of 5∆6 are Q-Cartier.
◦ The cone theorem holds for (X,∆) over T .
◦ L = KX +∆ +G is nef.
◦ V = L⊥ ⊆ NE(X/T ) is an extremal face.
◦ There exists a prime divisor S ⊆ 5∆6, which is negative on V and is contained in W ,
where W ⊆ DivQ(X) is the subspace of Q-Cartier Q-divisors which are colinear with
KX +∆ as functionals on V .

Then the contraction f : X −→ Z of V exists. Moreover :

(a) If D ≡Z 0 is a Q-Cartier Q-divisor, then D descends to Z; the same holds for
D ∈ W ⊗Q R satisfying D ≡Z 0,

(b) If f contracts an irreducible divisor E ∈ W , then f∗D is R-Cartier for every D ∈
W ⊗Q R (in particular, if D ∈ W , then f∗D is Q-Cartier).

Note that W ⊗R agrees with the subspace of R-Cartier R-divisors which are colinear with
KX +∆ as functionals on V .
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Proof. Since L⊥ = V , we have that L is trivial on V , and so G ∈ W . Further, KX + ∆
is negative on V . Pick an ample Q-divisor A ∈ W (by rescaling G) such that S + A acts
trivially on V (this is possible as S,G ∈ W ).

We claim that, Lε = KX +∆+Gε is nef over T and (Lε)⊥ = V for any 0 < ε7 1, where
Gε = G + ε(S + A) is an ample Q-divisor. Indeed, by non-accumulating property of the
cone theorem, there are finitely many (KX + ∆ + 1

2G)-negative extremal rays: Σ1, . . . ,Σl.
We may assume that V = span(Σ1, . . . ,Σk) for some k ≤ l. For every ε such that Gε −

1
2G

is ample, Lε is positive on all extremal rays except possibly these Σ1, . . . ,Σl. By decreasing
ε further we can assume that Lε · Σj is close enough to L · Σj , and so it is also positive for
k < j ≤ l. Last, Lε · Σj = 0 for 1 ≤ j ≤ k holds for all ε as L · Σj = (S + A) · Σj = 0.

Moreover, we have that E(Lε) ⊂ S. Indeed, if V ⊂ X is an integral subscheme not
contained in S, then Lε|V = (L + ε(S + A))|V is nef and big over T . Replacing L by
Lε, we may assume that E(L) ⊂ S. Now, the contraction exists by Proposition 2.51 and
Proposition 2.48.

As for condition (a), the case ofQ-CartierQ-divisorD follows directly from Proposition 2.51
and Proposition 2.48. So, we only have to prove the case of 0 ≡ZD ∈ W ⊗Q R. In this
case, D =

∑
aiDi for Di ∈ W and ai ∈ R. Pick bi ∈ Q such that Di ≡Z biS. Then

D =
∑

ai(Di−biS)+(
∑

aibi)S and Di−biS descend to Z by Proposition 2.51. As D ≡Z 0,
we have

∑
aibi = 0, and hence D descends to Z.

It remains to show point (b). If f contracts E ∈ W , then E = S and f∗D = f∗(D − cS)
is R-Cartier for every D ∈ W ⊗ R by condition (a) proved in the above paragraph, where
c ∈ R is chosen so that D − cS ≡Z 0. !

Theorem 9.17. Let (X,B) be a Q-factorial three-dimensional klt pair, with R-boundary,
which is projective over T . Let L be a nef and big Q-Cartier divisor on X such that L −
(KX +B) is nef and big. Then L is semiample.

Proof. By a small perturbation, since X is Q-factorial we may assume that B is a Q-divisor,
and L− (KX +B) is ample. By Corollary 2.53, there exists a proper birational T -morphism
f : X −→ Z to a proper algebraic space Z over T such that a proper integral subscheme
V ⊆ X is contracted if and only if L|V is not relatively big. In particular, L ≡Z 0.

We claim that OX(mL) = f ∗M for some m > 0 and a line bundle M on Z. This will
conclude the proof of the theorem asMmust then be ample by the Nakai-Moishezon criterion
(Lemma 2.21). The assumptions of Nakai-Moishezon are satisfied as LdimV · V = 0 for a
proper integral subscheme V ⊆ X (over a field) if and only if V ⊆ Exc(f).

To show the claim, it is enough to prove that f∗OX(mL) is a line bundle for some m > 0
which can be verified étale locally (Q-factoriality may be lost, but it will not be needed again).
Thus, we can assume that Z is the spectrum of a Noetherian local ring. The assumptions of
Lemma 2.34 are satisfied, and as A = L− (KX + B) is ample, we can assume that (X,B′)
is klt for B′ = B + A. Set B′

Z = f∗B′. Note that −(KX +B) is relatively ample over Z.
Let h : Y −→ Z be a log resolution of (Z,B′

Z) which admits a factorization π : Y −→ X
and such that there exists an ample exceptional divisor (see Proposition 2.14). Set ∆Y =
h−1
∗ B′

Z + Exc(h). Note that KY + B′
Y ≡Z 0 for KY + B′

Y = π∗(KX + B′) = π∗L. Further
KY +∆Y ≡Z KY +∆Y − (KY + B′

Y ) and the latter Q-divisor is exceptional over Z. Thus
the assumptions of Theorem 9.15 for (Y,∆Y ) over Z are satisfied, and so π∗L descends to Z.
Hence, f∗OX(mL) = h∗OY (mπ∗L) is a line bundle for m divisible enough by the projection
formula. !
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Corollary 9.18 (Contraction theorem for birational extremal rays). Let (X,B) be a Q-
factorial dlt pair with B an R-divisor. Suppose that Σ is a (KX + B)-negative extremal ray
such that there is some nef and big divisor D with Σ = D⊥. Then there is a projective
contraction f : X −→ Z of Σ.

Proof. As X is Q-factorial, we may decrease the coefficients of B to assume it is a Q-divisor
and (X,B) is klt, while maintaining that Σ is (KX +B)-negative. By a standard argument
using Theorem 9.9, we may find an ample Q-divisor A such that Σ = (KX +B +A)⊥. Now
we may apply Theorem 9.17 to L = KX +B + A. !

9.5. Step 4: MMP in the pseudo-effective case. Next, we note that projective termi-
nalizations of klt pairs can be constructed. This is used in the proof of termination below.

Proposition 9.19. Let (X,B) be a three-dimensional quasi-projective klt pair with R-boundary
over R as in Setting 9.1 where additionally the residue fields of R do not have characteristic
2, 3 or 5. Then there exists a projective birational morphism g : Y −→ X and a terminal pair
(Y,BY ) such that KY +BY = g∗(KX +B).

Proof. By [KM98, Proposition 2.36] there are only finitely many divisors over X with log
discrepancy at most 1. Therefore by [KM98, Lemma 2.45] and Proposition 2.14 we may find
a projective log resolution g : Y −→ X of (X,B) which extracts all divisors of log discrepancy
at most 1 with respect to (X,B). Define

KY +BY ∼ g∗(KX +B) + F − E

where E and F are effective R-divisors with no common prime divisors in their support, and
BY is the strict transform of B. By repeatedly blowing up strata of (Y,BY + E) we may
assume that the irreducible components of Supp(BY + E) do not meet. If we replace Y, F
and E by the result of this process, all new exceptional components will be added to F . As
a result we may assume that the irreducible components of Supp(BY + E) are disjoint and
hence that (Y,BY + E) is terminal.

Run a (KY +BY +E)-MMP over X , which uses the cone theorem Theorem 9.9, contrac-
tions theorem Corollary 9.18, and existence of flips Theorem 9.14. This LMMP terminates
by a standard argument involving Shokurov’s difficulty [KM98, Theorem 6.17]. Note that
[KM98] deals with only Q-boundaries, however the same argument works in the R-boundary
case. It uses the fact that the variety underlying a terminal surface pair is regular in codi-
mension 2 which holds in our case by [Kol13, Theorem 2.29], and also uses the fact that
there are only finitely many components of log discrepancy at most one [KM98, Proposition
2.36]. Let φ : W −→ X be the outcome of this MMP and let EW and FW be the images of
E and F , respectively. We know that φ contracts every component of F since by construc-
tion FW − EW is nef and φ∗(EW − FW ) = 0, so FW = 0 by the negativity lemma. Since
KY +BY +E ∼Q,g F , this means that every divisorial contraction which occurs is negative for
F , and hence the contracted divisor is a component of F . As a result we see that this MMP
contracts exactly the components of F and so produces the required terminalization. !

