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THE DU BOIS COMPLEX OF A HYPERSURFACE AND THE MINIMAL

EXPONENT

MIRCEA MUSTAŢĂ, SEBASTIÁN OLANO, MIHNEA POPA, AND JAKUB WITASZEK

Abstract. We study the Du Bois complex Ω•

Z of a hypersurface Z in a smooth complex
algebraic variety in terms its minimal exponent α̃(Z). The latter is an invariant of singular-
ities, defined as the negative of the greatest root of the reduced Bernstein-Sato polynomial
of Z, and refining the log canonical threshold. We show that if α̃(Z) ≥ p + 1, then the
canonical morphism Ωp

Z → Ωp
Z is an isomorphism, where Ωp

Z is the p-th associated graded
piece of the Du Bois complex with respect to the Hodge filtration. On the other hand, if
Z is singular and α̃(Z) > p ≥ 2, we obtain non-vanishing results for some of the higher
cohomologies of Ωn−p

Z .

1. Introduction

One of the Hodge theoretic objects of great interest associated to a variety Z – by which in
this paper we always mean a reduced separated scheme of finite type over C – is the Du Bois
complex (or filtered de Rham complex) Ω•

Z , defined in [DB81], and later in a slightly different
fashion in [GNAPGP88]. This is an object in the derived category of filtered complexes on
Z; when Z is smooth, it is given by the usual algebraic de Rham complex of Z, with its
“stupid” filtration. In general, the (shifted) associated graded objects

Ωp
Z := GrpFΩ

•
Z [p]

are objects in the derived category of coherent sheaves which provide useful generalizations
of the bundles of p-forms in the smooth case (for example, they feature in an extension of the
Akizuki-Nakano vanishing theorem to singular varieties). The 0-th filtered piece Ω0

Z appears
extensively in the literature, as it is related to what has become a quite important class
of singularities; recall that Z is said to have Du Bois singularities if the natural morphism
OZ → Ω0

Z is a quasi-isomorphism. See for instance [KS11] for a nice overview of Du Bois
singularities and their role in birational geometry. Besides some formal statements and some
special classes of singularities, little is known about Ωp

Z with p ≥ 1.

The aim of this paper is to study the behavior of these higher filtered graded pieces of
Ω•
Z when Z is a reduced hypersurface in a smooth irreducible algebraic variety X, using

methods from the theory of Hodge modules. We give both vanishing and non-vanishing
statements about various cohomologies of these complexes, in terms of a singularity invariant
derived from the Bernstein-Sato polynomial bZ(s), namely the minimal exponent α̃(Z). This
is defined as the negative of the greatest root of the reduced Bernstein-Sato polynomial
b̃Z(s) = bZ(s)/(s+1), and has been studied extensively in [Sai94], [Sai16], [MP19], [MP20a];
see [MP20a, Section 6] for a general discussion.
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Kähler differentials and the Du Bois complex. From now on we assume that Z is a
reduced hypersurface in the smooth, irreducible, n-dimensional complex algebraic variety X.

M. Saito has shown that Z has Du Bois singularities if and only if α̃(Z) ≥ 1, which
is equivalent to the pair (X,Z) being log-canonical (he also showed that Z has rational
singularities if and only if α̃(Z) > 1). Our main result says that a part of the Du Bois
complex of Z becomes similarly well-behaved as the minimal exponent gets larger.

Theorem 1.1. If p is an integer such that 0 ≤ p ≤ α̃(Z)− 1, then the canonical morphism

Ωp
Z → Ωp

Z

is a quasi-isomorphism.1

For any non-negative integer p, the singularities for which α̃(Z) ≥ p + 1 are sometimes
called p-log canonical, by analogy with the case p = 0. Note that the minimal exponent can
be explicitly bounded, and can also be computed for certain singularity types. For example,
we have α̃(Z) = (dim Z + 1)/m for an ordinary singularity of multiplicity m ≥ 2, and
α̃(Z) =

∑
wi for a weighted homogeneous isolated singularity of weights w1, . . . , wn; see

Section 2.5 for details.

Theorem 1.1 is in fact a special case of a stronger statement, in which the vanishing of
each individual Hi(Ωq

Z) with i > 0 is derived from a suitable lower bound on the codimension
of the locus in Z where the minimal exponent is < (p+ 1) (i.e. the co-support of the Hodge
ideal Ip(Z)); see Theorem 3.7 for the precise statement. One consequence, see Corollary 3.8,
is that if the singular locus of Z has dimension s, then for all p ≥ 0 we have

Hi(Ωp
Z) = 0 for 0 < i < dimZ − s− p− 1.

In particular this applies to non-Du Bois singularities as well; see Remark 3.9.

Vanishing results. In view of the connection between the Du Bois complex and sheaves of
forms with log poles on a resolution, established by Steenbrink [Ste85], Theorem 1.1 implies
(in fact is almost equivalent to) a local vanishing result for direct images of such sheaves.
From now on, we assume that µ : Y → X is a proper morphism that is an isomorphism over
X ! Z, such that Y is smooth and E = (µ∗Z)red is a simple normal crossing divisor.

Corollary 1.2. If p is a nonnegative integer such that α̃(Z) ≥ p+ 1, then

Riµ∗Ω
p
Y (logE)(−E) = 0 for i > 0.

This is an extension of the following fact, due to Steenbrink [Ste85, Proposition 3.3] and
to Schwede [Sch07, Theorem 4.3] in a more general setting: if Z is Du Bois, then the canon-
ical morphism OZ → Rµ∗OE is a quasi-isomorphism;2 this translates into the vanishing of
Riµ∗OY (−E) for i > 0.

We also deduce from Theorem 1.1 the following version of global Akizuki-Nakano vanishing
for hypersurfaces with high minimal exponent.

Corollary 1.3. If p is a nonnegative integer such that α̃(Z) ≥ p + 1, then for every ample
line bundle L on Z, we have

Hq(Z,Ωp
Z ⊗ L) = 0 for q > n− 1− p.

1As part of the proof we show that Ωp
Z is reflexive for all such p, see Remark 3.5.

2These two conditions are in fact equivalent, even when Z is not necessarily a hypersurface in a smooth
variety.
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Using the same approach as in the proof of Theorem 1.1, we also obtain a vanishing result
under a slightly weaker assumption on the minimal exponent:

Theorem 1.4. If q is a nonnegative integer such that q ≤ α̃(Z), then

Hn−q−1(Ωq
Z) = 0

unless q = n− 1; moreover this last equality can only hold if either Z is smooth or q = 1 and
Z is a nodal curve on a surface. In particular, we have

(1) Rn−qµ∗Ω
q
Y (logE)(−E) = 0.

Note that Ωq
Z for q = &α̃(Z)' is the first graded piece of the Du Bois complex which is

not covered by Theorem 1.1. Theorem 1.4 shows that the highest degree cohomology sheaf
of this graded piece that could possibly be non-trivial, does in fact vanish. The fact that
this is the top possible non-trivial cohomology is a consequence of the general vanishing
Hp(Ωq

Z) = 0 for p ≥ n − q and every q. This in turn is related to a theorem of Steenbrink,
see [Ste85, Theorem 2], stating that

Riµ∗Ω
j
Y (logE)(−E) = 0 for i+ j > n

(in the case of hypersurfaces this is easy to prove, see Section 2.7, but Steenbrink’s result
holds more generally when Z has arbitrary codimension in X).

