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a b s t r a c t 

The interplay between noise and nonlinearites can lead to escape dynamics. Associated nonlinear phe- 

nomena have been observed in various applications ranging from climatology to biology and engineering. 

For reasons of computational ease, in most studies, Gaussian white noise is used. However, this noise 

model is not physical due to the associated infinite energy content. Here, the authors present extensive 

experimental investigations and numerical simulations conducted to examine the impact of noise color 

on escape times in nonlinear oscillators. With a careful parameterization of the numerical simulations, 

the authors are able to make quantitative comparisons with experimental results. Through the experi- 

ments and simulations, it is illustrated that the noise color can drastically influence escape times and 

escape probability. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 

Applied Mechanics. 
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Noise induced escape is a fundamental phenomenon, which is 

ue to the interplay between nonlinear and non-deterministic be- 

avior. It has been used to explain change in climate trends [1] , 

fficient neuronal communication in biology [2] and the occur- 

ence of extreme events [3] . A prominent engineering application 

s bistable energy harvestering [4,5] , wherein jumps between sta- 

le fixed points are utilized to generate power. More generally, the 

ecessity of considering noise and nonlinearity simultaneously has 

een recognized, for example, in micro-electromechanical (MEMS) 

evices [6] , energy harvesters [7] , and offshore wind turbines [8] . 

owever, in computational and experimental studies, nonphysical 

hite noise is often employed and comparisons between experi- 

ental and computational results are usually limited to qualitative 

omparisons. 

The most common noise model is Gaussian white noise, due 

o this noise model’s simplicity and the associated sound theo- 

etical basis. Indeed, various computational algorithms [9–11] and 

nalytical results [12,13] have been obtained for the white noise 

ase. However, this noise model has an infinite energy measure, 

nd therefore, is nonphysical. Indeed, more realistic noise mod- 

ls for mechanical oscillators [14] and MEMS devices [15] as well 

s electrical circuits and metals [16] have been proposed. Conse- 

uently, in a few studies (e.g., Falsone and Elishakoff [17] , Wein- 
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and numerical results, Theoretical and Applied Mechanics Letters, https
tein and Benaroya [18] , Socha and Proppe [19] , Li et al. [20] , Jung

nd Hänggi [21] ) non-Gaussian noise models have been consid- 

red. By and large, the results obtained are primarily of computa- 

ional or theoretical nature and lack validation with experiments. 

wo notable exceptions are the studies [22,23] , wherein electric 

ircuits are employed to validate the associated theoretical find- 

ngs. However, within these studies, only exponentially correlated 

oise has been considered and escape times have not been studied. 

The effects of exponentially correlated noise have been studied 

n the context of stochastic resonance [24–28] . This classic phe- 

omenon [29] occurs in bistable systems, where noise induced 

umps between two equilibrium states are synchronized with an 

xternal excitation frequency. This mechanism has been utilized to 

xplain complex dynamics in climatology [1] , biology [2] , and hu- 

an sensation [30] . Amongst the investigations [24–28] , there is 

greement that the noise color alters, partially drastically, stochas- 

ic resonance in comparison to the white noise case. However, 

hese studies are of computational character and they have not 

een experimentally validated. Notable exceptions are the exper- 

ments with electrical circuits reported in the studies [31,32] . Un- 

ortunately, the results [31] on colored noise are only preliminary 

nd no comparisons with simulation results have been made, and 

n Castro et al. [32] , only qualitative comparisons with theoretical 

esults have been reported. 

Vibration energy harvesting is another active research area, 

herein noise induced jumps have been exploited. Colored noise 

as received attention (e.g., Daqaq et al. [7] , Zhu et al. [33] ,
ty of Theoretical and Applied Mechanics. This is an open access article under the 
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1 Within this work, jumps from the high amplitude to the low amplitude orbit 

are observed in all cases within three minutes. Based on theory, one might be in- 

clined to believe that trajectories might also jump up from the low amplitude orbit 

to the high amplitude orbit. However, these jumps were not observed for the in- 

vestigated parameters. Noise induced jumps from the low amplitude orbit to the 

high amplitude orbit are generally more likely to be observed for the harmonic ex- 

citation frequencies that are closer to the jump up frequency (approx. 38.5 Hz in 

Fig. 1 (b)). 
ang et al. [34] ), wherein it is employed to model a harvested 

roadband environmental source. While many studies are of ei- 

her purely theoretical or experimental character, in a few stud- 

es [4,35] , comparisons have been made between experimental and 

omputational results. The main focus of these applications has 

een on the harvested power output. Hence, escape times have not 

een studied. 

