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ABSTRACT. We establish the Minimal Model Program for arithmetic threefolds whose
residue characteristics are greater than five. In doing this, we generalize the theory of
global F-regularity to mixed characteristic and identify certain stable sections of adjoint
line bundles. Finally, by passing to graded rings, we generalize a special case of Fujita’s
conjecture to mixed characteristic.
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1. INTRODUCTION

The Kodaira and Kawamata-Viehweg vanishing theorems are among the most important
tools used in algebraic geometry in characteristic zero and are a key component of the
minimal model program [BCHM10]. They are crucial to understanding linear systems as
they allow the lifting of global sections of line bundles from lower dimensional subvarieties.
Unfortunately, these vanishing theorems are false in general when working over fields of
positive characteristic (such as F,, [Ray78]) or mixed characteristic rings (such as Z or Z,").

In characteristic p > 0, the Frobenius morphism and asymptotic Serre vanishing can
be used as a replacement in some contexts. An important class of such applications of
Frobenius goes back to the development of tight closure theory and the notions of F-split
and F-regular varieties [HH90, MR85, RR85]. The discovery of connections between these
notions and birational geometry led to a plethora of applications, for instance: [Smi97a,
MS97, Har98, HWO02, HY03, Tak04b, STZ12, Tak04a, Pat14, Zhal4, MS14, CHMS14, Hac15,
BST15, Dasl5, GLP*15, CTW17, CRST18, HP16, HPZ19, AP22, Ejil9, Ber21]. In particu-
lar, building on [Kee99] and [Sch14], Hacon and Xu proved the existence of minimal models
for positive characteristic terminal threefolds over algebraically closed fields of characteristic
p > 5 [HX15]; this was then extended in various directions [CTX15, Birl6, Xulb, BW17,
Wall8, HNT20, GNT19, DW22, X719, HW22b, HW22a, HW21].

In the mixed characteristic setting, the theory of perfectoid algebras and spaces [Sch12] has
led to spectacular advancements, including proofs of the direct summand conjecture and the
existence of big Cohen-Macaulay algebras by André [And18] (see also [Bhal8]). Building on
these techniques, the second and fourth authors developed a mixed characteristic analog of
F-regularity called BCM-regularity in [MS18, MS21], and, together with the fifth, sixth, and
the seventh author, its adjoint (plt) variant (see [MST22]). In particular, it was shown that
klt surface singularities of mixed characteristic (0, p > 5) are BCM-regular and that inversion

1Burt Totaro [Tot21] has pointed out to us that examples of failure of relative Kawamata-Viehweg vanishing
in mixed characteristic can be obtained via methods similar to those in [Tot19)].
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of adjunction holds for three-dimensional plt singularities; the positive characteristic analogs
of these results were key initial ingredients for the aforementioned work of Hacon and Xu.

What is missing is a mixed characteristic analog of the theory of global F-regularity , a
strengthening of the log Fano condition which was introduced in positive characteristic in
[Smi00] (see also [SS10]). We establish such a theory, which we call globally +-reqularity,
based upon the recent work of the first author, [Bha20], who showed that the absolute
integral closure Rt of an excellent domain R is Cohen-Macaulay in mixed characteristic and
deduced a variant of Kodaira vanishing up to finite covers. Like in positive characteristic
one may also define globally +-regularity by the study of BCM-regularity of section rings
(normalizations of cones); in fact, this point of view will be important in proofs of some of
our results. Note that, while globally +-regular varieties (and pairs) could also reasonably
be called global splinters, our syntax more closely matches existing terminology for global
F-regularity.

As our main application we develop the mixed characteristic Minimal Model Program for
threefolds when the residual characteristics are zero or bigger than 5.

Theorem A. Let R be a finite-dimensional excellent domain with a dualizing complex and
containing 7 whose closed points have residual characteristics zero or greater than 5. Let X
be a kit integral scheme of dimension three which is projective and surjective over Spec(R).
Then we can run a Minimal Model Program on X over Spec(R) which terminates with a
minimal model or a Mori fiber space.

In fact, our results are much stronger (see Section 1.1 for more details). They extend earlier
results on the mixed characteristic case including H. Tanaka’s work on the MMP for excel-
lent surfaces ([Tan18b]) and the work of Y. Kawamata on the MMP for mixed characteristic
semistable threefolds [Kaw94]. Other related work appears in [Lip69, Theorem 4.1], [Lic68]
and [Sha66]. We also point out that some variants of this theorem were obtained indepen-
dently by Takamatsu and Yoshikawa in [TY20] (see Remark 1.1 for additional discussion).

From now on, (R, m) is a Noetherian complete local domain of mixed characteristic (0, p >
0) (although what follows also works when R is of characteristic p > 0). For simplicity, in the
introduction, we present our initial results in the non-boundary-case (A = 0) and append
references to full statements.

First, we discuss the analog of global F-regularity. We say that a normal integral scheme X
proper over R is globally +-reqular if Ox — f, Oy splits for every finite cover f: Y — X, and
observe the following as a straightforward consequence of generalizations and reformulations
(see Section 3) of the vanishing theorems of [Bha20].

Theorem B (Corollary 6.12). Suppose that X is globally +-reqular and proper over Spec(R).
If £ is a big and semiample line bundle on X, then Kawamata-Viehweg vanishing holds for
&L, that is H(X,wx @ Z) =0 fori> 0.

In positive characteristic, global F-regularity implies global +-regularity (Lemma 6.14), but
the converse is an open problem even in the affine setting.

In fact, the previous result is an direct consequence of the following generalization of the
vanishing theorem of Bhatt to more arbitrary excellent local bases [Bha20]. Indeed, this
vanishing theorem will be used multiple times in key ways in this paper.

Theorem C (Corollary 3.7). Suppose that (T, x) is an excellent local ring of residue char-

acteristic p > 0. Let m : X — Spec(T) be a proper map with X integral. Suppose that
3



L € Pic(X) is a big and semiample line bundle. Then for all b < 0 and all i < dim(X), we
have that H'(RT,(RT(X T, L?))) = 0.

Another key notion used in applications in positive characteristic birational geometry is
that of Frobenius stable sections S°(X,.#) C HY(X,.#), for a line bundle .Z, and its
variant T°(X,.#), introduced in [Sch14] and [BST15] respectively. These sections behave
as if Kodaira vanishing was valid for them. In this article, we consider the following mixed
characteristic analog thereof (see Definition 4.2):

BYX,.#):= () im(H(Y,O(Ky/x+ M) — H(X,.)).

f:Y—X
finite

We call these global sections +-stable. We also consider an adjoint (plt-like) version B (X, S; .#)
for an irreducible divisor S and a line bundle .# = Ox(M).

Theorem D. The following holds for a normal integral scheme X proper over Spec(R):
(a) Under appropriate assumptions,

BY(X,S; Ox(Kx + S + A)) — BY(S; Os(Ks + Als))

is surjective, where A is an ample Cartier divisor, see Theorem 7.2.
(b) X is globally +-regular if and only if BY(X, Ox) = H*(X, Ox), see Proposition 6.8.
(c) If X is Q-Gorenstein, then

BY(X, #) = ﬂ im (H°(Y, Oy (Kyx + f*M)) — H°(X, 4)),
fiY—X

alteration

see Corollary 4.135.

(d) If X = Spec R is Q-Gorenstein and affine, then BY(X,Ox) = tr+(R), where the
latter term is the BCM-test ideal defined in [MS21], see Proposition 4.17.

(e) B transforms as expected under finite maps and alterations, see Section 4.2.

(f) If £ is an ample line bundle on X, and S = @,., H*(X, ZL") is the section ring,
then fori > 0 we have that B(X,wx ® £?) is the ith graded piece of a test submodule
Trte(Wg) on S, see Proposition 5.5.

(9) If X is projective over Spec R, is reqular (or has sufficiently mild singularities) and
Z is ample, then for n >0

BO(X,WX ®$n) = HO(X,WX ®$n),
see Theorem 5.8.

The proofs of the above results are based on [Bha20, BL| as well as ideas developed in
[Sch14, BST15, MS21, MST22]. We should note that (c) shows that B? agrees with the
notion of 7° introduced in [BST15] for Q-Gorenstein varieties in characteristic p > 0 and
defined and used in similar ways in mixed characteristic in the independent work [TY20]
mentioned above.

Theorem E (Theorem 5.9). Let X be a d-dimensional scheme that is reqular (or has suffi-
ciently mild singularities) and which is flat and projective over R. Set t = dim R and let £
be an ample globally generated line bundle on X. Then wx ® L1 is globally generated
by BY(X, wy @ Z4-1+1),
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We also note that we obtain related global generation results for adjoint line bundles
wyx ® £ via Seshadri constants, see Theorem 7.11.

One should expect that this variant of the Fujita conjecture would hold for any X ad-
mitting BCM-rational singularities (in the sense of [MS21]), as in [Smi97b, Kee08]. Indeed,
our argument would show this if we knew that the formation of our test ideals commuted
with localization in a sufficiently strong sense. Indeed, a limited localization result from
[MST*22] was how we proved (g) above, which was used in our proof of this theorem. The
question of whether BCM-test ideals localize in general is one of the key remaining open
problems about BCM-singularities. In forthcoming work, we shall prove that localization
holds in certain circumstances and derive geometric consequences.

We warn the reader however that, in general, the localization is false for B®(X,.#) when
X is projective:

Theorem F (Example 4.14). Let E be a smooth elliptic curve over Z,. Then
(a) BY(E,0g) =0, but
(b) BO(Eva ﬁEQ,;) =Qp.

This also shows that in contrast to positive characteristic, B®(X,.#) cannot be calculated
on a single finite cover (or an alteration).

Our definition of B® works most naturally when the base ring is complete. However,
certain partial results on lifting sections can be obtained when the base is not complete, see
Corollary 7.8. Since most geometric results can be deduced from the complete case, we shall
always assume, when talking about B, that the base is complete. In particular, our setup
allows for running the Minimal Model Program over algebraic and analytic singularities.
Since many results of [Bha20] assume that the base is finitely presented over a DVR, we
provide generalizations thereof in Section 3.

1.1. Minimal Model Program. In this subsection, R is an excellent domain of finite Krull
dimension admitting a dualizing complex. In most theorems, we will also assume that the
closed points of R have residual characteristics zero or greater than 5 (the cases R = Z[1/30]
or R =17, for p > 5 are already interesting). Let T" be a quasi-projective scheme over R.

Theorem G (MMP, Proposition 9.20, Theorem 9.37). Let (X, B) be a three-dimensional
Q-factorial dit pair with R-boundary, which is projective over T'. Assume that the image of
X in T is of positive dimension and that T' has no residue fields of characteristic 2,3 or 5.
If Kx + B is pseudo-effective, then we can run a (Kx + B)-MMP and any sequence of
steps of this MMP terminates with a log minimal model.
If Kx + B is not pseudo-effective, then we can run a (Kx + B)-MMP with scaling over T
which terminates with a Mori fiber space.

Note that the assumption on the image of X in T is needed because we do not know
that all flips terminate in purely positive characteristic. In fact, even the MMP with scaling
is not known to terminate when the base field is imperfect, however, log minimal models
exist in this case by [DW22]. Also, we do not know the existence of Mori fibre spaces when
T = Spec(k) for an imperfect field k. Indeed, we do not know the validity of the Borisov-
Alexeev-Borisov conjecture in this setting, the version of which over an algebraically closed

field was used in [BW17].
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Theorem H (Base-point-free theorem, Theorem 9.17, Theorem 9.27). Let (X, B) be a three-
dimensional Q-factorial kit pair with R-boundary admitting a projective morphism f: X —
T. Let L be an f-nef Q-Cartier divisor on X such that L — (Kx + B) is f-big and nef.
Suppose that
(a) L is f-big, or
(b) the image of X in T is positive dimensional and T has no residue fields of character-
1stic 2,3 or 5.

Then, L is f-semiample.
Note that a similar result for R-divisors is proved in Theorem 9.33.

Theorem I (Cone theorem, Theorem 9.28). Let (X, A) be a three-dimensional Q-factorial
dlt pair with R-boundary, projective over T having no residue fields of characteristic 2,3 or
5 and such that the image of X in T is of positive dimension. Then there exists a countable
collection of curves®* {C;} over T such that

(a)
NE(X/T) = NE(X/T)ky+a20 + »_ Rs[Cil,

(b) The rays [C;] do not accumulate in the half space (Kx + A) <o, and
(¢) For all i, there is a positive integer d¢, such that

0< —(Kx+A) kC§4dCZ

and if L is any Cartier divisor on X, then L -, C; is divisible by d¢,, where k is the
residue field of the closed point of T' lying under C.

Note that we cannot expect the bounds on extremal rays to be as in characteristic zero,
since the residue fields of 7" might not be algebraically closed (cf. [Tan18a, Example 7.3] and
[Tan18b, DW22]).

Besides the above constructions and results on B?, the proofs of the above results are
based on the recent generalization of Keel’s theorem on the semiampleness of line bundles to
mixed characteristic (see [Wit22]), the MMP for mixed characteristic surfaces (see [Tan18b]),
and all the previous work on the positive characteristic MMP (most notably: [HX15] for
the existence of pl-flips with standard coefficients, [Birl6] for the existence of pl-flips with
arbitrary coefficients, [BW17] for the termination of the MMP with scaling and the existence
of Mori fiber spaces, and [DW22] for the generalization of the cone and contraction theorems
to non-perfect residue fields).

Our proof of the fact that pl-flips, with standard coefficients, exist follows the strategy
of [HX15], see Section 8. Although we employ all key ideas of their work, we are able to
simplify each step. Further, we provide a new proof of the base point free theorem for nef and
big line bundles; we infer it from the mixed characteristic Keel’s theorem by employing the
recent work of Kollar, [Kol21], on the non-Q-factorial MMP, and the ideas of [HW22b]. In
fact, our proof yields the validity of the base point free theorem for big and nef line bundles
for threefolds in any positive characteristic p > 0, a result which was not known before.

The termination of all flips when the image of X in T has positive dimension and when
Kyx + A is pseudo-effective, is proven by the argument of Alexeev-Hacon-Kawamata, see

2curves in this article are assumed to be projective over the base, see the definition in Section 2.5
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[AHKO07]. Our proof of the base point free theorem for non-big line bundles uses this together
with abundance in lower dimensions to provide substantial simplifications over the argument
from [BW17]. Furthermore, our more general set-up also requires a different proof of the
cone theorem. These are used to deduce termination with scaling and the existence of Mori
fiber spaces following [BW17].

Remark 1.1. While finalizing our project, we were contacted by Teppei Takamatsu and Shou
Yoshikawa, who informed us that they were working on related topics (see [T'Y20]). In their
article, among many other things, they show the validity of some special cases of the three-
dimensional MMP in all (mixed) characteristics p > 0: for semistable threefolds (generalizing
[Kaw94]) and for resolutions of singularities. Aside from [Bha20] and [Kaw94], their work
builds upon ideas from the proof of the existence of some flips discovered recently in [HW21]
and on the results of [HW22b]. They also define and study the notion of global T-regularity
which is very closely related to our global 4+-regularity, and obtain results on lifting sections.

1.2. Applications to moduli theory. We have the following sample corollaries to the
moduli theory of surfaces. We recall that stable surfaces are the two dimensional generaliza-
tions of stable curves. In particular, they are supposed to provide a good compactification
of the moduli space of smooth canonically polarized surfaces. The present article concludes
the last step needed to show that their moduli stack exists over Z[1/30] (see [Pat18] for a
historical overview of the subject).

Theorem J. (Exzistence of M 5, over Z[1/30], Corollary 10.2)

(a) The moduli stack M +.,, of stable surfaces of volume v over Z[1/30] exists as a separated
Artin stack of finite type over Z[1/30] with finite diagonal.

(b) The coarse moduli space My, of stable surfaces of volume v over Z[1/30] ezists as a
separated algebraic space of finite type over Z[1/30)].

Unfortunately at this point it is not known whether .#5, is proper, and M, is projective
over Z[1/30]. The best we can say is the following.

Theorem K. (Theorem 10.6) Fiz an integer v > 0 and let

373 ifo=1
d= H D, where flv) = {

p prime, p<f(v)

2130 + 48 ifv> 2.

Then, the closure ];H; of the locus of smooth surfaces in M+, is proper over Z[1/d]. Ad-
ditionally, it admits a projective coarse moduli space M;n; over Z[1/d].

These results are shown in Section 10.

1.3. Applications to commutative algebra. We highlight one more standard corollary
of the minimal model program which we expect to be useful in commutative algebra. It
follows from the above results as in [Kol08, Exercises 108, 109].

Corollary L. Suppose (X = Spec R, A) is a three-dimensional klt pair where R is an excel-
lent local domain of residue characteristic p for p > 5. Then for every Weil divisor D on X
we have that the local section ring @,;-, Ox(iD) is finitely generated. In other words, if I is
an ideal of pure height one in R, then the symbolic power algebra

RelalPaei®ae...
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is finitely generated.

This result in characteristic p has applications to tight closure theory. In fact, combining
the above Corollary with [AP22, Theorem B] yields a generalization of [AP22, Theorem A]
from rings essentially of finite type over a field to the case of excellent local rings.

Corollary M. Let (R,m) be a four-dimensional excellent local ring of equal characteristic
p > 5. If R is F-regular then R is strongly F'-reqular.

1.4. Applications to four-dimensional Minimal Model Program and liftability. In
[HW21], it is shown that a variant of the four-dimensional semistable Minimal Model Pro-
gram over curves and over singularities is valid in positive characteristic p > 5 contingent
upon the existence of resolutions of singularities. Using the techniques and results of our pa-
per as well as the generalisation of the result of Cascini and Tanaka on relative semiampleness
(now proven in [Wit21]), this semistable MMP may be extended to mixed characteristic. In
turn, this may be used to show that liftability of three-dimensional varieties of characteristic
p > 5 is stable under the Minimal Model Program. These results are now contained in an
update to [HW21].

1.5. Technical notes. We summarize here the major technical points of the article.

(a) Most of the theory developed in the article assumes we are working over a complete
local base. This lets us show, in Lemma 4.8, that elements of BY(X,Ox(M)) have
compatible systems of pre-images in H(Y, Oy (Ky,x + f*M)). In fact, even in char-
acteristic p > 0, [DM20] gives examples of excellent regular local (non-F-finite) rings
that are not F-split. It follows that there cannot be compatible systems of pre-images
for these examples for X = Spec R. Our proofs crucially use this compatibility (or
Matlis dual versions). In proofs, typically completeness comes as the necessary con-
dition to apply Matlis-duality, e.g., Corollary 4.13 and Theorem 7.2.

(b) A priori plt pairs in the non-Q-factorial setting could have intersecting boundary
components, cf., Lemma 2.33.

(c) We needed Bertini-type statements over a local ring of mixed characteristic, see
Section 2.4.

(d) The known resolution theorems for Noetherian excellent schemes of dimension 3
do not produce resolutions by sequences of blow-ups of non-singular centers. See
Remark 2.35.

(e) When we pass to the localization or the completion of the base, then Q-factoriality or
the Picard number being 1 may be lost. In particular certain theorems and definitions
had to be adapted, e.g., the paragraphs after Definition 2.28 and Definition 8.4, as
well as the proof of Corollary 8.26.

(f) When working over arbitrary Noetherian excellent schemes, it can happen that the
codimension and the dimension of a closed subscheme does not add up to the dimen-
sion of the ambient scheme, cf., Remark 2.23.

(g) For the technical advances related to the Minimal Model Program, see the beginnings
of Section 8 and Section 9.
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2. PRELIMINARIES

For much of the article we work over an excellent domain R of finite Krull dimension with a
dualizing complex. Unless otherwise specified, we shall write Rt to denote an absolute integral
closure of R in the sense of [ArtT1] (i.e., the integral closure of R in an algebraic closure of
Frac(R)); this object is unique up to isomorphism, and our constructions will be independent
of the specific choice. Moreover, except for Section 2, Section 3 and Section 9 or where
otherwise noted, we will also assume that (R, m) is a complete local Noetherian domain whose
residual characteristic isp > 0 (in this case R is excellent [Sta, Tag 07TQW], it has finite Krull
dimension [Sta, Tag 0323], and it admits a dualizing complex as discussed in Section 2.1).
Most typically, we are interested in the case that R is of mized characteristic (0,p > 0). Now
suppose that a scheme S is excellent with a dualizing complex (most typically S = Spec R).
Observe that any scheme X with a map f : X — S of finite type is also excellent [Sta,
Tag 07QU] and has a dualizing complex induced from S, see [Sta, Tag 0AUA], which we take
as wy = f'ws when f is separated (our typical case). Furthermore, in Section 9 we will
sometimes assume that our schemes X have Xg non-trivial.

In this article, we say that a scheme over R is n-dimensional if its absolute dimension
is equal to n (as opposed to the relative dimension). Furthermore, the underlying scheme
of a pair is always assumed to be normal, excellent, Noetherian, integral and admitting a
dualizing complex (see Definition 2.27 for the precise statement).

If X is a normal integral scheme over R, then X, denotes the fiber over m € Spec R.

Definition 2.1. Given an integral Noetherian scheme X, an alteration 7 : ¥ — X is a
surjective generically finite proper morphism with Y integral. (We shall often be in the

situation where Y is normal.)
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Note that constructibility of the level sets and the upper semi-continuity of the dimension
of fibers function holds in the setting of Definition 2.1 [Sta, Tag 05F9], [Sta, Tag 0D41].
Similarly, it holds that over the locus where the fibers are finite, 7 is finite [Sta, Tag 020G].
In particular, if 7 is an alteration, then there exists a non-empty open set over which 7 is
finite. Additionally, the additivity of dimension also holds here [Sta, Tag 02JX], and so we
have dim X = dimY.

Throughout this article, we will frequently use that local cohomology on the Noetherian
ring R commutes with direct limits (in other words, filtered colimits) just as sheaf cohomol-
ogy does on Noetherian topological spaces, see [Har77, Chapter III, Proposition 2.9] [Sta,
Tag 01FF]. In particular, we have for a directed system of R-modules M, that

lim HE (M) = Hi (lim M,),

see [BS98, Theorem 3.4.10]. More generally, if X is a Noetherian scheme and E C X is closed,
by mimicking the argument of [Har77, Chapter III, Proposition 2.9], one immediately sees
for a directed system of sheaves of &x-modules .%, that

(2.1.1) li H (X, Z,) = Hy (X, lig 7,).
Fa Fa
Recall also that tensor products commute with arbitrary colimits [Sta, Tag 00DD].

2.1. Dualizing complexes and local duality. Recall that any complete Noetherian local
ring (R, m) has a dualizing complex wy,, since such an R is a quotient of a regular ring
([Sta, Tag 032A], [Sta, Tag 0ATL], [Sta, Tag 0A7J]). We always choose wj, to be normalized
in the sense of [HarG6], that is H 'w;, = 0 for i > dim R and H~%™fw; £ 0. If then
7 : X — Spec R is a proper morphism (or even separated morphism), we define the dualizing
complex wy of X to be m'w;, and the dualizing sheaf wy to be H~4mX (w5 ). We make
these choices so that Grothendieck local duality can be applied as described below. Before
doing that however, we observe that when R is an excellent regular domain of finite Krull
dimension, we can define wy and wy similarly. We shall work in this non-local generality in
Section 9.

Back in the complete local case, fix F = Ex(R/m) to be an injective hull of the residue
field. This provides an exact Matlis duality functor (=) := Hompg(—, F) which induces
an anti-equivalence of categories of Noetherian R-modules with Artinian R-modules [Sta,
Tag 087Z9]; by exactness, Matlis duality extends to the derived category as well, and we
continue to denote it by (—)". In particular, since E is injective, we may harmlessly identify
Hompg(—, £) and R Hompg(—, E). Note that here, and when working in the derived category
in general, we shall also simplify notation by writing £ (rather than E[0]) for the relevant
complex concentrated in degree zero.

There is also a Matlis duality when (R, m) is not complete (but still local and Noetherian).
In this, we still define E = E»(R/m) to be the injective hull of the residue field. Then (—)¥ :=
Hompg(—, E) is an exact functor which takes Noetherian modules to Artinian modules (which
are then canonically modules over R). Note that for M Noetherian, (MV)V = M. For
additional discussion see [BS98, 10.2.18].

Since we work with normalized dualizing complexes, we have an isomorphism RI'y(wp,) =~

E [Sta, Tag 0A81]. Using this isomorphism and the complete-torsion equivalence ([Sta,
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Tag 0A6X]) shows the following compatibility of Grothendieck and Matlis duality: for any

K € Db, (R), the following natural maps give isomorphisms

R Homp(K,wy,) ~ RHompg (RIw(K), Rl w(wy,)) ~ Hompg (RMW(K), E) = RIu(K)".

As R is complete and Hompg(—, F) induces an anti-equivalence of Noetherian and Artinian
R-modules, this yields

(R Homp(K,wj))" =~ ROn(K)
for K € D, (R). For more details see for instance [Har67, Har66, BH93] and [Sta, Tag 0A81].

coh
We will be particularly interested in applying the above considerations in the following

situation.

Lemma 2.2. Suppose that (R,m) is a Noetherian complete local ring, X is an integral
scheme proper over Spec R, and that £ is a line bundle on X. Then

RILRI'(X,.Z) =~ Hom (RI(X, £ ' ®@wk), E).

In the case that X is Cohen-Macaulay, the right side becomes Hom (RI'(X, £~ '®wy[dim X]), E).
Furthermore,
RILRI(X,wy ® Z7") =2 Hom (RI'(X, %), E)
and if X is Cohen-Macaulay, the left side becomes RIy(RI(X,wx @ Z1))[dim X].
Proof. Both statements follow by combining Grothendieck and local duality with the ob-

servations made above. In the first case take K = RI'(X,.Z) and in the second take
K =RI'(X,wy @ Z7). O

We will also use the following consequence of local duality frequently.

Lemma 2.3. Suppose that (R,m) is a Noetherian complete local ring, X is an integral
scheme proper over Spec R, and that % is a coherent sheaf on X. Then we have an isomor-
phism of R-modules

(H'RTRI(X, Z))" = Homp, (F,wx),
where d = dim X.

Proof. The fact that X — Spec R is proper is essential in what follows. By local duality
([Sta, Tag 0A84]) and Grothendieck duality (cf. [Sta, Tag 0AU3(4c)]), we have

\
(2.3.1) (Hder (RI(X, ﬁ))) ~ IR Homp, (RT(X, %), w},)
~ 7RI o R #omy, (F,wy) = H 'R Homg, (F,wy).

If X was Cohen-Macaulay so that wy = wx/[d], then we would be done. However, we are
taking the bottom cohomology, so the higher cohomologies of the dualizing complex do not

interfere, as we work out in detail now. Form a triangle wx|d] — wy — C REN Applying
R Homg, (%, —) to this triangle we get:

R Homy, (%, wx|d]) — RHomg, (F,w}) — RHomg, (F,C) =5 |

Note that C' and hence R Homg, (%, C') only live in cohomological degree > —d + 1, thus
we have

(2.3.2) H™"R Homg, (F,wy) = H 'R Homg, (F,wx[d]) = Homg, (F,wx).

Combining (2.3.1) and (2.3.2) yields exactly the statement of the claim. O
11



2.2. Big Cohen-Macaulay algebras. Let (R,m) be a Noetherian local ring of dimen-
sion d and let M be a (not necessarily finitely generated) R-module. A sequence of el-
ements x,...,x, of R is called a reqular sequence on M if x;;, is a nonzerodivisor on
M/(xy,...,z;)M for each i. We consider the following conditions on M (which are equiva-
lent when M is finitely generated).

(a) HL(M) =0 for all i < d.
(b) There is a system of parameters x, ...,z of R that is a regular sequence on M.

(c) Every system of parameters of R is a regular sequence on M.
(d) Ho(Mp) = 0 for all P € Spec(R) and all i < dim(Rp).
It is straightforward to see that (c) = (b) = (a). If M satisfies condition (a) and M/mM #
0, then the m-adic completion M satisfies condition (c¢) by [BH93, Exercise 8.1.7, Theorem
8.5.1]. We will see below (Lemma 2.6) that, under mild assumptions on R, condition (c) and

condition (d) are equivalent. These implications are summarized in the diagram below.

( (a) Hy(M)=0 )

fori < d
if M # mM (b) Jz4,...,24 s.o.p. of R,
and M := M which is a reg. seq. on M

ﬂ

( (¢) Vxi,...,24 s.0.p. of R, )

is a reg. seq. on M

if R is
equidimensional

& catenary

( (d) Hp(Mp) =0 )

for + < dim Rp

The module M is called:

o big Cohen-Macaulay if M satisfies condition (b) and M/mM # 0, see [Hoc75],

o balanced big Cohen-Macaulay if M satisfies condition (c¢) and M/mM # 0, see [BH93,
Chapter 8§].

o cohomologically Cohen-Macaulay if M satisfies condition (d), see [Bha20].

If B is an R-algebra that is (big/balanced big/cohomologically) Cohen-Macaulay as an
R-module, then it is called a (big/balanced big/cohomologically) Cohen-Macaulay algebra.
Note that, in the definition of cohomologically Cohen-Macaulay, we do not require the non-
triviality condition M/mM # 0, so this definition passes to localization, which is convenient
for some inductive arguments in [Bha20)].

Remark 2.4. For our purpose, even the weakest notion (a) above suffices for most of our

applications. In fact, we can usually replace B by its m-adic completion to obtain the
12



strongest notion. Thus, for most practical purposes, the distinctions between these notions
can be ignored.

Balanced big Cohen-Macaulay algebras always exist: in equal characteristic, this is a
result of Hochster-Huneke [HH92, HH95], and in mixed characteristic, this is settled by
André [And18]. For our purposes, the following theorem (due to Hochster-Huneke in equal
characteristic p > 0, and the first author in mixed characteristic (0,p > 0)) gives an explicit
construction of balanced big Cohen-Macaulay algebras, and is the key behind our definitions
and constructions.

Theorem 2.5. Let (R,m) be an excellent local domain of residue characteristic p > 0. Let
R™ be an absolute integral closure of R. Then HL(RT) = 0 for i < dim R and the p-adic
completion of R™ is a balanced big Cohen-Macaulay algebra.

Proof. In positive characteristic, the p-adic completion of RT is R™ and this is [HH92, Theo-
rem 1.1]. In mixed characteristic, the statement about local cohomology is [Bha20, Theorem

5.1]. The extension to the p-adic completion is explained below in Corollary 2.10, also see
[Bha20, Corollary 5.17]. O

We caution the reader that if R has equal characteristic 0 (i.e., contains Q) with dim(R) >
3, then R™ is never big Cohen-Macaulay in any of the senses discussed above because of a
simple trace obstruction. For example, one may first construct a finite normal domain
extension S of R that is not Cohen-Macaulay and H(S) # 0 for some i < dim R. Since the
normalized (field) trace splits the inclusion S — ST = RT, H(S) is a direct summand of
Hi(R") and thus R" fails to satisfy condition (a). See also [ST21, Proof of Proposition 2.1]
for a collection of explicit constructions.

We next want to explain how to drop the additional assumptions on the existence of
Noether normalization in [Bha20, Corollary 5.17] in the local case.

Lemma 2.6. Let (R, m) be a Noetherian, equidimensional, catenary local ring and let M be
an R-module. Then every system of parameters of R is a reqular sequence on M if and only
if Ho(Mp) = 0 for all P € Spec(R) and all i < dim(Rp). In particular, M is balanced big
Cohen-Macaulay if and only if M is cohomologically Cohen-Macaulay and M/mM # 0.

Proof. The if direction follows from [Bha20, Corollary 2.8]. For the only if direction, let P be

a prime ideal of height h. There exists x1, ...,z part of a system of parameters such that P
is a minimal prime of (x1,...,x,). Thus we know that z1, ..., z;, is a regular sequence on M
and hence a regular sequence on Mp. But the image of x1,...,x, is a system of parameters
on Rp, and thus Hi(Mp) = 0 for all i < h as desired. O

Lemma 2.7. Suppose R is a commutative ring and f,g € R is a reqular sequence on an
R-module N. Then g, f is a reqular sequence on N7, the f-adic completion of N.

Proof. First of all, f is a nonzerodivisor on N and hence a nonzerodivisor on N/. Because
N/fN = NT/fN/ f gis aregular sequence on N/. This implies that f is a nonzerodivisor

on Nf / g]v I It remains to prove that g is a nonzerodivisor on N/. So suppose ga = 0 where
a=>ya;f" where a; € N. Then for each £,

k o9
g-Y aif' =—g- > a;f € fFINI
=0 j=k+1
13



Thus we actually have g- 3¢ a,f* € f**'N and hence Y% a;f* € f*'N for each k since
f, g is a regular sequence on N. But then we have

00 k o)

a = Z aifi = Z aifi -+ Z CLjfj € fk+1]/\}f
i=0 i=0 j=k+1
for all k, which implies a = 0 since NY is f-adically separated. 0

Lemma 2.8. Suppose N is f-adically complete and f is a nonzerodivisor on N/gN, then
N/gN s f-adically complete.

Proof. N/gN is always derived f-adically complete. Since f is a nonzerodivisor on N/gN,
we know that the f-adic completion of N/gN is the same as the derived f-adic completion
of N/gN, which is N/gN. Hence N/gN is f-adically complete. O

Theorem 2.9. Let (R, m) be a Noetherian, equidimensional, catenary local ring and let M
be an R-module. Suppose t € R is a parameter such that

(a) t is a nonzerodivisor on M
(b) M/tM is balanced big Cohen-Macaulay over R/tR.

Then M\t, the t-adic completion of M, is balanced big Cohen-Macaulay over R.

Proof. We prove by induction on d = dim(R). So we assume the conclusion of the theorem
holds whenever the local ring has dimension < d.

We first prove that every system of parameters x1,..., x4 of R such that x; = t for some

1 is a regular sequence on M. This is clear if i = 1 and so we assume x; # t. We claim that
(¢) t is a nonzerodivisor on J/\/[\t/xlj\//[\t.

(d) M*/(z1,t)M?" is balanced big Cohen-Macaulay over R/(x1,1).

Here (d) is obvious since ]/W\t/(Il, t)]/\/[\t = M/(t,z1)M, and (c) follows from Lemma 2.7 since
t, xq is a regular sequence on M.

By induction, we know that the t-adic completion of Mt /xlj\/it is balanced big Cohen-
Macaulay over R/z1R. Since t is a nonzerodivisor on M?/z, M, by Lemma 2.8 M /2, M? is
t-adically complete. Therefore Mt / :51]\/4\ ! is balanced big Cohen-Macaulay over R/x1R. But
since 7 is a nonzerodivisor on M by Lemma 2.7, x1,..., x4 is a regular sequence on M.

Now let P be a prime ideal of height h. Suppose t € P, then since M\t/tﬁt = M/tM, we
have Hi((M)p/t(M?)p) = HL((M/tM)p) = 0 for all i < h — 1, which by the long exact
sequence of local cohomology implies that H})(]\/Z ¥y =0 for all i < h. Now suppose t ¢ P,

by prime avoidance, we can pick xy,...,x, and x40, ..., x4 such that

(e) P is a minimal prime of (z1,...,xp)

(f) z1,...,Zn, t, Tpio, ..., x4 1S a system of parameters of R.
By what we have already proved, xi,...,xp,t, Tpio, ..., x4 and hence xq, ..., xy is a regular
sequence on M?!. Thus zy,...,xy is a regular sequence on (M*)p and so H};((]\/Zt)p) =0 for
all i < h. Therefore M! is cohomologically Cohen-Macaulay. Since M? /m]\/J\ b= M/mM #0
(by condition (b)), M? is balanced big Cohen-Macaulay as desired. O

Now we can prove the promised extension of [Bha20, Corollary 5.17].
14



Corollary 2.10. Let (R,m) be an excellent local domain of mized characteristic (0,p > 0).
Then R+p, the p-adic completion of R™, is a balanced big Cohen-Macaulay.

Proof. This follows from [Bha20, Corollary 5.11] and Theorem 2.9. O

As we mentioned before, one advantage of the notion of cohomologically Cohen-Macaulay
is that it behaves well under localization. It is not clear that (balanced) big Cohen-Macaulay
algebras behave well under localization, we record the following partial result for psycholog-
ical comfort; it will not be used in this paper.

Proposition 2.11. Suppose R is a complete Noetherian local domain and B is a balanced
big Cohen-Macaulay algebra, then Bp is balanced big Cohen-Macaulay for Rp for all P €
Spec(R).

Proof. Let x1, ..., x; be a system of parameters in Rp, by prime avoidance, we may assume
that x1, ..., x, is also part of a system of parameters of R, thus it is a regular sequence on B
and hence a possibly improper regular sequence on Bp. But since B is big Cohen-Macaulay
and R is a Noetherian complete local domain, B is a solid R-algebra (see [Hoc94, Corollary
2.4]) and thus Spec(B) — Spec(R) is surjective, so Bp/PBp # 0 and hence z1,..., x5 is a
regular sequence on Bp. O

We conclude our discussion with a definition related to the discussion above.

Definition 2.12 (Splinters). A Noetherian reduced ring R is called a splinter if for every
finite extension of rings R C S we have that R < S splits as a map of R-modules.

As mentioned above, in characteristic zero, every normal ring is a splinter (the trace can
be used to split the inclusions). However, in characteristic p > 0 or mixed characteristic
(0,p > 0), if a local ring (R, m) is a splinter, then Hy(R) — Hy(R") = Hy (i, .. S) is
injective for every ¢ > 0. In particular, by Theorem 2.5 we see that splinters are Cohen-
Macaulay.

2.3. Resolution of singularities. In this section, we recall known results about resolutions
of singularities for mixed characteristic three-dimensional schemes. Note that resolutions of
singularities exist for Noetherian excellent surfaces in full generality by [Lip78].

Theorem 2.13 ([CP19, Theorem 1.1} and [CJS20, Corollary 1.5]). Let X be a reduced and
separated Noetherian scheme which is quasi-excellent and of dimension at most three, and
let T be a subscheme of X. Then there exists a proper birational morphism g: Y — X from
a reqular scheme Y such that both g=*(T) and Ex(g) are divisors and Supp(g~'(T) UEx(g))
15 simple normal crossing.

Proof. By [CP19, Theorem 1.1], there is a projective morphism f : Z — X such that X is
regular. Then applying [CJS20, Corollary 1.5] to (Z,T") with 7" = f~!(T') gives the required
g. 0

Proposition 2.14. Let X be a reduced scheme of dimension 3, quasi-projective over a
Noetherian quasi-excellent affine scheme Spec(R). Let T' be a subscheme of X. Then there
exists a projective birational morphism g 'Y — X from a regular scheme Y such that
both g~ X(T'), and Ex(g) are divisors, Supp(g~*(T) UEx(g)) is simple normal crossing and Y

supports a g-ample g-exceptional divisor.
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Proof. By taking normalization, we may assume that X is normal and integral. Let ¢’ :
Y’" — X be the proper birational morphism given by Theorem 2.13. By Chow’s lemma
[Gro61, Theorem 5.6.1(a)] applied to g, there exists a projective birational map g : Y — X
which factors through f : ¥ — Y7, and which is the blow up of some ideal sheaf .# by [Liu02,
Theorem 1.24]. By the universal property of blow-ups [Sta, Tag 0806], Y is also the blow-up
of 4" = # Oy, which is the ideal sheaf of a subscheme Z. Now let A : Y — Y’ be the
projective embedded resolution of (Y', Z U (¢")~(T) U Ex(g’)) given by [CJS20, Corollary
1.5], which is projective since it is a composition of blowups. Then g : ¥ — X factors
through Y by the universal property of blow-ups, and so ¢ is projective by [Sta, 0C4P] since
Y is projective over Y and Y is projective over X. Given this Y, we may replace it with a
resolution supporting a g-ample g-exceptional divisor by [KW21, Theorem 1]. 0

Remark 2.15. Note that the construction in Proposition 2.14 does not result in a morphism g
which is an isomorphism over the simple normal crossing locus of (X, T"). Cossart and Piltant
[CP19] prove Theorem 2.13 with this hypothesis, but they do not have the requirement that
g is projective or that Y supports a g-ample g-exceptional divisor as in Proposition 2.14.

Furthermore, we do not know if Proposition 2.14 is valid over non-affine bases (due to the
assumptions of [LLiu02, Theorem 1.24]). For this reason, we assume in Section 9 that all the
schemes are quasi-projective over an affine scheme.

We also need the following version of the negativity lemma from birational geometry
[IKKMO8, Lem 3.39].

Lemma 2.16. Let f : Y — X be a projective birational morphism of normal excellent
integral schemes and I" is a Q-Cartier Q-divisor on'Y such that f.I' is effective and —I" is
f-nef. Then I is effective.

Proof. Note first that f-nefness is preserved by localisation on X [CT20, Lem 2.6], and so is
the birationality of f. Additionally, effectivity of divisors can be checked on all localizations
of X. Hence, we may assume that X = Spec A, where (A, m) is local. In particular then Y
has finite Krull dimension. If dimY" < 2, then we are done by [Tan18b, Lem 2.11]. Hence we
may assume that dim Y > 2 and that the statement of the lemma is known for all dimensions
smaller than dimY'.

Assume then that I is not effective. Let E be the prime divisor on Y which has a negative
coefficient in I'. By localizing at the points of positive codimension, and using the induction
hypothesis, we see that the components of I' that are mapping to the non-closed point of X
have non-negative coefficients. In particular, E lies over the closed point of X. As dimY > 2
we can find a hypersurface H C Y such that

(a) HNE # (), and
(b) no component of H is contained in any irreducible component of Exc(f).
We introduce the following notation:

o Y’ is the normalization of an irreducible component of H that intersects E,

o h:Y" — Y is the induced morphism,

o X' is the normalization of f(Y”), where f(Y”) is also local as it is a closed subscheme
of X, and then X’ is semi-local,

o f": Y’ — X'is the induced morphism, which is birational due to assumption (b) and

the fact that codimy A(Y’) = 1, we have h(Y"') € Exc(f),
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o IV := h*I", for which we have that f/I" is effective as we know that the coefficients
of IV are already positive over the non-closed points of X.

By the above observations we may apply the induction hypothesis to f': Y’ — X’ and to
IV. By our choice of Y’, I'" has a negative coefficient, which is a contradiction. O

2.4. Bertini. We will need certain Bertini theorems in mixed characteristic.

Theorem 2.17. Let R be a Noetherian local domain. Fix an integer N > 1. Let X1, ..., X,, C
PY be a finite collection of reqular closed subschemes. Then there exist some d > 0 and
0#he HYPY,O(d)) such that V(h) N X; is reqular for all i.

Proof. Let k denote the residue field of R, and let X, = U; X, C Pév be the subscheme of
P,ZgV obtained by taking the scheme-theoretic union of the special fibres X; ; C X;. Choose
a stratification {U,};es of X by locally closed subschemes such that each U; is connected,
regular (and so k-smooth if k is perfect, for instance if k is finite), and such that each
Xis C X, is (set-theoretically) a union of strata: this is clearly possible without assuming
connectedness/regularity of the strata, and the connectedness/regularity can be ensured a
posteriori by further refining the stratification.

Next, we claim that there exists some d > 0 and some 0 # a € H°(PY, 0(d)) such
that V(a) N U; is regular for all i. If k is infinite, then this follows with d = 1 from the
classical Bertini theorem (see, e.g., [FOV99, Corollary 3.4.14]): there is a Zariski dense open
inside V(H°(P}, 0(1))) parametrizing the sections a that solve the problem for each Uj;
separately, and intersecting these opens gives a Zariski dense open inside V(H°(PY, 0(1)))
parametrizing the sections a solving the problem for all the U;’s simultaneously; we then
conclude by noting that any k-rational variety has a k-point as k is infinite. When £k is
finite, this follows with d > 0 from the variant of Poonen’s Bertini theorem presented in
[GK19, Proposition 5.2] applied with Z =Y =V, = () and T' = {0}, noting that (y,(s) does
not have a zero or a pole at s = dim(U;) + 1 (e.g., by the Weil conjectures).

Pick a section 0 # a € H°(PY, 0(d)) as constructed in the previous paragraph, and pick
a lift 0 # h € H(PY,0(d)) of a. We shall show that h solves our problem. First, by
construction, for any closed point u of any Uj, the image of a in 0(d) ®(7P£, Oy, /mQUW is

nonzero. Now each X, is a union of strata, so for each closed point x € X 5, we can find
some stratum U; C X; , containing z. As there is a natural restriction map Oy, ,/m%, , —
Oy, /m;. ., we conclude that the image of a in (d) D0y Ox,,/m%, , is also nonzero for
all closed points z € X, ;. But closed points of X; and X, are the same by properness of
Spec(R). By the same reasoning used to pass from U; to X, ; and functoriality of restriction

maps, we learn that for any index ¢ and any closed point x € X;, the image of h in &'(d) R,y
R

Ox,/w%, , is also nonzero. This means exactly that V'(h) N X; is regular at all closed points
of X; that it contains, i.e., V(h) N X; is regular at its closed points. As the regular locus is
stable under generalization, we conclude that V' (h) N X; is regular, as wanted. U

Remark 2.18. Now suppose that X — Spec R is projective, X is regular and B is a snc
divisor on X. If we apply Theorem 2.17 to X itself and the finitely many strata of B, then

we obtain an H = V/(h) such that (X, H 4+ B) and (H, BN H) are also snc pairs.
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2.5. Log minimal model program. We refer the reader to [IKM98] for the standard defi-
nitions and results in the Minimal Model Program. Here we briefly recall some basic notions,
in particular highlighting the adjustments required by our generality.

