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Abstract

We study L, polynomial regression. Given query access to a function f : [—1,1] — R, the goal is to find a
degree d polynomial ¢ such that, for a given parameter € > 0,

q-— <(1+¢)- min — .
1= fllo < (14<) - min_ lla— 1l
Here || - ||p is the L, norm, ||g|l, = (fil lg(t)[Pdt)'/P. We show that querying f at points randomly drawn
from the Chebyshev measure on [—1,1] is a near-optimal strategy for polynomial regression in all L, norms.
In particular, to find ¢, it suffices to sample O(d pgloylil}?id) points from [—1, 1] with probabilities proportional
to this measure. While the optimal sample complexity for polynomial regression was well understood for Lo
and Lo, our result is the first that achieves sample complexity linear in d and error (1 + ¢) for other values of
p without any assumptions.

Our result requires two main technical contributions. The first concerns p < 2, for which we provide explicit
bounds on the L, Lewis weight function of the infinite linear operator underlying polynomial regression. Using
tools from the orthogonal polynomial literature, we show that this function is bounded by the Chebyshev
density. Our second key contribution is to take advantage of the structure of polynomials to reduce the p > 2
case to the p < 2 case. By doing so, we obtain a better sample complexity than what is possible for general

p-norm linear regression problems, for which Q(dp/ 2) samples are required.

1 Introduction

We study the problem of learning a near optimal low-degree polynomial approximation to a function
f :[-1,1] — R based on as few queries f(¢1),...,f(¢n) to the function as possible. Studied since at least
the 19th century with the work of Legendre and Gauss on least squares polynomial regression, this problem
remains fundamental in statistics, computational mathematics, and machine learning. Concretely, our goal is to
find a degree d polynomial ¢ that satisfies the guarantee:

[a®) = F@l, < (1+) - min - Jla(t) = @)l
polynomial g

1
where ¢ is an input accuracy parameter and || - ||, is the Ly-norm, i.e., ||g|l, = (fil |g(t)\pdt) /p.

The problem of near-optimal polynomial approximation, visualized in Figure 1 and Figure 2, finds applications
ranging from learning half-spaces [KKMS08], to solving parametric PDEs [HD15], to surface reconstruction
[Pra87]. The choice of norm depends on the application: for example, p = 1 is used in robust approximation,
p = 2 is common in computational science settings [CM17], and p = oo is popular in applications where f is
smooth and known to admit a good minimax polynomial approximation [KKP17, Trel2]. Values of p between 2
and oo offer a compromise between robustness and uniform accuracy, and find applications, e.g., in the design of
polynomial finite impulse response filters in signal processing [BBS94, Dum07].

The above problem is an active learning or experimental design problem since we have the freedom to choose
the query locations t1,...,t,. Our goal is to answer two questions:
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Figure 1: We choose points t1,...,t, at which to query Figure 2: The blue curve is a near optimal approximat-
a function f. Based on f(t1),..., f(t,), we want to find ing polynomial of degree 3 for p = 2, while the red curve
a polynomial approximating f on [—1,1]. is near optimal for p = co.

1. As a function of the degree d, norm p, and tolerance £, how many queries n are required to find §7
2. How should the query locations t1,...,t, be chosen from [—1,1]?

When f is already a degree d polynomial, via direct interpolation, d + 1 queries are necessary and sufficient to
exactly fit f. When f is not a polynomial, we will require more than d + 1 queries.

The above two questions have been studied extensively for p = 2 and p = oo [Trel2, RW12, CM17, HD15]. It
is well-known that it is sub-optimal to select t1,...,t, either from an evenly spaced grid or uniformly at random:
methods that try to recover ¢ from uniform samples suffer from Runge’s phenomenon [BX09, CDL13]. Improved
results are obtained by selecting more queries near the edges of the interval [—1,1]. When p = oo, the typical
approach is to select queries at the Chebyshev nodes [Trel2]. Classical work in approximation theory shows
that, with d + 1 samples, this approach gives an O(logd) approximation in the L., norm if either polynomial
interpolation or a truncated Chebyshev series is used to construct the approximation g [Pow(7, Trel2].

For p = 2, a recent line of work studies randomly querying according to the non-uniform Chebyshev density,
which is the asymptotic density of the Chebyshev nodes:

1
m/1—t2"°

DEFINITION 1.1. (CHEBYSHEV DENSITY) Fort € [—1,1] the Chebyshev density at t is

The Chebyshev density is larger for values of ¢ near 1 and —1, and is smallest in the center of the interval, as
shown in Figure 4. Prior work proves that sampling query points independently according to this density and
then solving a weighted least squares problem returns a solution to the Ly polynomial regression problem with
accuracy (1+¢) using O (dlogd + £) queries [RW12, CDL13, CM17]. This bound is optimal up to a logd factor:
Chen and Price achieve an O (g) result using an alternative approach [CP19a], with a matching lower bound.
It has also been shown that Chebyshev density sampling solves the L., problem to a constant approximation
factor with O(dlogd) samples, improving on the O(logd) approximation guarantee for d + 1 samples that can be
obtained via classic techniques [KKP17].

In contrast to Lo, and Lo, there have been far fewer results on near optimal polynomial regression for general
p. The case of L; has been studied in the context of robust polynomial regression [KIXP17], but results are only
given under the strong assumption that f is Lo, close to an unknown polynomial. With effort, and at the cost of a
computationally expensive sampling procedure, it is possible to extend existing results on active linear regression
to obtain near optimal sample complexity bounds for p € [1,2] (see Section 1.2 for details). However, for larger
values of p, all prior methods either require super-linear sample complexity (Q(d?) or larger), or yield a constant
factor instead of a (1 + €) factor approximation.

1.1 Our Contributions We give the first algorithm for active polynomial approximation that simultaneously
achieves sample complexity linear in d and a (1 + ¢) approximation factor for all L, norms. Moreover, our
procedure is simple, computationally efficient, and universal: we just sample points from the Chebyshev density,
regardless of the value of p. That is, the same approach that works for the Lo norm surprisingly extends to all
L, norms. Our main result is:
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THEOREM 1.1. For any degree d, p > 1, and accuracy parameter € € (0,1), there is an algorithm' that queries f

O (p)
l p log (d)
€

atn points t1,...,t,, each selected independently at random according to the Chebyshev density

n [—1,1], and outputs a degree d polynomial §(t) such that, with high probability,

[t = FOIE < Q) min_la(t) = F@)]5

In addition to the simple sampling procedure, the algorithm for recovering ¢ is also simple: to achieve a constant
factor approximation, we show that it suffices to solve an ¢, polynomial regression problem to find the best
degree d polynomial approximating f at our queried points, reweighted appropriately”. To obtain a (1 +¢) factor
approximation, we first compute a constant factor approximation ¢(¢), and then run the same regression algorithm
on the residual f(t) — ¢(t). This type of two-stage approach has been used several times in prior work on active
learning for linear regression problems [DDHT08, MMWY22].

The full pseudocode is included in Algorithm 1 and Algorithm 2 below.

Algorithm 1 Chebyshev sampling for L, polynomial approximation, Constant Factor Approximation

Input: Access to function f, parameter p > 1, degree d, number of samples n

Output: Degree d polynomial g(t)

: Sample tq,...,t, € [-1,1] i.i.d. from the pdf ﬁ

Observe function samples b; := f(t;) for all i € [n]

Build A € R™ (441 and diagonal S € R™ " with [A];; =t} and [S]; = (/1 — t?)l/p
Compute x = argmingcgai1 || SAx — Sb||,

Return ¢(t) = Z;Hll xit 1

Algorithm 2 Chebyshev sampling for L, polynomial approximation, Relative Error Approximation

Input: Access to function f, parameter p > 1, degree d, number of samples n
Output: Degree d polynomial p(t)
1: Run Algorithm 1 on f with & samples to get a polynomial ¢(t)
2: Run Algorithm 1 on f(t) = f(t) — q(t) with § samples to get a polynomial ()
3: Return p(t) := q(t) + ¢(¢)

Theorem 1.1 has a near-optimal dependence on d, since a linear dependence is required. We show that our
dependence on ¢ is near optimal as well, proving the following lower bound:

THEOREM 1.2. Let p > 1 be a fized constant. Any algorithm that can output a (1 + €) approzimation to L,
polynomial regression with probability % must use n = Q(Ep%l) queries.

It can be shown directly that no algorithm that queries f at a finite number of locations can output better than a
2-factor approximation to the best polynomial approximation in the L., norm with good probability (see Section 6

or [KKP17] for details). On the other hand, a (1 4 ) factor approximation is achievable for p = 2 with just a
1 / ¢ dependence in the sample complexity [CP19a]. Combined with Theorem 1.1, Theorem 1.2 helps complete the
picture on the accuracy achievable for all other L, norms.

1.2 Our Approach and Comparison to Existing Techniques Like prior work on optimal polynomial
approximation in the Ly norm [CP19a, CM17], we prove Theorem 1.1 by casting the general L, problem as an
active linear regression problem involving an infinitely tall design matrix (i.e., a linear operator). In the finite
active linear regression problem, we are given full access to a design matrix A € R™*% and query access to a

d8p0(P)
0 (p?)

1By an artifact of our analysis, we sample n ~ B(no, nﬂo) and run Algorithm 2, where ng = and m = d(plng(d))o(p).

This has an overall sample complexity of d(plog(d) )O(p) with very high probability.
2We use ¢, to denote norms on finite dlmenswnal spaces and L, to denote norms on infinite dimensional spaces.
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target vector b € R™. The goal is to query a small number of entries from b, and based on their values, to
approximately solve miny ||Ax — b||,.

To solve the active regression problem for p = 2, it is known that it suffices to sample O(d(logd)/e) entries
of b with probabilities proportional to the ¢ leverage scores of the corresponding rows in A [Sar06]. This result
generalizes to linear operators with an infinite number of rows in A and entries in b [AKM"19]. The only
difference is that for linear operators, we cannot explicitly compute the £o leverage scores (since there are an
infinite number of them). To address this challenge, prior results on Ly polynomial approximation are based on
showing that, for the infinite linear operator underlying polynomial regression, the leverage scores can be tightly
upper bounded by the Chebyshev measure [RW12, CM17]. Sampling by this measure thus yields an upper bound
of O(d(logd)/e) samples.

To extend these results to general L, norms, a natural starting point is to leverage generalizations of the Lo
leverage scores to other L, norms. There are several possible generalizations in the finite matrix case, including
the ¢, leverage scores [DDH 08, CDW18], the £, sensitivities [CW W19, BDM 20, MMM 22], and the ¢, Lewis
weights [CP15, CD21, PPP21, MMM *22]. Unfortunately, naive applications of these tools to the L, polynomial
approximation problem all lead to sub-optimal guarantees. For example, it is possible to upper bound the L,
sensitivities by a scaling of the Chebyshev measure. We could then apply recent work on active regression via
sensitivity sampling [MMWY22]. However, that work leads to at best a quadratic dependence on d.