In a study from the authors’ group [36] , a series of investiga- 

ions were initiated to utilize noise in mechanical systems. The ef- 

ects of noise on the frequency response curve of a softening Duff- 

ng oscillator [37] , the induced escape routes from chaotic attrac- 

ors [38] , and the generation and destruction of localization in cou- 

led oscillator arrays [39] have been examined. In these studies, 

he corresponding researchers utilize noise as an inexpensive and 

mnipresent control input to steer mechanical systems into favor- 

ble operating conditions. Indeed, noise assisted response steering 

as been been proposed to suppress unwanted whirling motions 

n a rotor-stator system [40] . Despite this extensive body of work, 

nly qualitative comparisons are made between experimental and 

omputational results, and they are limited to white noise. Only 

n the investigation [41] on an circular oscillator array, the case of 

ink noise as an alternative colored, noise model has been consid- 

red. However, no experimental results were reported in this study. 

In summary, experimental studies on noise induced escape are 

are and the case of colored noise has not been studied. More- 

ver, quantitative comparisons of computational and experimen- 

al results are not available in the literature. This knowledge gap 

otivates the experimental campaign presented in this article. A 

istable system is investigated here and the effects of different 

oise models on the noise induced escape times are recorded. 

oreover, the experiments are accompanied with careful numeri- 

al studies, to show that the simulations can be used to accurately 

redict the escape times if the correct noise model is employed. 

The experimental setup is shown in Fig. 1 . An electrodynamic 

haker (Brüel & Kær 4811) is used to excite the base plate and the 

ttached metal cantilever. The shaker excitation is directed normal 

o the longitudinal axis of the cantilever structure. Hence, primar- 

ly bending modes are expected to be excited in this configuration. 

he associated vibrations are measured by using a strain gauge at- 

ached close to the cantilever base. Magnets are mounted at the 

antilever free end and on the opposing end of the frame. These 

agnets have been arranged to attract each other, which results 

n a nonlinear relationship between the tip-displacement and the 

estoring force experienced by the cantilever. The control signals 

or the shaker, harmonic excitation with and without noise, are all 

enerated by using LabVIEW software, which is also employed for 

ata acquisition. The sampling frequency for all signals is 1.0 kHz. 

By applying a purely harmonic forcing to the cantilever and 

ecording the arising vibration amplitudes, the frequency response 

urve shown in Fig. 1 b is constructed. For both sweeps, the fre- 

uency is changed by an increment of 0.02 Hz every thirty sec- 

nds. This slow sweep speed ensures that the observed response is 

lose to a steady state. Indeed, increasing the frequency increment 

y a factor of five does not alter the response shown in Fig. 1 b. 

The amplitude of strain gauge signal shown in Fig. 1 b can be 

elated to motion in the first beam bending mode and the related 

ip displacement. The escape times, however, are independent of 

uch transformations (i.e., from the strain gauge signal to the tip 

isplacement). For this reason, the unconverted strain gauge sig- 

als are utilized in the following. 

The hardening characteristic is clearly discernible in the fre- 

uency response shown in Fig. 1 b. For frequencies between 38.5 Hz 

jump-up frequency) and 39.8 Hz (jump-down frequency), two sta- 

le steady-state solutions are observed. The orbit with the larger 

mplitude is denoted as the high amplitude orbit and that with 

he low amplitude is denoted as the low amplitude orbit. If a 
2 
mall noise input is added to the harmonic excitation, then jumps 

etween the two coexisting steady-state solutions are initiated. 

ndeed, for autonomous (time-invariant, unforced) systems and 

urely white noise excitation, from the associated theory [42,43] , 

t follows that for any arbitrarily small noise intensity, jumps be- 

ween attractors occur. For non-autonomous (forced) mechanical 

ystems, these jumps have also been well documented in simu- 

ations and experiments [37–41] . 

An experimentally observed escape is illustrated in Fig. 1 c. 

herein, the forcing frequency is 39.6 Hz and the vibrations are ini- 

iated in the high amplitude orbit. This initialization is experimen- 

ally achieved by gradually sweeping up from 38.0 Hz to 39.6 Hz. 

nce the value of 39.6 Hz is reached, the excitation frequency is 

ept constant and noise is added to the harmonic excitation signal. 

he time instance at which the noise is added is set to t = 0 s. Ini-

ially, the response remains in the high amplitude orbit. However, 

fter about 37 s, the response collapses to the low amplitude orbit 

nd remains there for the duration of this experiment. The time 

uration that it takes for this collapse to occur is known as escape 

ime . 

In the experimental campaign to quantify the effects of differ- 

nt noise models on the escape time, the experiment shown in 

ig. 1 c is repeated (cf. Fig. 1 b). First, the high amplitude response

s realized by sweeping up from 38.0 Hz to 39.6 Hz. Then keeping 

he excitation frequency fixed, the noise perturbation is added to 

he harmonic shaker excitation. For an initial period, high ampli- 

ude oscillations are observed, before the response collapses to the 

ow energy orbit 1 (cf. Fig. 1 c). Then, the escape time is extracted 

rom the recorded signal. For each noise model, the experiment is 

epeated 200 times to obtain accurate distributions of the escape 

imes. 

