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The interplay between noise and nonlinearites can lead to escape dynamics. Associated nonlinear phe-
nomena have been observed in various applications ranging from climatology to biology and engineering.
For reasons of computational ease, in most studies, Gaussian white noise is used. However, this noise
model is not physical due to the associated infinite energy content. Here, the authors present extensive
experimental investigations and numerical simulations conducted to examine the impact of noise color
on escape times in nonlinear oscillators. With a careful parameterization of the numerical simulations,
the authors are able to make quantitative comparisons with experimental results. Through the experi-
ments and simulations, it is illustrated that the noise color can drastically influence escape times and
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Noise induced escape is a fundamental phenomenon, which is
due to the interplay between nonlinear and non-deterministic be-
havior. It has been used to explain change in climate trends [1],
efficient neuronal communication in biology [2] and the occur-
rence of extreme events [3]. A prominent engineering application
is bistable energy harvestering [4,5], wherein jumps between sta-
ble fixed points are utilized to generate power. More generally, the
necessity of considering noise and nonlinearity simultaneously has
been recognized, for example, in micro-electromechanical (MEMS)
devices [6], energy harvesters [7], and offshore wind turbines [8].
However, in computational and experimental studies, nonphysical
white noise is often employed and comparisons between experi-
mental and computational results are usually limited to qualitative
comparisons.

The most common noise model is Gaussian white noise, due
to this noise model’s simplicity and the associated sound theo-
retical basis. Indeed, various computational algorithms [9-11] and
analytical results [12,13] have been obtained for the white noise
case. However, this noise model has an infinite energy measure,
and therefore, is nonphysical. Indeed, more realistic noise mod-
els for mechanical oscillators [14] and MEMS devices [15] as well
as electrical circuits and metals [16] have been proposed. Conse-
quently, in a few studies (e.g., Falsone and Elishakoff [17], Wein-
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stein and Benaroya [18], Socha and Proppe [19], Li et al. [20], Jung
and Hanggi [21]) non-Gaussian noise models have been consid-
ered. By and large, the results obtained are primarily of computa-
tional or theoretical nature and lack validation with experiments.
Two notable exceptions are the studies [22,23], wherein electric
circuits are employed to validate the associated theoretical find-
ings. However, within these studies, only exponentially correlated
noise has been considered and escape times have not been studied.

The effects of exponentially correlated noise have been studied
in the context of stochastic resonance [24-28]. This classic phe-
nomenon [29] occurs in bistable systems, where noise induced
jumps between two equilibrium states are synchronized with an
external excitation frequency. This mechanism has been utilized to
explain complex dynamics in climatology [1], biology [2], and hu-
man sensation [30]. Amongst the investigations [24-28], there is
agreement that the noise color alters, partially drastically, stochas-
tic resonance in comparison to the white noise case. However,
these studies are of computational character and they have not
been experimentally validated. Notable exceptions are the exper-
iments with electrical circuits reported in the studies [31,32]. Un-
fortunately, the results [31] on colored noise are only preliminary
and no comparisons with simulation results have been made, and
in Castro et al. [32], only qualitative comparisons with theoretical
results have been reported.

Vibration energy harvesting is another active research area,
wherein noise induced jumps have been exploited. Colored noise
has received attention (e.g., Daqaq et al. [7], Zhu et al. [33],
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Tang et al. [34]), wherein it is employed to model a harvested
broadband environmental source. While many studies are of ei-
ther purely theoretical or experimental character, in a few stud-
ies [4,35], comparisons have been made between experimental and
computational results. The main focus of these applications has
been on the harvested power output. Hence, escape times have not
been studied.

In a study from the authors’ group [36], a series of investiga-
tions were initiated to utilize noise in mechanical systems. The ef-
fects of noise on the frequency response curve of a softening Duff-
ing oscillator [37], the induced escape routes from chaotic attrac-
tors [38], and the generation and destruction of localization in cou-
pled oscillator arrays [39] have been examined. In these studies,
the corresponding researchers utilize noise as an inexpensive and
omnipresent control input to steer mechanical systems into favor-
able operating conditions. Indeed, noise assisted response steering
has been been proposed to suppress unwanted whirling motions
in a rotor-stator system [40]. Despite this extensive body of work,
only qualitative comparisons are made between experimental and
computational results, and they are limited to white noise. Only
in the investigation [41] on an circular oscillator array, the case of
pink noise as an alternative colored, noise model has been consid-
ered. However, no experimental results were reported in this study.

