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Abstract In this paper, a numerical approach is
described to estimate escape times fromattractor basins
when a dynamical system is subjected to noise or
stochastic perturbations. Noise can affect nonlinear
system response by driving solution trajectories to dif-
ferent attractors. The changes in physical behavior can
be observed as amplitude and phase change of peri-
odic oscillations, initiation or annihilation of chaotic
motion, phase synchronization, and so on. Estimating
probability of transitions from one attractor to another,
and predicting escape times are essential for quantify-
ing the effects of noise on the system response. In this
paper, a numerical approach is outlined where prob-
ability transition maps are generated between grids.
Then, these maps are iterated to find the probability
distribution after long durations, wherein, a constant
escape rate can be observed between basins. The con-
stant escape rate is then used to estimate the average
escape times. The approach is applicable to systems
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subjected to low-intensity stochastic disturbances and
with long escape times,whereMonteCarlo simulations
are impractical. Escape times up to 1013 periods are
estimated without relying on computationally expen-
sive computations.
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1 Introduction

Many mechanical systems are subjected to noisy or
stochastic forcing inputs, or have inherent noise [1,2].
For nonlinear systems where the response is highly
sensitive to initial conditions, low-intensity noise can
have dramatic effects on the system behavior [3,4].
Exploring dynamics of nonlinear systems subjected
to noise is of interest for various purposes and appli-
cations, including the design of wide-band nonlin-
ear energy harvesters [5,6], mechanical reliability of
turbo-machinery blades [7], and noise-induced syn-
chronization between nonlinear oscillators [8,9]. Sta-
tistical jump rates around a subcritical pitchfork bifur-
cation have been investigated for a bifurcation-based
MEMS sensor device [10,11]. In a nonlinear system,
noise can induce transitions between stable solutions
[12], drive the response to a chaotic attractor [13], and
cause trajectories to jump between basins of attraction
[14]. This powerful influence of noise has not only
led to studies on noise reduction in mechanical sys-
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tems [15], but also inspired the ones making use of
noise to alter a system’s response. Examples include
using noise to drive a Duffing oscillator response from
a high-amplitude attractor to a low-amplitude attractor
[16], and suppressing energy localizations in a circular
oscillator array with noise [17].

Predicting noise-induced transitions has been of
interest to various efforts across different disciplines,
such as population dynamics [18], vegetation ecosys-
tems [19], biological information processing [20], and
chemical reactions under external perturbations [21].
To study noise-influenced dynamics of nonlinear sys-
tems, numerical techniques such as Euler–Maruyama
integration scheme [22], and the Path Integral Method
to solve Fokker-Planck equations [23] are widely used.
Numerical schemes often involve discretization of
the transition probabilities over the phase space [24].
Ulam’s method is widely used to calculate escape rates
in nonlinear systems [25]. Hsu established a represen-
tation of cell-to-cell mapping by using Markov chains
to study transition probability densities [26]. Sun et al.
[27] also used the generalized cell mapping method to
calculate transitions in short periods of time, for which
the transition probabilities can be approximated with a
Gaussian distribution.

In a nonlinear system, estimating the transition prob-
abilities, and average escape times from basins allow us
to quantify the effects of noise on the system response
[28]. Trajectories leaving a basin of attraction due to
noise can end up in another basin of attraction, or
diverge to infinity [29]. One way to find the rates of
these transitions, and escape times from one basin to
another under low-intensity noise, is to simulate indi-
vidual trajectories under noise by using numerical inte-
gration schemes such as the Euler–Maruyama tech-
nique [30], and find the average escape times. However,
for low noise intensities, the escape times are long, and
running Monte Carlo simulations on hundreds of tra-
jectories until they escape the basin is computationally
expensive, and in some cases, impractical. Neglecting
escape rates due to low-intensity noise may result in
an inaccurate assessment of the dynamics of a non-
linear system. It is important to develop a technique
to estimate escape times that is applicable to systems
subjected to low-intensity noise.

