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Abstract—We study the problem of testing whether a symmet-
ric d×d input matrix A is symmetric positive semidefinite (PSD),
or is ǫ-far from the PSD cone, meaning that λmin(A) ≤ −ǫ‖A‖p,
where ‖A‖p is the Schatten-p norm of A. In applications one
often needs to quickly tell if an input matrix is PSD, and a small
distance from the PSD cone may be tolerable. We consider two
well-studied query models for measuring efficiency, namely, the
matrix-vector and vector-matrix-vector query models. We first
consider one-sided testers, which are testers that correctly classify
any PSD input, but may fail on a non-PSD input with a tiny
failure probability. Up to logarithmic factors, in the matrix-vector

query model we show a tight Θ̃(1/ǫp/(2p+1)) bound, while in the

vector-matrix-vector query model we show a tight Θ̃(d1−1/p/ǫ)
bound, for every p ≥ 1. We also show a strong separation
between one-sided and two-sided testers in the vector-matrix-
vector model, where a two-sided tester can fail on both PSD and
non-PSD inputs with a tiny failure probability. In particular,
for the important case of the Frobenius norm, we show that

any one-sided tester requires Ω̃(
√
d/ǫ) queries. However we

introduce a bilinear sketch for two-sided testing from which
we construct a Frobenius norm tester achieving the optimal

Õ(1/ǫ2) queries. We also give a number of additional separations
between adaptive and non-adaptive testers. Our techniques have
implications beyond testing, providing new methods to approxi-
mate the spectrum of a matrix with Frobenius norm error using
dimensionality reduction in a way that preserves the signs of
eigenvalues.

I. INTRODUCTION

A real-valued matrix A ∈ R
n×n is said to be Positive Semi-

Definite (PSD) if it defines a non-negative quadratic form,

namely, if xTAx ≥ 0 for all x. If A is symmetric, the setting

on which we focus, this is equivalent to the eigenvalues of

A being non-negative. Multiple works [1]–[3] have studied

the problem of testing whether a real matrix is PSD, or is

far from being PSD, and this testing problem has numerous

applications, including to faster algorithms for linear systems

and linear algebra problems, detecting the existence of com-

munity structure, ascertaining local convexity, and differential

equations; we refer the reader to [3] and the references therein.

We study this testing problem under two fundamental query

models. In the matrix-vector model, one is given implicit

access to a matrix A and may query A by choosing a vector

v and receiving the vector Av. In the vector-matrix-vector
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model one chooses a pair of vectors (v, w) and queries the

bilinear form associated to A. In other words the value of

the query is vTAw. In both models, multiple, adaptively-

chosen queries can be made, and the goal is to minimize the

number of queries to solve a certain task. These models are

standard computational models in the numerical linear algebra

community, see, e.g., [2] where PSD testing was studied in

the matrix-vector query model. These models were recently

formalized in the theoretical computer science community in

[4], [5], though similar models have been studied in numerous

fields, such as the number of measurements in compressed

sensing, or the sketching dimension of a streaming algorithm.

The matrix-vector query and vector-matrix-vector query mod-

els are particularly relevant when the input matrix A is not

given explicitly.

A natural situation occurs when A is presented implic-

itly as a the Hessian of a function f : R
d → R

d at a

point x0, where f could be the loss function of a neural

network for example. One might want to quickly distinguish

between a proposed optimum of f truly being a minimum,

or being a saddle point with a direction of steep downward

curvature. Our query model is quite natural in this con-

text. A Hessian-vector product is efficient to compute using

automatic differentiation techniques. A vector-matrix-vector

product corresponds to a single second derivative computa-

tion, D2f(v, w). This can be approximated using 4 function

queries by the finite difference approximation D2f(v, w) ≈
f(x0+hv+hw)−f(x0+hv)−f(x0+hw)+f(x0)

h2 , where h is small.

While there are numerically stable methods for computing

the spectrum of a symmetric matrix, and thus determining

if it is PSD, these methods can be prohibitively slow for

very large matrices, and require a large number of matrix-

vector or vector-matrix-vector products. Our goal is to obtain

significantly more efficient algorithms in these models, and

we approach this problem from a property testing perspective.

In particular, we focus on the following version of the PSD-

testing problem. In what follows, ‖A‖p = (
∑n

i=1 σ
p
i )

1/p
is the

Schatten-p norm of A, where the σi are the singular values of

A.

Definition 1. For p ∈ [1,∞], an (ǫ, ℓp)-tester is an algo-

rithm that makes either matrix-vector or vector-matrix-vector

queries to a real symmetric matrix A, and outputs True with
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at least 2/3 probability if A is PSD, and outputs False with

2/3 probability if A is ǫ ‖A‖p-far in spectral distance from

the PSD cone, or equivalently, if the minimum eigenvalue

λmin(A) ≤ −ǫ ‖A‖p. If the tester is guaranteed to output

True on all PSD inputs (even if the input is generated by an

adversary with access to the random coins of the tester), then

the tester has one-sided error. Otherwise it has two-sided error.

When ǫ is clear from the context we will often drop the ǫ and

simply refer to an ℓp-tester.

Our work fits more broadly into the growing body of

work on property testing for linear algebra problems, see, for

example [3], [6], [7]. However, a key difference is that we

focus on matrix-vector and vector-matrix-vector query models,

which might be more appropriate than the model in the above

works which charges a cost of 1 for reading a single entry.

Indeed, such models need to make the assumption that the

entries of the input are bounded by a constant or slow-growing

function of n, as otherwise strong impossibility results hold.

This can severely limit the applicability of such algorithms

to real-life matrices that do not have bounded entries; indeed,

even a graph Laplacian matrix with a single degree that is

large would not fit into the above models. In contrast, we

use the matrix-vector and vector-matrix-vector models, which

are ideally suited for modern machines such as graphics

processing units and when the input matrix cannot fit into

RAM, and are standard models in scientific computing, see,

e.g., [8].

While we focus on vector-matrix-vector queries, our results

shed light on several other natural settings. Many of our results

are in fact tight for general linear measurements which vector-

ize the input matrix and apply adaptively chosen linear forms

to it. For long enough streams, the best known single or multi-

pass algorithms for any problem in the turnstile streaming

model form a sketch using general linear measurements, and

with additional restrictions, it can be shown that the optimal

multi-pass streaming algorithm just adaptively chooses general

linear measurements [9], [10]. Therefore, it is plausible that

many of our vector-matrix-vector algorithms give tight single

pass streaming bounds, given that vector-matrix-vector queries

are a special case of general linear measurements, and that

many our lower bounds are tight even for general linear

measurements.