Definition 2.19. Given a Cartier divisor D on a Noetherian normal separated scheme X,
we define Mob(D) = D — Fix(D), where the divisor Fix(D) is defined by requiring that for
each prime divisor £ on X
coeff p Fix(D) = min coeffp D’
D’e|D|

Note that as D is Cartier the above coefficients are integers and hence the minimum exists.
We also note that here, and in general in the article, the linear system |D| simply means
the set of all effective divisors linearly equivalent to D. That is, we do not put any scheme
structure on |D].

Remark 2.20. In the situation of Definition 2.19, there is a natural identification of H(X, Ox (D))
with H°(X, Ox(Mob(D))). Note also that if D' = D + F for a Cartier divisor F' > 0, then
Mob(D’) > Mob(D). Further observe that when D is effective, so is Mob(D).

A Q-divisor (resp. R-divisor) is a finite formal sum > | d;D; where D; is an integral
codimension one subscheme of X, and d; € Q (resp. d; € R). Two divisors are Q-linearly
(resp. R-linearly) equivalent if their difference is a Q-linear (resp. R-linear) combination
of principal divisors. A Q-divisor (resp. R-divisor) is Q-Cartier (resp. R-Cartier) if some
multiple of it is a Cartier divisor (resp. if it can be written as an R-linear combination of
Cartier divisors). Note that a Q-divisor which is R-Cartier is automatically Q-Cartier.

An R-Cartier R-divisor D is R-ample if it is R-linearly equivalent to >  «;D;, where
a; € Ry and D; are ample Cartier divisors (not necessarily effective). Note that if D is R-
ample, it is in fact equal to an R-linear combination > «;D; of ample D; with «; € R (no
R-combination of principal divisors is necessary as we may perturb them to ample divisors).
Note that a R-ample Q-Cartier divisor is automatically ample. Henceforth, we will refer to
R-ample R-Cartier divisors as ample R-Cartier divisors, as no confusion can arise.

Lemma 2.21 (Nakai-Moishezon Criterion, cf. [Tan18b, Remark 2.3]). Let m: X — Y be a
proper morphism from an algebraic space X to a Noetherian schemeY . Let D be a Q-Cartier
Q-divisor on X. Then D is ample over Y if and only if D™V .V > 0 for every y € Y and
every positive dimensional closed integral subscheme V' of the fiber X, overy.

If X is scheme, then the same condition characterizes ampleness of R-Cartier divisors D.

Proof. It is enough to show that D|x, is ample for every y € Y ([Sta, Tag 0D3A]). By [Sta,
Tag 0D2P], we can assume that the residue field k(y) is algebraically closed. Then, the
statement follows from [Kol90, Theorem 3.11].

As for R-divisors on schemes, the statement over algebraically closed fields follows from
[FM21, Theorem 1.3]; the reduction to that case can be done similarly to [FFM21, Lemma
6.2]). O

Given a projective morphism f : X — Z we define a curve over Z to be a scheme C'
of dimension 1 such that C' is proper over some closed point z € Z. Define Ni(X) to be
the vector space generated by integral curves over Z modulo numerical equivalance: that is
> a;C; = 0in Ni(X) if and only if (> a;C;) - D = 0 for every Cartier divisor D on X. We
say that a R-Cartier divisor D is f-nef if D - C' > 0 whenever C' is an integral curve over Z.
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Remark 2.22 (The relative Picard rank). Let f : X — S be a proper morphism of Noetherian
schemes. Write Pic™(X/S) C Pic(X) for the subgroup of line bundles L on X which are
numerically trivial on all fibres X, of f, i.e., for every point s € S and every irreducible
curve C' C X, the restriction L|c has degree 0 (in fact, it is enough to verify this for closed
points only). Define N'(X/S) = (Pic(X)/Pic"(X/S)) ®z R. This R-vector space is finite
dimensional: the case of varieties over a field is explained in [Kle66, §4, Proposition 2], and
the same arguments go through in the general case (we learnt of the reference [Kle66] from
[TY20]). The integer p(X/S) := dimg N'(X/S) is called the relative Picard rank of f.

Remark 2.23. We warn the reader that in some situations we consider, a Cartier divisor may
not have the expected dimension: for example if X = SpecZ,[t] and Z = SpecZ,[t]/(pt—1) ~
Spec Qp, then dim X = 2, but dim Z = 0 despite Z being a divisor.

Furthermore, we make the following related observation. Although it is enough to check
nefness of line bundles on proper curves only, it may still happen in mixed characteristic
that some of these proper curves map to points of characteristic zero. For example, let
X = SpecZy[z,y], let m: Y — X be the blow-up of X along the subscheme Z given by the
ideal (x,y), with the relatively ample line bundle Oy (1). Let O be the point given by (p, x,y),
and let 7 be the generic point of Z. Here Z = {O,n}. Let X' = X\ {O} and Y’ = 77 1(X").
In particular, n is a characteristic zero closed point of X’. Then Oy/(—1) is non-negative (in
fact, zero) on all positive characteristic proper curves, but it is not relatively nef. This may
be checked on the proper characteristic zero curve 7='(n). Note that when X = Z[z,y], the
situation is different as there are many closed points of positive characteristic on Z.

Definition 2.24. We say that a proper map f: X — Z is small if Exc(f) is of codimension
at least two (all flips and flipping contractions are assumed to be small) and that it is
divisorial if Exc(f) is of codimension one (but it could still happen that dim Exc(f) <
dim X — 2 as in Remark 2.23). Note that the codimension of a subscheme Y in X is equal
to dim(Ox ¢), where £ is the generic point of Y [Sta, Tag 02IZ].

Remark 2.25. The fact that curves on a three-dimensional scheme can be of codimension
one may be a source of understandable confusion. However, when T is a spectrum of an
excellent local domain (denote the closed point of T" by s), it is always true that divisors on
a proper integral scheme X over T are of dimension dim X — 1.

To see this, first the following computation shows that every closed point x € X, has
codimension dim X:

dim Ox , = dim T + trdeg () K (X) — trdeg, () = dim T + trdeg () K (X ) = dim X,

where

o in the first equality, we used [Sta, Tag 02JT]

o in the second equality, we used that trdeg, s (z) = 0 since X is a scheme of finite

type over k(s) and x is a closed point, and

o the last equality is given by [Sta, Tag 02JX].
Now, if D is a divisor of X, then f(D) is closed, where f: X — T is the structure morphism.
Hence f(D) contains s € T', and so D intersects X in a non-empty closed subset of X. In
particular, X contains a closed point x € X, which must necessarily map to s € T since f
is proper: the argument gives this by construction. Then,

dimX >dimD >dim0p, =dimOx, — 1 =dim X — 1.
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where in the first equality we used that X is catenary. We obtain that dim D = dim X — 1.

Since the existence of contractions and flips in the Minimal Model Program can be checked
after localisation at each point, in their proofs we may always assume that T is a spectrum
of a local domain. However, we cannot reduce to the local situation in the case of the cone
theorem and termination of flips.

Remark 2.26. Let T be a quasi-projective scheme over a finite dimensional excellent ring. The
reader should be wary that dim 7p may be equal to dim 7" even when 7" # Ty. For example,
take T' = (Spec Z,|[z, y]])\(p, x, y) which is two-dimensional, as so is Ty = Spec Z,[[z, y]] ® Q).
In particular, it may happen that given a three-dimensional proper scheme X over 7', the
localisation Xg is still three-dimensional.

However, it is always true that dim X¢ > dim X — 1 when all the generic points of X
have characteristic 0. Pick a point x € X such that d := dim X = dim Ox , = dim(Ox ,/P)
where P is a minimal prime of Ox,. Now if the residue field Ox ,/m, has characteristic
zero, then Oy, contains Q and hence dim Xg > dim(0x, ® Q) = dim Ox , = dim X. If the
residue field Ox ,/m, has characteristic p > 0, then by our assumption on generic points, we
know that p ¢ P and thus we can complete p to a system of parameters (p, xs, ..., z4) of the
excellent local domain O ,/P and we have (Ox,/P) ® Q = (Ox,/P)[1/p]. Since p is not
in any minimal prime @ of (o, ..., x4) and any such @) has height d—1 in Ox /P, it follows
that dim X¢ > dim((Ox,/P) ® Q) = dim(Ox ,/P)[1/p] > dim(Ox ,/P)g = dim X — 1.

Given a projective morphism f : X — Z, we say that a Q-Cartier divisor D is f-big if
D|x, is big where 7 is the generic point of f(X). Equivalently, rank f,Ox (kD) > ckdm*»
for some constant ¢ for k sufficiently large and divisible. If D is f-nef, then D is f-big if
and only if DUm(X0)| x, 7 0. We say that an R-Cartier divisor is f-big if it can be written
as Y a;D;, where o; € Ry and D; are f-big Cartier divisors.

Definition 2.27. In this article, (X, A) is a (log) pair if X is a normal Noetherian excel-
lent integral d-dimensional scheme with a dualizing complex, A is an effective R-divisor.
Frequently, but not always, we also assume that Kx + A is R-Cartier.

If A is a Q-divisor (resp. R-divisor), we call it a Q-boundary (resp. R-boundary). Outside
of Section 9, we will assume that our boundaries are QQ-boundaries unless otherwise stated.
We say that A has standard coefficients if they are contained in {1 — L | m € Zso} U {1}.

Before the next definition note that if X is a Noetherian excellent integral scheme of
dimension d with a dualizing complex, then the canonical sheaf wy introduced in Section 2.1
is Sy by [Sta, Tag 0AWN]. Additionally w is compatible with localization [Sta, Tag 0A7G].
In particular, taking into account the normalization of dualizing complexes (also explained
in Section 2.1) we obtain that for the generic point 7 € X we have wy , = w; [~d] = 0,][d]
and for any codimension 1 point z € X we have wy, & Wiy o, [—(d —1)]. So, if X is
normal, then also at the points of the latter type we have wy , = Ogpec oy, [d], and hence wx
is a rank 1 divisorial sheaf [Har94]. We denote the corresponding linear equivalence class of
divisors by K.

If f:Y — X is a proper birational morphism of Noetherian excellent integral schemes of
finite Krull dimension with dualizing complexes, and A is an R-divisor on X with Kx + A
R-Cartier, then we can find an R-divisor A satisfying the equation

(2.27.1) ["(Kx +A) =Ky + Ay.
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Note that Ay is uniquely defined if we add the assumption f,Ky = Kx, which we will
always assume in such situations.

Definition 2.28. Consider a pair (X,A) with Kx + A being R-Cartier such that every
coefficient in A is at most 1. If for every birational morphism f: Y — X from a normal
scheme, divisor Ay as in (2.27.1) and for every prime divisor £ on Y which is exceptional
over X, we have

o multg(Ay) < 0, then (X
o multg(Ay) <0, then (X, A) is canonical,
multp(Ay) < 1 and |[A] =0, then (X, A) is kawamata log terminal (kit),
(Ay)
(

,A) is terminal,

o
> b

|>||

e}

A
multg(Ay) < 1, then (X, A) is purely log terminal (plt),
multp(Ay) < 1 unless the generic point of the image of E' on X is contained in the
simple normal crossing locus of (X, A), then (X, A) is divisorially log terminal (dlt),
o multg(Ay) <1, then (X, A) is log canonical (lc).

(0]

In the first definition, |[A| = 0 is automatic. Further, notice that (X, A) being plt does not
imply |A| is irreducible for (X, A) plt. This is not merely a technical subtlety, as otherwise
plt would fail to be stable under certain base-changes. On the other hand, the irreducibility
of |A] is at times required in a number of standard arguments, which then we have to revise
with extra care (c.f. Section 8).

We call the number a(E, X, A) = 1—multg(Ay ) the log discrepancy of (X, A) along E (the
number — multg(Ay) is called discrepancy). If (X, A) admits a log resolution f:Y — X,
then it suffices to verify the above definitions (except the terminal and the plt case) for the
divisors on Y only [Koll3, Section 2.10].

The base-change properties of the notions defined in Definition 2.28 can be deduced from
the following lemma.

Lemma 2.29. Suppose m : X — Spec R is a log resolution of some pair (Spec R, A). If
R — R’ is a flat map to an excellent ring with geometrically reqular fibers (for instance, an
étale cover, the strict henselization at some point of Spec R, or the completion thereof), then
the base change

7 X' = Xp — Spec R/
is a log resolution of the base changed pair (Spec R, Agr).

Proof. Since X is regular and X’ — X is flat with regular fibers, we see that X’ is regular
(and in particular reduced). But this also applies to all strata of the simple normal crossings
divisor 771 A and so its base change is also simple normal crossings. This proves the lemma.

O

Remark 2.30. Let (X, A) be a three-dimensional klt pair and let D be an effective divisor.
Then (X, A +¢eD) is kit for 0 < £ < 1 as proper resolutions exist in this setting.

Definition 2.31. We say that a projective birational morphism ¢g: Y — X is a terminal-
ization of a klt pair (X, B) if when writing Ky + By = f*(Kx + B), the pair (Y, By) is
terminal.

Lemma 2.32. Let f : (X,A) — Z = Spec R be a projective birational morphism from a
three-dimensional plt (resp. klt, dit) pair to the spectrum of an excellent base ring R with

a dualizing complex, and let h : R — R’ be a flat map between excellent local ring s with
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dualizing complexes and suppose that h has geometrically reqular fibers (for instance, an étale
cover, or the strict henselization at a mazimal ideal, or the completion thereof ). Then the
base changed pair (Xpg, Ag/) is plt (resp. klt, dit).

Proof. This follows from Lemma 2.29 since we can check these conditions on a single log
resolution. 0

Note that the above lemmas in the smooth case are discussed in [Koll3, 2.14 and 2.15].
We say that a scheme is normal up to a universal homeomorphism if its normalization is
a universal homeomorphism.

Lemma 2.33. Let (X, A) be a dit pair such that all the irreducible components S, ..., Sk of
|A| are Q-Cartier. Then all S; are normal up to a universal homeomorphism (and normal
in codimension one). Moreover, if (X, A) is plt, then |A| =S, U... U Sk.

The same holds for (X', A"), where ¢: X' — X is a flat map with geometrically reqular
fibers (for example, a completion at a point x € X ) and A" = ¢*(A).

Proof. The first part follows by exactly the same proof as [HW21, Lemma 2.1] (we learnt
this result from Janos Kolldr). Suppose that (X, A) is plt and S; N S; # 0 for some i # j.
Since both S; and S; are Q-Cartier, then S; N S; contains a codimension two point 1. By
localizing at 7, we may assume that X is two-dimensional, and so the result follows from
the classification of plt surfaces (cf. [Koll3, Theorem 2.31]). By the same argument S; are
normal in codimension one.

To prove the last statement, we may assume that = € S;. Since normalizations are stable
under flat maps with geometrically regular fibers (cf. S5 is preserved under flat maps by
[Mat89, 15.1, 23.3], Ry is preserved by the argument of Lemma 2.29), we get that S; = ¢*(5;)
is normal up to a universal homeomorphism. In particular, S} is a disjoint union of its
irreducible components. U

Lemma 2.34 ([Birl6, Lemma 9.2]). Let g : (X,B) — Spec R be a projective morphism
from a kit (resp. plt, dit) pair with a Q-boundary over a Noetherian local domain. Suppose
that there exists g : W — X, a log resolution of (X, B) and of Xy, such that there exists a
g-exceptional divisor E > 0 on W such that —FE is ample. In the case that (X, B) is dlt,
additionally assume that this resolution has no exceptional divisors with discrepancy —1 (this
condition is automatic for the other cases). Finally suppose that A is an ample divisor on
X. Then there ezists a divisor 0 < A" ~g A such that (X, B + A’) is kit (respectively plt,
dlt)

Proof. The proof follows [Birl6, Lemma 9.2] (mimicking his argument from the dlt case)
with the following adjustments: we set E’ := % for some m > 0, and we use our Bertini
theorems Theorem 2.17 (in particular Remark 2.18) where the “general” Aj;, is chosen. [

Remark 2.35. If X is a Q-factorial threefold, then any projective resolution 7 : ¥ — X in
the klt/plt case will satisfy the hypotheses of Lemma 2.34. Indeed, if H on Y is relatively
ample, then H —n*m, H will be relatively ample and m-exceptional. When X is not necessarily
Q-factorial, the existence of such a resolution locally is guaranteed for Noetherian quasi-
excellent three-dimensional reduced schemes by Proposition 2.14. Unfortunately, in contrast
to positive or zero characteristics, we do not know if the resolution as in the dlt case above

exists in dimension three.
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Given a proper birational map f: Y — X between normal integral schemes over Spec R, a
Cartier divisor D on X, and an exceptional effective divisor £ on Y, we have that f. Oy (f*D+
E) = Ox(D). The following result, used extensively throughout this paper, is an easy
generalisation of the above fact to Q-Cartier divisors.

Lemma 2.36. Let f: Y — X be a proper birational morphism between normal Noetherian
schemes. Let Dy and Dx be Q-Cartier Weil divisors on'Y and X, respectively, such that
f«Dy = Dx and Dy > |f*Dx| (equivalently, [Dy — f*Dx]| > 0). Then f.Oy(Dy) =
Ox(Dx).

The aim of the log minimal model program is to take a projective scheme with mild
singularities and perform certain birational operations on it, to arrive at a projective scheme
of the one of the following two special kinds. Here, a morphism f: X — Z is called a
contraction if it is projective and satisfies f,Ox = 0.

Definition 2.37. Let (X, A) be a pair and f : X — Z a projective contraction. We say

that (Y, Ay) with projective contraction g : Y — Z is a log birational model of (X, A) over

Z if X is birational to Y and Ay is the sum of the birational transform of A and the reduced

exceptional divisor of Y --» X.

We say that a log birational model (Y, Ay) is a log minimal model of (X, A) over Z if
(a) (Y, Ay) is Q-factorial dlt,
(b) Ky + Ay is nef over Z,
(¢) for any divisor E' on X which is exceptional over Y, a(E, X, A) < a(E,Y,Ay), and
(d) the induced map Y --+ X does not contract any divisors.
We say that a log birational model (Y, Ay) is a Mori fiber space for (X, A) over Z if
(a) (Y, Ay) is Q-factorial dlt,
(b) there is a projective contraction ¢: Y — V over Z such that
o the contraction ¢ is (Ky + Ay )-negative,
o dim(V) < dim(Y),
o p(Y/V) =1,
(c) for any divisor £ on X which is exceptional over Y, a(E, X, A) < a(E,Y,Ay), and
(d) the induced map Y --+ X does not contract any divisors.

If (X,A) is klt, then so is (Y, Ay). We say that a log minimal model (Y, Ay) of (X, A) is

good if Ky + Ay is semiample.

Remark 2.38. Note that for some authors e.g. [Birl6], Definition 2.37(d) is not assumed in

these definitions. We include this assumption since the log minimal models and Mori fiber
spaces we construct will satisfy this.

Definition 2.39. A flipping contraction f: X — Z of a pair (X, A) is a small projective
birational morphism such that —(Kx + A) is f-ample.

Note that it is usually assumed, and is the case when running the usual LMMP, that
p(X/Z) = 1. However, we will need to make use of the above more general notion.

Definition 2.40. Given a flipping contraction f: X — Z of a pair (X, A), the flip of f (if
it exists) is a small projective birational morphism f*: X* — Z such that Ky+ + Ax+ is
f*-ample.?

3Notice that this X is not the one corresponding to the absolute integral closure of Ox.
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2.6. Minimal Model Program for Noetherian excellent surfaces. We review the
Minimal Model Program for Noetherian excellent surfaces following [Tan18b]. Throughout
this subsection the base ring R is assumed to be a finite dimensional, excellent ring admitting
a dualizing complex, and T" to be a quasi-projective scheme over R. In particular, this covers
the key cases from the viewpoint of applications such as when

o T is a quasi-projective scheme over a field or a Dedekind domain, or
o T = Spec A for any complete Noetherian local domain A (see [Sta, Tag 032D]).

Remark 2.41. Note that the assumption in [Tanl8b] is that the base ring R is regular.
However all the arguments go through with the weaker assumption that R admits a dualizing
complex [Tan20c].

Theorem 2.42 (MMP, [Tan18b, Theorem 1.1]). Let (X, A) be a log canonical pair over R
of dimension two with R-boundary and admitting a projective morphism f: X — T. Then
we can run a (Kx + A)-MMP over T which terminates with a minimal model or a Mori
fibre space.

Theorem 2.43 (Q-factoriality of dlt singularities, [Tan18b, Corollary 4.11], cf. [Lip69]). Let
(X, A) be a two-dimensional dlt pair with R-boundary. Then X is Q-factorial.

Theorem 2.44 (Base point free theorem, [Tanl8b, Theorem 4.2]). Let (X, B) be a kit pair
of dimension two with R-boundary and admitting a projective morphism f: X — T over R.
Let L be an f-nef Q-Cartier divisor such that L — (Kx + B) is f-nef and f-big. Then L is
f-semiample.

Proof. When X is projective over a field, this follows from abundance ([Tan20a, Theorem
1.1]). Specifically, let E be an effective divisor such that A, = L — (Kx + B) — ¢E is ample
for all ¢ sufficiently small. Fix ¢ such that (X, B + ¢FE) is klt and by Lemma 2.34 choose
0 < A’ ~g Ac such that (X, B4+cE+ A’) is klt. Then we can conclude by [Tan20a, Theorem
1.1] using the fact that L ~o Kx + B+cFE+ A’. If X is not projective over a field the result
is implied by [Tan18b, Theorem 4.2]. O

Note that when X is not defined over a field we even know that nL is base point free for all
n > 0 and not just divisible enough. Unfortunately, this does not hold in general, specifically
when the numerical dimension of L is equal to one and the base field has characteristic two
and three (see [Tan20b, Theorem 1.2]).

The following theorem is well-known in characteristic zero, and has been recently estab-
lished for varieties which are projective over a field of positive characteristic [Tan20a]. We
prove the general case later on.

Theorem 2.45 (Theorem 9.24). Let (X, A) be a log canonical pair of dimension 2, projective
over T with Q-boundary. Assume in addition that T is the spectrum of a local ring with
positive residue characteristic. If Kx + A is nef over T, then it is semiample over T.

We present a strengthening of [Tanl8b, Theorem 2.14] following [DW22, Theorem 4.3].
As our residue fields are not necessarily algebraically closed, the bound on the length of
extremal rays involves a term d¢ introduced in [op. cit.].

Theorem 2.46 (Cone theorem). Let w: X — T be a projective morphism with X integral,
normal, and of dimension at most two. Let A > 0 be such that Kx + A is R-Cartier. Then

there exist countably many curves {C;}ier on X such that
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(a) ©(C;) is a closed point.
(b)
NE(X/T) = NE(X/T)ky a0 + Y Rso[Cil.

(c) For any ample R-divisor A, there is a finite n such that

NE(X/T) = NE(X/T)kyraras0 + Y Ro[Ci].

i<n

(d) For each C;, either
i. C; is contained in the non-lc locus of (X, A).
ii. 0 < —(Kx 4+ A) - C; < 4de, where dg, is as in Lemma 2.47.

Proof. If dim(X) = 1, then the result is obvious. So we assume dim(X ) = 2. Furthermore if
dim(7 (X)) = 0, the result is proved in [DW22, Theorem 4.3]. Note that this did not assume
that the field had positive characteristic, and while our phrasing of (d|i) is slightly stronger
than that of [DW22], it is actually what is given by the proof there.

So we may assume that dim(m(X)) > 1. The first three parts are implied by the stronger
[Tan18b, Lemma 2.13], so it remains to prove (d). For this we must show that each (Kx+A)-
negative extremal ray ¥ contains a curve satisfying the bound or contained in Supp(A)
Using the argument of [DW22, Proposition 4.5, Step 1] we may assume that X is regular
and (X, A<) is dlt.

The extremal ray ¥ contains some curve C' by [Tan18b, Lemma 2.13], and as X is regular
we claim that C? < 0. If 7 is birational this follows from Lemma 2.16, while if 7 has image
of dimension 1, it follows because C'- F' = 0 for F' a fiber of w. Let D be the normalization
of an irreducible component of (C' ®y, k);eq. Then

(KX —|—A) 5 C > (KX —|—A—|—CLC) 5 C = degk(Kc +Ac) > do degE(KD —|—AD) > —2d¢

where a is chosen such that C' has coefficient one in A + aC', and A and Ap are effective
divisors on C' and D respectively. U

We used the following lemma in the proof of the above theorem.

Lemma 2.47. Let X be a scheme over a Dedekind domain V' containing a proper curve
C' over a point v € Spec(V) with residue field k. Let ¢ : X, @ k — X, be the natural

projection. Then there is a positive integer dc such that for any R-Cartier divisor D, if c*
s any integral curve on X, ® k whose image on X, is C' we have

D, C=do(¢*D - CF)
In particular if L is any Cartier divisor on X, then L -, C is divisible by d¢.

Proof. This is [DW22, Lemma 4.1] applied to C' C X,,. Note that the statement of [DW22,
Subsection 3| required that X, be proper, however the proofs only require that the curve C'
be proper. [l

4this is automatic by definition of a curve over T
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2.7. Characteristic zero base point free theorem. We note that the base point free
theorem for Noetherian excellent schemes of characteristic zero follows from the vanishing
theorems in [Mur21].

Proposition 2.48. Suppose that T is a scheme which is quasi-projective over a finite di-
mensional excellent ring R admitting a dualizing complex and containing Q.

Let (X, A) be a Q-factorial klt pair with R-boundary. Let f : X — T be a projective
morphism, and let L be an f-nef Q-Cartier Q-divisor on X such that L — Kx — A is f-nef
and f-big. Then L is f-semiample.

Proof. By a perturbation we may assume that A is a Q-divisor and L — Kx — A is ample.
We may assume that 7" is integral, and then use the argument of [KMM87, Theorem 3-1-1].
This has three main imputs: relative Kawamata-Viehweg vanishing [Mur21], the existence
of a projective resolution with ample exceptional divisor ([Tem11]), and the non-vanishing
theorem on the generic fiber X, of X — T (that is, H(X,, Ox, (mL)) # 0 for some m > 1).
As this generic fiber is a variety over a field of characteristic zero, the non-vanishing theorem
[KMMS87, Theorem 2-1-1] applies directly via the base change of its Stein factorization to
the algebraic closure of K (7). O

2.8. Mixed characteristic Keel’s theorem. In what follows, we say that a nef Cartier
divisor L on a scheme X proper over a Noetherian excellent base scheme T is EWM over T
if there exists a proper morphism f: X — Y to a proper (over T') algebraic space Y such
that a closed integral subscheme V' C X is contracted (that is, dim f(V) < dim V) if and
only if L|y is not big.

Remark 2.49. The original definition of EWM in [Wit22] differed from the one above (which
is the same as in [CT20, Kee99]). It was weaker, as it only required f to contract proper
curves C such that L - C' = 0. This was corrected in an update to [Wit22].

We start by recalling the main results of [Wit22].

Theorem 2.50 ([Wit22, Theorem 6.1]). Let L be a nef Cartier divisor on a scheme X
projective over a Noetherian excellent base scheme T. Then L is semiample (EWM. resp.)
over T"if and only if L|gy and L|x, are semiample (EWM. resp.) over T

Here, X denotes the characteristic zero fiber of X — SpecZ and E(L) denotes the union
of closed integral subschemes V' C X such that L[y is not relatively big over T

Proof. This is [Wit22, Theorem 6.1]. Note that the EWM case of this theorem assumed
that the base scheme T is of finite type over a mixed characteristic Dedekind domain. This
assumption was needed to invoke [Art70, Theorem 3.1 and Theorem 6.2], but the only reason
Artin stated it in his article was because the Popescu approximation theorem was not known
at that time ([Sta, Tag 07GC]). This assumption was retained in [Wit22] out of abundance
of caution. O

Proposition 2.51. Let T' be a quasi-projective scheme over a finite dimensional excellent
ring R admitting a dualizing complez. Let (X, S + B) be a three-dimensional dlt pair which
1s projective over T, where S is a prime divisor and B is an effective Q-divisor. Suppose
that each irreducible component of | S + B| is Q-Cartier. Let L be a nef Cartier divisor on

X such that L — (Kx + S + B) is ample and E(L) C S. Then L is semiample.
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Moreover, if ¢: X — Z is the associated semiample fibration, then every relatively nu-
merically trivial Q-Cartier Q-divisor D on X descends to Z.

Proof. By means of perturbation, we can assume that (X, S + B) is plt and S = [S + B].
By Lemma 2.33, we also know that S is normal up to a universal homeomorphism. Since
L|x, is semiample by Proposition 2.48, it is enough to show that L|gz) is semiample by
Theorem 2.50, and so that L|g is semiample. First, note that L|g is semiample, where S is
the normalization of S. Indeed, write Kz + Bg = (Kx 4+ S+ B)|s. Since (S, Bg) is klt and
dim S < 2, we have that L|g is semiample by Theorem 2.44. Then L|g is semiample in view
of S — S being a universal homeomorphism by [Wit21, Theorem 2.22].

The second part follows by applying the first part to L + D over Z. O

Proposition 2.52. Let (X,S + B) be a pair with Kx + S + B R-Cartier, and with X
projective over a Noetherian excellent scheme T admitting a dualizing complex such that S
is a Weil divisor not contained in Supp(B) whose image in T is a closed point with residue
field k. Let Z be the normalization of Sy. Then there are effective divisors C', M and F,
and a R-divisor Bz on Z such that

(Kx+S+B)lz~r Kr+C+ M+ F + By
where

o Supp(C) is the pullback to Z of the locus on which the normalization S — S fails
to be an isomorphism.

o Supp(F) is the locus on which Z — ((S¥)x)rea fails to be an isomorphism.
o Supp(M) = 0 if and only if Si. is reduced.

Proof. First, by adjunction, (Kx + S + B)|s» = Kgv + Cgv + Bg where Csv > 0 is the
conductor of the normalization S — S and Bg > 0. Then we have Kgv|z = Kz + M + F
where M and F' are elements of the linear systems (p — 1)§ and (p — 1)91 from [JW]. Note
that [JW] assumes that the ground field is a function field, but our situation can be reduced
to this as explained in [JW, Subsection 2.1] and [DW22, Theorem 4.12, Step 1, (1)]. O

Corollary 2.53. Let (X, B) be a kit pair of dimension three admitting a projective morphism
f: X — T to a finite dimensional Noetherian excellent scheme T . Let L be an f-nef and
f-big Cartier divisor such that L — (Kx + B) is f-nef and f-big as well. Then L is EWM
over T'.

Proof. This is proven in [Wit22, Corollary 6.7] under the assumption that 7" is a spectrum
of a mixed characteristic Dedekind domain with perfect residue fields.

The fact that the base is a Dedekind domain was used three times in the proof: to employ
the mixed characteristic Keel theorem, to invoke [Wit22, Proposition 6.6], and to deduce
that L|x, is semiample. These results hold in our more general setting by Theorem 2.50,
Lemma 2.54, and by Proposition 2.48, respectively. Note that L is semiample over every
non-closed point of T" by Theorem 2.44.

The assumption on the residue fields was used to deduce that L restricted to an appro-
priately chosen surface D; C X, which is projective over a field of positive characteristic, is
EWM. This can be resolved by arguing as in Case 1 of [DW22, Theorem 4.12]. Indeed, the
semiampleness of L|(p,) follows by the same argument as that of L|p, in [Wit22, Corollary
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6.7] thanks to Proposition 2.52. Here k is the algebraic closure of the base field k. Then
L|p, is semiample by [Kee99, Lemma 2.2]. O

Lemma 2.54 ([Wit22, Proposition 6.6]). Let X be a two-dimensional normal integral scheme
projective and surjective over a Noetherian excellent scheme T such that dimT > 1. Let L
be a line bundle on X which is nef over T' and suppose that L|x, (and L|x, if Xq # 0) are
semiample for the fiber X, over the generic point n € T'. Then L is EWM over T.

Proof. Replacing T' by the Stein factorization of f : X — T, we may assume that T is
normal and f,0x = Orp. If L|x, is big or dimT = 2, then dimE(L) = 1. Thus Llg(,)
is EWM, and so L is EWM by Theorem 2.50. Otherwise, dim7T" = 1, dim X,, = 1, and
L|x, ~g 0. In this case, the normality of T" ensures that 7" is regular and so we can apply
[CT20, Lemma 2.17] to deduce that L is relatively torsion. O

2.9. Seshadri constants. Recall that for a projective scheme X over a Noetherian excellent
base scheme T, a nef and big Q-Cartier Q-divisor A, and a closed point z € X, we define
the Seshadri constant

€(A;z) =sup{t € Q| 7"A —tFE is nef },

where m: X’ — X is the blow-up of x and Ox(—FE) = m, - Ox is the exceptional divisor.
When A is in addition semiample, then, with notation as above, we also define the semiample
Seshadri constant

€a(A;z) =sup {t € Q| 7" A — tE is semiample } .

In particular, the Seshadri and the semiample Seshadri constants are non-negative, and
positive if A is ample. Further, note that e(A+B;x) > €(A; x)+€(B; x) (resp. €sa(A+B;x) >
€sa(A; ) + €(B;x)), where A and B are nef and big (resp. semiample and big) Q-Cartier
Q-divisors on X.

For the proof of the existence of flips, we will need the following results.

Lemma 2.55. Let f: Y — X be projective birational morphism, whereY is a two-dimensional
reqular integral scheme, and X is affine and klt. Assume that the reduced exceptional divisor
F is of positive characteristic.

Then every nef Cartier divisor L on Y 1is relatively semiample over X. In particular, if
A is a semiample Q-Cartier Q-divisor on Y, then ex(A;x) = €(A; x) for every closed point
r e F.

Since f is birational, every Q-Cartier Q-divisor is automatically big over X.

Proof. Since semiampleness is stable under strict henselization, we can assume that X is
strictly henselian. Note that F' is simple normal crossing and is a tree of regular conics, be-
cause the morphism f may be constructed from the minimal resolution of X by successively
blowing up closed points, and the claim holds for the minimal resolution of X by [Koll3, Sec-
tion 3]. With notation as in Section 2.8, we have that E(L) C F. Hence, by Theorem 2.50, it
is enough to show that L|g is semiample. To do this we may assume that F'is contracted to a
single point « with separably closed residue field k. By [DW22, Lemma 4.4], L is semiample
on every irreducible component of F', and so L|r is semiample by [Kee99, Corollary 2.9] as
F' is a tree of regular conics over a separably closed field, and so the intersection points are

geometrically connected. O
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Lemma 2.56. Let f: Y — X be a projective birational morphism, where Y is a two-
dimensional regular integral scheme, and X is affine and klt. Assume that the reduced ex-
ceptional divisor F is of positive characteristic.

Let M be an effective semiample Cartier divisor on'Y with no exceptional curve of Y — X
in its support, and let x € M N F be of multiplicity k € Z~og tn M. Then

€sa(M;x) = €(M;x) > k.

More generally, let D be a fived divisor and let A be a semiample Q-Cartier Q-divisor
such that A ~g M + A, where M 1is an effective Cartier divisor with no exceptional curve
of Y — X in its support, and —0D < A < 6D for § > 0. Take x € F N M of multiplicity
k € Zso in M. Then eg,(A;x) converges to k when § — 0.

Proof. We show the second statement. Then the first one follows by the same argument.
Suppose that 0 < § < v < 1 and let 7: W — Y be the blow-up at x. Since z € M is of
multiplicity k, we have that 7*M = My, + kE, where My, is the strict transform of M and
E is the exceptional divisor of the blow-up .

By Lemma 2.55, it is enough to verify that e(A;x) > k — v, that is

mTA—(k—v)E

is nef. Let C' be an exceptional irreducible curve on W over X. We need to check that
(m*A — (k—~v)E) - C > 0. We consider the following cases:

o C = F, then
("A = (k=7)E)-C = —(k—7)E* >0,
o C#FEand CNE #0, then

(A~ (k—")E)-C =

T™(M+A)—(k—7)E)-C
My +~vE+7*A) - C

o~~~

for 0 < 0 < 7 < 1 where the last inequality follows as £ - C > 1, D is fixed, and
there are only finitely many possible curves C. The first inequality follows as My,
contains no curves in its support which are exceptional over X, and so C' € Supp My .

o C#FEand CNE =0, then
(m"A—(k—v)E)-C=A-m.C>0

as A is nef.
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3. VANISHING IN MIXED CHARACTERISTIC

The goal of this section is to extend the first author’s vanishing theorem [Bha20, Theorem
6.28(b)] from the case of essentially finitely presented algebras over excellent henselian DVRs
in mixed characteristic® to the case of arbitrary excellent local domains of mixed characteris-
tic. As in the corresponding local story in [Bha20, §5], our main tools are Popescu’s approx-
imation theorem [Sta, Tag 07TBW] together with limit arguments [Sta, Tag 01YT]. We follow
the notation from [Bha20] in this section; in particular, we write X,—¢ := X Xgpec(z)Spec(Z/p)
for any scheme X.

Proposition 3.1. Suppose that (T, x) is an excellent local domain of mized characteristic
(0,p > 0) that admits a dualizing complez. Let w: X — Spec(T') be a proper surjective map
with X reduced, equidimensional and p-torsion free. Suppose that L € Pic(X) is a semiample
line bundle.

(a) There exists a finite surjective map Y — X such that
77 ORI(Xp0, L) — 77"RI(Ypo, L)
15 0 for all a > 0. In particular,
HI(RI'(X -

p:O7

L7) =0

for all 5 > 0 and all a > 0.
(b) If L is also big, then for all b < 0 there exists a finite surjective map ¥ — X such
that

RI,(RI(X,—o, L?)) — RI,(RI(Y,—o, L))
is the zero map on H’ for j < dim(X,—o). In particular,
HI(RT,(RT(X,-,, L)) =0
for all j < dim(X,—o) and all b < 0.

In what follows, we will only explain part (b) carefully. Part (a) follows from a similar and
slightly easier argument so we omit it. We begin by proving a variant of [Bha20, Theorem
6.28(b)] where we allow non-closed points and do not require that the base DVR is henselian.

Proposition 3.2. Let V' be an excellent DVR of mized characteristic (0,p > 0) and let
7w : X — Spec(T') be a proper surjective map of integral flat finitely presented V -schemes.
Fiz a (not necessarily closed) point x € Spec(T'),—o and a big and semiample line bundle
L € Pic(X). Then for all b < 0 there exists a finite surjective map Y — X such that

RI,(RI(X,—, L") @7 T,) — RI(RI(Y,—o, L") @7 T},

is the zero map on H* for i < dim((X xr Ty)p=0). Here T, is the localization of T at the
prime ideal x.

Proof. Without loss of generality, we can assume X is normal. We first assume z is a closed
point. Let V" be the henselization of V. So V" = hgﬂ/] where each Vj is a pointed étale

%In fact, any DVR of mixed characteristic (0, p > 0) is excellent, see [Sta, Tag 07TQW].
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extension of V. We have a commutative diagram

X —— Spec(T) —— Spec(V)

T T

X; — Spec(T;) — Spec(V;)

. T

X' —— Spec(T") — Spec(Vh)

such that each square is Cartesian. By [Bha20, Theorem 6.28(b)] applied to the bottom
row of the above diagram,® there exists a finite surjective map Y’ — X'’ such that the map
RI'.(RI(Xp—, L") — RIL(RI(Y,_, L)) is zero on H' for i < dim X/_, (here we abuse
notation and use L to denote the corresponding line bundle on Y,_,). Moreover, we may
assume Y’ = Y; xx, X' is the base change of a finite surjective map Y; — X for some
index j. Since V/p = V;/p = V"/p, we have X, = X0 = X)_j and V), = YV, _,.
Thus the map RT,(RI(X; =0, L)) — RI(RT(Y; p—0, L)) is zero on H' for i < dim X,—o.
Next we note that by [Bha20, Lemma 4.4]", there exists a finite cover Y — X such that the
base change Y x x X; — X; factors through Y;. Therefore the map RI',(RI'(X,—o, L?)) —
RI,(RI(Y,—q, L)) is zero on H7 for i < dim X,— as it factors through R, (RI'(Y; =0, L?)).

We next handle the case that x is not necessarily a closed point. By [Bha20, Lemma 4.8],
there exists an extension of DVRs V' — W that is essentially of finite type and a (flat) finite
type W-algebra S such that T, = S, where y € Spec(S),—¢ is a closed point. Choose X an
integral finitely presented scheme over S (and flat over W) such that X X Spec(s) Spec(Sy) =
X Xgpeo(r) Spec(T;), which is possible as the latter is finitely presented over S, which is a
localization of S. Consider the diagram

X Xspee(r) Spec(T,) — Spec(T,) — Spec(V)

9 4

X Xgpee(s) Spec(S,) — Spec(S,) — Spec(W)

J _

X —— Spec(S) — Spec W

By applying the first part above to X — Spec(S) — Spec(W) and the closed point y €
Spec(S),—0, we learn that there exists a finite surjective map ¥ — X such that the map

RI',(RI(X,—o, L") — RI,(RI(Y,—, L))
is zero on H' for i < dim(f( X g Sy)p=o- Finally, by taking suitable integral closures, we can
choose a finite surjective map Y — X such that Y Xgpec(r) Spec(7}) factors through (in fact,
equals) Y Xgpec(s)Spec(Sy), so that the map RI, (RI(Xp—o, L*)@7T,) — RT,(RT (Y=o, L") @7
T,) is zero on H' for i < dim((X X7 T})p=o)- O

6Since X is normal, each connected component of X' is integral so technically we are applying [Bha20,
Theorem 6.28(b)] to each connected component of X'.
Here we are using the scheme version of [Bha20, Lemma 4.4], the proof is the same.
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This directly leads to the following statement.

Corollary 3.3. Let V be an excellent DVR of mized characteristic (0,p > 0) and let 7 :
X — Spec(T') be a proper surjective map of integral flat finitely presented V -schemes. Fix
a big and semiample line bundle L € Pic(X). Then for all b < 0, and all x € Spec(T")p=o,
H{(RT(RI(XE,, L) @7 T,)) =0 for all i < dim(X x7 T)p=0-

p=0
Proof. Simply notice that
RI,(RT(X, g, L) @7 T,) = lim . RTL((RL(Y, L"))p=0 @7 T;)

where the colimit is over all finite surjective maps Y — X. Now the statement follows from
Proposition 3.2. 0

Remark 3.4. In the case that dim X = dim T, we may interpret Corollary 3.3 as saying that

RF(X;;O, L?) is a Cohen-Macaulay complex over T'/p in the sense of [Bha20, Definition 2.1].

We now extend our results to Noetherian complete local bases.

Proposition 3.5. Let T' be a complete Noetherian local domain of mized characteristic
(0,p > 0). Let m : X — Spec(T') be a proper surjective map such that X reduced, equidi-
mensional, and p-torsion free. Fix a big and semiample line bundle L € Pic(X). Then for

allb < 0 and all j < dim X,—, HI (R, (RL (X2, L)) = 0 where x € Spec(T) is the closed
point.

Proof. The strategy is similar to that of [Bha20, Theorem 5.1]. By Cohen’s structure the-
orem, we may assume that 7' is finite over a power series ring V[xs,...,z,] where V is
a coefficient ring of T' (hence a complete DVR). Thus without loss of generality, we may
assume 7' = V[zo, ..., x,]. Moreover, we may replace X by its normalization and work with
each connected component to assume X is normal and integral.

By Popescu’s theorem [Sta, Tag 07GC], we can write T = liﬂ@i such that Qg =
Vl]za,...,x,] and each @Q; is smooth over Qy. Since X — Spec(T) is proper and surjec-
tive, we may assume that there exists a proper surjective map X; — Spec(Q);) such that
X 22 X Xgpee(@;) Spec(T) and the line bundle L is pulled back from some big and semiample
line bundle L; on X;, see for instance [Mur21, Lemma 4.1]. Now by Corollary 3.3 applied to
X, — Spec(Q;) — Spec(V), we know that for all b < 0 and all y € Spec(Q;),—o0, we have
HI(RI,(RT(X; _, L) ®0, Qiy)) = 0 for all j < dim(X; X, Qiy)p—o- In particular, for any

y € Spec(Q;) that contains (p, ¥, ..., Z,), the H/ vanish for all

Note that for ¢ > 0, we have dim X; — dim @; = dim X — dim 7" by [Sta, Tag 0EY2]. Thus
for ¢ > 0, the H? vanish for all j < dimX — 1 = dim X,—o. At this point, we apply
[F103, Proposition 2.10] or [Gab04, Section 3] to the @Q;-complex RI'(X; _y, L?) and the
ideal I = (p,x2,...,7,) C Q;, we see that HI (R (pay,..0,)(RO(X;_g, LY))) = 0 for all
j < dim szo.

Finally, fix j < dim X,—, for each n € H/(RI,(RT(X,=0, L?))), it is the image of some
n € HI(RL (s, (RD(X; pmo, L?))) for some index i. The previous paragraph shows that
there is a finite cover ¥; — X; such that 5’ maps to zero in H/(RT (4,2 (RT (Y peo, L2))).
Base change along Spec(T) — Spec(Q);), we see that there exists a finite cover Y — X such
that the image of 7 is zero in HY (RT,(RT'(Y;—0, L))). Therefore H/(RI,(RI(X,—,, L"))) =
0 for all j < dim X,—. O

32



Now we can prove the case of an excellent local base. This is precisely part (b) of
Proposition 3.1.