In the engineering and physics literature, noise models are of- 

en classified on the basis of the power spectral density shape 

e.g., Saulson [14] , Vig and Kim [15] , Kogan [16] ). The power spec-

ral densities S( f ) of the noise models considered in this study are 

f the form 

( f ) ∝ 

1 

f α
, (1) 

here f denotes the frequency and α is a positive integer. The fol- 

owing noise models are considered in this article: 

1. White noise ( α = 0 ): As previously mentioned, white noise has 

a sound mathematical basis and is commonly used in compu- 

tational studies. Therefore, it is included within this study as 

comparison. However, an ideal white noise signal has infinite 

energy measure, and hence, it cannot occur in reality. The uti- 

lization of white noise is often justified by either arguing that 

the power spectrum of the excitation is sufficiently flat over the 

frequency range of interest [44] or, equivalently, the correlation 

time is shorter than the system’s characteristic time scale [28] . 

In the experiments, LabVIEW’s random number generator is 

used to generate discrete samples, which are then converted 

into an analog signal for the shaker control signal. The sampling 

rate of 1.0 kHz limits the bandwidth of the experimentally real- 

ized noise to be at the Nyquist frequency of 500 Hz. Up to this 

frequency, the power spectrum of the generated noise is nearly 
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Fig. 1. ( a ) Experimental setup: The shaker is used to generate the external, harmonic and random excitation to the base of the metal cantilever. The resulting oscillations are 

measured with a strain gauge. A nonlinear restoring force follows from the magnets mounted at the cantilever tip and the fixed frame. ( b ) Measured cantilever response to 

sinusoidal excitation and experimental procedure: A sweep up is used to realize the high amplitude orbit. When the excitation frequency reaches 39.6 Hz, noise is added to 

the input and a noise induced escape is observed. ( c ) Time series of a strain gauge signal: The forcing frequency is 39.6 Hz and the response is initiated in the high energy 

orbit. After about 37.0 s an escape towards the low amplitude orbit is observed. 
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2. Pink noise ( α = 1 ): Pink noise has been observed in various 

applications such as electrical circuits [45] , metals [16] , ocean 

waves [46] , and human heart beats [47] . It is also referred to as

Flicker noise or 1/f-noise, due to the shape of its power spectral 

density. 

Technically, the power spectrum of the pink noise model ap- 

proaches infinity as the frequency approaches zero ( f → 0 in 

Eq. (1) ). Such excitations are, of course, impossible to realize 

experimentally. Moreover, the employed shaker has lower dis- 

placement and velocity limits for low frequencies. Hence, the 

idealized frequency spectrum of pink noise needs to be trun- 

cated. In this work, the generated pink noise is filtered with a 

Butterworth bandpass filter of tenth order with a passband be- 

tween 10 Hz and 100 Hz before it is sent to the shaker as a

control input. 

3. Brownian noise ( α = 2 ): Brownian noise, herein abbreviated 

as brown noise, has been observed not only in MEMS de- 

vices [15] and optical mirrors for high precision measure- 

ments [48] but also in the height profile of road sur- 

faces [49,50] . It can also be viewed as an exponential corre- 

lated noise where the correlation time is larger than the sys- 

tem’s characteristic time scale (which can be the reciprocal of 

an eigenfrequency of the system under consideration). 

Analogous to the pink noise case, only truncated versions of 

brown noise can be realized in experiments. Hence, the com- 

puter generated brown noise is filtered with the same filter as 

the pink noise (tenth order Butterworth bandpass with a pass- 

band between 10 Hz and 100 Hz) before it is added to the si- 

nusoidal shaker control input. 

4. Black noise ( α = 3 ): Black noise can, for example, be traced 

in geophysical time series [51,52] . In general, geophysical time 

a

3 
series can have considerable long-range statistical dependen- 

cies [53] and hence, they feature a power spectrum decaying 

with exponents larger than two [52] . Black noise has a signifi- 

cant energy content at low frequencies and only minimal am- 

plitudes at high frequencies. 

The demands on the experimental setup for low frequencies, in 

particular, the shaker, are even more increased for black noise 

compared to the pink and brown noise cases. In the current 

experimental setup, considerable filtering needs to be applied 

to experimentally realize black noise. This filtering significantly 

distorts black noise, especially, in the dynamic range of interest 

(10–100 Hz). Hence, no experiments with black noise are con- 

ducted and it is only utilized within the simulations for com- 

parison. 

5. Bandlimited white noise : Bandlimited white noise can be a close 

approximation of many physical processes [54] . It can be ob- 

tained by applying a bandpass filter to an ideal white noise sig- 

nal. Bandlimited white noise is also included to test the hypoth- 

esis that a flat spectrum can be approximated with a broadband 

white noise signal. 

