2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-6654-5519-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/FOCS54457.2022.00016

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

Testing Positive Semidefiniteness Using Linear
Measurements

Deanna Needell
University of California Los Angeles
Los Angeles CA, United States
deanna@math.ucla.edu

Abstract—We study the problem of testing whether a symmet-
ric d X d input matrix A is symmetric positive semidefinite (PSD),
or is e-far from the PSD cone, meaning that A\yin(A) < —e¢||A||p,
where ||Al|, is the Schatten-p norm of A. In applications one
often needs to quickly tell if an input matrix is PSD, and a small
distance from the PSD cone may be tolerable. We consider two
well-studied query models for measuring efficiency, namely, the
matrix-vector and vector-matrix-vector query models. We first
consider one-sided testers, which are testers that correctly classify
any PSD input, but may fail on a non-PSD input with a tiny
failure probability. Up to logarithmic factors, in the matrix-vector
query model we show a tight ©(1/e”/***1) bound, while in the
vector-matrix-vector query model we show a tight ©(d'~'/7 /¢)
bound, for every p > 1. We also show a strong separation
between one-sided and two-sided testers in the vector-matrix-
vector model, where a two-sided tester can fail on both PSD and
non-PSD inputs with a tiny failure probability. In particular,
for the important case of the Frobenius norm, we show that
any one-sided tester requires (v/d/e) queries. However we
introduce a bilinear sketch for two-sided testing from which
we construct a Frobenius norm tester achieving the optimal
O(1/€*) queries. We also give a number of additional separations
between adaptive and non-adaptive testers. Our techniques have
implications beyond testing, providing new methods to approxi-
mate the spectrum of a matrix with Frobenius norm error using
dimensionality reduction in a way that preserves the signs of
eigenvalues.

I. INTRODUCTION

A real-valued matrix A € R™*™ is said to be Positive Semi-
Definite (PSD) if it defines a non-negative quadratic form,
namely, if 27 Az > 0 for all x. If A is symmetric, the setting
on which we focus, this is equivalent to the eigenvalues of
A being non-negative. Multiple works [1]-[3] have studied
the problem of testing whether a real matrix is PSD, or is
far from being PSD, and this testing problem has numerous
applications, including to faster algorithms for linear systems
and linear algebra problems, detecting the existence of com-
munity structure, ascertaining local convexity, and differential
equations; we refer the reader to [3] and the references therein.

We study this testing problem under two fundamental query
models. In the matrix-vector model, one is given implicit
access to a matrix A and may query A by choosing a vector
v and receiving the vector Av. In the vector-matrix-vector
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model one chooses a pair of vectors (v,w) and queries the
bilinear form associated to A. In other words the value of
the query is vTAw. In both models, multiple, adaptively-
chosen queries can be made, and the goal is to minimize the
number of queries to solve a certain task. These models are
standard computational models in the numerical linear algebra
community, see, e.g., [2] where PSD testing was studied in
the matrix-vector query model. These models were recently
formalized in the theoretical computer science community in
[4], [5], though similar models have been studied in numerous
fields, such as the number of measurements in compressed
sensing, or the sketching dimension of a streaming algorithm.
The matrix-vector query and vector-matrix-vector query mod-
els are particularly relevant when the input matrix A is not
given explicitly.

A natural situation occurs when A is presented implic-
itly as a the Hessian of a function f : R? — R? at a
point xy, where f could be the loss function of a neural
network for example. One might want to quickly distinguish
between a proposed optimum of f truly being a minimum,
or being a saddle point with a direction of steep downward
curvature. Our query model is quite natural in this con-
text. A Hessian-vector product is efficient to compute using
automatic differentiation techniques. A vector-matrix-vector
product corresponds to a single second derivative computa-
tion, D2 f(v,w). This can be approximated using 4 function

queries by the finite difference approximation D?f (v, w) ~

f(.’l}g+h1)+h’ll})—f(])o—;gm))—f(.730+h11))+f(.’130)7 where b is small.

While there are numerically stable methods for computing
the spectrum of a symmetric matrix, and thus determining
if it is PSD, these methods can be prohibitively slow for
very large matrices, and require a large number of matrix-
vector or vector-matrix-vector products. Our goal is to obtain
significantly more efficient algorithms in these models, and
we approach this problem from a property testing perspective.
In particular, we focus on the following version of the PSD-
testing problem. In what follows, ||A[, = (301, af)l/p is the
Schatten-p norm of A, where the o; are the singular values of
A.

Definition 1. For p € [1,00], an (€, {p)-tester is an algo-
rithm that makes either matrix-vector or vector-matrix-vector
queries to a real symmetric matrix A, and outputs True with
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at least 2/3 probability if A is PSD, and outputs False with
2/3 probability if A is €||Al|,-far in spectral distance from
the PSD cone, or equivalently, if the minimum eigenvalue
Amin(A) < —e€||All,. If the tester is guaranteed to output
True on all PSD inputs (even if the input is generated by an
adversary with access to the random coins of the tester), then
the tester has one-sided error. Otherwise it has two-sided error.
When € is clear from the context we will often drop the € and
simply refer to an (,-tester.

Our work fits more broadly into the growing body of
work on property testing for linear algebra problems, see, for
example [3], [6], [7]. However, a key difference is that we
focus on matrix-vector and vector-matrix-vector query models,
which might be more appropriate than the model in the above
works which charges a cost of 1 for reading a single entry.
Indeed, such models need to make the assumption that the
entries of the input are bounded by a constant or slow-growing
function of n, as otherwise strong impossibility results hold.
This can severely limit the applicability of such algorithms
to real-life matrices that do not have bounded entries; indeed,
even a graph Laplacian matrix with a single degree that is
large would not fit into the above models. In contrast, we
use the matrix-vector and vector-matrix-vector models, which
are ideally suited for modern machines such as graphics
processing units and when the input matrix cannot fit into
RAM, and are standard models in scientific computing, see,
e.g., [8].