Proposition 9.20. Let (X,B) be a Q-factorial three-dimensional dlt pair with R-boundary
which is projective and surjective over T with dim(T ) > 0 and such that none of the residue
fields have characteristic 2, 3 or 5. Suppose that KX + B is pseudo-effective. Then we can
run a (KX + B)-MMP and any sequence of the steps of the MMP terminates. As a result,
(X,B) has a log minimal model.
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Proof. First, note thatKX+B ∼T M ≥ 0. Indeed, it is enough to show that κ(KXη+B|Xη) ≥
0, where Xη is the fiber over a generic point η ∈ T , and this follows by the two-dimensional
non-vanishing theorem in equicharacteristic [Fuj12, Tan20a].

We can apply Theorem 9.9, Theorem 9.14 and Corollary 9.18 to run a (KX + B)-MMP,
and it remains to show that it terminates.

Suppose we have an infinite sequence of (KX +B)-flips Xi ""# Xi+1. By the first assertion
in Theorem 9.7, eventually the flipping loci are disjoint from 5B6. Thus, by replacing X by
Xi for i& 0, we can assume that all these flips are (KX +∆)-flips for ∆ = B − 5B6 + εM
and 0 < ε7 1. Explicitly, we pick ε so that (X,∆) is klt. Then the statement follows from
Theorem 9.8, where the existence of terminalizations is a consequence of Proposition 9.19.
Note that KX +∆ is not necessary pseudo-effective any more, but here we only use that the
extremal rays of Xi ""# Xi+1 are negative on M , and so also on an irreducible component
of Supp∆. !

Corollary 9.21. Let X be a variety which is quasi-projective over SpecR, such that X has
no residue fields of characteristic 2, 3 or 5.

Let ∆ =
∑

ai∆i be an R-divisor such that ∆i are prime divisors and such that KX +∆
is R-Cartier. Let

Γ =
∑

i:ai>1

∆i +
∑

i:ai≤1

ai∆i.

Then there exists a dlt modification of (X,∆), which is a projective birational morphism
π : Y −→ X with the properties listed below. First define ∆Y by KY + ∆Y := π∗(KX + ∆)
and ΓY by ΓY = π−1

∗ Γ+ Ex(π). Then π satisfies:

(a) Y is Q-factorial.
(b) (Y,ΓY ) is dlt,
(c) KY + ΓY is nef over X,
(d) ∆Y − ΓY ≥ 0, and
(e) for every x ∈ X, either π−1(x) is contained in Supp(∆Y −ΓY ) or is disjoint from it.

Proof. Take π : Y −→ X to be a log resolution of (X,∆). Then a minimal model of (Y, π−1
∗ Γ+

Ex(π)) over X , which exists by Proposition 9.20, is a dlt modification of (X,∆). The first
three properties may be verified by the same argument as in [Fuj11, Theorem 10.4]. For (d)
note that

∆Y − ΓY = KY +∆Y − (KY + ΓY )

is anti-nef over X and its pushforward via π is effective. Thus, it is effective by the negativity
lemma (Lemma 2.16) concluding (d). For (e), note that π−1(x) is connected for every x ∈ X ,
and if C is a curve in π−1(x) which intersects Supp(∆Y − ΓY ) but is not contained in it,
then C · (∆Y − ΓY ) > 0, contradicting the fact that ∆Y − ΓY is anti-nef over X . !

Remark 9.22. Even when X does admit residue characteristics 2, 3, or 5, one can still con-
struct a dlt modification of X by [Kol21] (cf. Theorem 9.15). However, it will not necessarily
be Q-factorial unless X is Q-factorial as well.

9.6. Step 5: Base point freeness. In this subsection, we prove the full basepoint freeness
theorem. We do this only in the case of dim(T ) > 0, an assumption that automatically
holds in the arithmetic situation which is the main motivation of our article. The case
of a projective variety over a field appears in [KM98, Theorem 3.3] when the field has

109



characteristic zero (see [Kaw85] for the original proof stated less generally), [BW17] when it
is algebraically closed of characteristic p > 5 and [GLP+15] when it is perfect of characteristic
p > 5. We leave open the case of a variety projective over an imperfect field.

While many of the arguments of [BW17] go through in our situation of a positive dimen-
sional base, there are several things which do not work, such as Tsen’s theorem. However,
the relative situation provides advantages which enable us to avoid those problems. In the
first version of this article we directly referred to the arguments of [BW17] wherever possible,
while below we provide simpler proofs which make full use of the advantages offered by the
relative situation.

First, we prove the abundance theorem for semi-log canonical curves and log canonical
surfaces, for which we were unable to find a reference in sufficient generality.

Lemma 9.23. Let (X,∆) be a semi-log canonical curve pair with Q-boundary, such that
KX +∆ is nef. Then KX +∆ is semiample.

Proof. By Keel’s theorem ([Kee99]) we can reduce to the case ofKX+∆ ≡ 0, and furthermore
assume that X is connected. If ∆ = 0, we need only show that h0(X,ωX) += 0 which follows
from the general Riemann-Roch theorem for reduced curves [Liu02, Thm VII.3.26] (note
that X is Cohen-Macaulay):

dimk H
0(X,ωX) = dimk H

1(X,ωX)+0+χ(X,OX) = 2−dimk H
1(X,OX) = 2−dimk H

0(X,ωX)

When∆ += 0 on the other hand, we claim thatX is a chain of curves C such that (Ck)red
∼= P1.

Let C1 be an irreducible component which supports a component of the boundary. Then it
can meet at most one other irreducible component C2, at a single point. Since C2 gains a non-
zero conductor component in the normalization, it can meet at most one other component
C3 at a single point, and C3 is disjoint from C1. The argument continues to produce the
required chain. Since normalization produces a non-zero conductor (or boundary) on each
component, we must have a chain of curves (Ck)red

∼= P1 as claimed. Hence, KX + ∆ is
semiample on all irreducible components. Thus we may conclude by [Kee99, Cor 2.9] and
induction on the number of components. !

Theorem 9.24. Let (X,∆) be a log canonical pair of dimension 2, projective and surjective
over T with Q-boundary, and assume in addition that that T is the spectrum of a local ring
with positive residue characteristic. If KX +∆ is nef over T , then it is semiample over T .

Proof. By [Tan20a] we may assume that X is surjective over T with dim(T ) > 0, and by
Theorem 2.44 we may assume that dim(T ) = 1. We may replace T by its normalization to
assume that it is a spectrum of a DVR of positive residue characteristic. By taking a dlt
modification, we may assume that (X,∆) is Q-factorial and dlt.

We first deal with the case where KX + ∆ is big by adapting the argument of [Wal18,
Theorem 1.1] to the two dimensional case. Firstly, (KX+∆)|XQ

is semiample since dimXQ =
1 (here it is crucial that T is a spectrum of a DVR, cf. Remark 2.26), in which case abundance
is straightforward. So by Theorem 2.50 it is enough to show that (KX + ∆)|E(KX+∆) is
semiample. Run a (KX+∆−ε5∆6)-MMP, with scaling of 5∆6. By taking ε sufficiently small,
we may assume that this only contracts (KX+∆)-trivial curves, and also thatKX+∆−ε5∆6
is big. Once the MMP terminates, we obtain ψ : X −→ Y , such that ψ∗(KY +∆Y ) = KX+∆,
and (Y,∆Y − ε5∆Y 6) is klt. It follows from the base-point free theorem Theorem 2.44) that
KY +∆Y−ε5∆Y 6 is semiample. As Y is a surface, every irreducible component of E(KY +∆Y )

110



is one dimensional, and a curve C is in E(KY + ∆Y ) if and only if (KY + ∆Y )|C ≡ 0. By
construction, Y contains no (KY +∆Y )-trivial curves which intersect 5∆Y 6 positively, and
so every connected component of E(KY +∆Y ) is either contained in 5∆Y 6 or disjoint from
it.