Remark. When q = 0, the vanishing in (1) is trivial, while for q = 1 it is a special case of a
result of Greb, Kovács, Kebekus and Peternell, see [GKKP11, Theorem 14.1], which applies
to general log canonical pairs. It is also interesting to note that a related result, namely

Rn−qµ∗Ω
q
Y (logE) = 0 for q ≤ (α̃(Z))

appears in [MP20b, Corollary C]. Despite the similarity, its proof is of a very different flavor.

Non-vanishing result and applications. Changing gears, we also give a non-vanishing
result for the cohomology of certain graded pieces of the Du Bois complex when the minimal
exponent is large.

Theorem 1.5. Suppose that Z is defined in X by f ∈ OX(X). If p ≥ 2 is an integer such
that α̃(Z) > p, then for every singular point x ∈ Z, the following hold:

i) We have an isomorphism Hp−1(Ωn−p
Z )x + OX,x/

(
Jf + (f)

)
, where Jf is the Jacobian

ideal of f .3 In particular, Hp−1(Ωn−p
Z )x ,= 0.

ii) If x is an isolated singularity of Z and p ≥ 3, then Hp−2(Ωn−p
Z )x + (Jf : f)/Jf . In

particular, Hp−2(Ωn−p
Z )x ,= 0 (while Hi(Ωn−p

Z )x = 0 for 0 < i < p− 2).

Regarding the statement, it is worth noting that, as before, Hp−1 is the top possible
nonzero cohomology of Ωn−p

Z ; see Section 2.7. Though the starting point is similar, the proof
is somewhat different from that of the vanishing results, in that it appeals to the V -filtration
(and its connection with the minimal exponent), as well as to duality for nearby and vanishing
cycles.

The non-vanishing result has some interesting consequences. The first stems from the fact
that if Y is a variety with quotient or toroidal singularities, then Hi(Ωp

Y ) = 0 for all i ≥ 1
and all p; for quotient singularities, see [DB81, Section 5], and for toroidal singularities, see
[GNAPGP88, Chapter V.4]. Thanks to Theorem 1.5, we deduce that in these cases minimal
exponents are surprisingly rather small:

3In an open subset with algebraic coordinates x1, . . . , xn, the ideal Jf is generated by ∂f/∂x1, . . . , ∂f/∂xn.
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Corollary 1.6. If Z is singular and has quotient or toroidal singularities, then 1 < α̃(Z) ≤ 2.

Note that the upper bound is sharp: the hypersurface defined by x1x2−x3x4 in C4 is toric
and its minimal exponent is 2; see for instance the paragraph after Theorem 1.1. The lower
bound is due to the fact that these are rational singularities.

The second consequence is that the cohomology sheaves Hi(Ωp
Z), with p, i ≥ 1, are not

upper semicontinuous in families. This should be contrasted with a result for p = 0 (when Z
is not necessarily a hypersurface) due to Kovács and Schwede [KS16], who have shown that
nearby deformations of Du Bois singularities are again Du Bois.

Example 1.7. Let f, g ∈ C[X1, . . . ,Xn] with n ≥ 5, be chosen so that f defines a hypersur-
face with quotient singularities, with a singular point at 0 (hence α̃0(f) ≤ 2 by Corollary 1.6)
while g defines a hypersurface with a singular point at 0 and such that α̃0(g) > 2. Consider
the family of hypersurfaces parametrized by A1, defined by ht := tf + (1 − t)g. For t = 1
we have a hypersurface with quotient singularities, hence Hi(Ωp

Z(h1)
) = 0 for all i ≥ 1 and

all p. On the other hand, the minimal exponent is lower semicontinuous in families, see
[MP20a, Theorem E(2)], hence for general t we have α̃0(ht) > 2 (and the hypersurface Z(ht)
has a singular point at 0). Theorem 1.5 then implies that H1(Ωn−2

Z(ht)
) ,= 0.

We note that since the first version of this paper was written, further progress has been
made on this topic: the converse of Theorem 1.1 was proved in [JKSY21], while an analogue
of both implications in the case of local complete intersections was proved in [MP21].

Outline and acknowledgement. The paper is organized as follows: we begin by reviewing
in the next section some basic facts about the minimal exponent, the Hodge filtration on
the local cohomology sheaf H1

Z(OX), and the graded pieces of the Du Bois complex. In
particular, we recall the description of these graded pieces in terms of the de Rham complex
of H1

Z(OX). The proofs of Theorems 1.1 and 1.4 are given in Section 3, while the proof of
Theorem 1.5 is the content of Section 4.

We thank the referees for comments that helped us substantially improve the exposition.

2. Review of the Du Bois complex, Hodge filtration, and minimal exponent

In this section we review some basic facts about the objects in its title that we will need
for the proofs of our main results.

2.1. Conventions and notation. By a variety we always mean a reduced, separated scheme
of finite type over C, possibly reducible. As in the Introduction, X stands for a smooth,
irreducible, n-dimensional variety and Z is a nonempty reduced hypersurface in X.

We consider a proper morphism µ : Y → X that is an isomorphism over X !Z, such that
Y is smooth and E = (µ∗Z)red is a simple normal crossing divisor. Such a morphism exists
by Hironaka’s theorem and, in fact, can be chosen to be projective (but we do not make this
assumption unless explicitly mentioned otherwise).

2.2. Du Bois complex. For an introduction to the Du Bois complex (sometimes called the
filtered De Rham complex ) and its basic properties, we refer to [GNAPGP88, Chapter V.3],
[PS08, Chapter 7.3], [Ste85], and to the original paper of Du Bois [DB81]. A useful list of
properties is also collected together in [KS11, Theorem 4.2].
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Recall that for a variety W , this is a filtered complex denoted (Ω•
W , F •). We will only be

interested in its graded pieces, suitably shifted:

Ωp
W := GrpFΩ

•
W [p].

For every p this is an element in the bounded derived category of coherent sheaves on W ,
which can be nonzero only when 0 ≤ p ≤ dimW ; moreover, there is a canonical morphism

Ωp
W → Ωp

W ,

which is an isomorphism if W is smooth. The variety W is said to have Du Bois singularities
if OW → Ω0

W is an isomorphism.

Suppose now that X, Z, and µ are as in Section 2.1. A key fact, due to Steenbrink
[Ste85, Proposition 3.3], is that for every p, we have an exact triangle in the derived category

(2) Rµ∗Ω
p
Y (logE)(−E) → Ωp

X −→ Ωp
Z

+1
−→ .