While we focus on vector-matrix-vector queries, our results
shed light on several other natural settings. Many of our results
are in fact tight for general linear measurements which vector-
ize the input matrix and apply adaptively chosen linear forms
to it. For long enough streams, the best known single or multi-
pass algorithms for any problem in the turnstile streaming
model form a sketch using general linear measurements, and
with additional restrictions, it can be shown that the optimal
multi-pass streaming algorithm just adaptively chooses general
linear measurements [9], [10]. Therefore, it is plausible that
many of our vector-matrix-vector algorithms give tight single
pass streaming bounds, given that vector-matrix-vector queries
are a special case of general linear measurements, and that
many our lower bounds are tight even for general linear
measurements.

Moreover our vector-matrix-vector algorithms lead to ef-
ficient communication protocols for deciding whether a dis-
tributed sum of matrices is PSD, provided that exact vector-
matrix-vector products may be communicated. While we ex-
pect our methods to be stable under small perturbations (i.e.,
when the vector-matrix-vector products are slightly inexact),
we leave the full communication complexity analysis to future
work.

A. Our Contributions

We study PSD-testing in the matrix-vector and vector-
matrix-vector models. In particular, given a real symmetric
matrix A, and p € [1,00], we are interested in deciding
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TABLE T
* INDICATES THAT THE LOWER BOUND HOLDS FOR GENERAL LINEAR
MEASUREMENTS.

between (i) A is PSD and (ii) A has an eigenvalue less than
—clAll,-

a) Tight Bounds for One-sided Testers: We make par-
ticular note of the distinction between one-sided and two-
sided testers. In some settings one is interested in a tester that
produces one-sided error. When such a tester outputs False,
it must be able to produce a proof that A is not PSD. The
simplest such proof is a witness vector v such that vT Av < 0,
and indeed we observe that in the matrix-vector model, any
one-sided tester can produce such a v when it outputs False.
This may be a desirable feature if one wishes to apply these
techniques to saddle point detection for example: given a point
that is not a local minimum, it would be useful to produce a
descent direction so that optimization may continue. In the
vector-matrix-vector model the situation is somewhat more
complicated in general, but all of our one-sided testers produce
a witness vector whenever they output False.

We provide optimal bounds for one-sided testers for both
matrix-vector and vector-matrix-vector models. The bounds
below are stated for constant probability algorithms. Here
O(f) = f - poly(log f).

1) In the matrix-vector query model, we show that up to
a factor of logd, ©(1/e?/(2P+1) queries are necessary
and sufficient for an /,,-tester forany p > 1. Inthe p = 1
case, we note that the log d factor may be removed.

In the vector-matrix-vector query model, we show that
O(d*~1/? /¢) queries are necessary and sufficient for an
£p,-tester for any P> 1. Note that when p = 1 we obtain
a very efficient O(1/¢)-query algorithm. In particular,
our tester for p = 1 has query complexity independent
of the matrix dimensions, and we show a sharp phase
transition for p > 1, showing in some sense that p =1
is the largest value of p possible for one-sided queries.

2)

The matrix-vector query complexity is very different than
the vector-matrix-vector query complexity, as the query com-
plexity is poly(1/e) for any p > 1, which captures the fact that
each matrix-vector query response reveals more information
than that of a vector-matrix-vector query, though a priori it
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was not clear that such responses in the matrix-vector model
could not be compressed using vector-matrix-vector queries.

b) An Optimal Bilinear Sketch for Two-Sided Testing:
Our main technical contribution for two-sided testers is a
bilinear sketch for PSD-testing with respect to the Frobenius
norm, i.e., p = 2. We consider a Gaussian sketch GT AG,
where G has small dimension O(Z). By looking at the
smallest eigenvalue of the sketch, we are able to distinguish
between A being PSD and being e-far from PSD. Notably this
tester may reject even when Apin (GT AG) > 0, which results
in a two-sided error guarantee. This sketch allows us to obtain
tight two-sided bounds in the vector-matrix-vector model for
p > 2, both for adaptive and non-adaptive queries.

c) Separation Between One-Sided and Two-Sided
Testers: Surprisingly, we show a separation between one-
sided and two-sided testers in the vector-matrix-vector model.
For the important case of the Frobenius norm, i.e., p = 2,
we utilize our bilinear sketch to construct an O(1/e?) query
two-sided tester, whereas by our results above, any adaptive
one-sided tester requires at least 2(v/d/€) queries.

We also show that for any p > 2, any possibly adaptive two-
sided tester requires d**(!) queries for constant ¢, and thus in
some sense, p = 2 is the largest value of p possible for two-
sided queries.

d) On the Importance of Adaptivity: We also study the
role of adaptivity in both matrix-vector and vector-matrix-
vector models. In both the one-sided and two-sided vector-
matrix-vector models we show a quadratic separation between
adaptive and non-adaptive testers, which is the largest gap
possible for any vector-matrix-vector problem arising from a
rotationally invariant distribution [4].

In the matrix-vector model, each query reveals more in-
formation about A than in the vector-matrix-vector model,
allowing for even better choices for future queries. Thus we
have an even larger gap between adaptive and non-adaptive
testers in this setting.

e) Spectrum Estimation: While the two-sided tester dis-
cussed above yields optimal bounds for PSD testing, it does
not immediately give a way to estimate the negative eigenvalue
when it exists. Via a different approach, we show how to give
such an approximation with e || A|| . additive error. In fact, we
show how to approximate all of the top k eigenvalues of A
using O(k2p01y%) non-adaptive vector-matrix-vector queries,
which may be of independent interest.

We note that this gives an O(kaoly%) space streaming
algorithm for estimating the top k eigenvalues of A to within
additive Frobenius error. Prior work yields a similar guarantee
for the singular values [11], but cannot recover the signs of
eigenvalues.