Here, we outline an approach to estimate escape
rates and escape times of responseswhen the dynamical
system is subjected to Gaussian noise. This approach is
applicable to systems under low-intensity noise where

“small” escape rates, and “long” escape times occur.
We estimate escape times up to 1013 periods with-
out relying on computationally expensive simulations.
The approach can be summarized as follows: First, we
divide the solution domain into a grid, and calculate
transition probabilitymaps betweengrid points for only
one period. This can be done by using a numerical
technique such as the Euler–Maruyama or Path Inte-
gral Method. Then, we iterate this map until we find a
constant escape rate from a basin of attraction. We use
this escape rate to estimate an average escape time. We
demonstrate this procedure on a one-dimensional non-
linear map with a single attractor, namely a cubic map,
and then extend it to a two-dimensional continuous
system with two attractors, a non-autonomous Duffing
oscillator system.

2 Escape time estimations for a cubic map under
noise

We study dynamical systems that have an attractor A
with a basin of attraction (BoA) B. In the presence of
noise with a normal distribution and standard deviation
σ , every trajectory will eventually escape from B [31].
Our goal is to determine the mean escape time and how
it depends onσ , for lowσ values and long escape times.
For this system, the mean escape times are estimated to
be longer than 1000 periods for noise intensities σ ≤
0.2, and we refer to these noise levels as low-intensity
noise throughout this section.

We begin by considering the cubic map with the
equation

xn+1 = axn + (1 − a)x3n . (1)

The system has an attractor at x = 0 with the basin
of attraction (−1, 1), and two repellers (unstable fixed
points) x = ±1 (see Fig. 1).

The systemwe consider is a stochastically perturbed
cubic map with the equation:

xn+1 = axn + (1 − a)x3n + σηn, (2)

where ηn is a random number chosen from a normal
distribution with zero mean and standard deviation 1.
The noise added to the system causes trajectories to
eventually escape from the BoA (-1,1), for an arbitrar-
ily small σ > 0. However, trajectories can cross the
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Fig. 1 The cubic map with a = 0.6. (See Eq.(1)). There is
an attracting fixed point at x = 0 and repelling fixed points at
x = ±1. The basin of attraction (BoA) for x = 0 is (-1,1)

basin’s boundary at ±1 and then almost immediately
return. We consider the escape time as the time it takes
to finally leave the region and not return. When a tra-
jectory is far from [−1, 1], the dynamics of the map
(Eq. (1)) strongly forces the trajectory to move away
from the region. As a result, we compute the escape
time from a larger interval [−L , L] rather than [−1, 1].
Escape times as a function of the noise intensity are
shown in Fig. 2. We also used Monte Carlo simula-
tions to validate the estimated escape times for large
noise intensities (σ ≥ 0.2). Although for L − 1 < σ ,
the escape times depend on the interval width (L), we
show that our results in Fig. 2 for the escape time results
converge for L − 1 >> σ .

When σ is large, the average escape time can be
determined through Monte Carlo simulations where
solution trajectories can be iterated under different
noise samples, and the average escape time can be com-
puted. However, for small σ , the average escape times
are very long, and computing escape times by integrat-
ing the system for long periods of time may not be
practical.

As an alternative, we discretize the probability dis-
tribution by dividing the interval into a uniform grid
which extends from -L to L, where L > 1, and
which has size g. For a function π on the grid, we
write sum(π) = ∑

k π(k), where k is the grid number
(k = 1, 2, . . . , 2L

g ).
We represent the probabilities of position xn as a

probability distribution πn , which depends upon time
n. We start with an initial distribution π0(k), where
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Fig. 2 Estimated escape time vs σ (noise intensity) for the cubic
map. For large-intensity noise (σ ≥ 0.2), we run Monte Carlo
simulations for validation. For σ < 0.08, the escape rates go
below 10−16, and we hit a computational limit due to the floating
point resolution we use. Here, a = 0.6, L = 1.5, the grid size
g = 0.002, and N = 1500

sum(π0) = 1. The probability of being inside the inter-
val [−L , L] at time n is

sum(πn) =
∑

k

πn(k) ≤ 1. (3)

2.1 The map P on probability densities πn

We write Pjk for the probability that a point x in grid
interval j will move to grid interval k in one time step,
applying Eq. (2) once. To simplify the notation, we
ignore the effect of the rather small variance of the
probability within each grid box, since g << σ . This
P satisfies

∑

k

Pjk ≤ 1 for each j, (4)

and

πn+1 = Pπn (5)