Moreover our vector-matrix-vector algorithms lead to ef-

ficient communication protocols for deciding whether a dis-

tributed sum of matrices is PSD, provided that exact vector-

matrix-vector products may be communicated. While we ex-

pect our methods to be stable under small perturbations (i.e.,

when the vector-matrix-vector products are slightly inexact),

we leave the full communication complexity analysis to future

work.

A. Our Contributions

We study PSD-testing in the matrix-vector and vector-

matrix-vector models. In particular, given a real symmetric

matrix A, and p ∈ [1,∞], we are interested in deciding

Vector-matrix-vector queries

Adaptive, one-sided ℓp Θ̃( 1
ǫ
d1−1/p)

Non-adaptive, one-sided ℓp Θ̃( 1
ǫ2

d2−2/p)

Adaptive, two-sided ℓ2 Θ̃( 1
ǫ2

)∗

Non-adaptive, two-sided ℓ2 Θ̃( 1
ǫ4

)∗

Adaptive, two-sided ℓp, 2 ≤ p < ∞ Θ̃( 1
ǫ2

d1−2/p)∗

Matrix-vector queries

Adaptive one-sided ℓp Õ((1/ǫ)p/(2p+1) log d),
Ω((1/ǫ)p/(2p+1))

Adaptive one-sided ℓ1 Θ̃((1/ǫ)1/3)

Non-adaptive one-sided ℓp Θ( 1
ǫ
d1−1/p)

TABLE I
∗ INDICATES THAT THE LOWER BOUND HOLDS FOR GENERAL LINEAR

MEASUREMENTS.

between (i) A is PSD and (ii) A has an eigenvalue less than

−ǫ ‖A‖p .
a) Tight Bounds for One-sided Testers: We make par-

ticular note of the distinction between one-sided and two-

sided testers. In some settings one is interested in a tester that

produces one-sided error. When such a tester outputs False,

it must be able to produce a proof that A is not PSD. The

simplest such proof is a witness vector v such that vTAv < 0,

and indeed we observe that in the matrix-vector model, any

one-sided tester can produce such a v when it outputs False.
This may be a desirable feature if one wishes to apply these

techniques to saddle point detection for example: given a point

that is not a local minimum, it would be useful to produce a

descent direction so that optimization may continue. In the

vector-matrix-vector model the situation is somewhat more

complicated in general, but all of our one-sided testers produce

a witness vector whenever they output False.

We provide optimal bounds for one-sided testers for both

matrix-vector and vector-matrix-vector models. The bounds

below are stated for constant probability algorithms. Here

Õ(f) = f · poly(log f).

1) In the matrix-vector query model, we show that up to

a factor of log d, Θ̃(1/ǫp/(2p+1)) queries are necessary

and sufficient for an ℓp-tester for any p ≥ 1. In the p = 1
case, we note that the log d factor may be removed.

2) In the vector-matrix-vector query model, we show that

Θ̃(d1−1/p/ǫ) queries are necessary and sufficient for an

ℓp-tester for any p ≥ 1. Note that when p = 1 we obtain

a very efficient Õ(1/ǫ)-query algorithm. In particular,

our tester for p = 1 has query complexity independent

of the matrix dimensions, and we show a sharp phase

transition for p > 1, showing in some sense that p = 1
is the largest value of p possible for one-sided queries.

The matrix-vector query complexity is very different than

the vector-matrix-vector query complexity, as the query com-

plexity is poly(1/ǫ) for any p ≥ 1, which captures the fact that

each matrix-vector query response reveals more information

than that of a vector-matrix-vector query, though a priori it
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was not clear that such responses in the matrix-vector model

could not be compressed using vector-matrix-vector queries.

b) An Optimal Bilinear Sketch for Two-Sided Testing:

Our main technical contribution for two-sided testers is a

bilinear sketch for PSD-testing with respect to the Frobenius

norm, i.e., p = 2. We consider a Gaussian sketch GTAG,

where G has small dimension Õ( 1
ǫ2 ). By looking at the

smallest eigenvalue of the sketch, we are able to distinguish

between A being PSD and being ǫ-far from PSD. Notably this

tester may reject even when λmin(G
TAG) > 0, which results

in a two-sided error guarantee. This sketch allows us to obtain

tight two-sided bounds in the vector-matrix-vector model for

p ≥ 2, both for adaptive and non-adaptive queries.

c) Separation Between One-Sided and Two-Sided

Testers: Surprisingly, we show a separation between one-

sided and two-sided testers in the vector-matrix-vector model.

For the important case of the Frobenius norm, i.e., p = 2,

we utilize our bilinear sketch to construct an Õ(1/ǫ2) query

two-sided tester, whereas by our results above, any adaptive

one-sided tester requires at least Ω(
√
d/ǫ) queries.

We also show that for any p > 2, any possibly adaptive two-

sided tester requires dΩ(1) queries for constant ǫ, and thus in

some sense, p = 2 is the largest value of p possible for two-

sided queries.

d) On the Importance of Adaptivity: We also study the

role of adaptivity in both matrix-vector and vector-matrix-

vector models. In both the one-sided and two-sided vector-

matrix-vector models we show a quadratic separation between

adaptive and non-adaptive testers, which is the largest gap

possible for any vector-matrix-vector problem arising from a

rotationally invariant distribution [4].

In the matrix-vector model, each query reveals more in-

formation about A than in the vector-matrix-vector model,

allowing for even better choices for future queries. Thus we

have an even larger gap between adaptive and non-adaptive

testers in this setting.

e) Spectrum Estimation: While the two-sided tester dis-

cussed above yields optimal bounds for PSD testing, it does

not immediately give a way to estimate the negative eigenvalue

when it exists. Via a different approach, we show how to give

such an approximation with ǫ ‖A‖F additive error. In fact, we

show how to approximate all of the top k eigenvalues of A
using O(k2poly 1

ǫ ) non-adaptive vector-matrix-vector queries,

which may be of independent interest.

We note that this gives an O(k2poly 1
ǫ ) space streaming

algorithm for estimating the top k eigenvalues of A to within

additive Frobenius error. Prior work yields a similar guarantee

for the singular values [11], but cannot recover the signs of

eigenvalues.

B. Our Techniques

a) Matrix-Vector Queries: For the case of adaptive

matrix-vector queries, we show that Krylov iteration starting

with a single random vector yields an optimal ℓp-tester for

all p. Interestingly, our analysis is able to beat the usual

Krylov matrix-vector query bound for approximating the top

eigenvalue, as we modify the usual polynomial analyzed for

eigenvalue estimation to implicitly implement a deflation step

of all eigenvalues above a certain threshold. We do not need

to explicitly know the values of the large eigenvalues in order

to deflate them; rather, it suffices that there exists a low degree

polynomial in the Krylov space that implements this deflation.