Alternatively, we might hope to take advantage of recent work on active regression via sampling by £,
Lewis weights — a conceptually different generalization of the ¢5 leverage scores than sensitivities [CD21, PPP21,
MMWY22]. However, there are a few major challenges. First, we cannot explicitly compute the Lewis weights
for the infinite dimensional polynomial operator, and it is much harder to obtain closed form bounds on these
weights than it is for the Lo leverage scores and L, sensitivities. Second, for regression problems with d features,
like degree-d polynomial regression, Lewis weight sampling requires O(d™®*(1:2/2)) rows [CP15, MMWY22]. So,
the approach naively provides linear sample complexity results only for p € [1,2].? For polynomial regression
specifically, it is possible to use a technique from [MMMT'22] to reduce from the general p case to p € [1,2],
which leads to a dp dependence, as in our Theorem 1.1. However, this reduction yields at best a constant factor
approximation. The limitations of existing techniques are summarized in Figure 3.

To prove Theorem 1.1, we circumvent the above limitations for L, Lewis weight sampling. First, for
p < 2, we provide explicit bounds on the Lewis weights of the infinite linear operator underlying polynomial
regression, showing that these weights are closely upper bounded by the Chebyshev measure. This almost
immediately yields our results for p € [1,2]. As discussed in Section 2, doing so requires a significantly different
approach than existing work on bounding leverage scores of the operator. To the best of our knowledge, our

SFor p € [1,2], one option would be to first carefully discretize the regression operator before computing Lewis weights, e.g.,

using L, sensitivity sampling (the “first stage” in Section 2.2). While less technically involved than the p > 2 case, analyzing this
approach still requires proving a bound on the L;, sensitivities of the polynomial operator. Moreover, this stage gives sub-optimal

< 5.4
dimensionality reduction, so it would be necessary to compute the Lewis Weights of a O(EdZJrinp) X d matrix, using significant space
and time, and resulting in a sampling procedure that is not universally good for all p.

Approach ‘ Sample Complexity ‘ Approximation ‘
s . ~ oz a\ O
L, sensitivity sampling [MMWY22] d? (%) (1+¢)
. . . . ~ e ax(1l,p/2) ( logd Op)
L, sensitivity + Lewis weight sampling [MMWY22] dmax{lp (T) (1+¢)
L; Lewis weight sampling [MMM ™ 22] dp? (log dp)° ™) o(1)
(p)
Chebyshev measure sampling for all p > 1 (our results) d (l(’aipd) (1+¢)

Figure 3: Summary of results for L, polynomial regression. Our result is the first to obtain both an optimal
linear dependence on d for all p as well as a (1 + ¢) factor approximation.
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Figure 4: Plot of the Chebyshev Measure on [—1,1]. Figure 5: Visualization of the polynomial operator.
Sampling from the Chebyshev measure draws fewer P’s column span is the set of degree d polynomials. We
points from the middle of [—1, 1], and more points from can approximately minimize |[Px — f[|, by leveraging
the ends of [—1,1] row-sampling methods for finite matrices.

bounds are the first on the Lewis weights of any natural infinite dimensional regression problem, so we hope
they will be helpful in related settings where leverage scores have proven powerful. Examples include active
learning for sparse Fourier functions, for bandlimited functions, and for kernel methods in machine learning
[CKPS16, CP19b, AKM™19, EMM20, MM20].

Second, for p > 2, we need to obtain tighter bounds for Lewis weight sampling than available from black-box
results that depend on d?/2. To do so, we provide a new analysis tailored to the polynomial operator. We show
that for any p, it actually suffices to collect d polylog(d) samples according to the Lewis weights for some other
p’ chosen in [2,2]. Our analysis requires opening up a net analysis used in [BLM89] and [MMWY22] to analyze
Lewis weight sampling for general linear operators. We leverage the fact that the L, Lewis weights are close to
the L, sensitivities — both are approximated by the Chebyshev measure.

2 Technical Overview

The algorithm that achieves Theorem 1.1 is the same for all L, norms (sample points via the Chebyshev
measure and then solve two weighted ¢, regression problems — see Algorithm 1 and Algorithm 2). Our analysis
differs for p € [1,2] and for p > 2. We first describe the p € [1,2] analysis, which is more direct.

As discussed, we solve the active polynomial approximation problem by casting it as an L, regression problem
with an infinitely tall matrix. Concretely, let P : R41 — Ly([—1,1]) be the polynomial operator, which maps a
coefficient vector x € R%*! to its corresponding degree d polynomial: [Px](t) := ZZ:O xtF for t € [-1,1]. Our
original regression problem is equivalent to finding a vector x such that

& — p 1 _ p
1Px = fll < (1+2) min [[Px— flj}

Figure 5 visualizes this operator as matrix with infinite rows. The k** column of P is the polynomial ¢ — t*.
Each row of P, indexed by some t € [—1, 1], is the vector [1 t ot .. td].

As discussed, for p = 2, an effective approach to solving linear regression problems using a small number of
queries of the target function is via leverage score sampling. Specifically, entries of f are sampled independently
at random with probability proportional to the leverage score of the corresponding row in P. For a finite matrix
A € R™*4 the leverage score of the i*" row of A is

x(i))?
T[A](7) : M

T xeRd|xla>0 [ AX[Z

That is, 7[A](7) is the maximum contribution that the i** entry of a vector in A’s range can make to its £ norm.
This definition naturally extends to linear operators [AKM™ 19, EMM20], and we can define

) (o
T[PI(t) := xeR4H [x|2>0  [|Px[3
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For finite matrices the sum of leverage scores is always equal to the rank of A, and similarly we have that
2

f_ll 7[P](t)dt = d+1. Recalling the particular definition of P, we can write 7[P](t) = maXgeg(q)<d %. It turns
— 2

out that this maximum is well studied in the orthogonal polynomial literature, as it is equal to the reciprocal
llgll3

of the Christoffel function A4(t) := mingeg(q)<a CONE While difficult to compute exactly, it can be shown that

Aa(t) > Civld*tz [Nev86]. This directly implies that, with appropriate scaling, the Chebyshev density upper bounds

the leverage function. That is, we have 7[P](t) < Cv(t), where v(t) := ﬂ% is an appropriate scaling of the

Chebyshev measure. Moreover, since [ 711 v(t)dt = d+ 1, we know that this upper bound is tight up to constants.
Therefore, sampling from the Chebyshev density can be used to solve the Ly polynomial approximation problem
with O(dlogd + d/e) samples — only a constant factor more than would be required if sampling by the true
leverage scores, which integrate to d + 1 [CP19D).

2.1 Bounding Lewis Weights of the Polynomial Operator It has recently been shown that active
regression results for finite matrices under general £, norms can be obtained by sampling by the Lewis weights,
a generalization of the £y leverage scores [CD21, MMWY22]. For a matrix A € R™*? the £, Lewis weights for
A are the unique numbers wq, - - - , wy, such that

TZ'(W%_%A) = w; for all i € [m],

where W € R™*™ ig the diagonal matrix with W;; = w;. As for leverage scores, there are algorithms that
compute the Lewis weights for finite matrices. But since we want to apply the weights to sample from infinite
operators, it is necessary to obtain closed form bounds. It is much less clear how to do so: unlike the leverage
scores, the Lewis weights are defined in a circular fashion, instead of as the solution of a natural optimization
problem.

To handle this challenge, we turn to the definition of a-almost Lewis weights for matrices given in [CP15].
Specifically, we say that wy,--- ,w,, are a-almost Lewis weights for A if

(2.1) lwl < T[W%_%A](i) < aw; for all i € [m]
a

where W is again the matrix with w; on its diagonal. [CP15] prove that, for 0 < p < 2, after scaling by a factor
of o, the a-approximate Lewis weights are upper bounds for the true Lewis weights of a matrix.

This suggests a natural approach to bound the Lewis weights of a matrix: exhibit some weights wq,--- , wy,
and verify that the inequality above holds. In the case of the infinite operator P, our goal is to find a function
w(t) : [-1,1] = R such that

1
(2.2) —w(t) < TWE B P(t) < aw(t) for all ¢ € [—1,1]
o
where [Wf](t) := w(t) f(t) is the linear operator equivalent to a diagonal matrix.
As a first possible candidate for the Lewis weight function, we consider the Chebyshev density v(t) itself.

To do so, we have to bound the leverage function T[V%_%'P](t), where [Wf](t) := w(t)f(t). We establish a

surprisingly direct bound based on the fact that for each p, the weighting ViTr aligns with the orthogonalization
measure of certain Jacobi orthogonal polynomials. Specifically, we prove:

THEOREM 2.1. Let Ji(a’ﬁ)(t) denote the degree i Jacobi Polynomial with parameters o and 3. Then, letting
a:ﬂ:%f%, we have

d
AP0 = —— o S (P (0)?

That is, we can ezactly characterize this Chebyshev-reweighted leverage function in terms of Jacobi
polynomials. Further, because Jacobi polynomials are well studied in the orthogonal polynomial literature, we
can appeal to prior work on uniformly upper bounding these polynomials to bound the above sum of squares.
Overall, in Section 4 we prove:

(2.3) Lo@) <rD2 3P0 <av(t)  forall [ <1——

o d?
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(1) (1-2) 1

Figure 6: Plot of the scaled Chebyshev Measure Figure 7: Plot of the clipped Chebyshev Measure (—)
(—) and corresponding reweighted leverage function and corresponding reweighted leverage function (—) for
T[V%*%P](t) (—)on [~1,1] ford =6, p=1. Formost t & [0.5,1] and d =6, p=1. As proven in Theorem 2.2,
values of ¢ both curves are close, but for [t| > 1— J; the these functions are within a constant factor for all ¢, so
curves diverge. This means that the Chebyshev den- the clipped measure approximates the L, Lewis weights
sity itself does not directly approximate the L, Lewis for p < 2. We also visualize the “spike” polynomial ¢(t)
weights, motivating our study of a clipped version of (—) and the upper bound (—) used in the proof of
the measure, denoted w(t). Theorem 2.2.

This is very close to what we need to show, but unfortunately the almost-Lewis weight property does not hold
for large |t| > 1 — %. Figure 6 shows what goes wrong: the Chebyshev density v(t) diverges to +oo while the

weighted leverage function T[V%fip](t) remains bounded. To resolve this issue, we adjust our proposed Lewis
weight function, and instead consider w(t) := max{ec1(d+ 1)%,v(¢)}, which clips the Chebyshev density so that it
cannot diverge to +co. We can then show the following core theorem for small p:

THEOREM 2.2. There are fixved constants ¢1, ¢, c3 such that, letting w(t) = min {01 (d+1)2 } be the clipped
Chebyshev measure on [—1,1] and letting W be the corresponding diagonal operator with [W [ }( ) =w(t) - f(t),
for any p € [%,2] and t € [-1,1],

C2

——w rwt/2-1/p c3w
() < TVEI() <

Theorem 2.2 shows that the clipped Chebyshev density gives a set of O(log3 d)-almost Lewis weights for the
polynomial operator. So we can upper bound the true Lewis weights by the clipped measure, and only gain a
polylog(d) factor in the final sample complexity in comparison to exact Lewis weight sampling. Moreover, we can
obtain the same bound via sampling by the Chebyshev measure itself, which tightly upper bounds the clipped
measure after scaling (i.e., it has the same integral on [—1,1] up to a constant factor). We also reiterate that
when p € [1,2] we will directly appeal to this theorem for this value of p, but when p > 2 we will appeal to this
theorem for a different p’ € [ 2], which is why we prove Theorem 2.2 for some Values of p< 1.