In summary, experimental studies on noise induced escape are
rare and the case of colored noise has not been studied. More-
over, quantitative comparisons of computational and experimen-
tal results are not available in the literature. This knowledge gap
motivates the experimental campaign presented in this article. A
bistable system is investigated here and the effects of different
noise models on the noise induced escape times are recorded.
Moreover, the experiments are accompanied with careful numeri-
cal studies, to show that the simulations can be used to accurately
predict the escape times if the correct noise model is employed.

The experimental setup is shown in Fig. 1. An electrodynamic
shaker (Briiel & Kar 4811) is used to excite the base plate and the
attached metal cantilever. The shaker excitation is directed normal
to the longitudinal axis of the cantilever structure. Hence, primar-
ily bending modes are expected to be excited in this configuration.
The associated vibrations are measured by using a strain gauge at-
tached close to the cantilever base. Magnets are mounted at the
cantilever free end and on the opposing end of the frame. These
magnets have been arranged to attract each other, which results
in a nonlinear relationship between the tip-displacement and the
restoring force experienced by the cantilever. The control signals
for the shaker, harmonic excitation with and without noise, are all
generated by using LabVIEW software, which is also employed for
data acquisition. The sampling frequency for all signals is 1.0 kHz.

By applying a purely harmonic forcing to the cantilever and
recording the arising vibration amplitudes, the frequency response
curve shown in Fig. 1b is constructed. For both sweeps, the fre-
quency is changed by an increment of 0.02 Hz every thirty sec-
onds. This slow sweep speed ensures that the observed response is
close to a steady state. Indeed, increasing the frequency increment
by a factor of five does not alter the response shown in Fig. 1b.

The amplitude of strain gauge signal shown in Fig. 1b can be
related to motion in the first beam bending mode and the related
tip displacement. The escape times, however, are independent of
such transformations (i.e., from the strain gauge signal to the tip
displacement). For this reason, the unconverted strain gauge sig-
nals are utilized in the following.

The hardening characteristic is clearly discernible in the fre-
quency response shown in Fig. 1b. For frequencies between 38.5 Hz
(jump-up frequency) and 39.8 Hz (jump-down frequency), two sta-
ble steady-state solutions are observed. The orbit with the larger
amplitude is denoted as the high amplitude orbit and that with
the low amplitude is denoted as the low amplitude orbit. If a
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small noise input is added to the harmonic excitation, then jumps
between the two coexisting steady-state solutions are initiated.
Indeed, for autonomous (time-invariant, unforced) systems and
purely white noise excitation, from the associated theory [42,43],
it follows that for any arbitrarily small noise intensity, jumps be-
tween attractors occur. For non-autonomous (forced) mechanical
systems, these jumps have also been well documented in simu-
lations and experiments [37-41].

An experimentally observed escape is illustrated in Fig. 1c.
Therein, the forcing frequency is 39.6 Hz and the vibrations are ini-
tiated in the high amplitude orbit. This initialization is experimen-
tally achieved by gradually sweeping up from 38.0 Hz to 39.6 Hz.
Once the value of 39.6 Hz is reached, the excitation frequency is
kept constant and noise is added to the harmonic excitation signal.
The time instance at which the noise is added is set to t = 0 s. Ini-
tially, the response remains in the high amplitude orbit. However,
after about 37 s, the response collapses to the low amplitude orbit
and remains there for the duration of this experiment. The time
duration that it takes for this collapse to occur is known as escape
time.

In the experimental campaign to quantify the effects of differ-
ent noise models on the escape time, the experiment shown in
Fig. 1c is repeated (cf. Fig. 1b). First, the high amplitude response
is realized by sweeping up from 38.0 Hz to 39.6 Hz. Then keeping
the excitation frequency fixed, the noise perturbation is added to
the harmonic shaker excitation. For an initial period, high ampli-
tude oscillations are observed, before the response collapses to the
low energy orbit! (cf. Fig. 1c). Then, the escape time is extracted
from the recorded signal. For each noise model, the experiment is
repeated 200 times to obtain accurate distributions of the escape
times.