B. Our Techniques

a) Matrix-Vector Queries: For the case of adaptive
matrix-vector queries, we show that Krylov iteration starting
with a single random vector yields an optimal /,-tester for
all p. Interestingly, our analysis is able to beat the usual
Krylov matrix-vector query bound for approximating the top
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eigenvalue, as we modify the usual polynomial analyzed for
eigenvalue estimation to implicitly implement a deflation step
of all eigenvalues above a certain threshold. We do not need
to explicitly know the values of the large eigenvalues in order
to deflate them; rather, it suffices that there exists a low degree
polynomial in the Krylov space that implements this deflation.

Further, we show that our technique is tight for all p > 1
by showing that any smaller number of matrix-vector products
would violate a recent lower bound of [12] for approximating
the smallest eigenvalue of a Wishart matrix. This lower bound
applies even to two-sided testers.

b) Vector-Matrix-Vector Queries: We start by describing
our result for p = 1. We give one of the first examples of an al-
gorithm in the vector-matrix-vector query model that leverages
adaptivity in an interesting way. Most known algorithms in
this model work non-adaptively, either by applying a bilinear
sketch to the matrix, or by making many independent queries
in the case of Hutchinson’s trace estimator [13]. Indeed, the
algorithm of [11] works by computing G* AG for a Gaussian
matrix G with 1/e columns, and arguing that all eigenvalues
that are at least €||A||; can be estimated from the sketch. The
issue with this approach is that it uses €2(1/€?) queries and this
bound is tight for non-adaptive testers! One could improve this
by running our earlier matrix-vector algorithm on top of this
sketch, without ever explicitly forming the 1/e x 1/e matrix
GT AG; however, this would only give an O(1/€*/3) query
algorithm. _

To achieve our optimal O(1/¢) complexity, our algorithm
instead performs a novel twist to Oja’s algorithm [14], the
latter being a stochastic gradient descent (SGD) algorithm
applied to optimizing the quadratic form f(z) = x7 Ax over
the sphere. In typical applications, the randomness of SGD
arises via randomly sampling from a set of training data. In
our setting, we instead artificially introduce randomness at
each step, by computing the projection of the gradient onto
a randomly chosen direction. This idea is implemented via
the iteration

2D — ok n(gTAgjk)g where g ~ N(07 1) ey

for a well-chosen step size n. If f ever becomes negative
before reaching the maximum number of iterations, then the
algorithm outputs False, otherwise it outputs True. For p = 1,
we show that this scheme results in an optimal tester (up to
logarithmic factors). Our proof uses a second moment analysis
to analyze a random walk, that is similar in style to [15],
though our analysis is quite different. Whereas [15] considers
an arbitrary i.i.d. stream of unbiased estimators to A (with
bounded variance), our estimators are simply gg” A, which
do not seem to have been considered before. We leverage
this special structure to obtain a better variance bound on
the iterates throughout the first O(1/e€) iterations, where each
iteration can be implemented with a single vector-matrix-
vector query. Our algorithm and analysis gives a new method
for the fundamental problem of approximating eigenvalues.
Our result for general p > 1 follows by relating the
Schatten-p norm to the Schatten-1 norm and invoking the
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algorithm above with a different setting of . We show our
method is optimal by proving an Q(d?>~2/?/¢?) lower bound
for non-adaptive one-sided testers, and then using a theorem
in [5] which shows that adaptive one-sided testers can give at
most a quadratic improvement. We note that one could instead
use a recent streaming lower bound of [16] to prove this lower
bound, though such a lower bound would depend on the bit
complexity.

¢) Two-Sided Testers.: The key technical ingredient be-
hind all of our two-sided testers is a bilinear sketch for
PSD-testing. Specifically, we show that a sketch of the form
GT AG with G € R¥™¥ is sufficient for obtaining a two-sided
tester for p = 2. In contrast to the p = 1 case, we do not
simply output False when Amin := Amin(GTAG) < 0 as such
an algorithm would automatically be one-sided. Instead we
require a criterion to detect when Ay, is suspiciously small.
For this we require two results.

The first is a concentration inequality for Amin(GTAG)
when A is PSD. We show that Ayin > Tr(4) — O(VE) || Al
with very good probability. This result is equivalent to bound-
ing the smallest singular value of A'/2G, which is a Gaussian
matrix whose rows have different variances. Although many
similar bounds for constant variances exist in the literature
[17], [18], we were not able to find a general bound that applies
when A is not a multiple of the identity. In particular, most
existing bounds do not seem to give the concentration around
Tr(A) that we require.

When A has a negative eigenvalue of —e, we show that
Amin < Tr(A) — €O(k). By combining these two results, we
are able to take k = O(1/€?), yielding a tight bound for non-
adaptive testers in the vector-matrix-vector model. In fact this
bound is even tight for general linear sketches, as we show by
applying the results in [19].

We also utilize this bilinear sketch to give tight bounds for
adaptive vector-matrix-vector queries, and indeed for general
linear measurements. By first (implicitly) applying the sketch,
and then shifting by an appropriate multiple of the identity
we are able to reduce to the (€, ¢;)-testing problem, which
as described above may solved using O(1/¢?) queries.