We prove Theorem 2.2 by separately considering the case when [t < 1 — J; and when [¢| > 1 — 5. The
first case is easier: we show that for such values of ¢, the reweighted leverage function corresponding to the
clipped Chebyshev measure — i.e. 7[W'/2=1/PP](t) - very closely approximates the reweighted leverage function
corresponding to the unchpped measure. We can then directly appeal to Equation 2.3. The second case is more
challenging: when [¢t| > 1— d2 , the density at ¢ is different in the clipped and unclipped measure, so the reweighted
leverage scores differ significantly. To deal with this hard case, we separately prove an upper and lower bound as
follows:

Upper Bound: Because w(t) itself is bounded, we can bound 7[W'/2=1/PP](t) < 7[P](t), and we use the Markov
Brothers’ inequality to bound 7[P](t) < O(d?).
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Lower Bound: Because 7[W'/2~1/PP|(t) is a maximization over degree d polynomials, we can prove a lower

bound by exhibiting a specific “spike” polynomial ¢(¢) which has ([W%_%q](t))Z/HW%_%qH% = Q(lo‘é—id).

The detailed proof can be found in Section 4. The final result of Theorem 2.2 is visualized in Figure 7.

2.2 Active L, Regression via Chebyshev Sampling Now that we have now bounded the L, Lewis weight
function of the polynomial operator P by the Chebyshev density for p € [%, 2], in order to prove Theorem 1.1
for p € [1,2], we can almost directly apply existing Lewis weight sampling guarantees for active ¢, regression
[MMWY22, CD21]. However, there remains an outstanding challenge. Naive Lewis weight sampling for ¢,
regression on an m X d matrix incurs a log(m) dependence in the sample complexity®. This rules out directly
applying Lewis weight sampling to our infinite operator P, for which m is infinite (recall Figure 5).

We address this challenge with a simple observation: sampling rows of P by the Chebyshev measure is
essentially equivalent® to collecting a large uniform sample of rows of P and then subsampling those rows according
to the Chebyshev measure. We visualize this “two-stage” decomposition of our sampling method in Figure 8,
and emphasize that we do not algorithmically generate the first uniformly sampled matrix®. Instead, so long as
this hypothetical two-stage algorithm is correct, by the equivalence of these sampling schemes, we know that our
actual algorithm is correct.

Proving correctness requires two key ingredients. Let A € R™*4+1 he this matrix created by uniformly
poly(d)
poly(e)
the full regression problem on P. Second, we prove that the Chebyshev measure evaluated at A’s rows tightly

upper bounds A’s Lewis weight distribution. So, by prior work [MMWY22 CD21], this can be used to show
that sampling by the measure suffices to obtain a (1 4 ) error solution to the regression problem involving A.
This Lewis weight sampling stage only has a dependence on log(ng) = log(g)7 avoiding the log(m) issue. Overall,
combining the error guarantees of both stages ensures that our hypothetical two-stage algorithm samples rows of
P in the same way as Algorithm 1 and with the same sample complexity as Theorem 1.1.

To prove the first point, that uniform sampling a large number of rows preserves a near-optimal solution, we
turn to a different tool from the matrix sampling literature: L, sensitivity sampling. The L, sensitivities are a
natural generalization of the Lo leverage scores, defined as

[Px]®)” _ la®)I”

ax -
xekitt [[Px|[} des(@<a [qll}

sampling ng rows of P. First, we show that taking ng = suffices to recover a (1 + €) error solution to

Up[PI(t) =

The value of using L, sensitivity sampling is that standard concentration bounds and an e-net argument show
that sampling ng = ig};gg rows proportionally to their sensitivities suffices to recover a (1+4¢) error solution to the
full L,, regression problem. While the dependence on d is polynomially worse than that of Lewis weight sampling,
it has no dependence on m. Since we want to sample rows of P uniformly, we will need to show a uniform bound
on ¥,[P](t) (ie., an upper bound that does not depend on t). Using a classical result on the smoothness of
polynomials (specifically the Markov brothers’ inequality), we can indeed show v,[P](t) < d?(p + 1), which in
turn implies that ng = gggg uniform samples suffice.

To prove the second point, we need to show that the Chebyshev measure upper bounds A’s Lewis weights.
To do so, we prove that the clipped Chebyshev measure, which is an almost-Lewis weight measure for P, is also
an almost-Lewis weight distribution for A. Again the proof mostly follows from standard concentration results
combined with an e-net argument, although we also need to use the fact that the clipped Chebyshev measure is
bounded.

We visualize the structure of our two-stage proof in Figure 8. Overall, the arguments above complete the
analysis of L, polynomial regression for p € [1,2].

ZSome work on Lewis weight sampling, including by Cohen and Peng [CP15], implicitly assumes logm = O(logd). This is
reasonable in the finite matrix setting, but does not apply when m is infinite.

5Two subtleties emerge here. First, we say “essentially equivalent” since this two-stage sampling scheme is O( close to

poli(d))
our actual Chebyshev sampling in total variation, so these schemes are indistinguishable but not the same. Second, analyzing the
two-stage procedure will require a random choice of the sample number n — see the footnote on Theorem 1.1.

8In principal, we could algorithmically generate the uniform subsampled matrix and numerically compute its £, Lewis weights,
although this would incur a much higher polynomial runtime dependence on d than our simpler approach of sampling directly from

the Chebyshev measure.
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Figure 8: Sketch of the two-stage proof technique described in Section 2.2. We show that the Chebyshev
measure sampling of Algorithm 1 is equivalent to a hypothetical two stage sampling procedure that first

poly(d)
poly(e)
samples the rows of A by the Chebyshev measure, which approximates A’s Lewis weight distribution. Since
we can uniformly bound the L, sensitivities of the original regression problem by poly(d), we can argue that
both stages of sampling preserve the solution of the L, regression problem, and thus that our final solution

gives a (1 + &) approximation to the optimal.

uniformly samples O ( ) query points from [—1,1] to form Vandermonde matrix A, and then further

2.3 Near-Linear Sample Complexity for p > 2 The next challenge is to extend our results to p > 2. We
could use a similar approach as in Section 2.1 and Section 2.2, but doing so would lead to suboptimal sample
complexity. In particular, £, matrix Lewis weight sampling algorithms have a very different sample complexity
for p < 2 and p > 2. For p € [0,2], Lewis weight sampling requires O(d) samples. For p > 2, Lewis weight
sampling requires O(dp/ 2) samples, and there are worst-case matrices that necessitate this sample complexity. So
to achieve O(d) sample complexity, we require a novel analysis of £, Lewis weight sampling for active regression
that leverages the structure of the polynomial operator P. Concretely, within the framing of Section 2.2, we keep
the uniform sensitivity sampling stage but provide a new analysis for the second Lewis weight sampling stage.

We start by describing a simple approach for achieving constant factor error (but not (1 + ¢) factor) which
follows from an observation in [MMM"22]. In particular, if we only want constant factor error, it suffices to find a
subsampling matrix S that satisfies an ¢, subspace embedding property. Specifically, we need that for all x € R4
|SAx||p ~ || Ax|[P. We argue that such a matrix can be constructed with a number of rows linear in d (for any
constant p) as follows: Let f be a degree d polynomial, and let r be an integer such that ¢ := £ € [1,2]. Then,
t + (f(t))" is some degree rd polynomial. So, if A € R"*4*! is our Vandermonde matrix resulting from uniform
sampling, we can let B € R™*74+1 be another Vandermonde matrix generated by the same time samples but
describing polynomials of degree rd. Then, for all x € R%*! there exists some y € R"¥*! such that (Ax)" = By,
where we define the exponentiation elementwise. In particular, we have ||Ax||? = || By||¢. Therefore, if we know
that S provides an £, norm subspace embedding for B, so that |SBy||? ~ | By||4 for all y € R™*!, we also know
that S is a subspace embedding for A: [|SAx||? ~ || Ax| for all x € R4™!. Since B is exactly the Vandermonde
matrix we would have generated from uniformly sampling in Section 2.2 with degree rd and ¢, norm, we know
that the Chebyshev measure bounds the Lewis weights of B, and that the Lewis weight subsampling matrix S is
a subspace embedding for B, and therefore also for A.

Achieving (1 + ¢) error regression is harder but takes a similar approach. In order to have Lewis weight
sampling imply (1 4 €) error regression, a subspace embedding does not suffice and a more detailed argument is
needed [MMWY22]. A crucial step in this analysis is showing an affine embedding: that ||S(Ax—b)||, = || Ax—Db|,
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for all Ax with small ¢, norm. [BLMS89] and [MMWY?22] provide a way to prove this affine embedding via a
compact rounding argument, which designs a structured set of e-nets which allow for a tight O(dmax{l’p/ 2} ) sample
complexity to be obtained from Lewis weight sampling. To obtain a linear dependence in d for all p, we reduce
from the £, case to the ¢, case for ¢ < 2, as discussed above, but in a less direct way. In particular, we show that
a compact rounding for the range of B can be directly transformed to construct a compact rounding of the same
size for the range of A.

This approach is elaborated on in Section 5.3. Critically, we will now enforce that r is also an odd integer,
so that we not only get (Ax)” = By but also have Ax = (By)l/’". This does not hold when r is even since
negative entries of Ax get turned positive. For p > 3, we let r be the largest odd integer smaller than p, so that
q= % ¢€[lL,2]. For p € (2,3), this would pick » = 1 which would not be helpful, so we instead take r = 3, so that
g="%¢ [%, 1]. Once we construct this compact rounding, we find that sampling the rows of A by the ¢, Lewis
weights of B achieves the affine embedding with sample complexity linear in d. And since Section 2.1 bounds the
Lewis weights of B by the Chebyshev measure, we conclude that Algorithm 2 achieves Theorem 1.1 for all p > 2.

2.4 Lower Bounds and L., Polynomial Approximation The linear dependence on d in Theorem 1.1
cannot be improved: when f is exactly equal to a degree d polynomial, if we do not take at least d + 1 samples
it is not possible to recover a zero-error approximation to the function. A natural question is if the 1 /50(1’)
dependence in the theorem is also tight — i.e., is it necessary for the accuracy to depend exponentially on p?

We answer this question in the affirmative with the lower bound of Theorem 1.2, which has a short and direct
proof. For any algorithm that queries f at most n < O(Ztr) times, there must exist an interval Z C [—1,1]
of width eP~! such that none of the algorithm’s queries lie in Z with probability % We then randomly select a
function f that is either +1 or —1 on Z with equal probability, and 0 elsewhere. To obtain a 1 4 ¢ approximation
in the L, norm, the algorithm must distinguish between these two cases, but with probability %, it does not even
obtain a sample from the non-zero region.

Finally, we note that our techniques can be extended to give a constant factor approximation to the L,
polynomial approximation problem with O(d polylog(d)) samples. Details are discussed in Section 6, where we
relate the Lo, problem to the L, problem with p = O(logd). Results for the Lo, norm were already shown in
[KKP17] using a different approach but the same Chebyshev measure sampling distribution.

' Markov Brothers’ | ! Matrix Lewis weights
| |

Orthogonal polynomials
(Chebyshev / Jacobi)

'/ leverage scores

| Reduction L, Sensitivity Uniform Sampling Almost Lewis Weight

| to £, space ! Bounds, p > 1 (two stage) Bounds, p € [2,2]
' Compact | Affine (1 + )-approximation, (1 4 ¢)-approximation,
. Rounding | Embedding p > 2 (one stage) p € [1,2] (one stage)

Figure 9: Flowchart of proofs: dashed rectangles represent existing results, solid rectangles represent our technical
contributions.