Proposition 3.6. Suppose that (T,x) is an excellent local domain of mized characteristic
(0,p >0). Let m: X — Spec(T') be a proper surjective map with X reduced, equidimensional
and p-torsion free. Suppose that L € Pic(X) is a big and semiample line bundle. Then for
allb < 0, H(RT,(RT(X,y, L)) = 0 for all j < dim(X,—o). If, in addition, (T, z) admits
a dualizing complex wy., then there exists a finite cover Y — X such that

RI,(RI(X,—o, L?)) — RI,(RI(Y,—o, L))
is the zero map on H’ for j < dim(X,—o).

Proof. We first assume (7, z) is normal and henselian. By Popescu’s theorem again, we can
write T = hgT, where each T; is smooth over T, and T is a Noetherian complete local

domain. Let X and X; be the base change of X along T" — T and T — T; respectively
(note that X and X are still reduced, equidimensional and p-torsion free) leen aclassn €
HI(RI, (R (Xp=0, L?))), by Proposition 3.5, there exists a finite cover Y of X such that the

image of 1 is 0 in H/(RT, (RF(Y 0, L))). We can descend Y to a finite cover Y; over X; for
i > 0, and enlarging 4 if necessary, we know the image of 7 is 0 in H7(RT,(RI'(Y; =0, L?))).
Now (7', z) is henselian and the map 7" — 7T; is smooth with a specified section over the
residue field (via the map to the completion); thus, the map 7" — T; admits a section T; — T
by [Sta, Tags 07TM7, 04GG]. Base change Y; — Spec( ;) along this section yield a finite cover
Y of X such that the image of 7 is 0 in H/(RI,(RI'(Y,=o, L%))). Running this argument for
all finite covers X’ of X and taking a direct limit, we find that H’(RI,(RI'(X,~,, L"))) =0
for all j < dim(X,—).

Next we assume T is an excellent normal local domain. We may assume X is nor-
mal. Let T" — T" be the henselization of 7. Then X x, 7" is also normal, by working
with each connected component, we simply assume that X x, 7" is normal and integral.
Consider X x7 T" this is a cofiltered limit of étale X T-schemes (in particular it is nor-
mal). Since X is absolute integrally closed, each connected component of X+ x, T" is
absolute integrally closed. But each connected component is also integral over X xp T",
thus can be identified with (X xp T")*. By the henselian case we already proved, we
have that H7(RT,(RL((X x¢ T")}_;, L)) = 0 for all j < dim(X,—). This implies
HI(RT,(RL((XT xp Th),=, L?))) = 0 by [Bha20, Lemma 5.9]. Since T" is faithfully flat
over T', this implies H/(RT,(RT(X,—,, L*))) = 0.

Finally, if (7', x) is an excellent local domain, then the normalization 7" of T' is a excellent
semi-local domain finite over T'. Moreover, for any y € Spec(T"), we have an isomorphism

Rry((_>y) = @y’RFy’((_)y’)

of functors on T'-complexes, where 3" € Spec(T”) runs over the finitely many preimages of
y in Spec(T"). Applying the above isomorphism when y = x, we can obtain the first part of
the proposition from the excellent normal case (applied to localizations of 1" at preimages of

x). Applying the above isomorphism for all y € Spec(7'/p), the last conclusion follows from
[Bha20, Lemma 2.17 and Lemma 2.18] applied to the ind-object {RI'(Y,—o, L®)}y where YV’

runs over all finite covers of X in XT. O
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Finally, we reformulate the above result in a form that does not require passing to the
p = 0 fibre; this will be convenient for us and also allows us to give a uniform statement that
includes the equal characteristic p > 0 case.

Corollary 3.7. Suppose that (T, z) is an excellent local ring of residue characteristic p > 0.
Let m : X — Spec(T) be a proper map with X integral. Suppose that L € Pic(X) is a
big and semiample line bundle. Then for all b < 0 and all i < dim(X), we have that
HY(RT,(RI(X+, LY))) = 0.

Proof. Since X — Spec(T') is proper and X is integral, we can replace T' by m,.0x to
assume X — Spec(T) is proper and surjective and that 7" is a domain. If (7', z) has mixed
characteristic, then we consider the exact sequence

0=H "' RIL(RI(X",, L") — H(RIL(RI'(XT, L") & H(RIL(RI(XT, LY))).

p:O?

This implies that the multiplication-by-p map on H!(RI',(RT(X*, L))) is injective, which
is impossible unless H{(RI',(RI'(X*, L?))) = 0 since any element of the module is 2"-torsion
and so p"-torsion for n > 0.

Now suppose (T, z) has equal characteristic p > 0. By the same argument as in Proposition 3.6,
we may assume (7', x) is a Noetherian complete local domain, and then by the same reduc-
tion as in Proposition 3.5 and Proposition 3.2 (the steps are easier as we are working over
a field and not a mixed characteristic DVR), we may assume (7, x) is essentially finite type
over a field k. We can write £k as a filtered colimt of finite type fields k; and thus T is a
filtered colimit of T} essentially finite type over k;. Note that X descends to X; over Tj
for large j (and similarly for the big and semiample line bundle L, for instance see [Mur21,
Lemma 4.1]), and the dimension is preserved. If we can find a finite cover Y; — X such
that HY(RI,(RI(X;, L?))) — HY(RI.(RT(Y;, L)) is zero, then after base change to X we
see that the image of H'(RI',(RI'(Xj, L)) is zero in H/(R[,(RI'(X*, L?))) and we will be
done. Therefore, replacing T' by T; and X by X;, we may assume that 7" is essentially finite
type over an F-finite field k. In particular, X and T are F-finite.

The rest argument essentially follows from the proof of [Bha20, Theorem 6.28], replacing
the mixed characteristic results there by their equal characteristic counterparts in [Bhal2].
We can replace X by a finite cover to assume L = f*N where f : X — Z is a proper
surjective map (of proper integral schemes over Spec(T')) and N is ample on Z. Now by
[Bhal2, Theorem 1.5], there is a finite cover Y — X such that the map Rf.0x — Rg.0y
factors through g¢,0y, where g is the composition map Y — Z. Set Z' = Spec,(g.0y ), we
find that RT',RT(X, L?) — RI,RI(Y, L) factors through RI,RI'(Z’, N?). Since L is big,
dim X = dim Z and hence by the above discussion, to show there is a finite cover of X such
that H'(RI',(RI'(X, L%))) maps to zero for i < dim(X), it is enough to show there is a finite
cover of Z such that HY(RI',(RI'(Z, N®))) maps to zero for i < dim(Z). Thus replacing X
by Z and L by N, we may assume L is ample.

By local duality, for any finite cover Y of X, H'RI',(RI'(Y, L?)) is the Matlis dual of

H™ R Homp(RI(Y, L?),w;) =2 HTRI(Y,wy ® L)

Applying [Bhal2, Proposition 6.2], there exists a further finite cover Y’ of Y such that the
map
H RI' (Y, wy, @ L) — HTRI(Y,wy ® L)
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factors through H'RI'(Y,wy[dim(X)] ® L=°). Since X is F-finite, we can take Y to be the
e-th Frobenius of X so HRI'(Y,wy[dim(X)] ® L™%) = 0 for e > 0 and i < dim(X) by
Serre vanishing (note that L is ample and b < 0). Therefore the composition map

H RI(Y', wy, @ L) — HRI(X,w} ® L)

is the zero map. Thus its Matlis dual H'RI',(RI'(X, L)) — H'RI,(RI(Y’, L?)) is also the
zero map. Running this argument for all finite covers of X and taking a colimit, we find
that H{(RI(RI'(X ™, L)) = 0 as desired. O

Remark 3.8. In the context Corollary 3.7, if H/(RI[,(RI'(X,L™"))) is bounded p-power-
torsion, then it follows that there exists a finite cover that Y — X that annihilates that
cohomology group. Dual versions can then be phrased in terms of canonical modules and du-

alizing complexes; see Remark 3.9 for the characteristic p analog. This approach is explored
in [TY20].

Remark 3.9 (Kodaira vanishing up to finite covers in positive characteristic). Continue in
the setup and notation of Corollary 3.7 and assume that 7" has characteristic p. The proof
given above then shows the following finer statement: there exists a finite surjective map
Y — X such that the induced trace map

H™RI'(Y,wy ® L™ — HTRI'(X,wy @ L)

is the 0 map for ¢ < dim(X).

4. THE SUBSET OF +-STABLE SECTIONS (B?)

Let X, A and M be as in Definition 4.2 below. In this section, we define special global
sections inside H°(X, Ox(M)), which will be important especially when M — Kx — A is
ample (or big and semiample). Like S° and T° in characteristic p > 0 from [BST15, Sch14],
these special linear systems behave as though Kawamata-Viehweg vanishing is true. We will
use this extensively later in the paper.

Convention 4.1. In the remainder of the paper, we will often work with intersections, limits
or colimits over the category of all finite covers of an integral scheme X. In this situation,
we always mean the following: fix an algebraic closure K (X) of the function field of X, and
consider the category of all finite integral covers f : Y — X equipped with an embedding
K(Y) C K(X) over X (in particular, the morphisms must respect this embedding). Thus,
our intersections, limits or colimits take place over a poset. Note that a cofinal collection in

this category is given by the finite covers with Y normal when X is excellent. Moreover

Xt = I&H Y,
f:Y—X
finite

see [Sta, Tag 01YV]. A similar convention applies to categories of alterations.

Definition 4.2 (+-stable sections). Consider the following situation:

o X is a normal, integral scheme proper over a complete Noetherian local domain (R, m)
with characteristic p > 0 residue field,
o A >0is a Q-divisor on X, and
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o M is a Z-divisor and .# = Ox(M). In fact, the following definition only depends on
the linear equivalence class of M.

Then, define
B(X,As) = () im (H(Y, Oy (Ky + [f*(M - Kx — A)])) — H(X,.«))
f: %’-)X
nite

where the intersection is taken as R-submodules of H°(X,.#), and runs over all f : Y — X
as in Convention 4.1 where Y is normal. One sees by Galois conjugation that the above

module is independent of the choice of geometric generic point of X.
We call the global sections BY(X, A; .#) the +-stable sections of H*(X, . #) (with respect

to (X,A)).
Additionally, assuming that M — (Kx + A) is Q-Cartier, define also
B (X, As) = () im (HY, Oy(Ky + [f*(M — Kx — A)])) = H(X,.4))

fiY—X

alteration

where the intersection runs over all alterations f : Y — X from a normal integral schemes
as in Convention 4.1.

If A = 0, then we use the simplified notation: BY(X;.#) := BY(X, A; .#) and B, (X; .#) :
B (X, A 4).

Remark 4.3 (B? for non-integral X). If X is not integral but still normal where each com-
ponent has the same dimension d, we define B®(X, A;.#) as the direct sum of BY for each
connected (hence irreducible) component of X.

Remark 4.4. Alternately, we may assume that Y — X factors through some finite o : W —
X such that h*(M — Kx — A) is integral. In that case, the roundings are also not needed.
If M — Kx — A is Q-Cartier, we may also assume that h*(M — Ky — A) is Cartier (see, for
example, [KM98, Section 2.4] or [TW&9]; ¢f. [BST15, Lemma 4.5]). In this latter case, we
do not even need to restrict to normal Y.

Remark 4.5. Frequently, one applies Definition 4.2 to # = wxy ® £ and A = 0 with .Z a
line bundle, in which case the first notion of Definition 4.2 simplifies to

B X;wx®.2):= (| im(HX,Z® fuwy) — H(X, £ @wx)).

f:Y—X
finite

Remark 4.6 (Non-complete R). If (R, m) is an excellent non-complete local ring, with com-
pletion }A%, we may base change by the completion R of R to obtain X 5, and define BY
and BY, as above but restrict to finite covers (respectively, alterations) that arise as the
base change of a finite cover of X. In this case, the resulting intersection, which we de-
note by ]§0, is a subset of HY(Xp, £ ®r ﬁ) and so is a finitely generated R-module since
Xp — Spec Ris proper and R is Noetherian. However, this intersection need not be finitely
generated as an R-module as R is not. See also Section 4.4 where we show that B is equal

to BO(XE, A|Xﬁ> L ®p ﬁ)

The following basic property of B? is immediate from the definition.
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Lemma 4.7. With notation as in Definition 4.2, we have that
BY(X,A;.#) CBY(X, A .4)
for every effective Q-divisor A < A.
Our next goal is to identify BY with a Matlis dual of a direct limit, and also with a certain
inverse limit. These alternate descriptions of BY will be both convenient and crucial in what

follows. Before doing that, we make the following observations related to passing direct
limits through cohomology in our setting:

lig  HRCLRI(Y, Oy (|f*(Kx+A-M)|) = Ly HE (X, L0y (S (Kx+A-M))))

f:Y—X f:Y—X
finite finite

which, in view of (2.1.1) may be identified with
HY (X, 1 Ox+ (7" (Kx + A= M))) = H'RTWRT (X, Ox+ (7" (Kx + A — M)))

where g : X — Spec R is the given map and 7 : X — X is the induced map. In other
words,

ling HRI RI(Y, Oy (| f*(Kx + A — M)]))
(4.7.1) e

= HIRT,RI(XT, Ox+ (n*(Kx + A — M))).
Of course, this identification can be obtained in other ways as well.

Lemma 4.8 (Alternate descriptions of B®). Work in the situation of Definition 4.2 and
suppose d = dim X .

(a) We then have that B°(X, A; . #) is the R-Matlis dual of

im (HdRFmRF(X, Ox(Kx—M)) — lim  HRTLRI(Y, Oy(|f*(Kx+ A~ M) )))

f:Y—X
finite

or equivalently, by (4.7.1), the R-Matlis dual of:
im (HdRFmRF(X, Ox(Kx — M)) — HRTZRD(XT, Oy (1" (Ky + A — M)))).
(b) Dually, we have that:

BY(X,A; ) = im ( lim HO(Yﬁy(KYJr[f*(M—Kx—Aﬂ))>—>H°(X>///)

f:Y—X
finite

c) Svmalarly, when — (Kx + 18 Q-Cartuer, 18 the R-Matlis dual o
Similarly, when M — (Kx + A) is Q-Cartier, BY, is the R-Matlis dual of

im (HdRFmRF(X, Ox(Kx—M)) — lim  H'RTRI(Y, Oy (| (Kx +A— M) J)))
frY—X

alteration

where Y runs over alterations.
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(d) Dually, we have that

B (X, A;.4) = im ( Jim HO(KﬁY(KY+[f*(M—KX—Aﬂ))>—>H0(X==///)
f:Y—X

alteration

An alternate description of (b), is that for every s € BY(X, A;.#) there exists a compatible
system as follows such that sx = s:

sy € HO(Y, O (Ky + [[*(M — Kx - A)))
Vf:Y — X finite

such that sz — sy for any factorization
of finite maps Z — Y — X '

Similarly for (d).

Proof. For each finite map f: Y — X with Y normal, we have a natural map Ox(Ky —
M) — f.Ov (| f*(Kx +A—M)]) (for alterations, where the argument will be the same, we
also require that Kx + A — M is Q-Cartier). Thus we have

(4.8.1) H'RT RI(X,Ox(Kx — M)) — imy — H'RILRI(Y, Oy (| f*(Kx + A — M)])).

Taking filtered colimit for all Y, we have
(4.8.2)
H'RIWwRI(X, Ox(Kx — M)) — limimy — lim HRTCRRIU(Y, Oy (|f*(Kx + A = M)])).
Y Y

Notice also that liﬂy imy is the image of the map (a). We shall show that the Matlis dual
of the limit of the images satisfies the following:

(4.8.3) (lim imy )" = limimy = BY(X,A;.4).
Y Y

To see this, first observe that the Matlis dual of HRI'WRI'(X, Ox(Kx — M)) is H)(X, . #)
by Lemma 2.3. Similarly, and using the fact that sZomg, (Oy (| f*(Kx + A — M)]),wy) =
Oy (Ky+[f*(M—Kx—A)]) since Y is normal, the Matlis dual of HYRI'RI(Y, Oy (| f*(Kx+
A—=M)]))is H(Y, Oy(Ky + [f*(M — Kx — A)])) by Lemma 2.3. Hence, applying Matlis
duality to (4.8.2), and noticing that Matlis duality turns colimits into limits, we obtain
(4.8.4)
HY(X, #)=HX,Ox(M)) < I'Lmimﬁvf “ @HO(K Oy(Ky + [[*(M — Kx — A)])).
% %

It follows that
(4.8.5)

lim imy> = im < lim H(Y, Oy (Ky + [f*(M — Kx — A)}))) — HYX, . #)

f:Y—X
finite

But since applying Matlis-duality to (4.8.1) yields
imy = im (H(Y, Oy (Ky + [f*(M — Kx — A)])) — H)(X, .#)),
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we know that

limimy = (1) im (H(Y, Oy (Ky + [f*(M = Kx = A)])) — H(X,.#)) = B (X, A; .4

f:Y—X
finite

Now (a) follows from (4.8.2) and (4.8.3), and (b) follows from (4.8.3) and (4.8.5). The
argument for BY (X, A;.#) is the same. O

Remark 4.9. The proof above uses that (R, m) is complete in an essential way since the Matlis
dAual of local cohomology modules supported at the maximal ideal m are finitely generated
R-modules (and not necessarily finitely generated over R).

Furthermore, without the complete hypothesis Lemma 4.8 (b) is false. Even in equal
characteristic p > 0, suppose (R, m) is as in [DM20, Corollary C] an excellent regular local
ring, X = Spec R, M =0, and A = 0. Then we have

@ Ws/R = @ Hompg(S, R) = HomR(lig S, R) = Homp(R*,R) =0

RCS RCS RCS
where R C S runs over finite extensions of R in R*. Hence the image in Lemma 4.8 (b)
is zero. On the other hand, each map wg/rp = Hompg(S, R) — R is surjective for any finite
extension R C S by the direct summand theorem in characteristic p > 0 [Hoc73].

We will also need completeness in the proof of our section-lifting result Theorem 7.2 (which
uses the vanishing of Section 3). For our geometric applications, this will not be a substantial
restriction as we can reduce to this case. Also see Remark 4.6.

Lemma 4.8 essentially asserts that the formation of images and inverse limits commutes
in certain situations. Such an assertion would be automatic if the relevant inverse limits
were exact functors. This is in fact true more generally, and we extrapolate the following
observation from the method of proof® of Lemma 4.8 above:

Lemma 4.10. Let R be a complete Noetherian local ring. Let {K;}icr be a projective sys-
tem of finitely generated R-modules with cofiltered indexing category I. Then Rl'&ni K; is
concentrated in degree 0. Consequently, the functor {M;} — 1&12 M; is exact on I-indexed
diagrams of finitely generated R-modules.

Proof. Let E be the injective hull of the residue field of R. Write (—)" := R Homg(—, F)
for the Matlis duality functor regarded as a functor on the derived category D(R), so (—)" :
D(R) — D(R) is t-exact (because E is an injective R-module), and we have a natural
isomorphism K ~ (KV)Y for K € D°,(R). Now take {K;} as in the lemma. We then have

coh

Rjim K, = Rjm((A,)") = R fim R Homg((K.) £) = R Hom(limg (). £)

As (—)Y is t-exact, each (K;)V lies in degree 0. But filtered colimits are exact, so h_n}Z(KZV )
also lies in degree 0. Finally, F is injective, so the last term above also lies in degree 0,
whence Rl'&ni K; lies in degree 0, as wanted in the first part.

The second part is formal given the first part. For instance, say {f;} : {M;} — {N;} is an
I-indexed diagram of surjections of finitely generated R-modules. To show @Z M; — @Z N;
is surjective, we simply use that Rl‘&li ker(f;) is concentrated in degree 0 by the first part,

8Specifically, the observation comes from extracting what is needed to ensure the surjective arrow in (4.8.4).
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and that Rl'&ni takes any short exact sequence of I-indexed diagrams of R-modules to an
exact triangle in D(R). O

Applying this lemma to I being the category of all finite covers (resp. alterations) and
the map of projective systems

{H(Y, Oy (Dy — {im (H°(Y, Oy (Dy)) — H°(X, Ox(.4)))

Niy—x Fy—x

with Dy = Ky + [f*(M — Kx — A)], appearing in Lemma 4.8 then gives an alternative
proof of the lemma.

Remark 4.11. The proofs of Lemma 4.10 and Corollary 4.13 below feature filtered colimits in
the derived category. Literally interpreted in the triangulated category setting, this does not
give a sensible object. For example, the formation of filtered colimits in the derived category
D(R) of a commutative ring R (when they exist) does not commute with taking cohomology
groups (even when everything is in a degree 0), making the former a rather obscure notion®.
Instead, to obtain the notion of filtered colimits for which passing to cohomology is exact, one
can work with oco-categories. Alternate approaches include dg-categories, or a 1-categorical
substitute such as the notion of homotopy colimits over suitable diagram categories, e.g., see
[Sta, Tag 0A5K] for colimits over the poset N). We will elide this issue in the sequel.

Remark 4.12. We explain why the completeness of R is essential to Lemma 4.10; we shall use
the theory of derived completions, see [Sta, Tags 091N, 0BKF,0BKH]. Suppose (R, m) is a
Noetherian local ring. Then R is m-adically complete exactly when it is derived m-complete
(since R is Noetherian and m is finitely generated), and the latter happens exactly when

R is derived f-complete for every f € m, ie., R! 1&11( RL R R) = 0 (noting that
RY lim always vanishes in this case by Krull’s intersection theorem). Therefore if (R, m) is

not m-adically complete, then there exists f € m such that R! @( RLRZL R) # 0,
ie., R@( -RLRL R) is not concentrated in degree 0 so Lemma 4.10 is false.

The next result relies on deep results on p-adic Riemann-Hilbert correspondence [BL] in
the form of [Bha20, Theorem 3.12].

Corollary 4.13 (Alterations vs finite covers). With notation as above, and assuming that
M — Kx — A is Q-Cartier, we have that

BO(X7 Aaﬂ) = Bglt(XvAW%)

9At the request of the referee, we give an example where colimits in the triangulated category D(R) work
poorly. Given a countable diagram M, — M; — My — ... in D(R), if the colimit M := h_ngl M;
in D(R) exists, then the map ®;M; — M must be a categorical epimorphism as Hompg)(M,—) —
[I; Hompgry(M;,—) is injective by the defining property of a colimit. But any epimorphism f : z — y
in a triangulated category splits: the canonical map g : y — cone(f) is 0 as go f is 0. So we learn that
@®;M; — M admits a right inverse. This is clearly not the case for colimits of interest, e.g., if we take R = Z
and M; = Z/p' with maps M; — M, determined by 1~ p, then the “correct” colimit is Q,/Z,, but the
map ®;Z/p' — Qp/Z, does not have a right inverse: the right side admits a nonzero map from Q,, while
the left side does not.
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Proof. We follow the notation of the statement and proof of Lemma 4.8, keeping in mind
Remark 4.11. It suffices to demonstrate that

lim  H'RILRI(Y, Oy (|f (Kx+A-M))) = lim  HRTRI(Y, Oy (| f*(Kx+A—M)))).
FiY—X fiY—X

finite alteration
Since p € m, we have RI'y(M) = RI'w(M) for all R-complexes M, where M denotes the
derived p-completion (see [Sta, Tag 091N] for definitions and details about derived comple-
tion). Since filtered colimits are exact (cf. [Sta, Tag 00DB]), it is thus enough to show that
the natural map identifies

H'RT, |l RI(Y, 0y ([f(Kx + A~ M)]) | = HRDy |l RI(Y, 6y (|f*(Kx + A~ M))))
f: %’—)X ! ; Y—X
nite alteration

At this point, we recall that derived p-complete complexes obey a derived Nakayama lemma,
i.e., in order to show a given map M — N of derived p-complete objects in D(Ab) is an
isomorphism, it is enough to show that M ®* Z/p — N &L Z/p is an isomorphism (cf. [Sta,
Tag 0G1U]). Therefore, it is enough to show that

lim  RO(Y, Oy (|f*(Ex+A-M)]))@"Z/p = lim RI(Y, Oy (|f*(Kx+A-M)|)®"Z/p
fY—=X fiY—X

finite alteration

via the natural map. As a corollary of the p-adic Riemann-Hilbert functor from [BL] (see
[Bha20, Theorem 3.12]), we know that

iy Rf.Oy®"Zjp= lim Rf.Ov@"Zp
f:Y—X f:Y—X

finite alteration

via the natural map. Because twisting by a divisor and applying RI'(X, —) commutes with
filtered colimits, we are done. O

In characteristic p > 0, the analogs of B typically stabilize, in other words we might
expect that there exists a finite cover or alteration such that the image of

H(Y, Oy (Ky + [f*(M — Kx — A)])) — H'(X, )

is exactly equal to BY. In characteristic p > 0, when one restricts the finite covers to
iterates of Frobenius, this is essentially Hartshorne-Speiser-Gabber-Lyubeznik stabilization
[HS77, Gab04, Lyu06], see for instance [HX15, Section 2.4] for a version of this in the
relative setting. If one instead considers arbitrary finite covers in characteristic p > 0,
certain stabilization results in the case where X — Spec R is an alteration can be found in
[BST15, ST14, CEMS18], these are then all consequences of the equational lemma [HH92,
HLO7, Bhal2].
However, in mixed characteristic such stabilization is not possible.

Example 4.14. Let £ — Spec(Z,) be an elliptic curve™

Z,. We claim that
(a) BO (E, wE/Zp) = 0, but

,80wp/z, = O and HY(E, wg/z,) ~

OThat is, E — Spec(Zy) is a proper smooth morphism whose geometric fibers are connected curves of
genus one together with a prescribed section.
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(b) im(Try : HO(Y, wy/z,) — H°(E,wg/z,)) # 0 for every alteration f:Y — E.

To prove (a), fix an integer n > 1 and consider the p™-power map [p"] : E — E. We claim
that the corresponding trace map Tryn : H(E,wpg/z,) — H°(E,wg/z,) is multiplication by
p"; this will imply that

B(E,wgyz,) C [ \p"H(E,wgyz,) = (0" Zp =0,

as wanted. By duality, the claim for Trp,. is equivalent to showing that the pullback map
[p"]* : HY(E,0g) — H'(E, OF) is given by p". But this is a general and standard fact
about multiplication maps on abelian schemes, as we briefly recall. The map [p"] : E — E

factors as B 2 BX7" X E, where p denotes the addition map and A is the diagonal, so we
have [p"]* = A* o u*. Now the Kiinneth formula gives HY(E*?", Opxpn) ~ HY(E, Og)®P",
with projection to the i-th summand (resp. inclusion of the i-th summand) on the right
given by the inclusion £ — E*P" in the i-th factor (resp. the projection E*P" — E to the
i-th factor). It is then immediate that u* : H(E, Og) — HY(E*?", Opw) ~ HY(E, Op)®""
is the diagonal map, so postcomposing with A* gives p”, as asserted.

To prove (b), it suffices to show that for every integral alteration f: Y — FE, the map
Try : HO(Y, wyyz,) — H°(E,wg/z,) is surjective after inverting p. Let n € Spec(Z,) be the
generic point. As f, : Y, — E, is an alteration of integral curves over Q,, it is in fact a finite
map. The claim now follows as E,, is a global splinter; explicitly, the map Try, = (Trs)[1/p]
is dual to the pullback map f; : H'(E,, Og,) — H'(Y,, Oy,), and the latter is injective
since the map on sheaves O, — f, .0y, is split injective, with splitting coming from the
normalized trace map on functions.

Remark 4.15. The phenomenon in Example 4.14 is not specific to elliptic curves and in fact
generalizes significantly. Indeed, for any mixed characteristic DVR V and a normal integral
proper flat V-scheme X of relative dimension d > 1 such that H(X,wx/y) # 0, we have
the following:

(a) BY(X,wxv) = 0.

(b) im(Try : H(Y, wyyv) — H°(X,wxv)) # 0 for every finite cover f: Y — X. (More
generally, the same holds true for every alteration if we additionally assume that X,
has rational singularities.)

The proof of (b) is identical to that of Example 4.14 (b). For (a), observe that the duality
R Homy (RI'(X, Ox),V) ~ RI'(X,wy,,) and the fact that RI'(X, Ox) € D=? imply that
H(X,wxv) ~ H (X, wy/y) is naturally identified with Homy (HY(X, Ox),V), and simi-
larly for all finite normal covers of X. Following the argument in the proof of Example 4.14
(a), it is enough to show that for each n > 1, there exists a finite normal cover f:Y — X
such that the pullback map f*: H4(X, Ox) — H?(Y, Oy) is divisible by p" as a map. This
follows from [Bha20, Theorem 3.12].

Working in equicharacteristic p > 0, we may form an analog of Example 4.14 by consid-
ering a family of elliptic curves over k[t]. However, such an example does not satisfy (b).
Indeed, the generic fiber of £ over k((t)) is not globally F-regular, and so there exists an

alteration which is zero on global sections.
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4.1. BY in the affine case. In the case where X = Spec(R), our definition produces a test
ideal which we denote by 7, (R, A) := B%(Spec(R), A; Ox) C Ox. We prove here that this
agrees with a special case of the big Cohen-Macaulay test ideal defined in [MS21], which we
first recall.

Definition 4.16. Suppose I' > 0 is a Q-Cartier divisor on X = Spec(R), where (R, m) is a
Noetherian complete local normal domain, such that div(f) = nI" for some f € R. We also
fix a canonical divisor Ky > 0 and a big Cohen-Macaulay R*-algebra B. Then define

,fl/n

Opya sy = ker(Hy(R) = Hy(B))

and the BCM-test submodule of (wg,I') with respect to B:

BT
0

Tp(wg,I') := Ann,,, Hi(R)"

Equivalently, Tg(wg, ') is the Matlis dual of the image of HS(R) AN H(B).

Now given A > 0 such that Kx + A is Q-Cartier we define the BCM-test ideal with respect
to B to be t5(R,A) := tp(wr, Kg + A). Via our embedding O0x C Ox(KRg), ts(R,A) is
contained in R. Note this definition requires that Ky + A is Q-Cartier.

In this article we are interested in the particular big Cohen-Macaulay algebra B = ]/%1, the
p-adic completion of the absolute integral closure of R, see Corollary 2.10. Since H4(R*) =
Hgl(]/%?r ), we can ignore the p-adic completion for the purposes of defining T5(X, A) and thus
in what follows we will write Tg+(R, A) for T+ (R, A).

Proposition 4.17. tz+(R,A) = 7. (R, A) := B°(Spec(R), A; Ox) if Kr + A is Q-Cartier.

Proof. Set X = Spec R and assume that Kx > 0. Define I' = Ky + A and write divx(f) =
nl' = n(Kx + A). By Lemma 4.8 (a), we see that BY(X, A; Ox) is the Matlis dual of the
image, where d = dim R, of

HA(Ox(Kx)) — lim Ha (O (L (Kx + A)))) = Ha(lim Oy (|f*(Kx + A)))).

where Y = Spec S i) Spec R = X is finite, in other words R C S C R" is a finite
extension. Because R — wp has cokernel wp/R of dimension < d, we see that Hé(w/R) =0
by [Sta, Tag 0DXC] which implies that H%(R) — HZ(wg) surjects. Hence their images in
Hi ( liﬂy Oy([f*(Kx+A)] )) are the same. By restricting to those S which are large enough

to contain f1/", we see that Oy (| f*(Kx +A)]) = ]ﬂ% - Oy . Finally, putting this all together,

Rt = lim 5" we see that B%(X, A; Ox) is Matlis dual to the image of

fl/n
H(R) *— HY(R).
But this image is Matlis dual to Tg+ (R, A). O

4.2. Transformation of B under alterations. In this section we record for later use a
number of transformation rules for B? as we pass from an alteration to the base X.
The first transformation rule allows us to do away with the divisor A by absorbing it into

M, at least on some cover.
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Lemma 4.18. With notation as in Definition 4.2. Suppose that w:Y — X, where Y s
normal, is either:

(a) a finite surjective map, or
(b)) M — Kx — A is Q-Cartier and 7 is an alteration.

In either case, assume that (M — Kx — A) has integer coefficients and consider the map
Tr: HYY, Oy (Ky + 7 (M — Kx — A))) — H (X, .#).
Then we have that
Tr (B(Y, Oy (Ky + (M — Kx — A)))) =BY(X, A, 4).
Proof. This is an immediate consequence of Lemma 4.8. U

We now record a transformation for a birational 7 : W — X.

Lemma 4.19. Let X be a normal integral scheme proper over Spec(R) as in Definition 4.2
and B > 0 a Q-divisor on X such that Kx + B is Q-Cartier. Let m: W — X be a proper
birational morphism from a normal integral scheme W and write Ky + By = 7*(Kx + B).
Let B" > 0 be an effective Q-divisor such that B' > By,. Then for every Cartier divisor L
on X, we have

BY(X, B; Ox(L)) 2 B(W, B; 6 (v L)).

Furthermore, if B' = Bw (in particular, this assumes that By is effective), then this con-
tatnment is an equality.

Proof. For every alteration f: Y — W we have the following diagram

HO(Y, 6y (Ky + [f*(7*L — (Kw + B'))])) —— H(W,7*L)

;s :

HO(Y, Oy (Ky + [(wo f)*(L — (Kx + B))])) —— H°(X, L).

Note that in the case that B’ = By, the left vertical containment is an equality. An
application of Corollary 4.13 completes the proof. O

In the proof of the existence of flips, we will need a technical variant of Lemma 4.19. We
record it here.

Lemma 4.20. Let X be a normal integral scheme proper over Spec(R) as in Definition 4.2
and B > 0 a Q-divisor on X such that Kx + B is Q-Cartier. Let m: Y — X be a proper
birational morphism from a normal integral scheme Y and write Ky + By = n*(Kx+B). Let
L be a Q-Cartier Q-divisor on X such that (X, B+ {—L}) is kit. Then H*(X, Ox([L])) =
HO(Y, Oy([7*L + Ay])) and

BY(X, B+ {-L}; 0x([L])) = B"(Y.{By — 7" L}; Oy([7"L + Ay])),

where Ay := —By = Ky — " (Kx + B). Here {A} = A — |A] is the fractional part of A.
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Proof. First, since (X, B + {—L}) is klt, implicitly {—L} is also Q-Cartier. Thus so is
[L] =L+ {—L}. Notice that

[W*L —|— Ay—l — (Ky —|— {By — W*L})
= [W*L+Ay—|—Ky—By+7T*L+|_By—7T*LJ
[W*L+Ay—|—Ky—By+W*L—[W*L+Ay—|
= (L - Kx —B)
= 7([L] — (Kx + B+ {-L})).

Therefore, for every sufficiently large alteration f: W — Y we have the following diagram

HO(VV, KW—Q—f*([?T*L—i-Ay] — (Ky + {By —W*L}))) E— HO(Y, ﬁy((ﬂ'*L—i—Ay—l))

! -

HO(W, Ky + (o f)*([L] — (Kx + B+ {~L}))) ——— H*(X, 0x([L])).

The equality of the left vertical arrow follows from our chain of equalities above. However,
we need to justify the equality, and in fact existence, of the right vertical arrow labeled s
(this is where we use that (X, B + {—L}) is klt).

Now, since (X, B 4+ {—L}) is klt, the components of —B —{—L} = —B+ L+ |—L]| =
L — B — [L] have coefficients < 0 and > —1. Thus [L — B] = [L] and so since 7, of a
divisor simply removes exceptional components, we have that:

T[T L+ Ay | = m]n"L — By | = [L — B] = [L].

This at least implies that the map k exists.
Next, again because (X, B+{—L}) isklt, [Ay —7*{—L}] = [Ky —7*(Kx+ B+ {—L})]
is effective and exceptional over X. Therefore:

[[7*L + Ay] — 7*[L]] > [7*L + Ay — 7*[L]] = [Ay — 7" {~L}] >0,

Hence the map & is an isomorphism (Lemma 2.36) and the diagram exists as claimed. Once
we have the diagram in place, the result follows immediately by Corollary 4.13. U

4.3. Adjoint analogs. The subspace B? of H" provides a global analog of the test ideal in
positive characteristic and the multiplier ideal in mixed characteristic. In fact, we will see
it frequently as a graded piece of the R*-test ideal for a cone. Therefore, the subspace B,
in contrast to S° of [Sch14] (a global analog of a non-F-pure ideal / lc ideal), cannot satisfy
the sharpest possible adjunction to a divisor. To address this problem we will create an
adjoint-ideal version of B?, to which we can lift sections. With notation as in Definition 4.2
assume that A = S + B where S is a reduced divisor whose components do not appear in
B.

For each irreducible component S; of S (i = 1,...,t), choose an integral subscheme S;
of Xt which lies over S. Notice that this S;" is indeed an absolute integral closure of S so
this is not an abuse of notation. Equivalently this means that for every normal finite cover
Y — X we pick a compatible choice of prime divisor S; y lying above .S;. In that case, we
set Sy to be the sum of the S;y. We define:

St ::HSZF.



There is an affine map f : ST — X7 but it is not in general a closed immersion unless
t = 1. Indeed, we notice that when S has multiple irreducible components, the map Ox+ —
[Os+ = @!_,Og+ is not surjective (the isomorphism follows since ST is a disjoint union).
From here on ou€, we abuse notation slightly and omit the f, on Os+. Notice that Ox+ —
7 S is surjective for each 1.

We will define the adjoint-ideal version of BY as the R-Matlis dual of the image of

t
H'RIWRI(X, Ox(Kx — M)) — H'RIWRO(X T, @D Ox+ (=S + 7" (Kx + S+ B — M))).

1=1

The origin of this map is carefully described below. This dual is also identified with the
intersection

BY(X, S+B;.#) = (] Image (HO (Y, P ov(Ky+Siv+ f*(M—KX—S—B))) — HO(X, //))
Y

i=1

see Lemma 4.24.
Consider the short exact sequence (a direct sum of short exact sequences):

0 —— @i, Ox+(=5) — Bisy Ox+ — Dy Ogr —0

|
O+

where Ox+(—S;") is the colimit of the &y (—Sy,). We notice that there is a map of short
exact sequences where the bottom vertical maps correspond to the diagonals:

00— Ox(=9) Ox Os 0
0 ——— Oy (=5y) Oy Osy 0

l | |

00— @5:1 Ox+(=5) — @221 Ox+ —— Og+ = @5:1 ﬁsj — 0.

Assume that f': Y’ — X is such that f*(Kx + S + B) is integral. Twisting the top row
by Kx + S — M and the second and third by f*(Kx + S+ B — M) (and using that B is
effective for the second map), we obtain a factorization

Ox(Kx — M) = Oy/(=Sy + f*(Kx + 5 — M))
Oy(—Sy' + f*(Kx + S + B — M))

B!, Oyi(~Siy: + [*(Kx + S+ B — M))
liﬂy @2:1 ﬁY(_Si,Y + f*(KX +S+ B — M))
DL, Ox+(=8; + 7" (Kx + S+ B — M)).

(4.20.1)

bl
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Definition 4.21. With notation as above, and in particular fixing S* = [[/_, S;” — X,
define B%(X, S + B; ) to be the R-Matlis dual of the image of

t
HRIWRI(X, Ox(Kx —M)) — lim H'REGRO(Y, @D Oy (—Siy + [*(Kx + 5+ B = M)))
Y

i=1

(. J/

HIRTwRI(X+ @, Oyy (=S +7*(Kx+S+B—M)))

where d = dim X and Y runs over finite maps with Y normal and f*(Kx 4+ S + B) has
integer coefficients. Notice that BY(X,S + B;.#) C H°(X,.#) since its Matlis dual is a
quotient of HIRI'wRI'(X, Ox(Kx — M)), see Lemma 2.3.

Similarly, we define BY (X, S 4 B;.#) to be the R-Matlis dual of the image of

t

H'RT.RI(X, Ox(Kx —M)) — lim HRTWRI(Y, P Oy (—Syi+ | /*(Kx + 5+ B—M))))
Y i=1

where Y runs over all normal alterations and we define Sy; to be the strict transform

of the corresponding divisors on the Stein factorization. We may restrict to those where
[*(Kx + S + B) is Cartier if desired.

A priori, these definitions depend on the choice of S* = [['_, S;7 — X*. Thus, our first
order of business is to show that this choice does not matter. We begin with the case that
S is integral.

Lemma 4.22. Suppose S is integral. The objects B&(X, A; ) and BY (X, A; A) are
independent of the choice of ST C XT.

Proof. We prove only the case of B%(X, A;.#) as the alteration case is very similar. For
any two choices ST and S"" mapping to X, pick an element o of Gal(X*/X) which sends
ST to S't. Then one obtains the trace maps in the tower computing B2, by precomposing
those computing B% by the isomorphism o. Therefore the images are pairwise equal and the
intersections are the same. 0

The following lemma allows us to assume that S is integral in some cases, and finishes the
proof that BY is independent of S* — X .

Lemma 4.23. With notation as above,

t
BY(X, S+ B;.#) => B (X, S+ B;.A).
i=1
Likewise with BY (X, S + B;.#) when Kx + S + B is Q-Cartier. As a consequence,
BYU(X, S+ B; #) and BY (X, S+ B; #) are independent of the choice ST =1[;_, S} —
XT.

Proof. The first statement is a direct application of Matlis duality. Indeed suppose that
A—» B < @221 C; is a surjective map followed by a injective map of R-modules. The
Matlis dual BY is then the sum of the images of of the CY — AY. The alteration statement
is proven in the same way. The statement about independence of choice now follows from
Lemma 4.22 as each S; is integral. U

Our next goal is to study several alternate characterizations of BY.
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Lemma 4.24. With notation as above, then
t
BY(X, S+B;.#) = |Image (HO (Y, P oy (Ky+Siv+ f*(M—KX—S—B))> — H(X, ///>>
Y =1

where d = dim X and Y runs over finite maps where f*(Kx + S + B) is a Weil divisor.
Likewise with BY . (with alterations instead of finite maps). Furthermore, the elements in
those sets correspond to compatible systems of elements

t
Sy € HO(K@ﬁY(KY +Siy + (M —Kx -85 — B)))
i=1

as i Lemma 4.8.

Proof. The statement about compatible systems and Matlis duality follows exactly as in
Lemma 4.8. L]

Lemma 4.25. With notation as above, and assuming that Kx + S + B is Q-Cartier, then
BL(X, S + Bi.dl) = BY (X, S+ B;.A0).

Proof. By Lemma 4.23, we may assume that S is integral. For each alteration f:Y — X
we have an exact sequence

0— ﬁy(—Sy) — Oy — ﬁSy — 0.

Notice that Sy — S is an alteration as well.
For the equality of BY with B, by the same argument as in Corollary 4.13, it is enough
to show the following;:
ﬁx+(—5+) ®L Z/p = llg”l Rf*ﬁy(—Sy) ®L Z/p
f:Y—X

alteration

Now, we have an exact triangle
Rf.Oy(—Sy) @F Z/p — Rf.Oy @ Z/p — Rf.Os, @ Z/p T .
By taking filtered colimits and applying the isomorphism:

liﬂ Rf*ﬁw/p = ﬁz+/p>
[ W—Z

alteration

implied by [Bha20, Theorem 3.12] (which in turn relies on [BL]) as in Corollary 4.13, to both
Z =X and Z = S, gives an exact triangle

lim  Rf.Oy(=Sy) ®" Z/p — O+ @ Lfp — Os: " Z/p 5,
f:Y—X

alteration

so the desired quasi-isomorphism follows. O
We now compare BY with BP.
Lemma 4.26. With notation as in Definition 4.21, we have that
BY(X,S+ B;.#) C B (X,aS + B; . #)

for every 0 < a < 1.
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Proof. By Lemma 4.23, we may assume that S is integral. Fix such an 0 < a < 1. For
sufficiently large finite covers f : Y — X with f*(Kx + S + B) Cartier and f*(aS + B)
having integer coefficients, observe that

f*(aS+ B) < f(S+ B) — Sy.
Therefore, by (4.20.1) the map
H'RIWRI(X, Ox(Kx — M)) — H'RI'WRI(Y, Oy (—Sy + f*(Kx + S+ B — M)))

factors through HART,RI(Y, Oy (f*(Kx + aS + B — M))). The result follows by Matlis
duality:. n

Next we point out that B behaves well with respect to birational maps, in analogy with
Lemma 4.19.

Lemma 4.27. Let X be a normal integral scheme, proper over Spec(R) as in Definition 4.2,
S a reduced divisor and B > 0 a Q-divisor on X with no common components with S, such
that Kx + S + B is Q-Cartier. Let m: W — X be a proper birational morphism from a
normal integral scheme W and write Ky + Sw + Bw = 7*(Kx + S + B) where Sy is the
strict transform of S. Let B' > 0 be an effective Q-divisor such that B' > By,. Then for
every Cartier divisor L on X, we have

BY(X,S + B; Ox(L)) 2 B (W, S+ B'; Ow(r*L)).

Furthermore, if B' = Bw (in particular, this assumes that By is effective), then this con-
tatnment is an equality.

Proof. The proof is analogous to that of Lemma 4.19. For every alteration f: Y — W with
S;y as above, we have the following diagram

HOY, @, Ov(Ky + Suy + [[*(*L — (Kw + Sw + B))]) —— H(W,x"L)

HO(Y, @i, Ov(Ky + Sy + [(mo f)*(L — (Kx + S+ B))])) —— H(X,L).