Let φ(y, μ, σ ) be the cumulative distribution func-
tion for the normal distribution with standard deviation
σ and mean μ. Specifically, the probability that the
point x at the center of grid box j maps to an interval
(b,c) is φ(c, f (x), σ ) − φ(b, f (x), σ ), which can be
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Fig. 3 Probability distribution for j = 40. The distribution has
a mean f (x40) = 0.328. The black region shows the probability
P40,40. Here, L = 1.5 and g = 0.05, and σ = 0.5

represented in terms of the normal distribution as

∫ c

−∞

(
1

2σ
e
−0.5

(
ξ− f (x)

σ

)2
)

dξ

−
∫ b

−∞

(
1

2σ
e
−0.5

(
ξ− f (x)

σ

)2
)

dξ,

where f (x) = ax + (1 − a)x3.
If x is the center of grid box j , then x maps to f (x),

and the points in grid box j map to a normal probability
distribution with center f (x) and standard deviation σ .
Then, we can calculate

Pjk = φ(kg − L , f (x( j)), σ )

−φ((k − 1)g − L , f (x( j)), σ ). (6)

where j, k = 1, 2, . . . , 2L
g . For example, for L = 1.5

and g = 0.05, a trajectory starting at the midpoint of
grid j = 40 (x j = 0.475) is mapped to f (x j ) =
0.328 in the next iteration in the absence of noise. In
the presence of noise, the probability distribution is
centered at the f (x j ) = 0.328 (see Fig. 3). Then, to
find the probability in grid k, we can use Eq. (6). For
example, for a system under noise with intensity σ =
0.5 the probability of trajectory starting at x40 getting
mapped into the grid k = 40, can be found as

P40,40 = φ(0.50, 0.328, 0.5) − φ(0.45, 0.328, 0.5).

The probability mapping matrices (P) for σ = 0.1
and σ = 0.5 are shown in Fig. 4. For a solution inside

Fig. 4 P matrices for σ = 0.1 and σ = 0.5. The color map
shows the Pjk , which is the probability of a solution in grid j
getting mapped into grid k. Here, L = 1.5 and g = 0.01, and
the interval is 300 grids

grid j at time n, the probability of getting mapped into
the grid k at the next time step (n+1) is visualized with
the color map.

2.2 Finding the largest eigenvalue and its eigenvector
of P

The matrix P has an eigenvector λ where for each grid
box k, λ(k) ≥ 0, and Pλ = αλ where 1 ≥ α > 0. This
eigenvector is dominant, and the associated eigenvalue
is the largest according to the Frobenius–Perron Theo-
rem [32,33]. Ineq. (4) implies α ≤ 1, since points can
escape the region [−L , L], for α < 1. For α < 1, the
trajectories keep escaping the region at a constant rate,
and the normalized distribution of the solutions staying
in the region converge to a constant distribution, which
is the eigenvector associated with α.
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For a normalized eigenvector where sum(λ) = 1,
the probability distribution at the next iteration satisfies
sum(Pλ) = sum(αλ) = αsum(λ) = α. Therefore, the
asymptotic (large n) rate of escape from [−L , L] is
1 − α, and at each step (1 − α)S j of the trajectories
escape, where S j is the total number of trajectories
inside the region at time j .

For a system that has initially S0 trajectories in the
[−L , L] region, (1−α)S0 trajectories escape after one
period, and S1 = αS0 remains in the region. In the
second period, (1−α)S1 trajectories escape, and S2 =
αS1 = α2S0 remain in the region. As such, at the j th

period, (1 − α)α( j−1)S0 solutions escape, and S j =
α j S0 remain in the region. To calculate themean escape
time, we multiply the number of solutions escaping in
each period with the number of periods passed until
that time, sum them up, and divide by the total number
of solutions S0:

tesc = 1

S0

∞∑

j=1

j (1 − α)α( j−1)S0

= (1 − α)

∞∑

j=1

jα( j−1) = (1 − α)

(1 − α)2
= 1

1 − α

(7)

The infinite sum in Eq. (7) converges to 1
(1−α)2

for
0 < α < 1, and we can refer to the mean “escape time”
as 1

1−α
.

Both the matrix P and α depend on σ, L , and g. For
a fixed noise intensity σ , α converges to a number α(σ)

as L increases and g decreases. Our goal is to establish
the limiting value of α = α(σ). We first compute the
eigenvector λ, and show its convergence.