We briefly recall the argument, for the benefit of the reader. Since µ is an isomorphism over
X ! Z and X and Y are smooth, we have an exact triangle

(3) Ωp
X −→ Rµ∗Ω

p
Y ⊕ Ωp

Z −→ Rµ∗Ω
p
E

+1
−→,

see [DB81, Proposition 4.11]. We apply the octahedral axiom for the composition

Rµ∗Ω
p
Y

α
−→ Rµ∗Ω

p
Y ⊕ Ωp

Z
β

−→ Rµ∗Ω
p
E ,

where α = (id, 0) and β is given by the sum of the obvious morphisms. If Q = cone(β ◦ α),
then we deduce using (3) that we have an exact triangle

Ωp
Z −→ Q −→ Ωp

X [1]
+1
−→ .

On the other hand, recall that Ωp
E = Ωp

Y /Ω
p
Y (logE)(−E), see [PS08, Example 7.25], which

immediately implies that Q[−1] + Rµ∗Ω
p
Y (logE)(−E). We thus obtain (2).

2.3. A consequence of Grothendieck duality. We note that since
(
Ωp
Y (logE)(−E)

)∨
+

Ωn−p
Y (logE)⊗ ω−1

Y , it follows from Grothendieck duality that

(4) RHomOX

(
Rµ∗Ω

p
Y (logE)(−E),ωX

)
+ Rµ∗Ω

n−p
Y (logE).

Since RHomOX

(
−,ωX

)
is a duality, we deduce from (4) that we also have

(5) RHomOX

(
Rµ∗Ω

n−p
Y (logE),ωX

)
+ Rµ∗Ω

p
Y (logE)(−E).

Remark 2.1. While we are interested in the case of hypersurfaces, the assertions in this and the
previous section hold if Z is an arbitrary subvariety of a smooth, irreducible, n-dimensional
variety.

2.4. Filtered DX-modules and duality. Let DX be the sheaf of differential operators on
X. Recall that if M is a left DX -module on X, then the de Rham complex of M is the
complex DRX(M):

0 → M → Ω1
X ⊗OX

M → · · · → Ωn
X ⊗OX

M → 0,

placed in cohomological degrees −n, . . . , 0, with the differentials defined using the usual de
Rham differential and the integrable connection on M. If (M, F ) is a filtered DX-module
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(so that the filtration is compatible with the order filtration on DX), then DRX(M) carries
an induced filtration, with FpDRX(M) being the subcomplex:

0 → FpM → Ω1
X ⊗OX

Fp+1M → · · · → Ωn
X ⊗OX

Fp+nM → 0.

We will be interested in the filtered DX-modules associated to certain mixed Hodge modules
in the sense of M. Saito’s theory, see [Sai88], [Sai90]. For such filtered DX-modules there is
a duality functor D, satisfying the following compatibility with the Grothendieck dual of the
de Rham complex:

(6) GrFp DRX
(
D(M)

)
+ RHomOX

(
GrF−pDRX(M),ωX [n]

)

for every p, see [Sai88, 2.4.5 and 2.4.11]. (See also [Sai90, 4.2.3] for the fact that the functor
D preserves the category of mixed Hodge modules in the algebraic setting.)

In Section 4 we will also make use of right DX-modules. Recall that there is a canonical
equivalence of categories between left and right DX-modules such that if Mr is the right
DX -module corresponding to the left DX -module M, then we have an isomorphism of OX -
modules

(7) Mr + ωX ⊗OX
M.

For example, the right DX-module corresponding to OX is ωX and if Z is a reduced hyper-
surface of X, then the right DX -module corresponding to H1

Z(OX) is H1
Z(ωX).

We similarly have an equivalence between filtered left and right DX-modules and the
standard convention is that if (Mr, F ) corresponds to (M, F ), then the isomorphism (7)
identifies Fp−nMr with ωX ⊗OX

FpM. We also note that the filtered De Rham complex
associated to (Mr, F ) can be taken to be the filtered De Rham complex of (M, F ); in
particular, we have

GrF• DRX
(
H1

Z(ωX)
)
= GrF• DRX

(
H1

Z(OX )
)
.

2.5. Localization, Hodge filtration, and minimal exponent. The DX -module we are
interested in is OX(∗Z), the sheaf of rational functions on X with poles along Z. This
underlies a mixed Hodge module, hence in particular carries a Hodge filtration; for a detailed
study of this filtration, see [MP19]. It is known that the Hodge filtration is contained in the
pole order filtration, i.e. for every p ≥ 0 we have FpOX(∗Z) ⊆ OX

(
(p+1)Z

)
, which leads to

the definition of the p-th Hodge ideal Ip(Z) by the formula

FpOX(∗Z) = OX
(
(p + 1)Z

)
⊗ Ip(Z).

Note also that we have a short exact sequence

0 −→ OX −→ OX(∗Z) −→ H1
Z(OX) := OX(∗Z)/OX −→ 0

of filtered DX-modules, where OX underlies the trivial mixed Hodge module QH
X [n] and its

filtration satisfies GrFq OX = 0 for all q ,= 0, while H1
Z(OX ) coincides with the first local

cohomology sheaf of OX along Z, and its Hodge filtration is induced by that on OX(∗Z).

We now turn to the minimal exponent α̃(Z) of Z, which was originally defined by Saito
in [Sai94] as the negative of the greatest root of the reduced Bernstein-Sato polynomial
bZ(s)/(s+1); it is therefore a refinement of the log canonical threshold lct(Z), which satisfies

lct(Z) = min{α̃(Z), 1}.

By convention, we have α̃(Z) = ∞ if and only if bZ(s) = s+ 1, which is the case if and only
if Z is smooth. There is also a local version α̃x(Z) of this invariant around each point x ∈ Z,
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such that α̃(Z) = min
x∈Z

α̃x(Z). See [MP20a, Section 6] for a general discussion and study of

the minimal exponent.

It turns out that the minimal exponent governs the complexity of the Hodge filtration in
various ways. For instance, it determines how far the Hodge filtration agrees with the pole
order filtration P• on OX(∗Z), defined by

PkOX(∗Z) = OX
(
(k + 1)Z

)
for k ≥ 0

and PkOX(∗Z) = 0 for k < 0. Concretely, for a nonnegative integer p, we have

α̃(Z) ≥ p+ 1 ⇐⇒ FkOX(∗Z) = PkOX(∗Z) for k ≤ p ⇐⇒ Ik(Z) = OX for k ≤ p,

see [Sai16, Corollary 1], and also [MP20a, Corollary C]. Under these equivalent conditions
we also say that the pair (X,Z) is p-log-canonical, as the case p = 0 is precisely the case of
log-canonical pairs. It is this interpretation of the minimal exponent that will be used in this
paper.

We have the following numerical criteria for minimal exponents, which in practice can be
used as concrete bounds in the context of the results in the Introduction:

• α̃(Z) ≥ 1 ⇐⇒ Z has du Bois singularities ⇐⇒ (X,Z) is log-canonical. See
[Sai09, Theorem 0.5] for the first equivalence, and [KS11, Corollary 6.6] for the second.