Note that in the case that B’ = By, the left vertical containment is an equality. An
application of Lemma 4.24 and Lemma 4.25 completes the proof. O

4.3.1. Comparison with alternate versions. In the first arXiv version of this article, we did
not take a direct sum of 0% (—S;"). Instead, we primarily worked by forming an exact
triangle:

t
Py — Oy = P Os,,
i=1
for each finite cover Y — X. We then used lim 2y instead of @!_, Ox+(—S;7). Of course,
when S has only one component, these two definitions agree.

In general case, this had several disadvantages compared to our current approach. First,
it was not clear whether BY was independent of the choice of S* when S was not integral.
Furthermore, we ended up working with a complex instead of a sheaf in all essential proofs.
In particular, the lemma that said we could work with a sheaf (Lemma 4.25 of that first

arXiv version) was incorrect, although it was not used in a crucial way. We notice the object
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BY defined in this paper is always at least contained in the one from the first arXiv version,
essentially since the map to @le O'x+ factors through the diagonal map Ox+ — @221 Ox+
(see Lemma 4.28).

Back to the first arXiv version of this article, when working with alterations to define
BY .. we could restrict ourselves to alterations f : ¥ — X that separated the individual
components of S. This also yields a satisfactory theory although it is still not clear whether
it depends on the choice of ST.

However, when M — (Kx + S + B) is big and semiample, it turns out that the two
approaches coincide (a fact we will not use).

Lemma 4.28. With notation as above, assume additionally that M — (Kx + S + B) is big
and semiample. Then

BY(X,S+B, . #) = ﬂlmage (HO(Y, Oy(Ky+Sy+[*(M—Kx—S-B))) — H(X, ///))
Y

where f:Y — X runs over alterations such that f*(Kx + S + B) is a Cartier divisor.

Proof. The containment C follows from the dual of the diagonal maps Oy (—Sy) — @._, Oy (—Siy)
so we prove the reverse.

Fix 7 : W — X a birational map that separates the components of S. We have the
commutative diagram where the vertical maps are induced by the diagonal:

0— ﬁw+(—Sw+) ﬁw+ ﬁSW+ — 0

| | |-

0 @::1 ﬁW+(_Si,W+) —_— @::1 ﬁW‘F — @::1 ﬁSi,W+ —_— O

Note that the right vertical map is an isomorphism and the middle vertical map is split
injective (simply project onto one of the coordinates). We cannot say something similar
about the left vertical arrow however. Twisting by the pullback Z* to W of the line

bundle Oy (f*(M — (Kx + S + B))) (for some finite cover f : Y — W), and taking local
cohomology, we obtain:

0 —— H'RIWRI(Os ,, ® £L7) ——— H'RIWwRI (O (—Spy+) © L) ——— H'RI'wRI(L7)

0 —— H'RIWRI(Os ,, ® L) —— HRIWRI(P;_, O+ (—S;w+) ® L") — H'RI[RI(P,_, L)

The left zeros are due to Corollary 3.7 and the fact that £+ is the pullback of a big and
semiample line bundle. The five lemma then shows that the middle arrow is injective.
Dualizing and applying Lemma 4.25 implies the containment O as desired. U

4.4. +-stable sections and completion. The importance of working over a complete base
has been highlighted in the presentation above. The goal of this subsection is to show that,
when working over a non-complete excellent local base, the base change to the completion
can still reasonably be used to define B? and BY.. However, if one wishes to work without
base changing to the completion, there are a number of (potentially non-equivalent) analogs

of B? and BY, that one might consider; see also [DT21].
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Proposition 4.29. Consider

o (R,m,k) is a normal local excellent domain with a dualizing complex and with char-
acteristic p > 0 residue field,
o X is a normal, integral scheme proper over R with H*(X,0) = R,
o A >0 is a Q-divisor on X, and
o M is a Z-divisor and M = Ox(M).
and for any flat R-algebra S denote by (__)s the corresponding base change to S. We have
that

BY(Xp, Ag; Mp) =

N im (HO(Y, Oy (Ky + [f*(M — Kx — A)]) ®r B — HX, #) @n ﬁ)
A e

where the intersection is taken as R-submodules of HY (X, #)®p R, and runs over finite cov-
ers f 1Y — X as in Convention 4.1, and where Y is normal. Equivalently, this intersection
1s the Matlis dual of

im (HdRFmRF(X, Ox(Kx—M)) — lim  HRIWRI(Y, Oy (| f* (Kx+A—M) J))).

f:Y—X
finite

If additionally M — Kx — A is Q-Cartier, we also have
BY(Xp, Ap; p) =

M im (HY, O (K + [/ (M = Kx = A)]) @ R — H(X,.#) 25 R)
f:Y—X

alteration

where the intersection is taken as R-submodules of HY(X,.#) ®x R, and runs over all
alterations f : Y — X as in Convention 4.1 and where Y is normal. In other words, when
computing BO(Xp, Ap; M), it suffices to consider only the completions of the finite covers
(respectively, alterations) of X.

Proof. We prove only the statement for finite covers, as the alteration version follows in a
similar fashion. For any coherent sheaf . on X, applying Lemma 2.3 to .% ®pr R gives that

(H'RTWRI(X,.7))" = Homg, (F @r R, wx,)

where d = dim X and (—)" denotes Matlis duality Homg(—, Er(k)). Arguing as in the proof
of Lemma 4.8, we see that

N im (HO(Y, Oy (Ky + [f*(M — Kx — A)])) @ R — H(X, #) @ 1%)

f:Y—X
finite

is Matlis dual to the image of

H'RIwRI(X, Ox(Kx — M)) —— lim H'ROLRI(Y, Ov(Lf*(Kx + A= M)]).

f:Y—X
finite
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On the other hand, we have that B®(X 5, Ag; #3) is Matlis dual to the image of

HRIWRI(X, Ox(Kx — M) = lig  H'RIWRI(Z, 04(g"(Kx, + Az — Mp))).
9: Z—Xp
finite

To show the desired equality, it suffices to verify that the kernels of o and S coincide. Since
a finite cover of X completes to one for X5, we need only check that the kernel of 3 is
contained in the kernel of a.
We shall do this in three steps. An element 7 of the kernel of 3 is necessarily in the kernel
of
H'RIWRI(X, Ox(Kx — M)) — H'RIWRI(Z, O4(lg*(Kx,, + Ap — Mg)])

for some finite g: Z — Xpz. We first pass from the completion R down to the henselization
R", showing that there is some finite f': Y’ — Xpn with 1 in the kernel of

H'RI RI(X, Ox(Kx — M)) — H'RTLRI(Y', Oy/(|f*(Kx + A — M)]).

Second, we pass from R" down to a certain pointed etale extension S; of R, showing that
there is a finite f/: Y/ — Xg, so that 7 is in the kernel of

H'RIWRI(X, Ox(Kx — M)) — H'RIWRI(Y,, Oy (Lf(Kxg, + As, — Mg,)]).

(2

Finally, in the third and last step, we find a normal and finite f: Y — X so that
HRILRI(X, Ox(Kx — M)) — HRI RI(Y, Oy (| f*(Kx + A — M)])
verifying that 7 is in the kernel of a.

Step 1: Passing from R down to R". An element 71 of the kernel of f is necessarily in the
kernel of

H'RIWRI(X, Ox(Kx — M)) — H'RIWRI(Z, O4(lg"(Kx,, + Ap — Mp)])

for some finite g: Z — X5. Consider first the henselization R" of R. By Popescu’s Theorem
[Sta, Tag 07GC] applied to the regular morphism R" — ﬁ, we have that R = thi is the
filtered colimit of smooth R"-algebras R;. We can descend Z to a finite level, so say without
loss of generality that there is a finite cover go: Zy — Xpg, that completes to g: Z — Xp.
Base change to R; for all + > 0 gives a finite cover g;: Z; — Xpg, so that Z = @ZZ As

HIRTRI(Z, 64(1g* (Kx, + Ap — Mg)))
= hﬂl HdRFmRF(Ziv ﬁZi(Lg;(KXRi + ARi - MRZ)J)

we must have that n is in fact in the kernel of

H'RIWRI(X, Ox(Kx — M)) — H'RUWRI(Z;, Og,(1f; (Kx,, + Ar, — Mg,)])

for some i. Now, R" — R; is a smooth map, and using R; — R — k we have a surjection
R; — k = R"/mR". By [Sta, Tag 07TM7], there is an étale R"-algebra R; and R"-algebra
homomorphism R; — R; so that the surjection R; — k = R" / mR" factors as R; — R; —
k = R"/mR". In particular, R; — k = R"/mR" is surjective, so there is a prime q of R;
lying over mR" with residue field k. By [Sta, Tag 04GG] as R" is henselian, R" — R; has a

section, and so also (pre-composing that section with R; — R;) R" — R; must have a section
52



R; — R". Base change along this section yields a finite cover f': V' = Z; ®@p, R" — Xpn s0
that n is in the kernel of

H'RI'wRI(X, Ox(Kx — M)) — H'RTZRI (Y, Oy (| f*(Kx + A — M)]).

Step 2: Passing from R" down to a pointed étale extension. Now, R" = lim S; is the directed
colimit of pointed étale extensions S; of R, which in turn are localizations of finite extensions
of R with R C S; C R" C R. Once again, the finite cover f’: Y’ — Xzr must descend to a
finite level, so say without loss of generality that there is a finite cover f{: Yy — Xg, that
henselizes to f’. Base change to S; for all i« > 0 gives a finite cover f/: Y/ — Xg, for all
1> 0so that Y/ = @13/;’ As

HIRTRU(Y’, Oy (|Lf*(Kx,, + Mg — Mpn)))
= lim H'RUWRU(Y/, Oy (Lf* (Kxg, + As; — Ms,)])

we must have that 7 is in fact in the kernel of
(4.29.1) H'RIWRI(X, Ox(Kx — M)) — H'RTWRI(Y/, Oy (| f*(Kxs, + As, — Mg,)])
for some 1.

Step 3: Passing from the pointed étale extension down to R. Let S be the integral closure of
R in the fraction field of S;, so that S is a finite extension of R and S; is the localization of
S at one of the (finitely many) maximal ideals m; lying over m in R. Take L to be normal
closure of the function field of Y/ inside the fixed geometric generic point of X, with G the
corresponding group of automorphisms of L over the function field of X. The fixed field LY
is then such that LY C L is a Galois extension with Galois group G, and L¢ is a purely
inseparable extension of the function field of X. Set f: Y — X to be the normalization of
X inside of L. We have that T = H°(Y, Oy) is a finite normal extension of S, and hence
also of R. The group G acts on Y and hence also on T, and the invariant ring 7¢ C LY
is a finite and purely inseparable extension of R. Letting ng,...,n, denote the (finitely
many) maximal ideals of 7" lying over m, we have that G acts transitively on the n;’s [Sta,
Tag 0BRK]. Without loss of generality, we may assume that ny N S = m;.

We have that Y is normal and finite over X, and we will argue that 7 is in the kernel of

(4.29.2) H'RIWRI'(X, Ox(Kx — M)) — H'RI RI(Y, Oy (| f*(Kx + A — M)]).
To do so, it suffices to show that n is in the kernel of
(4.29.3)  H'RIWRI(X, Ox(Kx — M)) — H'RDwRI(Yy), Oy, (Lf*(Kx +A = M)]).

for j =0,...,¢, where Y, = Y ®7T,,. Moreover, using the transitive action of G' on the set
of the n;’s, it suffices to show that 7 is in the kernel of (4.29.3) for j = 0. By construction,
we have a factorization

fo: Yoo = V! 5 Xy 5 X

so that (4.29.3) factors through (4.29.1). Thus, we conclude 7 is in the kernel (4.29.2) and

hence too of a as desired, completing the proof. O
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Remark 4.30. With X as in Proposition 4.29, suppose we can write A = S + B where
S = Zle S; is reduced and B has no common components with S. Fixing S;" in X+ as in
Section 4.3, it would be natural to hope that

(4.30.1)

N i (@ HO(Y, O (Ky + Siy + [f/(M — Kx — A))) @ R — H(X, .4) fz)

frY—X i=1
finite

or equivalently the Matlis dual of

i=1

t
im (HdRFmRF(X, Ox(Kx — M)) — H'RTWRI(X T @D Ox+ (- + 7" (Kx + A - M))))

agrees with B%(X 7595 + Bp; #M3). However, we do not see how to prove that — even when
S is irreducible (which may not be preserved under completion). The problem is we do
not seem to have fine enough control over the Galois actions to mimic the end of the proof
of Proposition 4.29 (the reduction to the Henselian case) since we have to simultaneously
control S; y and maximal ideals lying over m C R. In other words, and in the notation used at
the end of the proof of Proposition 4.29, one must be able to use the Galois action to permute
the ideals n; independently of the S;y. Regardless however, we do define B%(X .S+ B;, )
to be the R-Matlis dual of the displayed image above.

We finally explain what happens when H°(X, O) is only semi-local.

Remark 4.31. With notation as in Proposition 4.29, instead assume that H°(X, Ox) =: T
is semi-local with a finite map R — 7T'. For each maximal ideal n; of 1" let T; = T}, denote
the localization and set X; = X7, = X Xgpeer SpecT;. Then H(X;, O,) = T; and since
T ®r R = D, T;, we obtain that Xz = 11Xz Now by Proposition 4.29

BO(Xﬁ,Aﬁ;//lﬁ) =

m im (HO(Y;W ﬁYz(KYz + [f*(M - KXi - A)—I)) ®Ti i — HO(Xia//Ti) ®Ti T)

f:Y,—X;
finite

where the finite covers f : Y; — X, are as in Convention 4.1 and each Y; is normal. Each
finite cover Y; — X; is the localization of a finite cover Y — X. Therefore, we have that
BO(X}Q, Aﬁ; e//ﬁ) = 692 BO(Xﬁ_, Aﬁ-; %ﬁ) =

M im (HY, Oy (Ky + [[*(M = Kx = A)Y)) @r R — H(X, .#) @r R)

f:Y—X
finite

where the intersection runs over finite covers f : ¥ — X as in Convention 4.1, and where
Y is normal.

5. SECTION RINGS AND +-STABLE SECTIONS

The goal of this section to relate B? with the test ideal of the section ring S (the affine

cone). As a consequence, we will deduce that H° = B at least when working with sufficiently
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ample divisors on non-singular schemes since we know that the test ideal agrees with S on
the nonsingular locus by [MST*22].

To avoid dealing with technical issues, we make some simplifying assumptions. In par-
ticular, we assume that A = 0 and we work with .# = wy ® £ as in Remark 4.5. By
Lemma 4.18, one may frequently reduce to this case.

Setting 5.1. With notation as in Section 2, suppose that 7 : X — Spec(R) is a projective
morphism where X is a normal integral d-dimensional scheme and R is a complete Noetherian
local domain of mixed characteristic (0,p). Choose .Z an ample line bundle. Write

S=R(X,2):=PH(X, L.
i>0
It is important to note that S is normal, see [Har77, Chapter III, Exercise 5.14]. We notice
that R’ := H°(X, Ox) is a finite R-algebra which is integral and normal (as X is so), so R’
is itself a complete Noetherian local domain.

By [Bha20], once we fix an absolute integral closure X+t — X we have graded algebras
Ster C STGR defined as follows. First, set

Ste= lim R(Y, [ Z) = @ H(XT, £
f:Y—X 1€Z>0
where the colimit runs over all finite normal covers of X dominated by X*. Likewise after

fixing a compatible system of roots {.Z'/"},>; of . pulled back to X* (such systems exist
and are unique up to isomorphism, see [Bha20, Lemma 6.6]), we can define

S—I—,GR — @ HO(X+,$i),
1€Q>0
Notice that ST&" is a ST#-module direct summand of SR, In [Bha20, Section 6], it is
proved that S*# /p and S™SR/p are big Cohen-Macaulay over S/p under the set up that
X is projective over R which is finite type and flat over a henselian DVR. Here we need a
version when R is a Noetherian complete local domain and we deduce it from [Bha20)].
Theorem 5.2. With notation as in Setting 5.1, we have H§;+S>O(S+’gr) =0 forallj <d+1.

Therefore, S+e s q balanced big Cohen-Macaulay algebra over §, where the completion is
at the ideal m + S<o. Here S~ denotes the irrelevant ideal, i.e., the ideal generated by all
homogeneous elements in S of degree > 0.

Proof. We have an exact triangle RI'g_,(S18) — ST — @,c,RI'(X T, Z") coming from
[Sta, Tag 0G71] and using the fact that @;czRI(XT, £") = RI'(Spec S \ V(S=0), S*e);

which can be seen from a computation of Cech cohomology (cf. [Eis95, Theorem A.4.1]).
After derived tensoring with Z/p we have

RIs (ST /p) — ST /p — @iz R (XL,
Claim 5.3. ST /p = @,z RI(X_,, .2").

p=0>

2.

Proof. This is essentially [Bha20, Proposition 6.12]. We briefly recall the argument. Using

our chosen compatible system {.Z'/"} of roots of .2 over X+, for each n we have a proper

birational map T, := Specy+ (Bicz., L) — Spec(Biez, H(XT, L)), where the latter
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is considered as an affine scheme over R, see [Bha20, Notation 6.7]. By compatibility we
have a system of maps indexed by divisible n with affine transition maps thus we can take
limit: f: T, — Spec(STCER), which is pro-proper. Note that f is an isomorphism outside
Spec(RT) C Spec(SHER), and when pulled back along Spec(R*) C Spec(STCR), it gives ¢:
X+ — Spec(R"). Since X and R" are absolute integrally closed, Rg.F, x+ = F,, spec(r+)
by [Bha20, Proposition 3.10] and so Rf.Fy 1, = F gpec(s+.cr). Now the p-adic completion of
T, and ST9R are perfectoid by [Bha20, Lemma 6.10 and 6.11] (these results do not require
we are working over an absolute integrally closed DVR). Therefore we have

ST p = RHE(F, specs+om) = RHZ(RAF, 1) = RARHE(F, 1)
=Rf.Or,/p=RI(X", 0r,)/p = @icg. RI(X,, 7).

p:O?

Here RHy denotes the p-adic Riemann-Hilbert functor of Bhatt-Lurie [BL] (see [Bha20,
Section 3]), the two equalities above follow from [Bha20, Theorem 3.4 (1)] as the p-adic
completion of T,, and STS® are perfectoid, and the last isomorphism on the first line follows
from [Bha20, Theorem 3.4 (2)] and taking colimit (each T,, — Spec(®jecz., H'(X+, . £n)) is

proper). Now passing to the summand, we get S™# /p = @,z RIT(X,_, £7) as desired. [

By Claim 5.3 we have
RDg.,(ST#/p) = @i RT(X,_y, £7)[-1].

p=0>
Applying RI',(—) and taking cohomology, we thus have
H'RI.RTg,(ST8/p) & @;coH'RILRI(X L, £7).

p:O?

Since .Z is ample, by Proposition 3.1, H/ 'R RI'(X,, Z") = 0 for all j < d. Thus

p=0>

HIRTWRIs. (ST /p) = H) s (ST /p) =0 for all j < d. But note that we have

cee— Hi;g>0(5+’gr/p) — H§;+S>O(S+’gr) 2 H‘f‘+5>0(5+’gr) — Hi+5>0(5+’gr/p) —

Since H7, 5., (ST#) is p*-torsion, multiplication by p is not injective on IZE 5., (978 unless

it vanishes. Thus it follows from the long exact sequence above that H7, 15, (5T8) =0 for
all j < d+ 1. 0

We recall, as explained in [HS03, 2.6.2], that the graded canonical module wg is the graded
dual of H'RI',RT's. S and that in degree i > 0, [wg]; = H(X, wx ®.Z"). Other potential
definitions of the graded canonical have a different shift but we use this choice.

As in [MS21], we define Tg+.er(ws) C wg to be the graded Matlis dual of

Image( H*'"RTwRIs., S — H™'RT,RIs "),

Note that ST& and SR are not complete (or perfectoid) but since we are taking local
cohomology we can ignore this detail. Notice that we can also define Tg+.ar(wg) analogously,
but since ST& — SHGR gplits, this provides no new information.

Definition 5.4. With notation as in Setting 5.1, we define for ¢ > 0
B(g]r(X, wx & gz) = [TS+,gr(w5)]i Q [wg]i = HO(X, wx @ gz)

Proposition 5.5. In the above situation, By (X,wx ® £*) = B*(X,wx ® Z*) for all i > 0.
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Proof. By graded local duality, we have
B).(X,wx ® .Z") = im(H"'RIWRIs. (S) — H™'RILRDs,,(S7#))],

7

where (—)V is Matlis duality over R.
Note that we have a commutative diagram of exact triangles:

RIs.,(S) S @iz RT(X, 21—

] |

Rl (ST5) — Ste — @, ,RI(X T, 271 — 1
Applying RI',, and taking cohomology, we have
[HIRT (9)]_; —— HRILRI(X, £ —— [HH'RI R s, (S)] s —— 0

| l |

[HIRDw(S+#)]_; — H'RTLRI(X, 27) — [H*'ROLRs, (SH#)]_; —— 0

Note that, [H'RI'w(S)]-; = [H'RIn(ST#)]_; = 0 when i > 0: this is because m C R lives
in degree 0 so [HRIy(S)]_; = HIRIL([S]_;) = 0 and similarly for ST&". Therefore the
diagram shows that

[im(H"'RIWRTs,(S) — H™'RILRIs,, (STE))]
= im(HRIRI(X, Z7") — HRIL,RI'(XT, Z79)

Taking Matlis dual over R and using (a) in Lemma 4.8, we see that BY (X, wy ® 2*) =
B(X,wyxy ® Z%) for all i > 0 as desired. O

In what follows, we will be studying H°(X, wy @ Z") for N sufficiently large when X has
sufficiently mild singularities. For our purposes, sufficiently mild means the following.

Definition 5.6. We say that a Noetherian ring R has finite summand singularities if there
exists a finite extension R C S such that S is regular and the map splits as a map of
R-modules.

We note that by [CRMP"21], 2-dimensional klt singularities of residual characteristic
p > 5 are finite summand singularities. For an excellent ring, the locus of finite summand
singularities is readily verified to be open. We also note that if a Noetherian ring R has finite
summand singularities, then any finite extension R < S splits as a map of R-modules as a
consequence of the direct summand theorem [And18]. In particular, using the notation from
the next section Definition 6.1, we see that Spec R is globally +-regular (that is R C S splits
for every finite extension, in other words R is a splinter). Note in equal characteristic p > 0,
being globally +-regular is quite closely related to F-regularity (and they are conjectured
to be equivalent), an analog of klt singularities. Not all rings R that are globally +-regular
have finite summand singularities however, even in equal characteristic p > 0.

In [MST*22, Theorem 4.1] it was shown that if (R, A) has simple normal crossings at @
with [Ag| =0, then 15(R, A)g = Rg. We will use this below, which will later help us study
HOX, wxy @ ZN).
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In the next theorem we assume that X has finite summand singularities, which implies
that S has finite summand singularities (and so globally +-regular singularities) away from
the irrelevant ideal Ss. It is natural to try to compute the some (local) +-test ideal on S to
measure this. However, we don’t know that such ideals commute with localization. On the
other hand, the ideal im(* Homg (S8, S) — ), which can be viewed as a sort of test ideal,
can be thought of as a measure of the obstruction to the global +-regularity of S (again, its
formation does not obviously commute with localization since S8 is note finitely presented
over S). Regardless of these difficulties, we are able to that that image ideal contains Ss,,
for some m > 0.

In what follows, we use graded Hom and graded injective hulls, denoted * Hom and *F
respectively, see [BH93, Chapter 3, Section 6].

Theorem 5.7. Suppose that X, £, R and S are as in Setting 5.1. Let mg = m-S + S5g
denote the homogeneous maximal ideal of S. Suppose X has finite summand singularities.
Then for m >0, Ss,, annihilates the kernel of

*ES — *ES X S—l—,gr
where *Eg = H™ Ry, (ws) is the graded injective hull of the residue field of S. Dually,
Sem C im(* Homg(S™#" S) — S).

Proof. Begin by choosing a finite affine cover {U;} of X, such that for each such U; there
exists a finite surjective map f; : V; — U; where V; is regular and such that &y, — (f;).0

splits. Without loss of generality, we may assume that 2|y, = Oy, wy, = Oy, and U;
is the complement of some V(t;) with t; € HY(X,#") for some n (which we may pick
independently of 7). For each i, let X; denote the normalization of X in K(V;) and fix
m; » X; — X to be the induced map. Let S; denote the graded section ring of X; with
respect to 7.7, let m; denote the homogeneous maximal ideal, and note that S C 5; is
finite. Set §, to be the m;-adic completion of S;. NotiAce we also abuse notation to view
t, = m't; as an element of 5; and also as an element of S;. Forgetting the grading for now,
embed w§ -1 C S such that wA )[ t7] = SA’i[ti_l]. By Flenner’s local Bertini theorem (see

[Fle77, Satz 2.1], [Vij94, Theorem 1] and [Tri97]), there exists f € wgz)’ such that f is not

contained in Q@ for all Q € Spec(S ) not containing w(A 2 In particular f is not contained in

Q® for all Q € Spec(S; [t:1]), it follows that Sift 2 ]/(f) is regular. Set D; to be the effective
divisor corresponding to f € WE@ and let A; = 2D,~. By construction, (@,A-) is simple
normal crossing at all Q) € Spec(§ (t:']) and Kg -+ A = = Ldiv(f) is Q-Cartier. Applying
[MST*22, Theorem 4.1] with the perfectoid big Cohen Macaulay S;-algebra S+ = S+, we
have that T (S Ao = SQ for all Q € Spec(S; [t:']). In particular, there exists a such
that 7 € T (SZ,A )

Now since S ST factors through S;(K 5 ) = wg by construction, we have induced
maps
Y2 HE (wg) — HE (wg, @ §F) — HEF(S7).
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Applying Matlis duality, we have
HiptH (wg,)V +—— Hitwg, ® §7)Y e+ Ht!(SF)"

- | F

[ — Homgi(gjr, S) —— Homgi(éjf, wg,)

Since the image of the composition map is equal to qu(g’i, A;) by [MS21, Proof of Theorem
6.12], we see that im(Homg (ST, S;) — S;) contains Tg; (S, A;), so it contains t{, i.e., there
exists a map 1; : St — §Z such that ¢{ is in the image.

Now if we view S as a subring of S;, then by hypothesis, t? is in the image of some
pi : S; — S. Completing, we see that t*™ is in the image of EN S; 25 3. Since S — S+
factors through ST we see that /™ annihilates the kernel of

*ES — *ES X S—I—,gr'

Finally, since the U; = D(t;) cover X, we see that the t;“’b generate the prime ideal S<q up
to radical. Thus S74 C (#57°, ... %) for some m;. But since S is Noetherian, a sufficiently
high veronese subalgebra S(¢) C S is generated in degree 1, [Bou98a, Chapter I1I, Proposition
3]. Thus by [Bou98a, Chapter I1I, Proposition 2, Lemma 2|, for all [ > 0 and k& > 0 we have
that Ske - S; = Skeqr. It follows that S, C SZ for some sufficiently large m > 0. This
completes the proof of the first statement.

For the final statement, by graded Matlis duality, we know that the cokernel of * Homg (S8, S) —
S is annihilated by Ss,,, i.e., Ssp € im(* Homg (S8, S) — S) as desired. O

Theorem 5.8. Suppose that X, £, R and S are as in Setting 5.1. Let mg =m-S + Ssg
denote the homogeneous mazximal ideal of S. Suppose X has finite summand singularities.
Further suppose that £ is ample on X. Then there exists m > 0 such that Ss,, - ws C
To+er(Wg). As a consequence, for n > 0, we have that

BO(X,WX ®$n) = HO(X,WX ®$n)

Proof. By Theorem 5.7, we know Ss,, C im(* Homg(S*#",S) — S). This means for all
(homogeneous) x € Ss,,, there is a (homogeneous) map ¢ € *Homg(ST#", S) such that
¢(1) = x. Therefore the composition map:

d+1 a1 orery 05 @ g
Hms (S> — Hms (S ,g) EE— Hms (S>
is multiplication by 2 on HE(S). Thus we find that S, annihilates the kernel of H3*(S) —
HIT(Ste). By the definition of Tg+w(wg) and using graded local duality, it follows
S>m cWg g Tg+,er (ws).
Finally, since wg is finitely generated, for all n > 0, [wgl, C Ssm - ws C Tetr.e (ws).
Therefore |wg], = [Tg+e (wg)],. Hence by Proposition 5.5, we have

BO(X,(A)X ®$n) = HO(X,MX ®$n)

for all n > 0 as desired. [
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5.1. An application to Fujita’s conjecture in mixed characteristic. We conclude
with a mixed characteristic version of a special case of Fujita’s conjecture, analogous to the
main result of [Smi97b]. Indeed, our proof very closely follows the strategy of K. Smith.

Theorem 5.9. Let X be a d-dimensional regular scheme (or a scheme with finite summand
singularities) which is flat and projective over R. Sett = dim R and let £ be an ample
globally generated line bundle on X. Then wx ® L4t is globally generated by B°(X, wx ®
-ty

We first prove the following result, whose proof is nearly the same as, and heavily inspired
by, [Smi97h, Proposition 3.3].

Proposition 5.10. With notation as in Theorem 5.9, let (S, mg) be the section ring of X
with respect to £ as above. Further suppose that vy, ..., y;—1 are a system of parameters for
R and xy, ..., x4y € S1 are such that yo, ..., xq are a system of parameters for S.

Then there exists Ng € N such that every homogeneous 0 # n € Hﬁ:l(S) of degree less
than —Ny (degn < —Ny) admits a non-zero multiple ' of degree —d — 1+t = —dim X —
14+dim R = —dim S +dim R. Furthermore, any such ' has non-zero image in HEI (ST,

Proof. We begin with a claim.

Claim 5.11. There exists Ng € N such that the kernel K of Hit'(S) — HET'(ST#) is zero
i degrees < —Nj.

Proof of claim. Let K be the kernel of Hit!(S) — HZI(ST#). The graded Matlis dual K
fits into an exact sequence 0 — Tg+.er(ws) — wg — KY — 0. Now, Theorem 5.8 implies
that [KV]; = 0 for ¢ > 0. Thus [K], = 0 for n < 0, which proves Claim 5.11. O

We now come to our main computation.

Claim 5.12. Suppose n € HE(S) is a homogeneous element of degree —N < —d +t —1
such that every S-multiple of degree —d +t — 1 has zero image in HEL'(STE) (that is
Image(Sn_ari—1-n) =0 € HITY(ST) ). Then the image of n in HEL'(STE) is zero.

Proof of claim. Write n = [#] whereT =z, ---xqgand §J = yo - - - y4—1 and z is homogeneous

of degree (d —t+ 1)v — N. Because Sy_g4¢—1 - 7 has zero image in Hﬁ;’l(S*’gr), there exists
some s > 0 so that

(5.12.1) (Tt )N @T) 2 C (g ) S,
Thus, since 5+ is Cohen-Macaulay and g, ..., z4 is a regular sequence on it, we have that
e BT ()N
Now working modulo yg, ..., vy, ,, we see that
ZE (@) ) (SO U)o mg)

= (o) + () ) (SR (i)

where the equality follows because zy, ..., x4 is a regular sequence on (@ W, yiy))

so the computation of colon ideal is the same as if the x;’s are indeterminates in a polynomial
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ring (see [Smi9d7h, (3.3.3)]). It follows that

z e <(yg]}7 cee 7x2}l) —+ (.flft, . ,l’d)(d_t+1)v_N+1>,@_

However, since z has degree (d —t + 1)v — N, we see that z € (y§,. .. ,xg)@. Thus the
image of 7 in HIt!(S™#) is zero, proving Claim 5.12. O

To finish the proposition, choose Ny as in Claim 5.11 and a nonzero n € HEH'(S) of
degree < —Ny. Hence n ¢ K = ker (HI(S) — HET'(ST#)) by Claim 5.11. But now
by the contrapositive of Claim 5.12, we see that n has a nonzero S-multiple 1’ of degree
—d+1t—1=—dimS + dim R whose image in H2''(S™#") is also nonzero. This completes
the proof. O

Proof of Theorem 5.9. We first show that there exists a finite étale extension R’ of R such
that the section ring S” of X' := X x g R’ with respect to £y, admits a homogeneous system
of parameters yo, . .., Y41, Ts, . - . , T4 as in the statement of Proposition 5.10. Let R** be the
strict hensalization of R (so R*" has an infinite residue field). Then X*" := X xp R*" is flat
and projective over R*" of relative dimension d — t and so X" := X" X por (R*"/mR*") is
projective over an infinite field of dimension d — t. Since .Z is globally generated on X, the
image of the linear system || in H(X3", & xgh) is base point free. As X3 is projective over
an infinite field, we can pick general linear combinations of sections in the image of |.Z|, call
them 7, . . ., g, such that they form a homogeneous system of parameters in R(Xg", &

Xgh).
Since R*" is a colimit of finite étale extensions of R, there exists a finite étale complete domain
extension R’ of R such that 7; is the image of z; € H*(X', Z|x/). Now it is straightforward
to check that yo,...,y_1,,...,2q form a system of parameters in S" = R(X', Z|x) for
every system of parameters yo, ..., y;—1 of R: modulo m (the radical of (yo,...,y;-1)), S'/mS’
is a homogeneous coordinate ring of X}, and so R(Xg", .Z| xgn) is integral over S"/mS’ of the
same dimension, thus by our choice, x, ..., 4 form a homogeneous system of parameters in
S’ /mS’ (as they are so in R(X3", & xgh))-

Next we claim that in order to show wx ® Z47*1 is globally generated by B(X,wx ®
Z4=t+1) it is enough to prove this when we base change X to X’. Indeed, we have a
surjective map of sheaves T : wys ® L — wy ® L4 Furthermore, if BY(X, wx: ®
L1 (globally) generates the left side its image via T generates the right sheaf. But
BY( X" wx @ L4 - BY(X, wyx @ £ surjects by Lemma 4.18. Therefore, without
loss of generality, we now replace R and X by R’ and X’ to assume that S = R(X,.Z) admits
a homogenous system of parameters yo, ..., 41, %, . .., T4 as in Proposition 5.10. Note that
X' is still regular (or has finite summands singularities) since it is finite étale over X.

By the discussion above, it is enough to show that the multiplication map (which is well
defined since Tg+e (wg) is an S-module)

HY X, LN @ B X, wy ® 277 — BY(X,wy @ V) = H'(X,wx @ ZV)

J (. J/ (. J/ J

SN—dtt—1 [Ts+.er (Ws)]a—t+1 [Ts+.er (Ws)]N [ws]n
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is surjective for N > 0. By graded local duality on S, this is equivalent to the injectivity of
the map
[HtH (S)] -
>~ [Image (Hg;gl(S) — Hﬁ:l(SJr’gr))]_N
Hompg (Sy—d+t-1 ®p [Tsre (ws)]a—t41, E)
Hompg (SN—d+t—17 Image ([Hﬁgl(s)]—dﬁa — [H$§1(5+’gr)]—d+t_1))

R 4

where E' is the injective hull of the residue field of the complete local ring (R, m) and the
final isomorphism is Hom-tensor adjointness and duality. Just as in [Smi97b, Lemma 1.3],
this map sends n € [HEt'(S)]_n to the map which is multiplication by 7. Hence this map is
injective by Proposition 5.10 and our proof is complete. U

Remark 5.13. It would be natural to try to obtain the following stronger result. Suppose that
X has the property that for each closed point # € X, we have that H(Ox) — HY(Ox+)
injects (in other words, O, is O ,-rational in the sense of [MS21], but without the Cohen-
Macaulay hypothesis). We expect that if £ is a globally generated ample line bundle on X,
then

Wy ® LA

is globally generated by BY(X, wy ® £%t*1). The missing piece is a proof that Tg+.e(ws)
agrees with wg except at the irrelevant ideal (a generalization of Theorem 5.8).

6. GLOBALLY +-REGULAR PAIRS

In this section we define and discuss various properties of globally +-regular pairs; anal-
ogous to globally F-regular pairs in positive characteristic. The reader interested in the
results on globally F-regular pairs is referred to [SS10]. The reader unfamiliar with this
story is invited to imagine that this means the section ring / cone has singularities which are
a mixed characteristic analog of klt singularities. Throughout this section, we work under
the following assumptions unless otherwise stated:

(a) X is a normal, integral, d-dimensional, excellent scheme with a dualizing complex
where every closed point has residue field of positive characteristic.

(b) A >0 is a Q-divisor on X.
Whenever there is a base scheme Spec R, we also assume that R is excellent with a dualizing
complex and that every closed point of Spec R has positive characteristic residue field.

Frequently, we also assume that R is complete and X is proper over Spec R. However,
the above setting also applies when the base is a positive or mixed characteristic Dedekind
domain.

Definition 6.1. We say that (X, A) is globally +-regular if for every finite dominant map
f:Y — X with Y normal, the map Ox — f.Oy(|f*A]) splits as a map of &x-modules.

If we have X — Spec R proper, then we say that (X, A) is completely globally +-regular
over R if for every closed point z of Spec R, the base change (X R ARZ) is globally +-regular.
If R is clear from the context, we will omit the “over R”.

Notice that globally +-regular is an absolute notion but completely globally +-regular

requires a base.
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Remark 6.2. In the above definition, we may restrict ourselves to f : Y — X such that f*A
has integer coefficients, since any f’: Y’ — X is dominated by such a Y.

Remark 6.3 (Characteristic zero). If we did not require that our closed points have residual
characteristic p > 0, then our definition would not always yield what the reader might
expect. For instance, when X is purely of characteristic zero, our condition defining global
+-regularity simply means that X is normal and that the coefficients of A are < 1. If one
additionally assumes that Ky + A is Q-Cartier, then one could alternately require that for
every alteration m : Y — X the map Ox — Rm.Oy(|7*A]) splits. In characteristic zero,
this again does not provide any global information and only means that (X, A) has rational
singularities in the sense of [ST08]. Lastly, one could require the trace map

(6.3.1) H(Y, Oy (Ky — |7 (Kx + A)])) — H(X, Ox)

to be surjective for every alteration (as discussed in [TY20], where they called it global T-
regularity). This in characteristic zero is equivalent to (X, A) being klt. When X — Spec R
is proper and R only admits positive characteristic closed points (the latter is always assumed
throughout this section), we see that global +-regularity is equivalent to global T-regularity
(the surjection of (6.3.1)). This follows from Proposition 6.8 in view of Proposition 4.29.

Remark 6.4 (Non-integral X). If X is not integral, but still normal with all connected compo-
nents d-dimensional, we define (X, A) to be globally +-regular if all its connected components
are. This coincides with the variant of BY in this setting as explained in Remark 4.3. The
results of this section go through since they may all be checked working one component at
a time.

Remark 6.5. If (R,m) is complete local, X — Spec R is proper, and X is integral, then
R — H°(X, Ox) is a finite map of rings. Since X is integral, we see that H°(X, Ox) is an
integral domain. But since R is complete and in particular henselian, we also know that
H°(X, Ox) is a product of local rings [Sta, Tag 04GG (9)]. Such a product cannot be an
integral domain unless it only has one factor, thus we know that H°(X, Ox) is a local ring.

On the other hand if (R, m) is not complete but only a Noetherian local ring, then
H°(X, Ox) is only semi-local (it has finitely many maximal ideals). In many cases though,
we localize T'= H°(X, Ox) at a maximal ideal to obtain a local ring 7" (and perhaps even
take completion of that if desired) and consider the base change X7 = X x1 T". Replacing
R by T" and X by X7 we have that H°(X, Ox) = R.

Lemma 6.6. Suppose we are given X — Spec(R), the following are equivalent:

(a) (X,A) is globally +-regular.
(b) for each closed point z € m-SpecR we have that the base change to the localization
(Xr.,ARg,) is globally +-reqular.

Proof. The pair is globally +-regular if and only if the evaluation-at-1 map
(661) Homox(f*ﬁy(tf*AJ),ﬁx) — HO(X, ﬁx)

surjects for each finite dominant f : Y — X with Y normal. Indeed, that map is surjective
if and only if there exists ¢ € Hom(f. Oy (| f*A]), Ox) sending 1 to 1.
Now, we observe that since Hom(f,Oy (| f*A]), Ox) = HY(X, #omg, (f.Oy(| f*A])) and

f«Oy is a coherent Ox-module, the formation of this Hom-set commutes with localization
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on the base (a flat base change). In other words:

Hom(f.0v([f*A]), Ox) ®r R.

F(Xa %Omox(f*ﬁy(tf*AJ% ﬁX) ®R RZ)
I'(Xg,, Zomo, (fOy(Lf*A]) ®r R., Ox,.))
F(Xsz %Omosz (f*ﬁYRz(Lf*A‘XRZJ)7 ﬁXR))‘

Note the evaluation-at-1 map also base changes to the evaluation-at-1 map of the localization.
Hence, since a map of modules is surjective if and only if it is surjective after localization at
all maximal ideals, for each Y — X finite surjective, we see that (6.6.1) surjects if and only
if

121111

Homoy, (f:Ovn (Lf*Alxs.)), Ovi.) — H'(Xg., Oxy.)

surjects for each z € m- SpecR.

Finally, notice that a finite surjective h : Y/ — Xpg. with Y’ integral produces a finite
surjective Y — X that localizes to h (simply take the normalization of & in the fraction
field Y’) and we are indexing over the same set of finite surjective maps (which we can take
with a fixed geometric generic point). O

Lemma 6.7. If (X,A) is globally +-regular and 0 < A" < A, then (X,A’) is globally
+-reqular as well.

Proof. This follows from the definition. O

Proposition 6.8. Suppose that X — Spec R is proper and (R,m) is local. Then (X, A) is
globally +-regular if and only if B(Xp, Ag; Ox ) = HY(Xp, Ox ). In the case that Kx + A
is Q-Cartier, this is also equivalent to By (X5, Ap; Ox ) = H°(Xg, Ox ).

Proof. Notice that the map R — H°(X, Ox) =: T is finite (although it will not be injective
if X — Spec R is not dominant) and so its base change T' ®g R to the completion of R
may break up into a product of normal domains [[7;. In particular, the normal scheme Xz
may have several connected components. In such a case, working one component at a time,
we may replace R by T;, a localization of 7" at a maximal ideal, and X by the base change
X ®7 T; and so assume that H°(X, Ox) = R, also see Remark 4.31.

By Proposition 4.29 we have that B®(Xp, Ag; Ox ) equals

(| im (HO(Y, Ov(Ky — | f*(Kx +A)])) @r R — HY(X, Ox) ®r 1%) .

f:Y—X
finite

Suppose that BO(XE,Aﬁ;ﬁXé) = HO(XE,ﬁxﬁ) and let f: Y — X be a normal finite
cover. Then, Tr: f.Oy(Ky — |f*(Kx + A)|) — Ox is surjective on global sections (after
completion, hence also before it), and so there exists a map ¢ such that

Ox % [.Ov(Ky — |f(Kx + A)]) 5 Ox

is the identity (to define ¢, send 1 € I'(X, Ox) to a global section which Tr sends to 1).
Hence, Tr is split surjective. But now apply sZom(—, Ox) to Tr and observe that the

obtained map Ox — f.Oy(|f*A]) also splits, as desired.
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For the converse, note that when the map Oy — f.Oy (| f*A]) splits, then the dual map'*
Tr: f.Oy(Ky — | f*(Kx+A)]) — Ox is split surjective, and so surjective on global sections.
Hence, B®(Xp, Ap; Ox.) = H°(Xg, Ox ) by Proposition 4.29.

The final assertion follows from Corollary 4.13. O

Corollary 6.9. Suppose that X — Spec R is proper. Then (X, A) is globally +-regular if
and only if it is completely globally +-reqular over R.

Proof. By Lemma 6.6 we may assume that R is local. We then see that (X, A) is globally
+-regular if and only if BY(Xp, Ag; Ox ) = H(Xp, Ox ) by Proposition 6.8. But this latter
statement is also equivalent to requiring that (Xg, Ap) is globally +-regular. U

We now show that globally +-regular pairs have controlled singularities.

Proposition 6.10 (Global to local). Suppose X is globally +-reqular. Then X is pseudo-
rational and in particular Cohen-Macaulay (and so has rational singularities in the sense of
[Kov17]). Further, suppose that (X, A) is globally +-regular and Kx + A is Q-Cartier. Then
(X, A) is klt (and Cohen-Macaulay).

Proof. Since the question is local, we may localize X at a closed point € X and take
R = Ox, so that X = SpecR. Furthermore, we may assume that R is complete by
Corollary 6.9.

First suppose that X is globally +-regular and A = 0. By definition, R is a splinter, hence
it is Cohen-Macaulay and pseudo-rational ([Bha20, Corollary 5.10 and Remark 5.14(1)]).
This proves the first statement.

Now suppose that (X = Spec R, A) is globally +-regular and Ky + A is Q-Cartier. By
Proposition 6.8 the trace map

H(Y,Oy(Ky — | f*(Kx +A)])) — H°(X,0x) =R

is surjective for every projective birational morphism f:Y — X from a normal integral
scheme Y. This is the case exactly when [Ky — f*(Kx + A)] is effective and exceptional
over X, which, in turn, is equivalent to |A] = 0 and all the exceptional divisors on Y having
log discrepancy greater than 0. As this is true for every projective birational morphism,
(X,A) is klt. Further, X is Cohen-Macaulay by our work above since X is globally +-
regular by Lemma 6.7. O

Lemma 6.11. Suppose that (X, A) is globally +-regular, X — Spec R is proper and R 1is
local. Then for any line bundle £ = Ox(L) we have B (X3, Ap; ZL5) = H'(Xz, %5). In
particular, if R is complete then BY(X A; £) = HY(X,.%).