Organization of the rest of the paper. We first consider the L, regression problem for p € [1,2] in
Section 4. Specifically, we start by relating the Chebyshev density to the L, Lewis weights for all p € [%,2}.
We first outline the proof for p = 1 in Section 4.2 and defer the proof for general p € [%, 2] to Section 4.3 and
Section 7. We then prove correctness of Algorithm 1 for p € [1,2] in Section 4.4 and Section 4.5.

We handle p > 2 in Section 5. We first prove the correctness of constant-factor regression in Section 5.1, prove
the majority of (1 +¢) error analysis in Section 5.2, and prove a core technical claim for p > 2 in Section 5.3. We
present the lower bound Theorem 1.2 in Section 5.2. Finally, we address L., regression in Section 6. A summary
of our high-level ideas and their dependencies is shown in Figure 9.
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3 Preliminaries

For an integer n > 0, we use [n] to denote the set {1,...,n}. We use poly(n) to denote a constant degree
polynomial in n and polylog(n) to denote a polynomial in logn.

Throughout this paper, unbold lowercase letters are scalars or functions, bold lowercase letters are vectors,
bold uppercase letters are matrices, and calligraphic uppercase letters are linear operators. The norm || - ||,
will interchangeably refer to the vector norm, defined by |[|x[|f = Z?:l |z;|P, and the continuous norm
I £115 = fil |f(t)|” dt. We say that a matrix A is a subspace embedding for another matrix or linear operator A
if for all x we have L[| Ax||5 < ||Ax||p < o Ax||? for some constant v > 1. More broadly, if two scalars = and
y have iw <y < ax, then we write x ~, y. For instance, the subspace embedding guarantee can be written as
[ Ax||P =4 ||Ax||b for all x. We use brackets for indexing on both vectors and functions.

The " entries of the vectors x and Ax are denoted x(i) and [Ax](i). The /5 leverage score of the i*" row
of matrix A is denoted 7[A](7). The ¢, Lewis weight of the i*" row of matrix A is denoted w,[A](i). The ¢,
sensitivities of the it row of matrix A is denoted 1),[A](i). We similarly denote the leverage function, Lewis
weight function, and sensitivity of an operator A at time ¢ as 7[A](t), wy[A](t), and ¢, [A](t).

Let P denote the polynomial operator of degree d:

d
PR 5 L,([-1,1)) [Px](t) == Zwt

Note that the maximum degree of a polynomial is d, but that the rank of P is d + 1 because of the constant
degree-0 polynomial.

We recall the Markov brothers’ inequality that bounds the magnitude of the derivative of a polynomial of
degree d whose magnitude inside the interval [—1,1] is bounded by 1.

THEOREM 3.1. (MARKOV BROTHERS’ INEQUALITY, E.G., THEOREM 2.1 IN [GM99]) Suppose q(t) is a polyno-
mial of degree at most d such that |q(t)] < 1 fort € [-1,1]. Then for all t € [-1,1], |¢'(t)| < d?.

Throughout this paper, we will be analyzing Algorithm 1, and showing that this algorithm satisfies
Theorem 1.1.

4 Active L, Regression for p € [1,2]

In this section, we start with the definition of leverage scores and prove that the L; Lewis weights for the
polynomial operator are bounded by the Chebyshev measure. In particular, this section shows the relationship
between Lewis weights and uniform bounds on orthogonal polynomials. We then use this Lewis weight bound to
show that O(d) samples suffice for robust L; regression.

4.1 Warm Up: Bounding the Leverage Scores for p = 2 We first start with leverage scores, which are
a key building block underpinning Lewis weights. Before discussing Lewis weights, we will look at bounding the
leverage scores of P, which relates to solving Lo regression. We first look at the properties of Leverage Scores for
matrices:

DEFINITION 4.1. For a matriz A € R"*?_ the leverage score for row i € [n] is:
: ([Ax](i))*
T[A](7) = max —_
A1) xeR4, || Ax|;>0 || Ax||3
The leverage scores of a matrix are well studied, and we will rely on two of their properties:
1. Leverage Scores are invariant to change of basis: for full-rank U € R?*4, we have 7[AU](i) = 7[A](i).
2. If A has orthonormal columns, then 7[A](i) = ||a;||3 where a; is the i*" row of A.

So, if we can find a matrix U such that AU has orthonormal columns, then we can compute 7;,(A) = ||[AU](7)||3.

We can use this argument to bound the Leverage Function of the polynomial operator:
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DEFINITION 4.2. For an operator A : R¥*! — Ly([—1,1]), the leverage function for A at time t € [—1,1] is

([Ax](t))?

xR, || Ax|s>0  ||Ax]|3

T[A](t) :=

We can easily see that the leverage function is also rotationally invariant. As shown in Figure 5, P has columns
that represent the first degree d monomials. That is, we think of the i*" column of P as the polynomial p;(t) = #~L.
Since fil pi(t)p;(t)dt # 0 in general, these columns are not orthogonal.

While the first degree d monomials are not orthogonal, the Legendre polynomials are. So, we can find a
change-of-basis matrix U such that the columns of PU are Legendre polynomials instead. Under this basis, we
have |[PUx||3 = ||x||3, which lets us simplify the leverage function. Letting L;(t) denote the degree i Legendre
polynomial, normalized so that f_ll(Li (t))%dt = 1, we have

2

@h) Pl = max LU (PUX®)? = max Zd:le‘(t) - zd:(L-(t))Q
' xekit1  |[PUx||2 x[l2=1 Ixlla=1 \ &= e
The last equality follows because max x,—1(a'x)? = ||a||3 for any a. If we view PU as an infinite matrix whose

rows correspond to ¢t € [—1,1] and whose columns correspond to the Legendre polynomials, then Equation 4.4
shows that 7[P](¢) equals the row-norm-squared of this matrix, matching the second property we mentioned for
matrix leverage scores.

So, to bound the leverage function for P, we now need to bound the sum-of-squared Legendre polynomials.
Here we appeal to existing uniform bounds on orthogonal polynomials. For instance, Lorch proved in 1983 that

|L;(t)] < 4 /m/% for all t € [—1,1] [Lor83]. So we conclude the bound

d d

. ' 2 _2d+1) "
T[P)(t) = Z%(Lz(t))? < ;m — = =)

That is, the leverage function is upper bounded by the Chebyshev measure, which intuitively implies that
O(dlogd) samples from the Chebyshev measure suffice to recover a polynomial for Lo regression. Formally,
for Lo regression, this technique can be analyzed using the tools in [CP19a] or [RW12].

4.2 Bounding the Lewis Weights for p = 1 Having covered the Ly case, we now focus on p = 1, where the
leverage function is no longer sufficient. We turn to Lewis weights, and start by considering the standard matrix
setting:

DEFINITION 4.3. Let A € R"™% and p > 0. Then the £, Lewis weights for A are the unique weights
wplA](1), ..., wy[A](n) such that

11
T[W? 7 A](i) = wy[A](4)

or all i € [n], where W € R™™ is the corresponding diagonal matriz with W ; = w 7).

for all i here W € R™* h ding d l h W, plA

[CP15] show several important properties of Lewis weights:

1. When p € [1,2], sampling O(dlogd) rows of A with respect to its Lewis weights suffice to recover an £,
subspace embedding.

1_1

2. If some other weights w1, ...,w, have % < w < C for all i € [n] and some constant C, where
W, i = w;, then wy, ..., w, are close to the true Lewis weights.

In particular, if we can find any such w’s, then we can sample O(dlogd) rows of A with respect to wy,...,w,

and still get an ¢, subspace embedding, which suffices to recover a near-optimal solution to /¢, regression. This
motivates our approach, where we show that the Chebyshev Measure v(t) nearly satisfies this guarantee.
We start by defining Lewis weights for operators:
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DEFINITION 4.4. For an operator A : R¥*Y — L,([-1,1]), a Lewis weight function for A satisfies

w,[A)(t) = TV 7 A1)

for all t € [—1,1], where W is the corresponding diagonal operator such that [Wx](t) = wp[A](t) - z(t) for any
function x.

The Chebyshev Measure will not satisfy this strict equality criteria, so we instead consider the approximate
criteria:

DEFINITION 4.5. For an operator A : R4t — Ly([~1,1]), a function w(t) is a C—Almost Lewis Weight Function
for A if
11
1. TIW2 "7 Al() <C
C~ w(t) -
for allt € [—1,1], where W is the corresponding diagonal operator such that [Wz](t) = w(t)-x(t) for any function
x. We often refer to W as the Lewis Weight Fixpoint Ratio.

Similarly to the Lo case, we relate the leverage function to a class of orthogonal polynomials. However, for p # 2,
1 1

the Legendre polynomials do not make the columns of W27 » A orthogonal. For p = 1, we turn to Chebyshev

Polynomials of the Second Kind, denoted Uj;(t), which satisfy f_ll Us(t)U;(1)V1 — t2dt = S1—;1.

THEOREM 4.1. Let v(t) = m‘}%, V be the diagonal operator for v(t), and U;(t) be the degree i Chebyshev

polynomial of the second kind. Then,

1 = Us(a+1)(t)
v(t) = 2(d+1)

Proof. Let U be the change-of-basis matrix such that PU has columns that are Chebyshev polynomials
of the second kind. We first verify the orthogonality by simplifying the denominator of T[V_%P] (t) =
(V=2 PUX](1)*.

maXy —
V- 2PUx|3

s$)V'1— s2ds

__ 7 2

With this orthogonality, we can rewrite the rescaled leverage scores as a squared row-norm:
oo ([PUX](1))?
T[V_%P](t) = max (t)—
xeE [V PUX(

2(d+ 1) ([PUx]())?
mru(t) xerirr o ||x|[3

= Ad+1) max ( ini(t)>

2

s.
I M&
[}
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We now simplify this sum-of-squares term by using the specialized trigonometric structure of the Chebyshev

3111((z+1)9)

polynomials of the second kind. Letting 6 := cos(t), note that U;(t) = and the Chebyshev polynomials

Vi-
of the first kind have T;(t) = cos(i6). Then,
20 11 - 11
o _ sin®((i+1)0) 3 =508 +1)0) 5~ 5T56+1)(0) 1
Ut)" = =7 = 12 =1 Tap—p U Ben)

so that Z?zo(Ui(t))Q = ﬁ ((dJr 1) — Z?:o Tg(i_H)(t)). Using the relation Ug(t) = 2Z§ven =1 Tit) =1
for even k, we simplify this summation as Z?:o Toii+1)(t) = 3Ussny(t) + 5 — To(t). Since To(t) = 1,
Z?:o To(i11)(t) = 3Us(as1)(t) — 3. Returning to the rescaled leverage function,

=0
2(d+1) d+1 1 = Uzaq1)(t)
3(d+ 1)

d
VAP = 2;‘;;5 S (U,
1
)

20(t)  2(1—t2)

ol

which completes the proof. 0

Recall that for v(t) to be almost Lewis weights for P, we need % = 0(1) for all t € [-1,1]. Since

1 1 ) e . . . . .
= < Ui(t) < i We can see that Theorem 4.1 satisfies this criteria for almost all ¢:

COROLLARY 4.1. For |t| =1— O(%), we have = < W < a for some constant o.