Suppose first that E is a connected component of E(KY +∆Y ) which is completely disjoint
from 5∆Y 6. Then (KY +∆Y )|E ∼Q (KY +∆Y −ε5∆Y 6)|E, which as noted earlier is semiample
by the base-point free theorem. This implies that (KY +∆Y )|E is semiample. On the other
hand, if E is a connected component of E(KY +∆Y ) which is contained entirely in 5∆Y 6,
then if KE + ∆E = (KY + ∆Y )|E, we have that (E,∆E) is a semi-log canonical pair by
[Kol13, Corollary 3.35] and so (KY +∆Y )|E is semiample by adjunction and Lemma 9.23.

Assume now that KX+∆ is not big. Since we may assume as above that T is the spectrum
of a DVR, the semiampleness now follows from [CT20, Lemma 2.17]. !

The following result on descending nef divisors is an adaptation of [BW17, Lemma 5.6]
and [Kaw85, Proposition 2.1].

Lemma 9.25. Let f : X −→ T be a projective and surjective contraction between normal
integral schemes over R. Let L be a Q-Cartier Q-divisor on X, nef over T , such that L|F is
semiample, for the generic fiber F of f . Assume dimX ≤ 3. Then there exists a commutative
diagram

X ′ φ
!!

f ′

##

X

f
##

Z
ψ

!! T

with φ and ψ projective and φ birational, where f ′ agrees with the map induced by φ∗L over
the generic point of T , and with Q-Cartier Q-divisor D on Z satisfying φ∗L ∼Q f ′∗D.

Proof. Up to replacing X by a projective birational cover, we may pick a projective surjective
morphism X −→ Z ′ to a normal projective scheme Z ′ over T such that its restriction to the
generic fibre is the fibration defined by L|F .

Now take a flattening (see [RG71, Theorem 5.2.2]):

X ′′ φ′′
!!

f ′′

##

X

f
##

Z ′′ π
!! Z ′.

Here f ′′ is flat (hence equidimensional, see [Sta, Tag 0D4J]), and φ′′ and π are birational. We
can then replace Z ′′ with a resolution Z and X ′′ with the normalization X ′ of the irreducible
component of X ′′ ×Z′′ Z which is dominant over Z to assume that Z is regular and X ′ is
normal. Note that f ′ may not be flat, but it stays equidimensional. Denote φ : X ′ −→ X
and f ′ : X ′ −→ Z. By [CT20, Lemma 2.17], we get that φ∗L ∼Q f ′∗D for some Q-divisor D
on Z. !

Lemma 9.26. Let X be a three-dimensional normal integral scheme, projective over T .
Suppose L is a nef Q-Cartier Q-divisor which is not big over T and such that L|XQ

is
semiample (if XQ is not empty), and L|G is semiample where G is the fiber over the generic
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point of the image of X in T . Then L is endowed with a map f : X −→ V over T to an
algebraic space V proper over T .

Moreover if L|F ∼Q 0 for every fiber F of f , then L is semiample over T .

Proof. First we may replace T by the image of X in T to assume that X −→ T is a surjective
contraction. Let g : X ′ −→ Z be the morphism given by Lemma 9.25. Replacing X bira-
tionally (which we can do as X is normal so X ′ −→ X is a contraction) we may assume that
X = X ′, so that there is a Q-divisor D on Z such that L ∼Q g∗D.

To show that L is EWM, it suffices to show thatD is EWM. If dim(Z) = 2, thenD is EWM
by Lemma 2.54. If dim(Z) = 1 then we may assume that dimT = 0 or Z = T = Spec(R)
for R a Dedekind domain, and then there is nothing to prove.

For the second part of the lemma, first localize T at a closed point of positive characteristic,
which we may do by semiampleness of L|XQ

. Let f : X −→ V be the map associated to L,
and assume that L is semiample on every fiber of f . It is enough to show that the divisor D
on Z is semiample. Furthermore, we may assume dim(Z) = 2 otherwise we are done. As D
is big and EWM on Z, E(D) is a finite set of curves contracted to points on T , whose pre-
images on X are therefore contained in fibers of f . Hence f ∗D|f−1(E(D)) is semiample, and
so is D|E(D) by [CT20, Lemma 2.11(3)] as f−1(E(D)) −→ E(D) has geometrically connected
fibers. We are done by Theorem 2.50. !

We now prove the base point free theorem.

Theorem 9.27. Let (X,B) be a three-dimensional Q-factorial klt pair with R-boundary
admitting a projective morphism f : X −→ T , such that the image of f has positive dimension,
and none of the residue characteristics of T are 2, 3 or 5.

Suppose that L is an f -nef Q-divisor such that L− (KX +B) is f -big and f -nef. Then L
is f -semiample.

Proof. By Theorem 9.17, it remains to prove the case where L is not big. By a small
perturbation we may assume that B is a Q-boundary, and that L− (KX +B) is f -ample.

By the base point free theorem in dimension 1 and 2, L|G is semiample, where G is the fiber
over the generic point of Im(f). By Lemma 2.34 we may choose 0 ≤ A ∼Q L−(KX+B) such
that (X,B+A) is klt, and it suffices to show that KX+B+A is semiample. By Lemma 9.26
and Proposition 2.48, KX + B + A is EWM over T , and let g : X −→ V be the associated
map. Note that in particular, KX + B + A ≡V 0. By the second part of Lemma 9.26, it
is enough to show that L|F ∼Q 0 for every fiber F of g. This is satisfied over the generic
point of V by the base point free theorem in lower dimensions and furthermore holds over
the points of characteristic zero by Proposition 2.48. So we may fix a point v ∈ V of positive
residue characteristic, not equal to the generic point, for which we must test semiampleness
on the fiber F over v.

Let h : V ′ −→ V be an étale cover of a neighbourhood of v ∈ V by an affine scheme, and
fix v′ ∈ h−1(v). Since Fv′ is only a base change of F by an extension of the ground field, it is
enough to check semi-ampleness of L|Fv′

. Hence after performing a small Q-factorialization
of the base change X ×V V ′, we may assume that V is an affine scheme, and furthermore
by passing to the localization at v we may assume it is the spectrum of a local ring with
positive residue characteristic.

Fix a Cartier divisor D on V which contains the point v (which we may do because v is
not the generic point), and furthermore that D is of pure characteristic p. It follows that
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Supp(f ∗D) contains the fiber F . Note that if X is not purely of characteristic p, we can just
take D = (p).

Let k = lct(X,B + A, g∗D) ∈ Q. After shrinking V and replacing k we may assume that
all log canonical centers of (X,B+A+kg∗D) intersect F . After tie breaking by changing A
up to linear equivalence, we may assume that (X,B +A+ kg∗D) has only one log canonical
place. Note that to perform the tie breaking argument of [Cor07, Section 8.7], it is enough to
have a log resolution with an ample exceptional divisor Proposition 2.14 and log Bertini for
a sufficiently ample divisor Remark 2.18, which holds in complete generality in our setting.
Let π : Y −→ X be a Q-factorial dlt modification of (X,B + A + kg∗D), see Corollary 9.21,
and let KY + ∆Y = π∗(KX + B + A + kg∗D), where we have 5∆Y 6 := S irreducible and
therefore KY +∆Y is plt. The divisor S is not disjoint from FY , the fiber of Y −→ V over v.
Since π has connected fibres, so does π|FY : FY −→ F since this is set theoretically a union of
fibres of π. Hence by [CT20, 2.11(3)], it is enough to show that (KY +∆Y )|FY is semiample.
Furthermore, the converse is also true since semi-ampleness is preserved under pullback. We
will use this trick repeatedly in what follows: if we take a morphism with connected fibres for
which KY +∆Y descends or pulls back, it is enough to show semi-ampleness of L restricted
to the new fiber.