Proof. Without loss of generality, using Proposition 4.29 and Corollary 6.9, we may assume
that R is complete. Since Ox — f.Oy (| f*A]) splits for every normal finite cover f:Y —
X, then so does Ox(Kx — L) — f.Oy(|f*(Kx + A — f*L)|). Hence

HRILRI(X, Ox(Kx — L)) — H'RIZRI(Y, Oy (| f*(Kx + A — f*L)]))
is injective and so by Lemma 4.8, we see that BY(X, A; .¥) = H*(X,.%) as desired. O

Hobtained by applying s#om(—, Ox)
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Corollary 6.12 (Relative Kawamata-Viehweg vanishing for globally +-regular varieties).
Suppose that X — Spec R is proper, (X, A) is globally +-regular and L is a Cartier divisor
such that L — (Kx + A) is Q-Cartier, big, and semiample. Then H (X, Ox(L)) =0 for all
1> 0.
Proof. Via Corollary 6.9 and flat base change for cohomology, we may assume that R is
complete and local. By Lemma 2.2, to show that H (X, Ox (L)) = 0 for ¢ > 0, it suffices to
show that H 'Rl RI(X, Ox(—L) ® wy) = 0. Since X is globally +-regular, it is Cohen-
Macaulay by Proposition 6.10. Hence, we must show that H*'RI',RI'(X, Ox(Kx—L)) =0
for all 7 > 0 where d = dim X. Consider the map

ﬁx(Kx—L) — llg’l f*ﬁy(f*(Kx—l—A—L)):W*ﬁx+(ﬂ'*(Kx—|—A—L))

FrY—X

where 7 : XT — X and we restrict ourselves to finite f: Y — X such that f*A has integer
coefficients. Note that while 7 is not finite, it is affine so its higher direct images vanish for
quasi-coherent sheaves by [Sta, Tag 01XC]. This is a colimit of split maps since X is globally
+-regular and hence

H™'RILRI'(X, Ox(Kx — L)) — H™'RIwRI'(X, 7, 0x+ (1" (Kx + A — L)))

injects. But the right side is zero for all ¢ > 0 by Corollary 3.7, completing the proof.
O

We also obtain vanishing of the structure sheaf.

Proposition 6.13. Suppose that X is globally +-reqular and X — Spec R is proper. Then
HY(X,O0x) =0 for all i > 0.

Proof. We may assume R is local with residue field R/m of characteristic p > 0. By
Proposition 3.1(a), taking L = Ox, we can find a finite cover 7 : ¥ — X where the map
H (X,—0, Ox) — H'(Y,—q, Oy) is zero, but it is also split injective, therefore H*(X,—q, Ox) =
0. Since we have an exact sequence H (X, Ox) % HY(X, Ox) — H'(X,—o, Ox) = 0, it fol-
lows that H'(X, Oy) is p-divisible, but as H'(X, Ox) is a finitely generated R-module and
p € m, thus HY(X, Ox) = 0 by Nakayama’s lemma. O

Lemma 6.14. Suppose that X is an F-finite normal integral scheme of characteristic p > 0.
If (X, A) is globally F-regular, then it is globally +-regular.

Proof. Suppose that (X, A) is globally F-regular and that 7 : Y — X is a finite dominant
map with Y normal and integral. By replacing Y by a higher cover if necessary, we may
assume that 7*A has integer coefficients.

Claim 6.15. There exists a divisor D > 0 on X and a map
¢ € Homg, (1. Oy (1*A), Ox (D))
which sends 1 — 1.

Proof of claim. We begin by explaining what the claim is asserting. Let K(X) and K(Y)
denote the constant sheaves associated to the fraction fields of X and Y respectively. Notice
that 7,0y (7m*A) is a subsheaf of 7, K(Y'). Since A is effective, 1 = 1y is a global section of
Oy (m*A). Likewise since D is effective, 1 = 1x is a global section of &x (D). The claim

asserts that we can find a ¢ that sends 1 to 1.
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Now, working on an affine chart j: U < X whose complement is a divisor D’ > 0, set V' =
7~ HU). It follows from [BST15, Proposition 4.2]'% that there exists ¢y € Hom(m, Oy (7*A), Oy) =
.0y (Ky —m*(Kx 4+ A)) sending 1 — 1. By working from the stalk of the generic point, we
see that ¢y induces a map ¢ : T.K(Y) — K(X). Note, restricting ¢ 5 to U and restricting
the domain to 7,0y (7*A) C (7, K(Y))|y we recover ¢y since both X and Y are integral
schemes. Next, restrict the source of ¢x to w0y (7*A) C 7. K(Y) to obtain

¢ mOy(n'A) = j.0y = | ] Ox(nD).

n>0

But since the source of ¢’ is coherent, the image of ¢ is contained in &x(nD’) for some
sufficiently large n > 0. Set D = nD’. This proves the claim. O

Now, since (X, A) is globally F-regular, there exists e > 0 and
¢ S Hom(FfﬁX(((pe — 1)A—‘ + D), ﬁX)

which sends Ff1 to 1. Twisting the ¢ from the claim by [(p® — 1)A], and pushing forward
by Frobenius, we obtain a map

¢ Fim Oy (F*)'n*A) C Fem, Oy (7 A+ 7' [(p° — 1)A]) = FeOx([(5f — 1)A] + D)

sending F¢1 — F¢1. Composing with ¢ we see that the composed map 1 o ¢’ sends F¢1 to
1. Thus Ox — Ffm.Oy((F¢)*m*A) splits, and since this map factors through 7,0y (7*A),
we have Ox — .0y (m*A) splits. This proves that (X, A) is globally +-regular. O

Remark 6.16. It is reasonable to expect that there is a converse to Lemma 6.14. Even in
the local case where X = Spec R and A = 0 (but R is not Q-Gorenstein) this is an open
question. It specializes in that setting to the conjecture that splinters are strongly F-regular,
see for instance [Sin99, CEMSI18]. Note that we do not even know that splinters are klt for
some appropriate boundary if R is not Q-Gorenstein. In the non-local case, we expect that
(X, A) is of log Fano type but we do not know how to show that.

We also state a related open question, analogous to the main result of [SS10].

Conjecture 6.17. With notation as in the start of the section, suppose that X is globally
+-regular and that X — Spec R is projective. Then there exists an effective Q-divisor A on
X such that (X, A) is globally +-reqular and —Kx — A is ample.

This conjecture is open in characteristic p > 0, even in the local case when X = Spec R.

In mixed characteristic, even if X is nonsingular, we do not even know how to construct a
boundary A where (X, A) is lc and Kx + A ~g 0.

Corollary 6.18. Suppose that (X, A) is proper over a complete Noetherian local ring (R, m, k)
of characteristic p > 0. Let R := R®,k'?™ be the complete tensor product (so R' is an
F-finite complete local ring). If (Xgr,Ar) is globally F-reqular, then (X,A) is globally
+-regular.

1211 that paper, it was assumed that Kx + A is Q-Cartier, but that hypothesis is not needed when 7 is
finite.
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Proof. The natural maps X}, — Xz — X induce:
HIRT,RI(X, Ox(Ky))
— H'RIWRT(Xp, Ox,, (Kx,,))
—  HRTRI(X}, ﬁX;, (™ (Kx,, + Ar)))

where 7’ : X;g, — Xpr and d = dim X. Notice that the base change of wx is WX - The
first map is injective by faithfully flat base change, and the second map is injective since
(Xg, Ag) is globally +-regular by Lemma 6.14 and using duality (see Proposition 6.8 and
Lemma 4.8). Therefore the composition is injective. But as X7, — X factors through X,
we obtain that

HRILRI(X, Ox(Kx)) — H'RIWRI(XT, Ox+ (7 (Kx + A)))

is injective where 7 : Xt — X. So using Proposition 6.8 and Lemma 4.8 again we see that
(X, A) is globally +-regular. O

Proposition 6.19. If f : X — Y s a proper birational morphism between schemes satis-
fying the conditions at the start of this section, and A > 0 is a Q-divisor on X such that
(X, A) is globally +-regular, then so is (Y, fyA). Hence Y is also pseudo-rational (and so
rational in the sense of [Kovl17]), and if Ky + f.A is Q-Cartier, then (Y, f.A) is kit.

Proof. Set Ay = f.A. Let g: Z — Y be a normal finite cover and let W be the normaliza-
tion of X Xz Y. We have that following diagram:

X w

It

Since X is globally +-regular, the map Oy — . Ow (|£*A]) splits. Let U C Y be an open

subset with complement of codimension at least two and such that V := f~1(U) I Uis an
isomorphism. By restricting the above splitting to V', we get that the map

Oy — g.O041w) (9" Ay |v])

splits as well, and so does Oy — ¢.0z(|g*Ay]), since Y \ U is of codimension two and
the sheaves are S2. Hence, (Y, Ay) is globally +-regular. The last assertion follows from
Proposition 6.10. 0

In the opposite direction, we have the following for étale covers.

Proposition 6.20. Suppose that (X, A) is globally +-reqular, X — Spec R is proper and
f:Y — X is a finite quasi-étale'® cover from a normal integral scheme Y. Then (Y, f*A)
15 also globally +-regular.

Proof. We may assume that H°(X, 0x) = R. Then we may assume that R is complete and
local by Corollary 6.9, possibly working component by component on Y after completion so
that H°(Y, Oy) is also local. Since f is quasi-étale, we know that f*Ky = Ky. Hence by
Lemma 4.8 we see that

BO(Ya f*A; ﬁY) - BO(Xa A; ﬁx) = HO(X7 ﬁx)

13Meaning étale in codimension 1
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surjects. But the induced trace map H°(Y, Oy) — H°(X, Ox) sends the maximal ideal of
HO(Y, Oy) to the maximal ideal of H°(X, Ox), hence BY(Y, f*A; Oy) = H°(Y, Oy). O

The local case. We conclude the section by briefly describing some of the key features of
local +-regularity.

Definition 6.21. Suppose that (A, m) is an excellent normal local ring whose residue field
A/m has positive characteristic and set Y = Spec A. Further suppose that A > 0 is a
Q-divisor on Y. We say that (Y, A) is +-reqular if it is globally +-regular in the sense of
Definition 6.1.

Notice that the m-adic completion A of Ais +-regular if and only if so is A (this is
Corollary 6.9 applied to the identity map X = Spec A — Spec A). Furthermore, if A = 0,
then A is +-regular if and only if it is a splinter. Lastly, if (A, A) is +-regular, then it is
Cohen-Macaulay by Proposition 6.10.

Lemma 6.22. If (X,A) as in the start of the section is globally +-regular, then for x € X
whose stalk A = Ox . has positive characteristic residue field, (Spec A, Alspeca) is globally
~+-regular.

Remark 6.23. Suppose that K4+ A is Q-Cartier. It follows frgm Proposition 4.29 by taking
X = Spec A that (A, A) is globally +-regular if and only if (A, A ;) is BCMz-regular.

6.1. Purely globally +-regular schemes.

A+

Definition 6.24. With notation as in the start of the section, suppose that there exists
a reduced divisor S such that A = S+ B for B > 0 with no common components with
S. Fix a reduced subscheme St in X as in the the second paragraph of Section 4.3 with
corresponding 22:1 Siy = Sy — Y on each finite dominant map f : ¥ — X with YV
normal. We say that (X, S + B) is purely globally +-reqular (along S ), if for every finite
dominant f :Y — X with Y normal, the following map splits

t
Ox — @D Oy (=Siy + |f*(S+ B))).
i=1
If we have X — Spec R proper as in the start of the section, then we say that (X, S+ B) is
completely purely globally +-reqular over R (along S) if the base change to the completion
(X I Afz\z) along every closed point z € m- SpecR is purely globally +-regular.

Note in the case that S is integral and f*(S + B) has integer coefficients, this is simply

asking that
ﬁX — f*ﬁy(f*(s + B) — SY)
splits.

This definition is still meaningful even when R is not complete although we will primarily
work in the complete case, see the issues discussed in Remark 4.30. In particular, we do
not have a full analog of Proposition 6.8 or any analog of Corollary 6.9. However, see
Corollary 7.6 where we prove the equivalence of completely purely globally +-regular pairs
with purely globally 4-regular pairs when — Ky — A is big and semiample.

Lemma 6.25. Suppose we have X — Spec(R), the following are equivalent:

(a) (X,S + B) is purely globally +-regular.
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(b) for each closed point z € m-SpecR we have that the base change to the localization
(Xg., (S + B)g.) is purely globally +-regular.

Proof. We restrict to Y large enough so that f*A = f*(S 4 B) has integer coefficients. The
pair is globally 4+-regular if and only if the sum of the evaluation-at-1 maps

P Hom(£.6v(~Siy + £(S + B)), Ox) — H(X, O)
i=1

surjects for each finite dominant f : Y — X with Y normal. Again, this surjectivity can be
checked after localizing at closed points of R. U

Similar to Proposition 6.8, we have the following alternate characterization of purely glob-
ally +-regular. We recall the following notation from Remark 4.30. If H°(X,Ox) = R is
local and X — Spec R is proper then BY(X, S + B; O0x) C H(Xp, Ox,) is the R-Matlis
dual of '

i=1

t
Im (HdRFmRF(X, Ox(Kx)) — HRILRID(XT, @D Ox+ (=S + 7" (Kx + A)))) :

Proposition 6.26. With notation as in Definition 6.24, suppose R = H°(X, Ox) is local
and X — Spec R is proper. Then (X,S + B) is purely globally +-regular if and only if
BY(X, S+ B; Ox) = H(X, Ox,.).

In particular, if R is complete, then (X, S + B) is purely globally +-regular if and only if
BY%X,S+ B; 0x) = H'(X, O%).

Proof. We work with covers large enough so that f*(Ky + S + B) has integer coefficients.
The strategy is the same as in Proposition 6.8. If

Ox — f. é Oy(—Siy + f*(S+ B))
i=1
splits for all Y, then twisting by Kx and taking local cohomology, we see that each
(6.26.1) H'RITLRI(X, Ox(Kx)) — HRI'wRI(Y, é Oy(=Siy + f(Kx + S+ B)))
i=1
is injective. Hence BY(X, S + B; Ox) = H(X 5, Ox.)-
Conversely, if each map of the form (6.26.1) injects, then
HO(Y, é Oy(Ky + Siy — f*"(Kx + S+ B))g) — H*(Xp, Ox )
i=1
surjects. Since R — Ris faithfully flat, each
H(Y, é Oy(Ky + Siy — [*(Kx + S+ B))) — H(X, Ox)

i=1
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surjects. Hence there exists

2 € HYY,EP Oy (Ky + Siy — [*(Kx + S+ B)))

i=1

mapped to 1 € H°(X, Ox). Thus we have a map

t
Ox — [P Ov(Ky + Sy — f*(Kx + S+ B))

i=1

induced by sending 1 +— z giving us a splitting. Apply J#om(—, Ox) to obtain the desired
result. O

Lemma 6.27. If (X, S + B) is purely globally +-regqular along a reduced divisor S then
(X, aS + B) is globally +-regular for every 0 < a < 1.

Proof. This follows from Lemma 4.26 when R is complete and X — Spec R is proper.
Alternately, for the general case, note that for large enough covers ¥ — X we have a
factorization:

Ox — Oy(f*(aS+ B)) — @D Ov(=Siy + [*(S + B)).

i=1
The splitting of the composition implies splitting of the left map. O

Proposition 6.28. Suppose X — Spec R is proper. Additionally, let f :' Y — X be a
proper birational morphism between normal schemes. Let A > 0 be a Q-divisor on X such
that (X, A) is globally +-reqular (completely purely globally +-regular over R, resp.). Suppose
that Ay > 0, where Ky + Ay = f*(Kx+A). Then (Y, Ay) is globally +-regular ( ly globally
+-regular, resp.).

Proof. We can assume that R is local and complete by Corollary 6.9. Then this follows from
Lemma 4.19 and Lemma 4.27. U

Remark 6.29. If (X, S + B) is purely globally +-regular, then we will see in Proposition 7.7
that it is plt, and in Corollary 7.9 that S is normal.

6.2. Summary of terminology. We conclude this section by summarizing the terminology
we have introduced.

Recall, saying that (X,A) is globally +-regular means that every finite surjective map
f Y — X between integral schemes, one has that Oy — Oy (| f*A]) splits as a map of
O'x-modules. We then potentially add two different modifiers to this term.

(a) purely, which should be thought of as a plt variant of +-regularity.

(b) completely, which makes (purely) globally +-regular a relative notion (over a base
Spec R), meaning that after completing at each closed point of the base, we have
(pure) globaly +-regularity.
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7. LIFTING +-STABLE SECTIONS FROM DIVISORS

In this section we aim to prove that we may lift global sections of B? from hypersurfaces
in many cases. In order to lift sections we need vanishing theorems, and the key vanishing
theorem we use in this case is Corollary 3.7.

Setting 7.1. In this section, R is an excellent local domain with a dualizing complex and
positive characteristic residue field.

Frequently, R will even be complete.

Theorem 7.2. Let X be a normal integral scheme of dimension d that is proper over a
complete local Noetherian base Spec R with positive characteristic residue field. Let A > 0
be a Q-divisor such that Kx + A is Q-Cartier. Suppose that A = S + B where S = S; is
a sum of prime components of A of coefficient one with normalization v : SN — S, and M
is a Cartier divisor such that M — Kx — A s big and semiample.

Set M = Ox(M). Then the restriction map H*(X, #) — HO(SN, . #|g~) induces a
surjection

Bg(X, A,%) - BO(SN,AsN;%LgN)

where Agx is the different of Kx + S + B along SN and the right side is defined as in
Remark 4.3 in the case where SN has multiple connected components (taking the direct sum).

For more information on the different (of Kx + S + B along SY), see for instance [Kol13,
Section 4.1].

Proof. This argument is very closely related to, and inspired by, the proof of [MST"22,
Theorem 3.1]. In the proof below, we frequently abuse of notation in the following way. Let
where 7 : XT — X be the natural map. For a quasi-coherent sheaf .% on X* we will also
write .# for m,.#. This is essentially a harmless notational device as Rim,.# = 0 for all
i > 0 since 7 is an affine morphism, [Sta, Tag 01XC], and in particular R, R['(X T, #) =
RI,,RI'(X,Rm.#) =2 RI',RI'(X, m..#). The same notational consideration applies to the
affine morphisms S — X, SN — X, ST — X, etc.
With this abuse of notation in mind, we have the following diagram

Ox(—S) Ox

l l

@5:1 ﬁX*(_Si,X+) E— @5:1 Ox+

of quasi-coherent sheaves on X as in Section 4.3.
Set

&L = ﬁX‘F(L) = ﬁX+(TF*(KX—|—S—|—B— M))

to be the line bundle on X corresponding to Kx + S + B — M. Twist the top row of the
above diagram by Kx 4+ S — M and reflexify, then twist the bottom row by .Z. Using the

additional downward inclusions given that B is effective, we obtain the leftmost square in
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the commutative diagram with exact rows:

Oéﬁx(KX—M)—>ﬁX(KX—I—S—M)%ﬁx(KX+S—M)/ﬁX(Kx—M)—>0

| J

0— @i, Ox+(L— S x+) — D, Ox+(L) Ogr @ L ————0

Recall that ST is the disjoint union of the S} as in Section 4.3. Taking cohomology then
gives the following commutative diagram, where the factorization of the left vertical arrow
into surjective maps will be explained below.

HITIRILRI(S,Ox(Kx +S — M)/ Ox(Kx — M)) ———— HRI'ZWRI(X, Ox (Kx — M))
P

HYRIOLRI(S, ws ® (47 Yg))

C K

Imageg

N

Image

HI 'R, RI(ST, &L g+)C HIRTRI(XF, P, Ox+(L — S; x+))

Here we define Imageg to be:
Image (H*"RTWRI(S, Ox (Kx + 8 = M)/ Ox(Kx — M)) = H''RIwRI(S*, Z]5)).

Note that Imagey is the R-Matlis dual of B%(X, A, .#) by definition, see Definition 4.21. A
main goal of the rest of the proof is to show that Imageg is dual to BO(SN, Agn, . |gv).
We first explain the injection of k. Observe that

t
H™'RI,RI(XT, P 2)
i=1
surjects onto the kernel of the bottom row, and so, since .Z ! is big and semiample, we may
apply Corollary 3.7 and see that the bottom row injects. Thus x : Imageg — Imagey also
injects and hence its R-Matlis dual

By (X, A, ) — (Imageg)”

surjects.

We now explain origin and surjectivity of p. Because X is normal and so Cohen-Macaulay
in codimension 2, the S2-ification on S of Ox(Kx +S — M)/Ox(Kx — M) is ws ® (M ™ |s)
(see [MSTT22, Subsection 2.1]) and so we have a factorization of sheaves on S

ﬁx(KX—FS—M)/ﬁx(KX—M) —>WS®(%_1|S> —>$|S+

as well since Z|g+ = Og+(L|g+) is a colimit of S2 coherent sheaves. Applying local coho-
mology explains the origin of the map p. We now explain the surjectivity of p (in fact, we
will show that p is an isomorphism). Applying R Hom(—,wy) to 0 — Ox(—S) — Ox —
Os — 0 and taking cohomology, we obtain

0 — Ox(Kx) = Ox(Kx +85) = wg — H @D (wy) — ---
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Since X is normal and hence S2, we know that dim H~@~D(w3) < d — 2. After twisting by
M~ we observe that the cokernel C' of

(7.2.1) Ox(Kx +S—M)/Ox(Kx — M) — ws ® (M]5)

satisfies dim Supp C' < d — 2 (alternatively, one sees that (7.2.1) is precisely the S2-ification
map and thus an isomorphism in codimension one). It follows that H¢2RI',RI'(S,C) =
H¥RILRI(S,C) = 0 by [Sta, Tag 0A4R]. This implies that p is an isomorphism. There-
fore Imageg is also the image of

HRILRI(S,ws @ (A 7Yg)) — H'RILRI(ST, Z|g+).

Next notice that dual to s — Ogx we obtain wgn — wg which induces a map of sheaves
on S
ﬁSN(KSN - M‘SN) — wWs & (,//_l‘g).
The cokernel of this map is supported in dimension < d — 1, and so, arguing as above, we
see that

H*'RIRI (SN, Osn(Kgn — M|gn)) = H'RELRT (S, ws ® (4 ]5))

surjects.
In particular, we have the following composition:

HIRELRT (SN, Ogn (Kgx — M|sx))  — HT'RILZRI(S,ws ® (4 7Ys))
—» Imageg
— HI'RILRI (ST, .ZLs+)

Since ST = (SN)T, it should be expected, using Lemma 4.8 (a), that the R-Matlis dual of
Imageg is BY(SN, A/, #|gn) for some Q-divisor A’ on SN. We wish to show that this is
true where A’ = Agn is the different of Kx + S + B along SV, see [Kol13, Section 4.1] or
[MST*22, Section 2.1] for more discussion of the different. In other words, we will show
that the composition Ogx(Kgy — M|gn) — ws @ (M7 s) — £|g+ may be identified with
the canonical map (since the different Agn is effective) viewed as sheaves on either S (or
equivalently on SV)

(7.2.2) ﬁSN((KSN — M)|SN) — ﬁer(ﬂ';N(KS + ASN — M)|s+)

where mgn: ST = (SN)* — SN is the usual map.
To conclude the proof, we must show that we have an isomorphism of &g+-modules

$|S+ = ﬁs+(7T;N(K5N + ASN — M|5N)),

and that the map Ogn(Kgn — M|gn) — ZLs+ we obtained by composition is the same as
the map (7.2.2). The first isomorphism is an immediate consequence of the definition of the
different which guarantees that

(Kx+S+B)|SN NQ KsN +A3N.

The second assertion is local on S. In particular, we may forget about R, set M = 0 and
assume that X = Spec A is normal and local, S = Spec(A/I) is reduced and local so that
SN = Spec(A/I)N is the spectrum of a semi-local normal ring. At this point, the argument
is essentially identical to the argument of [MST 22 Theorem 3.1] which we now explain in

a slightly different way.
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We first need a precise definition of the different. We may write Kx = —S + G where
G > 0 does not contain any component of S within its support. This in fact determines a
canonical divisor on SN. Consider a global section y € Ox(Kx + S) = Ox(G) determining
G (note we may take y = 1 € Ox(G)). The image of y, 7 € wg becomes a rational section of
wgn via the map wgn — wg, this rational section determines the divisor we call Kg¢n. Write
Kx + S+ B = Ldiv f for some f € A. Then, setting f € (4/I)N as the image of f, we
define the different as

1 _
AsN = — diVsN f — KsN.
m

It is independent of our choices and always effective, see [Koll3, Section 4.1]. With this in
place, and the careful choice of K¢n described above, the map we constructed earlier in the
proof

(723) ﬁSN(KSN)—)wS—)g|S+ :ﬁg+(7T*(KX—FS+B)|5+)

sends the rational section 7 to an honest section of wg which came from the section 1 €
Ox(Kx+S8) C Ox+(m*"(Kx+S+DB)) = ﬁﬁ)ﬁ. In particular, in the composition (7.2.3),

yis sent to 1 € T%ﬁy = Z|s+. On the other hand, the map

1

ﬁsN(KsN) — ﬁSJr(ﬂ'*(KsN + AsN)) = ?1%

Ot

also sends 7 to 1 by construction, and so the two maps agree since they are maps between
rank-1 sheaves and so are determined by where they send any single nonzero (on any irre-
ducible component) rational section. U

Remark 7.3. One may also obtain an alternative proof in the case where M — Kx — A is
ample, by passing to the affine cones, and using Theorem 5.2 and [MST*22].

Recall from Remark 4.30 that when R is not necessarily complete, we define B% (X,A; A)
to be the the Matlis dual of

t
Im (HdRFmRF(X, Ox(Kx—M)) — H'RIWRO(X T, @D Ox+ (=S +7°(Kx + A M)))) :
i=1
Corollary 7.4. With the same assumptions as in Theorem 7.2, but with H°(X,0Ox) = R
and R not necessarily complete but satisfying Setting 7.1, we have that the restriction map

HO(Xa %) ®R§ = HO(XE,,%E) - HO(S}%’%|S§) = HO(SNa%|SN) Or é

induces a surjection

BY(X, A M) — BO(SE;Asg;///Isg)-

Proof. The proof is the same as that of Theorem 7.2 in view of Proposition 4.29 since
Corollary 3.7 does not require that R is complete. O

When S is globally 4+-regular, we obtain the following important consequence.

Corollary 7.5 (Adjunction and inversion of adjunction). Let (X,A = S + B) be a pair
proper over R = H°(X, Ox) satisfying Setting 7.1. Assume additionally that S is a reduced
Weil divisor having no common components with B, and such that —Kx — A is big and

semiample. Let Agn denote the different of Kx + S + B on SN with respect to (X, S + B).
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Then (X, S + B) is purely globally +-reqular (along S) if and only if (SN, Agx) is globally
+-reqular (in the sense of Remark 6.4 if S is not irreducible).

When R is complete, notice that R = R and BY = Bg
Proof. By and using the notation of Corollary 7.4, we have a surjection

BY(X, A, Ox) — B (ST, Agx; Ogy).

Notice that BY(X, S + B; Ox) € H(X 5, Ox.) = R.
First suppose that (SN, Agy) is globally +-regular. Then so is the base change to the
completion (Sg, Agn) by Corollary 6.9. Notice that a priori, Sg may have even more com-
R

ponents than SN since if SN is such a component of SN, we may have that H°(SN, O¢v)

is only semilocal. However, this will not cause a problem for us; SN already perhaps had
multiple components. A
Regardless, BO(Sg, Ag; ﬁxﬁ) = HO(Sg, ﬁsg). Our surjectivity then implies that B2(X, A, Ox)

must contain an element z of H*(Xp, Ox_) = R mapping to 1 € HO(Sg, Og¢~). But such a
R

section z is necessarily a unit of R and so BY(X,S + B; Ox) = R = H°(Xg, Ox ). Hence
(X, A) is purely globally +-regular along S.

Conversely, if (X, S + B) is purely globally 4+-regular then B%(X, S + B; Ox) contains
a unit, and hence so does its image B°(S%, Agy; Ogn) € HO(SE, Ogy). Thus (S, Agy) is
globally +-regular by Proposition 6.8. o : O

Corollary 7.6. Let X — Spec R be a proper morphism of schemes such that H*(X, Ox) =
R satisfies Setting 7.1. Suppose that (X, S + B) is a pair where S and B have no common
components and S s reduced. Finally, assume that —Kx — S — B is big and semiample over
Spec R. Then (X, S + B) is purely globally +-reqular along S if and only if it is completely
purely globally +-reqular over R along S.

Note that the assumptions of this corollary are satisfied when X = Spec R.

Proof. By Corollary 7.5, we see that (X, S + B) is purely globally +-regular if and only if
(SN, Agn) is globally +-regular. That is equivalent to (S}, Agy) being globally +-regular
by Corollary 6.9. Hence applying Corollary 7.5 again, we seeR that this is equivalent to
(X3, (S + B)g) being purely globally +-regular as desired. O

Proposition 7.7 (Global to local). Suppose X is a normal Noetherian excellent integral
scheme with a dualizing complex and where every closed point of X has positive characteristic
residue field. Further suppose that (X, S+ B) is purely globally +-regular for a reduced divisor
S and that Kx + S + B is Q-Cartier. Then (X, S + B) is plt.

Proof. Choose x a closed point and let R = E; By Corollary 7.6 we may assume X =
Spec R. By Lemma 4.25, the map induced by Grothendieck duality:

HO(Y, Oy (Ky + Sy—[f*(Kx + S + B)])) — H(X, O)

is surjective for every projective birational morphism f:Y — X from a normal integral
scheme Y. This is the case exactly when [Ky + Sy — f*(Kx + S + B)] is effective and

exceptional over X (cf. Lemma 2.36), which, in turn, is equivalent to the requirement that
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| B] = 0 and that all the exceptional divisors on Y have discrepancy greater than —1. As
this is true for every projective birational morphism, (X, A) is plt. O

Our result also implies a surjectivity of H° under certain hypotheses, which implies that
SN is connected. Also compare with [KKM98, Theorem 5.48] and [Sho92, 5.7].

Corollary 7.8. Assume X — Spec R is proper where R satisfies Setting 7.1 and such that
H(X,0x) = R. Suppose that (SN, Ag~) is globally +-reqular (in the sense of Remark 6./
if S is not integral) and M — Kx — A is big and semiample. Then

HYX, ) — HO(SN, #|gn)

is surjective. As a consequence, if additionally —Kx — A is big and semiample, then Sg s
connected and thus integral and thus so is SN.

Proof. By Corollary 7.4, the map
BY(X, Arat) — BY(SE, Agyi M |5)

is surjective. By Proposition 6.8, we know that BO(Sg, Agy; M) = HO(Sg, M | gx) and so
R R R

since Bg(Xp, SE+Ag; M) C H(Xp, Mp), we obtain that HO(Xp, A) — H%Sg,%b};:)

is surjective. Thus HO(X,.#) — H°(SN, #|s~) is surjective as well, since R is faithfully

flat over R.
For the statement that Sg is connected, notice that we have that H°(Xj, Ox.) —

HO(SY, ﬁsg) =: A surjects and that H°(Xp, Ox ) = R is a local domain. Thus A is a
normal local ring as well. This implies that A is an integral domain. On the other hand
Sg is a disjoint union of normal integral schemes say [[S;. Thus A = [[ H(S;, Os,) is a
product of domains, and so cannot be a domain itself unless there is only one S;, meaning
that Sg is connected and integral as desired. U

In fact, we frequently also have that S is normal.

Corollary 7.9. Suppose (X, S + B) is a pair where Kx + S+ B is Q-Cartier, S is reduced,
and B > 0 is a Q-divisor with no common components with S. We assume that all closed
points of X are of positive characteristic. Let Agn denote the different of Kx +S + B on
SN with respect to (X, S + B).

Suppose that (SN, Agn) is globally +-regular or that (X, S+ B) is purely globally +-reqular
along S. In either case, S is normal.

Proof. Fix a closed point z € S € X. It suffices to show that g, is normal (note that

such localizations still imply the various pairs are globally +-regular). Thus we assume that
X = Spec Ox , = Spec R.

In view of Corollary 7.5, in either case we have that (SN, Agx) is globally +-regular.

Observe that (Sg, Agy| 51}) is still globally +-regular by Corollary 6.9. Now, if Sg is normal
R

then so is S, so we may assume that R = R, X = Spec R and observe that —(Ky + S + B)

is big and semiample since we are working locally. But now by Corollary 7.8 we see that the

composition Ox — Og — Ogn is a surjection, implying that S is normal. U
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Note in the above we needed to assume every closed point has positive characteristic residue
field since we do not believe that the globally +-regular hypothesis necessarily implies plt
without it, see Remark 6.3 for some additional discussion.

Corollary 7.10. Suppose that X — Spec R is proper where H°(X, Ox) = R and R satisfies
Setting 7.1. Next assume that (X, S+ B) is a purely globally +-regular (or completely purely
globally +-reqular over R) pair along S and —Kx — S — B is big and semiample. Then S is
normal and integral.

Proof. Since X is proper over R, every closed point of X has positive characteristic residue
field (since they must all map to the closed point of Spec R). We may now replace R by its
completion by Corollary 7.6 since if Sp is normal and integral so is S. We see that (SN, Agn)
is globally 4-regular by Corollary 7.5 hence S is normal by Corollary 7.9. Furthermore, S
is connected by Corollary 7.8. This proves that S is integral. U

As a corollary, we also recover the standard global generation result on Seshadri constants
[Dem93] (cf. Section 2.9, [Laz04, Chapter 5]).

Theorem 7.11. Let (X, B) be a pair of dimension n proper over Spec R where R is Noe-
therian complete local and has positive characteristic residue field. Let x € X be a closed
point such that at the point z, (X, B) is kit, X is regular, and Supp B is simple normal
crossing. Let M be a Cartier divisor with # = Ox (M) such that A := M — (Kx + B) is
big and semiample. Further suppose that e, (A;x) > a(E, X, B) where a(E, X, B) is the log
discrepancy of (X,B) along the exceptional divisor E of the blow-up m: X' — X at x.

Then BY(X, B; #) globally generates .# at x. In particular, x is not a base point of |M].

If X is nonsingular and B = 0, then a(E, X, B) = dim Ox_, = dim X under our hypothe-
ses. Hence we recover the usual formulation of global generation via Seshadri constants:
namely that e, (M — Kx;x) > dim X implies that M is globally generated at x.

Proof. Denote the log discrepancy a(F, X, B) by a. By definition, Kx: +7;!B+(1—a)E =
7 (Kx + B). Notice that for each rational 0 < t < €4, (A;z) we have that 7*A — tE is big
and semiample. Thus since €g,(A) > a, we have that

"M~ (Kxy+E+7,'B)=1"A+ Kx+7,'B+(1—a)E— (Kx,+ E+7,'B) =1*A—aE
is big and semiample, and so
(7.11.1) BY(X',E+ 7, 'B;7m*.#) — B°(E, Bg; Og)

is surjective by Theorem 7.2, where Kg + Bg = (Kx: + E + 7, !B)|g. Notice that E ~ P!
since X is regular at x. Furthermore, since Supp B is simple normal crossings, the compo-
nents of B are defined locally by part of a system of parameters of m,. Hence the support of
Bpg is made up of coordinate hyperplanes, which thus remain coordinate hyperplanes even
after base change of the residue field of x. We would like to assert that (E, Bg) is globally F-
regular but the residue field k(z) need not be F-finite and so neither is . However, because
the coefficients of Br are < 1, we have that the base change of (E, Bg) to the perfection
of k(z) is globally F-regular; indeed notice that the base change Bp remains coordinate
hyperplanes with coefficients < 1 and so (E, Bg) is globally F-regular by [SS10, Proposi-
tion 5.3] (since the section ring pair is strongly F-regular). Therefore (E, Bg) is globally

+-regular by Corollary 6.18. Thus, the right hand side of (7.11.1) is equal to H°(E, OF).
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Hence BL(X', E + n'B;n*.#) C H(X',7*.#4) contains a section which does not vanish
at z. But now, for 1 >¢ >0

BY( X E+7,'B;nm#) CBY X' (1 —e)E+7.'B;n*.#) C BY(X,B; #).

where first containment follows from Lemma 4.26 and the second follows from Lemma 4.19.
This completes the proof. O

Remark 7.12. The condition that B is simple normal crossing at x was only used to guarantee
that the exceptional divisor pair (£, Bg) was globally F-regular (up to appropriate base
change to make it F-finite). One can weaken the simple normal crossing hypothesis if one
instead assumes that (E, Bg) is globally F-regular, the proof is unchanged.

7.1. Globally +-regular birational morphisms of surfaces. In this subsection, we give
new proofs of [MST*22, Theorem 7.11 and Theorem G, in the case when the fixed big Cohen-

Macaulay algebra is equal to RT. Explicitly, we show that, locally, two-dimensional klt
and three-dimensional plt pairs (X, A) with standard coefficients and residue characteristics
p > 5 are globally 4+-regular and purely globally +-regular, respectively. In fact, we will
show much stronger results, which we shall need in the proof of the existence of flips: that
two-dimensional klt and three-dimensional plt Fano pairs are globally +-regular and purely
globally +-regular relative to a birational map. Our approach for proving these results is
the same as in [HW22a] which simplified the original strategy of [HX15].

In what follows, we continue to assume Setting 7.1 that (R, m) is an excellent local domain
with residue characteristic p > 0 and a dualizing complex.

We start by stating the following lemma, which generalizes the existence of Kollar’s com-
ponent for surfaces (c.f. [MST*22, Proof of Theorem 7.11]).

Lemma 7.13. Let (X, B) be a two-dimensional klt pair admitting a projective birational
map f: X — Z = Spec R such that —(Kx + B) 1is relatively nef, assuming that R is as
in Setting 7.1 and additionally has infinite residue field . Then there exist an f-exceptional
wrreducible curve C on a blow-up of X and projective birational maps g: Y — X andh: Y —
W over Z such that:

(a) g extracts C or is the identity if C C X,
(b) (Y,C + By) is plt,
(¢) (W,Cw + Bw) is plt and —(Kw + Cw + Byw) is ample over Z,
(d) h*(Kw + Cw + Bw) — (Ky + C + By) > 0,
where Ky +bC + By = ¢*(Kx + B) for C < Supp By, Cw := h.C # 0, and By := h,By.

We warn the reader that it may happen that ¢ is the identity and C' lies on X. Further,
we added the assumption that R/m is infinite to avoid potential issues with tie-breaking (cf.
Remark 8.6).

Proof. This follows by exactly the same proof as [HW22a, Lemma 2.8]. This is a consequence
of the two dimensional Minimal Model Program in mixed characteristic, see [Tan18b]. Note
that tie-breaking employs Bertini’s theorem for regular schemes, which in our setting is
known by Theorem 2.17. U

In this and the next result, we add an additional €D to the boundary as it will be important
in the proof of the existence of flips.
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Theorem 7.14. Let (X, B) be a two-dimensional klt pair admitting a projective birational
map f: X — Z = Spec R such that —(Kx + B) is relatively nef. Here the ring R is as
in Setting 7.1 and has residual characteristic p > 5. Suppose further that B has standard
coefficients. Then, for every divisor D > 0 and 0 < ¢ < 1 depending on D, we have that
(X, B+ ¢€D) is globally +-regular.

Proof. We may assume that R = H°(X, Ox) is normal. By Corollary 6.9 we may also
assume that R is complete. If the residue field of the complete ring R is not infinite, we
may further pass to the completion of the strict Henselization R’. Indeed, checking that
Ox — [.Oy(|f (B +¢eD)]|) splits for a finite dominant map f : Y — X can be checked
after such a base change. Hence we may assume that the residue field of R is infinite.

We apply Lemma 7.13 and use its notation. First, write K¢ + Be = (Kw + Cw + Bw)|c
where C is identified with Cy,. Further, write Dy = ¢;!'D and pick a divisor Dy, on
W such that Cy & Supp Dy and Dy < h*Dy + C. Since —(K¢ + B¢) is ample and
B¢ has standard coefficients, we must have that Cp = P! since by [Sta, Lemma 0C19],
9(C) = 0, and if Cy was not normal, then deg Bc_ > 2 for the anti-ample Q-Cartier divisor
Kc.+ Be. = (Kw + Cw + Bw)|c. by [PW22, Theorem 1.1]. Furthermore Bc_ also has
standard coefficients, since coefficient of B is either equal to a coefficient of Be or is at
least p times such a coefficient (hence it is at least £), and with p > 5, the presence of such
a coefficient would prevent ampleness of —(K¢_+ Be, ). Therefore, (Cf, Be,) is globally F-
regular, see [Wat91], and so is (C, B, +eDwlc, ) for 0 < e < 1. Hence by Corollary 6.18,
(C, Bc + eDw/|¢) is globally +-regular. Thus, by inversion of adjunction in the form of
Corollary 7.5, (W, Cw + Bw + €Dy ) is purely globally +-regular.

Proposition 6.28 and Condition (d) imply that (Y, C + By + €h*Dy/) is purely globally
+-regular. By Lemma 6.7 and Lemma 6.27, (Y, bC' + By + Dy ) is globally +-regular, and
so is (X, B + D) by Proposition 6.19 where the notation is as in Lemma 7.13. U

Corollary 7.15. Let (X, S+ B) be a three-dimensional plt pair and let f: X — Z = Spec R
be a projective birational map such that —(Kx + S + B) is relatively semiample, where R
satisfies Setting 7.1 and is of residue characteristic p > 5. Assume further that B has
standard coefficients, |B| = 0, and S is reduced. Then S is a normal prime divisor and
setting Ks + Bs = (Kx + S + B)l|s (with Bs the different), we have that (S, Bs + D) is
globally +-regular for every Cartier divisor D and 0 < ¢ < 1. Finally, (X, S + B) is purely
globally +-regular.

Proof. By Corollary 6.9 and Corollary 7.6 we may assume that R is complete. Let SN — S
be the normalization of S and write Kgn+Bgn = (K x+S5+B)|gv. Theorem 7.14 implies that
each component of (SN, Bgx +eD|gn) is globally +-regular (and hence (SN, Bgn +eD|gn) is
globally +-regular in the sense of Remark 6.4). Hence S is normal and integral and (X, S+ B)
is purely globally +-regular by Corollary 7.5 and Corollary 7.10. U

In fact, the proof even shows that (X,S + B + H) is purely globally +-regular for every
Cartier divisor H on X not containing any component of S, for 1 > ¢ > 0.
We also observe that Theorem 7.14 gives a new proof of the following results of a subset

of the authors, in the case when the fixed big Cohen-Macaulay algebra is equal to R+.
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Corollary 7.16 ([MST"22, Theorem 7.11]). Let (S, A) be a kit pair with standard coefficients
where S = Spec A for an excellent two-dimensional normal local domain (A, m) of mized
characteristic (0,p) for p > 5. Then (S,A) is globally +-regular.

Proof. Apply Theorem 7.14 to (X, B) = (S,A) and f the identity map. O

We also recall a special case of [MST 22, Theorem G] in our setting. The following proof
shows that the divisor S of a three-dimensional plt pair (X, S+ B) is normal at every closed
point where the residual characteristic is greater than 5 as long as either B has standard
coefficients or X is Q-factorial

Corollary 7.17. Let (X,S + B) be a three-dimensional plt pair where S is reduced, B has
standard coefficients and |B| = 0. Then at every closed point x € X where char k(x) > 5,
we have that S is normal at x and if S, = Spec Os ., then (S., Bs|s,) is globally +-regular
at (here Bg is the different of Kx + S + B along S).

Moreover, S is normal at every closed point x € X of residue characteristic p > 5 even
when B does not have standard coefficients, if we assume that X is Q-factorial.

Proof. Note first that since (X, S+ B) is plt, and since log resolutions exist for 3-dimensional
excellent schemes see Section 2.3, the completion of (X, S 4+ B) at any closed point is also
plt. Hence replacing X by its completion at a closed point z € X, we may assume that
X = Spec R for a three-dimensional complete local domain (R, m) of residual characteristic
p > 5. Here we used that the completion of a ring is faithfully flat, and normality descends
under faithfully flat extensions. Notice that X — Spec R is projective since it is the identity.
Let SN — S be the normalization of S and set Bgx to be the different of Kx + S + B along
SN. By [Kol13, Lemma 4.8] (S~, Bgn) is kit and so Corollary 7.16 implies that (SN, Bgn) is
globally +-regular. Hence S is normal by Corollary 7.10.

The last part follows as (X, S) is plt when X is Q-factorial. O

Remark 7.18. Suppose (X, S+ B) is a Q-factorial three dimensional plt pair over any excellent
finite dimensional domain R with a dualizing complex and whose residue characteristics at
closed points have characteristic zero or greater than 5. Then S is normal. Indeed, the above
result implies that S is normal at the closed points of positive residual characteristics. At
characteristic zero points this follows from the standard arguments [KM98, Proposition 5.51]
in view of [Mur21].