• α̃(Z) > 1 ⇐⇒ Z has rational singularities; see [Sai93, Theorem 0.4].
• If a point x ∈ Z has multiplicity m ≥ 2, while the singular locus of its projectivized
tangent cone P(CxZ) has dimension r (with r = −1 if P(CxZ) is smooth), then

(8)
n− r − 1

m
≤ α̃x(Z) ≤

n

m
;

see [MP20a, Theorem E]. (The inequality α̃x(Z) ≤ n
2 also follows from [Sai94, Theo-

rem 0.4].) In particular α̃x(Z) = n
m if x is an ordinary singular point.

• If Z has a weighted homogeneous isolated singularity, where the variable xi has weight
wi, then α̃(Z) =

∑
wi; see [Sai09, 4.1.5].

• Let µ : Y → X be a morphism as in Section 2.1 such that, in addition, the strict
transform Z̃ of Z is smooth (in other words, the strict transforms of the irreducible
components of Z are pairwise disjoint). Define integers ai and bi by the expressions

µ∗Z = Z̃ +
m∑

i=1

aiFi and KY/X =
m∑

i=1

biFi,

where F1, . . . , Fm are the prime exceptional divisors, and set

γ := min
i=1,...,m

{
bi + 1

ai

}
.

Then we have α̃(Z) ≥ γ; see [MP20a, Corollary D], cf. also [DM20, Corollary 1.5].
• The minimal exponent also provides a bound for the generation level of the Hodge
filtration F•OX(∗Z), shown in [MP20b, Theorem A] to be at most n− 1− (α̃(Z)).

It is shown in [MP20b, Proposition 7.4] that if Z is singular and α̃(Z) > p, for a nonnegative
integer p, then the codimension in Z of the singular locus Zsing is at least 2p. We will need
the following variant, that can be proved along the same lines:
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Lemma 2.2. If α̃(Z) ≥ p+ 1 for a nonnegative integer p,4then

codimZ(Zsing) ≥ 2p + 1.

Proof. We may and will assume that Z is affine. If q = dim(Zsing), then after successively
cutting X with q general hyperplane sections, we obtain a smooth closed subvariety Y of X,
of codimension q, such that the divisor Z|Y is singular. Moreover, we have α̃(Z|Y ) ≥ α̃(Z) ≥
p + 1 by [MP20b, Lemma 7.5]. In this case, it follows from (8) that p + 1 ≤ n−q

2 , hence
codimZ(Zsing) = n− 1− q ≥ 2p+ 1. !

2.6. The graded pieces of the Du Bois complex via the de Rham complex of
H1

Z(OX ). The connection between the graded pieces of the Du Bois complex and the Hodge
filtration on OX(∗Z) is provided by the following result:

Lemma 2.3. For every p, there is an isomorphism

(9) Ωp
Z + RHomOX

(
GrFp−nDRX(H1

Z(OX)),ωX
)
[p+ 1].

Proof. Let µ : Y → X be a morphism as in Section 2.1 assumed, in addition, to be projective.
The explicit filtered resolution of the right DY -module ωY (∗E) corresponding to OY (∗E)
given in [MP19, Proposition 3.1] implies that we have

GrFp−nDRY
(
OY (∗E)

)
+ Ωn−p

Y (logE)[p];

cf. [MP19, Theorem 6.1]. Since OX(∗Z) is the push-forward of OY (∗E) (in the category of
mixed Hodge modules) and µ is projective, we obtain using Saito’s Strictness Theorem, see
[Sai88, Section 2.3.7], cf. [MP19, Section C.4], that

GrFp−nDRX
(
OX(∗Z)

)
+ Rµ∗Ω

n−p
Y (logE)[p].

Moreover, the canonical morphism

α : GrFp−nDRX(OX) → GrFp−nDRX
(
OX(∗Z)

)

gets identified with a morphism

(10) Ωn−p
X [p] → Rµ∗Ω

n−p
Y (logE)[p].

Since GrFp−nDRX(−) is an exact functor, we have an exact sequence of complexes

0 → GrFp−nDRX(OX ) → GrFp−nDRX
(
OX(∗Z)

)
→ GrFp−nDRX(H1

Z(OX)) → 0,

which induces an exact triangle

RHomOX

(
GrFp−nDRX(H1

Z(OX)),ωX
)
−→ RHomOX

(
GrFp−nDRX(OX(∗Z)),ωX

) β
−→

β
−→ RHomOX

(
GrFp−nDRX(OX ),ωX)

+1
−→ .

As β is the Grothendieck dual of α, using (10) and (5) we can identify it with a morphism

(11) Rµ∗Ω
p
Y (logE)(−E)[−p] −→ Ωp

X [−p].

We thus obtain the isomorphism in (9) from the exact triangle (2) if we show that the
morphism (11) is the same as the one in (2). Up to shift, the target of these morphisms is a
locally free sheaf on a smooth variety, hence in order to show that they coincide it is enough
to do so on an open subset whose complement has codimension ≥ 2. Since the definition

4It is worth noting that for any effective divisor D on X, the hypothesis α̃(D) ≥ 1 automatically implies
that D is reduced. Indeed, otherwise its log canonical threshold satisfies lct(D) < 1, hence α̃(D) = lct(D).
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of all morphisms we considered is compatible with restriction to open subsets of X, we can
thus reduce to the case when µ is an isomorphism so, in particular, Z is smooth. In this
case α is obtained by applying GrFp−nDRX(−) to the following morphism between the filtered
resolutions of the right DX-modules ωX and ωX(∗Z):

0 !! DX

""

!! Ω1
X ⊗OX

DX

""

!! · · · !! Ωn
X ⊗OX

DX

""

!! 0

0 !! DX
!! Ω1

X(logE)⊗OX
DX

!! · · · !! Ωn
X(logE)⊗OX

DX
!! 0,

in which the vertical morphisms are induced by the inclusions Ωi
X ↪→ Ωi

X(logE). Using this,
it is now straightforward to see that β is equal to the morphism in the exact triangle (2). !

Remark 2.4. Because of the compatibility between duality for mixed Hodge modules and
duality for the corresponding de Rham complexes in (6), the isomorphism (9) is equivalent
to an isomorphism

(12) Ωp
Z + GrFn−pDRX

(
D(H1

Z(OX))
)
[p+ 1− n].

The existence of a canonical such isomorphism was originally obtained by Saito, see [Sai09,
Section 2]. While our arguments are more direct, they have the drawback that we only get
an isomorphism in the derived category of X (as opposed to the derived category of Z).
Furthermore, this isomorphism is not uniquely determined, as it is associated to two different
cones of a certain morphism. However, for our purpose, the existence of such an isomorphism
will suffice.

2.7. Steenbrink’s vanishing theorem. Since the de Rham complex of any filtered DX -
module is supported in nonpositive degrees, it follows from (12) that

Hq(Ωp
Z) = 0 for all q ≥ n− p.

(This is a special case of a vanishing result that holds for arbitrary varieties Z; see [PS08,
Theorem 7.29].) This in turn implies via the exact triangle (2) the fact that

Rqµ∗Ω
p
Y (logE)(−E) = 0 for q > n− p,

the assertion of Steenbrink’s vanishing theorem in our setting; see [Ste85, Theorem 2].

3. Proof of the vanishing results

We keep the notation from Section 2.1. Before proving Theorem 1.1 and related results,
we make some preliminary considerations.