RI=

(t)] = 2(d+1), so that W — 0,
meaning that the almost Lewis weight property does not hold. So, while the Chebyshev measure seems to match
the Lewis weights for most ¢, it is wrong for ¢ close to the “endcaps” at —1 and 1.

To understand why the Chebyshev measure fails at the endcaps, we note an important property of the leverage
function. By the Markov Brother’s Inequality, the leverage function is at most O(d?) for all t € [—1,1]. However,
the Chebyshev measure is unbounded as [t| — 1. So, there must be a gap between these two distributions.

To resolve this gap, we analyze the Clipped Chebyshev Measure w(t), shown in Figure 4, which lies below the

true Chebyshev measure v(t), and which only differs in this endcap region:

We prove this formally in Section 7.1.2. For

DEFINITION 4.6. The Clipped Chebyshev Measure is the function w(t) := min{C(d + 1)2, ﬂ(j%}.

With a more involved analysis relegated to Scction 7, we show that 1) 7[W=2P](t) = ©(d?) in the endcaps and
2) TW2P|(t) = O(r[V~2P|(t)) for |t| <1 — O(2). This final step completes our first major technical claim:

LEMMA 4.1. (THEOREM 2.2 FOR p = 1) There are fized constants c1,co such that, for p=1 and t € [-1,1],

1/2—-1/
C; S T[W pP](t) SCQ.
log™d w(t)

The full proof of Theorem 2.2 for general p € [2,2], is discussed next, in Section 4.3.

4.3 Bounding the Lewis Weights for p € (%, 2) To generalize the Lewis weight analysis for p = 1, we find
a different orthogonal polynomial that nearly achieves the C'—almost Lewis weight property. We turn to Jacobi
Polynomials:
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DEFINITION 4.7. The normalized Jacobi Polynomial of degree d with parameters a and B, denoted J(ga’ﬂ), defines
the polynomials orthogonal with fil Ji(a”B) (t)J;a”B) B =t)*(1+1)P =1y

In particular, we look at the subclass of Gegenbauer/Ultraspherical polynomials which have o = (3, so we use
the truncated notation Jc(la) and note they are orthogonal withfil Ji(a)(t)J;a)(t)(l t%)* = 1j—;. Note that

Legendre polynomials coincide with v = 0, while Chebyshev polynomial of the second kind coincide with a = %,
so this class of polynomials certainly interpolates between the p = 1 and p = 2 orthogonal polynomials. We now

show that Gegenbauer polynomials are the correct orthogonal polynomial for L, Lewis weights:

1_1

THEOREM 4.2. For allp € [2,2] and |t < 1—O(g), we have C%J < % < Cy for some universal constant
Co.

Proof. We first show that fixing o =

% % and letting U be the corresponding change-of-basis matrix makes

V2~ 5PU have orthogonal columns:

2 2
d+1 P/l <Z (@) A &
= xi ;7 (s) (1 —s%)72 ds
=) LG ee-n)
17% d d 1
() Y / T (s) T (s) (1= 1) Hds
i=0 j=0 -1

and so we can reduce T[Véf%’P](t) to a squared row-norm:

(V27 Px](1))?

xeR VTP 3

_ (#)1—% H,rcrﬁ?}:{l([yéfipx](t))z

= ()" TP (25) T F max ([Px]())?

lIx[l2=1

d
= (1 -G 2 G

VAT P(r)

Unlike the p = 1 case, we are not aware of any way to simplify this sum of squares exactly, so we instead
provide nearly matching upper and lower bounds. For the upper bound, Theorem 1 from [NEM94] says that
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i=0
d
= (1-¢)"G"%) @(1 —%)”
™
=0
1 Cy,
=(1—tH 2 (d+1)—=
7r
B d+1
‘vl
= Co(t)
To achieve the lower bound, we appeal to a different form of an orthogonal polynomial guarantee. We rephrase
1 S 22/' S S
T[Véf%P] (t) in terms of the Generalized Christoffel Function A4(z,2,t) = ming.qeg(q)<da Ll(q((q(#, where
2(s) := (1 — s2)# 7, as defined in Equation 1.5 of [EN92].
11 9
T[V%*%P](t) = max (V= >Pxj)”
- 1 1
xexit VP
1—-2 1—2 (q(t) ?
= (Z) v (vt P max
_ 2
— )Y -2 R D e o 00
wtes@ <t [T (q(s))® 2(s)ds
1
= (11—t 2
( ) . J21(a(s))?2(s)ds
MiMg:deg(q)<d —(q(1))2
1
S i p———
( ) )\d(za 27 t)
In Appendix E.1 we adapt Theorem 2.1 of [EN92] to show that Aq(z,2,t) < ;55 (1 — )% for some universal
constant C' when [t| < 1 — O(gz). With this bound, we get T[Véf%P]( ) > (1—t%)~ %dcl, so we can show the

lower bound required by the almost Lewis weight property:

O B 0 B (A VI
v(t) T (1=t 3 + - C(d+1) = 3C
And so, we find that 57 < % < C,, completing the proof. 0

Again, we see that the Chebyshev measure satisfies the almost Lewis weight property for most ¢ € [—1, 1], but
this does not work in the endcaps. To remedy this issue, we again appeal to the clipped Chebyshev measure,
resulting in Theorem 2.2

THEOREM 2.2 RESTATED. There are universal constants c1,co such that, for all p € [%, 2] and t € [-1,1],

1/2—1/p
o TRy
log™ d w(t)

The full proof using this clipped measure is deferred to Section 7.
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4.4 Constant-Factor Approximation In order to achieve a constant-factor approximation to the L,
polynomial regression problem, we want to use Theorem 2.2 to create a subspace embedding guarantee. However,
as discussed in Section 2.2, Lewis weight guarantees have a logarithmic dependence on the number of rows of the
full matrix, which is infinite for P.

Beyond Lewis weight sampling, it is known that matrix L, sensitivity sampling can be done with a suboptimal
dependence on the dimension d, but without any dependence on the number m of rows within the analysis. So,
we bound the L, sensitivity function of P, showing that O(d®) samples drawn uniformly from [—1,1] creates a
subspace embedding from the P operator to a tall-and-skinny matrix A. With this sensitivity result, we can solve
the problem in Theorem 1.1 with O(d®) samples:

DEFINITION 4.8. (L, SENSITIVITY FUNCTION) For an operator A : RY — L,([-1,1]), the L, sensitivity
function for A at time t € [—1,1] is

|[Ax](£)[”

Al(t) == _
7/}]7[ ]() xERd+1 ||AX||£

We show that the sensitivities of L,, regression are bounded.

LEMMA 4.2. (UNIFORM SENSITIVITY BOUND) For all t € [—1,1] and p > 1, we have 1,[P](t) < d*(p + 1)
[[Px](t)[
IPxlz
q(t) = 1. Let C := max,c[_y 1 |g(x)| and s* :

)

Proof. Note that 1,[P] := maxycgar1 = MaXg.deg(q)<d % Without loss of generality we take
-1

argmax,c(_q,1) [¢(z)|. By the Markov brothers’ inequality, we

have |q(s* + s)| > C — Cd*s > 0 for any |s| < J;. Then we can lower bound the integral in the denominator of
¢p by

1 e 1 1/d? 1
Pges [° —Od26\P e — — O A2 )P >
/_1 lg(s)] ds_/o (C—Cd*s)P ds C’d2(p+1)(c Cd*x) T Y
so that )
lq(t)] 2
Yp[Pl(t) = ————— <d*(p+1)
’ Sy la(@)” de
]

Next we show that since uniform sampling is oversampling with respect to the sensitivities, we can get an L,
subspace embedding with O(d®) samples:

THEOREM 4.3. Let p > 1 and suppose si,...,sy,, are drawn uniformly from [-1,1]. Let A € Rmox(d+1)  pe
the associated Vandermonde matriz, so that A;; = s/7'. Let b € R™ be the evaluations of f, so that
b(i) = f(s;). For ng = O (d5p22p log d), there exists a universal constant c such that the sketched solution
X, = argmin, | Ax — b||, satisfies

IPxe = fllp < ¢ _min,

[Px — fllp

with probability at least %
Further, let € € (0,1) and suppose ||f|l, < C miny |Px — fllp. If no =0 < L d®pP® log g), then

£0(p?)

IP% = flI5 < (1 +&) min |Px - £}

with probability at least % In particular, suppose X. is computed from sampling f wuniformly at least
O(d5p?2° log(d)) times, we let f(t) = f(t) — [Px](t), and compute X by sampling f uniformly at least
(0] (Eo(lpz) d®pP®) log g) times. Then, if we let X := X, + X, we have

X — p i _ P
1Px— fll; < (1+¢) min [|Px— fl}
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The proof of this theorem is a standard sensitivity sampling analysis combined with our bounds on the L,
sensitivities, so it is deferred to Appendix A.

To decrease this sample complexity further, we apply Lewis weight subsampling to the matrix A. Since the
rows of A are drawn uniformly from [—1,1], we can show that the Lewis weights of A closely approximate the
Lewis weights of P. So, by Theorem 2.2, we know that the Chebyshev measure upper bounds the Lewis weights
of A. That is, we can bound the Lewis weights of A without ever even building the matriz. Formally, we give the
following guarantee:

THEOREM 4.4. Let A, and ng as in either part of Theorem J.3. Then, with probability * 12, for alli € [ng), the ¢,
Lewis weight of A at row i is at most —v(sl) polylog(d) and at least mw(sz)

Proof. Let W € R™>*™ be a diagonal matrix that represents our candidate ¢, Lewis weights for A, with

Wi = yw(s;), where v = n% is a rescaling factor. In Appendix B we use a standard e-net argument to

show the spectral approximation
%PTW“*P <y PATWIFA < 2PTWIEP

holds with probability % We condition on this event.

Then note the inner-product form of the leverage scores: 7[A]; = a (AT A)~'a; where a; is the i*" row of
A, and 7[P](t) = p; (PTP) 'p, where p, := [1 t t? ... t9] is the row of P at time ¢ (Theorem 5 from [AKM " 19]
or Lemma 1 from [Mey22]). Then we can examine the rescaled leverage scores:

2

W3 AY(0) = (Wii)'“ra] (ATW! 77 4) e,
< 2(Wy)' “inra] (PTW!TEP) a,
= 2(yw(s:)) P yrpL (PTWTIP) p,,
=2y 7[WP](s:)

and we can similarly show that T[W% PA]( ) > 3T [Wéfip}(si) So now we can use Theorem 2.2 to show the
almost Lewis weight property holds on A:

H
M\»—A
mH

TWE 2 AG) _ 2y TVE 0 PY(se) _ TIWET

P](si)
Wi - v w(si) w(s;) < log” ()

and similarly we can show the lower bound w > log®(d). Therefore, Wy; = -Zw(t) are £, almost Lewis
i no

weights for A. Further, since v(t) > w(t), we have that n%v(t) upper bound the ¢, Lewis weights for A for some
constant C. |

This naively suggests an O(d®) runtime algorithm to pick O(dpolylogd) samples that give optimal L,
regression: sample ng = O(d°logd) times uniformly from [—1,1], and for each sample, throw it away with
probability 1 — min{niov(si) polylog(d),1}. Then, with high probability, O(d) samples remain and the resulting
subsampled matrix is an L, subspace embedding. Formally, this argument uses the following result from [CP15]:

THEOREM 4.5. (THEOREM 7.1 FROM [CP15]7) Let A € R™*4t1 gnd p € [1,2]. Let w,[A](1),...,w,[A](ng)
be the €, Lewis weights of A, and let w; > Cwy[A](i) for all i such that 3_,w; = O(d). Define probabilities
p; = min{1, %wl}, and build the diagonal matriz S € R™0*™0 sych that S;; takes value W with probability p;
and is 0 otherwise. Remove the rows of S that are all zero. Suppose we pick m, the expected number of remaining
rows, to be m = O(dpolylog(d)). Then with probability 1%, for all x € R*™, we have |SAx||, ~ || Ax][,.