To compute the positive eigenvector of P , we obtain
an upper and a lower bound. We start with two initial
distributions: a constant initial probability distribution
γ where γ (k) is constant for all k, and an initial “spike
distribution” δ that has probability 0 for every entry
except at 0 where all of the probability is concentrated.

Let λ be the normalized eigenvector associated with
the dominant eigenvalue α, such that

Pλ = αλ and sum(λ) = 1.

By the Frobenius–Perron Theorem, as n → ∞ the
“normalized” densities converge:

Pn
1 (γ ) := Pn(γ )

sum(Pn(γ ))
→ λ and (8)
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Fig. 5 The normalized probability distribution PN
1 (δ) and

PN
1 (γ ) (see (8),(9)) after various numbers of iterations for both

spike (δ) and uniform (γ ) initial distributions. Here, σ = 0.09,
L = 1.5, and g = 0.002

Pn
1 (δ) := Pn(δ)

sum(Pn(δ))
→ λ (9)

The associated eigenvalue α can be estimated as α =
sum(Pλ). For both the uniform (γ ) and spike (δ) ini-
tial distributions, and for σ ≥ 0.09, the normalized
distributions are effectively the same, with a difference

|P2048
1 (γ )(k) − P2048

1 (δ)(k)| < 10−29

after 2048 iterates. Figure5 is used to show how the
densities converge. There is an equilibrium distribution
λ and Pn

1 (δ) converges to λ from below while Pn
1 (γ )

converges from above. They all have the same sums
since they are all normalized. Spike (δ) distribution
converges to λ faster than the uniform (γ ) distribu-
tion. For lower σ values, the probability densities con-
verge slower. To speed up computations of powers of
thematrix P , we only compute P2M such as P2 = P P ,
P4 = P2P2, and so on to P2048. In Fig. 5, we only plot
the distributions for our smallest σ value, σ = 0.09,
because its convergence is slower comparedwith larger
σ values, and the number of iterations used for its con-
vergence is sufficient for those associated with larger
σ .

In order to find the suitable number of grid boxes
N = 2L/g and interval boundary L for accurate escape
time calculations, we find the estimated escape times
by using various N and L values, and calculate the
fractional errors in the escape times (see Figs. 6 and 7).
For the noise intensities tested (σ = 0.1, σ = 0.2, and
σ = 0.5), the escape times converge around L = 1.5
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Fig. 6 Fractional error in escape time vs L, plotted for σ =
0.1, 0.2, 0.5 and N = 1500: Errors are calculated relative to the
Lmax = 1.7 case. For smaller σ values, a smaller L is sufficient.
However for larger σ values, larger L is required to accurately
calculate the escape time

and N = 1200. The fractional error in escape time
(tesc) is calculated by using

FE(L) = tesc(L) − tesc(Lmax)

tesc(Lmax)
,

where Lmax = 1.7 for Fig. 6 and

FE(N ) = tesc(N ) − tesc(Nmax)

tesc(Nmax)
,

where Nmax = 1500 for Fig. 7. The “ideal” interval
length (L) and the grid size (N = 2L/g) depend on
the system parameters, and the noise intensities used.
For N = 1500, and L = 1.7, the eigenvalues α are
listed in Table 1 for various noise intensities (σ ).

3 Escape time estimations for a Duffing oscillator
under noise

We extend the approach to a forced, hardening Duff-
ing oscillator influenced by noise with the stochastic
differential equation

ÿ + δc ẏ + α1y + βy3 = F cos(ωt) + σ Ẇ , (10)

where σ is the intensity of an additive Gaussian noise,
W (t) is a Wiener process and Ẇ (t) is a representation
of its time derivative. The parameters used for this study
are δc = 0.1, α1 = 1, β = 0.3, F = 0.4, ω = 1.4.
This is a non-autonomous, nondeterministic, weakly

0 500 1000 1500
N

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
ac

tio
na

l C
ha

ng
e 

in
 E

sc
ap

e 
Ti

m
e

 = 0.1
 = 0.2
 = 0.5

Fig. 7 Fractional error in escape time vs g, plotted for σ =
0.1, 0.2, 0.5 and L = 1.5: Errors are calculated relative to the
Nmax = 1500 case. For larger σ values, a smaller number of grid
boxes N is sufficient. However for smaller σ values, a finer grid
(i.e., larger N ) is required to accurately calculate the escape time