In the engineering and physics literature, noise models are of-
ten classified on the basis of the power spectral density shape
(e.g., Saulson [14], Vig and Kim [15], Kogan [16]). The power spec-
tral densities S(f) of the noise models considered in this study are
of the form

1
S(f) Far (M)
where f denotes the frequency and « is a positive integer. The fol-
lowing noise models are considered in this article:

1. White noise (o = 0): As previously mentioned, white noise has
a sound mathematical basis and is commonly used in compu-
tational studies. Therefore, it is included within this study as
comparison. However, an ideal white noise signal has infinite
energy measure, and hence, it cannot occur in reality. The uti-
lization of white noise is often justified by either arguing that
the power spectrum of the excitation is sufficiently flat over the
frequency range of interest [44] or, equivalently, the correlation
time is shorter than the system’s characteristic time scale [28].
In the experiments, LabVIEW’s random number generator is
used to generate discrete samples, which are then converted
into an analog signal for the shaker control signal. The sampling
rate of 1.0 kHz limits the bandwidth of the experimentally real-
ized noise to be at the Nyquist frequency of 500 Hz. Up to this
frequency, the power spectrum of the generated noise is nearly
constant.

1 Within this work, jumps from the high amplitude to the low amplitude orbit
are observed in all cases within three minutes. Based on theory, one might be in-
clined to believe that trajectories might also jump up from the low amplitude orbit
to the high amplitude orbit. However, these jumps were not observed for the in-
vestigated parameters. Noise induced jumps from the low amplitude orbit to the
high amplitude orbit are generally more likely to be observed for the harmonic ex-
citation frequencies that are closer to the jump up frequency (approx. 38.5 Hz in
Fig. 1(b)).



JID: TAML [m5G;January 21, 2023;10:15]

T. Breunung and B. Balachandran Theoretical and Applied Mechanics Letters xxx (XXxx) xxx

(a)
\ s & & Magnets
BN\

“ Nonlinearity
¥~ — Oscillator

Strain gauge
Shaker
Excitation

"

(c)
(b) 1074 1074
I 1
+Sweep up —~
* Sweep down 2
= ! 1 &
2 7] 0
3 &
3 =
205 . <0
< 5
s -1
N
0 | | | nopana tima
37 38 39 39.6 40 0 20 40 60 80 100
Frequency (Hz) Time (s)

Fig. 1. (a) Experimental setup: The shaker is used to generate the external, harmonic and random excitation to the base of the metal cantilever. The resulting oscillations are
measured with a strain gauge. A nonlinear restoring force follows from the magnets mounted at the cantilever tip and the fixed frame. (b) Measured cantilever response to
sinusoidal excitation and experimental procedure: A sweep up is used to realize the high amplitude orbit. When the excitation frequency reaches 39.6 Hz, noise is added to
the input and a noise induced escape is observed. (¢) Time series of a strain gauge signal: The forcing frequency is 39.6 Hz and the response is initiated in the high energy
orbit. After about 37.0 s an escape towards the low amplitude orbit is observed.

2. Pink noise (o =1): Pink noise has been observed in various series can have considerable long-range statistical dependen-

applications such as electrical circuits [45], metals [16], ocean
waves [46], and human heart beats [47]. It is also referred to as
Flicker noise or 1/f-noise, due to the shape of its power spectral
density.

Technically, the power spectrum of the pink noise model ap-
proaches infinity as the frequency approaches zero (f — 0 in
Eq. (1)). Such excitations are, of course, impossible to realize
experimentally. Moreover, the employed shaker has lower dis-
placement and velocity limits for low frequencies. Hence, the
idealized frequency spectrum of pink noise needs to be trun-
cated. In this work, the generated pink noise is filtered with a
Butterworth bandpass filter of tenth order with a passband be-
tween 10 Hz and 100 Hz before it is sent to the shaker as a
control input.