We consider the pole order filtration P• on OX(∗Z) defined in Section 2.5. We also denote
by P• the induced filtration on H1

Z(OX) = OX(∗Z)/OX . For every nonnegative integer p,
with p ≤ n, consider the complex

C•
p = GrPp−nDRX

(
H1

Z(OX)
)
.

In other words, C•
p is the following complex, placed in cohomological degrees −p, . . . , 0:

(13) 0 → Ωn−p
X ⊗OX

OZ(Z) → Ωn−p+1
X ⊗OX

OZ(2Z) → · · · → ωX ⊗OX
OZ

(
(p+ 1)Z

)
→ 0.
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If U ⊆ X is an open subset where Z ∩U is defined by f ∈ OX(U), then on U the differential
of the complex acts at Ωn−p+i

X ⊗OZ
(
(i+ 1)Z) as

(14) η ⊗ [1/f i+1] 5→ −(i+ 1)(η ∧ df)⊗ [1/f i+2].

It will be convenient to also consider C•
−1 = 0.

Since the Hodge filtration F• on OX(∗Z) satisfies FkOX(∗Z) ⊆ PkOX(∗Z) for all k, we
have a canonical morphism

(15) ϕp : GrFp−nDRX
(
H1

Z(OX)) → C•
p .

Lemma 3.1. For every p ≥ 0, if α̃(Z) ≥ p, then the morphism of complexes ϕp is injective
and Coker(ϕp) is supported in cohomological degree 0. Moreover, we have Coker(ϕp) = 0 if
and only if α̃(Z) ≥ p+ 1.

Proof. As explained in Section 2.5, we have α̃(Z) ≥ p if and only if FkOX(∗Z) = PkOX(∗Z)
for all k ≤ p − 1, or equivalently, FkH1

Z(OX) = PkH1
Z(OX) for all k ≤ p − 1. We thus see

that if we denote by ϕi
p the component of ϕp in cohomological degree i, then the hypothesis

implies that ϕi
p is an isomorphism for all i ,= 0 and ϕ0

p is injective. Moreover, Coker(ϕ0
p) = 0

if and only if α̃(Z) ≥ p+ 1. !

Corollary 3.2. The following assertions are equivalent:

i) α̃(Z) ≥ p+ 1.
ii) ϕk is an isomorphism of complexes for all 0 ≤ k ≤ p.
iii) ϕk is a quasi-isomorphism for all 0 ≤ k ≤ p.

Proof. The implication i)⇒ii) follows from the lemma, while the implication ii)⇒iii) is trivial.
The implication iii)⇒i) follows by induction on p, with the case p = −1 being trivial. The
induction step follows from the lemma and the fact that an injective morphism of complexes
is a quasi-isomorphism if and only if its cokernel is acyclic. !

We will use the following consequence:

Proposition 3.3. For every p ≥ 0, if α̃(Z) ≥ p+ 1, then we have an isomorphism

RHomOX

(
C•
p ,ωX [n]

)
+ Ωp

Z [n− p− 1].

Proof. It follows from Corollary 3.2 that ϕp is an isomorphism. ApplyingRHomOX

(
−,ωX [n]

)

and using the fact that by Lemma 2.3 we have an isomorphism

RHomOX

(
GrFp−nDRX(H1

Z(OX)),ωX [n]
)
+ Ωk

Z [n− p− 1],

we obtain the assertion in the proposition. !

For future reference, we recall that for every locally free sheaf E on X, we have

(16) Ext1OX
(E|Z ,ωX) + E∨ ⊗OX

ωZ and ExtjOX
(E|Z ,ωX) = 0 for j ,= 1.

We will need one more result about the complexes C•
p .
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Lemma 3.4. For every p ≥ 0, we have

(17) ExtjOX
(C•

p ,ωX) = 0 for all j > p+ 1.

If, in addition, we assume that α̃(Z) ≥ p+ 1, then we also have

(18) ExtjOX
(C•

p ,ωX) = 0 for all j < p+ 1

and an exact sequence

(19) 0 → ExtpOX
(C•

p−1,ωX)⊗OX(−Z) → Ωp
X |Z → Extp+1

OX
(C•

p ,ωX) → 0.

Proof. It follows from the description of the complex C•
p and its differential in (13) and (14)

that C•
p−1 ⊗OX

OX(Z) is isomorphic to the “stupid” truncation σ≥−p+1(C•
p ). Therefore we

have a short exact sequence of complexes

(20) 0 −→ C•
p−1 ⊗OX(Z) −→ C•

p −→ Ωn−p
X ⊗OZ(Z)[p] −→ 0.

Using the vanishings in (16), we deduce from (20) that for j > p + 1, we have an exact
sequence

0 = Extj−p
OX

(
Ωn−p
X ⊗OZ(Z),ωX

)
→ Extj(C•

p ,ωX) → ExtjOX
(C•

p−1,ωX)⊗OX(−Z).

Using this, we obtain the vanishing in (17) by induction on p ≥ −1, the case p = −1 being
trivial.

Next, suppose that α̃(Z) ≥ p+ 1. Using Proposition 3.3, we deduce that for j < p+ 1 we
have

Extj(C•
p ,ωX) + Hj−p−1(Ωp

Z) = 0,

where the vanishing follows from the fact that Ωp
Z has no nonzero cohomology sheaves in

negative degrees; see [PS08, Proposition 7.30b], or simply use the exact triangle (2). This
shows (18). Moreover, using this vanishing, from (20) we get the short exact sequence

0 → ExtpOX
(C•

p−1,ωX)⊗OX(−Z) → Ext1OX

(
Ωn−p
X ⊗OZ(Z),ωX

)
→ Extp+1

OX
(C•

p ,ωX) → 0.

This shows (19) once we note that the isomorphism in (16) gives

Ext1OX

(
Ωn−p
X ⊗OZ(Z),ωX

)
+ (Ωn−p

X )∨ ⊗OZ(−Z)⊗ ωZ + Ωp
X |Z .

This completes the proof of the lemma. !

We can now prove the first result stated in the Introduction.

Proof of Theorem 1.1. If Z is smooth the statement is trivial, hence from now on we assume
that Z is singular. We fix a nonnegative integer p such that α̃(Z) ≥ p + 1. The fact that
the canonical morphism Ωp

Z → Ωp
Z is an isomorphism is equivalent to having Hi(Ωp

Z) = 0 for
i ,= 0 and the canonical morphism

(21) Ωp
Z → H0(Ωp

Z)

being an isomorphism. By combining Proposition 3.3 and Lemma 3.4, we see that since
α̃(Z) ≥ p+ 1, we have

Hi(Ωp
Z) + Extp+1+i

OX
(C•

p ,ωX) = 0 for i ,= 0.

Therefore we are left with showing that (21) is an isomorphism.
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Note that when p = 0 the assertion in the theorem follows from [Sai09, Theorem 0.5].
We thus may and will assume that p ≥ 1. In this case, since α̃(Z) ≥ 2, we deduce from
[Sai93, Theorem 0.4] that Z has rational singularities, hence it is normal.