Run a (KY +∆Y −S)-MMP over V with scaling of S (which terminates by Proposition 9.20
as KY +∆Y −S ≡V −S is pseudo-effective over V being equivalent to an effective Q-divisor
af ∗D − S for a & 0) to reach Y ′ on which −S is nef over V . By construction this cannot
have contracted S, as each step intersects it positively. Again, the fiber FY ′ over v ∈ V is
not disjoint from S. But any curve Γ in FY ′ satisfies S ·Γ ≤ 0 and so FY ′ is either contained
in S or disjoint from it. However we know that it cannot be disjoint, and so FY ′ ⊂ S. The
divisor KY +∆Y is trivial for every step in the prior MMP since KY +∆Y ≡V 0, and so it
descends to every step. As a result, by repeatedly applying [CT20, 2.11(3)] at every step of
the MMP as explained above, it is enough to show that (KY ′ +∆Y ′)|FY ′ ∼Q 0, and for this it
is enough to see that (KY ′ +∆Y ′)|S′ is semiample, but this follows from Theorem 9.24 and
Corollary 7.17, since (Y ′,∆Y ′) is plt as it has the same non-klt places as (Y,∆): which are
S ′ and S respectively. !

The proof of the base point free theorem for R-line bundles will be given in the next section
(Theorem 9.33) as it requires the cone theorem.

9.7. Step 6: Cone theorem and Mori fiber spaces. The first goal of this section is to
prove the full cone theorem:

Theorem 9.28. Let (X,∆) be a three-dimensional Q-factorial dlt pair with R-boundary
projective and surjective over T , which has positive dimension and no residue fields of char-
acteristic 2, 3 or 5. Then there exists a countable collection of curves {Γi} such that

(a)

NE(X/T ) = NE(X/T )KX+∆≥0 +
∑

i

R[Γi],

(b) The rays R[Γi] do not accumulate in the half space (KX +∆)<0,
(c) For each Γi,

−4dΓi < (KX +∆) · Γi < 0

where dΓi is such that for any Cartier divisor L on X, we have L ·Γi divisible by dΓi.
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The cone theorem is a formal consequence of Lemma 9.29, our proof of which is inspired
by the flip case of [BW17, Lemma 3.2]. We are unable to apply the other cone theorem
arguments of [BW17, Section 3] directly due to the possibility that we work over a local base
where general closed fibers need not exist.

Lemma 9.29. Let (X,B) be a Q-factorial klt threefold with Q-boundary, projective and
surjective over T with dim(T ) > 0 and having no residue fields of characteristic 2, 3 or 5.
Suppose that KX + B is not nef. Then there exists an integer n depending only on (X,B)
such that if H is an ample Cartier divisor, and

λ = min{t ≥ 0 | KX +B + tH is nef}

then λ = n
m for some natural number m.

Furthermore, there is a (KX +B + λH)-trivial curve Γ satisfying

−4dΓ ≤ (KX +B) · Γ < 0

where dΓ is such that for any Cartier divisor L on X, L · Γ is divisible by dΓ.

Proof. First suppose that KX + B + λH is big. Then KX + B + (λ − ε)H is also big for
sufficiently small ε, and by definition of λ, it fails to be nef. By Theorem 9.9 there are only
finitely many (KX +B+ (λ− ε)H)-negative extremal rays for ε sufficiently small, and these
rays are isolated. Therefore at least one of these rays R must satisfy R · L = 0, and R has
a projective contraction f : X −→ Z by Corollary 9.18 which contracts a curve C. This
satisfies (KX + B) · C = −λH · C and therefore λ is rational as KX + B and H are both
Q-Cartier. We now show that f contracts a curve satisfying the required bound.

Suppose that f is a divisorial contraction, contracting a divisor S. Let A = λH , which we
have just seen is Q-Cartier, so that by Theorem 9.17 L = KX +B +A ∼Q,Z 0. Note that it
is sufficient to find a curve Γ such that

0 < A · Γ ≤ 4dΓ.

Let φ : W −→ X be a log resolution of (X,B + S), let BW be the sum of the birational
transform of B and the reduced exceptional divisor of φ, SW be the birational transform of
S, and let AW = φ∗A. By the projection formula, it is enough to find a curve ΓW on W
which satisfies

0 < AW · ΓW ≤ 4dΓW .

Let a be such that S has coefficient 1 in B+aS. We have KW +BW +AW +aSW ∼R,Z E+
aSW for some exceptional/X effective Q-divisor E. This means that E+SW is in fact effective
and exceptional over Z, and Ex(f ◦φ) = 5BW + AW + aSW 6. Run a (KW+BW+AW+aSW )-
MMP over Z, which must terminate on Z by the negativity lemma and the fact that Z is
Q-factorial. Suppose that a step W ""# W ′ of this MMP contracts a curve over X . Then
AW descends to AW ′ for it is a pullback from X , and again it is enough to find a curve ΓW ′

satisfying
0 < AW ′ · ΓW ′ ≤ 4dΓW ′ .

We are reduced to the same problem for the next step of the MMP. As the MMP terminates
on Z, we must eventually reach a step contracting a ray R which is not over X . Then as AW

is ample over X , we have AW ·Γ > 0 and so the step is also negative forKW +BW+aSW . But
since this MMP is negative for E + aSW , whose support is equal to the reduced boundary,
we can choose a component F of E + SW on which R is negative. By restricting to F and

114



applying adjunction [Kol13, Section 4.1], we find that (KW +BW + aSW )|F = KF +BF for
some dlt pair (F,BF ). If F has dimension 1, then it follows that F = Γ satisfies

−2dΓW≤ (KW + ΓW ) · ΓW ≤ (KW +BW + aSW ) · ΓW < 0

e.g. by [DW22, Lemma 4.4]. Meanwhile if F is two dimensional we see by Theorem 2.46
that there is a curve ΓW ⊂ F in R satisfying

−4dΓW ≤ (KW +BW + aSW ) · ΓW < 0.

In either case, since the ray is also negative for KW +BW + AW + aSW , we find that

0 < AW · ΓW ≤ 4dΓW

as required.
Now suppose that f : X −→ Z is a flipping contraction, and z ∈ Z is the image of the

flipping locus. In this case, the argument for the flipping case in [BW17, Lemma 3.2] applies
directly, with the only change being to insert dΓ in appropriate places. The reference to
[Bir16, 3.4] in [BW17, Lemma 3.2] can be replaced by the argument in the first paragraph
of this proof using Theorem 9.9.

Next suppose that the R-divisor L = KX +B + λH is not big. Let ξ be the generic point
of T . By Theorem 2.44, L|Xξ

is semiample, and by Proposition 2.48 we may assume that
L|XQ

is semiample, if this fiber is non-empty. As L is not big, there is a curve C in Xξ (over
the residue field of ξ) which is contracted by the induced map. This satisfies

(KX +B)|Xξ
· C = −λH|Xξ

· C

and therefore because KX + B is a Q-Cartier Q-divisor and H is an ample Cartier divisor,
λ ∈ Q and L is a Q-divisor. Let A = λH , where after changing A up to Q-linear equivalence
we may assume that (X,B + A) is klt (see Lemma 2.34). L is semiample by Theorem 9.27,
and so let f : X −→ Z be the induced contraction. We may assume that Z is normal and
projective over T .

Choose a Cartier divisor DZ ⊂ Z. Let π : W −→ X be a dlt modification of (X, (B +A+
f ∗DZ)≤1) (see Corollary 9.21), where D≤1 denotes the divisor obtained by truncating the
coefficients of D at 1. Then let AW = π∗A and BW be the sum of the strict transform of B
and the unique effective Q-divisor necessary to ensure that BW + AW has coefficient one at
every component of Supp(π∗f ∗DZ). As in the divisorial case, it suffices to find a curve Γ on
W which satisfies 0 < AW · Γ ≤ 4dΓ.