In the experiments, white noise is filtered to generate bandlim- 

ited white noise. To this end, the same filter which is also uti- 

lized to filter pink and brown noise is employed; that is, a tenth 

order Butterworth bandpass with a passband between 10 Hz 

and 100 Hz. 

The idealized and experimentally realized noise models are 

hown in Fig. 2 . Moreover, all noise models have been scaled to 

ave the same power spectral density at the system’s eigenfre- 

uency of 37.5 Hz (cf. Fig. 2 b). This scaling ensures comparabil- 

ty between the noise models. Additionally, each noise model has 

pproximately the same energy measure in the frequency band of 
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Fig. 2. Power spectral density of the considered noise models. ( a ) Idealized power spectral density. ( b ) Experimentally realized power spectral densities. 

Fig. 3. Deterministic system identification for purely harmonic excitation. ( a ) Fitted and measured frequency response curve. ( b ) Response frequency spectrum for the high 

amplitude orbit at f = �/ (2 π) = 39 . 6 Hz. 
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nterest. Therein, the energy measure is defined as the sum of the 

bsolute values of the Fourier coefficients within the frequency in- 

erval between 10 Hz and 100 Hz. 

The experiments discussed in the preceding sections are accom- 

anied by simulations. To this end, a simulation model is derived 

nd parameterized as discussed. The numerical techniques used to 

imulate the dynamical systems subject to colored noise are illus- 

rated. 

To facilitate simulations, the cantilever vibrations need to be 

odeled. In previous studies [37–39,55] Duffing’s equation has 

een utilized for modeling such structures in similar experiments. 

uch a model can be theoretically justified by a Galerkin projec- 

ion of an underlying partial differential equation governing the 

ibrations of the beam (modeled as a continuum) [55,56] . The fre- 

uency content of the measurements taken to obtain the frequency 

esponse curve (cf. Fig. 1 b), however, reveals a significant second 

armonic (cf. Fig. 3 b), which does not arise in the solution of 

he sinusoidal forced Duffing equation. To account for the second 

armonic, Duffing’s equation is extended by including a quadratic 

erm yielding 

¨ + c ̇ q + ω 
2 
0 q + κ2 q 

2 + κ3 q 
3 = a sin (�t) + σn (t) , (2)

here ω 0 denotes the linear natural frequency, c is the damp- 

ng coefficient, κ3 is the cubic spring coefficient, and κ2 is the 

uadratic spring coefficient. Quadratic coefficients are classically 
4 
elated to asymmetries. In the experiment shown in Fig. 1 a, asym- 

etries arise from, for example, the asymmetric clamping and 

he non-perfectly centered magnets. Furthermore, electrodynamic 

hakers are also known to introduce higher, especially, second, har- 

onics [57] . The forcing on the right hand side of Eq. (2) consists

f a sinusoidal term with amplitude a and angular frequency �

nd the noise term σn (t) . The parameter σ denotes the intensity 

f the noise, whereas n (t) follows from the noise models intro- 

uced. 

The external forcing frequency, generated by the shaker, is 

nown, whereas the remaining coefficients, ω 0 , c, κ2 , κ3 , a , and σ
re unknown. Hence, they need to be identified. To facilitate a bet- 

er fit, the measured amplitude values are normalized and nondi- 

ensionalized by introducing 

= 12 . 732 mV , ˜ q := 

q 

η
. 

he factor η was selected to be the maximal amplitude of the 

weep shown in Fig. 1 b. In the following, the equation 

¨̃
  + ˆ c ̇ ˜ q + ˆ ω 

2 
0 ̃  q + ˆ κ2 ̃  q 

2 + ˆ κ3 ̃  q 
3 = ˆ a sin (�t) + ˆ σn (t) , (3) 

overning the non-dimensional amplitude ˜ q is considered. 

q. (3) is the normalized and non-dimensional equivalent of 

q. (2) is considered. 

The parameters in Eq. (3) are first fitted for a purely har- 

onic excitation ( σ = 0 ). To this end, a computed frequency re- 



T. Breunung and B. Balachandran Theoretical and Applied Mechanics Letters xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: TAML [m5G; January 21, 2023;10:15 ] 

Fig. 4. Identification of the noise intensity. ( a ) White noise excitation only. ( b ) Simultaneous harmonic and white noise excitation. 
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ponse curve is fitted to the measured frequency response curve 

hown in Fig. 1 (b). First, a curve fit of an analytic frequency re-

ponse curve obtained via a perturbation scheme [56] to the mea- 

ured data is obtained. Within this step, the quadratic coefficient 

ˆ 2 = 0 is set to zero, since an infinite number of combinations of 

uadratic and cubic coefficients ( κ2 and ˆ κ3 ) yield the same fre- 

uency response curve [56] . The curve fitting leads to a nonlin- 

ar optimization problem, which is solved using Matlab’s lsqnonlin 

outine. 