Consequently, since the restriction of (21) to the smooth locus of X is an isomorphism,
it is enough to prove that both sheaves Ωp

Z and H0(Ωp
Z) satisfy Serre’s property S2: this

implies that if j : U = Z ! Zsing ↪→ Z is the inclusion of the smooth locus of Z, then (21)
gets identified with

j∗(Ω
p
Z |U ) → j∗

(
H0(Ωp

Z)|U
)
.

In fact, we will prove the following stronger fact: for every point x ∈ Zsing, not necessarily
closed, we have

(22) depth(Ωp
Z,x) ≥ dim(OX,x)− p− 1 and depth

(
H0(Ωp

Z)x
)
≥ dim(OX,x)− p− 1.

Note that since Z is singular and α̃(Z) ≥ p+1, we have codimX(Zsing) ≥ 2p+2 by Lemma 2.2.
For every x ∈ Zsing as above, we thus have dim(OX,x) − p − 1 ≥ p + 1. As the restrictions
of Ωp

Z and H0(Ωp
Z) to U are locally free, we thus deduce from (22) that if Z is singular,

then both Ωp
Z and H0(Ωp

Z) satisfy Serre’s property Sp+1, hence also property S2 (recall that
p ≥ 1).

We first treat H0(Ωp
Z). Note that since α̃(Z) ≥ p+ 1, it follows from Proposition 3.3 that

we have an isomorphism

(23) H0(Ωp
Z) + Extp+1

OX
(C•

p ,ωX).

Moreover, for every k with 0 ≤ k ≤ p, we can use the exact sequence in Lemma 3.4 to deduce

depth
(
Extk+1

OX
(C•

k ,ωX)x
)
≥ min

{
depth((Ωk

X |Z)x),depth
(
ExtkOX

(C•
k−1,ωX)x

)
− 1

}

= min
{
dim(OX,x)− 1,depth

(
ExtkOX

(C•
k−1,ωX)x

)
− 1

}
,

where the inequality follows for example from [BH93, Proposition 1.2.9] and the equality
follows from the fact that Ωk

X |Z is a locally free OZ -module. Using induction on k, with
0 ≤ k ≤ p, and the fact that C•

−1 = 0, we conclude that

depth
(
Extk+1

OX
(C•

k ,ωX)x
)
≥ dim(OX,x)− k − 1.

In particular, due to the isomorphism (23), for k = p we get the second inequality in (22) .

In order to prove the first inequality in (22), we may argue locally, and thus assume that
Z is defined in X by some f ∈ OX(X). In this case we have the presentation

OZ
df
−→ Ω1

X |Z −→ Ω1
Z −→ 0

and the zero-locus of df is Zsing, whose codimension in Z is ≥ 2p + 1 ≥ p + 2. Since Z is
Cohen-Macaulay and we have in particular codimZ(Zsing) ≥ p, it follows from the description
of depth via Koszul homology, see [Mat89, Theorem 16.8], that the following complex

0 −→ OZ
df
−→ Ω1

X |Z
−∧df
−→ · · ·

−∧df
−→ Ωp

X |Z −→ Ωp
Z → 0

is exact (note that exactness at the last two terms holds in general). Breaking this into
short exact sequences, localizing at x, and using again [BH93, Proposition 1.2.9] and the fact
that the sheaves Ωk

X |Z are locally free sheaves of OZ -modules, proceeding as in the previous
paragraph we obtain the first inequality in (22). !
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Remark 3.5. We note that in the proof of Theorem 1.1 we have shown that if Z is a singular
hypersurface such that α̃(Z) ≥ p + 1, for some p ≥ 1, then Ωp

Z satisfies Serre’s condition
Sp+1, and thus the condition S2. (If Z is smooth, then of course all sheaves Ωk

Z are Cohen-
Macaulay). In particular, since Z is normal, it follows that Ωp

Z is a reflexive sheaf; see
[BH93, Proposition 1.4.1].

Remark 3.6. Under the assumptions of Theorem 1.1, if p ≥ 1, then one can in fact describe
the sheaves H0(Ωq

Z) concretely, as the reflexive hull of Ωq
Z , for all q with 0 ≤ q ≤ n. First,

with no assumptions on Z, they can be identified with the sheaves of h-differentials, namely

H0(Ωq
Z) + Ωq

h|Z

for each q; this follows from [HJ14, Theorem 7.12] (see also the notation after Remark 6.13
in loc. cit.). On the other hand, as noted in Section 2.5 (the second of the numerical criteria
for minimal exponents), by [Sai93, Theorem 0.4] the condition α̃(Z) ≥ 2 implies that Z has
rational singularities (hence in particular it is normal). Since Z is a hypersurface, this is
equivalent to Z having klt singularities by [Kol97, Corollary 11.13]. In this case, if j : Zsm ↪→
Z is the inclusion of the smooth locus, then

Ωq
h|Z + j∗Ω

q
Zsm

+ (Ωq
Z)

∨∨

for all q, by [HJ14, Theorem 5.4]. More recently, this was shown to hold for all varieties with
rational singularities by Kebekus-Schnell [KS21, Corollary 1.11].

While the statement and argument for the vanishing in Theorem 1.1 are particularly trans-
parent, a stronger statement can be made about the vanishing of individual cohomologies, in
terms of the size of the loci in Z where the minimal exponent is small.

Theorem 3.7. Let p be a nonnegative integer. If the locus Zp of points x ∈ Z with α̃x(Z) <
p+ 1 (equivalently, the closed subset defined by the Hodge ideal Ip(Z)) satisfies codimXZp >
i+ p+ 2 for some i ≥ 1, then Hi(Ωp

Z) = 0.

Proof. Note first that by Corollary 3.2 the morphism

ϕp : Grp−nDRX
(
H1

Z(OX), F
)
→ C•

p

as in (15) has the property that both A• = ker(ϕp) and B• = coker(ϕp) have all terms
supported on Zp. Moreover, these complexes are concentrated in cohomological degrees ≤ 0.

The first assertion in Lemma 3.4 gives Exti+p+1
OX

(C•
p ,ωX) = 0. The short exact sequences

0 = Exti+p+1
OX

(C•
p ,ωX) → Exti+p+1

OX

(
im(ϕp),ωX

)
→ Exti+p+2

OX
(B•,ωX)

and

Exti+p+1
OX

(im(ϕp),ωX) → Exti+p+1
OX

(
Grp−nDRX(H1

Z(OX)),ωX
)
+ Hi(Ωp

Z) → Exti+p+1
OX

(A•,ωX),

where the middle isomorphism in the latter follows from Lemma 2.3, imply that in order to
conclude it is enough to show that

Exti+p+1
OX

(A•,ωX) = Exti+p+2
OX

(B•,ωX) = 0.

It is thus suffices to check that if F• is a complex on X concentrated in degrees ≤ 0, and
codimXSupp(Fq) > m for all q, then ExtmOX

(F•,ωX) = 0. This follows from the hypercoho-
mology spectral sequence

Ei,j
1 = ExtjOX

(F−i,ωX) ⇒ Exti+j
OX

(F•,ωX),
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since when i + j = m, we have Ei,j
1 = 0: indeed, we may assume that i ≥ 0, hence j =

m− i ≤ m and then ExtjOX
(F−i,ωX) = 0 as codimXSupp(F−i) > m ≥ j. !