Further, we show that our technique is tight for all p ≥ 1
by showing that any smaller number of matrix-vector products

would violate a recent lower bound of [12] for approximating

the smallest eigenvalue of a Wishart matrix. This lower bound

applies even to two-sided testers.

b) Vector-Matrix-Vector Queries: We start by describing

our result for p = 1. We give one of the first examples of an al-

gorithm in the vector-matrix-vector query model that leverages

adaptivity in an interesting way. Most known algorithms in

this model work non-adaptively, either by applying a bilinear

sketch to the matrix, or by making many independent queries

in the case of Hutchinson’s trace estimator [13]. Indeed, the

algorithm of [11] works by computing GTAG for a Gaussian

matrix G with 1/ǫ columns, and arguing that all eigenvalues

that are at least ǫ‖A‖1 can be estimated from the sketch. The

issue with this approach is that it uses Ω(1/ǫ2) queries and this

bound is tight for non-adaptive testers! One could improve this

by running our earlier matrix-vector algorithm on top of this

sketch, without ever explicitly forming the 1/ǫ × 1/ǫ matrix

GTAG; however, this would only give an O(1/ǫ4/3) query

algorithm.

To achieve our optimal Õ(1/ǫ) complexity, our algorithm

instead performs a novel twist to Oja’s algorithm [14], the

latter being a stochastic gradient descent (SGD) algorithm

applied to optimizing the quadratic form f(x) = xTAx over

the sphere. In typical applications, the randomness of SGD

arises via randomly sampling from a set of training data. In

our setting, we instead artificially introduce randomness at

each step, by computing the projection of the gradient onto

a randomly chosen direction. This idea is implemented via

the iteration

x(k+1) = xk − η(gTAxk)g where g ∼ N (0, 1) (1)

for a well-chosen step size η. If f ever becomes negative

before reaching the maximum number of iterations, then the

algorithm outputs False, otherwise it outputs True. For p = 1,

we show that this scheme results in an optimal tester (up to

logarithmic factors). Our proof uses a second moment analysis

to analyze a random walk, that is similar in style to [15],

though our analysis is quite different. Whereas [15] considers

an arbitrary i.i.d. stream of unbiased estimators to A (with

bounded variance), our estimators are simply ggTA, which

do not seem to have been considered before. We leverage

this special structure to obtain a better variance bound on

the iterates throughout the first Õ(1/ǫ) iterations, where each

iteration can be implemented with a single vector-matrix-

vector query. Our algorithm and analysis gives a new method

for the fundamental problem of approximating eigenvalues.

Our result for general p > 1 follows by relating the

Schatten-p norm to the Schatten-1 norm and invoking the
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algorithm above with a different setting of ǫ. We show our

method is optimal by proving an Ω(d2−2/p/ǫ2) lower bound

for non-adaptive one-sided testers, and then using a theorem

in [5] which shows that adaptive one-sided testers can give at

most a quadratic improvement. We note that one could instead

use a recent streaming lower bound of [16] to prove this lower

bound, though such a lower bound would depend on the bit

complexity.

c) Two-Sided Testers.: The key technical ingredient be-

hind all of our two-sided testers is a bilinear sketch for

PSD-testing. Specifically, we show that a sketch of the form

GTAG with G ∈ Rd×k is sufficient for obtaining a two-sided

tester for p = 2. In contrast to the p = 1 case, we do not

simply output False when λmin := λmin(G
TAG) < 0 as such

an algorithm would automatically be one-sided. Instead we

require a criterion to detect when λmin is suspiciously small.

For this we require two results.

The first is a concentration inequality for λmin(G
TAG)

when A is PSD. We show that λmin ≥ Tr(A)− Õ(
√
k) ‖A‖F

with very good probability. This result is equivalent to bound-

ing the smallest singular value of A1/2G, which is a Gaussian

matrix whose rows have different variances. Although many

similar bounds for constant variances exist in the literature

[17], [18], we were not able to find a general bound that applies

when A is not a multiple of the identity. In particular, most

existing bounds do not seem to give the concentration around

Tr(A) that we require.

When A has a negative eigenvalue of −ǫ, we show that

λmin ≤ Tr(A) − ǫO(k). By combining these two results, we

are able to take k = Õ(1/ǫ2), yielding a tight bound for non-

adaptive testers in the vector-matrix-vector model. In fact this

bound is even tight for general linear sketches, as we show by

applying the results in [19].

We also utilize this bilinear sketch to give tight bounds for

adaptive vector-matrix-vector queries, and indeed for general

linear measurements. By first (implicitly) applying the sketch,

and then shifting by an appropriate multiple of the identity

we are able to reduce to the (ǫ2, ℓ1)-testing problem, which

as described above may solved using Õ(1/ǫ2) queries.

d) Spectrum Estimation: A natural approach for approx-

imating the eigenvalues of an n × n matrix A is to first

compute a sketch GTAG or a sketch GTAH for Gaussian

matrices G and H with a small number of columns. Both of

these sketches appear in [11]. As noted above, GTAG is a

useful non-adaptive sketch for spectrum approximation, but

the error in approximating each eigenvalue is proportional to

the Schatten-1 norm of A. One could instead try to make the

error depend on the Frobenius norm ‖A‖2 of A by instead

computing GTAH for independent Gaussian matrices G and

H , but now GTAH is no longer symmetric and it is not clear

how to extract the signs of the eigenvalues of A from GTAH .

Indeed, [11] are only able to show that the singular values

of GTAH are approximately the same as those of A, up to

additive ǫ‖A‖2 error. We thus need a new way to preserve

sign information of eigenvalues.

To do this, we show how to use results for providing the

best PSD low rank approximation to an input matrix A, where

A need not be PSD and need not even be symmetric. In partic-

ular, in [20] it was argued that if G is a Gaussian matrix with

O(k/ǫ) columns, then if one sets up the optimization problem

minrank k PSD Y ‖AGY GTAT − A‖2F , then the cost will be at

most (1 + ǫ)‖Ak,+ − A‖2F , where Ak,+ is the best rank-k
PSD approximation to A. By further sketching on the left and

right with so-called affine embeddings S and T , which have

poly(k/ǫ) rows and columns respectively, one can reduce this

problem to minrank k PSD Y ‖SAGY GTATT − SAT‖2F , and

now SAG, GTATT and SAT are all poly(k/ǫ)× poly(k/ǫ)
matrices so can be computed with a poly(k/ǫ) number of

vector-matrix-vector products. At this point the optimal Y can

be found with no additional queries and its cost can be eval-

uated. By subtracting this cost from ‖A‖2F , we approximate

‖A+,i‖2F , and ‖A−,i‖2F for all i ∈ [k], which in turn allows

us to produce (signed) estimates for the eigenvalues of A.