The parameters obtained from the perturbation result are suc- 

essively corrected through numerical computations of the fre- 

uency response curve. To this end, the frequency response is com- 

uted with numerical continuation package coco [58] , and then, 

he parameters are manually adjusted to obtain a close match. 

erein, only the damping value needs to be adjusted, whereas that 

atural frequency ˆ ω 0 , the cubic coefficient ˆ κ3 , and the forcing am- 

litude ˆ a were retained from the nonlinear curve fit. As shown in 

ig. 3 a, the computed frequency response curve matches closely 

ith the measured response curve. 

Finally, the quadratic coefficient ( ̂  κ2 ) is obtained by matching 

he second harmonic in the frequency spectrum for a forcing fre- 

uency of 39.6 Hz (cf. Fig. 3 b). While the quadratic coefficient ˆ κ2 is 

djusted, the cubic coefficient ˆ κ3 is changed accordingly such that 

he frequency response curve (cf. Fig. 3 a) is not altered. The iden- 

ification procedure yields the parameters 

ˆ  0 / ( 2 π) = 37 . 54 Hz , ˆ c = 3 . 11 s −1 , ˆ κ2 = 40 0 0 s −2 , 

ˆ 3 = 8775 . 85 s −2 , ˆ a = 781 . 21 s −2 . 

To obtain the noise intensity ˆ σ , the cantilever is excited with 

oise only, and then, by applying harmonic and random excitation 

imultaneously. The power spectrum of the measured and com- 

uted response are compared. Subsequently, the noise intensity ˆ σ
s adjusted until the both power spectra, experimental and simu- 

ated, match in the frequency range between 20 Hz and 80 Hz. For 

ˆ = 13 . 98 , the response spectra obtained with purely white noise 

xcitation and to simultaneous harmonic and white noise excita- 

ion match closely, as shown in Fig. 4 . For the other noise models,

 similar close fit between simulations and experiments is noted. 

To compute escape times for system ( Eq. (3) ), the associated 

esponses to stochastic excitations need to be calculated. To this 

nd, numerical time integration is employed. In this context, it 

s noted that computational routines for stochastic dynamical sys- 

ems have been primarily developed for Gaussian white noise [9–

1] . Since the noise models can be obtained by filtering white 

oise, numerical integrators developed for Gaussian white noise 

an be utilized for the colored noise models. To this end, the fil- 
5 
er is written as a dynamical system. Filters are most commonly 

esigned as discrete time systems of the form 

 n +1 = A d z n + B d W n , n (t n ) = C d z n + D d W n . (4)

herein, the variable z ∈ R 
N f is the state of the filter,the integer N f 

s the dimension of the filter state, and W is the one dimensional 

iener process. The dimensions of the matrices and vectors are as 

ollows: A d ∈ R 
N f ×N f , B d ∈ R 

N f , and C d ∈ R 
1 ×N f . These matrices and

 d need to be determined such that the noise term n (t n ) resem-

les the noise models presented, and can be employed in Eq. (3) . 

or the each noise model listed in previous discussion, a different 

lter is employed. The selected filters and their coefficients, which 

re stored in the matrices A d , B d , C d and D d , are listed in Ref. a. 

To incorporate the filter Eq. (4) into the oscillator model 

qs. (3) and (4) needs to be reformulated in continuous time. For 

his purpose, the state ˜ z n := 

[
z � n , n (t n −1 ) 

]� 
is introduced, which 

ields the more compact form 

˜  n +1 = 

[
A d 0 
C d 0 

]
˜ z n + 

[
B d 

D d 

]
W n = 

˜ A d ̃  z n + 
˜ B d W n . (5) 

he discrete time system ( Eq. (5) ) can be viewed as an Euler–

aruyama discretization of a continuous time stochastic process 

f the form 

 z = A c z d t + B c d W 

Euler–Maruyama ⇒ z n +1 = ( I + A c τ ) z n + 

√ 

τB c W n , 

(6) 

here τ is the time between two discrete time instances. For small 

nough time steps τ , the sample paths of the Euler Maruyama dis- 

retization ( Eq. (6) ) converge to the sample paths of the stochastic 

ifferential equation in continuous time in the strong sense [11] . 

ence, the discrete filter Eq. (5) can be approximated by the con- 

inuous stochastic differential Eq. (6) by setting 

 c := 

1 

τ
( ̃  A d − I ) , B c := 

1 √ 

τ
˜ B d . (7) 

The noise n (t n ) is included as the last entry of the state ˜ z n +1 .

ince the state z is the continuous time equivalent to the state 

˜  n +1 , the last entry of z yields the continuous time noise process 

 (t) , and this can be extracted as follows 

 (t) = [0 , 0 , . . . , 1] z = C c z . 