An immediate consequence is a range of automatic vanishing in terms of the size of the
singular locus of Z.

Corollary 3.8. If the singular locus of the hypersurface Z has dimension s, then for all
p ≥ 0 we have

Hi(Ωp
Z) = 0 for 1 ≤ i < n− s− p− 2.

Remark 3.9. The two results above are of course relevant even in the non-Du Bois case, or
equivalently when we have α̃x(Z) < 1 at some points, as Theorem 3.7 implies thatHi(Ω0

Z) = 0
for i < n−s−2 if s is the dimension of the non-Du Bois locus. For instance, if Z has isolated
singularities, then Hi(Ω0

Z) ,= 0 can happen only for i = 0 and i = n − 2, and it does happen
for both if Z is not Du Bois.5

We next deduce the two corollaries of Theorem 1.1.

Proof of Corollary 1.2. Since the morphism Ωk
X → Ωk

Z is surjective for every k ≥ 0, the
assertion follows directly from Theorem 1.1 via the exact triangle (2). It is worth noting that
Corollary 1.2 is in fact equivalent to the vanishings Hi(Ωp

Z) = 0 for i > 0, plus the surjectivity
of the natural map Ωp

X → H0(Ωp
Z). !

Proof of Corollary 1.3. The assertion follows directly from Theorem 1.1 and the version of
the Akizuki-Nakano vanishing theorem for the graded pieces of the Du Bois complex:

H i(Z,Ωj
Z ⊗ L) = 0 for i+ j > dimZ,

see [GNAPGP88, Theorem V.5.1]. !

Using a similar approach to that in the proof of Theorem 1.1, we obtain the vanishing
result in Theorem 1.4, as follows.

Proof of Theorem 1.4. We may and will assume that Z is singular, in which case our hypothe-
sis implies q ≤ n/2; in particular, we have q ,= n. It is enough to prove that Hn−q−1(Ωq

Z) = 0:
indeed, the vanishing of Rn−qµ∗Ω

q
X(logE)(−E) then follows from the exact triangle (2) since

q ,= n gives Hn−q(Ωq
X) = 0.

Furthermore, we may assume that q ≤ n − 2: if q = n − 1, the fact that q ≤ n/2 implies
n = 2. Moreover, the hypothesis that α̃(Z) ≥ q = 1 gives that (X,Z) is log canonical, and it
is well known that this can only happen for nodal curves (note that in this case we clearly
have H0(Ω1

Z) ,= 0).

Using Lemma 2.3, we see that

Hn−q−1(Ωq
Z) + ExtnOX

(
GrFq−nDRX(H1

Z(OX)),ωX
)
.

Note now that since α̃(Z) ≥ q, it follows from Lemma 3.1 that the morphism of complexes

ϕq : GrFq−nDRX(H1
Z(OX)) → C•

q

5Note that Hn−1(Ω0

Z) = 0 by Theorem 1.4.
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is injective and its cokernel is a sheaf F (supported in cohomological degree 0). We thus have
an exact sequence

ExtnOX
(C•

q ,ωX) → ExtnOX

(
GrFq−nDRX(H1

Z(OX)),ωX
)
→ Extn+1

OX
(F ,ωX) = 0,

hence it is enough to show that ExtnOX
(C•

q ,ωX) = 0.

We use the short exact sequence of complexes (20) as in the proof of Lemma 3.4:

0 → C•
q−1 ⊗OX(Z) → C•

q → Ωn−q
X ⊗OZ(Z)[q] → 0.

We deduce the existence of an exact sequence

Extn−q
OX

(Ωn−q
X |Z ,ωX)⊗OX(−Z) → ExtnOX

(C•
q ,ωX) → ExtnOX

(C•
q−1,ωX)⊗OX(−Z).

The first term vanishes by (16), since q ,= n− 1, and the third term vanishes by Lemma 3.4,
since q ,= n. We thus have ExtnOX

(C•
q ,ωX) = 0, completing the proof of the theorem. !

4. Proof of the non-vanishing result

The proof of Theorem 1.5 makes use of the V -filtration, so we begin with a very brief
review of this notion. For more details, we refer for example to [Sai88, Section 3.1] or
[MP20a, Section 2]. We keep the assumptions from Section 2.1, but we assume in addition
that Z is defined by f ∈ OX(X).

It is common to denote by Bf the D-module push-forward ι+OX , where ι : X ↪→ W =
X × A1 is the graph embedding ι(x) =

(
x, f(x)

)
. If t denotes the coordinate on A1, then

there is an isomorphism

Bf + OX [t]f−t/OX [t] +
⊕

i≥0

OX · ∂i
tδ,

where δ denotes the class of 1
f−t , and the actions of t and of a derivation P ∈ DerC(OX) are

given by

t · h∂i
tδ = fh∂i

tδ − ih∂i−1
t δ and P · h∂i

tδ = P (h)∂i
tδ − P (f)h∂i+1

t δ.

The DW -module Bf carries a (Hodge) filtration given by

Fp+1Bf =
⊕

0≤i≤p

OX · ∂i
tδ.

This filtered DX-module underlies a pure Hodge module of weight n.

When dealing with duality, it is more common to use right DX-modules. In order to avoid
confusion when citing various results, we will follow this tradition. Recall that we have an
equivalence of categories between left and right (filtered) D-modules; see Section 2.4. For
example, the right D-module corresponding to Bf is

Br
f := ι+ωX = ωX ⊗OX

Bf .

The V -filtration on Bf is a decreasing, exhaustive, discrete, and left continuous filtration
(V αBf )α∈Q parametrized by rational numbers. It is characterized uniquely by a number of
properties listed for instance in [Sai88, Section 3.1]. The Hodge filtration on Bf induces a
filtration on each V αBf and thus on GrαV Bf = V αBf/V >αBf as well. We have a correspond-
ing V -filtration on Br

f given by V αBr
f = ωX⊗OX

V αBf . Note that since the Hodge filtrations
on GrαV Bf and GrαV B

r
f are induced by those on Bf and Br

f , respectively, these satisfy

(24) Fp−n−1GrαV B
r
f = ωX ⊗OX

FpGrαV Bf .
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An important fact is a result of Saito, see [Sai16, (1.3.8)], describing the minimal exponent
via the V -filtration: if q is a non-negative integer and α ∈ (0, 1] is a rational number, then

(25) α̃(Z) ≥ q + α ⇐⇒ ∂q
t δ ∈ V αBf .