We have

(9.29.1) KW +BW + AW ∼Q,Z E

where E is effective and each component of E is supported over DZ . In particular this implies
that KW +BW +AW is not big over Z. Furthermore, 5BW + AW 6 and E both contain every
component of Supp(π∗f ∗DZ).

Run a (KW +BW +AW )-MMP over Z, which exists and terminates by Proposition 9.20.
If the first step of the MMP, W ""# W ′, is over X then exactly as before, AW descends to
AW ′, and so we may replace W by W ′ and continue. On the other hand, suppose that a step
of the MMP contracting a ray R is not over X . As before, since A is ample on X we see
that AW ·R > 0, and as a result (KW +BW ) ·R < 0 But as (9.29.1) implies that the curves
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contracted are contained in the reduced boundary, we find a curve ΓW which satisfies

−4dΓW ≤ (KW +BW ) · ΓW < 0

by the log canonical case of Theorem 2.46. But as this ray was chosen to be negative for
KW +BW + AW , it follows that we must also have 0 < AW · ΓW ≤ 4dΓW as required.

Hence we may assume that the entire MMP is over X and terminates with a model Y
with maps φ : Y −→ X and ψ : Y −→ Z, and such that KY + BY + AY is nef over Z,
where AY = φ∗A. Now KY + BY + AY ∼Q,ψ KY + BY + AY − εψ∗DZ , and the pair
(Y,BY +AY − εψ∗DZ) is klt for any sufficiently small ε. Hence by Theorem 9.27, using the
fact that AY is big, we see that KY + BY + AY is ψ-semi-ample. Let σ : Y −→ V be the
morphism induced by KY +BY +AY , so that KY +BY +AY ∼φ 0. Since KY +BY +AY is
not big over Z, dim(V ) < dim(Y ). We have varieties and morphisms:

Y
φ

!!

σ
##

ψ

%%
!

!

!

!

!

!

!

X

##

V !! Z.

Choose a component S of ψ∗DZ which is not contracted over X , or equivalently which is the
strict transform on Y of a component of f ∗DZ . As S is not contracted over X , AY |S is big.
However, since dim(S) ≥ dim(V ), and S is not horizontal over Z and hence not horizontal
over V , we see that S is contracted over V .

Hence S contains a curve C which is vertical over V and which satisfies AY |S · C > 0,
since AY |S is big and S is contracted over V . The divisor S is contained in 5BY + AY 6,
so by adjunction let KS + BS = (KY + BY )|S, and if S is one dimensional (as in Remark
2.23), set Γ = S. The latter satisfies the required bounds exactly as in the birational case
above. Otherwise apply the cone theorem Theorem 2.46 over Z to KS + BS. This finds an
extremal ray which is (KS + BS + A|S)-trivial (here we use that KY + BY + AY ∼σ 0) and
so A|S-positive which contains a curve Γ such that

−4dΓ ≤ (KS +BS) · Γ = (KY +BY ) · Γ = −AY · Γ < 0.

Taking the pushforward of Γ to X gives the required curve as in the birational case, since
AY is the pullback of A from X and the curve Γ is contracted over Z.

Now to prove the statement about λ, let I be the Cartier index of KX +B. Then we have
that I(KX +B) · Γ is an integer divisible by dΓ, and so is an integer between −4I and −1.

Since

λ =
−I(KX +B) · Γ

dΓ

IH · Γ
dΓ

,

we can take n = (4I)!. !

Definition 9.30. Let X be a scheme with a projective morphism f : X −→ T , and R an
extremal ray over T . Let H be an f -ample Cartier divisor on X . We say that a curve Γ ∈ R
is extremal if

H ·
Γ

dΓ
= min{H ·

C

dC
| C ∈ R}.

116



The extremality of a curve does not depend on the ample divisor H , since if H ′ is a
different ample divisor, there is λ > 0 such that H · C = λH ′ · C for any C in R, and so

H · Γ
dΓ

H ′ · Γ
dΓ

=
H · C

dC

H ′ · C
dC

for any other curve C ∈ R. Similarly, if D is a Q-divisor such that D · R < 0, we have

D ·
Γ

dΓ
= max{D ·

C

dC
| C ∈ R}.

Finally we are ready to prove the cone theorem.

Proof of Theorem 9.28. If we assume that ∆ is a Q-divisor, and (X,∆) is klt, (a) and (b)
follow formally from Lemma 9.29 using [KM98, Theorem 3.15] (one can also use the standard
proof of the cone theorem in the smooth case [KM98, Theorem 1.24] as Lemma 9.29 recovers
a singular variant of Mori’s bend-and-break [KM98, Theorem 1.13]).

Now suppose that ∆ is an R-divisor or (X,∆) is not klt. We first prove that there are
only countably many (KX +∆)-negative extremal rays and that they do not accumulate in
(KX+∆)<0. For each integer n, choose a klt Q-boundary∆n such that Supp(∆n) = Supp(∆)
and |∆−∆n| <

1
n . Each (KX +∆)-negative extremal ray is (KX +∆n)-negative for some n,

and so the collection of (KX +∆)-negative extremal rays is a subset of a countable union of
countable sets, hence countable. Furthermore, if there is a sequence of (KX +∆)-negative
extremal rays which accumulate in (KX+∆)<0, then they accumulate to a ray in (KX+∆n)<0

for some n& 0. Therefore by truncating the sequence of extremal rays we obtain a sequence
of (KX +∆n)-negative rays which accumulate in (KX +∆n)<0, contradicting (b) in the klt
Q-divisor case.

Now we move to (c). Let R be a (KX + ∆)-negative extremal ray. Then let ∆n be a
sequence of klt Q-boundaries with limn∆n = ∆, and such that R is (KX +∆n)-negative for
every n. For each n, we can find an ample divisor An such that R = (KX +∆n +An)⊥, and
then Lemma 9.29 shows that there is a curve Cn in R, which satisfies

−4dCn ≤ (KX +∆n) · Cn < 0

for every n. Then as R contains a curve, it contains an extremal curve C, which satisfies

−4 ≤ (KX +∆n) ·
Cn

dCn

≤ (KX +∆n) ·
C

dC
< 0.

It then follows that

−4dC ≤ (KX +∆) · C < 0

as required. !

Our next result is finiteness of log minimal models, for which we first recall the setup.

Setup 9.31. Let X be a three dimensional, klt Q-factorial integral scheme, projective over
T , such that the image of X in T is positive dimensional. Let A ≥ 0 be a Q-divisor and
V a finite dimensional rational affine subspace of the vector space of R-Weil divisors on X .
Then we define the Shokurov polytope

LA(V ) = {∆ | 0 ≤ ∆− A ∈ V and (X,∆) log canonical}.
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As we know that projective log resolutions exist in our situation, this is a rational polytope
by [Sho92, 1.3.2].

The proof of the next proposition closely follows that given in [BW17, Proposition 3.8].
Note that the proofs of parts (4) and (5) of [BW17, Proposition 3.8] do not work in our
situation, but we do not need them.

Proposition 9.32. Let X, T , V , and L be as above, and fix B ∈ L. Then there are real
numbers α, δ > 0 depending only on (X,B) and V , such that

(a) If Γ is an extremal curve on X and if (KX +B) · Γ > 0, then (KX +B) · Γ
dΓ

> α,
(b) if ∆ ∈ L and ||∆ − B|| < δ and (KX + ∆) · R ≤ 0 for an extremal ray R then

(KX +B) · R ≤ 0.
(c) Let {Rt}t∈S be a family of extremal rays of NE(X/T ). Then the set

NS = {∆ ∈ L | (KX +∆) · Rt ≥ 0 for any t ∈ S}

is a rational polytope.

Proof. The proofs of the corresponding statements in [BW17, Proposition 3.8] work here, by
replacing every appearance of a curve Γ with Γ

dΓ
. !

The following base point free theorem for R-divisors is used in the upcoming proof of
finiteness of log minimal models.