When A is PSD, we note that Theorem 1.2 in [11] is

able to reproduce our spectral approximation guarantee using

sketching dimension O(k
2

ǫ8 ), compared to our sketch of dimen-

sion O( k2

ǫ12 ). However as mentioned above, our guarantee is

stronger in that it allows for the signs of the eigenvalues to be

recovered, i.e., our guarantee holds even when A is not PSD.

Additionally, we are able to achieve O(k
2

ǫ8 ) using just a single

round of adaptivity.

e) Lower Bounds for One-sided Testers: To prove lower

bounds for one-sided non-adaptive testers, we first show that a

one-sided tester must be able to produce a witness whenever

it outputs False. In the matrix-vector model, the witness is

a vector v with vTAv < 0, and in the vector-matrix-vector

model, the witness is a PSD matrix M with 〈M,A〉 < 0.

In both cases we show that even for the simplest non-PSD

spectrum (−λ, 1, . . . , 1), that it takes many queries to produce

a witness when λ is small. In the matrix-vector model, our

approach is simply to show that the −λ eigenvector is typically

far from the span of all queried vectors, when the number of

queries is small. This will imply that A is non-negative on the

queried subspace, which precludes the tester from producing

a witness. In the vector-matrix-vector model our approach

is similar, however now the queries take the form of inner

products against rank one matrices xix
T
i . We therefore need to

work within the space of symmetric matrices, and this requires

a more delicate argument.

C. Additional Related Work

Numerous other works have considered matrix-vector

queries and vector-matrix queries, see, e.g., [4], [12], [21]–

[24]. We outline a few core areas here.

a) Oja’s Algorithm: Several works have considered Oja’s

algorithm in the context of streaming PCA, [15], [25], [26].

[15] gives a tight convergence rate for iteratively approximat-

ing the top eigenvector of a PSD matrix, given an eigengap,

and [26] extends this to a gap free result for k-PCA.

b) PSD Testing: As mentioned above, PSD-testing has

been investigated in the bounded entry model, where one
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assumes that the entries of A are bounded by 1 [3], and one

is allowed to query the entries of A. This is a restriction of

the vector-matrix-vector model that we consider where only

coordinate vectors may be queried. However since we consider

a more general query model, we are able to give a better

adaptive tester – for us Õ(1/ǫ) vector-matrix-vector queries

suffice, beating the Ω(1/ǫ2) lower bound given in [3] for entry

queries.

Another work on PSD-testing is that of [2], who construct a

PSD-tester in the matrix-vector model. They first show how to

approximate a general trace function
∑

f(λi) for sufficiently

smooth f , by using a Chebyshev polynomial construction to

approximate f in the sup-norm over an interval. This allows

them to construct an ℓ∞-tester by taking f to be a smooth

approximation of a shifted Heaviside function. Unfortunately

this approach is limited to ℓ∞-testers, and does not achieve

the optimal bound; they require Ω((log d)/ǫ) matrix-vector

queries compared to the Õ((log d)/
√
ǫ) queries achieved by

Krylov iteration.

c) Spectrum Estimation: The closely-related problem of

spectrum estimation has been considered several times, in the

context of sketching the largest k elements of the spectrum

[11] discussed above, and approximating the entire spectrum

from entry queries in the bounded entry model [27].

D. Notation

A symmetric matrix A is positive semi-definite (PSD) if

all eigenvalues are non-negative. We use ∆d
+ to represent the

PSD-cone, which is the subset of d × d symmetric matrices

that are PSD.

For a matrix A we use ‖A‖p to denote the Schatten p-

norm, which is the ℓp norm of the vector of singular values

of A. The Frobenius norm will play a special role in several

places, so we sometimes use the notation ‖A‖F to emphasize

this. Additionally, ‖A‖ without the subscript indicates operator

norm (which is equivalent to ‖A‖∞).

We always use d to indicate the dimension of the matrix

being tested, and use ǫ < 1 to indicate the parameter in

Definition 1.

When applied to vectors, 〈·, ·〉 indicates the standard inner

product on R
n. When applied to matrices, it indicates the

Frobenius inner product 〈X,Y 〉 := Tr(XTY ).

Sd−1 indicates the set of all unit vectors in R
d.

We use the notation X† to indicate the Moore-Penrose

pseudoinverse of X .

For a symmetric matrix A ∈ R
d×d with eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λd, we let Ak denote the matrix A
with all but the top k eigenvalues zeroed out. Formally,

if U is an orthogonal matrix diagonalizing A, then Ak =
UT diag(λ1, . . . , λk, 0, . . . , 0)U, where U is such that λi ≥ λj

for i < j. We also let A−k = A−Ak.

Throughout, we use c to indicate an absolute constant. The

value of c may change between instances.

II. VECTOR-MATRIX-VECTOR QUERIES

A. An optimal one-sided tester.

To construct our vector-matrix-vector tester, we analyze the

iteration

x(k+1) = xk − η((g(k))TAx(k))g(k), (2)

where g(k) ∼ N (0, Id) and x(0) ∼ N (0, Id).
Our algorithm is essentially to run this scheme for a fixed

number of iterations with with well-chosen step size η. If the

value of (x(k))TAx(k) ever becomes negative, then we output

False, otherwise we output True. Using this approach we prove

the following.

Theorem 2. There exists a one-sided adaptive ℓ1-tester, that

makes O( 1ǫ log
3 1

ǫ ) vector-matrix-vector queries to A.

As an immediate corollary we obtain a bound for ℓp-testers.

Corollary 3. There is a one-sided adaptive ℓp-tester

that makes O( 1ǫd
1−1/p log3( 1ǫd

1−1/p)) vector-matrix-vector

queries.

Proof. This follows from the previous result along with the

bound ‖A‖p ≥ d1/p−1 ‖A‖1 .

We now turn to the proof of Theorem 2. Since our itera-

tive scheme is rotation-invariant, we assume without loss of

generality that A = diag(λ1, . . . , λd). For now, we assume

that ‖A‖1 ≤ 1, and that the smallest eigenvalue of A is

λ1 = −ǫ. We consider running the algorithm for N iterations.

We will show that our iteration finds an x with xTAx < 0
in N = Õ(1/ǫ) iterations. We will use c to denote absolute

constants that we don’t track, and that may vary between uses.

Our approach is to show that the first coordinate (which

is associated to the −ǫ eigenvalue) grows fairly quickly with

good probability. Our key lemma bounds the second moments

of every coordinate simultaneously.