his equation can be utilized to simulate system ( Eq. (3) ). To this

nd, system ( Eq. (3) ) can be written in first order form, by intro-

ucing the state x := 

[
˜ q , ˙ ˜ q, z � 

]� 
which in differential form yields 
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Fig. 5. Experimentally and numerically obtained probability densities of the escape times for the different noise models. The black line indicates the mean, and the red lines 

indicate the median. Black noise is not realizable in the experimental set up. Hence, no experimental results for this noise model are included. 
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d x = d 

[ 

˜ q 
˙ ˜ q 
z 

] 

= 

[ 

˙ ˜ q 

− ˆ c ̇ ˜ q − ˆ ω 
2 
0 ̃

 q − ˆ κ2 ̃  q 
2 − ˆ κ3 ̃  q 3 + ˆ a sin ( �t ) + ˆ σC c z 

A c z 

] 

d t + 

[ 

0 
0 
B c 

] 

d W = f ( x , t ) d t + B d W. (8) 

quation (8) is in the form of a stochastic differential equation ex- 

ited by Gaussian white noise. This means that numerical rou- 

ines developed for this setting become available. Here, the effi- 

ient stochastic integrator from the authors’ prior work [59] is em- 

loyed. This integration routine has been shown to be efficient for 

imilar systems and yield an computational speedup of up to two 

rders of magnitude compared to the standard Euler–Maruyama 

cheme. This efficiency allows to compute the escape time of 20 0 0 

amples for each noise model. 

From each simulation or experimental run, an escape time is 

btained (cf. Fig. 1 c for an illustration). Due to the stochasticity 

resent, the escape time is a random variable with an underly- 

ng distribution for each noise model. The numerically and exper- 

mentally obtained distributions of the escape times are shown in 

ig. 5 . The probability densities are visualized in a violin plot. 2 , 3 

he computationally and experimentally obtained probability den- 

ities match very well for each noise model. The mean square error 

etween the computed and experimental probabilities is about 2% 

or the pink noise model, whereas for the other noise models, the 

rror is below 0.2%. 

For all distributions shown in Fig. 5 , the mean escape time is 

arger than the median escape time which is, in turn, larger than 

he most probable escape time ( = mode). This observation indi- 

ates a positive skew of the underlying distributions. Therefore, the 

scape time distributions are necessarily non-Gaussian. This char- 
2 The thickness of the violins indicate the probability density. Therein, a contin- 

ous probability density function is estimated from a finite number of samples by 

tilizing kernel smootheners. The underlying assumption is that a normal distribu- 

ion with a certain bandwidth is induced by each sample. Compared to histograms, 

iolin plots do not depend on a selected bin width. Moreover, violin plots can re- 

eal multimodal distributions, which are not easily discernible from, for example, 

ox-plots. 
3 The authors are thankful to Holger Hoffmann for making his code available [60] . 

s

a

a

n

p

w

a

m

6 
cteristic can be related to two factors. First, the escape time is 

trictly positive. Moreover, the heavy tails can be explained by ob- 

erving that even for long times there is a non-zero probability 

hat the net effect of the noise on the dynamics of the determin- 

stic system is negligible and hence no escape is observable. These 

wo facts give rise to the positive skew and heavy tails of the es- 

ape time distributions shown in Fig. 5 . 

A more detailed picture of the mean escape times is provided in 

ig. 6 a. Therein, the effects of the different noise models are clearly 

iscernible. Compared to white noise, with pink noise, the mean 

scape time is decreased by a factor of about three. A similar ob- 

ervation is made for the black noise case. Interestingly, the mean 

scape times for brown noise is approximately the same as that 

or white noise. Thus, no distinct trend for the mean escape times 

nd the coefficient α describing the power spectrum of the noise 

odel (cf. Eq. (1) ) is observed. With increasing α, the mean es- 

ape times first drops (the pink noise case), then increases (brown 

oise), and drops again (black noise). In particular, the drastic re- 

uction of the mean escape times with pink noise stands out. 

Bandlimiting white noise clearly has an influence on the mean 

scape time. For the chosen parameters, the mean escape time in- 

reases for bandlimited white noise by about 50% compared to the 

and-unlimited case. It is noted that the passband of the bandlim- 

ted white noise is between 10 Hz and 100 Hz and the power spec- 

rum is essentially flat in the vicinity of the natural frequency (cf. 

ig. 2 b). Hence, one might be inclined to argue that the bandlim- 

ted process can be replaced with white noise. The experiments 

nd simulations shown in Figs. 5 and 6 a, however, indicate that 

uch an approximation is not always justified. Thus, the validity of 

pproximating a bandlimited process by white noise needs care- 

ully consideration in practice. 