Table 1 The largest eigenvalues of the P matrices for various σ

values

σ α

0.1 1 − 4.6 × 10−10

0.2 1 − 1.1 × 10−3

0.3 0.98

0.4 0.95

0.5 0.91

damped, nonlinear system, and analyzing the stochastic
behavior of these systems is an active area of research
[34,35]. For σ = 0, the system is deterministic and
has at least two attracting stable periodic solutions and
one unstable periodic solution of saddle type. These
solutions and their respective basins of attractions are
shown as fixed points of a Poincaré section in Fig. 8,
wherein the Poincaré section is sampled once a period,
T = 2π/ω.

As shown in Fig. 8, there is a high-amplitude attrac-
tor (HAA) and a low-amplitude attractor (LAA).

Under the influence of noise, transitions can occur
from one stable mode to another. Such a transition
begins at A0, the location of the initial attractor, and
ends at A f , the location of the final attractor. The tran-
sition paths of the trajectories moving between the two
attractors pass through the saddle point on the boundary
between the two basins [36].
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Fig. 8 Equilibrium points of the hardeningDuffing equation and
the basins of attraction. The circle Dwith radius R = 0.5 is shown
as the neighborhood of the low amplitude attractor. The escape
rates are calculated from the HAA (A0) to LAA (A f )

In Sect. 2, we used L to identify a region L − 1
distance away from the basin of the initial attractor.
For systems that escape to a final attractor(s), it suffices
to specify a domain, D that completely surrounds the
final attractor(s). For example, we define D as a circle
around A f , with radius R. For small enough R, D is
far from the basin boundary that solutions entering D
have high probability of remaining in D. Therefore, we
define the escape time based on the time it takes for a
solution to enter in D.

The escape time tD , is the time it takes the system
to first transition into D. Consider a formula for the tD
defined as

tD ≡ inf{t > 0 | (x(t)) ∈ D, x(t0) = A0} (11)

Here, x(t) is the Poincaré section of (y(t), ẏ(t)) sam-
pled once a period. The expected escape time is

τD = E[tD] (12)

When we estimate the escape time from the HAA to
LAA, D is a circle that surrounds LAA. For R = 0.5,
the circle D is given in Fig8.

3.1 Computing the map P as a matrix for the Duffing
oscillator

The probability transition matrix of this system is
computed by integrating nonlinear moment differential
equations derived by using the Fokker-Planck equation.
This is a procedure commonly used in the Path Integral
Method to generate transition probability estimates.
We note this procedure requires a fine mesh when the
noise intensity is small, and does not scale well with
dimension, but is adequate for this two-dimensional
(2D) example. Furthermore, this procedure assumes
that for short time intervals the transition probability
density functions are Gaussian. Narayanan and Kumar
and Kumar and Narayanan [37,38] have provided a
recipe for using a non-Gaussian expansion by using
Hermite Polynomial expansions, but for these parame-
ters, and for the duration of a period of integration, the
errors due to the Gaussian assumption were found to
be small in prior work [39].

The moment differential equations for the forced
Duffing oscillator are available in [39] in terms of the
moments mi j . The moment time derivatives, ṁi j , are
defined from

ṁi j = Ė[xi ẋ j ] =
∫

R2
xi ẋ j ∂p(x, ẋ, t)

∂t
dxdẋ (13)

and ∂p(x,ẋ,t)
∂t can be derived from the Fokker Planck

Equation. Since a Gaussian assumption was applied,
the nonlinear moment differential equations were
closed using GaussianMoment Closure as described in
[39]. Integrating themoment equations forward in time,
one candefine forwardmappedmeans,µ(t, x0, t0), and
a covariance matrix K (t, x0, t0) of a Gaussian transi-
tion probability density function

q(x, t | x0, to)
= 1

2π
√|K | exp

(
1

2
(x − µ) ∗ K−1 ∗ (x − µ)T

)

(14)