8. EXISTENCE OF FLIPS

Notation 8.1. All schemes in this section are defined over a complete normal Noetherian
local domain (R, m) with residue field R/m of characteristic p > 0. We set Z = Spec(R),
which will serve as the base of our flipping contractions.

For pairs (X, A) in this section, we will always assume that A is a Q-divisor and Kx + A
is Q-Cartier.

Remark 8.2. In this remark, fix the fraction field K of some excellent domain A. We say
that V = @, V; is a function algebra if it is an N-graded A-algebra with A C Vj being a
finite extension, V; C K finitely generated over A, and the multiplication on V' induced from
K (that is, V is a subalgebra of K[T]). We call V1) = @D, Vi the j-Veronese subalgebra of

V. We say that two function algebras V and V' are Veronese equivalent, if some Veronese
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subalgebra of V' is isomorphic to some Veronese subalgebra of V’. Finite generation of
function algebras is stable under Veronese equivalence (cf. [Cor07, Lemma 2.3.3]).

We encourage the reader to recall Definition 2.19 and Remark 2.20.

Outline 8.3. The goal of the present section is to prove the existence of flips for threefolds
in the situation of Notation 8.1 when p > 5.

Let us start with presenting the general idea of our proof, which largely follows the argu-
ment of Hacon and Xu in positive characteristic [HX15] (in turn motivated by the strategy
of Shokurov in characteristic zero, see [Cor07]). As explained in [KMO98, Lem 6.2], the main
goal is to show that for a pair (X, A) with mild singularities (such as klt) and with a flipping
contraction f : X — Z of relative Picard rank one'*, the sheaf of &;-algebras

P fOx(Im(Kx +A)))

meN
is finitely generated; the flip is then given as the Proj of this algebra. For this purpose we
may assume that 7 is affine, which reduces the problem to showing that the section ring

(8.3.1) R(X, Kx + A) = @ HX, Ox(|m(Kx + A))))

meN

is finitely generated over R = H°(Z, ;). An obvious way to approach this is to prove that
Kyx + A is semiample over R. Unfortunately, this will never happen as, by the definition of
a flipping contraction, Kx + A is anti-ample. This suggests that we should find a semiample
Q-divisor to which R(X, Kx+A) can be related. More precisely, we want to find a projective
birational morphism 7: Y — X and ¢ > 0 such that

(8.3.2) M, := Mob (iw*(KX + A)) is base point free, and kM; = M, for all k > 0.

Then R(X, Kx + B) and R(Y, M;) are Veronese equivalent by the definition of the mobile
part and by the stabilization. In particular, since the latter algebra is finitely generated by
base-point-freeness, so is the former.

It turns out that it is very hard to prove such a statement. For every ¢ we can find a
resolution for which M; is base point free, but the resolution will a prior: depend on 7, and
there are not enough tools to prove that kM; = M;, directly on Y. As usual in birational
geometry we address this problem by restricting to a divisor.

Suppose that there exists an irreducible relatively anti-ample divisor S with singularities
so mild (and being sufficiently transversal to A) that we can increase its coefficient at A so
that [A] = S and (X, A) is plt. Since the relative Picard rank is one and S is anti-ample,
—(Kx + A) is still ample and the new canonical ring is Veronese equivalent to the old one.
Hence, it is enough to show that our new R(X, Ky + A) is finitely generated. Flipping
contractions for which such S exists are called pl-flipping; note that this is quite a restrictive
condition: in the spirit of Bertini, we should be able to find a very ample divisor with mild
singularities, but not necessary an anti-ample one. Nevertheless, it is a standard argument
that if you can prove the existence of flips for pl-flipping contractions (called pl-flips), then
you can use them to construct all flips (cf. Proposition 9.13); briefly speaking, you pick an
arbitrary anti-ample S and then improve its singularities by running a special MMP on a
log resolution and this only needs pl-flips. The huge advantage of pl-flipping contractions is

Min our actual proof this assumption will be weakened
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that (Kx + A)|s = Kg + Ag for a klt pair (S, Ag) which suggests a possibility for applying
induction.

Alas, the finite generation of R(S, Kg+ Ag) is not enough to deduce the finite generation
of R(X, Kx + A) as the restriction map R(X, Kx + A) — R(S, Ks + Ag) need not be
surjective. It is easy to see, however, that if

Rg = image (R(X, Kx + A) — R(S, Ks + Ag))

is finitely generated, then so is R(X, Kx + A) (see the proof of Theorem 8.25). To this end,
we apply the idea mentioned earlier: we find a projective birational morphism 7: Y — X
such that M;|s satisfies the conditions of (8.3.2), where S’ is the strict transform of S, and
so R(S’, M;|g) is finitely generated. It turns out, after some work, that Rg is Veronese
equivalent to R(S’, M;|s/), and so is finitely generated as well, concluding the proof.

The finite generation of (8.3.1) for pl-flips is shown in the present section (Corollary 8.26),
and the next section contains the reduction to pl-flips. Below, we introduce the notation
needed to make the present outline more precise. Then, we give a more detailed explanation
in Outline 8.12. The assumption that p > 5 and A has standard coefficients will be needed
so that (S, Bg) is globally +-regular.

Definition 8.4. In the situation of Notation 8.1, a pl-flipping contraction over Z = Spec R
is a projective birational morphism f: X — Z of a plt pair (X,S + B) with |[B| = 0 and
S irreducible such that f is small (that is, Exc(f) is of codimension at least two), and —S
and —(Kx + S + B) are f-ample.

Note that we do not assume in Definition 8.4, as is usually the case, that p(X/Z) = 1.

8.1. Finite generation of the restriction algebra. In the entire present subsection we
work in the framework of the following notation. We do not state separately that this setting
is assumed.

Setting 8.5. In the situation of Notation 8.1, we assume additionally that R/m is infinite.
Let f: X — Z be a three-dimensional pl-flipping contraction of a plt pair (X, S+ B), where
dimR = 3 and Z = SpecR. Since X admits a small birational morphism to an affine
scheme, we can replace Kx by a linearly equivalent divisor so that Kx + S+ B is an effective
Q-divisor and does not contain S in its support. This choice of K is fixed for the whole
section.

We also assume that S is normal and (S, Bs +¢D) is globally 4+-regular for every effective
divisor D on S and 0 < e < 1 (depending on D), where K¢ + Bs = (Kx + S + B)|s. This
is the case, for example, if B has standard coefficients and p > 5 (Corollary 7.15).

Under the above hypothesis, Kx is not effective and Kx + S + B may contain some
components of B in its support. We choose Ky in the way as above so that Bg is the
different of (X, S + B) along S, where (Kx + S + B)|s = Ks + Bs.

Remark 8.6. The residue field R/m in Setting 8.5 is assumed to be infinite for the sole
purpose so that if we have

o a normal Noetherian excellent separated scheme X over R,
o a base-point-free line bundle L on X, and

o finitely many points z1,...,z, € Xu,
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then there is an element in the linear system |L| which does not vanish at any of the points
Z;.

Notation 8.7. For a log resolution 7: Y — X of (X, S+ B) as in Setting 8.5, we introduce
the following notation:

o S’ is the strict transform of S,
o Ky +S8"+ B =7"(Kx+ S+ B),
o Kg+Bg = (Ky+S5'+B’)|s, where we choose for K the representative (Ky +.5")|s,
o A= —-DB and
o AS/ = —BS/, so that AS/ = A/|S/-
Furthermore, for every integer ¢ > 0 such that i(Kx + S + B) is Cartier, we set
(8.7.1) M; := Mob(i(Ky + 5"+ B')), and
M; s = M;ls,

which makes sense as M; does not have S’ within its support. We note that it is vital to
remember that M; ¢ is the restriction of the mobile part, as opposed to the mobile part of
the restriction. Additionally write

1 1
Di = _.Mi> DLS’ = - i,57-
7 7

By definition, D; < D; whenever j(Kx + S + B) is Cartier and j | 1.

Remark 8.8. As 7 is a log resolution of (X, S + B), the induced morphism =g : S" — §
is a log-resolution as well. Additionally, Bg is defined in a way such that K¢ + Bg =
7|&(Ks + Bg) holds. This implies that Ags = —Bg is the discrepancy divisor of the pair
(S, Bs) on the log resolution S” — S.

Since (X, S + B) is plt, (S, Bg) is also klt. Therefore, by the definition of A" and by the
previous paragraph, we have that [A"] and [Ag ] are effective and exceptional over X and S,
respectively. We will also repeatedly use that every line bundle on Y or S’ is automatically
big (as Y — Spec R and S" — f(S) are birational).

Definition 8.9. In the situation of Notation 8.7, let 7: Y — X be a log resolution of
(X, S + B). We say that it is good if
o it is also a log resolution of (X,S + B + (Kx + S + B)) for Kx + S + B being the
explicit effective Q-divisor fixed in Setting 8.5, and
o §" — S factors through the terminalization S of (S, Bg) (which is unique as S is
two-dimensional)
Let ¢ > 0 be an integer such that i(Kx + S + B) is Cartier. Then we say that 7: ¥ — X
is compatible with i, if it is good and it is a resolution of the linear system |i(Kx + S + B)|.
The latter condition is equivalent to |M;| being base point free.

Observe that S is a terminal surface hence it is regular.

Remark 8.10. If m: Y — X is a good log resolution of (X, S+ B), then Supp(S’'+ B’ + M, +
Ex(7)) is simple normal crossing for every integer ¢ > 0 such that i(Kx + S + B) is Cartier.

When Y is compatible with ¢, which essentially will always need to be the case for us, then
the choice of 7, Y, and S” depends on i. Note that given 7,5 € N, we can always construct

Y which is compatible with both i and j (cf. [CP19, Lemma 4.5]). However, a priori, it
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might not be possible to construct Y which is compatible with all 7 € N simultaneously; a
posterior: such Y exists as a consequence of the existence of flips.

Remark 8.11. Given a sequence of maps Y "y — X such that Y — X and Y — X are
resolutions compatible with i, we have that h*D; = D;, where D; is calculated for Y exactly
as D, is calculated for Y. The same property holds for D; g.

We emphasize that if ¥ — X is not compatible with 7, then although D; = h,D;, it
need not even be true that D; ¢ = (hl 5,)*[)2.’5,, where S’ is the strict transform of S” and

Dz, 5 = Di|s (pushing forward for divisors does not commute with restrictions).

Outline 8.12. Having introduced the above notation, we are able to provide a more detailed
version of Outline 8.3. As explained therein, our goal is to show that

fRS = 1mage(32(X, KX + S+ B) — :R(S, KS + Bs))

is finitely generated. We will prove that, up to taking a Veronese subalgebra,
(8.12.1) Rs = H(S, 05(iDg))

for a semiample Q-divisor Dg on S, where (S, Bg) is the terminalization of (S, Bs). In
particular, this implies that Rg is finitely generated.

The Q-divisor Dy is constructed as follows. First, for a log resolution 7: ¥ — X compat-
ible with ¢ € N we show that D; g is a pullback of a Q-divisor D, g on S (Proposition 8.15).
Then, we define an R-divisor Dy as the limit of D, 5 for : — oo and show that, in fact, it is
a Q-divisor (Theorem 8.20). Next, we show that D; g coincides with Dg for divisible enough
i > 0 (Proposition 8.22). Last, we prove the validity of (8.12.1) (Claim 8.24), and conclude
that Rg is finitely generated (Proposition 8.23).

Let us emphasize that we use in an essential way that S is a surface, and so we cannot
run the above limiting process directly on a birational model of X.

The key to our strategy is to understand the divisors M;|ss which are restrictions of mobile
parts of it*(Kx + S+ B) to S’. Since Mob does not commute with restrictions in general, we
want to find a property of the divisors M; that could also be shared by M;|s,. The following
technical lemma identifies such a property.

Lemma 8.13. For every log resolution m: Y — X of (X,S + B), ifi,j > 0 are integers
such that i(Kx + S + B) and j(Kx + S + B) are Cartier, then Mob[jD; + A’"| < jD;.

Let us point out that from the viewpoint of Kawamata-Viehweg or B-lifting, the divisors
of the form [jD; + A’] work well, see (8.18.1).

Proof. Since [A’] > 0 is exceptional over X, we have that 7.0y (j(Ky + 5"+ B') + [A"]) =
Ox(j(Kx + S+ B)) = m.0y(j(Ky + 58"+ B')) (cf. Lemma 2.36). This implies that D
D + [A'] yields a bijection between |j(Ky + S+ B’)| and |j(Ky + S+ B’) + [A’]|, which
is what we use in the first equality of the following computation:

Mob([jD; + A']) < Mob(j(Ky + 5"+ B') + [A"]) = Mob(j(Ky + S+ B')) = jD;. O

In fact, to deduce the properties of D¢ mentioned in Outline 8.12, it is enough to show that
the identity of Lemma 8.13 holds also after restricting to S’, and the rest of the argument for

the existence of flips would be mostly characteristic free except for some technical issues with
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Bertini. In characteristic zero, this can be achieved by the Kawamata-Viehweg vanishing.
More precisely, the surjectivity of HY(Y, Oy ([jD; + A"])) — H(S', Os/([jD;s + Ag'])) in
characteristic zero (cf. (8.18.1)) immediately implies that Mob[jD; ¢ + Ags'] < jD; s Alas,
it seems impossible to show this surjectivity directly in positive and mixed characteristic, so
we obtain the above surjectivity only towards the end of this subsection in Proposition 8.22.

Remark 8.14. In the following proof we will use that the normalization f(S)N of f(S) is Q-
factorial. Indeed, by Lemma 2.34 in dimension two, we can pick an effective ample Q-divisor
HS ~Q —(KS + Bs) such that (S, BS + Hs) is klt. Hence (f(S)N, (f|5)*BS + (f|5)*Hs) is
klt as well.

Proposition 8.15. Let i > 0 be an integer such that i(Kx + S + B) is Cartier and let
7Y — X be a log resolution of (X, S + B) which is compatible with i. Then the divisor
M; s descends to S: it is a pullback of some divisor M,z on S.

We emphasize here that M; g is not defined as M; s was defined in (8.7.1), i.e. by restricting
a divisor from an ambient space; it is the pushforward of M; s to S.

Proof. As M; and M, g are integral, we have that

(8.15.1) (M;+ A=Ky +S"+{B}+ M, — 7" (Kx + S+ B), and
(8152) (M@SI + ASI—‘ = Kgf + {le} + Mi,sf - (W‘Sr)*(Ks + Bs)

Since M; — m*(Kx + S + B) is big and semiample (as both M; and —7*(Kx + S + B) are
big and semiample), Theorem 7.2 yields a surjection

(8.15.3) By(Y, 8"+ {B'}; Oy ([M; + A)) — B(S' {Bs}; Os:([Mysr + A1)

Applying Lemma 8.13 with j = ¢ yields Mob(M; +[A"]) = M;. Combining this with (8.15.3)
we obtain that every section in the vector space B(S’,{Bg }; Os/([M; s + Ag/])) vanishes
along [Ag/].

As the support of [Ag] is equal to the exceptional locus of g: S” — S (by definition of
terminalization), to prove the proposition it is enough to show that there exists an element
of |M; s/| which does not intersect [Ag/]. Assume by contradiction the opposite. Then, as
|M; | is free, there exists an element M € |M; ¢/| which does not contain any component of
[Ag/] in its support, see Remark 8.6. By our contradiction assumption we may then choose
x € Supp M N Supp[Ag].

Note that the exceptional locus of S’ — f(.5) is simple normal crossing and the normal-
ization of f(S) is Q-factorial by Remark 8.14. Therefore, we can pick an effective Q-divisor
F on S’ which is anti-ample and exceptional over f(S) and such that (S’, {Bs/} + F) is both
klt at x and simple normal crossing at x. Furthermore, by taking a suitable positive multiple
of F, for any 0 < § < 1 (to be determined later) we may find Fs > F such that at least
one of the exceptional divisors passing through = has coefficient 1 — ¢ in {Bg } + Fs (and
(8",{Bg } + F5) is still kIt at ). In particular, the log discrepancy of the exceptional divisor
of the blow-up at x with respect to this pair is at most 1 + . Then,

B(S". {Bg'}; Os/([ M5 + As])) 2 BY(S", {Bs'} + Fs; O ([ My s + Ag])),
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and the latter space, hence also the former, is free at  for sufficiently small § by Theorem 7.11.
Indeed,

(8154) Esa([Mi,S’ -+ Asr—l — (Ks/ + {Bsf} -+ F5); ZL’) Z Esa(M — F5; ZL’)
Z 6sa(]\4 - F,LE) > 6sa(]\4; LE‘) Z 17

where [M; ¢+ Ags/ | —(Kg +{Bg } + Fs) ~og M —Fs—(m|s)*(Ks+ Bg) is semiample (8.15.2),
and
o in the first inequality we used that —(7|s/)*(Ks + Bs) is big and semiample,
o in the second and third inequality we used that —F' is ample, and that Fj is a positive
multiple of F, and
o the last inequality is a direct consequence of Lemma 2.56.

Using (8.15.4), we may now choose 0 < § < 1 to be such that e, (M — F,z) > 1446, resulting
in Fy satisfying e, (M — Fs,x) > 1+ 6, which allows us to apply Theorem 7.11.

The freeness of B°(S",{Bs/}; Os/([M; s + As/])) at x is a contradiction to the fact that
every section of this linear system vanishes along [Ag/]. O

Note that M, 5 is independent of the choice, in the above proposition, of a log resolution
Y — X compatlble with ¢ by Remark 8.11, and so it exists and is unique for every
integer ¢ > 0 such that i(Ky + .S+ B) is Cartier. Therefore, we may introduce the following
notation, which is assumed until the end of this subsection.

Notation 8.16. We set

D,g:=-M3 Dg:= lim D5
0,5 ;s S Zgnoo
where the limit is taken over all integers ¢ > 0 such that i(Kx + S + B) is Cartier; it exists
by Lemma 8.17. Note that D, 5 is an R-divisor.
Further, for any good log resolution 7: Y — X of (X,S + B) (in the situation of

Notation 8.7), write Dg := ¢g*Dg, where 5’ 9,5 1 S s the given factorization. Last,
set Kg + Bg = h*(KS + Bs)

We emphasize that Dg cannot be defined as a limit of D; ¢ directly on S’ as D; ¢ does
not have good properties unless the log resolution 7: Y — X is compatible with i (cf.
Remark 8.11), in which case S’ depends on 1.

We need the following lemmas.

Lemma 8.17. The limit Dg, as defined in Notation 8.16, exists. It is a nef R-divisor, and
moreover, D;5 < D, 5 when j(Kx + S+ B) is Cartier and j | i. In particular, D;5 < Dg.

Proof. Let i,j > 0 be integers such that i(Kx + S + B) and j(Kx + S + B) are Cartier.
Pick a log resolution 7: Y — X which is compatible with i, j, and ¢ + j. By definition,
M; +M; < M;;. Hence, M; oo +M; s < M;,; s, and so Mi7§+M < M,, ;5. In turn, this
gives

LD,f_‘_LD,, <D. .=

Z+] 7,5 Z‘l‘] 7,8 = i+3,S"
Further, note that D; 5 < Kg+ By (recall that Ky + 5+ B is an explicit effective Q-Cartier
Q-divisor without S in its support; by restricting to S and pulling back to S this determines
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the right hand side as an effective Q-divisor). In particular this ensures that there is a fixed
finite set of irreducible divisors which contain the support of every D, 3.
The existence of the limit now follows from the fact that any sequence of real numbers

{ai}iez., which is bounded from above and satisfies ——-a; + -a; < a;+; is convergent.

i+j i+
Moreover, this condition implies that a; < a; when j | 7, and so a; < lim,___ a;. O

Lemma 8.18. Leti > 0 be an integer such that i(Kx + S+ B) is Cartier and let m: Y — X
be a log resolution of (X,S 4+ B) which is compatible with i. Then the following map is
surjective for every j > 0:

By (Y, 8" +{B' = jDi}; Oy([iD; + A")) — B(S',{Bs: — jDisr}; Os([jDis + Asi]))-
Proof. Using the identity [L] = L + {—L} for any Q-divisor L, we have that
(8.18.1) [jD;+ A=Ky + S +{B —jD;}+jD; — 7*(Kx + S + B), and
(8.18.2) [iDis+ As'| = Kgo +{Bsr — jD; s} + jD; s — (7|s)"(Ks + Bs).
Since jD; — m*(Kx + S + B) is big and semiample, we obtain the sought-after surjection by

Theorem 7.2. Here, we used that (Ky + 5"+ {B' — jD;})|ss = K¢ + {Bgs — jD; s} which
follows from Remark 8.10. O

Lemma 8.19. Fiz aq,...,a; € R, and let G be the image of the additive semigroup
{Gar,. . jaw) | j € Lo}

under the natural projection \: RF — R*/ZF of topological groups. Let G be the closure of
G and set T :=R*/Z*. Then:

(a) G is a closed topological subgroup of T, and hence it is a disconnected union of finitely
many translates of the connected component a of the identity, and
(b) )\_1(@0) = 7ZF + L for an R-linear subspace L of R¥,
In particular, for every e > 0 we can find a natural number j > 0 and integers mq, ..., my
such that |m; — ja;| < € for every i.

Proof. By the main theorem of [Wri56], G is a closed subgroup of T. In particular it is
compact, which implies (a). The rest follows from [Bou98b, Ch. 7.2, Thm. 2]. O

Theorem 8.20. The R-divisor Dg is in fact a semiample Q-divisor.

Proof. First, as (S, Bg) is klt, it is Q-factorial. Second, by the base point free theorem for
Noetherian excellent surfaces [Tan18b, Theorem 4.2 and Remark 4.3] and since —(Kz+ Byg) is
nef and big, we know that every nef Q-divisor on S is not only Q-Cartier, but also semiample.
This we will use multiple times during the proof. Additionally, it also reduces our goal to
showing that Dg is a Q-divisor.

As S — f(9) is a projective birational morphism of Noetherian excellent surfaces, there
are finitely many irreducible curves Ei, ..., E, on S that are exceptional over f(S). Addi-
tionally, we can reorder them so that F, ..., E, for some integer r > 0 are exactly the curves
for which E; - Dg = 0. As Dy is nef, we have that Dg- E; > 0 for r <7 <s. Set

V={D|D-E;=0for1<i<r}CDiv(5)®;R,
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where Div(S) is a free abelian group on all (not necessarily exceptional) prime divisors on
S. We endow Div(S) ® R with the standard Euclidean metric by setting |G| = 1 for every
irreducible divisor G.

Since V is defined over Q, we can pick Z-divisors Ny, ..., Ny € V such that Dg = > a; N;
for some positive real numbers aq,...,a;. Moreover, we can re-choose N; to be in a 0-
neighborhood of ¢Dg for some ¢ > 0, where ¢ is the diameter of the fundamental paral-

lelepiped in the lattice spanned by the originally chosen N;, so that we obtain:

N;
(8.20.1) HDg il <,
q
Explicitly, ¢ is chosen big enough so that (Dg — %) -E; < Dg- E; for all r < j < s (this
is possible as the right hand side is positive). In particular, N; - E£; > 0 for all » < j < s.
Moreover, since N; € V', we have that N; - E; = 0 for all 1 < j <. This implies:
o for every 1 < j < s we have ;- E; = 0 if and only if Dg- E; = 0, and
o N; are nef (and hence semiample) over f(95).

Therefore, by replacing N; by their multiples (this might render HDg — % < 1 invalid

but we will not need this going forward), we may assume that:

o the linear systems | N;| define the same birational morphism a: S — S+,
o a contracts exactly the curves Fy,..., E,., and
o N; = 3a*N;", where N;" is a very ample divisor on S*.
Recall that Dg = > a;N;. Thus Dg = a*Dg-+ for the R-divisor Dg+ = _ 3a;N;" on ST. We
also set Bg+ = a,Bg and Ag+ = a,Asg.
Assume by contradiction that Dg is not a Q-divisor. Under this assumption, we claim
that we can find an integer 7 > 0 and a base point free Weil divisor N on S such that
(a) [1Dg — N|| <1, and
(b) jDg — N is not effective.

For condition (a), we can just set N = myNj + ... my N} for positive integers my, ..., my
and j > 0 as in Lemma 8.19. However to guarantee also condition (b) we have to do a more
involved argument. We consider the image W C V' of the vector space L from Lemma 8.19
under the linear map ¢: R¥ — Div(S) ® R given by ¢: (x1,...,2%) = 1Ny + ... + 2, Np.
Note that W is a non-trivial vector space; indeed, otherwise the classes of jDg = " ja; N;
in Div(S) ® R/Div(S) for integers j > 0 would belong to a finite subset. Hence, Dg would
be a Q-divisor, contradicting our assumption.

The effective cone in W (that is, the subset of all R-divisors in W with coefficients at
prime divisors being at least 0) is a closed cone which does not contain a line. Hence,
we can pick I' € W in a small neighborhood of 0 which is not effective. Additionally, by
the definition of L in Lemma 8.19 and by the closedness of the effective cone, we can find
J > 0 and positive integers my, ..., my such that jDg — N is sufficiently close to I', where
N =myNy+...+myNy. Hence, jDg— N is not effective and additionally ||jDs— N|| < 1.
This concludes the above claim and the proof of conditions (a) and (b). Since both jDgz
and N are pullbacks from S, we obtain that in fact jDg+ — a,N is not effective. Further
we remark that in the above construction we may assume that j is divisible enough so that
Jj(Kx + S + B) is Cartier. Indeed, for this we just have to replace (ai,...,a;) with an

adequate multiple at the beginning of the argument.
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Since N; = 3a*N;" for every i, we see that %N is a pullback of a very ample divisor from
St and we can pick a curve C' ~ %N on S which does not contain any of the exceptional
divisors of S — f(S) in its support (Remark 8.6).

Claim 8.21. [jD,; 5+ Ag| — jD;3 is a-exceptional for all i € N such that i > j and j | i.

Explicitly, we pick i > j so that ||jD; 5 — N|| < 1. Note that since the images of D, g and
D, agree on f(S), we have that [jD,; 5+ Ag| — jD;z is automatically exceptional over
f(9).

Proof of claim. Let m: Y — X be a log resolution compatible with 7 and j and let S” be
the strict transform of S on Y as before. By re-choosing C' we can assume that it does not
contain the image of Exc(S’ — S) under the map S’ — S in its support. Let C’ be the
strict transform of C' on S’. By the above, we can assume that C” is a pullback of C', contains
no curves exceptional over f(S) in its support, and is disjoint from the exceptional locus of
S" — ST. Note that C” intersects every curve which is exceptional over f(S) but horizontal
over St.

Since Mob[jD; + A’] < jD; (see Lemma 8.13), every section of H(Y, Oy ([iD; + A']))
vanishes along [jD; + A"] — jD; > 0 (here, jD; = M; is integral, D; > D;, and [A"] > 0).
Thus, by Lemma 8.18, all the sections of

B (S" {Bs — jDis}; Os([jDis + As']))

vanish along £ := [jD; ¢ + Ag'| — jD; s > 0. But the above space is base point free at
every point x € C'NE by Theorem 7.11, and so there is no such point, concluding the proof.
We can invoke Theorem 7.11, because

€sa([jDisr + Ag'| — (Kg +{Bs — jDis}); ) > €a(jDi s )

= Esa(jDi,@y)a
= €a((D; 5 — N) +3C5y) > 2,

where v is the image of z on S. Here:

o the first inequality holds, because [jD; s + Ag/| — (Ks/ + {Bgs — jD;s}) — jDi s is
big and semiample (see (8.18.2) in the proof of Lemma 8.18)
o the first equality holds, because D; s/ is a pullback of D, 5 and z is not contained in

the exceptional locus of §" — S,
o the second equality holds, because 3C' ~ N, and
o the second inequality holds by Lemma 2.56 for k =3 asy € C'and ||jD;5 — N| < 1.

U

Claim 8.21 implies that a,.N < [jDg+ + Ag+| = jD; g+ < jDg+, where the first inequality
follows from 0 < |[jDg+ — a.N|| < 1 and the fact that Ag+ has coefficients in (—1,0). Here
we put the norm on Div(S*) the same way as on Div(S), and hence 0 < ||jDg+ —a.N|| < 1
follows from 0 < ||jDg— N|| < 1, as the former contains a subset of the non-zero coefficients
of the latter.

Therefore, we obtained a,N < jDg+, which contradicts the fact that jDg+ — a,/N is not

an effective R-divisor. O
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Proposition 8.22. Let i,j5 > 0 be integers such that i is divisible by 7 and 1 > j. Further
assume that j(Kx + S + B) and jDg are Cartier. Let m: Y — X be a log resolution
compatible with i and j. Then the following identity holds:

Mob[jD; s + Ag'| < jDj g
In particular, if j is chosen so that jDyz is base point free, then D,z = Ds.
Explicitly, we pick i 3> j so that [jD; 5] = jDg and the coefficients of {—jD, 5} are < 1.
Proof. Since Mob[jD; + A"] < jD; by Lemma 8.13, it suffices to show that
HOY, Oy ([jD; + A)) = H(S', Os([iDiss + As])

is surjective. By Lemma 8.18, we have a surjection

By(Y, 8" +{B' ~ jDi}; Os([jD; + A')) — BY(S'.{Bs — jDis}; Os([jDis + As'1)),
and so we will be done if we show that the right hand side equals H°(S’, Os/([jD;.s + Ag])).

Since j Dy is integral, jD, 5 < jDg (Lemma 8.17), and for j < 4, we obtain that [jD, 5] =
jDyg and the coefficients of {—jD, g} are < 1. In particular, (S, Bg + {—jD,3}) is kit and
globally +-regular for i > 0. Indeed, this follows from Proposition 6.28 as (S, Bs + ¢G) is
globally +-regular for every effective divisor G and 0 < € < 1 by assumptions. Therefore,

B°(S',{Bs — jDis'}; Os/([jDis + As'])) = B*(S, Bs + {~jD; 5}: O5([D; 51))
=B"(S, Bs + {~jD;3}; O5(jD3))
= H°(S, 05(j D))
= H°(S", Os/([1Dis + As')),
where the first equality follows by Lemma 4.20 and Proposition 8.15, the third one by
the global +-regularity of (S, Bg + {—jD;35}) (see Lemma 6.11), and the fourth one by
Lemma 4.20 again. This concludes the proof of the first part of the proposition.
Since H°(S, O5(jDg)) = H°(S', Os/([jD;s + As'])) by Lemma 4.20, we get that
MOb(]Dg) = g« Mob [jDi,S’ + AS’—I S ijE'
As jDsg is base point free, we thus get jDg < jD;5. By Lemma 8.17, the other inequality
holds true, too, hence jD; g = jDg. O

An important difficulty in the proof of the above result is that a priori {—jD; ¢} < 1
and [jD; s/] = jDg need not hold for i > 0 (because S” depends on ).

Proposition 8.23. With notation as above, the restricted algebra
Rs = P im (H(X, Ox([i(Kx + S+ B)|)) — H"(S, O5(|i(Ks + Bs)])))
ieN
1s finitely generated.
Proof. The proof proceeds as in characteristic zero and is based purely on Proposition 8.22

(see [Cor07, Chapter 2]). For the convenience of the reader, we provide a slightly different

argument that avoids a direct use of b-divisors.
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First, it is enough to show that any Veronese subalgebra of Rg is finitely generated

(cf. [Cor07, Lemma 2.3.3]). We will show that iRg) is finitely generated for j > 0 as in
Proposition 8.22, that is, satisfying that j(Kx + S + B) is a Cartier divisor and jDg is a
Cartier base point free divisor.

Claim 8.24. For every ¢ > 0 divisible by j and resolution m: Y — X compatible with i, the
following map is surjective
HY(X,Ox(i(Kx + S+ B))) = HOLY, Oy ([iD; + A']))
— H(S', 0s([iDs,s + As'])) = H(S, O5(iD; 5)).

Assuming the claim, we finish the proof. Using Proposition 8.22 we have that iD, 5 = iDg

and so iRg) is equal to
D H°(5. 05(iD5)) € P H (S, O5(i( K5 + By))) = €D H(S, Os(i(Ks + Bs)))-
Jlé Jlé Jlé

Since Dg is semiample (Theorem 8.20), R(Sj) is finitely generated.
Proof of Claim 8.24. The proof is completely analogous to that of Proposition 8.22. Note
that ¢D; and iD; ¢ = iDg are integral, and so it is not necessary to assume that ¢ > 0.
Moreover, the first equality in the statement of the claim holds by Lemma 8.13 for i = 7,
while the second identity is a consequence of Lemma 2.36 as [Ag/| > 0.

Recall that (.S, Bg) is globally 4+-regular, and so is (5, Bg) by Proposition 6.28. Therefore,

B(S", {Bs'}; Os/([iD;s + As'])) = B'(S, Bs; 05(iD; 5))
= H°(S, O5(iD;5))
= H°(S", Os([iDss + As])),

where the first equality is a very special case of Lemma 4.20, the second one follows by the
global +-regularity of (S, Bg) (see Lemma 6.11), and the third one by Lemma 2.36.

By Lemma 8.18, we have a surjection
BY (Y, S"+{B'}; Os/([iD;+A"])) — BY(S", {Bgs'}; Os([iD; g+ As])) = HY(S', [iD; s+ As])
which concludes the proof of the claim. O

The claim completes the proof. 0

8.2. Conclusion. In this subsection we conclude the proof of the existence of flips. For
the sake of precision, we abandon the notions introduced in Subsection 8.1, but we keep
Notation 8.1 introduced at the beginning of Section 8. That is our base is a complete Noe-
therian local domain (R, m) with residue field R/m of characteristic p > 0, and Z = Spec(R).

Theorem 8.25. Let f: X — Z be a three-dimensional pl-flipping contraction of a plt pair
(X, S + B) with Q-boundary over the affine scheme Z = Spec R with S = |S + B]| an
irreducible, normal, Q-Cartier divisor. Suppose that R/m is infinite, Kx +S5 + B ~zg bS
for some b € Q, and that (S, Bs +¢eD) is globally +-reqular for every effective divisor D and
0 <e <1, where Kg+ Bs = (Kx + S+ B)|s. Then the canonical ring

R(X,Kx + S+ B) = @ HUX, Ox(|m(Ex + S + B))))

meN
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is finitely generated. In particular, the pl-flip of (X, S + B) over Z exists.

Proof. This is a consequence of Rg being finitely generated by Proposition 8.23 (note that
the assumptions of Setting 8.5 are satisfied). Explicitly, we follow the explanation from
[Cor07, Lemma 2.3.6]. Consider a divisor G ~ S which does not contain S in its support. Let
k,l € N be such that k(K x +S+ B) ~ 1S. It is enough to show that the Veronese subalgebra
RK)(X, Kx+S + B) is finitely generated, and so that R® (X, S) is finitely generated. Finally,
this reduces to showing that R := R(X, @) is finitely generated. From Proposition 8.23 we
can deduce, following a similar argument to that above, that

R° = image(R(X,G) — @ K(S))

1€EN

is finitely generated, where K (5) is the fraction field of S. Here, the map is induced by the
restriction Ox (iG) — K (S).

Let K(X) be the fraction field of X and choose t € K(X) such that div(t) + G = S. By
definition ¢ € R;. We claim that the kernel of the above map R(X,G) — R(S, G|s) is the
principal ideal generated by ¢ which concludes the proof. Indeed, then R(X, i) is generated
by t and any homogeneous lifts of the homogeneous generators of R°. To show the claim
suppose that the image of ¢ € R,, is equal to 0 € R°. Then div(¢) +nG — S > 0. Hence, we
can write ¢ = t¢’, where div(¢’) 4+ (n —1)G > 0. In particular, ¢’ € R,,_1, and ¢ € (t)R. O

Corollary 8.26. Let f: X — Z be a pl-flipping contraction of a three-dimensional plt pair
(X, S+ B) over the affine scheme Z = Spec R where S = | .S+ B] is a Q-Cartier irreducible
diwisor, B has standard coefficients and p > 5. Suppose that Kx + S 4+ B ~zq bS for some
b€ Q. Then the pl-flip of (X, S + B) over Z exists.

Proof. This follows from Theorem 8.25 and Corollary 7.15, except that the former result
assumes that R/m is infinite. However, one can reduce the statement to the case when R/m
is infinite by applying the base change to the completion of the strict henselization of R, see
Lemma 2.32. This works first because of the statement of Lemma 2.32, and second because
this is a faithfully-flat base-change, so R(X, Kx + S + B) is finitely generated if and only
if R(X', Kx+ 5"+ B’) is finitely generated, where X', S” and B’ are the base-changes of
X, S and B, respectively. Moreover, S’ is irreducible; indeed, since it is anti-ample over the
base change Z' of Z, it must contain the exceptional locus of X’ — Z’ which is the fiber
over m’ and is necessarily connected. As S’ is a disjoint union of its irreducible components
by Lemma 2.33, each of which must intersect the fiber over m’, S’ can only have a single
irreducible component. U

As it will be needed for running a non-Q-factorial MMP, we also prove the following
proposition inspired by [HW22b]. It shows the existence of “one-complemented” flips for
arbitrary residual characteristics even when the coefficients are not standard. It is called
one-complemented because the divisor A in the boundary has coefficient 1.

Proposition 8.27. Let f: X — Z be a small projective birational contraction of a three-
dimensional dlt pair (X, S+ A+ B) over the affine scheme Z = Spec R such that S and A are
effective Q-Cartier Weil divisors, S s irreducible, and B is an effective Q-divisor satisfying

| B| =0. Assume that —(Kx +S+ A+ B), =S, and A are f-ample. Further, suppose that
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Kx+S+A+ B ~zqbS ~zqcA for some b,c € Q. Then the canonical ring

R(X, Kx + 5+ A+ B) = @ H(X, Ox(lm(Kx + S+ A+ B))))

meN

1s finitely generated.

Proof. By the same argument as in Corollary 8.26 (applying Lemma 2.32 and Lemma 2.33
to (X,S5 + B)) we can assume that R/m is infinite. Further, since Kx + S + B is f-anti-
ample and Q-linearly equivalent to a multiple of Kx + .5 + A + B, it is enough to show that
R(X, Kx + S + B) is finitely generated.

Write Kg+ Az + Bg = (Kx + S+ A+ B)|s, where A = A|; and S is the normalization
of S. By adjunction, (S, As + Bg) is dlt. Since S is Q-factorial, we may perturb Ag a
bit, to a Q-divisor Ag such that C' = LA’SJ is a prime divisor which is not contracted,
(S, A% + Bg) is plt, and —(Kg + A + Bg) is ample. By Lemma 8.28, (S, A+ Bg+eD) is
purely globally +-regular for every effective Cartier divisor D with no common component
with C' and 0 < ¢ < 1. Hence the log Fano pair (5, Bg+ D) is globally +-regular for every
Cartier divisor D and 0 < € < 1; in particular, S is normal by Corollary 7.9. Therefore,
R(X, Kx + S+ B) is finitely generated by Theorem 8.25. O

Lemma 8.28 (cf. [HW21, Lemma 4.1]). Let (S,C + B) be a two-dimensional plt pair ad-
mitting a projective birational (onto its image) morphism f: S — Spec R such that C is not
contracted and —(Kg + C + B) is f-ample. Then (S,C + B) is purely globally +-regular.

Proof. We replace Spec R by the normalization of the image of S. To show that (S,C + B)
is purely globally +-regular, it suffices to apply Corollary 7.5 and the following claim (here
Ko+ Be = (Ks+ C+ B)|s).

Claim 8.29. The pair (C, Be) is globally +-reqular.

Proof. If there was no pair, this would just be the direct summand theorem for 1-dimensional
rings'®. In general, we pass to a finite cover to remove the boundary Beo. Note C is affine,
one-dimensional, normal and hence regular, and |Bo| = 0. It suffices to show that for
any finite cover x : ¢ — C (with €’ integral and k*B¢ integral), ¢ — k.Oc/(K*Bc)
splits. Since C' is affine, this may be checked at the stalk of a closed point @) of C'. Thus
consider a DVR V' = 0¢ g with uniformizer v and Be/|specv = § div(v) with a < b coprime
integers. Form the extension V' = V[v'/’]. The map V — V' sending 1 + v%? splits by
construction. Since V' is also regular, any further finite extension V' C W is split. Hence
the map V — W sending 1 +— v%? splits. This shows that Oc g — (k.Oc(k*Bc))g splits
and proves the claim. O

The claim completes the proof. 0

9. MINIMAL MODEL PROGRAM

We develop the Minimal Model Program for arithmetic threefolds.

1omhig just uses that if C C D is a finite extension, then D is finite flat and hence C' C D splits.
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Setting 9.1. In this section we work over a base scheme T" which (for us) is always quasi-
projective over a finite dimensional excellent ring R admitting a dualizing complex. Note
that this includes the cases where T is purely of zero or positive characteristic.

Throughout this section, the dualizing complex on R is fixed. This in turn defines a unique
dualizing complex, and so a canonical sheaf, on all schemes which are quasi-projective (or
constructed therefrom by ways of localisation or completion) over R.

Whenever we use the word curve, it will implicitly mean curve over T, that is a one
dimensional scheme which is proper over a closed point of T. Recall that curves can be of
codimension one even when X is of dimension three (cf. Remark 2.23).

Unless otherwise stated, a field k& will refer to the residue field of T at a suitable closed
point. Furthermore, in this section, all boundary divisors A will be R-divisors, unless other-
wise stated. Notions such as semiampleness or nefness are assumed to be relative, typically
over the base T

Recall from Section 2.6, that the key examples of T" include quasi-projective schemes over
Dedekind domains or spectra of complete Noetherian local domains.

The argument has the following steps:

Step 1 We prove the cone theorem and the existence of pl-contractions in the pseudo-
effective case.

Step 2 We construct flips with arbitrary coefficients in the Q-factorial setting using the
existence of pl-flips with standard coefficients proven in the previous section.

Step 3 We prove the base point free theorem for nef and big line bundles using the existence
of “one-complemented” pl-flips (Proposition 8.27).

Step 4 We show the termination of any sequence of flips when Kx + A is pseudo-effective
using [AHKO07], and conclude the proof of the MMP in this case.

Step 5 We prove the base point free theorem in its most general form, for non-big line
bundles.

Step 6 We show the full cone theorem, and deduce termination with scaling and the exis-
tence of Mori fiber spaces when Kx + A is not pseudo-effective.

Steps 2 and Step 3 are independent: Step 2 is based on Corollary 8.26. It requires the
assumptions of Q-factoriality and characteristics different than 2,3 or 5, but otherwise has
no special requirements.

On the other hand, in Step 3 we need to run a non-Q-factorial MMP in the case relative
to a birational morphism [Kol21]. This means that we cannot apply Corollary 8.26 directly,
because it assumes that the coefficients are standard, and we cannot apply the existence of
flips with arbitrary coefficients obtained in Step 2 either due to the Q-factoriality restrictions.
Since we work with a special MMP relative to a birational morphism, the flipping contractions
occurring in this MMP are “one-complemented”, and so we can apply Proposition 8.27.

Also, observe that the argument of [AHKO7] used in Step 4 works when Ky + A ~p
M for some effective R-divisor M and terminalizations exist. The former condition holds
automatically when Ky + A is pseudo-effective, (X, A) is klt, and X is not defined over
a closed point of T' (for example, when X is of mixed characteristic) by applying the non-
vanishing theorem for varieties of dimension at most 2 over the generic point of the image
of X in T [Fujl2, Theorem 7.2]. To construct a terminalization we run an MMP which

terminates for terminal pairs by Shokurov’s argument.
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Remark 9.2. The cone theorem in the pseudo-effective case holds by the same arguments as
in [Kee99, DW22] while the existence of pl-contractions follows from [Wit22]. The argument
behind Step 2 is due to [Birl6]. The base point free theorem for nef and big line bundles
was proven in characteristic p > 0 in [Birl16] and [Xul5] based on Keel’s theorem and the
generalized MMP ([HX15, Birl6]). The existence of log minimal models in the pseudo-
effective case in positive characteristic was proven in [Birl6]. The general version of the cone
theorem, the termination with scaling, the existence of Mori fiber spaces, and the base point
free theorem for nef line bundles in positive characteristic is due to [BW17] (see [CTX15]
for partial results). The generalization of some of the above results from algebraically closed
fields to arbitrary F-finite fields is due to [DW22] (cf. [GNT19] for the case of perfect fields).
We give different proofs for most of these results in the relative situation.

Remark 9.3. In [HW22b] it is proven that the Minimal Model Program is valid over three-
dimensional singularities and in semi-stable families in all characteristics p > 0. In the
process of showing the base point free theorem, we generalize the former result to mixed
characteristic (Theorem 9.15), and the latter should go through with almost no modifica-
tions. Similarly, most of our results can be extended to include p = 5 in the general case
using the arguments of [HW22a] as has been verified in [XX21].

Remark 9.4. The only place in this section where the theory of R-divisors is used in an
essential way is the proof of the non-Q-factorial MMP (Theorem 9.15) which in turn is
employed to show the base point free theorem in the big case (Theorem 9.17). In particular,
readers interested in the case of QQ-boundaries only, may assume in the remaining steps that
all the boundaries are Q-divisors (in Theorem 9.34 which is used to prove termination with
scaling, Theorem 9.35, one should only consider points of the polytope which are rational).
Note that in [BW17] it was essential to consider the full power of the MMP for R-divisors
as they come up as limits of Q-boundaries in an essential way. This is not the case in our
arguments in Steps 5-6, as we employ a different strategy of proof.