Lemma 4. Suppose η and N satisfy the following list of

assumptions: (1) η ≤ 1
4 , (2) η2ǫN ≤ 1

8 , (3) (1+ η2ǫ2)N ≤ 5
4 ,

(4) (1+ ηǫ)N ≥ 10
ǫ2 . Then x

(N)
1 ≥ 1

ǫ2 with probability at least

0.2.

Proof. Following [15] we define the matrix Bk =∏k
i=1

(
I − ηg(i)(g(i))TA

)
, where the g(i) are independent

N (0, I) gaussians. Note that x(k) = Bkx
(0). We will show

that BT
k e1 has large norm with good probability (in fact we

will show that
〈
BT

k e1, e1
〉

is large). This will then imply

that
〈
Bkx

(0), e1
〉

is large with high probability, where x(0) ∼
N (0, I).

Step 1: Deriving a recurrence for the second moments.

Let y(k) = BT
k e1 and let u

(k)
i be the second moment of the

coordinate y
(k)
i . Note that u

(0)
i = δ1i (where δ is the Dirac

delta). To simplify the notation, we drop the superscript on

the g. We compute y
(k+1)
i =

(
(I − ηAggT )y(k)

)
i
= y

(k)
i −

η(Ag)i(g1y
(k)
1 + . . .+ gdy

(k)
d ) = y

(k)
i − ηλigi(g1y

(k)
1 + . . .+

gdy
(k)
d ).
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Next we observe that (after grouping terms) the coefficients

of the y
(k)
i terms are pairwise uncorrelated. Using this, along

with the fact that the gi’s are independent of the y
(k)
i ’s gives

u
(k+1)
i = E(1− ηλig

2
i )

2u
(k)
i + η2λ2

i

∑

j �=i

u
(k)
j

= (1− 2ηλi + 3η2λ2
i )u

(k)
i + η2λ2

i

∑

j �=i

u
(k)
j

= (1− 2ηλi + 2η2λ2
i )u

(k)
i + η2λ2

i

d∑

j=1

u
(k)
j .

Let S(k) = u
(k)
1 + . . .+ u

(k)
d , and γi = 1− 2ηλi + 2η2λ2

i .
Then we can write the recurrence as

u
(k+1)
i = γiu

(k)
i + η2λ2

iS
(k). (3)

Iterating this recurrence gives

u
(k)
i = δ1iγ

k
i +η2λ2

i

(
γk−1
i S(0) + γk−2

i S(1) + . . .+ S(k−1)
)
.

(4)

Step 2: Bounding S(k).

Summing the above equation over i allows us to write a

recurrence for the S(k)’s: S(k) = γk
1 +αk−1S

(0)+αk−2S
(1)+

. . .+ α0S
(k−1), where we define αj :=

∑d
i=1 η

2λ2
i γ

j
i .

We split αj into two parts, α+
j and α−

j corresponding to

terms in the sum where λi is positive or negative respectively.

We now use the recurrence to bound S(k). First by Holder’s

inequality, S(k) ≤ γk
1 + max(S(0), . . . , S(k−1))(α+

0 + . . . +
α+
k−1) + (α−

k−1S
(0) + α−

k−2S
(1) + . . .+ α−

0 S
(k−1)).

We calculate

k−1∑

j=0

α+
j =

k−1∑

j=0

∑

i:λi>0

η2λ2
i γ

j
i

=
∑

i:λi>0

η2λ2
i

k−1∑

j=0

γj
i

=
∑

i:λi>0

η2λ2
i

1− γk
i

1− γi

=
∑

i:λi>0

η2λ2
i

1− γk
i

2ηλi − 2η2λ2
i

=
∑

i:λi>0

ηλi
1− γk

i

2− 2ηλi

≤
∑

i:λi>0

ηλi ≤ η,

where we used that ηλi ≤ 1/2, (which is a consequence of

Assumption 1), that γi < 1 (which holds since λi > 0) and

that
∑

i:λi>0 λi ≤ 1. Since we assume that −ǫ is the smallest

eigenvalue,

α−
j ≤ η2γj

1

∑

i:λi<0

λ2
i ≤ η2γj

1ǫ
∑

i:λi<0

|λi| ≤ η2γj
1ǫ.

Let S̃(k) = max(S(0), . . . S(k)). Then combining our

bounds gives

S̃(k) ≤ max(S(k−1), γk
1 + ηS̃(k−1) + η2ǫ(γk−1

1 S̃(0)+

γk−2
1 S̃(1) + . . .+ S̃(k−1))).

The next step is to use this recurrence to bound S̃(k). For

this, define c(k) such that S̃(k) = c(k)γk
1 . Plugging in to the

above and dividing through by γk
1 , we get that c(k) satisfies

c(k) ≤ max

(
c(k−1)

γ1
, 1 +

η

γ1
c(k−1) +

η2ǫ

γ1
(c(0) + . . .+ c(k−1))

)

≤ max
(
c(k−1), 1 + ηc(k−1) + η2ǫ(c(0) + . . .+ c(k−1))

)
,

where we used the fact that γ1 ≥ 1. Now set c̃(k) =
max(c(0), . . . c(k)). By assumptions 1 and 2, η+ η2ǫk ≤ 1/2.
This gives

c̃(k) ≤ max
(
c̃(k−1), 1 + ηc̃(k−1) + η2ǫkc̃(k−1)

)

≤ max

(
c̃(k−1), 1 +

1

2
c̃(k−1)

)
.

Note that c(0) = S(0) = 1, so a straightforward induction

using the above recurrence shows that c̃(k) ≤ 2 for all k. It

follows that S(k) ≤ 2γk
1 .

Step 3: Bounding the second moment. Plugging the bound

above in to (4) gives

u
(k)
1 ≤ γk

1 + 2kη2ǫ2γk−1
1 ≤

(
1 + 2kη2ǫ2

)
γk
1 .

Step 4: Applying Chebyshev. We focus on the first coor-

dinate, y
(k)
1 . Note that I − ηAggT has expectation I − ηA, so

a straightforward induction shows that Ey
(k)
1 = (1 + ηǫ)k.

Using the bound for the second moment of the first coordi-

nate, we get

u
(k)
1(

Ey
(k)
1

)2 ≤ (1 + 2kη2ǫ2)γk
1

(1 + ηǫ)2k
(5)

= (1 + 2kη2ǫ2)

(
1 + 2ηǫ+ 2η2ǫ2

1 + 2ηǫ+ η2ǫ2

)k

(6)

= (1 + 2kη2ǫ2)

(
1 +

η2ǫ2

1 + 2ηǫ+ η2ǫ2

)k

(7)

≤ (1 + 2kη2ǫ2)(1 + η2ǫ2)k. (8)

By Assumptions 2 and 4, Nη2ǫ2 ≤ 1/8 and (1+η2ǫ2)N ≤
5/4, so we get that u

(k)
1 ≤ 25/16

(
Eu

(k)
1

)2

.