Here, x ≡ (x, ẋ). We divide the two-dimensional
region for the interval x = [-5,5] and ẋ = [-5,5] into
a grid with N grid boxes (cells) of equal size. Each
cell has midpoint x( j) with index j ∈ [1, 2, ..., N ]. A
transition probability density matrix q has dimension
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N × N and has components

q jk = q(x( j), t | x(k)
0 , to) ∀ j, k ∈ [1, 2, ..., N ] (15)

A matrix of transition cumulative distribution func-
tions can be assembled from q by integrating the tran-
sition probability density functions over the domain of
each cell as

Q jk =
∫

�k

q(x, t | x( j)
0 , to)dx

∀ j, k ∈ [1, 2, ..., N ]
(16)

Here, �k is the domain of cell with index k and Q jk

represents the probability that a midpoint x( j) of a cell
with index j will move to the cell with index k after
one period. Finally, we remark that to get a P matrix
analogous to the P matrix in Sect. 2, we need to remove
cells that contain midpoints in the region D. Hence, a
P matrix is derived from Q as follows:

Pjk =

⎧
⎪⎪⎨

⎪⎪⎩

0 x( j) ∈ D

0 x(k) ∈ D
Qkj

∑N
i=1 Q ji

otherwise
(17)

Note that P is a transpose of Q since in calculating
the eigenvector as in Sect. 2 we perform the P multi-
plication from the left side.

The probability distribution of solutions obtained
after 211 = 2048 periods with σ = 0.08 is shown
in Fig. 9. We iterate the map QT for N = 211 = 2048
periods. Then, we apply this (QT )2048 map to a uni-
formdistribution (γ (k) = constant). The solutions have
a high probability in the vicinity of the two attractors,
consistent with the literature [40]. We are studying the
transition times from one region to the other to estimate
escape time from one attractor to the other.

Applying the procedure outlined in the previous sec-
tion, we iterate the P matrix and compute the P2M

powers. We then use Eq. (8) and (9) to calculate P’s
dominant eigenvalue α by using both uniform (γ ) and
spike (δ) initial distributions. Similar to the cubic map,
the distributions converge to a λ distribution after 2048
iterations (see Fig. 10), and α can be estimated as
α = sum(Pλ). We then express the transition rate into
D as 1− α, and estimate the escape time as 1/(1− α).

The escape times fromHAA to LAA and from LAA
toHAAare shown in Fig. 11, wherewe estimate escape

Fig. 9 Probability distribution for σ = 0.08 after 212 = 4096
periods. Here A0 is the HAA and A f is the LAA. Only the boxes
with probabilities greater than 0.0001 are plotted in red, where
the total probability density of the red regions around the two
attractors is 99.4%. The probabilities in transition paths between
the two attractors are small compared to the probabilities around
the attractors, since the jumps happen quickly

times up to 1013 periods.We do not calculate the escape
times for σ values smaller than 0.07 since the escape
rates becomes smaller than 10−16, at which point the
method requires computations with more than 64-bit
float precision.

For the Duffing system, we show the effect of the
radius (R) of the circular region D and the grid size
(N ) on the estimated escape time in Figs. 12 and 11,
respectively. For 0.2 < R < 1.2, the fractional error
in escape time is < 10−6, since the time it takes for a
trajectory to leave the basin is much longer compared
to the time it takes to jump to the new attractor, as we
show in Figs. 14 and 15. Therefore, the size of the circu-
lar region does not affect the escape time estimations
as long as R < 1.2, and for the calculations used to
generate Fig. 11, we pick R = 0.5.

For the Duffing system, the estimated mean escape
times are longer than 1000 periods for noise intensities
σ < 0.18, and we consider these noise levels as low-
intensity noise. To validate the escape rates calculated
by using the largest eigenvalue of P, we use Monte
Carlo simulations with Euler–Maruyama integration
for high noise intensities, σ = 0.19 and σ = 0.2. We
limit these simulations to high noise intensities, simply
because integrating hundreds of trajectories and cal-
culating their average escape times is not practical for
low-noise intensities. We run simulations for a total of
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Fig. 10 The normalized probability distributions after N =
2048 and N = 4096 iterations calculated for σ = 0.08. Here
A0 is the HAA and A f is the LAA. The distribution converges
to the eigenvector λ of the P matrix associated with the domi-
nant eigenvalue α. Only the boxes with probabilities greater than
0.0001 are plotted in red, where the total probability density of
the red region around the HAA is 99.7%

50000 periods, where the initial condition is set to the
HAA. Then, as soon as the trajectory falls into D, we
restart the simulation with the initial conditions set to
the HAA again, as shown in Fig. 16. We observed an
average escape time from the HAA to LAA around 450
periods for σ = 0.2, and 550 periods for σ = 0.19. For
both cases, the escape times calculated with the Euler–
Maruyama simulations iswithin one standard deviation
distance from themean escape time estimated using the
largest eigenvalue of P.