Before proceeding, we recommend the reader to review Remark 2.23, Remark 2.25, and
Remark 2.26, which discuss the unexpected behaviour of the dimension of Cartier divisors
and localisation at Q.

9.1. Existence of flips and background on termination. We start by stating the exis-
tence of pl-flips in our setting, and recalling the statement of special termination. First we
tackle the case in which X is a scheme of pure characteristic zero — we must deal with the
generalization from varieties to Noetherian excellent schemes. Our argument above can be
adapted to this situation, where we would use the fact that B%, = H° for a klt scheme of
characteristic zero and deduce the relevant liftings from [Mur21]. However, we believe it is
more straightforward for the reader to follow the original argument as explained in [Cor(7]
which goes through verbatim, given the appropriate vanishing theorems:

Proposition 9.5. Suppose in addition to Setting 9.1 that R is a domain with all residue
characteristics being zero. Let f: X — Z be a three-dimensional pl-flipping contraction
where Z is quasi-projective over R, (X,S + B) is plt, S = |S + B] is a Q-Cartier prime
divisor, B s an effective Q-divisor, and Kx + S + B s Q-linearly equivalent to a multiple
of S. Then the pl-flip of (X,S + B) over Z eists.
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Proof. As mentioned above, this follows from the proof of [Cor07, Theorem 2.2.25] (it is
assumed therein that X is Q-factorial and p(X/Z) = 1, but our weaker assumptions are
sufficient). There are various ingredients, which mirror the steps used in Section 8, and
all of which go through using the existing proofs as application of [Mur21, Theorem A] in
characteristic zero. We have normality of plt centers [Kc92, Corollary 17.5], plt inversion
of adjunction [KMO98, Theorem 5.50] and existence of projective resolutions of singularities
with ample exceptional divisors (Proposition 2.14). O

Proposition 9.6. Let f: X — Z be a three-dimensional pl-flipping contraction of a plt pair
(X, S+ B) where S = | S+ B] is a Q-Cartier prime divisor, B is an effective Q-divisor with
standard coefficients, Kx+ S+ B is Q-linearly equivalent to a multiple of S, and Z is a quasi-
projective scheme over R. Suppose that none of the residue fields of R have characteristic 2,
3 or5. Then the pl-flip of (X,S + B) over Z exists.

Proof. By Proposition 9.5 and localisation, we may assume that Z is the spectrum of a local
ring with positive residue characteristic (note that it will not be quasi-projective over R any
more). We need to show that some Veronese subalgebra of the canonical ring R(X, Kx +
S+ B) = @, H' (X, Ox(li(Kx + S+ B)])) is finitely generated. This is equivalent to
verifying that there exists a divisible enough 7 > 0 such that the multiplication map

(9.6.1) f.O0x(j(Kx 4+ 8+ B))®/7 — f.0x(i(Kx + S+ B))

is surjective for every i > 0 divisible by j. Let ()? S+ E) be the completion of (X, S + B)
at z = f(Exc(f)) € Z. By Lemma 2.32, (X S+ B) is plt. Moreover, by Lemma 2.33, S is

a disjoint union of its irreducible components. Slnce S is antl—ample over the completion Z
of Z at z, it must contain the exceptional locus of X — Z which is the fiber over the closed
point of Z and is connected. As every component of S must also intersect this exceptional
locus, this is only possible when S is irreducible.

The condition that Kx + S + B ~zg —bS, for some b € Qs+, is preserved under comple-
tion. Hence, (9.6.1) is surjective after completion by Corollary 8.26, and since surjectivity
of finitely generated modules can be verified after completion, the proposition follows. [

Theorem 9.7. Let (X, A) be a three-dimensional Q-factorial dit pair with R-boundary which
1s projective over T, and let

(X, A) -—> (XlaAl) —— (X2’A2) ey e

be a sequence of (Kx + A)-flips and divisorial contractions over T'. Then after finitely many
steps all the maps are flips and the flipped and flipping loci are disjoint from |A;].

Proof. Since divisorial contractions decrease the Picard rank (cf. Remark 2.22), we can as-
sume that the above sequence consists only of flips.

The result then follows by the same argument as in [Fuj07, Theorem 4.2.1]. The proof
employs the two dimensional MMP (Theorem 2.42). Implicitly, this reference assumes the
normality of the irreducible components of |A |, but what is only needed is normality up to
a universal homeomorphism (see [HW22b]) which follows from Lemma 2.33. We point out
that the irreducible components Y C X, of the flipping and flipped loci cannot be contained
in the prime divisors D C Supp 4A; satisfying dim D = 1 (otherwise, D = Y, and so Y
would be a divisor). Similarly, the flipped contraction is small ([KM98, Lemma 6.2]), thus
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the flipped locus must also have codimension at least 2 and therefore it cannot contain a
divisor of dimension 1. Thus, no new phenomena show up and the proof is really exactly as
in [Fuj07, Theorem 4.2.1]. O

Theorem 9.8. Let (X, A) be a three-dimensional Q-factorial dit pair with R-boundary which
1s projective over T, and suppose that all three-dimensional Q-factorial klt pairs projective
over T and with underlying scheme birational to X admit terminalizations. Let

(X, A) =5 (X1, A1) ——> (Xa, Ag) =3 - -

be a sequence of (Kx + A)-flips and divisorial contractions over T'. Then after finitely many
steps all the flipped and flipping loci in the above sequence are disjoint from Supp A;.

Proof. Suppose by contradiction that there exists an infinite sequence of flips (X, A) --»
(X1,A1) --» (X2,Ay) --» .-+ for which the statement fails. By Theorem 9.7, we can
assume that the flipping loci are disjoint from |A;|. Hence, by decreasing the coefficients of
A, we can assume that (X, A) is klt; the sequence X --» X; --» - -+ isstill a (Kx+A)-MMP
as all the flipping loci are disjoint from the divisors whose coefficients were decreased.

Now the proof follows from the argument of Alexeev-Hacon-Kawamata ([HW21, Proposi-
tion 2.10], [AHKO07]); although the statement assumes that the schemes are defined over a
field and the boundaries are Q-divisors, it is valid in our setting as well (in particular, the
proof of [HW21, Lemma 2.11] goes through for arbitrary Noetherian excellent surfaces). Note
that [HW21, Proposition 2.10] requires the existence of terminalizations (which is assumed
in Theorem 9.8), and the existence of proper resolutions of singularities (Theorem 2.13). Fi-
nally, we point out that, as explained in the proof of Theorem 9.7, the divisors D C Supp A;
satisfying dim D = 1 do not cause any problems. O

9.2. Step 1: Partial cone and contraction theorems. In what follows, given a ray X
and a Q-Cartier divisor D, we shall write, by abuse of notation, that > - D > 0 when X is
D-positive (and analogously for - D = 0 and ¥ - D < 0), although the number D - ¥ is not
well defined.

Theorem 9.9. Let (X, A) be a normal Q-factorial three-dimensional pair with R-boundary
and coefficients in [0, 1], which is projective over T. If Kx + A =r M for some effective
R-Cartier divisor M, then there exists a countable set of curves over T, denoted {C;}, such
that

(a)
NE(X/T) = NE(X/T) ka0 + Y Rso[Ci].

(b) The rays [C;] do not accumulate in the half space (Kx + A)<o, and
(¢) For all but finitely many i,

0< —(Kx+A) 5 C; §4d01

where k is the residue field of the closed point on T" which is the image of C;, d¢, is
the constant from Lemma 2.47 such that if L is any Cartier divisor on X, then L -, C;
15 divisible by dg,.

Remark 9.10. Note that the condition Kx + A =r M > 0 is automatic whenever Kx + A

is pseudo-effective and the image of X in T is at least one-dimensional, by non-vanishing
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applied to the generic fiber of X — T (see [Fujl2] and [Tan20a]). In particular, the latter
condition holds when X has mixed characteristic.

Proof. Let ¥ be a (Kx + A)-negative extremal ray. Choose an irreducible component E of
Supp M which is negative on ¥. If dim £ = 1, then ¥ = RFE. Since there are only finitely
many irreducible components of M, we may assume that E is among the set of curves {C;}.
Thus, we are henceforth free to assume that dim £ = 2.

We first aim to show that 3 contains a curve satisfying the required bound.

Claim 9.11. ¥ is in the image of NE(E) — NE(X) where E is the normalization of E.

Proof of claim. Fix an ample Q-divisor H sufficiently small that ¥ is also (Kx + A + H)-
negative. Fix a non-zero cycle I' in 3, and write I" as a limit of effective cycles: I' = lim; I';.
Further, write I'; = > . a; ;C; + >, b; ;D; where C;- E < 0 and D, - E > 0 for each i. Letting
A by an ample Cartier divisor, and after replacing by a subsequence, we may assume that

Zai’j+zbi’j SZG%JCZA—FZ@JDZA:P]A<PA+1

for some fixed ample Cartier divisor A. This shows that the a;; and b;; are all bounded
independently of 7 and j. Let ag be such that A + apM has coefficient 1 in E. Then by
Theorem 2.46(c) and adjunction of Ky + A 4+ agM + H to the normalization E of E, C;
may be taken to be from finitely many extremal rays on E. It follows that we may take all
the C; to come from a fixed finite set, and so after replacing by a subsequence, a; = lim; a; ;
is a well defined non-negative number.

It follows that lim;(} . a;;C;) is a well defined pseudo-effective 1-cycle, and it is non-
zero since it intersects negatively with £. As a result, lim;(}, b; ;D;) exists as a class in
Ni(X) as it is the difference of I and a converging sequence. Then as I' = lim;(} ", a; ;,C;) +
lim; (3", b; ;D;) is a decomposition into a sum of pseudo-effective cycles, we must have that
lim; (3", a;;C;) is in ¥ by extremality. Then the fact that C; - E < 0 for each ¢ means that

each C; is contained in Supp(FE) and so ¥ is contained in the image of NE(E) — NE(X),
and the claim is proved. O

Returning to the proof of the Cone Theorem, by adjunction there is an effective divisor
Az on E satisfying (Kx + A +agM)|z = Kz + Ag, where ag is such that A + agM has
coefficient 1 in £. Thus ¥ is in the image of some (K5 + Az)-negative extremal ray ¥z via
the map W(E) — NE(X). By Theorem 2.46, any (K 7+ Az)-negative extremal ray either
contains a curve satisfying the required bound or a curve in Supp(Az). Note that there are
only finitely many possibilities for the latter curves independently of the choice of E as they
lie in Sing(Supp(A+ M))USing(X). We have proved that every (K x +A)-negative extremal
ray I' contains a curve C' such that C' either satisfies the bound in (c) or is an element of a
fixed finite set of curves.

Next we show that the extremal rays do not accumulate in NE(X/T) g, 1a<0. Suppose
otherwise, so we have a sequence of distinct (Kx + A)-negative extremal rays ¥; which
converge to a (Kx + A)-negative ray ¥. Fix a component E of M which is negative on .
By passing to a subsequence we may assume that £ is also negative on 3J; for all 4, and so
by Claim 9.11, ¥ and ¥; are all in the image of t, : NE(E) — NE(X) where E is the

normalization of E. For each i, choose a (K3 + Az)-negative extremal ray $F such that
99



1.2F =%, where 1, : NE(E) — NE(X). By Theorem 2.46, the rays ©F do not accumulate
to a (K3 + Ag)-negative ray. But by compactness of NE(E) intersected with the unit ball,

by again taking a subsequence we may assume that XF do converge in NE (E), and so
converge to a ray LF satisfying

0<(Kg+Az) 2P =(Kx+A+apM)- .32 < (Kx+A) - .57,

This shows that the rays ¥; could not converge to a (Kx + A)-negative ray. This concludes
the proof of (b).

It remains to prove the countability of the set of curves in (a). Fix an ample divisor H. For
each n € N, the previous paragraph implies that there are only finitely many (K x4+ A+ %H )-
negative extremal rays. Then there can be only countably many (Kx + A)-negative rays
because each is (Kx + A + 1 H)-negative for some n. O

Proposition 9.12 (cf. [HW21, Proposition 4.4]). Let (X,S + B) be a Q-factorial three-
dimensional projective dlt pair over T, where S is a prime divisor and B is an effective
R-divisor. Suppose that Kx + S + B is pseudo-effective over T'. Let ¥ be a (Kx + S + B)-
negative extremal ray over T such that X is S-negative. Then the contraction f: X — Z of
Y. exists so that f is a projective morphism with p(X/Z) = 1.

Proof. First, we reduce to the plt case with Q-boundary. By graded prime avoidance (see
[Sta, Tag 00JS]), we may pick an ample Cartier divisor A which does not contain any log
canonical center of (X, S+ B), so that (X, S+ B+cA)isdlt fore < 1 and Kx +S+B+cA
is big and negative on 3. Now replacing (X, S + B) with (X,S + B’ 4+ cA) where B is a
Q-divisor which is a small perturbation of B such that Kx + S + B’ + A is still big and
negative on X, we may assume that B is a Q-divisor. Furthermore, by decreasing all the
coeficients of | B, we may assume that (X, S + B) is plt.

By Theorem 9.9, we may pick an ample (over T') Q-divisor H such that L = Kx+S+B+H
is nef and L+ C NE(X/T) is spanned by X. Let A be another ample Q-divisor such that
(S+A)-X =0. Again, by Theorem 9.9, we have that L. = Kx+S+ B+ H. is nef over T" and
(L)t is spanned by ¥ for any 0 < e < 1, where H, = H + £(S + A) is an ample Q-divisor.
Explicitly, by Theorem 9.9(b), there are finitely many (Kx + S+ B+ %H )-negative extremal
rays: >, 21,...,2;. For every € such that H. — %H is ample, L. is positive on all extremal
rays except possibly these 2,34, ...,%;. By decreasing ¢ further we can assume that L. is
also positive for on ¥; for all 1 < j <. Last, L. - ¥ = 0 holds for all .

Moreover, we have that E(L.) C S. Indeed, if V' C X is a an integral subscheme not
contained in S, then L.|y = (L +&(S + A))|y is nef and big over T'. Replacing L by L., we
may assume that E(L) C S.

Now, over closed points of residual characteristic p > 0 the proposition follows from
Proposition 2.51, and over closed points of residual characteristic zero from Proposition 2.48
applied to a klt perturbation of (X, S + B) . O

9.3. Step 2: Construction of flips with arbitrary coefficients. We recall the standard
argument for reducing the existence of flips to pl-flips.

Proposition 9.13. Let (X, B) be a Q-factorial kit pair of dimension three, where B is a
Q-dwvisor with standard coefficients. Let f: X — Z be a flipping contraction over an affine
scheme Z = Spec R such that p(X/Z) = 1. Suppose that none of the residue fields of R have

characteristic 2, 3 or 5. Then, the flip X* — Z of [ ewists.
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Proof. We closely follow the presentation from [HW22b, Theorem 4.1]. Fix B; = f.B and
let Hz be a reduced Cartier divisor on Z where the following hold:

(a) f*Hy contains the exceptional set of f,

(b) Hz and By have no irreducible components in common,

(c) for any projective birational morphism h: Y — Z where Y is Q-factorial, N*(Y/Z) is
generated by the h-exceptional divisors and the irreducible components of the strict
transform of H.

For the (non-trivial) condition (c), we use that the relative group of divisors up to numerical
equivalence of a birational morphism of QQ-factorial varieties is generated by the exceptional
divisors. In view of this, we may pick Hz so that it satisfies (c¢) for a single resolution of
singularities, and condition (c) is then satisfied for every larger resolution of singularities as
well. The statement follows since h as above is a factor of some resolution and the group of
divisors on Y over Z is the image of the group of divisors of any projective birational cover.

Fix a log resolution h: Y & X Iy 7 of (Z,Bz + Hz) which factors through X. We
may assume that Hz contains the image of each h-exceptional divisor, and we claim that
we can run a (Ky + By + Hy)-MMP over Z where Hy is the strict transform of H; and
By := h;'Bz + Exc(h). The cone theorem is valid by Theorem 9.9, and note that every
extremal ray ¥ over Z is contained in the support of h*H;. By condition (c), there is a
component of the support of h* H; having non-zero intersection with . Since ¥-h*Hy; = 0,
there is a component E of the support of h*H; with ¥ - E < 0. In particular, we have
E C |By + Hy|. Hence, contractions exist by Proposition 9.12, the necessary flips exist
by Proposition 9.6 applied to a plt perturbation of (Y, By + Hy), and special termination
follows by Theorem 9.7.

Now replace (Y, By + Hy) by its minimal model over Z, and Hy by its pushforward under
the map to the minimal model. While ¥ need no longer admit a map to X, it still necessarily
maps to Z, which we denote by h: Y — Z.

Write By = D+ By!', where D = > | D; is the sum of exceptional divisors and | By' | =
0. As Hy is contained in the pullback of H; from Z, we have

Hy =y — Z bij,

J

where b; € Q>o. Run a (Ky + By )-MMP over Z with scaling of Hy, noting that an MMP
with scaling is well-defined by the existence of bounds on extremal rays from Theorem 9.9.
Arguing as above, to show that such an MMP can be run, it suffices to show that flips
and contractions exist. Let 0 < A < 1 be such that Ky + By + AHy is h-nef and there
exists a (Ky + By )-negative extremal ray ¥ satisfying (Ky + By + AHy) - X = 0. Since
(Ky + By) - X < 0, we have that Hy - ¥ > 0, and the equivalence above implies that
D;-¥ < 0 for some j. It follows that the contraction of ¥ exists by Proposition 9.12, and
in the case that the contraction is small the flip exists by Proposition 9.6. Once again, the
MMP terminates by special termination as above.

Denote by (X, Bt) an output of this MMP, so that Kx+ + B™ is nef over Z, and notice
that the projection f*: X* — Z is small. Indeed, the negativity lemma applied to a
resolution of indeterminacies 7;: W’ — X and my: W/ — X shows that

G = m(Kx + B) — m(Kxs + BY),
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is effective (and non-zero) which is only possible when |B*| = 0 since (X, B) is klt. As
all of the exceptional divisors on Xt over Z are contained in |B¥ |, this shows that f* is
small. Moreover, Kx+ + B™ is ample over Z; otherwise, as p(X*/Z) =1 (here X and X™*
are Q-factorial and f, f* are small over Z, so p(W/X) = p(W/X™") is equal to the number
of exceptional divisors, thus'® p(X*/Z) = p(W/Z) — p(W/X*) = p(W/Z) — p(W/X) =
p(X/Z)=1), Kx++B*" would be numerically trivial over Z, and so G would be numerically
trivial over X. As G is exceptional and non-zero, this contradicts the negativity lemma (over
X). Hence, fT is the flip of f. O

The following technique was discovered in [Birl6]; we closely follow the presentation from
[HW22a, Proof of Theorem 1.1]. We emphasize that A is allowed to have arbitary R-
coefficients.

Theorem 9.14. If (X,A) is a dit pair with R-boundary and f: X — Z is a three-
dimensional Q-factorial flipping contraction to a quasi-projective scheme Z over R, whose
residue fields do not have characteristic 2, 3 or 5, with p(X/Z) = 1, then the flip of (X, A)
er1sts.

Proof. We begin with a number of reductions. By perturbing B and using that X is Q-
factorial, we may assume that A is a Q-divisor. After replacing A with A — HAJ for I >0,
we can further assume that (X, A) is klt. Finally, we may also assume that every component
of Supp A is relatively antiample, as removing the ample and numerically-trivial components
will not affect the anti-ampleness of Ky + A.

In case A has standard coefficients, the theorem follows from Proposition 9.13. In the
remainder, we proceed with a proof by induction on the number ((A) of components of A
with coefficients outside of the standard set {1 — L | m € N} U {1}. Assuming ((A) > 0,
write A = aS + B where a € {1 — & | m € N} U {1}.

Consider a log resolution 7: W — X of (X, S + B) with reduced exceptional divisor E.
Setting By := 7, 'B + E and Sy := 7, 1S, since Kx + A =5 uS for some p > 0 and S is
relatively anti-ample as it is a component of Supp A, we have that

Kw+Sy+By=m"(Kx+A)+(1—a)Sw+F=z(1—a+u)Sw + F',

where F', F' are effective exceptional Q-divisors over X.

We now run a (Kw + Sw + Bw)-MMP over Z. As ((Sw + Bw) < ((A) and by decreasing
the coefficients by HSW + By for [ > 0 so as to make the pair klt without affecting , all
flips exist in this MMP. Additionally, as every extremal ray is negative on (1 —a+ u)Swy + F’
(and so on an irreducible component of | Sy + By |), all contractions in this MMP exist by
Proposition 9.12. The cone theorem is valid by Theorem 9.9, and the MMP terminates by
the special termination in Theorem 9.7. Let h: W --» Y be an output of this MMP where
Sy, By, and Fy are the strict transforms of Sy, By, and F’ on Y, respectively.

Next, we run a (Ky + aSy + By )-MMP over Z with scaling of (1 — a)Sy. If ¥ is an
extremal ray, then - Sy > 0 and (Ky + By) -2 < 0. As {((By) < ((A), again decrease the
coefficients by HBYJ for [ > 0 to make the pair klt without affecting (, all the flips in this
MMP exist by induction. Noting

Ky + aSy + By =z uSy + Fy,,

16The additivity of the Picard rank here follows again from the Q-factoriality of X and X+
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every extremal ray is negative on pSy + Fy,, hence on Fy (as ¥ - Sy > 0) and so on an
irreducible component of | By |. It follows from Proposition 9.12 that all contractions in this
MMP exist. As in the paragraph above, the cone theorem and termination are both valid in
this setting. Set (X+,aS™ 4+ BT) to be an output of this MMP.

To conclude the proof, we show that (X, aS™ + BT) is the flip of (X, aS + B). Notice
that the negativity lemma applied to a common resolution of indeterminacies m: W — X
and my: W — X implies that

G =7 (Kx +aS+ B) —m5(Kx+ +aST + BT)

is effective and non-zero. Since (X, aS + B) is klt, we get that |[BT| = 0, and so all the
exceptional divisors were contracted and X --» X is an isomorphism in codimension one.
Moreover, since X and X are Q-factorial we have that p(W/X) = p(W/X™") is equal to
the number of exceptional divisors, and it follows that p(X*/Z) = 1 using that p(W/X) +
p(X/Z)=p(W/Z) = p(W/XH)+p(Xt/Z) and p(X/Z) = 1. Again we must now have that
Kx+ +aS™ + BT is relatively ample over Z, else Kx+ + aS™ + B7 is relatively numerically
trivial over Z and then G is exceptional and numerically trivial over X, contradicting the
negativity lemma once more. It follows that (X+, aS™ 4+ B™) is the flip of (X, A) as desired.

L]

9.4. Step 3: Base point free theorem for nef and big line bundles. The following
theorem is key in our proof of the base point free theorem. Here, condition (e) may be
thought of as numerical klt-ness of (X, 7,A). When X is Q-factorial, then this is a mixed
characteristic variant of [HW22b, Theorem 1.1] (cf. [TY20, Theorem 4.6]).

Theorem 9.15 ([Kol21, Theorem 1]). Let (Y,A) be a three-dimensional dlt pair with Q-
boundary and let m: Y — X be a projective birational map of quasi-projective schemes over
R with irreducible exceptional divisors E1, ..., E,.. Suppose that

(a) there exists an ample exceptional Q-divisor A on'Y,

(b) all E; are Q-Cartier,

(c) |A]l =E+...+E,

(d) Ky + A =x > e E; fore; € Q, and

(e) (X, mA) is klt, or more generally that there exists a sub-klt'" pair (Y, A') such that
Ky + A" =x 0 and A — A’ is exceptional.

We can run a (Ky + A)-MMP over X in the sense of [Kol21] and it terminates with X.
In particular, every Q-Cartier Q-divisor D on'Y such that D =x 0 satisfies D ~g x 0 (in
other words, some multiple of D descends to X ).

We decompose Y — X into pl-contractions and pl-flips, such that D descends under each
operation. This uses Kollar’s non-Q-factorial MMP [Kol21, Theorem 1], in which all con-
tractions behave as if they were of Picard rank one with respect to exceptional divisors, and
so their Q-Cartierness is in fact preserved. For the convenience of the reader we write down
a detailed explanation below. Unless otherwise stated, the exceptionality and ampleness
below is always relative to X.

satisfying the same conditions as klt but not requiring that the boundary divisor is effective.
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Proof. 1t is enough for the last sentence of the statement to show that m,D is Q-Cartier, as
then D = 7*m.D ~g x 0 by the negativity lemma. By Conditions (a) and (b), we can pick
an R-divisor H and b’ € Ry such that

(f) H => v;E; where {71,...,7.} are linearly independent over Q, and
(g) Ky + A+ h'H is R-ample.

To this end, we may initially take H to be R-ample, but we will not use that in proofs since
it will not be stable under the procedure described below. Further, note that Condition
(a) implies that Exc(Y/X) is a divisor (and hence equal to |A] by Condition (c)); indeed,
—A is effective by the negativity lemma (Lemma 2.16), and so if there exists an irreducible
component C' C Exc(Y/X) such that C' € Supp F; U ... U Supp E, (in particular, C' is a
component of codimension at least two, and since it cannot be a point it must be a curve),
then C'- A <0, contradicting the ampleness of A.

We start by establishing the cone theorem. Set (Ky + A)|z = Kz + Ag, for the nor-

malizziion~Ei of E;, which makes sense as E; C |AJ. Since Exc(Y/X) is a divisor, the map
> NE(E;/X) — NE(Y/X) is surjective and by applying Theorem 2.46 we get

NE(Y/X) = NE(Y/X)ky+a50 + 3 _ Rso[C],

t>0

for a countable set of curves {C;} and positive integers dc¢, such that 0 < —(Ky +Ay)-C; <
4de,, and L - Cy is divisible by d¢, for every Cartier divisor L. We also obtain that the rays
R>0[C;] do not accumulate in the half space NE(Y/X)f, +a<o. This concludes the proof of
the cone theorem.

We run a (Ky + A)-MMP with scaling of H as in [Kol21] and explain that this determines
the choice of extremal faces so that they behave as if they were one-dimensional with respect
to exceptional divisors. We construct it explicitly. Let A € R>q be the smallest number such
that Ky + A +tH is nef for all h <t < h’. If h = 0, then move to the last paragraph of the
proof.

Since

(9.15.1) Ky +A+hH=(1-h/0)(Ky +A)+ (h/W)(Ky + A+ W H)

and Ky +A+h'H is R-ample, we see that Ky +A+hH is positive on NE(Y/X) g, +a>0 and
on all but a finite number of extremal rays by the non-accumulating property of extremal
rays. In particular, (Ky + A+ hH) - X; = 0 for all such extremal rays q,..., %, Set
V =span(Xy,..., %) = (Kx + A+ hH)*. We have H - X; = —1(Ky + A) - 5, and so

Since ~; are linearly independent over QQ, the number % has a unique presentation as a linear
combination of 7;, and so we get that the vectors (E; - 3;,..., E, - ¥;) € Q" are colinear
(that is, Q-multiples of one another) for different j. It follows then that E; € W for every i,
where W C Divg(X) is the subspace of Q-Cartier Q-divisors which are colinear with F; as
functionals on V. Since Ky + A = > e;E;, we also have that Ky + A € W.

As the ample Q-divisor A is exceptional over X, we get that A € W, too. In particular,
every exceptional divisor Fj; is colinear with a multiple of A as a functional on V| and so is
either entirely positive, trivial, or negative on V. Since A is ample, and so anti-effective by

the negativity lemma, it cannot happen that every exceptional divisor is positive or trivial
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on V. Hence there must exist an exceptional irreducible divisor S C Supp|A] such that S
is negative on V.

We construct the contraction of V. First, we claim that there exists an ample Q-divisor
G such that V = (Ky + A + G)*. To this end, define the R-divisor

Wk Wk
o NN e W) By =x — L (K + A+ WH),
G =g 2\ B =x s Ry + A+ WH)
Note that Ky + A+ G =x #W(KijA—i-hH) by (9.15.1). So, G’ satisfies all the require-

ments for GG, except that it is not a Q-divisor. However, since the irreducible components
of G’ are contained in W we can perturb it in W to obtain the claimed Q-divisor G. Note
that as the perturbation happens in W, we can make Kx + A + G trivial on V. Addi-
tionally, by the non-accumulating property of extremal rays for small enough perturbation,
Kx + A+ G is still positive on all extremal rays not in (Kx + A + G')* =V, and hence
(Kx + A+ G)t =V holds.

Having shown the claim, we can invoke Proposition 9.16 to construct a contraction f: Y —
Z of V. Moreover, Ky + A+hH € W ®g R descends to an R-Cartier R-divisor on Z, which
must be R-ample by the Nakai-Moishezon criterion Lemma 2.21. Indeed, to apply the Nakai-
Moishezon criterion we need to check that a closed integral subscheme ) C Y over a field is
contracted by f if and only if (Ky +A+hH)|q is not big. This is automatic when dim ¢ = 1
as (Ky + A+ hH)L =V, and so we can assume that () = E; for some ¢ and E; is defined
over a field.

But (Ky + A+ hH)|g, is semiample (by (9.15.1) and [Tan20a, Theorem 1.1]), and hence
it is big if and only if E; is not contracted.

We construct the flip. Suppose that f is small. We have that Ky + A+ hH =xg > (e; +
h7;)E; and the R-divisor on the right descends to an R-Cartier R-divisor Y (e; + hvy;) f+ E;
on Z by Proposition 9.16.(a) (with f.FE; # 0, as f is small), which is R-ample. Hence,
by the negativity lemma, e; + hy; < 0 for all «. If C is a curve contracted by f, then
C->(e;+hy)E; =0. As C-S < 0, there must exist another irreducible exceptional divisor
A such that C'- A > 0. Since A € W, we get that A is f-ample. We use the divisors A and
S to construct the flip f7: YT — Z of f.

By Proposition 9.16.(a) (applied to T' = Z), all R-divisors in W ®gR are in fact R-linearly
equivalent over Z to multiples of each other; similarly for Q-divisors. Hence, the existence
of f* follows from Proposition 8.27 as in the proof of Proposition 9.6 (we can peform a
necessary perturbation so that |[A| = S + A as the irreducible components of [A]| are
Q-Cartier and contained in W).

Additionally, we note that

9.15.2 the strict transform D of D € W ®¢ R is R-Cartier.
Q

In fact, in this situation D+a(Kx+A) =z 0 for some a € R. Hence, D+a(Kx+A) descends
to Z by Proposition 9.16.(a), and so DT 4+ a(Kx+ + A1) is R-Cartier. Since Ky+ + AT is
Q-Cartier, so is DT. Let ¢: Y --» Yt be the induced rational map.

We show that the above procedure can be repeated. Pick g: Y --» Y as follows: ¥ = Z
(with ¢ = f) when f is divisorial and Y = Y+ (with g = ¢) when f is small. We claim
that we can replace Y, A, A, D, H, i by Y, Ay, AL, Dy, Hy, h — ¢, respectively (with
0 < £ < 1 and the corresponding divisors being their strict transforms on Y'), so that (a)-(g)

hold and the algorithm can be run again:
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o note that g, M is Q-Cartier for every Q-divisor M € W by Proposition 9.16.(b) and
(9.15.2). In particular, if M =x 0, then M € W, and so g.M =x 0 is Q-Cartier
(cf. Proposition 9.16.(a)). This immediately yields (b),(d),(e) shows that Ky + Ay
is Q-Cartier and that Dy =x 0 and is Q-Cartier (by setting M = E;,, Ky + A —
e B, Ky + A, Ky + A, D, respectively).

o we have Hy = > 7,9+E;, and those 7; for which ¢.F; # 0 comprise a subset of
{71, .-.,7}, and so are linearly independent over @Q; hence (f) holds,

o the R-divisor Ky + Ay + (h — ¢) Hy is R-ample, and so (g) holds. This is automatic
in the divisorial case as f.(Ky + A+ hH) is ample, and in the flipping case it follows
from Ky+ + Ay+ + (h - E)Hy+ = (.f+)*(KZ + AZ + th) — €Hy+, where Hy+ is
anti-ample over Z as H € W was ample over Z. Here, divisors with subscripts denote
appropriate strict transforms.

o (a) is satisfied for A = > (e; + (h—¢€)vi) 9« Ei =x g«(Ky + A+ (h—¢)H) by the above
paragraph. Note that such a chosen A is only an R-divisor, but since each irreducible
component of Supp A is Q-Cartier, we can perturb it so that it is an ample Q-divisor.

However, note that Hy- is not necessarily R-ample any more.

Now, repeat the above procedure. It eventually stops by the same argument as in special
termination ([Fuj07, Theorem 4.2.1], cf. Theorem 9.7).

Thus, we can assume that Ky + A is nef. Then Ky + A — (Ky + A’) is nef, effective, and
exceptional, hence zero by the negativity lemma. Since Exc(Y/X) = [A], this implies that
Y = X and conclude the proof as D is Q-Cartier. U

In the above proof, we used the following results. First, we state a variant of the contraction
theorem. Here we say that the cone theorem is valid for a pair (X, A) over T if there exists a
countable set of curve {C;} such that conditions (a), (b), and (c) of Theorem 9.9 are satisfied.

Proposition 9.16. Let (X, A) be a three-dimensional dlt pair which is projective over T,
and let G be an ample Q-divisor on X such that :

o Kx + A is pseudo-effective over T .

o A is a Q-divisor such that all irreducible components of |A| are Q-Cartier.

o The cone theorem holds for (X, A) over T.

o L=Kx+A+G is nef.

o V =L+ CNE(X/T) is an extremal face.

o There ezists a prime divisor S C |A|, which is negative on' V' and is contained in W,
where W C Divg(X) is the subspace of Q-Cartier Q-divisors which are colinear with
Kx + A as functionals on V.

Then the contraction f: X — Z of V' exists. Moreover :

(a) If D =7 0 is a Q-Cartier Q-divisor, then D descends to Z; the same holds for
D e W ®q R satisfying D = 0,

(b) If f contracts an irreducible divisor E € W, then f.D is R-Cartier for every D €
W ®qg R (in particular, if D € W, then f.D is Q-Cartier).

Note that W ® R agrees with the subspace of R-Cartier R-divisors which are colinear with

Kx + A as functionals on V.
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Proof. Since L+ = V, we have that L is trivial on V, and so G € W. Further, Kx + A
is negative on V. Pick an ample Q-divisor A € W (by rescaling G) such that S + A acts
trivially on V' (this is possible as S, G € W).

We claim that, L. = Kx + A + G. is nef over T and (L.)* =V for any 0 < ¢ < 1, where
G. = G+¢e(S+ A) is an ample Q-divisor. Indeed, by non-accumulating property of the

cone theorem, there are finitely many (Kx + A + %G)-negative extremal rays: Xi,...,%;.
We may assume that V' = span(Xy, ..., %) for some k < [. For every ¢ such that G. — %G
is ample, L. is positive on all extremal rays except possibly these Xy, ..., Y. By decreasing

¢ further we can assume that L. - ¥; is close enough to L - X;, and so it is also positive for
k<j<l Last, L.-X;=0for 1 <j<kholdsforalleas L -X; =(S+A)-%; =0.

Moreover, we have that E(L.) C S. Indeed, if V' C X is an integral subscheme not
contained in S, then L.|y = (L + (S + A))|y is nef and big over T. Replacing L by
L., we may assume that E(L) C S. Now, the contraction exists by Proposition 2.51 and
Proposition 2.48.

As for condition (a), the case of Q-Cartier Q-divisor D follows directly from Proposition 2.51
and Proposition 2.48. So, we only have to prove the case of 0=;D € W ®¢g R. In this
case, D = > a;D; for D; € W and a; € R. Pick b; € Q such that D; =5 b;S. Then
D=5 a;(D;=b:5)+ (> a;b;)S and D; —b;S descend to Z by Proposition 2.51. As D =5 0,
we have Y a;b; = 0, and hence D descends to Z.

It remains to show point (b). If f contracts £ € W, then £ = S and f.D = f.(D — ¢S5)
is R-Cartier for every D € W ® R by condition (a) proved in the above paragraph, where
¢ € R is chosen so that D — ¢S =5 0. O

Theorem 9.17. Let (X, B) be a Q-factorial three-dimensional klt pair, with R-boundary,
which is projective over T'. Let L be a nef and big Q-Cartier divisor on X such that L —
(Kx + B) is nef and big. Then L is semiample.

Proof. By a small perturbation, since X is Q-factorial we may assume that B is a Q-divisor,
and L — (Kx + B) is ample. By Corollary 2.53, there exists a proper birational 7-morphism
f: X — Z to a proper algebraic space Z over T such that a proper integral subscheme
V' C X is contracted if and only if L|y is not relatively big. In particular, L =5 0.

We claim that Ox(mL) = f*M for some m > 0 and a line bundle M on Z. This will
conclude the proof of the theorem as M must then be ample by the Nakai-Moishezon criterion
(Lemma 2.21). The assumptions of Nakai-Moishezon are satisfied as L™V .V = 0 for a
proper integral subscheme V' C X (over a field) if and only if V' C Exc(f).

To show the claim, it is enough to prove that f,0x(mL) is a line bundle for some m > 0
which can be verified étale locally (Q-factoriality may be lost, but it will not be needed again).
Thus, we can assume that Z is the spectrum of a Noetherian local ring. The assumptions of
Lemma 2.34 are satisfied, and as A = L — (Kx + B) is ample, we can assume that (X, B)
is kit for B’ = B+ A. Set B, = f.B'. Note that —(Kx + B) is relatively ample over Z.

Let h: Y — Z be a log resolution of (Z, B,) which admits a factorization 7: ¥ — X
and such that there exists an ample exceptional divisor (see Proposition 2.14). Set Ay =
h;'B), + Exc(h). Note that Ky + B}, =5 0 for Ky + B}, = 7*(Kx + B') = n*L. Further
Ky + Ay =7 Ky + Ay — (Ky + By/) and the latter Q-divisor is exceptional over Z. Thus
the assumptions of Theorem 9.15 for (Y, Ay) over Z are satisfied, and so 7*L descends to Z.
Hence, f.Ox(mL) = h,Oy(mn*L) is a line bundle for m divisible enough by the projection

formula. O
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Corollary 9.18 (Contraction theorem for birational extremal rays). Let (X, B) be a Q-
factorial dlt pair with B an R-divisor. Suppose that 3 is a (Kx + B)-negative extremal ray
such that there is some nef and big divisor D with ¥ = D*. Then there is a projective
contraction f: X — Z of 3.

Proof. As X is Q-factorial, we may decrease the coefficients of B to assume it is a Q-divisor
and (X, B) is klt, while maintaining that ¥ is (Kx + B)-negative. By a standard argument
using Theorem 9.9, we may find an ample Q-divisor A such that ¥ = (Kx + B+ A)*. Now
we may apply Theorem 9.17 to L = Kx + B + A. O

9.5. Step 4: MMP in the pseudo-effective case. Next, we note that projective termi-
nalizations of klt pairs can be constructed. This is used in the proof of termination below.

Proposition 9.19. Let (X, B) be a three-dimensional quasi-projective klt pair with R-boundary
over R as in Setting 9.1 where additionally the residue fields of R do not have characteristic

2, 3 or5. Then there exists a projective birational morphism g: Y — X and a terminal pair
(Y, By) such that Ky + By = g*(Kx + B).

Proof. By [KM98, Proposition 2.36] there are only finitely many divisors over X with log
discrepancy at most 1. Therefore by [KM98, Lemma 2.45] and Proposition 2.14 we may find
a projective log resolution g: Y — X of (X, B) which extracts all divisors of log discrepancy
at most 1 with respect to (X, B). Define

Ky+ByNg*(Kx+B)—|—F—E

where E and F are effective R-divisors with no common prime divisors in their support, and
By is the strict transform of B. By repeatedly blowing up strata of (Y, By + F) we may
assume that the irreducible components of Supp(By + F) do not meet. If we replace Y, F
and E by the result of this process, all new exceptional components will be added to F. As
a result we may assume that the irreducible components of Supp(By + E) are disjoint and
hence that (Y, By + E) is terminal.

Run a (Ky + By + E)-MMP over X, which uses the cone theorem Theorem 9.9, contrac-
tions theorem Corollary 9.18, and existence of flips Theorem 9.14. This LMMP terminates
by a standard argument involving Shokurov’s difficulty [KM98, Theorem 6.17]. Note that
[KMO98] deals with only Q-boundaries, however the same argument works in the R-boundary
case. It uses the fact that the variety underlying a terminal surface pair is regular in codi-
mension 2 which holds in our case by [Koll3, Theorem 2.29], and also uses the fact that
there are only finitely many components of log discrepancy at most one [[KM98, Proposition
2.36]. Let ¢: W — X be the outcome of this MMP and let Ey and Fy be the images of
E and F, respectively. We know that ¢ contracts every component of F' since by construc-
tion Fyy — Ew is nef and ¢.(Ew — Fw) = 0, so Fyy = 0 by the negativity lemma. Since
Ky +By+FE ~q, F, this means that every divisorial contraction which occurs is negative for
F', and hence the contracted divisor is a component of F. As a result we see that this MMP
contracts exactly the components of I’ and so produces the required terminalization. O

Proposition 9.20. Let (X, B) be a Q-factorial three-dimensional dlt pair with R-boundary
which is projective and surjective over T with dim(T") > 0 and such that none of the residue
fields have characteristic 2, 3 or 5. Suppose that Kx + B is pseudo-effective. Then we can
run a (Kx + B)-MMP and any sequence of the steps of the MMP terminates. As a resull,

(X, B) has a log minimal model.
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Proof. First, note that Kx+B ~p M > 0. Indeed, it is enough to show that x(Kx, +Bl|x,) >
0, where X,, is the fiber over a generic point n € T', and this follows by the two-dimensional
non-vanishing theorem in equicharacteristic [Fujl2, Tan20a].

We can apply Theorem 9.9, Theorem 9.14 and Corollary 9.18 to run a (Ky + B)-MMP,
and it remains to show that it terminates.

Suppose we have an infinite sequence of (Kx + B)-flips X; --+ X, ;. By the first assertion
in Theorem 9.7, eventually the flipping loci are disjoint from |B]. Thus, by replacing X by
X; for i > 0, we can assume that all these flips are (Kx + A)-flips for A= B — |B| +eM
and 0 < ¢ < 1. Explicitly, we pick ¢ so that (X, A) is klt. Then the statement follows from
Theorem 9.8, where the existence of terminalizations is a consequence of Proposition 9.19.
Note that Kx + A is not necessary pseudo-effective any more, but here we only use that the

extremal rays of X; --+» X;,; are negative on M, and so also on an irreducible component
of Supp A. O

Corollary 9.21. Let X be a variety which is quasi-projective over Spec R, such that X has
no residue fields of characteristic 2, 3 or 5.
Let A =" a;A; be an R-divisor such that A; are prime divisors and such that Kx + A

1s R-Cartier. Let
I' = Z A; + Z ail;.

ita;>1 i:a; <1

Then there exists a dlt modification of (X, A), which is a projective birational morphism
m: Y — X with the properties listed below. First define Ay by Ky + Ay = *(Kx + A)
and Uy by Ty = 77'T + Ex(7). Then 7 satisfies:

(a) Y is Q-factorial.

(b) (Y,Ty) is dlt,

(¢) Ky + Ty is nef over X,

(d) Ay —T'y >0, and

(e) for every x € X, either m=1(z) is contained in Supp(Ay —T'y) or is disjoint from it.

Proof. Take m: Y — X to be a log resolution of (X, A). Then a minimal model of (Y, 71"+
Ex (7)) over X, which exists by Proposition 9.20, is a dlt modification of (X, A). The first
three properties may be verified by the same argument as in [Fujl1, Theorem 10.4]. For (d)
note that

Ay—ry:Ky+Ay—(Ky+Fy)

is anti-nef over X and its pushforward via 7 is effective. Thus, it is effective by the negativity
lemma (Lemma 2.16) concluding (d). For (e), note that 7=!(x) is connected for every z € X,
and if C' is a curve in 7 !(x) which intersects Supp(Ay — I'y) but is not contained in it,
then C' - (Ay —T'y) > 0, contradicting the fact that Ay — I'y is anti-nef over X. O

Remark 9.22. Even when X does admit residue characteristics 2, 3, or 5, one can still con-
struct a dlt modification of X by [Kol21] (cf. Theorem 9.15). However, it will not necessarily
be Q-factorial unless X is Q-factorial as well.

9.6. Step 5: Base point freeness. In this subsection, we prove the full basepoint freeness
theorem. We do this only in the case of dim(7") > 0, an assumption that automatically
holds in the arithmetic situation which is the main motivation of our article. The case

of a projective variety over a field appears in [KM98, Theorem 3.3] when the field has
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characteristic zero (see [[Kaw85] for the original proof stated less generally), [BW17] when it
is algebraically closed of characteristic p > 5 and [GLP*15] when it is perfect of characteristic
p > 5. We leave open the case of a variety projective over an imperfect field.

While many of the arguments of [BW17] go through in our situation of a positive dimen-
sional base, there are several things which do not work, such as Tsen’s theorem. However,
the relative situation provides advantages which enable us to avoid those problems. In the
first version of this article we directly referred to the arguments of [BW17] wherever possible,
while below we provide simpler proofs which make full use of the advantages offered by the
relative situation.

First, we prove the abundance theorem for semi-log canonical curves and log canonical
surfaces, for which we were unable to find a reference in sufficient generality.