d) Spectrum Estimation: A natural approach for approx-
imating the eigenvalues of an n X n matrix A is to first
compute a sketch GTAG or a sketch GT AH for Gaussian
matrices G and H with a small number of columns. Both of
these sketches appear in [11]. As noted above, GT AG is a
useful non-adaptive sketch for spectrum approximation, but
the error in approximating each eigenvalue is proportional to
the Schatten-1 norm of A. One could instead try to make the
error depend on the Frobenius norm || Al of A by instead
computing GT AH for independent Gaussian matrices G' and
H, but now GT AH is no longer symmetric and it is not clear
how to extract the signs of the eigenvalues of A from G7AH.
Indeed, [11] are only able to show that the singular values
of GT AH are approximately the same as those of A, up to
additive ¢||Al|s error. We thus need a new way to preserve
sign information of eigenvalues.
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To do this, we show how to use results for providing the
best PSD low rank approximation to an input matrix A, where
A need not be PSD and need not even be symmetric. In partic-
ular, in [20] it was argued that if G is a Gaussian matrix with
O(k/€) columns, then if one sets up the optimization problem
Mgk k psp v [|AGY GT AT — A||%, then the cost will be at
most (1 + €)||Ax,+ — Al|%, where Ay . is the best rank-k
PSD approximation to A. By further sketching on the left and
right with so-called affine embeddings S and T', which have
poly(k/e) rows and columns respectively, one can reduce this
problem to ming k psp v |SAGY GTATT — SAT||%, and
now SAG, GTATT and SAT are all poly(k/e) x poly(k/e)
matrices so can be computed with a poly(k/e) number of
vector-matrix-vector products. At this point the optimal Y can
be found with no additional queries and its cost can be eval-
uated. By subtracting this cost from [|A]%, we approximate
||A+77;||%, and HA,,HQF for all ¢ € [k], which in turn allows
us to produce (signed) estimates for the eigenvalues of A.

When A is PSD, we note that Theorem 1.2 in [11] is
able to reproduce our spectral approximation guarantee using
sketching dimension O(’:—:), compared to our sketch of dimen-
sion O(ﬁ—i) However as mentioned above, our guarantee is
stronger in that it allows for the signs of the eigenvalues to be
recovered, i.e., our guarantee holds even when A is not PSD.
Additionally, we are able to achieve O(lz—;) using just a single
round of adaptivity.

e) Lower Bounds for One-sided Testers: To prove lower
bounds for one-sided non-adaptive testers, we first show that a
one-sided tester must be able to produce a witness whenever
it outputs False. In the matrix-vector model, the witness is
a vector v with vTAv < 0, and in the vector-matrix-vector
model, the witness is a PSD matrix M with (M, A) < 0.
In both cases we show that even for the simplest non-PSD
spectrum (—A, 1,...,1), that it takes many queries to produce
a witness when A is small. In the matrix-vector model, our
approach is simply to show that the —\ eigenvector is typically
far from the span of all queried vectors, when the number of
queries is small. This will imply that A is non-negative on the
queried subspace, which precludes the tester from producing
a witness. In the vector-matrix-vector model our approach
is similar, however now the queries take the form of inner
products against rank one matrices ;77 . We therefore need to
work within the space of symmetric matrices, and this requires
a more delicate argument.

C. Additional Related Work

Numerous other works have considered matrix-vector
queries and vector-matrix queries, see, e.g., [4], [12], [21]-
[24]. We outline a few core areas here.

a) Oja’s Algorithm: Several works have considered Oja’s
algorithm in the context of streaming PCA, [15], [25], [26].
[15] gives a tight convergence rate for iteratively approximat-
ing the top eigenvector of a PSD matrix, given an eigengap,
and [26] extends this to a gap free result for k-PCA.

b) PSD Testing: As mentioned above, PSD-testing has
been investigated in the bounded entry model, where one
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assumes that the entries of A are bounded by 1 [3], and one
is allowed to query the entries of A. This is a restriction of
the vector-matrix-vector model that we consider where only
coordinate vectors may be queried. However since we consider
a more general query model, we are able to give a better
adaptive tester — for us O(1/e€) vector-matrix-vector queries
suffice, beating the ©2(1/¢2) lower bound given in [3] for entry
queries.

Another work on PSD-testing is that of [2], who construct a
PSD-tester in the matrix-vector model. They first show how to
approximate a general trace function Y f();) for sufficiently
smooth f, by using a Chebyshev polynomial construction to
approximate f in the sup-norm over an interval. This allows
them to construct an /..-tester by taking f to be a smooth
approximation of a shifted Heaviside function. Unfortunately
this approach is limited to /. -testers, and does not achieve
the optimal bound; they require ((logd)/e) matrix-vector
queries compared to the O((logd)/+/€) queries achieved by
Krylov iteration.

c) Spectrum Estimation: The closely-related problem of
spectrum estimation has been considered several times, in the
context of sketching the largest k elements of the spectrum
[11] discussed above, and approximating the entire spectrum
from entry queries in the bounded entry model [27].

D. Notation

A symmetric matrix A is positive semi-definite (PSD) if
all eigenvalues are non-negative. We use Ai to represent the
PSD-cone, which is the subset of d x d symmetric matrices
that are PSD.

For a matrix A we use [|A[[, to denote the Schatten p-
norm, which is the £, norm of the vector of singular values
of A. The Frobenius norm will play a special role in several
places, so we sometimes use the notation || A to emphasize
this. Additionally, || A|| without the subscript indicates operator
norm (which is equivalent to || A|_.).

We always use d to indicate the dimension of the matrix
being tested, and use € < 1 to indicate the parameter in
Definition 1.

When applied to vectors, (-, -) indicates the standard inner
product on R™. When applied to matrices, it indicates the
Frobenius inner product (X,Y) := Tr(XTY).

591 indicates the set of all unit vectors in RY.

We use the notation XT to indicate the Moore-Penrose

pseudoinverse of X.

For a symmetric matrix A € R%*? with eigenvalues

A > Ay > ... > Ny, we let Ap denote the matrix A
with all but the top k eigenvalues zeroed out. Formally,
if U is an orthogonal matrix diagonalizing A, then A; =
UT diag(A1, ..., Ak, 0,...,0)U, where U is such that \; > \;
fori <j. Wealsolet A_, = A — Ay;.

Throughout, we use c to indicate an absolute constant. The
value of ¢ may change between instances.
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II. VECTOR-MATRIX-VECTOR QUERIES
A. An optimal one-sided tester.