. Brownian noise (« =2): Brownian noise, herein abbreviated
as brown noise, has been observed not only in MEMS de-
vices [15] and optical mirrors for high precision measure-
ments [48] but also in the height profile of road sur-
faces [49,50]. It can also be viewed as an exponential corre-
lated noise where the correlation time is larger than the sys-
tem’s characteristic time scale (which can be the reciprocal of
an eigenfrequency of the system under consideration).
Analogous to the pink noise case, only truncated versions of
brown noise can be realized in experiments. Hence, the com-
puter generated brown noise is filtered with the same filter as
the pink noise (tenth order Butterworth bandpass with a pass-
band between 10 Hz and 100 Hz) before it is added to the si-
nusoidal shaker control input.

. Black noise (a =3): Black noise can, for example, be traced
in geophysical time series [51,52]. In general, geophysical time

cies [53] and hence, they feature a power spectrum decaying
with exponents larger than two [52]. Black noise has a signifi-
cant energy content at low frequencies and only minimal am-
plitudes at high frequencies.

The demands on the experimental setup for low frequencies, in
particular, the shaker, are even more increased for black noise
compared to the pink and brown noise cases. In the current
experimental setup, considerable filtering needs to be applied
to experimentally realize black noise. This filtering significantly
distorts black noise, especially, in the dynamic range of interest
(10-100 Hz). Hence, no experiments with black noise are con-
ducted and it is only utilized within the simulations for com-
parison.

. Bandlimited white noise: Bandlimited white noise can be a close

approximation of many physical processes [54]. It can be ob-
tained by applying a bandpass filter to an ideal white noise sig-
nal. Bandlimited white noise is also included to test the hypoth-
esis that a flat spectrum can be approximated with a broadband
white noise signal.

In the experiments, white noise is filtered to generate bandlim-
ited white noise. To this end, the same filter which is also uti-
lized to filter pink and brown noise is employed; that is, a tenth
order Butterworth bandpass with a passband between 10 Hz
and 100 Hz.

The idealized and experimentally realized noise models are

shown in Fig. 2. Moreover, all noise models have been scaled to
have the same power spectral density at the system’s eigenfre-
quency of 37.5 Hz (cf. Fig. 2b). This scaling ensures comparabil-
ity between the noise models. Additionally, each noise model has
approximately the same energy measure in the frequency band of
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Fig. 3. Deterministic system identification for purely harmonic excitation. (a) Fitted and measured frequency response curve. (b) Response frequency spectrum for the high

amplitude orbit at f = Q/(27) = 39.6 Hz.

interest. Therein, the energy measure is defined as the sum of the
absolute values of the Fourier coefficients within the frequency in-
terval between 10 Hz and 100 Hz.

The experiments discussed in the preceding sections are accom-
panied by simulations. To this end, a simulation model is derived
and parameterized as discussed. The numerical techniques used to
simulate the dynamical systems subject to colored noise are illus-
trated.

To facilitate simulations, the cantilever vibrations need to be
modeled. In previous studies [37-39,55] Duffing’s equation has
been utilized for modeling such structures in similar experiments.
Such a model can be theoretically justified by a Galerkin projec-
tion of an underlying partial differential equation governing the
vibrations of the beam (modeled as a continuum) [55,56]. The fre-
quency content of the measurements taken to obtain the frequency
response curve (cf. Fig. 1b), however, reveals a significant second
harmonic (cf. Fig. 3b), which does not arise in the solution of
the sinusoidal forced Duffing equation. To account for the second
harmonic, Duffing’s equation is extended by including a quadratic
term yielding

4+ ¢4+ @3q + K2q® + Kk3q® = asin(Qt) + on(t), (2)

where wq denotes the linear natural frequency, c¢ is the damp-
ing coefficient, k3 is the cubic spring coefficient, and «; is the
quadratic spring coefficient. Quadratic coefficients are classically

related to asymmetries. In the experiment shown in Fig. 1a, asym-
metries arise from, for example, the asymmetric clamping and
the non-perfectly centered magnets. Furthermore, electrodynamic
shakers are also known to introduce higher, especially, second, har-
monics [57]. The forcing on the right hand side of Eq. (2) consists
of a sinusoidal term with amplitude a and angular frequency 2
and the noise term on(t). The parameter o denotes the intensity
of the noise, whereas n(t) follows from the noise models intro-
duced.