Theorem 9.33. Let (X,B) be a Q-factorial three dimenaional klt pair with R-boundary,
projective over T and such that the image of X in T has positive dimension and that none
of the residue fields of T have characteristic 2, 3 or 5. Suppose that D is a nef R-divisor
such that D − (KX +B) is nef and big. Then D is semiample.

Proof. Let A = D−(KX+B). It is sufficent to prove the statement after localizing at a point
t ∈ T . Thus we may change A and B using Lemma 2.34 to assume that (X,∆ := B + A)
is klt and A is an ample Q-divisor. By Proposition 9.32(c) there are Q-boundaries ∆j such
that ∆ =

∑
j aj∆j for aj > 0, ||∆ − ∆j || are sufficiently small, ∆j ≥ A, (X,∆j) are klt

and KX +∆j are all nef. By Theorem 9.17 KX +∆j are all semiample, so KX +∆ is also
semiample. !

Theorem 9.34. In the situation of Setup 9.31, assume that A is also big over T , and the
image of X in T is positive dimensional. Let C ⊂ LA(V ) be a rational polytope such that
(X,B) is klt for every B ∈ C. Then there exist finitely many birational maps φi : X ""# Yi

over T such that for each B ∈ C for which KX +B is pseudo-effective over T , there is some
i such that (Yi, BYi) is a log minimal model of (X,B) over T .

Proof. The proof is identical to that of [BW17, Proposition 4.2], with the inputs being
Proposition 9.32, the base point free theorem Theorem 9.33 and the existence of log minimal
models Proposition 9.20. !

Theorem 9.35. Let (X,B) be a Q-factorial three-dimensional klt pair with R-boundary,
projective over T , such that the image of X in T has positive dimension and that none of
the residue fields of T have characteristic 2, 3 or 5. Suppose A is an ample R-divisor such
that KX + B + A is nef over T . Then we can run the (KX +B)-MMP over T with scaling
of A and it terminates.
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Proof. This follows by the arguments of [BW17, Proposition 4.3] using Theorem 9.34, and
[BW17, Proof of Theorem 1.6] except that we replace the reference to [BW17, Proposition
4.5] with Proposition 9.20. !

Note that if we assume that T is a curve with finitely many closed points, for instance if
T = Spec(Zp), we get a stronger termination result:

Proposition 9.36. Let (X,B) be a Q-factorial three dimensional klt pair with R-boundary
projective and surjective over T of positive dimension, and T has only finitely many closed
points, none of which have residue fields of characteristic 2, 3 or 5. Then any sequence of
(KX +B)-flips terminates.

Proof. By Theorem 9.7, after finitely many flips both the flipping and flipped loci are disjoint
from the birational transform of the boundary. Given this, note that any (KX + B)-MMP
is also a (KX + B + ε

∑
i Fi)-MMP for 0 < ε 7 1 where Fi are the pullbacks of Cartier

divisors on T which contain the finitely many closed points of T , and so the flips eventually
terminate. !

Theorem 9.37. Let (X,B) be a three-dimensional Q-factorial dlt pair, with R-boundary,
projective over T such that the image of X in T has positive dimension and none of the
residue fields of T have characteristic 2, 3 or 5. Suppose that KX +B is not pseudo-effective
over T . Then we can run a (KX+B)-MMP with scaling of an ample divisor which terminates
with a Mori fiber space.

Proof. If (X,B) is klt, this follows by combining the Theorem 9.28, Theorem 9.33, Theorem 9.14,
and Theorem 9.35.

If it is not klt, fix an ample divisor A and run a (KX + B)-MMP with scaling of A.
The cone theorem holds by Theorem 9.28, contractions and flips exist by perturbing the
boundary to a klt boundary and then applying Theorem 9.17 and Theorem 8.25. It remains
to show termination.

Fix δ sufficiently small that KX + B + δA is not pseudo-effective over T . Now choose
ε7 δ sufficiently small that εB + δA is ample over T . Note that since KX +B + δA is not
pseudo-effective, a (KX + B)-MMP with scaling of A is also a (KX + B + δA)-MMP with
scaling of (1− δ)A.

For any point t ∈ T , we may localize over t, apply Lemma 2.34 and then spread out over
some open subset t ∈ U ⊂ T and its preimage XU in X , to find a divisor H ∼R εBXU +δAXU

such that (XU , (1 − ε)BXU + H) is klt. Therefore by Theorem 9.35 our MMP terminates
over U since it is also an MMP for KXU + (1 − ε)BXU + H . Since we can cover T with
finitely many such open sets, we see that the (KX +B)-MMP with scaling of A terminates
everywhere. !

10. Applications to moduli of stable surfaces

The goal of this section is to show the existence of the moduli stack M 2,v of stable
surfaces of volume v over Z[1/30] as an Artin stack with finite stabilizers and of finite type
over Z[1/30]. By the Keel-Mori theorem [KM97, Con05] this then also implies the existence
of the coarse moduli space M2,v of stable surfaces of volume v as an algebraic space over
Z[1/30]. We refer to [Pat18, Sec 1.3] for the precise definitions of the moduli functor of M 2,v.
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The starting point is that in [Pat18, Thm 9.7] it was proven that one has to only show
a special case of inversion of adjunction: if f : X −→ T is a 1-parameter flat projective
family of geometrically demi-normal varieties with semi-log central fiber, then X is semi-
log canonical. By passing to the normalization of X this follows from the log canonical
inversion of adjunction. So, this version of inversion of adjunction is our first goal, which is
a consequence of the following existence statement for dlt-models.

Corollary 10.1 (Log canonical inversion of adjunction). In the situation of Setting 9.1
suppose that none of the residue fields of R have characteristic 2, 3 or 5. Let (X,D) be a
normal pair of dimension 3 such that KX + D is Q-Cartier, and with a prime divisor S
that has coefficient 1 in D. Let SN be the normalization of S. If (SN, DSN) is log canonical,
where DSN is the different of D along S, then so is (X,D) in a neighborhood of S.

Proof. Consider a Q-factorial dlt-model g : (Z,Γ) −→ (X,D) constructed in Corollary 9.21.
Here Γ is the boundary used in Corollary 9.21, that is, it can be obtained by lowering to 1
all the greater than 1 coefficients of g−1

∗ D and additionally adding in all the g-exceptional
divisors with coefficient 1. Let T be the component of Γ dominating S. Since Z is Q-
factorial we use Corollary 7.17 and a pertubation argument to see that T is normal. We fix
the following notation for the induced morphisms:

T

γ

&&

α
!! SN

β
!! S.

Let ∆ be the crepant boundary on Z, that is for which KZ +∆ = g∗(KX +D). Note that
by point (d) of Corollary 9.21, ∆ − Γ is effective and it is non-zero exactly at each prime
divisor E of Z for which coeffE ∆ > 1. Note also that (T,∆T ) is a crepant dlt-model for(
SN, DSN

)
, where ∆T is the different of ∆ along T . In other words, we have that

(10.1.1) KT +∆T = α∗ (KSN +DSN) .

Additionally, (T,ΓT ) is dlt, where ΓT is the different of Γ along T . As
(
SN, DSN

)
is log

canonical, by (10.1.1), we see that the coefficients of ∆T are at most 1. By the surface
inversion of adjunction applied at the codimension 1 points of T , this means that the co-
efficients of Γ are at most 1 in a neighborhood of T . We note that here we crucially use
the Q-factoriality of Z, which implies that divisors on Z can only meet T in codimension
1 points of T . Since at all divisors in Supp(∆ − Γ), the coefficient of ∆ is 1, we obtain
that the divisors ∆ and Γ agree in a neighborhood of T . However, Corollary 9.21(e) tells us
that for each fiber, Supp(∆− Γ) either contains it or is disjoint from it. So, we obtain that
g
(
Supp(∆− Γ)

)
is a closed set that is disjoint from S. This concludes our proof as (X,D)

is log canonical over X \ g
(
Supp(∆− Γ)

)
. !

In fact, we believe that the above result works even when R has arbitrary residue char-
acteristics, by using the non-Q-factorial dlt modification as in Remark 9.22 and replacing T
in the proof by its normalisation.