To construct our vector-matrix-vector tester, we analyze the
iteration

2D = gk — p((gPN)T Az ) gk) )

where g®*) ~ N(0,I,) and 2(©) ~ N(0, I;).

Our algorithm is essentially to run this scheme for a fixed
number of iterations with with well-chosen step size 7. If the
value of (2(")T Az (k) ever becomes negative, then we output
False, otherwise we output True. Using this approach we prove
the following.

Theorem 2. There exists a one-sided adaptive (1 -tester, that
makes O(% log3 %) vector-matrix-vector queries to A.

As an immediate corollary we obtain a bound for /,-testers.

Corollary 3. There is a one-sided adaptive {p-tester
that makes O(%dlfl/” 10g3(%d1*1/”)) vector-matrix-vector
queries.

Proof. This follows from the previous result along with the
bound HAHP > qt/r-1 1Al - O

We now turn to the proof of Theorem 2. Since our itera-
tive scheme is rotation-invariant, we assume without loss of
generality that A = diag(\y,...,Ag). For now, we assume
that ||All; < 1, and that the smallest eigenvalue of A is
A1 = —e. We consider running the algorithm for [V iterations.
We will show that our iteration finds an 2 with 27 Az < 0
in N = O(1/e) iterations. We will use ¢ to denote absolute
constants that we don’t track, and that may vary between uses.

Our approach is to show that the first coordinate (which
is associated to the —e eigenvalue) grows fairly quickly with
good probability. Our key lemma bounds the second moments
of every coordinate simultaneously.

Lemma 4. Suppose 1 and N satisfy the following list of
assumptions: (1) 1 < 3, (2) n*eN < 5, (3) (L+n?e)N < 2,
(4) (14+ne)N > g Then chN) > E% with probability at least

0.2.

Proof. Following [15] we define the matrix By
[T, (I —ng®(g™)T A), where the ¢ are independent
N(0,1) gaussians. Note that () = B,z(?). We will show
that B,{el has large norm with good probability (in fact we
will show that (Bf'e,e1) is large). This will then imply
that <ka(0), el> is large with high probability, where z(9) ~
N(0,1).

Step 1: Deriving a recurrence for the second moments.
Let y*) = Bgel and let u;
coordinate ygk). Note that ugo) = 01; (where ¢ is the Dirac
delta). To simplify the notation, we drop the superscript on
the g. We compute yEkH) =((I- nAggT)y(’“))i = ygm -
(A9t + .+ gay”) = o —higi(gy® + .+

gayy”).-

(k) be the second moment of the

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 17,2023 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.



Next we observe that (after grouping terms) the coefficients

of the y(k) terms are pairwise uncorrelated. Using this, along

(k)

with the fact that the g;’s are independent of the y, ’’s gives
k+1 k k
u T =B - phig)) ™ + 7Ny uf
J#i
=(1-2n\+ 3n2)\?)u§k) + 772)\? Z u§k>
J#i

d

k k

=(1-2n\+ 2772)\?)%(- ) + 772)\12 g ug )
j=1

Let S =4 4+ ugik), and v; = 1 — 2n\; + 2022
Then we can write the recurrence as

u§k+1) _ %uz('k) + 772)‘12S(k)' 3)

Iterating this recurrence gives
S(k=1)

uz(k) = 61 A7 (’Vfils(o) + ’75723(1) +...F
“4)
Step 2: Bounding S*).
Summing the above equation over 7 allows us to write a
recurrence for the S*)’s: SF) =~k 1o 180 4 25(1) +
.+ SV, where we define 05 1= S A2,
We split «; into two parts, al i and «a; corresponding to
terms in the sum where \; is positive or negative respectively.
We now use the recurrence to bound S, First by Holder’s

inequality, S < +F + max(S© ..., S*E=D)(af + ... +

@i 1) + (a5, 8O + aj_o,SD 4.+ ag SED).
We calculate
k-1 k-1
aj = Ay
J=0 §=0 i:2; >0
k=1
=X 02/\?2#
: A >0 ;
i 51 Z
= A
i: A >0 17711
N I
v 92
i\ >0 20Ai = 22
- 3 gl
12—27]/\
:Xi >0
< D nu<n,
: 2 >0

where we used that n\; < 1/2, (which is a consequence of
Assumption 1), that v; < 1 (which holds since \; > 0) and
that Zz‘:,\,,-,>0 A; < 1. Since we assume that —e is the smallest
eigenvalue,

af <P D AT <tle D Il <nPrie
;<0 ;<0

Let S =
bounds gives

max(S(® ... S®*). Then combining our
S® < max(SHEV AF 4 pSE=D 4 p2e(457150) 4
AR28M 4 Sy,

The next step is to use this recurrence to bound S*) . For

this, define ¢(*) such that S*) = c(k)v{“. Plugging in to the
above and dividing through by v¥, we get that ¢(*) satisfies

c(k=1)

U e
¢®) < max < A4 LD T O 4 c(k_l)))

il ga!

< max (c(k_l), 14 0™ D £ n2e(® + .. + c(k_”)) ,
where we used the fact that v; > 1. Now set ¢k =
max(c(?, ... c*). By assumptions 1 and 2, i+ n%ek < 1/2.
This gives

&) < max (5<k—1), 14 =1 4 n2ek5<k—1>)

§max( (k—1) 1+2~(1§ 1))

Note that ¢(® = SO = 1, 50 a straightforward induction
using the above recurrence shows that &%) < 2 for all k. It
follows that S(F) < 2~F.

Step 3: Bounding the second moment. Plugging the bound
above in to (4) gives

ugk) < vf + 2k7]2627f < (1 + 2k772€2) 'yk

Step 4: Applying Chebyshev. We focus on the first coor-
dinate, ylk). Note that I —nAgg” has expectation I —nA, so
a straightforward induction shows that Eygk) = (1 + ne)k.