Lemma 9.23. Let (X,A) be a semi-log canonical curve pair with Q-boundary, such that
Kx + A is nef. Then Kx + A is semiample.

Proof. By Keel’s theorem ([Kee99]) we can reduce to the case of Kx+A = 0, and furthermore
assume that X is connected. If A = 0, we need only show that h°(X,wx) # 0 which follows
from the general Riemann-Roch theorem for reduced curves [Liu02, Thm VIL.3.26] (note
that X is Cohen-Macaulay):

dimy H(X,wx) = dimg H' (X, wx)+0+x(X, Ox) = 2—dim;, H'(X, Ox) = 2—dim H(X,wx)

When A # 0 on the other hand, we claim that X is a chain of curves C such that (Cy), ., = P'.
Let C; be an irreducible component which supports a component of the boundary. Then it
can meet at most one other irreducible component C, at a single point. Since C; gains a non-
zero conductor component in the normalization, it can meet at most one other component
C5 at a single point, and Cj is disjoint from C;. The argument continues to produce the
required chain. Since normalization produces a non-zero conductor (or boundary) on each
component, we must have a chain of curves (Cf) ., = P' as claimed. Hence, Kx + A is
semiample on all irreducible components. Thus we may conclude by [Kee99, Cor 2.9] and
induction on the number of components. O

Theorem 9.24. Let (X, A) be a log canonical pair of dimension 2, projective and surjective
over T with Q-boundary, and assume in addition that that T is the spectrum of a local ring
with positive residue characteristic. If Kx + A is nef over T', then it is semiample over T'.

Proof. By [Tan20a] we may assume that X is surjective over 7" with dim(7") > 0, and by
Theorem 2.44 we may assume that dim(7") = 1. We may replace T" by its normalization to
assume that it is a spectrum of a DVR of positive residue characteristic. By taking a dlt
modification, we may assume that (X, A) is Q-factorial and dlt.

We first deal with the case where Kx + A is big by adapting the argument of [Wallg,
Theorem 1.1} to the two dimensional case. Firstly, (Kx +A)|x, is semiample since dim Xq =
1 (here it is crucial that T is a spectrum of a DVR, c¢f. Remark 2.26), in which case abundance
is straightforward. So by Theorem 2.50 it is enough to show that (Kx 4+ A)|gky+a) is
semiample. Run a (Kx+A—¢|A|)-MMP, with scaling of | A]. By taking ¢ sufficiently small,
we may assume that this only contracts (K x +A)-trivial curves, and also that Kx +A—¢|A]
is big. Once the MMP terminates, we obtain ¢ : X — Y, such that ¢*(Ky +Ay) = Kx+A,
and (Y, Ay —e|Ay]) is klt. It follows from the base-point free theorem Theorem 2.44) that

Ky+Ay—¢| Ay | issemiample. AsY is a surface, every irreducible component of E( Ky +Ay)
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is one dimensional, and a curve C'is in E(Ky + Ay) if and only if (Ky + Ay)|c = 0. By
construction, Y contains no (Ky + Ay )-trivial curves which intersect |Ay | positively, and
so every connected component of E(Ky + Ay) is either contained in |Ay | or disjoint from
it.

Suppose first that £ is a connected component of E(Ky + Ay ) which is completely disjoint
from |Ay |. Then (Ky+Ay)|g ~o (Ky+Ay—¢|Ay])|g, which as noted earlier is semiample
by the base-point free theorem. This implies that (Ky + Ay)|g is semiample. On the other
hand, if F is a connected component of E(Ky + Ay) which is contained entirely in [Ay |,
then if K + Ap = (Ky + Ay)|g, we have that (E,Ag) is a semi-log canonical pair by
[Kol13, Corollary 3.35] and so (Ky + Ay)|g is semiample by adjunction and Lemma 9.23.

Assume now that Kx+A is not big. Since we may assume as above that 7' is the spectrum
of a DVR, the semiampleness now follows from [CT20, Lemma 2.17]. O

The following result on descending nef divisors is an adaptation of [BW17, Lemma 5.6]
and [Kaw85, Proposition 2.1].

Lemma 9.25. Let f : X — T be a projective and surjective contraction between normal
integral schemes over R. Let L be a Q-Cartier Q-divisor on X, nef over T, such that L|g is
semiample, for the generic fiber F of f. Assume dim X < 3. Then there exists a commutative
diagram

X -2, x

L

J ——T

with ¢ and v projective and ¢ birational, where ' agrees with the map induced by ¢*L over
the generic point of T', and with Q-Cartier Q-divisor D on Z satisfying ¢*L ~q f™D.

Proof. Up to replacing X by a projective birational cover, we may pick a projective surjective
morphism X — Z’ to a normal projective scheme Z’ over T" such that its restriction to the
generic fibre is the fibration defined by L|p.

Now take a flattening (see [RG71, Theorem 5.2.2]):

X" x

A

A
Here f” is flat (hence equidimensional, see [Sta, Tag 0D4J]), and ¢ and 7 are birational. We
can then replace Z” with a resolution Z and X" with the normalization X’ of the irreducible
component of X” Xz» Z which is dominant over Z to assume that Z is regular and X' is
normal. Note that f’ may not be flat, but it stays equidimensional. Denote ¢ : X' — X
and f': X' — Z. By [CT20, Lemma 2.17], we get that ¢*L ~q D for some Q-divisor D
on /. U

Lemma 9.26. Let X be a three-dimensional normal integral scheme, projective over T.
Suppose L is a nef Q-Cartier Q-divisor which is not big over T and such that L|x, is

semiample (if Xq is not empty), and L|g is semiample where G is the fiber over the generic
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point of the image of X in T. Then L is endowed with a map f : X — V over T to an
algebraic space V- proper over T'.
Moreover if L|p ~q 0 for every fiber F' of f, then L is semiample over T

Proof. First we may replace T' by the image of X in 7" to assume that X — T’ is a surjective
contraction. Let g : X’ — Z be the morphism given by Lemma 9.25. Replacing X bira-
tionally (which we can do as X is normal so X’ — X is a contraction) we may assume that
X = X', so that there is a Q-divisor D on Z such that L ~gq ¢*D.

To show that L is EWM, it suffices to show that D is EWM. If dim(Z) = 2, then D is EWM
by Lemma 2.54. If dim(Z) = 1 then we may assume that dim7 = 0 or Z = T = Spec(R)
for R a Dedekind domain, and then there is nothing to prove.

For the second part of the lemma, first localize T at a closed point of positive characteristic,
which we may do by semiampleness of L|x,. Let f: X — V be the map associated to L,
and assume that L is semiample on every fiber of f. It is enough to show that the divisor D
on Z is semiample. Furthermore, we may assume dim(Z) = 2 otherwise we are done. As D
is big and EWM on Z, E(D) is a finite set of curves contracted to points on T', whose pre-
images on X are therefore contained in fibers of f. Hence f*D|;-1(g(py) is semiample, and
so is D|g(py by [CT20, Lemma 2.11(3)] as f~'(E(D)) — E(D) has geometrically connected
fibers. We are done by Theorem 2.50. O

We now prove the base point free theorem.

Theorem 9.27. Let (X, B) be a three-dimensional Q-factorial klt pair with R-boundary
admitting a projective morphism f : X — T, such that the image of f has positive dimension,
and none of the residue characteristics of T are 2, 3 or 5.

Suppose that L is an f-nef Q-divisor such that L — (Kx + B) is f-big and f-nef. Then L
s f-semiample.

Proof. By Theorem 9.17, it remains to prove the case where L is not big. By a small
perturbation we may assume that B is a Q-boundary, and that L — (Kx + B) is f-ample.

By the base point free theorem in dimension 1 and 2, L| is semiample, where G is the fiber
over the generic point of Im(f). By Lemma 2.34 we may choose 0 < A ~g L— (K x+ B) such
that (X, B+ A) is klt, and it suffices to show that Ky + B+ A is semiample. By Lemma 9.26
and Proposition 248, Kx + B+ A is EWM over T, and let g : X — V be the associated
map. Note that in particular, Ky + B+ A =y 0. By the second part of Lemma 9.26, it
is enough to show that L|r ~q 0 for every fiber F' of g. This is satisfied over the generic
point of V' by the base point free theorem in lower dimensions and furthermore holds over
the points of characteristic zero by Proposition 2.48. So we may fix a point v € V of positive
residue characteristic, not equal to the generic point, for which we must test semiampleness
on the fiber F' over v.

Let h : V' — V be an étale cover of a neighbourhood of v € V' by an affine scheme, and
fix v’ € h™'(v). Since F, is only a base change of F' by an extension of the ground field, it is
enough to check semi-ampleness of L|r,. Hence after performing a small Q-factorialization
of the base change X Xy V', we may assume that V' is an affine scheme, and furthermore
by passing to the localization at v we may assume it is the spectrum of a local ring with
positive residue characteristic.

Fix a Cartier divisor D on V which contains the point v (which we may do because v is

not the generic point), and furthermore that D is of pure characteristic p. It follows that
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Supp(f*D) contains the fiber F'. Note that if X is not purely of characteristic p, we can just
take D = (p).

Let k =lct(X, B+ A, ¢*D) € Q. After shrinking V' and replacing k& we may assume that
all log canonical centers of (X, B+ A+ kg*D) intersect F'. After tie breaking by changing A
up to linear equivalence, we may assume that (X, B+ A+ kg*D) has only one log canonical
place. Note that to perform the tie breaking argument of [Cor07, Section 8.7], it is enough to
have a log resolution with an ample exceptional divisor Proposition 2.14 and log Bertini for
a sufficiently ample divisor Remark 2.18, which holds in complete generality in our setting.
Let m: Y — X be a Q-factorial dlt modification of (X, B+ A + kg*D), see Corollary 9.21,
and let Ky + Ay = 7*(Kx + B+ A + kg*D), where we have |Ay | := S irreducible and
therefore Ky + Ay is plt. The divisor S is not disjoint from Fy, the fiber of Y — V over v.
Since 7 has connected fibres, so does 7|g, : Fy — F since this is set theoretically a union of
fibres of m. Hence by [CT20, 2.11(3)], it is enough to show that (Ky + Ay )|r, is semiample.
Furthermore, the converse is also true since semi-ampleness is preserved under pullback. We
will use this trick repeatedly in what follows: if we take a morphism with connected fibres for
which Ky + Ay descends or pulls back, it is enough to show semi-ampleness of L restricted
to the new fiber.

Run a (Ky+Ay —S5)-MMP over V' with scaling of S’ (which terminates by Proposition 9.20
as Ky + Ay — S =y —8§ is pseudo-effective over V' being equivalent to an effective Q-divisor
af*D — S for a > 0) to reach Y’ on which —S is nef over V. By construction this cannot
have contracted S, as each step intersects it positively. Again, the fiber Fy: over v € V is
not disjoint from S. But any curve I' in Fy- satisfies S-1' < 0 and so Fy- is either contained
in .S or disjoint from it. However we know that it cannot be disjoint, and so Fy» C S. The
divisor Ky + Ay is trivial for every step in the prior MMP since Ky + Ay =y 0, and so it
descends to every step. As a result, by repeatedly applying [CT20, 2.11(3)] at every step of
the MMP as explained above, it is enough to show that (Ky++Ay/)|g,, ~q 0, and for this it
is enough to see that (Ky' + Ay/)|s is semiample, but this follows from Theorem 9.24 and
Corollary 7.17, since (Y, Ay+) is plt as it has the same non-klt places as (Y, A): which are
S’ and S respectively. O

The proof of the base point free theorem for R-line bundles will be given in the next section
(Theorem 9.33) as it requires the cone theorem.

9.7. Step 6: Cone theorem and Mori fiber spaces. The first goal of this section is to
prove the full cone theorem:

Theorem 9.28. Let (X, A) be a three-dimensional Q-factorial dit pair with R-boundary
projective and surjective over T, which has positive dimension and no residue fields of char-
acteristic 2, 3 or 5. Then there exists a countable collection of curves {I';} such that

(a)
NE(X/T) = NE(X/T)kyas0 + 3 _ R[],

(b) The rays R[I;] do not accumulate in the half space (Kx + A)<o,
(c) For each T,

—4d1"i < (KX"—A)FZ<O

where dp, 1s such that for any Cartier divisor L on X, we have L -1'; divisible by dr, .
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The cone theorem is a formal consequence of Lemma 9.29, our proof of which is inspired
by the flip case of [BW17, Lemma 3.2]. We are unable to apply the other cone theorem
arguments of [BW17, Section 3] directly due to the possibility that we work over a local base
where general closed fibers need not exist.

Lemma 9.29. Let (X, B) be a Q-factorial kit threefold with Q-boundary, projective and
surjective over T with dim(T) > 0 and having no residue fields of characteristic 2, 3 or 5.
Suppose that Kx + B is not nef. Then there exists an integer n depending only on (X, B)
such that if H is an ample Cartier divisor, and

A=min{t > 0| Kx + B+ tH is nef}

then A = = for some natural number m.
Furthermore, there is a (Kx + B + AH)-trivial curve I' satisfying

—4dr < (Kx+B)-T'<0
where dr is such that for any Cartier divisor L on X, L -T" is divisible by dr.

Proof. First suppose that Ky + B + AH is big. Then Kx + B + (A — ¢)H is also big for
sufficiently small £, and by definition of A, it fails to be nef. By Theorem 9.9 there are only
finitely many (Kx + B + (A — ) H)-negative extremal rays for ¢ sufficiently small, and these
rays are isolated. Therefore at least one of these rays R must satisfy R- L = 0, and R has
a projective contraction f : X — Z by Corollary 9.18 which contracts a curve C. This
satisfies (Kx + B) - C = —AH - C and therefore \ is rational as Kx + B and H are both
Q-Cartier. We now show that f contracts a curve satisfying the required bound.

Suppose that f is a divisorial contraction, contracting a divisor S. Let A = AH, which we
have just seen is Q-Cartier, so that by Theorem 9.17 L = Kx + B + A ~g z 0. Note that it
is sufficient to find a curve I' such that

0< A-T <d4dr.

Let ¢ : W — X be a log resolution of (X, B + §), let By be the sum of the birational
transform of B and the reduced exceptional divisor of ¢, Sy be the birational transform of
S, and let Ay = ¢*A. By the projection formula, it is enough to find a curve I'yy on W
which satisfies

0< Ay - I'y < 4dI‘W-

Let a be such that S has coefficient 1 in B+aS. We have Ky + By + Aw +aSw ~rz E+
aSy for some exceptional/ X effective Q-divisor E. This means that E+ Sy is in fact effective
and exceptional over Z, and Ex(fo¢) = | By + Aw + aSw |. Run a (Kyw + Bw +Aw +aSw )-
MMP over Z, which must terminate on Z by the negativity lemma and the fact that Z is
Q-factorial. Suppose that a step W --» W’ of this MMP contracts a curve over X. Then
Aw descends to Ay for it is a pullback from X, and again it is enough to find a curve 'y
satisfying

0<Aw - Ty < 4dFW/-
We are reduced to the same problem for the next step of the MMP. As the MMP terminates
on Z, we must eventually reach a step contracting a ray R which is not over X. Then as Ay,
is ample over X, we have Ay -I" > 0 and so the step is also negative for Ky + By +aSy,. But
since this MMP is negative for E¥ + aSy, whose support is equal to the reduced boundary,

we can choose a component F' of E + Sy on which R is negative. By restricting to F' and
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applying adjunction [Kol13, Section 4.1], we find that (Kw + Bw + aSw)|r = Kr + Br for
some dlt pair (F, Br). If F' has dimension 1, then it follows that F' = I" satisfies

_QdFWS (KW + Fw) . FW < (KW + BW + CLSW) . FW <0

e.g. by [DW22, Lemma 4.4]. Meanwhile if F' is two dimensional we see by Theorem 2.46
that there is a curve I'yy C F' in R satisfying

—4drw < (KW + Bw +CLSW) Ty < 0.
In either case, since the ray is also negative for Ky + By + Aw + aSy, we find that
O<AW-FW§4de

as required.

Now suppose that f : X — Z is a flipping contraction, and z € Z is the image of the
flipping locus. In this case, the argument for the flipping case in [BW17, Lemma 3.2] applies
directly, with the only change being to insert dr in appropriate places. The reference to
[Birl6, 3.4] in [BW17, Lemma 3.2] can be replaced by the argument in the first paragraph
of this proof using Theorem 9.9.

Next suppose that the R-divisor L = Kx + B + AH is not big. Let ¢ be the generic point
of T. By Theorem 2.44, L|x, is semiample, and by Proposition 2.48 we may assume that
L|x, is semiample, if this fiber is non-empty. As L is not big, there is a curve C' in X, (over
the residue field of &) which is contracted by the induced map. This satisfies

(KX‘I‘B)|X§ C:—)\H|X£C

and therefore because Kx + B is a Q-Cartier Q-divisor and H is an ample Cartier divisor,
A € Qand L is a Q-divisor. Let A = AH, where after changing A up to Q-linear equivalence
we may assume that (X, B+ A) is kit (see Lemma 2.34). L is semiample by Theorem 9.27,
and so let f: X — Z be the induced contraction. We may assume that Z is normal and
projective over 7'

Choose a Cartier divisor Dy C Z. Let 7 : W — X be a dlt modification of (X, (B + A+
f*Dz)=h) (see Corollary 9.21), where D=! denotes the divisor obtained by truncating the
coefficients of D at 1. Then let Ay = 7*A and By be the sum of the strict transform of B
and the unique effective Q-divisor necessary to ensure that By, + Ay has coefficient one at
every component of Supp(7*f*Dyz). As in the divisorial case, it suffices to find a curve I' on
W which satisfies 0 < Ay - T' < 4dp.

We have

(9.29.1) Kw + Bw + Aw ~oz E

where F is effective and each component of F is supported over D . In particular this implies
that Ky + Bw + Aw is not big over Z. Furthermore, | By + Ay | and E both contain every
component of Supp(7* f*Dy).

Run a (Kw + By + Aw )-MMP over Z, which exists and terminates by Proposition 9.20.
If the first step of the MMP, W --» W', is over X then exactly as before, Ay descends to
Ayw, and so we may replace W by W’ and continue. On the other hand, suppose that a step
of the MMP contracting a ray R is not over X. As before, since A is ample on X we see

that Ay - R > 0, and as a result (K + Bw) - R < 0 But as (9.29.1) implies that the curves
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contracted are contained in the reduced boundary, we find a curve I'y, which satisfies
_4dFW < (KW + Bw) -T'w <0

by the log canonical case of Theorem 2.46. But as this ray was chosen to be negative for
Kw + Bw + Aw, it follows that we must also have 0 < Ay - 'y < 4dp,, as required.

Hence we may assume that the entire MMP is over X and terminates with a model Y
with maps ¢ : ¥ — X and ¢ : Y — Z, and such that Ky + By + Ay is nef over Z,
where Ay = ¢*A. Now Ky + By + Ay ~qy Ky + By + Ay — "Dy, and the pair
(Y, By + Ay — e*Dy) is klt for any sufficiently small e. Hence by Theorem 9.27, using the
fact that Ay is big, we see that Ky + By + Ay is ¥-semi-ample. Let o : Y — V be the
morphism induced by Ky + By + Ay, so that Ky + By + Ay ~, 0. Since Ky + By + Ay is
not big over Z, dim(V') < dim(Y’). We have varieties and morphisms:

y 2. x

AT

Choose a component S of ¥* Dy which is not contracted over X, or equivalently which is the

strict transform on Y of a component of f*D,. As S is not contracted over X, Ay|g is big.
However, since dim(S) > dim(V'), and S is not horizontal over Z and hence not horizontal
over V', we see that S is contracted over V.

Hence S contains a curve C' which is vertical over V' and which satisfies Ay|s - C > 0,
since Ay|g is big and S is contracted over V. The divisor S is contained in |By + Ay |,
so by adjunction let Kg + Bs = (Ky + By)|s, and if S is one dimensional (as in Remark
2.23), set I' = S. The latter satisfies the required bounds exactly as in the birational case
above. Otherwise apply the cone theorem Theorem 2.46 over Z to Kg + Bs. This finds an
extremal ray which is (Kg + Bg + A|s)-trivial (here we use that Ky + By + Ay ~, 0) and
so Als-positive which contains a curve I' such that

Taking the pushforward of I' to X gives the required curve as in the birational case, since
Ay is the pullback of A from X and the curve I' is contracted over Z.

Now to prove the statement about A, let I be the Cartier index of Kx + B. Then we have
that I(Kx + B) - T' is an integer divisible by dr, and so is an integer between —4/ and —1.

Since
—I(Kx + B) - %

T ’
IH - &

we can take n = (41)!. O

A\ =

Definition 9.30. Let X be a scheme with a projective morphism f : X — T, and R an
extremal ray over 1. Let H be an f-ample Cartier divisor on X. We say that a curve I' € R
is extremal if

r
H-—:min{H-£|C€R}.
dr de
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The extremality of a curve does not depend on the ample divisor H, since if H' is a
different ample divisor, there is A > 0 such that H - C' = AH' - C for any C in R, and so

I C
-5 H-z
r. L g, €
H T H e

for any other curve C' € R. Similarly, if D is a Q-divisor such that D - R < 0, we have
r C
D-— =max{D-— | C € R}.
dr de

Finally we are ready to prove the cone theorem.

Proof of Theorem 9.28. 1f we assume that A is a Q-divisor, and (X, A) is klt, (a) and (b)
follow formally from Lemma 9.29 using [KM98, Theorem 3.15] (one can also use the standard
proof of the cone theorem in the smooth case [KM98, Theorem 1.24] as Lemma 9.29 recovers
a singular variant of Mori’s bend-and-break [KM98, Theorem 1.13]).

Now suppose that A is an R-divisor or (X, A) is not klt. We first prove that there are
only countably many (Kx + A)-negative extremal rays and that they do not accumulate in
(Kx+A)g. For each integer n, choose a klt Q-boundary A,, such that Supp(4A,,) = Supp(A)
and |A—A,| < 1. BEach (Kx + A)-negative extremal ray is (Kx + A,)-negative for some n,
and so the collection of (Kx + A)-negative extremal rays is a subset of a countable union of
countable sets, hence countable. Furthermore, if there is a sequence of (Kyx + A)-negative
extremal rays which accumulate in (K x+A)o, then they accumulate to aray in (Kx+A4A,)<o
for some n > 0. Therefore by truncating the sequence of extremal rays we obtain a sequence
of (Kx + A,)-negative rays which accumulate in (Kx + A,)<o, contradicting (b) in the klt
Q-divisor case.

Now we move to (c). Let R be a (Kx + A)-negative extremal ray. Then let A, be a
sequence of klt Q-boundaries with lim,, A, = A, and such that R is (Kx + A, )-negative for
every n. For each n, we can find an ample divisor A, such that R = (Kyx + A, + A,)*, and
then Lemma 9.29 shows that there is a curve (), in R, which satisfies

_4an < (Kx+An)Cn <0

for every n. Then as R contains a curve, it contains an extremal curve C', which satisfies

C, C
—4<(Kx+A,) — < (Kx+A, -—<0.
an dC’
It then follows that
—4dc < (Kx+A)-C<0

as required. O
Our next result is finiteness of log minimal models, for which we first recall the setup.

Setup 9.31. Let X be a three dimensional, klt Q-factorial integral scheme, projective over
T, such that the image of X in T is positive dimensional. Let A > 0 be a Q-divisor and
V' a finite dimensional rational affine subspace of the vector space of R-Weil divisors on X.
Then we define the Shokurov polytope

LaV)={A|0<A—-AecV and (X,A) log canonical}.
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As we know that projective log resolutions exist in our situation, this is a rational polytope
by [Sho92, 1.3.2].

The proof of the next proposition closely follows that given in [BW17, Proposition 3.8].
Note that the proofs of parts (4) and (5) of [BW17, Proposition 3.8] do not work in our
situation, but we do not need them.

Proposition 9.32. Let X, T, V, and £ be as above, and fir B € L. Then there are real
numbers o, § > 0 depending only on (X, B) and V', such that

(a) IfT is an extremal curve on X and if (Kx + B)-T' >0, then (Kx + B) - - > «,
T
b)if A € L and ||A — Bl| < 6 and (Kx +A) - R < 0 for an extremal ray R then
( y
(Kx +B)-R<0. o
(c) Let {Ri}ies be a family of extremal rays of NE(X/T). Then the set

Ng={AeL|(Kx+A)-R >0 for any t € S}
1S a rational polytope.

Proof. The proofs of the corresponding statements in [BW17, Proposition 3.8] work here, by
replacing every appearance of a curve I' with %. 0

The following base point free theorem for R-divisors is used in the upcoming proof of
finiteness of log minimal models.

Theorem 9.33. Let (X, B) be a Q-factorial three dimenaional klt pair with R-boundary,
projective over T and such that the image of X in T has positive dimension and that none
of the residue fields of T have characteristic 2, 3 or 5. Suppose that D is a nef R-divisor
such that D — (Kx + B) is nef and big. Then D is semiample.

Proof. Let A = D—(Kx+ B). It is sufficent to prove the statement after localizing at a point
t € T. Thus we may change A and B using Lemma 2.34 to assume that (X, A := B+ A)
is klt and A is an ample Q-divisor. By Proposition 9.32(c) there are Q-boundaries A; such
that A = > a;A; for a; > 0, [[A — Aj|| are sufficiently small, A; > A, (X,4;) are kit
and Kx + A; are all nef. By Theorem 9.17 Kx + A, are all semiample, so Kx + A is also
semiample. 0

Theorem 9.34. In the situation of Setup 9.31, assume that A is also big over T, and the
image of X in T is positive dimensional. Let © C L (V) be a rational polytope such that
(X, B) is klt for every B € C. Then there exist finitely many birational maps ¢; - X --+Y;
over T such that for each B € C for which Kx + B is pseudo-effective over T', there is some
i such that (Y;, By,) is a log minimal model of (X, B) over T.

Proof. The proof is identical to that of [BW17, Proposition 4.2], with the inputs being
Proposition 9.32, the base point free theorem Theorem 9.33 and the existence of log minimal
models Proposition 9.20. [l

Theorem 9.35. Let (X, B) be a Q-factorial three-dimensional kit pair with R-boundary,
projective over T, such that the image of X in T has positive dimension and that none of
the residue fields of T' have characteristic 2, 3 or 5. Suppose A is an ample R-divisor such
that Kx + B + A is nef over T'. Then we can run the (Kx + B)-MMP over T with scaling

of A and it terminates.
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Proof. This follows by the arguments of [BW17, Proposition 4.3 using Theorem 9.34, and
[BW17, Proof of Theorem 1.6] except that we replace the reference to [BW17, Proposition
4.5] with Proposition 9.20. O

Note that if we assume that T is a curve with finitely many closed points, for instance if
T = Spec(Z,), we get a stronger termination result:

Proposition 9.36. Let (X, B) be a Q-factorial three dimensional kit pair with R-boundary
projective and surjective over T of positive dimension, and T has only finitely many closed
points, none of which have residue fields of characteristic 2, 3 or 5. Then any sequence of
(Kx + B)-flips terminates.

Proof. By Theorem 9.7, after finitely many flips both the flipping and flipped loci are disjoint
from the birational transform of the boundary. Given this, note that any (Kx + B)-MMP
is also a (Kx + B+ ¢) , F;)-MMP for 0 < ¢ < 1 where F; are the pullbacks of Cartier
divisors on 7" which contain the finitely many closed points of T', and so the flips eventually
terminate. U

Theorem 9.37. Let (X, B) be a three-dimensional Q-factorial dit pair, with R-boundary,
projective over T' such that the image of X in T has positive dimension and none of the
residue fields of T have characteristic 2, 3 or 5. Suppose that Kx + B is not pseudo-effective
overT. Then we can run a (Kx+B)-MMP with scaling of an ample divisor which terminates
with a Mori fiber space.

Proof. If (X, B) is klt, this follows by combining the Theorem 9.28, Theorem 9.33, Theorem 9.14,
and Theorem 9.35.

If it is not klt, fix an ample divisor A and run a (Kx + B)-MMP with scaling of A.
The cone theorem holds by Theorem 9.28, contractions and flips exist by perturbing the
boundary to a klt boundary and then applying Theorem 9.17 and Theorem &8.25. It remains
to show termination.

Fix ¢ sufficiently small that Kx + B + 0 A is not pseudo-effective over T. Now choose
£ < 0 sufficiently small that eB + 0 A is ample over T'. Note that since Kx + B + 0 A is not
pseudo-effective, a (Kx + B)-MMP with scaling of A is also a (Kx + B + 0A)-MMP with
scaling of (1 —0)A.

For any point t € T', we may localize over t, apply Lemma 2.34 and then spread out over
some open subset t € U C T" and its preimage Xy in X, to find a divisor H ~g eBx,, +0Ax,
such that (Xy, (1 — ¢)Bx, + H) is klt. Therefore by Theorem 9.35 our MMP terminates
over U since it is also an MMP for Ky, + (1 —¢)Bx, + H. Since we can cover 1T with
finitely many such open sets, we see that the (Ky + B)-MMP with scaling of A terminates
everywhere. 0

10. APPLICATIONS TO MODULI OF STABLE SURFACES

The goal of this section is to show the existence of the moduli stack ]M of stable
surfaces of volume v over Z[1/30] as an Artin stack with finite stabilizers and of finite type
over Z[1/30]. By the Keel-Mori theorem [KM97, Con05] this then also implies the existence
of the coarse moduli space My, of stable surfaces of volume v as an algebraic space over

Z[1/30]. We refer to [Pat18, Sec 1.3] for the precise definitions of the moduli functor of .#Z5,,.
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The starting point is that in [Pat18, Thm 9.7] it was proven that one has to only show
a special case of inversion of adjunction: if f : X — T is a l-parameter flat projective
family of geometrically demi-normal varieties with semi-log central fiber, then X is semi-
log canonical. By passing to the normalization of X this follows from the log canonical
inversion of adjunction. So, this version of inversion of adjunction is our first goal, which is
a consequence of the following existence statement for dlt-models.

Corollary 10.1 (Log canonical inversion of adjunction). In the situation of Setting 9.1
suppose that none of the residue fields of R have characteristic 2, 3 or 5. Let (X, D) be a
normal pair of dimension 3 such that Kx + D s Q-Cartier, and with a prime divisor S
that has coefficient 1 in D. Let S be the normalization of S. If (SN, Dgn) is log canonical,
where Dg~ is the different of D along S, then so is (X, D) in a neighborhood of S.

Proof. Consider a Q-factorial dlt-model g: (Z,T') — (X, D) constructed in Corollary 9.21.
Here T" is the boundary used in Corollary 9.21, that is, it can be obtained by lowering to 1
all the greater than 1 coefficients of g;'D and additionally adding in all the g-exceptional
divisors with coefficient 1. Let T be the component of I' dominating S. Since Z is Q-
factorial we use Corollary 7.17 and a pertubation argument to see that 7' is normal. We fix
the following notation for the induced morphisms:

y

/\

Let A be the crepant boundary on Z, that is for which Ky + A = ¢*(Kx + D). Note that
by point (d) of Corollary 9.21, A — T" is effective and it is non-zero exactly at each prime
divisor E of Z for which coeffg A > 1. Note also that (7, Ar) is a crepant dlt-model for
(SN, D SN), where Ar is the different of A along T'. In other words, we have that

(1011) KT+AT:Oé* (KSN+DSN).

Additionally, (7, T'r) is dlt, where I'r is the different of T" along 7. As (SN, DSN) is log
canonical, by (10.1.1), we see that the coefficients of Ay are at most 1. By the surface
inversion of adjunction applied at the codimension 1 points of 7', this means that the co-
efficients of I' are at most 1 in a neighborhood of T. We note that here we crucially use
the Q-factoriality of Z, which implies that divisors on Z can only meet T in codimension
1 points of T'. Since at all divisors in Supp(A — I'), the coefficient of A is 1, we obtain
that the divisors A and I" agree in a neighborhood of T. However, Corollary 9.21(e) tells us
that for each fiber, Supp(A — I') either contains it or is disjoint from it. So, we obtain that
g( Supp(A —T )) is a closed set that is disjoint from S. This concludes our proof as (X, D)
is log canonical over X \ g( Supp(A — F)) O

In fact, we believe that the above result works even when R has arbitrary residue char-
acteristics, by using the non-Q-factorial dIt modification as in Remark 9.22 and replacing T’
in the proof by its normalisation.

In the proofs of the following statements we use the language of almost Cartier divisors
on Sy and Gy, Noetherian schemes, as introduced in [Har94], for the canonical divisor of
demi-normal schemes and their one-parameter families. Furthermore, for such families the

canonical divisor is compatible with base-change, as they contain a relatively Gorenstein
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open set, the complement of which has codimension two in every fiber (for the arbitrary
Gorenstein base-change see [Con00, Sec 3.6]).

Corollary 10.2 (Existence of .45, over Z[1/30]). With notation as above:

(a) The moduli stack M 5, of stable surfaces of volume v over Z[1/30] exists as a separated
Artin stack of finite type over Z[1/30] with finite diagonal.

(b) The coarse moduli space My, of stable surfaces of volume v over Z[1/30] ezists as a
separated algebraic space of finite type over Z[1/30)].

Proof. Point (b) follows from point (a) using the Keel-Mori theorem [KM97, Con05]. So, we
only have to show (a). By [Pat18, Thm 9.7] we have to show that if f : X — T is a flat
family of geometrically demi-normal projective schemes over the spectrum of a DVR with ¢
being the closed point and X7 being a stable surface, then X has slc singularities. (We note
that [Pat18, Thm 9.7] is based on [HK19], [Ale94] and [Koll1].)

First, we show the corollary under an assumption that X; is sle. Let g : (Y, D) — X be
the normalization, where D is the conductor. As X is demi-normal, D has only coefficients
1. We have to show that (Y, D) is log canonical. Note that as X is regular at every generic
point of every fiber of f, Y — X is an isomorphism at these points. In particular Y; — X,
is an isomorphism around the generic points of X;. As Y is Sy, Y, is S7. So, all embedded
points of Y; are at generic points which implies that Y; is reduced. Hence, the normalization
of Y; and of X; agree. Let us write § : Z := X} — X, for this normalization. Take the
boundary Dz on Z which is crepant to (Y, D), that is, Kz + Dy = o*(Ky + D), where
a: Z — Y, — Y is the induced composition morphism. In fact, this boundary is also
crepant to X, that is Ky + Dy = 6*Kx,. This follows from the fact that both Ky, and
Ky + D are pullbacks of Kx. To sum up, we have the following commutative diagram, where
every arrow connects crepant equivalent pairs (i.e., the log-canonical divisors are compatible
via pull-backs by any of the arrows):

<Z7 DZ) % Xt

normalization

Oél lcentral fiber

(Y, D) J > X

normalization

By the definition of X, being slc, (Z, Dy) is le, hence by Corollary 10.1 (Y, D) is also I,
and hence X is slc.

Second, we show that X7 being slc implies that X, is slc (note: we know that X is
geometrically demi-normal and hence geometrically reduced). This is a standard argument:
we need to show that (Z, Dy) is log canonical. Let p: V. — Z be a log resolution of
singularities with Dy so that Ky + Dy = p*(Kz + Dz). In other words Dy is a crepant
sub-boundary. We need to show that Dy has coefficients at most 1.

Let £ : W — V% be the normalization of Vi, where k = k(t). Let Dy be a Q-divisor on W
such that Ky + Dy = £*(Ky + Dy ). It is crepant to both (V, Dy) and to Xg; in the latter
case, we use that v*Kx, = Kx, as relative canonical divisors are stable under base change.
Let ¢ : W — V be the induced morphism, and let E be the boundary on W that makes
(W, E) — V crepant. In other words, as V' is geometrically reduced by being generically
isomorphic to X;, E is the conductor of W — V. In particular £ > 0. By the definition

of the respective divisors we see that Dy = E + ¢*Dy,. To sum up, we have the following
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commutative diagram, where every arrow connects crepant equivalent pairs:

¢
(W, Dw) —omtmion > (Vo D) o
- l ulbase—extension to w
(‘/7 DV) % (Z, DZ) % Xt

log-resolution normalization

As X7 is sle, and (W, Dy) is crepant to X7, we obtain that the coefficients of Dy, are at
most 1. Coupling this up with the equation Dy, = E + ¢* Dy and with the effectivity of F,
we obtain that the coefficients of Dy are in fact at most 1 too. O

Corollary 10.2 implies different modular lifting statements on stable varieties. A sample
one is the following which gives the lifting to be over a localisation of a finite extension of Z
(alas, we need to assume that the base field is finite). One can also show that if the surface
is defined over a perfect field k, then there exists a lifting over W (k).

Corollary 10.3. For every rational number v > 0 there exists a prime p(v) with the following
property: for all stable surfaces X of volume v over a finite field of characteristic p > p(v),
there is a family of stable surfaces Z  over an open set of the spectrum of the ring of integers
of a number field such that X is a fiber of 2.

Remark 10.4. The point of Corollary 10.3, where we think that Corollary 10.2 is essentially
used, is that it states a lifting to a stable family, not only to an arbitrary flat family. We
think that for this type of application one essentially needs the openness of the stable locus
in adequate flat families, which was our main contribution to the proof of Corollary 10.2.

The following theorem uses the notion of a Lefschetz pencil of a smooth projective variety
X over an field k. By definition [SGA73, Sec XVII.2.2 on page 215], this is a pencil ¢ :
X’ — P} of hyperplane sections of X such that general fibers of ¢ are regular and every
singular point of every fiber has quadratic singularity. The latter in dimension 1 means nodal
singularity. Note that by the virtue of being a pencil, ¢ fits into a commutative diagram as

follows:
closed embedding

X < birational X/ < s X % ]P)]{,
X J/
P
Remark 10.5. Let X be a smooth projective variety over k. It is shown in [SGAT3, Sec
XVII, Thm 2.5] that for any projective embedding of X given by a very ample line bundle
L, Lefschetz pencils exist for the projective embedding given by L®2. Additionally, over

algebraically closed fields Lefschetz pencils can be obtained as general pencils of hyperplane
sections [SGAT3, Sec XVII, Cor 3.2.1].

Theorem 10.6. Fizx an integer v > 0 and let

d= H P, where Bv) = {

p prime, p<B(v)

393 ifv=1
2130 + 48 ifv>2.

Then, the closure ];nz of the locus of smooth surfaces in M o, is proper over Z[1/d]. Ad-

ditionally, it admits a projective coarse moduli space M;nz over Z[1/d].
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Proof. REDUCTION TO THE EXISTENCE OF LIMITS: First, let us note that [Pat18, Thm
1.2] shows the projectivity of M;ni contingent upon the properness of %Zn; We note here
that [Pat18, Thm 1.2] is unfortunately not stated as precisely as needed here, but its (few
paragraph long) proof exactly shows this, using [Pat18, Thm 1.1]. So, we are left to show
the properness of ];nz

By Corollary 10.2, we know that .#5, is an Artin stack of finite type over Z[1/30] with
finite diagonal. So, we only have to show that .# is closed under limits. As the properness
of %271) is known in characteristic zero, it is enough to show the .# is closed under limits
of characteristic p > 0. That is, we have to show that if f© : X% — 79 is a smooth
canonically polarized surface over the spectrum of a field K, and R is a DVR of K with
residue field characteristic p greater than 3(v), then f° extends to a family of stable surfaces
f : X — T = SpecR, after possibly replacing K and R with finite extensions and f°
with the corresponding base-change. We may even assume that the residue field of R is
algebraically closed.

THE PLAN OF SHOWING THE EXISTENCE OF LIMITS: The construction of f happens in
the following steps:

o We construct a birational model Y° — X" admitting a fibration Y° — P} with
certain singularity and boundedness properties.

o The above singularity and boundedness properties are tailored exactly, so that [Sai04,
Corollary 2] provides a semi-stable extension fy : Y — T, after possibly applying a
finite base-change.

o We run an MMP to turn the semi-stable extension into a stable family.

EXISTENCE OF SEMI-STABLE LIMITS: To state the above mentioned singularity and bound-
edness properties, let Y? — XY be a projective birational morphism from another smooth

surface over 7°, and let 70 1Y% — T be the composition. [Sai04, Corollary 2] tells us that

in this situation we can find at least a semi-stable extension fy : Y — T of 70 if we can
produce a diagram as follows

(10.6.1) Yo /P}K\ 70

g h

such that:

(a) g is projective and surjective,

(b) for the degree d of the canonical sheaves of the fibers of g and of h we have p > d+ 4,
which is guaranteed if S(v) > d + 4,

(c) for

B { the reduced discrimant divisor D, if deg D, > 3

a reduced divisor of degree 3 containing D, in its support, otherwise

we have p > deg D, which again is guaranteed if 5(v) > deg D, and
(d) D is étale over T° = Spec K, that is, all the residue fields of D are separable extensions
of K

(e) the degree of the canonical sheaf of the fibers of g is greater than 0.
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In the above, the discriminant divisor is the divisor over which the non-smooth points of
g lie. We note that for this application of [Sai04, Corollary 2], one needs to set X; = P!,
Dy =D, U =X, \D, Xy =Y°% Dy =0. We also note that using the notation of [Sai04,
Corollary 2],

condition (b) guarantees that p > 2¢g; + 2 and p > 2g5 + 2,

condition (c) guarantees that p > r; and that 2¢g; — 2 4 r; > 0,

condition (d) guarantees that D is étale over Uy, and

condition (e) guaratees that 2¢g, — 2 > 0, where we took into account that ro = 0.

O O O O

We construct the Y° above and the fibration (10.6.1) by taking a Lefschetz pencil of
X%, and descending it to a finite extension K’ of K. Note, this descent can be done,
as the Lefschetz pencil is defined by finitely many equations. We may even assume that
over K’ the discriminant divisor D, consists of only K’-rational points. As throughout our
process we can freely replace K be a finite extension, we may assume that in fact K = K’.
Additionally, for a Lefschetz pencil one always needs to fix a projective embedding, and as
we explained Remark 10.5, then one has to post-compose this projective embedding by the
second Veronese embedding. As the linear systems }4K X?} if v > 1 and }SK X?} ifv=1
are very ample by [Eke88, p 13, Main Thm]|, we obtain a Lefschetz pencil for the embedding
8K x| if v>1, and for [10Kx_|if v =1.

So, we are able to construct (10.6.1) itself, but we also need to verify conditions (b),
(c), (d) and (e). Condition (d) is automatic as we choose our Lefschetz pencil so that the
discriminant consists only of K-rational points. Conditions (b) and (e) have to be verified
only for the fibers of g, as the only fiber of h is isomorphic to Pk.. Additionally, when v > 1,
then the degree of the canonical sheaf of the fibers of g by adjunction is:

0< (Kx+8Kx) -8Kx =T2K% = T2v < 213v + 44 = B(v) — 4.

If v = 1, then by the corresponding computation we obtain that the degree is 110 < 373—4 =
369. So, this concludes the verification of conditions (b), (d) and (e).

Hence, we are left to verify condition (c). For this we use the formula that the degree of
the discriminant locus of a Lefschetz pencil associated to a very ample line bundle L on X
is:

(10.6.2) 3L% + 2L - Kx + c2(Qx).

We learned this formula from [Stal3]. As we did not find a proof in the literature, we briefly
indicate the argument using the notation of (10.6.1): one can base-change to the algebraic
closure of K, then one uses the Giambelli-Thom-Porteous formula that the cycle given by
the degeneracy locus of % — ¢g*p is given by plugging into the Chern number ¢ — ¢, the
virtual bundle'® 0y (2G) — %, where G is a fiber of g. The total chern class of this virtual
bundle is 1+ (2G + Ky) + ((2G + Ky ) - Ky — ¢2(y)). Hence, the degree of the degeneracy
locus in terms of the invariants of YV is ¢2(Qy) + 2G - Ky, from which it is straight-forward
to deduce (10.6.2).

Bthat is an element of the Grothendieck group K°
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Plugging 8 Kx into the L of (10.6.2) yields that the degree of the degeneracy locus is at
most

(3-8 +2-8)K% + c2(Qx) T 208K +12x(Ox) — K3 = 207K + 12x(Ox)

‘ c2(Qx) = 12x(0x) — K% by Grothendieck-Riemann-Roch applied to &'x ‘

1
<207TK% + 12 <§(K§< +6) + 1) = 213K% + 48 = 213v + 48 = B(v).
/]\

‘ Noether’s inequality [Lie08, Thm 2.1] ‘

When v = 1, we have L = 10K x, for which the same computation gives 325v + 48 = 373.
This concludes then the verification of (¢) too.

EXISTENCE OF STABLE LIMITS: Therefore, we arrive at a semi-stable extension f : Y — T
of ?0. Then we run a Ky-MMP on Y over T or equivalently a (Ky + Yy)-MMP over
T. Note that X° is the canonical model of Y over 7°. Hence, we obtain the extension
f: X — T of f° where X is a canonical model over T. At the same time (X, Xy = f~1(0))
is also a log canonical model over 7', where 0 € T' is the closed point. By adjunction
we obtain that (X', Diff x) is log canonical, where X' is the normalisation of X, and
Kxx +Diff yx = (Kx + Xo)|xy. This implies that X is slc, as soon as we can show that Xo
is Sy. By looking at the exact sequence

0—>ﬁX(—X0) ﬁX ﬁXO 0

we see that it is enough to show that X is Cohen-Macaulay. This was shown in [BK21, Thm
2 & Thm 17] (this article depends on [Kol21], which in turn uses the earlier sections of the

present article, however it does not use the present section). O
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