In the proofs of the following statements we use the language of almost Cartier divisors
on S2 and G1, Noetherian schemes, as introduced in [Har94], for the canonical divisor of
demi-normal schemes and their one-parameter families. Furthermore, for such families the
canonical divisor is compatible with base-change, as they contain a relatively Gorenstein
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open set, the complement of which has codimension two in every fiber (for the arbitrary
Gorenstein base-change see [Con00, Sec 3.6]).

Corollary 10.2 (Existence of M 2,v over Z[1/30]). With notation as above:

(a) The moduli stack M 2,v of stable surfaces of volume v over Z[1/30] exists as a separated
Artin stack of finite type over Z[1/30] with finite diagonal.

(b) The coarse moduli space M2,v of stable surfaces of volume v over Z[1/30] exists as a
separated algebraic space of finite type over Z[1/30].

Proof. Point (b) follows from point (a) using the Keel-Mori theorem [KM97, Con05]. So, we
only have to show (a). By [Pat18, Thm 9.7] we have to show that if f : X −→ T is a flat
family of geometrically demi-normal projective schemes over the spectrum of a DVR with t
being the closed point and Xt being a stable surface, then X has slc singularities. (We note
that [Pat18, Thm 9.7] is based on [HK19], [Ale94] and [Kol11].)

First, we show the corollary under an assumption that Xt is slc. Let g : (Y,D) −→ X be
the normalization, where D is the conductor. As X is demi-normal, D has only coefficients
1. We have to show that (Y,D) is log canonical. Note that as X is regular at every generic
point of every fiber of f , Y −→ X is an isomorphism at these points. In particular Yt −→ Xt

is an isomorphism around the generic points of Xt. As Y is S2, Yt is S1. So, all embedded
points of Yt are at generic points which implies that Yt is reduced. Hence, the normalization
of Yt and of Xt agree. Let us write δ : Z := XN

t −→ Xt for this normalization. Take the
boundary DZ on Z which is crepant to (Y,D), that is, KZ + DZ = α∗(KY + D), where
α : Z −→ Yt −→ Y is the induced composition morphism. In fact, this boundary is also
crepant to Xt, that is KZ + DZ = δ∗KXt . This follows from the fact that both KXt and
KY +D are pullbacks of KX . To sum up, we have the following commutative diagram, where
every arrow connects crepant equivalent pairs (i.e., the log-canonical divisors are compatible
via pull-backs by any of the arrows):

(Z,DZ) Xt

(Y,D) X.

α

δ

normalization

central fiber

g

normalization

By the definition of Xt being slc, (Z,DZ) is lc, hence by Corollary 10.1 (Y,D) is also lc,
and hence X is slc.

Second, we show that Xt being slc implies that Xt is slc (note: we know that Xt is
geometrically demi-normal and hence geometrically reduced). This is a standard argument:
we need to show that (Z,DZ) is log canonical. Let ρ : V −→ Z be a log resolution of
singularities with DV so that KV + DV = ρ∗(KZ + DZ). In other words DV is a crepant
sub-boundary. We need to show that DV has coefficients at most 1.

Let ξ : W −→ Vk be the normalization of Vk, where k = k(t). Let DW be a Q-divisor on W
such that KW +DW = ξ∗(KV +DV )k. It is crepant to both (V,DV ) and to Xt; in the latter
case, we use that ν∗KXt = KXt

as relative canonical divisors are stable under base change.
Let φ : W −→ V be the induced morphism, and let E be the boundary on W that makes
(W,E) −→ V crepant. In other words, as V is geometrically reduced by being generically
isomorphic to Xt, E is the conductor of W −→ Vk. In particular E ≥ 0. By the definition
of the respective divisors we see that DW = E + φ∗DV . To sum up, we have the following
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commutative diagram, where every arrow connects crepant equivalent pairs:

(W,DW ) (Vk, Dk) Xt

(V,DV ) (Z,DZ) Xt

φ

ξ

normalization

base-extension to k(t)ν

ρ

log-resolution

δ

normalization

As Xt is slc, and (W,DW ) is crepant to Xt, we obtain that the coefficients of DW are at
most 1. Coupling this up with the equation DW = E + φ∗DV and with the effectivity of E,
we obtain that the coefficients of DV are in fact at most 1 too. !

Corollary 10.2 implies different modular lifting statements on stable varieties. A sample
one is the following which gives the lifting to be over a localisation of a finite extension of Z
(alas, we need to assume that the base field is finite). One can also show that if the surface
is defined over a perfect field k, then there exists a lifting over W (k).

Corollary 10.3. For every rational number v > 0 there exists a prime p(v) with the following
property: for all stable surfaces X of volume v over a finite field of characteristic p ≥ p(v),
there is a family of stable surfaces X over an open set of the spectrum of the ring of integers
of a number field such that X is a fiber of X .

Remark 10.4. The point of Corollary 10.3, where we think that Corollary 10.2 is essentially
used, is that it states a lifting to a stable family, not only to an arbitrary flat family. We
think that for this type of application one essentially needs the openness of the stable locus
in adequate flat families, which was our main contribution to the proof of Corollary 10.2.

The following theorem uses the notion of a Lefschetz pencil of a smooth projective variety
X over an field k. By definition [SGA73, Sec XVII.2.2 on page 215], this is a pencil φ :
X ′ −→ P1

k of hyperplane sections of X such that general fibers of φ are regular and every
singular point of every fiber has quadratic singularity. The latter in dimension 1 means nodal
singularity. Note that by the virtue of being a pencil, φ fits into a commutative diagram as
follows:

X X ′ X × P1
k

P1
k

birational closed embedding

φ

Remark 10.5. Let X be a smooth projective variety over k. It is shown in [SGA73, Sec
XVII, Thm 2.5] that for any projective embedding of X given by a very ample line bundle
L, Lefschetz pencils exist for the projective embedding given by L⊗2. Additionally, over
algebraically closed fields Lefschetz pencils can be obtained as general pencils of hyperplane
sections [SGA73, Sec XVII, Cor 3.2.1].

Theorem 10.6. Fix an integer v > 0 and let

d =
∏

p prime, p≤β(v)

p, where β(v) =

{
393 if v = 1

213v + 48 if v ≥ 2.

Then, the closure M
sm
2,v of the locus of smooth surfaces in M 2,v is proper over Z[1/d]. Ad-

ditionally, it admits a projective coarse moduli space M
sm
2,v over Z[1/d].

122



Proof. Reduction to the existence of limits: First, let us note that [Pat18, Thm
1.2] shows the projectivity of M

sm
2,v contingent upon the properness of M

sm
2,v. We note here

that [Pat18, Thm 1.2] is unfortunately not stated as precisely as needed here, but its (few
paragraph long) proof exactly shows this, using [Pat18, Thm 1.1]. So, we are left to show
the properness of M

sm
2,v.

By Corollary 10.2, we know that M2,v is an Artin stack of finite type over Z[1/30] with
finite diagonal. So, we only have to show that M is closed under limits. As the properness
of M 2,v is known in characteristic zero, it is enough to show the M is closed under limits
of characteristic p > 0. That is, we have to show that if f 0 : X0 −→ T 0 is a smooth
canonically polarized surface over the spectrum of a field K, and R is a DVR of K with
residue field characteristic p greater than β(v), then f 0 extends to a family of stable surfaces
f : X −→ T = SpecR, after possibly replacing K and R with finite extensions and f 0

with the corresponding base-change. We may even assume that the residue field of R is
algebraically closed.

The plan of showing the existence of limits: The construction of f happens in
the following steps:

◦ We construct a birational model Y 0 −→ X0 admitting a fibration Y 0 −→ P1
K with

certain singularity and boundedness properties.
◦ The above singularity and boundedness properties are tailored exactly, so that [Sai04,
Corollary 2] provides a semi-stable extension fY : Y −→ T , after possibly applying a
finite base-change.
◦ We run an MMP to turn the semi-stable extension into a stable family.