Using the bound for the second moment of the first coordi-
nate, we get

ugk) < (14 2kn?e?)~F

(Ey(k)) (1 +17¢)?* )

1+ 2ne + 20262 k
#) ©)

= (1 + 2kné
(1+ n€)(1+2776+17262

— (A +2%kn?) (14— T 7
(+20pe) (14 o) @)

< (14 2kn%)(1 + 22>, ®)
By Assumptions 2 and 4, Nn?e? < 1/8 and (1+n%e)N <
5/4, so we get that ug ) < 25/16 (Eu(k))
Thus by Chebyshev’s inequality,
25
P(|yf —EQ)| 2 00E)) <. ©

So with probability at least 0.3, y§N> > SE(y (N)) =(1+
ne)™.
Under assumption 4, (1 + ne)N > %, which means that

(N) > 12 with at least 0.3 probability.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 17,2023 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.



Step 5: Concluding the argument. We showed that
<BN61,61> > }2 with probability at least 0.3. In partic-
ular this implies that HBNelH > . Now since z(® is
distributed as N(0, 1), <BNgc(O) el> <.Z‘(O),BN61> ~
N0, el || , Wthh is at least HBN€1 H in magnitude with
0.67 probability. It follows that 21" > L with probability at
least 0.2. O

Let f(x) = 27 Az. We next understand how the value of
f(z™)) is updated on each iteration.

Proposition 5. For g ~ N(0,1), we have f(z®) —
Fa® D) = n(g" AzM)2(2 — ng" Ag).

Proof. Plugging in the update rule and expanding gives
Fa®D) = (2W)T Ae® —n(g" A2™)?(2 — g™ Ag),

from which the proposition follows. O

A consequence of this update is that the sequence f(z(*))
is almost guaranteed to be decreasing as long as 7 is chosen
small enough.

Proposition 6. Assume that Tr(A) < 1 and that n < c.
After N iterations, f(zN)) < f(:c(())) with probability at least
99/100 provided that 1 < 1577 -
Proof. We show something stronger; namely that for the
first N iterations, the sequence f(z(*®)) is decreasing By
Proposition 5, f(xz(**+1) < f(2*)) as long as g” Ag < 2. The

probability that this does not occur is Pr (Z \ig? > E) <

Pr (Z)\Z(gl2 —-1)> % — 1).

The g2 — 1 terms are independent subexponential random
variables. So by Bernstein’s inequality (see [18] Theorem 2.8.2
for the version used here), this probability is bounded by
2exp(—c¢/n) as long as 7 is a sufficiently small constant.
Taking a union bound gives that f(z()) < f(2(®)) with
probability at least 1—2N exp(—c/n), which is at least 99/100
under the conditions given. O

Theorem 7. Suppose that ||Al|; <1, € < 1/2, and that A has
—e as an eigenvalue. If we take 1 < min (

then for some N = ©
constant probability.

1 c
321og(10/€2) log%)’
(élog %) we have f(x(N)) < 0 with

Proof. Given an 7 as in the statement of the theorem,
%logi—g , which satisfies the assumptions
of Lemma 4. Then ng > }2 with probability at least
0.2. By proposition 6, f(z™) < f(z(®) < 2 with at
least 0.99 probability, using the fact that n < @ for
an appropriately chosen absolute constant ¢, such that the
hypothesis of proposition 6 holds.

If f(N)) < 0, then the algorithm has already terminated.
Otherwise conditioned on the events in the above paragraph,
we have with constant probability that 2 — n(g(N))7 Ag(™M) >

% and (g(N))TAm(N) > ”AI(N)HQ > 6%)\1 > % Then by

choose N =
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Proposition 5 it follows that f(z(N+1)
2 — 55 <0.

< f@W) =5

[RVAN

We also observe that we can reduce the dimension of the
problem by using a result of Andoni and Nguyen. This allows
us to avoid a log d dependence.

Proposition 8. Suppose that A satisfies Amin(A) <
—al||All,, and let G € R¥™ have independent N(O,%).
Then we can choose m = O(1/a) such that Amin(GT AG) <
—a/2 and HGTAGH1 <2|4]; -

We are now ready to give the proof of Theorem 2.

Proof. The above result applies after scaling the 7 given in
Theorem 7 by 1/|A||;. So it suffices to choose 7 to be
bounded above by

1 1 c
A, ™ (32 log(10/¢%)° 1og1> ’
and within a constant factor of this value.
To choose an 7, pick a standard normal g, and compute
Ag using 1/e vector-matrix-vector queries. Then with constant
probability, Amax(A) < ||Ag|| < 2dAmax. Given this, we have

I14gll
2d "’
which allows us to approximate ||A||, to within a factor of d?
with constant probability. Given this, one may simply try the
above algorithm with an 7 at each of O(log(d?)) = O(logd)
different scales, with the cost of an extra logd factor.
Finally, we may improve the log d factor to a log(1/¢) factor
by using Proposition 8 to sketch A, and then applying the
above analysis to GT AG. Note that the sketch may be used
implicitly; once G is chosen, a vector-matrix-vector query to
GT AG can be simulated with a single vector-matrix-vector
query to A. O

d|Agll = 1Al = (10)

B. Lower bounds

We later show a lower bound for two-sided testers which
implies that the bound for ¢; -testers given in Theorem 2 is tight
up to log factors. If we require the tester to have one-sided
error, then we additionally show that the bound in Corollary 3
is tight for all p. Note that this distinction between one-sided
and two-sided testers is necessary given Theorem 17.

In order to obtain these lower bounds for adaptive testers,
we first show corresponding lower bounds for non-adaptive
testers. A minor modification to Lemma 3.1 in [4] shows that
an adaptive tester can have at most quadratic improvement
over a non-adaptive tester. This allows us to obtain our
adaptive lower bounds as a consequence of the non-adaptive
bounds.