Thus by Chebyshev’s inequality,

P

(∣∣∣y(k)1 − E(y
(k)
1 )

∣∣∣ ≥ 0.9E(y
(k)
1 )

)
≤ 25

36
. (9)

So with probability at least 0.3, y
(N)
1 ≥ 1

10E(y
(N)
1 ) = 1

10 (1 +
ηǫ)N .

Under assumption 4, (1 + ηǫ)N ≥ 10
ǫ2 , which means that

y
(N)
1 ≥ 1

ǫ2 with at least 0.3 probability.
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Step 5: Concluding the argument. We showed that〈
BT

Ne1, e1
〉

≥ 1
ǫ2 with probability at least 0.3. In partic-

ular this implies that
∥∥BT

Ne1
∥∥ ≥ 1

ǫ2 . Now since x(0) is

distributed as N (0, I),
〈
BNx(0), e1

〉
=

〈
x(0), BT

Ne1
〉

∼
N (0,

∥∥BT
Ne1

∥∥2), which is at least
∥∥BT

Ne1
∥∥ in magnitude with

0.67 probability. It follows that x
(N)
1 ≥ 1

ǫ2 with probability at

least 0.2.

Let f(x) = xTAx. We next understand how the value of

f(x(k)) is updated on each iteration.

Proposition 5. For g ∼ N (0, 1), we have f(x(k)) −
f(x(k+1)) = η(gTAx(k))2(2− ηgTAg).

Proof. Plugging in the update rule and expanding gives

f(x(k+1)) = (x(k))TAx(k) − η(gTAx(k))2(2− ηgTAg),

from which the proposition follows.

A consequence of this update is that the sequence f(x(k))
is almost guaranteed to be decreasing as long as η is chosen

small enough.

Proposition 6. Assume that Tr(A) ≤ 1 and that η < c.
After N iterations, f(x(N)) ≤ f(x(0)) with probability at least

99/100 provided that η ≤ c
logN+1 .

Proof. We show something stronger; namely that for the

first N iterations, the sequence f(x(k)) is decreasing. By

Proposition 5, f(x(k+1)) ≤ f(x(k)) as long as gTAg ≤ 2
η . The

probability that this does not occur is Pr
(∑

λig
2
i ≥ 2

η

)
≤

Pr
(∑

λi(g
2
i − 1) ≥ 2

η − 1
)

.

The g2i − 1 terms are independent subexponential random

variables. So by Bernstein’s inequality (see [18] Theorem 2.8.2

for the version used here), this probability is bounded by

2 exp(−c/η) as long as η is a sufficiently small constant.

Taking a union bound gives that f(x(N)) ≤ f(x(0)) with

probability at least 1−2N exp(−c/η), which is at least 99/100
under the conditions given.

Theorem 7. Suppose that ‖A‖1 ≤ 1, ǫ < 1/2, and that A has

−ǫ as an eigenvalue. If we take η ≤ min
(

1
32 log(10/ǫ2) ,

c
log 1

ǫ

)
,

then for some N = Θ
(

1
ǫη log 1

ǫ

)
we have f(x(N)) < 0 with

constant probability.

Proof. Given an η as in the statement of the theorem,

choose N =
⌈

2
ηǫ log

10
ǫ2

⌉
, which satisfies the assumptions

of Lemma 4. Then x
(N)
1 ≥ 1

ǫ2 with probability at least

0.2. By proposition 6, f(x(N)) ≤ f(x(0)) ≤ 2 with at

least 0.99 probability, using the fact that η ≤ c
log 1

ǫ

for

an appropriately chosen absolute constant c, such that the

hypothesis of proposition 6 holds.

If f(x(N)) < 0, then the algorithm has already terminated.

Otherwise conditioned on the events in the above paragraph,

we have with constant probability that 2− η(g(N))TAg(N) ≥
1
2 and (g(N))TAx(N) ≥

∥∥Ax(N)
∥∥2 ≥ 1

ǫ2λ1 ≥ 1
ǫ . Then by

Proposition 5 it follows that f(x(N+1)) ≤ f(x(N)) − η
2ǫ2 ≤

2− η
2ǫ2 < 0.

We also observe that we can reduce the dimension of the

problem by using a result of Andoni and Nguyen. This allows

us to avoid a log d dependence.

Proposition 8. Suppose that A satisfies λmin(A) <
−α ‖A‖1 , and let G ∈ R

d×m have independent N (0, 1
d ).

Then we can choose m = O(1/α) such that λmin(G
TAG) <

−α/2 and
∥∥GTAG

∥∥
1
≤ 2 ‖A‖1 .

We are now ready to give the proof of Theorem 2.

Proof. The above result applies after scaling the η given in

Theorem 7 by 1/ ‖A‖1. So it suffices to choose η to be

bounded above by

1

‖A‖1
min

(
1

32 log(10/ǫ2)
,

c

log 1
ǫ

)
,

and within a constant factor of this value.

To choose an η, pick a standard normal g, and compute

Ag using 1/ǫ vector-matrix-vector queries. Then with constant

probability, λmax(A) ≤ ‖Ag‖ ≤ 2dλmax. Given this, we have

d ‖Ag‖ ≥ ‖A‖1 ≥ ‖Ag‖
2d

, (10)

which allows us to approximate ‖A‖1 to within a factor of d2

with constant probability. Given this, one may simply try the

above algorithm with an η at each of O(log(d2)) = O(log d)
different scales, with the cost of an extra log d factor.

Finally, we may improve the log d factor to a log(1/ǫ) factor

by using Proposition 8 to sketch A, and then applying the

above analysis to GTAG. Note that the sketch may be used

implicitly; once G is chosen, a vector-matrix-vector query to

GTAG can be simulated with a single vector-matrix-vector

query to A.

B. Lower bounds

We later show a lower bound for two-sided testers which

implies that the bound for ℓ1-testers given in Theorem 2 is tight

up to log factors. If we require the tester to have one-sided

error, then we additionally show that the bound in Corollary 3

is tight for all p. Note that this distinction between one-sided

and two-sided testers is necessary given Theorem 17.

In order to obtain these lower bounds for adaptive testers,

we first show corresponding lower bounds for non-adaptive

testers. A minor modification to Lemma 3.1 in [4] shows that

an adaptive tester can have at most quadratic improvement

over a non-adaptive tester. This allows us to obtain our

adaptive lower bounds as a consequence of the non-adaptive

bounds.

For non-adaptive testers with one-sided error, we have the

following hard instance.