The external forcing frequency, generated by the shaker, is
known, whereas the remaining coefficients, wy, ¢, k2, k3, a, and o
are unknown. Hence, they need to be identified. To facilitate a bet-
ter fit, the measured amplitude values are normalized and nondi-
mensionalized by introducing

n=12.732 mv, q::%
The factor n was selected to be the maximal amplitude of the

sweep shown in Fig. 1b. In the following, the equation
G+ 64 + 3G + k2% + R3G° = dsin(Qt) + &n(t), 3)
governing the non-dimensional amplitude § is considered.
Eq. (3) is the normalized and non-dimensional equivalent of
Eq. (2) is considered.

The parameters in Eq. (3) are first fitted for a purely har-
monic excitation (¢ = 0). To this end, a computed frequency re-
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Fig. 4. Identification of the noise intensity. (a) White noise excitation only. (b) Simultaneous harmonic and white noise excitation.

sponse curve is fitted to the measured frequency response curve
shown in Fig. 1(b). First, a curve fit of an analytic frequency re-
sponse curve obtained via a perturbation scheme [56] to the mea-
sured data is obtained. Within this step, the quadratic coefficient
Ko =0 is set to zero, since an infinite number of combinations of
quadratic and cubic coefficients (k, and &3) yield the same fre-
quency response curve [56]. The curve fitting leads to a nonlin-
ear optimization problem, which is solved using Matlab’s Isqnonlin
routine.

The parameters obtained from the perturbation result are suc-
cessively corrected through numerical computations of the fre-
quency response curve. To this end, the frequency response is com-
puted with numerical continuation package coco [58], and then,
the parameters are manually adjusted to obtain a close match.
Herein, only the damping value needs to be adjusted, whereas that
natural frequency @y, the cubic coefficient &3, and the forcing am-
plitude d were retained from the nonlinear curve fit. As shown in
Fig. 3a, the computed frequency response curve matches closely
with the measured response curve.

Finally, the quadratic coefficient (£,) is obtained by matching
the second harmonic in the frequency spectrum for a forcing fre-
quency of 39.6 Hz (cf. Fig. 3b). While the quadratic coefficient k- is
adjusted, the cubic coefficient &3 is changed accordingly such that
the frequency response curve (cf. Fig. 3a) is not altered. The iden-
tification procedure yields the parameters

@o/(2m) =3754Hz, ¢=3.11s"1 &, =4000s2,
k3 =8775.85 572, d=78121s72

To obtain the noise intensity &, the cantilever is excited with
noise only, and then, by applying harmonic and random excitation
simultaneously. The power spectrum of the measured and com-
puted response are compared. Subsequently, the noise intensity &
is adjusted until the both power spectra, experimental and simu-
lated, match in the frequency range between 20 Hz and 80 Hz. For
6 = 13.98, the response spectra obtained with purely white noise
excitation and to simultaneous harmonic and white noise excita-
tion match closely, as shown in Fig. 4. For the other noise models,
a similar close fit between simulations and experiments is noted.

To compute escape times for system (Eq. (3)), the associated
responses to stochastic excitations need to be calculated. To this
end, numerical time integration is employed. In this context, it
is noted that computational routines for stochastic dynamical sys-
tems have been primarily developed for Gaussian white noise [9-
11]. Since the noise models can be obtained by filtering white
noise, numerical integrators developed for Gaussian white noise
can be utilized for the colored noise models. To this end, the fil-

ter is written as a dynamical system. Filters are most commonly
designed as discrete time systems of the form

Zn = Agzy +BW,,  n(ty) = Cyzy + DyW. (4)

Therein, the variable z € RS is the state of the filter,the integer N ¢
is the dimension of the filter state, and W is the one dimensional
Wiener process. The dimensions of the matrices and vectors are as
follows: A; € RV*Nr, By € RVf, and C4 € R™*Nr. These matrices and
D, need to be determined such that the noise term n(t,) resem-
bles the noise models presented, and can be employed in Eq. (3).
For the each noise model listed in previous discussion, a different
filter is employed. The selected filters and their coefficients, which
are stored in the matrices Ay, By, C; and Dy, are listed in Ref. a.