This O(d5) time algorithm certainly suffices to give the near-optimal sample complexity for constant e, but
we can improve the time complexity. In particular, since we exactly know the distribution of sy, ..., sy, and the
probabilities of the coins pi, ..., pn,, we can directly compute the marginal distribution of times that result from
both sampling procedures:
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LEMMA 4.3. Suppose ng time samples are drawn uniformly from [—1,1], and each sample is thrown away with

probability 1 — Inin{nﬂ0 \/1172, 1}. Let n denote the number of remaining samples. Then n is distributed as
—s2

B(HO,O(%)); and with probability % the resulting samples cannot be distinguished from iid samples from the
Chebyshev measure.

This short lemma is proven in Appendix C. Taking ng = O(d® polylogd) and m = O(dpolylogd), we get
n ~ B(ng, 1/ O(d4)) so that n = d polylogd with very high probability. So, this lemma tells us that instead of
sampling 0(d5) times uniformly, we can just sample d polylog(d) samples from the Chebyshev distribution. In
summary, we arrive at the following:

COROLLARY 4.2. Let A, and ng as in either part of Theorem 4.3. Let m = O(d polylogd). Suppose an algorithm

samples n ~ B(nyg, O(nﬂg)) and runs Algorithm 1. Then, the matriz SA on line 4 of the algorithm is a subspace

embedding for P: &||Px||p < ||SAx|5 < C||Px| for all x € R
We now state the overall correctness of the algorithm for constant factor approximation for p > 1:

THEOREM 4.6. Let p > 1 and ng = O (d°p*2Plogd). Suppose an algorithm samples n ~ B(no, 1/0(d")) and
runs Algorithm 1. Then, with probability %, the resulting polynomial § satisfies

A — P <O(1 i — p
g — flIb < ()q:diﬂ(ﬁgd”q il

The correctness of this theorem follows from combining Corollary 4.2 with Lemma A.1 from [MMM"22], which
says that unbiased subspace embedding suffices for constant-factor error in regression. While there is randomness
in the sample complexity, we have that with very high probability n = O(dpolylogd). Finally, we emphasize
that Theorem 4.6 holds for all p > 1 due to the result from [MMM™'22]. Thus we will ultimately also use this
algorithm as a subroutine for L, polynomial regression for p > 2.

4.5 (1+¢)-Approximation Given the constant factor approximation in the previous section, we can now build
an algorithm that outputs a (1 + ¢)-approximation for the L,, regression problem when p € [1,2]. First, we recall
an algorithm from [MMWY22] that samples d poly(logd, %) rows of a matrix by almost-Lewis weights, reads the
corresponding coordinates in the measurement vector b, and solves the subsampled ¢, matrix regression problem
twice, giving a (1 + ¢) error solution. Since we know that the Chebyshev density describes the almost-Lewis
weights of A, we can directly appeal to this result. In particular, they prove that Algorithm 4 gives the following
guarantee:

THEOREM 4.7. Let A € R™*4*L b ¢ R™, and p > 1. Then, with probability 0.98, Algorithm / with
n= O(dmax(l,p/2)m%) returns a vector x € R such that ||AX — b|, < (1 + &) miny || Ax — b)|,.

We remark that although Theorem 4.7 matches the guarantee given by Theorem 3.4 in [MMWY22]%,
Algorithm 4 does not quite match the corresponding Algorithm 2 given by [MMWY22]. Observe that each
row is sampled without replacement with probability proportional to its Lewis weight in Algorithm 3, whereas a
fixed number of rows are sampled by [MMWY22], so that each row is sampled with replacement with probability
proportional to its Lewis weight. However, the correctness of Algorithm 3 follows from the analysis of Theorem
3.4 in [MMWY22] by zooming into Claim 3.14 and just using a sampling matrix S defined by without-replacement
sampling instead of the with-replacement matrix used. None of the concentrations actually change at the end of
the day. We show an example of such a Bernstein bound later in this paper, in the proof of Lemma 5.7.

Overall, Theorem 4.7 show that Algorithm 4 finds a near-optimal solution to the uniform-sampled problem
for p € [1,2]. By the reduction from two-stage to one-stage sampling, this then implies that Algorithm 2 finds
a near-optimal solution to the L, polynomial regression problem. So, we have now proven our L, polynomial
approximation guarantee for p € [1,2]:

8This is following the first version of [MMWY22] uploaded to arXiv, which uses an analysis which makes especially simple to see
how Bernstein suffices for either sampling scheme.
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Algorithm 3 Constant factor active £, matrix regression

Input: Vandermonde matrix A € R™**! response vector b € R, target number of samples m
Output: Approximate solution X € R4*! to miny [|Ax — b||,

1: Let p; = min{1, > —L_} where s; € [—1, 1] is the time associated with row i of A

Y no | /1—s2
i

2: Let S € R™*"™ be a diagonal matrix with S;; = W with probability p;, and S;; = 0 otherwise

3: return x = argmin, [|[SAx — Sb||,

Algorithm 4 Relative error active £, matrix regression

Input: Matrix A € R™0*4*1 response vector b € R, target number of samples n
Output: Approximate solution x € R4 to miny ||Ax — b||,

1: Run Algorithm 3 on vector b with § samples to get vector x.

2: Let z:=b — A)A(C

3: Run Algorithm 3 on vector z with 5 samples to get vector X

4: return X = X, + X

THEOREM 1.1 RESTATED. [For 1 < p < 2] For any degree d, p € [1,2], and accuracy parameter € € (0,1), there
is an algorithm that queries f at n = O(Egp% polylog(g)) points tq,...,t,, each selected independently at random
according to the Chebyshev density on [—1,1], and outputs a degree d polynomial §(t) such that, with probability
at least 0.9,

Hﬂﬂ*fﬁmﬁﬁ(P+@lm$%§ﬂﬂ0*f@W$

5 Active L, Regression for p > 2

In this section, we analyze L, regression for p > 2. Our analysis differs significantly from the case of p € [1,2].
In particular, while we still analyze sampling by the Chebyshev measure, in contrast to p € [1,2], we are not able
to argue that the measure approximates the L, Lewis weights of the polynomial operate P. Moreover, even if we
could bound them, sampling by L, Lewis weights requires O(dp/ %) samples in the worst case to approximate a
p-norm regression problem [MMWY22]. There are matrices which require this rate, so to get sample complexity
linear in d, we will leverage special structure of polynomials that lets us avoid these worst-case instances.

We start with a simple but useful observation from [MMM™22]. Ssuppose f(¢) is a polynomial of degree d,
and let 7 =~ p be an integer with ¢ := 2 € [1,2]. Then, we know that ¢ — (f(t))" is a degree rd polynomial. Since
A is a Vandermonde matrix, and letting x be the coefficient vector for f, we thus have that

| Ax[5 = | Byllg,

where B € R™0*74+1 i5 3 Vandermonde matrix generated by the same time points as A but with more columns,
and where y is the coefficient vector for the degree rd polynomial ¢ — (f(¢))". This simple observation implies
that if some sampling procedure preserves the £, norm of all degree rd polynomials, then that sampling procedure
also preserves the £, norm of all degree d polynomials. In other words, it suffices to use a sampling matrix S that
samples rows of B with probability proportional to upper bounds on the ¢, Lewis weights of B. By Theorem 4.4
we already know those Lewis weights are bounded by the Chebyshev measure. So Algorithm 3, which samples
rows of A by the Chebyshev measure, preserves the £, norm of Ax for all x because it is sampling rows by the £,
Lewis weights of B.

This argument suffices to get prove a subspace embedding result — i.e., that the matrix S from Algorithm 3
satisfies || SAx||) ~c [|Ax|[[p. This is sufficient to get a constant-factor regression solution, and we formally work
through this in Section 5.1. To achieve error (1 + £), we need a more refined analysis that builds on the first
version of [MMWY22] uploaded to arXiv’. Our approach still reduces from the general p > 2 case to some ¢ < 2,
but in a less direct way than described above. An edge case of our analysis requires that when p € (2,3), we use
r=3sothat ¢=2 ¢ [%, 1]. This is the case where we use the ¢, Lewis weight bounds for ¢ < 1.

IWhile that version is available on arXiv at time of publishing, since it is unpublished, we include a (slightly shortened and
corrected) copy of everything we use in Appendix D.
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5.1 Constant Factor Approximation for p > 2 We start by showing that running Algorithm 3 as done in
line 1 of Algorithm 4 achieves a constant-factor regression guarantee. Formally, we rely on the following result
from [MMM*22], where 1,[A](7) := maxx % is the ¢, sensitivity score of A at row i:

THEOREM 5.1. [MMM' 22] Given p > 2, let v be any integer such that q := 2 is in [2,2]. Given a Vandermonde
matriv A € R™X4H et B be the Vandermonde matriz A extended to have rd 4+ 1 columns. Then for
every vector x € R there exists a vector y € R™HL such that |[Ax](i)|” = [[By](i)|?. Thus if ¥,[A](i)
denotes the {y-sensitivity of the i-th row of A and 14[B](i) denotes the {,-sensitivity of the i-th row of B, then

UplA)(7) < 9y [BI(0).

For the constant-factor approximation step, given p > 2, we let r be an integer such that r < p < 2r,
so that ¢ := 2 € [1,2]. With this choice of r, chosen such that /; is a valid norm that satisfies the triangle
inequality, we will show that Algorithm 3, as run in the first line of Algorithm 4, returns a constant factor
solution to miny ||Ax — b||,. Recall that A € R™0*4+1 ig a Vandermonde matrix obtained by uniformly sampling
ng = poly(d, p?, Eip) points from [—~1,1]. Then let B € R™*"4+! be an erpanded Vandermonde matrix, built
using the same uniform samples but with maximum degree rd. Let dg := rd + 1 be the number of columns in B.
We also let wq[B](i) be the {,-Lewis weight of B at row i. We will analyze sampling rows of A with respect to
w, (B (i),

We first show that the sampling matrix S from Algorithm 3 is a subspace embedding;:

99

LEMMA 5.1. Let A and S be the matrices as in Algorithm 3. Then, with probability 155,

0(16’—3 polylog(d)), we have that S is an ¢, subspace embedding:

so long as m =

|SAx|P € (1 +¢)| Ax|? vx € R4

Proof. Recall Theorem 5.1, in particular that for any x € R! there exists a vector y € R™¥*! such that
([By](4))? = ([Ax](2))? for all i € [ng]. We then expand the subspace embedding norm:

) no

ISAx]; =3 84X = Y

i=1 i=1

1 . _
P [By](i)|" = [|SByllj

where S;; = (S;;)P/9 = W is the sampling matrix we would use when sampling B by ¢, Lewis weights. So,
we not only have |Ax||? = || By||2, but also have ||[SAx||? = |[SBy||. Then we are sampling by overestimates
of the Lewis weights, since w,[B](i) < -~ rd+l polylog(d) < ™ —L— = p;, which holds for m > dpolylog(d).