For non-adaptive testers with one-sided error, we have the
following hard instance.

Theorem 9. Let A > 0 and suppose for all matrices A with
spectrum (—\,1,...,1) that a non-adaptive one-sided tester
T outputs False with 2/3 probability. Then T must make at

1 d
least 5 (

H—/\) vector-matrix-vector queries.
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In particular, this result implies that for non-adaptive one-
sided testers, a poly(1/e) ¢,-tester can only exist for p = 1.

Theorem 10. A one-sided non-adaptive (,-tester must make
at least Q(}Qd%w P) vector-matrix-vector queries.

Proof. This follows as a corollary of Theorem 9; simply apply
that result to the spectrum (e(d — 1)*/?,1...,1) where there
are d —1 1’s. O

Our Theorem 10 along with a minor modification of Lemma
3.1 in [4] yields a lower bound for adaptive testers.

Theorem 11. An adaptive one-sided {,-tester must make at
least Q(%dl_l/ P) vector-matrix-vector queries.

III. ADAPTIVE MATRIX-VECTOR QUERIES

We analyze random Krylov iteration. Namely we begin with
a random g ~ N(0, I;) and construct the sequence of iterates
g,Ag, A%g,... A¥g using k adaptive matrix-vector queries.
The span of these vectors is denoted K (g) and referred to
as the k™ Krylov subspace.

Krylov iteration suggests a very simple algorithm. First
compute g, Ag, ..., A¥T1g. If K1 (g) contains a vector v such
that vT Av < 0 then output False, otherwise output True. (Note
that one can compute Av and hence v Av for all such v, given
the k£ + 1 matrix-vector queries.) We show that this simple
algorithm is in fact optimal.

As a point of implementation, we note that the above
condition on Kj(g) can be checked algorthmically. One first
uses Gram-Schmidt to compute the projection II onto Kx(g).
The existence of a v € Kx(g) with vT Ab < 0 is equivalent
to the condition A, (ITAII) < 0. When A is e-far from
PSD, the proof below will show that in fact Ay, (ITAID) <
—Q(e) [|All,,» so it suffices to estimate Amin(ILALI) to within
O(e) || All, accuracy.

Proposition 12. For r > 0, « > 0 and § > O there exists
a polynomial p of degree O(% log %) such that p(—a) =1
and |p(x)| < 6 for all x € [0,7].

Proof. Recall that the degree d Chebyshev polynomial Ty is
bounded by 1 in absolute value on [—1, 1] and satisfies

Ty(1 4+~ > 20771,

(See [23] for example.) The proposition follows by shifting
and scaling Ty. O

Theorem 13. Suppose that A has an eigenvalue i, with
Amin < —€||Al,,. When p = 1, the Krylov subspace Ky(g)
contains a vector v with vI Av < 0 for k = O ((%)% log% .
When p € (1,00], the same conclusion holds for k
(0] ((%)T?” log % logd) .

Proof. Without loss of generality, assume that || A, < 1. Fixa
value T to be determined later, effectively corresponding to the
number of top eigenvalues that we deflate. By Proposition 12
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we can construct a polynomial ¢, such that ¢(Api,) = 1 and

lg(z)] < 4/ dffillep for x € [0, T~'/7] with

d oI i 1
<O -

eg(q) < e loe 70 | (11

where C is an absolute constant.
Now set
)\z' — T
= —_ . 12
p)=at) I 575 (12)

A >T—1/p

Since we assume [Al[, < 1, there at most T terms in the
T-1/(2p)

product, so
1 iy 13
Ve 8 €/10 |~ 13

By setting 7 = e~ ?/Pt1)  we get

0 (1) 1og+)
0] (%)ﬁlog%logd)

deg(p) <T+C

ifp=1

deg(p) = (14)

ifp>1

As long as k is at least deg(p), then v = p(A)g lies in Kx(g),
and

v Av = gT'p(A)* Ag. (15)

By construction, p(Apin) = 1. Also for all z in [07T*1/P],

p(@)] < lg(2)] < /e/10d0/P)71.
Therefore the matrix p(A)2A has at least one eigenvalue
less than —e, and the positive eigenvalues sum to at most

§ € -1y < €
, 10 10’
A >0

(16)

by using Holder’s inequality along with the fact that [|A|,, < 1.
So with at least 2/3 probability, g"p(4)2Ag < 0 as desired.
|

Remark 14. While we observe that deflation of the top
eigenvalues can be carried out implicitly within the Krylov
space, this can also be done explicitly using block Krylov
iteration, along with the guarantee given in Theorem 1 of [23].

We showed above that we could improve upon the usual
analysis of Krylov iteration in our context. We also establish
a matching lower bound by utilizing the proof of Theorem 3.1
presented in [12].

Theorem 15. A two-sided, adaptive (,-tester in the matrix-
vector model must in general make at least Q(Wﬁ)
queries.

IV. AN OPTIMAL BILINEAR SKETCH

We present an optimal bilinear sketch for PSD-testing which
will also yield an optimal /5-tester in the vector-matrix-vector
model.

Our sketch is very simple. We choose G € R4** to have
independent (0, 1) entries and take our sketch to be GT AG.
In parallel we construct estimates o and /8 for the trace and
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Frobenius norm of A respectively, such that § is accurate to
within a multiplicative error of 2, and « is accurate to with
| A||  additive error. (Note that this may be done at the cost
of increasing the sketching dimension by O(1).)

If GT AG is not PSD then we automatically reject. Other-
wise, we then consider the quantity

@ — Amin(GTAG)
BVklog k

If 7 is at most cpyg for some absolute constant cpgg, then the
tester outputs False, otherwise it outputs True.

By applying concentration inequalities to establish a lower
bound on Ay, (GTAG) when A is PSD, and an upper bound
when A is far from PSD, we achieve the following sketching
guarantee.