To incorporate the filter Eq. (4) into the oscillator model
Egs. (3) and (4) needs to be reformulated in continuous time. For
this purpose, the state Z, := [zg,n(tn,ﬂ]T is introduced, which
yields the more compact form

- A; 0], B ~ L =
Zyi = |:CZ 0i|zn + I:DZi|Wn = AyZ, + BW,. (5)

The discrete time system (Eq. (5)) can be viewed as an Euler-
Maruyama discretization of a continuous time stochastic process
of the form

Euler-Maruyama
=

dz = A.zdt + B.dW Zni1 = (1+AcT)Zy + VTBW,,

(6)

where 7 is the time between two discrete time instances. For small
enough time steps t, the sample paths of the Euler Maruyama dis-
cretization (Eq. (6)) converge to the sample paths of the stochastic
differential equation in continuous time in the strong sense [11].
Hence, the discrete filter Eq. (5) can be approximated by the con-
tinuous stochastic differential Eq. (6) by setting

B.— B (7)

c .= ﬁ d-

The noise n(ty) is included as the last entry of the state Z,,.
Since the state z is the continuous time equivalent to the state
Z,,1, the last entry of z yields the continuous time noise process
n(t), and this can be extracted as follows

n(t) =[0,0,...,1]z=C.z.

1 ~
Aci= —(Ag =),

This equation can be utilized to simulate system (Eq. (3)). To this
end, system (Eq. (3)) can be written in first order form, by intro-

ducing the state x :=[4. g, ZT]T which in differential form yields
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q . q
dx=d|q|=|—-&f— @G — k2G* — k3G® + dsin (Qt) + 6Ccz
z Az
0
dt + | 0 [dw = f(x. t)dt + BdW. (8)
B,

Equation (8) is in the form of a stochastic differential equation ex-
cited by Gaussian white noise. This means that numerical rou-
tines developed for this setting become available. Here, the effi-
cient stochastic integrator from the authors’ prior work [59] is em-
ployed. This integration routine has been shown to be efficient for
similar systems and yield an computational speedup of up to two
orders of magnitude compared to the standard Euler-Maruyama
scheme. This efficiency allows to compute the escape time of 2000
samples for each noise model.

From each simulation or experimental run, an escape time is
obtained (cf. Fig. 1c for an illustration). Due to the stochasticity
present, the escape time is a random variable with an underly-
ing distribution for each noise model. The numerically and exper-
imentally obtained distributions of the escape times are shown in
Fig. 5. The probability densities are visualized in a violin plot.2-?
The computationally and experimentally obtained probability den-
sities match very well for each noise model. The mean square error
between the computed and experimental probabilities is about 2%
for the pink noise model, whereas for the other noise models, the
error is below 0.2%.

For all distributions shown in Fig. 5, the mean escape time is
larger than the median escape time which is, in turn, larger than
the most probable escape time (= mode). This observation indi-
cates a positive skew of the underlying distributions. Therefore, the
escape time distributions are necessarily non-Gaussian. This char-

2 The thickness of the violins indicate the probability density. Therein, a contin-
uous probability density function is estimated from a finite number of samples by
utilizing kernel smootheners. The underlying assumption is that a normal distribu-
tion with a certain bandwidth is induced by each sample. Compared to histograms,
violin plots do not depend on a selected bin width. Moreover, violin plots can re-
veal multimodal distributions, which are not easily discernible from, for example,
box-plots.

3 The authors are thankful to Holger Hoffmann for making his code available [60].

acteristic can be related to two factors. First, the escape time is
strictly positive. Moreover, the heavy tails can be explained by ob-
serving that even for long times there is a non-zero probability
that the net effect of the noise on the dynamics of the determin-
istic system is negligible and hence no escape is observable. These
two facts give rise to the positive skew and heavy tails of the es-
cape time distributions shown in Fig. 5.

A more detailed picture of the mean escape times is provided in
Fig. 6a. Therein, the effects of the different noise models are clearly
discernible. Compared to white noise, with pink noise, the mean
escape time is decreased by a factor of about three. A similar ob-
servation is made for the black noise case. Interestingly, the mean
escape times for brown noise is approximately the same as that
for white noise. Thus, no distinct trend for the mean escape times
and the coefficient « describing the power spectrum of the noise
model (cf. Eq. (1)) is observed. With increasing ¢, the mean es-
cape times first drops (the pink noise case), then increases (brown
noise), and drops again (black noise). In particular, the drastic re-
duction of the mean escape times with pink noise stands out.