= no /12 no \/1-s2
So, by Theorem 4.5, we have that S is a (1 & %) ¢4-subspace embedding for B so long as m = O(;—g polylog(d)),
and therefore that S is a (1 & ¢) £,-subspace embedding for A. a

LEMMA 5.2. The vector x. returned by line 1 of Algorithm 3 is a constant-factor solution to the overall
optimization problem, with probability %:

| Ax. — pr <C. xgg}il [ Ax — b”p

For some universal constant C,. In particular, this implies that z from line 2 of Algorithm 3 has ||z|, <
C, miny ||Ax — bl|,.

Proof. Recall that x, := argmin, ||[SAx — Sb||,, and that Lemma 5.1 shows that S is an ¢, subspace embedding
for A. Let x* := argmin, ||Ax—b|| be the true optimal regression solution. Then, by repeated use of the triangle
inequality,
[Ax. —bll, < [|Ax. — Ax*[|, + [ AX" — b,
< 2)SAx, — SAX’ [, + | Ax* — b]|,
< 2([|SAx. — Sb, + [[SAx" — Sb],) + [ Ax" — b,
< 4]SAx" - Sb|, + | Ax" ~b],
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where the last line follows from the optimality of X. Then, since E[||SAx* — Sb||?] = [|Ax* — b|[|}, by Markov’s
inequality we bound [|SAx* — Sb||l < 200||Ax* — b||?, and we conclude that

| Ax. — b], < 801]Ax" ~ b,

d
5.2 Relative Error Approximation In this section, we show that the estimator X recovered on by
Algorithm 4 is a (1 + €)-optimal estimator for ||Ax — b||}. First, note we assume that ¢ < % in this section,

.= g00W) . . .
and prove that sampling O( %) rows suffices to recover a near-optimal estimator. If ¢ > %, then we can just

run the algorithm when ¢ = }%, which yields a O(dpo(p)) sample complexity, so the sample complexity we promise
in Theorem 1.1 suffices across all possible € € (0,1) and p > 2.

Much of this section very closely tracks the proof of Theorem 3.4 in the first version of [MMWY22] uploaded
to arXiv, with the main difference being Lemma 5.3 which uses Theorem 5.1 to define the vector z with respect
to the ¢, Lewis weights of B, where the original analysis uses the ¢, Lewis weights of A. The core of the novel
analysis is used to prove Theorem 5.2. While we state and use Theorem 5.2 in this section, we do not prove it
until later, in Section 5.3.

Most of this section analyzes the second call to Algorithm 3, from the line 3 of Algorithm 4. As such, we
explicitly write down the notation that will be used throughout most of this section:

SETTING 5.1. A € R™*4+! js g Vandermonde matriz formed by sampling ng = O(—5=- d5po(p2) logg) times

02
S1s--.,Sn, uniformly at random from [—1,1]. r is an integer such that ip < r < 3p, and ¢ :== 2 € [%2].
B ¢ R™*d5 js q Vandermonde matriz formed from the same time samples s1,. .., Sn,, but with dg := rd + 1
columns. wq[B](i) denotes the £, Lewis Weight of B at row i, and ¥p[A](i) = maxyx % denotes the ¢,

sensitivity of row i of A. z := b — Ax. is the vector generated by line 2 of Algorithm 5. By Lemma 5.2,
llz|l, < C,OPT, where OPT = miny |Ax — b||,. Z is equal to z except that it has several entries zeroed out:

dwztmu@s%ﬂwmww

0 otherwise

Let § € R™X™ pe the sample-and-rescale matriz generated in step 38 of Algorithm J with m =
O( =i+ polylog(2)). Co :=400C. is a large enough constant.

Note that r in this section might not be the same value of r taken in the constant factor analysis of Section 5.1.
We explain this new choice of 7 in Section 5.3 in full detail, but at a high level, we will eventually want r to be
odd for this analysis to go through, which will sometimes require g € [%, 1], for instance.

In the majority of this proof, we constrict ourselves to looking at vectors in the range of A which are not
too much larger than OPT, defining a sort of “reasonable range of A” to focus on. Rigorously, this means the
upcoming lemmas will only look at vectors in the range of A with || Ax||, < CoOPT. We will eventually ensure
that both x* = argmin, ||Ax — z||, and X = argmin, ||SAx — Sz||,, lie within this reasonable range.

We first examine the vector z defined in Setting 5.1. Intuitively, we say that the entries of z that get zeroed
out are so large that the reasonable range of A cannot fit them. So, we can approximate the true error by
|Ax — z||p ~ ||[Ax — 2|} + ||z — Z[|). That is, minimizing ||Ax — zl|, is effectively equivalent to minimizing
|Ax — 2],

We define the zeroing-out procedure in terms of the ¢, Lewis weights of B here, so this is one place where we
adapt the prior work to use the special structure of Vandermonde matrices. Roughly, the ¢, sensitivity ¢,[A](7)
measures how spikey a vector in the reasonable range can be. The Vandermonde structure lets us bound the
sensitivity of A with the sensitivity of B, since 9,[A](¢) < 1)4[B](i). Then, we use the fact that all matrices have
their ¢, sensitivities bounded by their Lewis weights for ¢ < 2. So, we can bound the spikeyness of the ith entry
of a vector in the reasonable range by the ¢, Lewis weight of B at row i. For general matrices, the ¢, sensitivity
¥,[A](i) can be d>~' times larger than the ¢, Lewis weight, and this way of bounding the entries of z is one
central step to avoiding the O(dp/ 2) dependence.
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LEMMA 5.3. Consider Setting 5.1, and let
B={ien) : [a(i)] > 2L (w,[B](i))"/" } .
So that z € R™ s equal to z but with all entries in B set to zero. Then for all x € R with || Ax||, < Cy OPT,
| Ax — 2|} — [[Ax —z[|} — |z — Z]}| < C1e - OPT?
where Cy is a constant that depends only on Cy,C,, and p.

Proof. For any x € R4T! by the definition of ¢, sensitivity,

|[Ax](5)[" ,
W < p[A] ()

From the relationship of ¢, sensitivities and ¢, sensitivities for Vandermonde matrices, i.e., Theorem 5.1, we have

[Ax] (i) "

Next, by Lemma 2.5 from [MMWY22], which says that for ¢ € [0, 2], the ¢, sensitivities lower bound the ¢, Lewis
weights, we have

Chelf < ValBIO) < wlBIG)

Thus for 7 € B we have

A (5)[” < wy[B](i) - || Ax|}5 < 7| Ax]Jp g%p

Since ||Ax||p < CF OPT? by assumption, it follows that [[Ax](7)]” < Cfe? - |2(i)[P, and thus |[Ax](i) — z(i)| €
(1+Coe) |z(i)|. Using this fact and the fact that z(i) = 0,

[Ax] (i) — 2())[" — |[Ax] (i) — 2())/"

[AX] (i) — 2(i)]” — |[Ax]()["

(1 Coe)? [2(0)[" £ CGe? (i)
(1 3Cope) |2(i)[" & CFe” |2(i)["
(1 Cge) 2(0)["

(Lemma E.4)
(5.5)

N 1N m

where the last line sets C{, :== 3Cop + C¥. Then, summing over all i € B,

> I[AX](0) —2(0)” = Y [[Ax](0) P lai) —a(i))” < Coe )y la(i)]

i€EB i€B i€B i€EB

We have by assumption that Y, |2(i)[? < [|z][5 < C§ OPTP. Finally, since z(i) = (i) for i ¢ B, we conclude
that
|Ax — z||p — |Ax — Z||? — ||z — Z|}| = C{,C?e - OPT”.

|

Next, we show the same intuition about z and z holds when looking at the subsampled regression problem;
that minimizing || S Ax — Sz||,, is roughly equivalent to minimizing ||SAx — Sz||,.

LEMMA 5.4. Consider Setting 5.1. Then with probability at least

5, 1Szll, < CsOPT and further for all
x € R4 with |Ax||, < CoOPT, we get

10

ISAx — Sz% — | SAx — Sz||% — ||S(z — 2)||5] < Cae - OPT?

where Cy and Cy are constants that depend only on Cy,p, and C.
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Proof. The proof builds off of Lemma 5.3. For any x € R4 and i € B, by multiplying both sides of Equation 5.5
by S?., we have that for all i € B,

[SAx](i) — [Sz] ()" — [[SAx](i) — [S2](i)" € (1 & Cge) [[Sz](3)|”

For all i ¢ B, |[SAx](i) — [Sz](i)|" — |[SAx](i) — [SZ](i)|" = 0. since z(i) = z(i) for i ¢ B. Summing over all
i € [no], we get
IS Ax — Sz — |SAx — Sz||} — [|S(z — 2) [} € +Coel|S(z - 2)|;

Next, since z is a partial zeroing of z, and since E[||Sz||}] = [/z||} we can use Markov’s inequality to bound
18(z — z)||5 < ||Sz||h < 100[z[[h < 100C?OPT?, with probability %. We conclude:

ISAx — Sz||2 — | SAx — Sz||% — ||S(z — 2)||% € + 100C}C.c - OPT
O

Next we state our core technical contribution: the Affine Embedding guarantee. While the prior work proves
this same result, they require O(dp/ 2) samples to do so. In Section 5.3, we show that Vandermonde matrices can
do this by taking O(d) samples with probabilities proportional to the £, Lewis weights of B.

THEOREM 5.2. (AFFINE EMBEDDING) Consider Setting 5.1. Then with probability 2%, for all x € R4 with
| Ax||, < CoOPT, we have

(5.6) ’||SAX—SZ||£— HAX—ZHZ| < Cse-OPT?
where C3 is a constant that depends only on Cy,C,, and p.

We prove Theorem 5.2 later, in Section 5.3, and instead first show that this affine embedding suffices to prove
the correctness of the overall algorithm.

THEOREM 5.3. Consider Setting 5.1. Then, Algorithm 3 reads 0(66,5% polylog(g)) entries of b and outputs a
vector X such that with probability 0.9,

| A% ~b], < (1+<) min |Ax—bl,

Proof. By Lemma 5.2, we know that step 1 from Algorithm 3 returns a vector x. such that || Ax.—bl|, < C.-OPT.
Recall that z := b — Ax,, so we equivalently have ||z||, < C,-OPT. Let z € R™ be the partially zeroed out copy
of z as in Setting 5.1. Combining Lemma 5.3, Lemma 5.4, and Theorem 5.2, for all x with ||Ax||, < Cy - OPT,
we get

(Lemma 5.4) IISAx — Sz||£ € |ISAx — Sng + Sz — SZHg 4+ Che - OPT?P
(Theorem 5.2) C ||Ax — z[|) + [|Sz — Sz||) + (C2 + C3)e - OPT?
(Lemma 5.3) C |Ax — z||) — ||z — 2| + || Sz — Sz||) £ (C1 + C2 + C3)e - OPT?