When extending this approach to systems with
higher dimensions, the dimensions of the distribu-
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Escape from high to low attractor
Escape from low to high attractor

Fig. 11 Expected escape time vs σ (noise intensity) for theDuff-
ing oscillator. The oscillator parameters are δc = 0.1, α1 = 1,
β = 0.3, F = 0.4, and ω = 1.4. The escape times are calculated
by using N = 25600, and R = 0.5
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Fig. 12 Expected escape time vs R. The fractional error in the
escape time is < 10−6 for R < 1.2. The error in escape times
is greater for R > 1.4. As the circle D gets close to the basin
boundary (or even intersects with the boundary), some of the
trajectories crossing into the circle gets back into the original
basin due to noise

tion vectors and transition probability matrices grow
rapidly. While the number of grid boxes (N ) is pro-
portional to (1/g) for the one-dimensional cubic map,
it is proportional to (1/g2) for the Duffing equation.
For a system with m dimensions, the number of cells
grow with (1/gm). The size of the transition probabil-
ity matrix P is then proportional to (1/gm) × (1/gm),
since the size of P is N × N . Therefore, for sys-
tems with higher dimensions, the computational power
needed to compute the powers of P grows rapidly, espe-
cially, for lower noise intensities, where a finer grid
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Fig. 13 Fractional error vs N. N = 25600 is the reference for
the comparison

Fig. 14 Poincaré section of the Euclidean norm of the stochastic
response of a forced Duffing oscillator. The Poincaré section is
plotted for a single trajectory under noisewith intensityσ = 0.14

is needed to find the very small transition probabili-
ties and escape rates. In this paper, we limit our exam-
ples to one-dimensional and two-dimensional systems,
and leave tackling the challenges faced with extending
this approach to higher-dimensional systems for future
work.

4 Concluding remarks

In this study, we have outlined an approach to estimate
the escape times of responses from basins of attrac-
tion under the presence of noise. Our approach has an
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Fig. 15 Sudden transitions between modes. Left: Transition
from the high attractor to the low attractor. Right: Transition
from the low attractor to the high attractor. Note that while the
transition at period 230, 000 takes approximately 10 periods, the
system remains near the low attractor for approximately the next
3000 periods, until approximately period 233, 100. Each dot rep-
resents the distance between the response and the low attractor
at integer periods for σ = 0.14. Consecutive dots are connected
with straight lines for clarity
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Fig. 16 Euler–Maruyama simulations to estimate the average
escape times from the HAA to LAA. We start the simulations at
the HAA, and as soon as the trajectory enters into the D region
(e.g., at t = 255 and t = 555 for the first and the second plots), we
stop the simulation. Then we restart the simulation at the HAA
again, and repeat the procedure

advantage of being suitable for estimating long escape
times when the system is subjected to low-intensity
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Gaussian noise. We showed the numerical technique
wherein we discretized the solution interval into a grid,
and calculated probability maps between grid points
in consecutive periods. Then, we iterated these maps
to find the constant escape rates from the basins of
attraction, and estimated the average escape times. We
have applied this approach to a cubic map and a non-
autonomous Duffing oscillator, where we determined
the probability maps between the grids by using a
Path Integral Method. Our approach can also be used
with other techniques for computing the probability
maps, such as the Euler–Maruyama integration or a
finite-element based technique. The probability maps
then can be iterated with our approach to calculate the
escape times. We validated our results by comparing
the escape times to those calculated by using Monte
Carlo simulations with the Euler–Maruyama integra-
tion. We estimated escape times as high as 1013 peri-
ods without relying on computationally expensive sim-
ulations. We noted that the approach works well for
the low-dimensional systems, but computational chal-
lengesmay arise when extending this approach to high-
dimensional systems.
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