Existence of semi-stable limits: To state the above mentioned singularity and bound-
edness properties, let Y 0 −→ X0 be a projective birational morphism from another smooth

surface over T 0, and let f
0
: Y 0 −→ T 0 be the composition. [Sai04, Corollary 2] tells us that

in this situation we can find at least a semi-stable extension fY : Y −→ T of f
0
if we can

produce a diagram as follows

(10.6.1) Y 0
g

!!

f
0

&&

P1
K h

!! T 0

such that:

(a) g is projective and surjective,
(b) for the degree d of the canonical sheaves of the fibers of g and of h we have p ≥ d+4,

which is guaranteed if β(v) ≥ d+ 4,
(c) for

D =

{
the reduced discrimant divisor Dg if degDg ≥ 3

a reduced divisor of degree 3 containing Dg in its support, otherwise

we have p > degD, which again is guaranteed if β(v) ≥ degD, and
(d) D is étale over T 0 = SpecK, that is, all the residue fields ofD are separable extensions

of K
(e) the degree of the canonical sheaf of the fibers of g is greater than 0.
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In the above, the discriminant divisor is the divisor over which the non-smooth points of
g lie. We note that for this application of [Sai04, Corollary 2], one needs to set X1 = P1,
D1 = D, U1 = X1 \ D, X2 = Y 0, D2 = 0. We also note that using the notation of [Sai04,
Corollary 2],

◦ condition (b) guarantees that p ≥ 2g1 + 2 and p ≥ 2g2 + 2,
◦ condition (c) guarantees that p > r1 and that 2g1 − 2 + r1 > 0,
◦ condition (d) guarantees that D1 is étale over U0, and
◦ condition (e) guaratees that 2g2 − 2 ≥ 0, where we took into account that r2 = 0.

We construct the Y 0 above and the fibration (10.6.1) by taking a Lefschetz pencil of
X0

K
, and descending it to a finite extension K ′ of K. Note, this descent can be done,

as the Lefschetz pencil is defined by finitely many equations. We may even assume that
over K ′ the discriminant divisor Dg consists of only K ′-rational points. As throughout our
process we can freely replace K be a finite extension, we may assume that in fact K = K ′.
Additionally, for a Lefschetz pencil one always needs to fix a projective embedding, and as
we explained Remark 10.5, then one has to post-compose this projective embedding by the
second Veronese embedding. As the linear systems

∣∣4KXK

∣∣ if v > 1 and
∣∣5KXK

∣∣ if v = 1
are very ample by [Eke88, p 13, Main Thm], we obtain a Lefschetz pencil for the embedding∣∣8KXK

∣∣ if v > 1, and for
∣∣10KXK

∣∣ if v = 1.
So, we are able to construct (10.6.1) itself, but we also need to verify conditions (b),

(c), (d) and (e). Condition (d) is automatic as we choose our Lefschetz pencil so that the
discriminant consists only of K-rational points. Conditions (b) and (e) have to be verified
only for the fibers of g, as the only fiber of h is isomorphic to P1

K . Additionally, when v > 1,
then the degree of the canonical sheaf of the fibers of g by adjunction is:

0 < (KX + 8KX) · 8KX = 72K2
X = 72v < 213v + 44 = β(v)− 4.

If v = 1, then by the corresponding computation we obtain that the degree is 110 ≤ 373−4 =
369. So, this concludes the verification of conditions (b), (d) and (e).

Hence, we are left to verify condition (c). For this we use the formula that the degree of
the discriminant locus of a Lefschetz pencil associated to a very ample line bundle L on X
is:

(10.6.2) 3L2 + 2L ·KX + c2(ΩX).

We learned this formula from [Sta13]. As we did not find a proof in the literature, we briefly
indicate the argument using the notation of (10.6.1): one can base-change to the algebraic
closure of K, then one uses the Giambelli-Thom-Porteous formula that the cycle given by
the degeneracy locus of TY −→ g∗TU is given by plugging into the Chern number c21− c2 the
virtual bundle18 OU(2G)− TY , where G is a fiber of g. The total chern class of this virtual
bundle is 1 + (2G+KY ) +

(
(2G+KY ) ·KY − c2(ΩY )

)
. Hence, the degree of the degeneracy

locus in terms of the invariants of Y is c2(ΩY ) + 2G ·KY , from which it is straight-forward
to deduce (10.6.2).

18that is an element of the Grothendieck group K0
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Plugging 8KX into the L of (10.6.2) yields that the degree of the degeneracy locus is at
most

(3 · 82 + 2 · 8)K2
X + c2(ΩX) =

c2(ΩX) = 12χ(OX)−K2
X by Grothendieck-Riemann-Roch applied to OX

208K2
X + 12χ(OX)−K2

X = 207K2
X + 12χ(OX)

≤

Noether’s inequality [Lie08, Thm 2.1]

207K2
X + 12

(
1

2
(K2

X + 6) + 1

)
= 213K2

X + 48 = 213v + 48 = β(v).

When v = 1, we have L = 10KX , for which the same computation gives 325v + 48 = 373.
This concludes then the verification of (c) too.

Existence of stable limits: Therefore, we arrive at a semi-stable extension f : Y −→ T

of f
0
. Then we run a KY -MMP on Y over T or equivalently a (KY + Y0)-MMP over

T . Note that X0 is the canonical model of Y 0 over T 0. Hence, we obtain the extension
f : X −→ T of f 0, where X is a canonical model over T . At the same time (X,X0 = f−1(0))
is also a log canonical model over T , where 0 ∈ T is the closed point. By adjunction
we obtain that (XN

0 ,DiffXN
0
) is log canonical, where XN

0 is the normalisation of X0 and
KXN

0
+DiffXN

0
= (KX +X0)|XN

0
. This implies that X0 is slc, as soon as we can show that X0

is S2. By looking at the exact sequence

0 !! OX(−X0) !! OX
!! OX0

!! 0

we see that it is enough to show that X is Cohen-Macaulay. This was shown in [BK21, Thm
2 & Thm 17] (this article depends on [Kol21], which in turn uses the earlier sections of the
present article, however it does not use the present section). !
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(SGA 7 II), Dirigé par P. Deligne et N. Katz. 0354657 (50 #7135)

[AP22] I. Aberbach and T. Polstra: Local cohomology bounds and the weak implies strong conjec-
ture in dimension 4, J. Algebra 605 (2022), 37–57. 4418959

[Ale94] V. Alexeev: Boundedness and K2 for log surfaces, Internat. J. Math. 5 (1994), no. 6, 779–810.
1298994 (95k:14048)

[AHK07] V. Alexeev, C. Hacon, and Y. Kawamata: Termination of (many) 4-dimensional log flips,
Invent. Math. 168 (2007), no. 2, 433–448.

[And18] Y. André: La conjecture du facteur direct, Publ. Math. Inst. Hautes Études Sci. 127 (2018),
71–93. 3814651

[Art70] M. Artin: Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2)
91 (1970), 88–135. MR0260747 (41 #5370)

[Art71] M. Artin: On the joins of Hensel rings, Advances in Math. 7 (1971), 282–296 (1971). 289501
[Ber21] F. Bernasconi: On the base point free theorem for klt threefolds in large characteristic, Ann.

Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (2021), no. 2, 583–600. 4288666
[BK21] F. Bernasconi and J. Kollár: Vanishing theorems for three-folds in characteristic p > 5,

International Mathematics Research Notices (2021), rnab316.
[Bha12] B. Bhatt: Derived splinters in positive characteristic, Compos. Math. 148 (2012), no. 6,

1757–1786. 2999303
125



[Bha18] B. Bhatt: On the direct summand conjecture and its derived variant, Invent. Math. 212

(2018), no. 2, 297–317. 3787829
[Bha20] B. Bhatt: Cohen-Macaulayness of absolute integral closures, arXiv:2008.08070.
[BL] B. Bhatt and J. Lurie: A p-adic Riemann-Hilbert functor: Z/pn-coefficients, In preparation.
[Bir16] C. Birkar: Existence of flips and minimal models for 3-folds in char p, Ann. Sci. Éc. Norm.
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