Bandlimiting white noise clearly has an influence on the mean
escape time. For the chosen parameters, the mean escape time in-
creases for bandlimited white noise by about 50% compared to the
band-unlimited case. It is noted that the passband of the bandlim-
ited white noise is between 10 Hz and 100 Hz and the power spec-
trum is essentially flat in the vicinity of the natural frequency (cf.
Fig. 2b). Hence, one might be inclined to argue that the bandlim-
ited process can be replaced with white noise. The experiments
and simulations shown in Figs. 5 and 6a, however, indicate that
such an approximation is not always justified. Thus, the validity of
approximating a bandlimited process by white noise needs care-
fully consideration in practice.

The escape probability, shown in Fig. 6b, confirms the trend ob-
served for the mean escape times. The escape probability for pink
and black noise is the highest, while it is similar for brown noise
and white noise and it is the lowest for the bandlimited white
noise. This means that for a fixed time, an escape in the system
perturbed by pink or black noise is more likely than for either
white or brown noise. On the other hand, for bandlimited noise,
an escape is less likely compared to the white noise case.

In this work, the authors have presented experimental and nu-
merical results on the escape times in a nonlinear oscillator for
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Fig. 6. (a) Mean escape time for the different noise models?. (b) Escape probability for the different noise models?®. 2Black noise is not realizable in the experimental set up.

Hence, no experimental results for this noise model are included.

different noise colors. The experimental arrangement consists of
an electrodynamical shaker exciting a cantilever structure. Magnets
attached to the tip of the cantilever and the fixed frame induce
a nonlinear force-deflection curve and the frequency response has
a hardening behavior with a bistable region (cf. Fig. 1b). Within
this multistability region, noise induced jumps between the coex-
isting attractors have been observed. In particular, the durations
of transitions from the high amplitude orbit to the low amplitude
orbit for different noise models have been recorded. For each of
the four experimentally realizable noise models, the escape time
of 200 samples has been measured.

To enable the simulations, the experimental arrangement has
been modeled as a nonlinear oscillator with a spring force featur-
ing quadratic and cubic terms. These parameters as well as the
noise intensity have been identified from experimental data. To
utilize simulation tools designed for Gaussian white noise to simu-
late colored noise excitations, the filter equations are incorporated
into the dynamical system. Then, the escape times for 2000 sam-
ples can be computed with the efficient stochastic integration rou-
tine [59].

The obtained results show a compelling agreement between
the simulation and experimental results. This match shows that
given a careful experimentation and correct parameterization of
the models not only qualitative but also quantitative agreements
can be obtained. Moreover, the experiments and simulations show
that different noise models can have a drastic impact on the es-
cape characteristics. An escape for pink noise is significantly more
likely and this happens faster on average than with white noise.
The same observation is made for black noise. The escape times
and probabilities for brown noise are approximately comparable
to those for the white noise case. When bandlimited noise is em-
ployed, the mean escape time increases and the respective escape
probability decreases.

Especially noticeable is the reduced escape time for pink noise.
In the future, it would be of great interest to conduct more param-
eter studies to uncover the universality of this observation. Given
the presence of pink noise in many applications ranging from elec-
tronics, solid state physics to environmental science, such a study
could have a broad impact. Similarly, for the other noise models,
further parameter studies could reveal the universality of the ob-
servations detailed here.

Moreover, the bandlimitation of the white noise has a clear im-
pact on the escape characteristics in the experiments conducted
here. Hence, approximations of bandlimited processes by band-
unlimited white noise, an engineering best practice [54], needs
careful consideration. It would be desirable to carry out theoretical
and experimental investigations into when such an approximation
can be justified.

Although the impact of the different noise models on the es-
cape characteristics is clearly noticeable (e.g., cf. Fig. 6a), no gen-
eral trend between the noise color (coefficient « in Eq. (1)) and
the escape characteristics has been observed. It is envisioned that
the experimental and computational investigations can be contin-
ued, to either confirm the absence of a clear trend or uncover a
hidden relationship.

Within this article, the impacts of five different noise models on
the escape times have been investigated and compared. The noise
models have been selected based on engineering relevance. Due to
the omnipresence of noise in any realistic setting many other mod-
els can be considered. Future investigations could, for example, in-
clude stochastic turbulence models such as Dryden’s model [61],
Lévy walks for biological systems [62,63], fractional Brownian mo-
tion [64] or multiplicative (state-dependent) noise for microelec-
tromechanical (MEMS) devices [15].