The escape probability, shown in Fig. 6 b, confirms the trend ob- 

erved for the mean escape times. The escape probability for pink 

nd black noise is the highest, while it is similar for brown noise 

nd white noise and it is the lowest for the bandlimited white 

oise. This means that for a fixed time, an escape in the system 

erturbed by pink or black noise is more likely than for either 

hite or brown noise. On the other hand, for bandlimited noise, 

n escape is less likely compared to the white noise case. 

In this work, the authors have presented experimental and nu- 

erical results on the escape times in a nonlinear oscillator for 
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Fig. 6. ( a ) Mean escape time for the different noise models a . ( b ) Escape probability for the different noise models a . a Black noise is not realizable in the experimental set up. 

Hence, no experimental results for this noise model are included. 
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4 It is required that the diffusion matrix D = BB � is non-singular. Since the noise 
terms do not force the velocity coordinates in Eq. (8) , this requirement is not sat- 
ifferent noise colors. The experimental arrangement consists of 

n electrodynamical shaker exciting a cantilever structure. Magnets 

ttached to the tip of the cantilever and the fixed frame induce 

 nonlinear force-deflection curve and the frequency response has 

 hardening behavior with a bistable region (cf. Fig. 1 b). Within 

his multistability region, noise induced jumps between the coex- 

sting attractors have been observed. In particular, the durations 

f transitions from the high amplitude orbit to the low amplitude 

rbit for different noise models have been recorded. For each of 

he four experimentally realizable noise models, the escape time 

f 200 samples has been measured. 

To enable the simulations, the experimental arrangement has 

een modeled as a nonlinear oscillator with a spring force featur- 

ng quadratic and cubic terms. These parameters as well as the 

oise intensity have been identified from experimental data. To 

tilize simulation tools designed for Gaussian white noise to simu- 

ate colored noise excitations, the filter equations are incorporated 

nto the dynamical system. Then, the escape times for 20 0 0 sam- 

les can be computed with the efficient stochastic integration rou- 

ine [59] . 

The obtained results show a compelling agreement between 

he simulation and experimental results. This match shows that 

iven a careful experimentation and correct parameterization of 

he models not only qualitative but also quantitative agreements 

an be obtained. Moreover, the experiments and simulations show 

hat different noise models can have a drastic impact on the es- 

ape characteristics. An escape for pink noise is significantly more 

ikely and this happens faster on average than with white noise. 

he same observation is made for black noise. The escape times 

nd probabilities for brown noise are approximately comparable 

o those for the white noise case. When bandlimited noise is em- 

loyed, the mean escape time increases and the respective escape 

robability decreases. 

Especially noticeable is the reduced escape time for pink noise. 

n the future, it would be of great interest to conduct more param- 

ter studies to uncover the universality of this observation. Given 

he presence of pink noise in many applications ranging from elec- 

ronics, solid state physics to environmental science, such a study 

ould have a broad impact. Similarly, for the other noise models, 

urther parameter studies could reveal the universality of the ob- 

ervations detailed here. 
i

7 
Moreover, the bandlimitation of the white noise has a clear im- 

act on the escape characteristics in the experiments conducted 

ere. Hence, approximations of bandlimited processes by band- 

nlimited white noise, an engineering best practice [54] , needs 

areful consideration. It would be desirable to carry out theoretical 

nd experimental investigations into when such an approximation 

an be justified. 

Although the impact of the different noise models on the es- 

ape characteristics is clearly noticeable (e.g., cf. Fig. 6 a), no gen- 

ral trend between the noise color (coefficient α in Eq. (1) ) and 

he escape characteristics has been observed. It is envisioned that 

he experimental and computational investigations can be contin- 

ed, to either confirm the absence of a clear trend or uncover a 

idden relationship. 

Within this article, the impacts of five different noise models on 

he escape times have been investigated and compared. The noise 

odels have been selected based on engineering relevance. Due to 

he omnipresence of noise in any realistic setting many other mod- 

ls can be considered. Future investigations could, for example, in- 

lude stochastic turbulence models such as Dryden’s model [61] , 

évy walks for biological systems [62,63] , fractional Brownian mo- 

ion [64] or multiplicative (state-dependent) noise for microelec- 

romechanical (MEMS) devices [15] . 

While the escape times for system (2) have been obtained by 

umerical simulations in this article, it would be desirable to de- 

ive them theoretically in the future. However, to the best of the 

uthor’s knowledge no result is readily available to compute the 

scape times of system (2) . Often escape times calculations are 

ased on the large deviation theory prominently summarized in 

ef. [43] . Furthermore, these results rely on very restrictive as- 

umptions, most severely they require a non-singularity condition 

n the stochastic diffusion terms (matrix B in Eq. (8) ). However, 

his condition is not satisfied for mechanical systems. 4 

eclaration of Competing Interest 

Authors declare that they have no conflict of interest. 
sfied for system (2) and more general mechanical systems. 