Theorem 9. Let λ > 0 and suppose for all matrices A with

spectrum (−λ, 1, . . . , 1) that a non-adaptive one-sided tester

T outputs False with 2/3 probability. Then T must make at

least 1
9

(
d

1+λ

)2

vector-matrix-vector queries.
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In particular, this result implies that for non-adaptive one-

sided testers, a poly(1/ǫ) ℓp-tester can only exist for p = 1.

Theorem 10. A one-sided non-adaptive ℓp-tester must make

at least Ω( 1
ǫ2 d

2−2/p) vector-matrix-vector queries.

Proof. This follows as a corollary of Theorem 9; simply apply

that result to the spectrum (ǫ(d− 1)1/p, 1 . . . , 1) where there

are d− 1 1’s.

Our Theorem 10 along with a minor modification of Lemma

3.1 in [4] yields a lower bound for adaptive testers.

Theorem 11. An adaptive one-sided ℓp-tester must make at

least Ω( 1ǫd
1−1/p) vector-matrix-vector queries.

III. ADAPTIVE MATRIX-VECTOR QUERIES

We analyze random Krylov iteration. Namely we begin with

a random g ∼ N (0, Id) and construct the sequence of iterates

g,Ag,A2g, . . . Akg using k adaptive matrix-vector queries.

The span of these vectors is denoted Kk(g) and referred to

as the kth Krylov subspace.

Krylov iteration suggests a very simple algorithm. First

compute g,Ag, . . . , Ak+1g. If Kk(g) contains a vector v such

that vTAv < 0 then output False, otherwise output True. (Note

that one can compute Av and hence vTAv for all such v, given

the k + 1 matrix-vector queries.) We show that this simple

algorithm is in fact optimal.

As a point of implementation, we note that the above

condition on Kk(g) can be checked algorthmically. One first

uses Gram-Schmidt to compute the projection Π onto Kk(g).
The existence of a v ∈ Kk(g) with vTAb < 0 is equivalent

to the condition λmin(ΠAΠ) < 0. When A is ǫ-far from

PSD, the proof below will show that in fact λmin(ΠAΠ) <
−Ω(ǫ) ‖A‖p, so it suffices to estimate λmin(ΠAΠ) to within

O(ǫ) ‖A‖p accuracy.

Proposition 12. For r > 0, α > 0 and δ > 0 there exists

a polynomial p of degree O(
√
r√
α
log 1

δ ), such that p(−α) = 1

and |p(x)| ≤ δ for all x ∈ [0, r].

Proof. Recall that the degree d Chebyshev polynomial Td is

bounded by 1 in absolute value on [−1, 1] and satisfies

Td(1 + γ ≥ 2d
√
γ−1).

(See [23] for example.) The proposition follows by shifting

and scaling Td.

Theorem 13. Suppose that A has an eigenvalue λmin with

λmin ≤ −ǫ ‖A‖p . When p = 1, the Krylov subspace Kk(g)

contains a vector v with vTAv < 0 for k = O
((

1
ǫ

) 1
3 log 1

ǫ

)
.

When p ∈ (1,∞], the same conclusion holds for k =

O
((

1
ǫ

) p
2p+1 log 1

ǫ log d
)
.

Proof. Without loss of generality, assume that ‖A‖p ≤ 1. Fix a

value T to be determined later, effectively corresponding to the

number of top eigenvalues that we deflate. By Proposition 12

we can construct a polynomial q, such that q(λmin) = 1 and

|q(x)| ≤
√

ǫ/10
d1−1/p for x ∈ [0, T−1/p] with

deg(q) ≤ C
T−1/(2p)

√
ǫ

log

(√
d1−1/p

ǫ/10

)
, (11)

where C is an absolute constant.

Now set

p(x) = q(x)
∏

i:λi>T−1/p

λi − x

λi − λmin
. (12)

Since we assume ‖A‖p ≤ 1, there at most T terms in the

product, so

deg(p) ≤ T + C
T−1/(2p)

√
ǫ

log

(√
d1−1/p

ǫ/10

)
. (13)

By setting T = ǫ−p/(2p+1), we get

deg(p) =

⎧
⎨
⎩
O
((

1
ǫ

) p
2p+1 log 1

ǫ

)
if p = 1

O
((

1
ǫ

) p
2p+1 log 1

ǫ log d
)

if p > 1
(14)

As long as k is at least deg(p), then v = p(A)g lies in Kk(g),
and

vTAv = gT p(A)2Ag. (15)

By construction, p(λmin) = 1. Also for all x in [0, T−1/p],
|p(x)| ≤ |q(x)| ≤

√
ǫ/10d(1/p)−1.

Therefore the matrix p(A)2A has at least one eigenvalue

less than −ǫ, and the positive eigenvalues sum to at most
∑

i:λi>0

ǫ

10
d1/p−1λi ≤

ǫ

10
, (16)

by using Holder’s inequality along with the fact that ‖A‖p ≤ 1.

So with at least 2/3 probability, gT p(A)2Ag < 0 as desired.

Remark 14. While we observe that deflation of the top

eigenvalues can be carried out implicitly within the Krylov

space, this can also be done explicitly using block Krylov

iteration, along with the guarantee given in Theorem 1 of [23].

We showed above that we could improve upon the usual

analysis of Krylov iteration in our context. We also establish

a matching lower bound by utilizing the proof of Theorem 3.1

presented in [12].

Theorem 15. A two-sided, adaptive ℓp-tester in the matrix-

vector model must in general make at least Ω( 1
ǫp/(2p+1) )

queries.

IV. AN OPTIMAL BILINEAR SKETCH

We present an optimal bilinear sketch for PSD-testing which

will also yield an optimal ℓ2-tester in the vector-matrix-vector

model.

Our sketch is very simple. We choose G ∈ R
d×k to have

independent N (0, 1) entries and take our sketch to be GTAG.
In parallel we construct estimates α and β for the trace and
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Frobenius norm of A respectively, such that β is accurate to

within a multiplicative error of 2, and α is accurate to with

‖A‖F additive error. (Note that this may be done at the cost

of increasing the sketching dimension by O(1).)

If GTAG is not PSD then we automatically reject. Other-

wise, we then consider the quantity

γ :=
α− λmin(G

TAG)

β
√
k log k

(17)

If γ is at most cpsd for some absolute constant cpsd, then the

tester outputs False, otherwise it outputs True.

By applying concentration inequalities to establish a lower

bound on λmin(G
TAG) when A is PSD, and an upper bound

when A is far from PSD, we achieve the following sketching

guarantee.

Theorem 16. There is a bilinear sketch GTAG with sketching

dimension k = O( 1
ǫ2 log

2 1
ǫ ) that yields a two-sided ℓ2-tester

that is correct with at least 0.9 probability.