§ o= (17)

Theorem 16. There is a bilinear sketch GT AG with sketching
dimension k = O(% log? 1) that yields a two-sided {3-tester
that is correct with at least 0.9 probability.

Note that this result immediately gives a non-adaptive
vector-matrix-vector tester which makes O(1/¢?) queries.

By shifting the bilinear sketch above by an appropriate
multiple of the identity, we place ourselves in the situation
of Theorem 2 and hence are also able achieve tight bounds
for adaptive testers with two-sided error.

Theorem 17. There is a two-sided adaptive {>-tester in the
vector-matrix-vector model, which makes O(1/€?) queries.

As a consequence we also obtain a two-sided p-tester for all
p>2.

Corollary 18. For p > 2, there is a two-sided adap-
tive Up-tester in the vector-matrix-vector model, which make
O(1/€?)d*='/? queries.

Proof. Apply Theorem 17 along with the bound [|Al|, >
1_1
dv=2 [|A]lp. O

A. Lower bounds for two-sided testers

Our lower bounds for two-sided testers comes from the
spiked Gaussian model introduced in [19]. As before, our
adaptive lower bounds will come as a consequence of the
corresponding non-adaptive bounds.

Theorem 19. A two-sided (y,-tester that makes non-adaptive
vector-matrix-vector queries requires at least
o Q=5) queries for 1 <p <2
. Q(e%d2_4/”) queries for 2 < p < oo as long as d can
be taken to be Q(1/¢€P).
o Q(d?) queries for p = co.

V. SPECTRUM ESTIMATION

We make use of the following result, which is Lemma 11
of [20] specialized to our setting.
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Lemma 20. For a symmetric matrix A € R4¥9, there is a
distribution over an oblivious sketching matrix R € R¥™
with m = O(£) so that with at least 0.9 proability,

[(AR)Y*(AR)T — A|[>, < (1+¢) | Ax4 — A|l%,

(18)
where Ay, 4 is the optimal rank-one PSD approximation to A
in Frobenius norm.

min
Y * € rank k,PSD

Remark 21. In our setting one can simply take R to be
Gaussian since the guarantee above must hold when A is
drawn from a rotationally invariant distribution. In many
situations, structured or sparse matrices are useful, but we
do not need this here.

We also recall the notion of an affine embedding [28].

Definition 22. S is an affine embedding for matrices A and B
if for all matrices X of the appropriate dimensions, we have

IS(AX = B)|3 = (1+e) |[AX = B|%. (19

We also recall that when A is promised to have rank at most
r, there is a distribution over S with O(e~2r) rows such that
(19) holds with constant probability for any choice of A and
B [28].

Lemma 23. There is an algorithm which makes O(’:—; log )
vector-matrix-vector queries to A and with at least 1 — ¢
probability outputs an approximation of HAH]C » accurate to
within €|| A% additive error.

Proof. We run two subroutines in parallel.

Subroutine 1. Approximate |[Aj  — AH2F up to O(e)
multiplicative error.

Our algorithm first draws affine embedding matrices S and
Sy for r = k/e, and with e distortion, each with O(G%) TOWS.
We also draw a matrix R as in Lemma 20 with m = O(%)
columns.

We then compute S;AR and S; AR, each requiring ':—z
vector-matrix-vector queries, and compute Sy AS¥ requiring

2
]:—6 queries.

Let Y; be arbitrary with the appropriate dimensions (later
we will optimize Y}, over rank k£ PSD matrices). By using the
affine embedding property along with the fact that R has rank
at most %, we have

|(S1AR)Yi(S2AR)” + 5, AT
— (1+) |ARYi(S2AR)" + AST |
(1% 6)||S2ARY,RT A+ S, A},
(1+3¢) | ARV RT A + Al[%..
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As a consequence of this, and the property held by R, we have

. T T2
rk(Yk)rgllcr,lYk PSD H (SLAR)Y (S AR)™ + 5145 HF (20)
= (14 3¢) min || ARV, RT A + A|7 @1
k
= (176 | Ak+ — Al (22)

Thus by computing the quantity in the left-hand-side above,
our algorithm computes an O(e) multiplicative approximation
using O(k?/€5) vector-matrix-vector queries.

Subroutine 2. Approximate || A/, up to O(¢) multiplicative
error.

We simply apply Theorem 2.2. of [29], set ¢ = 2, and note
that the entries of the sketch correspond to vector-matrix-
vector products. By their bound we require O(e~2log(1/¢))
vector-matrix-vector queries.

Since HA;H_H?J = A% - |4y — AH;, we obtain an
additive O(e) || A||3 approximation to ||Ak+||§7 by running
the two subroutines above and subtracting their results.
Finally, by repeating the above procedure O(log $) times in
parallel and taking the median of the trails, we obtain a failure
probability of at most J.
O

We note that we immediately obtain a poly(1/e) query
lo-tester by applying Lemma 23 to approximate A; _. How-
ever this yields a worse e dependence than Theorem 16.
Perhaps more interestingly, these techniques also give a way to
approximate the top & (in magnitude) eigenvalues of A while
preserving their signs. We note a minor caveat. If A\;, and A\;41
are very close in magnitude, but have opposite signs, then we
cannot guarantee that we approximate A;. Therefore in the
statement below, we only promise to approximate eigenvalues
with magnitude at least [\g| + 2e.

Theorem 24. Let \1, A, ... be the (signed) eigenvalues of A
sorted in decreasing order of magnitude.

There is an algorithm that makes 0(61%22 log k) non-adaptive
vector-matrix-vector queries to A, and with probability at least
0.9, outputs 5\1, RN :\k such that

(i) There exists a permutation o on [k] so that for all i with
il = (Al + 26 [Aoiy — Ail < €[|Allz N

(ii) For all i, there exists j with |\j| > |\x| — € and |X\; —
M| < ell Al
With one additional round of adaptivity the number of mea-
surements can be reduced to O(]:—S log k).
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