While the escape times for system (2) have been obtained by
numerical simulations in this article, it would be desirable to de-
rive them theoretically in the future. However, to the best of the
author’s knowledge no result is readily available to compute the
escape times of system (2). Often escape times calculations are
based on the large deviation theory prominently summarized in
Ref. [43]. Furthermore, these results rely on very restrictive as-
sumptions, most severely they require a non-singularity condition
on the stochastic diffusion terms (matrix B in Eq. (8)). However,
this condition is not satisfied for mechanical systems.*
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Appendix A

Filter coefficients

In this appendix, the filters generating colored noise are listed. The time step 7 to convert all discrete time system (Eq. (4)) to a
continuous time domain (cf. Eq. (7)) is set to T = 0.001 s.

The discrete time filter from Ref. [65] is utilized to generate pink noise.” The state space representation (Eq. (4)) is given by

0.0555179
0.0750759
0.1538520
0.3104856 |’ (A1)
0.5329522
0.0168980

Ag = diag([0.99886, 0.99332, 0.96900, 0.86650, 0.55000, —0.7616]), Bg = 0.2641

¢ =[1.11.1.11, D}=06521,

where the notation diag(v) is used to denote a diagonal matrix with the entries taken from the vector v.

To generate brown noise, a discrete time implementation of a first order low-pass filter is employed. Therein, the cut-off frequency
needs to be set sufficiently low, so that the power spectrum decays quadratically over the frequency band of interest. To this end, the
cut-off frequency w. was set to 0.27 rad/s. After setting the sampling time to T = 0.001 s, the following coefficients are obtained:

B 1
T 1+t

Tw,
1+t

To generate black noise, pink noise is filtered with a first order low-pass filter. First, the filter coefficients Eqs. (A1) and (A2) are
converted via Eq. (7) to yield their respective continuous time equivalents A?, B?, and C? for the pink noise case, respectively A, B, and
C? for the first order low-pass filter. Then, these matrices are combined to have

AP 0 B?
AbL— | ¢ , BY .= | T |, ct.=10,1]. A3
C [Bgcg Atc)i| c 0 (o [ ] ( )

A bandpass filter is employed to generate bandlimited white noise. This filter is constructed by using designfilt, an automated filter
design tool of Matlab’s Signal Processing toolbox. An infinite impulse response® bandpass filter of order eight with a passband between
10 Hz and 100 Hz is selected. From the Matlab routine, the following coefficients are obtained:

Ab =0.9994, B =319.7076 =02008, Ci'=1, Di=o. (A2)

r1.3768 —0.6873 0 0 0 0 0 0 r0.25417
1.0000 0 0 0 0 0 0 0 0
0.3499 -0.4288 1.9557 —0.9597 0 0 0 0 0.0646
A - 0 0 1.0000 0 0 0 0 0 B, — 0
d T 100798 -0.0978 04462 04472 1.8711 —0.8764 0 0 ’ 4= 10.0147 |’ (A4)
0 0 0 0 1.0000 0 0 0 0
0.0182 -0.0223 0.1018 -0.1020 0.4269 -0.4281 1.1952 —-0.3854 0.0034
0 0 0 0 0 0 1.0000 0 L 0

C = [(_).0182, —0.0223, 0.1018, —0.1020, 0.4269, —0.4281, 1.1952, —1.3854], D, = 0.0034.

To verify the performance of the constructed filter, each filter is excited by white noise and the power spectrum of the response is
computed. These spectra are shown in Fig. Al. By construction, each filter is found to give rise to a different response power spectrum
shape.

5 The authors are thankful to Paul Kellet for making his developed filter publicly available [65].

6 The current state of infinite impulse response filters (IIR filter) is a linear combination of the excitation at the previous time steps as well as the previous filter outputs.
The feedback of the previous filter outputs into the current state gives rise to poles and hence the possibility for infinite impulse response as well as instability. On the
contrary, finite impulse response filters (FIR filters) do not allow for feedback of the previous filter output and, hence, they have a finite impulse response.
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Fig. A1. Power spectral density of the filter response to white noise excitation.
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