Note that this result immediately gives a non-adaptive

vector-matrix-vector tester which makes Õ(1/ǫ4) queries.

By shifting the bilinear sketch above by an appropriate

multiple of the identity, we place ourselves in the situation

of Theorem 2 and hence are also able achieve tight bounds

for adaptive testers with two-sided error.

Theorem 17. There is a two-sided adaptive ℓ2-tester in the

vector-matrix-vector model, which makes Õ(1/ǫ2) queries.

As a consequence we also obtain a two-sided p-tester for all

p ≥ 2.

Corollary 18. For p ≥ 2, there is a two-sided adap-

tive ℓp-tester in the vector-matrix-vector model, which make

Õ(1/ǫ2)d1−1/p queries.

Proof. Apply Theorem 17 along with the bound ‖A‖p ≥
d

1
p−

1
2 ‖A‖F .

A. Lower bounds for two-sided testers

Our lower bounds for two-sided testers comes from the

spiked Gaussian model introduced in [19]. As before, our

adaptive lower bounds will come as a consequence of the

corresponding non-adaptive bounds.

Theorem 19. A two-sided ℓp-tester that makes non-adaptive

vector-matrix-vector queries requires at least

• Ω( 1
ǫ2p ) queries for 1 ≤ p ≤ 2

• Ω( 1
ǫ4 d

2−4/p) queries for 2 < p < ∞ as long as d can

be taken to be Ω(1/ǫp).
• Ω(d2) queries for p = ∞.

V. SPECTRUM ESTIMATION

We make use of the following result, which is Lemma 11

of [20] specialized to our setting.

Lemma 20. For a symmetric matrix A ∈ R
d×d, there is a

distribution over an oblivious sketching matrix R ∈ R
d×m

with m = O(kǫ ) so that with at least 0.9 proability,

min
Y ∗∈ rank k,PSD

∥∥(AR)Y ∗(AR)T −A
∥∥2
F
≤ (1+ǫ) ‖Ak,+ −A‖2F ,

(18)

where Ak,+ is the optimal rank-one PSD approximation to A
in Frobenius norm.

Remark 21. In our setting one can simply take R to be

Gaussian since the guarantee above must hold when A is

drawn from a rotationally invariant distribution. In many

situations, structured or sparse matrices are useful, but we

do not need this here.

We also recall the notion of an affine embedding [28].

Definition 22. S is an affine embedding for matrices A and B
if for all matrices X of the appropriate dimensions, we have

‖S(AX −B)‖2F = (1± ǫ) ‖AX −B‖2F . (19)

We also recall that when A is promised to have rank at most

r, there is a distribution over S with O(ǫ−2r) rows such that

(19) holds with constant probability for any choice of A and

B [28].

Lemma 23. There is an algorithm which makes O(k
2

ǫ6 log 1
δ )

vector-matrix-vector queries to A and with at least 1 − δ
probability outputs an approximation of ‖A‖k,+, accurate to

within ǫ ‖A‖2F additive error.

Proof. We run two subroutines in parallel.

Subroutine 1. Approximate ‖Ak,+ −A‖2F up to O(ǫ)
multiplicative error.

Our algorithm first draws affine embedding matrices S1 and

S2 for r = k/ǫ, and with ǫ distortion, each with O( k
ǫ3 ) rows.

We also draw a matrix R as in Lemma 20 with m = O(kǫ )
columns.

We then compute S1AR and S2AR, each requiring k2

ǫ4

vector-matrix-vector queries, and compute S1AS
T
2 requiring

k2

ǫ6 queries.

Let Yk be arbitrary with the appropriate dimensions (later

we will optimize Yk over rank k PSD matrices). By using the

affine embedding property along with the fact that R has rank

at most k
ǫ , we have

∥∥(S1AR)Yk(S2AR)T + S1AS
T
2

∥∥2
F

= (1± ǫ)
∥∥ARYk(S2AR)T +AST

2

∥∥2
F

= (1± ǫ)
∥∥S2ARYkR

TA+ S2A
∥∥2
F

= (1± 3ǫ)
∥∥ARYkR

TA+A
∥∥2
F
.
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As a consequence of this, and the property held by R, we have

min
rk(Yk)≤k,Yk PSD

∥∥(S1AR)Yk(S2AR)T + S1AS
T
2

∥∥2
F

(20)

= (1± 3ǫ)min
Yk

∥∥ARYkR
TA+A

∥∥2
F

(21)

= (1± 7ǫ) ‖Ak,+ −A‖2F . (22)

Thus by computing the quantity in the left-hand-side above,

our algorithm computes an O(ǫ) multiplicative approximation

using O(k2/ǫ6) vector-matrix-vector queries.

Subroutine 2. Approximate ‖A‖2F up to O(ǫ) multiplicative

error.

We simply apply Theorem 2.2. of [29], set q = 2, and note

that the entries of the sketch correspond to vector-matrix-

vector products. By their bound we require O(ǫ−2 log(1/ǫ))
vector-matrix-vector queries.

Since ‖Ak,+‖2F = ‖A‖2F − ‖Ak,+ −A‖2F , we obtain an

additive O(ǫ) ‖A‖2F approximation to ‖Ak,+‖2F by running

the two subroutines above and subtracting their results.

Finally, by repeating the above procedure O(log 1
δ ) times in

parallel and taking the median of the trails, we obtain a failure

probability of at most δ.

We note that we immediately obtain a poly(1/ǫ) query

ℓ2-tester by applying Lemma 23 to approximate A1,−. How-

ever this yields a worse ǫ dependence than Theorem 16.

Perhaps more interestingly, these techniques also give a way to

approximate the top k (in magnitude) eigenvalues of A while

preserving their signs. We note a minor caveat. If λk and λk+1

are very close in magnitude, but have opposite signs, then we

cannot guarantee that we approximate λk. Therefore in the

statement below, we only promise to approximate eigenvalues

with magnitude at least |λk|+ 2ǫ.

Theorem 24. Let λ1, λ2, . . . be the (signed) eigenvalues of A
sorted in decreasing order of magnitude.

There is an algorithm that makes O( k2

ǫ12 log k) non-adaptive

vector-matrix-vector queries to A, and with probability at least

0.9, outputs λ̃1, . . . , λ̃k such that

(i) There exists a permutation σ on [k] so that for all i with

|λi| ≥ |λk|+ 2ǫ, |λ̃σ(i) − λi| ≤ ǫ ‖A‖F
(ii) For all i, there exists j with |λj | ≥ |λk| − ǫ and |λ̃i −

λj | ≤ ǫ ‖A‖F
With one additional round of adaptivity the number of mea-

surements can be reduced to O(k
2

ǫ8 log k).
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