This setting is relevant for us since the filtered right DX -module H1
Z(ωX), corresponding

to the DX-module appearing in Lemma 2.3, is isomorphic to the cokernel of the morphism
of filtered DX-modules

Gr0V B
r
f

·t
−→ Gr1V B

r
f

between the vanishing cycles and (a Tate twist of) the nearby cycles of f ; see [Sai90, Sec-
tion 2.24]. It follows that D

(
H1

Z(ωX)
)
is isomorphic to the kernel of the dual morphism

(26) D(Gr1V B
r
f ) → D(Gr0VB

r
f ),

where D is the duality functor on filtered D-modules; see [Sai88, Section 2.4]. Since Br
f

underlies a pure polarizable Hodge module of weight n, we have an isomorphism D(Br
f ) +

Br
f (n). Here, for a filtered D-module (M, F ), we use the notation (M, F )(q) for the filtered

D-module (M, F [q]), where F [q]iM = Fi−qM. Using the compatibility between duality and
vanishing/nearby cycles proved by Saito in [Sai89, Theorem 1.6], we also have isomorphisms
of filtered (right) DX-modules

D(Gr1V B
r
f ) + Gr1V B

r
f (n+ 1) and D(Gr0V B

r
f ) + Gr0V B

r
f (n).

Moreover, the morphism (26) gets identified (see loc. cit.) with the morphism

(27) Gr1V B
r
f (n+ 1)

·(−∂t)
−→ Gr0V B

r
f (n).

After this preparation, we can prove the result stated in the Introduction.

Proof of Theorem 1.5. It follows from the formula (12) for the graded pieces of the Du Bois
complex that for every i, we have

Hi(Ωn−p
Z ) + Hi−p+1

(
GrFp DRXD(H1

Z(ωX))
)
.

On the other hand, it follows from the previous discussion that GrFp DRXD
(
H1

Z(ωX)
)
is

isomorphic to the kernel of the morphism

GrFp−n−1DRX
(
Gr1V (B

r
f )
)
→ GrFp−nDRX

(
Gr0V (B

r
f )
)

induced by right multiplication with ∂t. If we write these complexes explicitly in terms of left
D-modules, using the identification in (24), we see that GrFp DRXD

(
H1

Z(ωX)
)
is the kernel

of the morphism of complexes

0 !! Ωn−p+1
X ⊗GrF1 Gr1V Bf

""

!! · · · !! Ωn−1
X ⊗GrFp−1Gr1V Bf

!!

""

ωX ⊗GrFp Gr1VBf
!!

""

0

0 !! Ωn−p+1
X ⊗GrF2 Gr0V Bf

!! · · · !! Ωn−1
X ⊗GrFp Gr0V Bf

!! ωX ⊗GrFp+1Gr0V Bf
!! 0

placed in cohomological degrees −(p − 1), . . . , 0 and in which the vertical maps are given
by left multiplication by ∂t. Under the assumption of the theorem, we will identify the top
complex and show that in the bottom complex all terms are 0.
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By (25), the condition α̃(Z) > p is equivalent to the fact that ∂p
t δ ∈ V >0Bf , and in fact

∂j
t δ ∈ V >0Bf for all j ≤ p. We thus see that Fp+1Bf ⊆ V >0Bf , hence GrFj Gr0VBf = 0 for

all j ≤ p+1. Therefore the bottom complex in the above diagram is 0 and we conclude that

Hi(Ωn−p
Z ) + Hi−p+1

(
GrFp−n−1DRX

(
Gr1V (B

r
f )
))
.

Again using (25), since α̃(Z) ≥ p we deduce that ∂j
t δ ∈ V 1Bf for j ≤ p− 1. We conclude

that for 1 ≤ j ≤ p, we have FjV 1Bf =
⊕

i≤j−1OX · ∂i
tδ. Note also that FjV >1Bf =

t·FjV >0Bf ; this is a general property of filtered D-modules underlying mixed Hodge modules,
see [Sai88, (3.2.1.2)]. This implies that for j ≤ p, we have

FjV
>1Bf + Fj−1V

1Bf = OX · δ ⊕ · · ·⊕OX · ∂j−2
t δ ⊕ (f) · ∂j−1

t δ.

We thus conclude that the morphism

OX/(f) → GrFj Gr1V Bf = FjV
1Bf/(FjV

>1Bf + Fj−1V
1Bf )

that maps the class of h to the class of h∂j−1
t δ, is an isomorphism.

Suppose now that we have algebraic local coordinates x1, . . . , xn in a neighborhood of
x. A straightforward computation then shows that Hi(Ωn−p

Z ) is the cohomology in degree
i− p+ 1 of the “stupid” truncation σ≥−p+1 of the Koszul complex on OX/(f) associated to
the sequence ∂f/∂x1, . . . , ∂f/∂xn. This immediately gives the formula for Hp−1(Ωn−p

Z ) in i).

Suppose now that p ≥ 3 and f has an isolated singularity at x. In this case, by Generic
Smoothness, around x the zero-locus of Jf is contained in the hypersurface defined by f ,
hence it is equal to {x}. Therefore the elements ∂f/∂x1, . . . , ∂f/∂xn form a regular sequence
in OX,x, so that

Hi(Ωn−p
Z )x + Tor

OX,x

p−1−i(OX,x/Jf ,OZ,x)

for 1 ≤ i ≤ p−1. The assertions in ii) are immediate consequences. (The vanishing statement
also follows from Corollary 3.8, and holds for an arbitrary isolated singularity.) !
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[MP19] M. Mustaţă and M. Popa, Hodge ideals, Mem. Amer. Math. Soc. 262 (2019), no. 1268, v+80.
↑1, 6, 8

[MP20a] , Hodge ideals for Q-divisors, V -filtration, and minimal exponent, Forum Math. Sigma
8 (2020), Paper No. e19, 41. ↑1, 4, 7, 15

[MP20b] , Hodge filtration, minimal exponent, and local vanishing, Invent. Math. 220 (2020),
no. 2, 453–478. ↑3, 7, 8

[MP21] , Hodge filtration on local cohomology, Du Bois complex, and local cohomological dimen-
sion, preprint arXiv:2108.05192 (2021). ↑4

[PS08] C. Peters and J. Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer-
Verlag, Berlin, 2008. ↑4, 5, 9, 11

[Sai88] M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995.
↑6, 8, 15, 16, 17

[Sai89] , Duality for vanishing cycle functors, Publ. Res. Inst. Math. Sci. 25 (1989), no. 6,
889–921. ↑16

[Sai90] , Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. ↑6, 16
[Sai93] , On b-function, spectrum and rational singularity, Math. Ann. 295 (1993), no. 1, 51–74.

↑7, 12, 13
[Sai94] , On microlocal b-function, Bull. Soc. Math. France 122 (1994), no. 2, 163–184. ↑1, 6, 7
[Sai09] , On the Hodge filtration of Hodge modules, Mosc. Math. J. 9 (2009), no. 1, 161–191,

back matter (English, with English and Russian summaries). ↑7, 9, 12
[Sai16] , Hodge ideals and microlocal V -filtration, preprint arXiv:1612.08667 (2016). ↑1, 7, 16
[Sch07] K. Schwede, A simple characterization of du Bois singularities, Compositio Math. 143 (2007),

no. 4, 813-828. ↑2
[Ste85] J. Steenbrink, Vanishing theorems on singular spaces, Astérisque 130 (1985), 330–341. Differ-
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