T. Breunung and B. Balachandran Theoretical and Applied Mechanics Letters xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: TAML [m5G; January 21, 2023;10:15 ] 

A

 Science Foundation through Grant no. CMMI 1760366 and the associ- 

a s been presented and discussed at the ASME 2022 International Design 
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L

A

. The time step τ to convert all discrete time system ( Eq. (4) ) to a 

c

k noise. 5 The state space representation ( Eq. (4) ) is given by 

A 616]) , B 

p 

d 
= 0 . 2641 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 . 0555179 
0 . 0750759 
0 . 1538520 
0 . 3104856 
0 . 5329522 
0 . 0168980 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

C

(A1) 

w th the entries taken from the vector v . 

first order low-pass filter is employed. Therein, the cut-off frequency 

n ys quadratically over the frequency band of interest. To this end, the 

c ing time to τ = 0 . 001 s, the following coefficients are obtained: 

A C b d = 1 , D 
b 
d = 0 . (A2) 

er low-pass filter. First, the filter coefficients Eqs. (A1) and (A2) are 

c ivalents A 

p 
c , B 

p 
c , and C 

p 
c for the pink noise case, respectively A 

b 
c , B 

b 
c , and 

C ined to have 

A (A3) 

oise. This filter is constructed by using designfilt, an automated filter 

d lse response 6 bandpass filter of order eight with a passband between 

1 ng coefficients are obtained: 

A

0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 . 8764 0 0 
0 0 0 

0 . 4281 1 . 1952 −0 . 3854 
0 1 . 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, B d = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 . 2541 
0 

0 . 0646 
0 

0 . 0147 
0 

0 . 0034 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

C 52 , −1 . 3854 ] , D d = 0 . 0034 . 

(A4) 

is excited by white noise and the power spectrum of the response is 

c ch filter is found to give rise to a different response power spectrum 

s

T

c
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ppendix A 

Filter coefficients 

In this appendix, the filters generating colored noise are listed

ontinuous time domain (cf. Eq. (7) ) is set to τ = 0 . 001 s. 

The discrete time filter from Ref. [65] is utilized to generate pin

 

p 

d 
= diag ([0 . 99886 , 0 . 99332 , 0 . 96900 , 0 . 86650 , 0 . 55000 , −0 . 7

 

p 

d 
= [ 1 , 1 , 1 , 1 , 1 , 1 ] , D 

p 

d 
= 0 . 6521 , 

here the notation diag (v ) is used to denote a diagonal matrix wi

To generate brown noise, a discrete time implementation of a 

eeds to be set sufficiently low, so that the power spectrum deca

ut-off frequency ω c was set to 0 . 2 π rad/s. After setting the sampl

 
b 
d = 

1 

1 + τω c 
= 0 . 9994 , B b d = 319 . 7076 

τω c 

1 + τω c 
= 0 . 2008 , 

To generate black noise, pink noise is filtered with a first ord

onverted via Eq. (7) to yield their respective continuous time equ

 
b 
c for the first order low-pass filter. Then, these matrices are comb

 
bl 
c := 

[
A 

p 
c 0 

B 
b 
c C 

p 
c A 

b 
c 

]
, B 

bl 
c := 

[
B 

p 
c 

0 

]
, C bl c := [ 0 , 1 ] . 

A bandpass filter is employed to generate bandlimited white n

esign tool of Matlab’s Signal Processing toolbox. An infinite impu

0 Hz and 100 Hz is selected. From the Matlab routine, the followi

 d = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 . 3768 −0 . 6873 0 0 0 
1 . 0 0 0 0 0 0 0 0 
0 . 3499 −0 . 4288 1 . 9557 −0 . 9597 0 

0 0 1 . 0 0 0 0 0 0 
0 . 0798 −0 . 0978 0 . 4462 −0 . 4472 1 . 8711 −

0 0 0 0 1 . 0 0 0 0 
0 . 0182 −0 . 0223 0 . 1018 −0 . 1020 0 . 4269 −

0 0 0 0 0 
 d = [ 0 . 0182 , −0 . 0223 , 0 . 1018 , −0 . 1020 , 0 . 4269 , −0 . 4281 , 1 . 19

To verify the performance of the constructed filter, each filter 

omputed. These spectra are shown in Fig. A1 . By construction, ea

hape. 
5 The authors are thankful to Paul Kellet for making his developed filter publicly available [65] . 
6 The current state of infinite impulse response filters (IIR filter) is a linear combination of the excitation at the previous time steps as well as the previous filter outputs. 

he feedback of the previous filter outputs into the current state gives rise to poles and hence the possibility for infinite impulse response as well as instability. On the 

ontrary, finite impulse response filters (FIR filters) do not allow for feedback of the previous filter output and, hence, they have a finite impulse response. 

8 
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Fig. A1. Power spectral density of the filter response to white noise excitation. 
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