=||Ax — 2|5 — C £ (C1 + C3 + C3)e - OPT?

where C' = ||z — z||b — ||Sz — Sz||} is independent of x. Note that since z is a partial zeroing of z,
|z —z||, < ||z||, < C.-OPT. Similarly, ||Sz — Sz|, < ||Sz||, < Cs-OPT. So, we have C < (C? + C?) OPT and
thus we can equivalently write this last bound as, for any x with [|Ax||, < Co - OPT,

(5.7) |SAx — Sz|2 — (|Ax — 2|2 + C)| < Cye - OPT?

where Cy := Cy + Cy + C3. We will apply Equation 5.7 twice, once to X = argmin, ||SAx — Sz||, and once to
x* := argmin, ||[Ax — z||,. To do so, we first have to verify that |A%||, and ||Ax*|, are small enough — i.e.

are at most CoOPT. We first bound ||Ax*|, < || Ax* — z||, + ||Iz|, < 2|z||, < 2C,OPT < CyOPT. Next, by
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Lemma 5.1, we have that S is an ¢, subspace embedding. So, we have ||Ax|, < 2||SAX%|, and by Markov’s
inequality, with probability %, we have:

2/|SA%||, < 2||SA% — Sz, + 2| Sz], < 2| SAx" — Sz, + 2|Sal|, < 200(| Ax" — 2]}, + |12ll,) < CoOPT

We proceed to apply Equation 5.7 twice, to get

(Equation 5.

7) | A% — 2| < |SA% — Sz|} — C + C4cOPT?
(Optimality of %) < |SAx* — Sz|? — C + C1cOPT?
5.7) < (||[Ax* — 2|2 + C) — C + 2C4cOPT”

— || Ax" — z||% + 2C4cOPT?

(Equation !

And so the overall predictor x = x. + X has
|Ax —b[|) = |Ax, + AX —z — Ax.|]D
= [Ax -z}
< min [|Ax -z} +2C4cOPT?
=min [[Ax — (b + Ax.)||) + 2C4,eOPT"”
= min [|Ax — b[|) +2C,eOPT?
= (1+2C,¢) min ||Ax — b}

Note that our proof ensures that Theorem 5.3 holds with a fixed constant probability. 0

5.3 Proving the Affine Embedding (Theorem 5.2) To prove Theorem 5.2, we want a bound over all
vectors Ax where [|Ax|[b < CfOPT?. Since a naive e-net argument would lead to a suboptimal dependence
on d, we follow the first arXiv version of [MMWY22], and appeal to a more refined net analysis introduced in
[BLMS89]. In that work, the authors construct a “compact rounding” for all vectors in the set { Ax : [|Ax|[|) < 1}.
In particular, they construct a series of nets Dy, ..., D, (with different properties for each k € {0,...,¢}), such
that every Ax with || Ax||b <1 can be approximated as Ax ~ Zi:o dy, where each dy, € Dy. After scaling these
vectors by a factor of CoOPT and applying a union bound over the nets Dy, ..., Dy, [BLM&I] obtains a sampling
result for £, Lewis weights with an optimal d dependence of O(dma"{l’p/ 2}).

To avoid this large d dependence for p > 2, we return to the expanded Vandermonde matrix B € R™0*45_ In
Lemma 5.6, we show how to use the nets Dy, ..., D, from the ¢; compact rounding on B to create nets &, ..., &
for an ¢, compact rounding on A. Each ¢, net &, will have the same cardinality as the corresponding ¢, net
Dy, which makes it significantly smaller than the black-box net that would be created for Lewis weight sampling
general matrices in the ¢, norm. Lastly, Lemma 5.6 also uses a technique from [BLM89] to transform &, ..., &,
which approximate vectors of the form Ax, into new nets Fy,.. ., Fy, which have similar size and approximate
vectors of the form Ax — z.

To get started, we use the following compact rounding lemma, proven in the first version of [MMWY22]
uploaded to arXiv, with a complete and simplified proof included in Appendix D for completeness. Specifically,
we state the result from Appendix D in the special case when v = 0:

LEMMA 5.5. (CoMPACT ROUNDING, [MMWY22]) Let B € R™*95 and q € [0,2]. Let N., be an e.-Net
over |Byllq = 1 with |N;| < O(dlog(2)). Let ¢ = logy . ((2dp)*/9). Then, there exists sets of vectors
Do, ..., D¢ CR™ such that: For allu € N we can pick dg € Dy, ...,ds € Dy to create a “compact rounding”
u = Zi:o dy. where:

1. |u(i) —u'(d)] < ecful@)] for all i € [ng]

2. |dy(i)] < 2 (3(PI  L)a(1 42 )2 for alli € [no] .k € {0,....0}

no

3. do,...,dy all have disjoints supports
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Further, we have that the sets Dy, ..., Dy are not too large:

dplog(ng)

log |Dy| < C,—2 0
g Dul < Telta(] 4, )ak

where Cy is a fized constant depending only on q.

Note that we can upper bound %;](i) + L < walBl©) polylog(d), so we instead have |dy(7)] < %(M)l/fI(l +

nog — dB dB

)**2 polylog(d). To do this, note that by Theorem 4.4, w,[B](i) > niow’(si) : where w’ is the clipped

1
polylog(d) *
Chebyshev measure for degree rd. Then, w,[B](i) > % z

no m’ so that TTlo = Wpolylog(d), and so
wq[B] (i wq[B] (i
% 4 n%) < % polylog(d).

LEMMA 5.6. (VANDERMONDE COMPACT ROUNDING) Let A € R™X4+L gnd p > 2. Let N. be an e-Net over
|Ax|, < CoOPT, so that any x with ||Ax||, < CoOPT has some u € N such that |Ax — u||, < eOPT. Then
we can pick an odd integer r such that 3p <r < 3p, and let g =2 € [2,2]. Let £ =log, . ((2dp)'/). There exists
sets of vectors Fo, ..., Fe C R™  such that: For anyu € N, we letr := u—Zz and we can pick fg € Fy, ..., £, € Fy
to create a “compact rounding” r' = Zi:o £ where:

1. (i) = r'(3)| < e max{|[Ax](?)|,]z(?)|} for all i € [no]
2. |fr()] < %(%ﬁ(i) polylog(d))V/P(1 + ") for all i € [ng), k € {0,..., 0}
3. fo,...,f¢ all have disjoints supports

Further, we have that the sets Fy, ..., Fy are not too large:

dp log(ng)

o817 < Cortis (1 ey

Proof. Depending on the value of p, we will pick g differently. If p € (2,3), we let » = 3 and ¢ := 2 € [2,1]. If
p > 3, we let 7 be an odd integer such that r < p < 2r, and let ¢ := £ € [1,2]. In both cases r is an odd integer,
we have p = ¢gr, we know that the £, Lewis weights of B are close to the Chebyshev measure, and Lemma 5.5
accepts this value of g. The rest of this paper will not distinguish between the p € (2,3) and the p > 3 cases.

Notably, the compact rounding requires being given N, an ¢, net over {By : ||Byl|, < 1}. But we want to
make sure that all Ax € N; have (Ax)" € N,. So, formally, let ;o be an arbitrary ¢, net for {By : ||By|, < 1},
and let Nipguced = {By : ([Ax](i))" = [By](i) for all i} be the mapping of N; to the range of B. By Lemma
2.4 of [BLM&9], we have that both Ny o and A have cardinality at most (2)?. We then apply Lemma 5.5 on the
net Ny := N0 UNinduced and with e, = €”.

Also, note that the vectors in Lemma 5.5 formally require ||Byll, < 1, while we have ||By||, = [[Ax||;, <
(CoOPT)". So, we scale up the vectors di returned by Lemma 5.5 by a factor of (CoOPT)", so that
|y (i)] < (CoOEfT)T(wq[Ci](i) + nio)l/qu +€7’)k+2'

With this in place, now we fix any u € N;pduced, and let Zi:o dj be the compact rounding of u as defined by
Lemma 5.5. Using the fact that gr = p, we let oy := 2L (2Bl 1010160(d))1/P s0 that |dy(4)] < ol (1 + ")F+2.

15 dB

We now intuitively round Ax = Zizo(dk)l/r. We define ey, ..., e, such that:

ex(i) = (du(i)"/"

so that |ex(i)] < (1 + sr)ﬁ. Using the fact that r is an odd integer, we have sign(ex(i)) = sign(dg(7)).
Further, looking at the proof of the compact rounding in Appendix D with v = 0, we see from Lemma D.5

that sign(dg(i)) = sign(u(z)). So, we have that sign(e(i)) = sign(Ax(i)). This definition of e; means that
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k

ler(i)] < (1 + "), and further that

4
Ax(i) = " en(d)| = |(u(@)” ~ (dy(@)""]
k=0

(The signs are equal) = ‘|U(i)|1/r — |du ()"
(|27 = /7| < |z — y["/" for all 2,y > 0) < [Ju@)] - |dx ()"

< (" la(@i))M"

— < |Ax(i)

Also note that e, has the same support as dg, so that all the properties of Lemma 5.5 are preserved, just in
estimating a slightly different vector. We next examine rounding Ax — z to a compact rounding. Borrowing a
proof strategy from Appendix D,

(for k € {0,...,£}) By = {z € [no] @ ex(i) # 0, e2(i)| < 2a;(1 +5r)"'t2}
or & € 41,...4) Hyi= {i € [no] : 203(1+ &) < e a(i)] < 205(1 + ")}
(for k € {1,...,¢}) Giu = Hi \ U {i € [no) : ew(i) 0}

k'>k

Note that |z(i)| < %(wq [B](i)Y/P < 204(1 + 5’")2#, so all entries of z are covered by our disjoint sets. The
sets Bous- -, Beus Giu, - - -, Geu will define the support of the final compact rounding vectors we will return, so
we first show that these sets partition [ng]: In the following cases, consider any k, k’:

® By u[)Bir,u =0 since i € By, implies ey (i) # 0 implies ex (i) = 0 implies i ¢ By 4.
o Giu(\Giu C Hi(Hy = 0 since Hy, and Hy have no intersection by definition.

o For k> k', By u( Gk u = 0 since i € By, ,, means e (i) #0801 € Uk'zk{i € [no] : ex (i) #0} s0i ¢ Gy -

o For k < k', By u()Gi/ju =0 since k' > k + 1 and i € Hy means ¢ |z(4)| > 2a(1 +5”)k/r+1 > 20(1 + sr)kvﬂ,
which contradicts ¢ € By, y.
So, we can now define the vectors fy,...,f, as
er(i) —z(i) i€ Biu
£,(2) == ¢ —2(i) i € Ggu
0 otherwise
Now, we show that r’ := Zi:o f), satisfies the guarantees of Lemma 5.6. Fix any ¢ € [ng] and let k € {0,..., ¢}
be the index'” where fy (i) # 0. Then, recalling that r = Ax — 7,
(when i € By u) Ifx (i) —r(i)] = lex(i) — [Ax](2)] < e |[[Ax](D)]
(when i € Giu) Ifr(i) — r(3)| = |[Ax] ()|
(for some k' < k, by def of Gy u) < (1+e¢)|ew ()]
(lew ()] < as(1+2)*7) <201 +¢")
(def of Hy) < ez(i)|
T0Technically, we don’t guarantee that all i € [ng] are associated with some k € {0,...,£}. But the relative error guarantee from

Lemma 5.5 and definitions of By, and G,y imply that if u(i) # 0 or z(4) # 0 then such a k exists, which suffices to prove our error
guarantee.
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And so we find |r/ (i) — r(i)] < emax{|[Ax](?)], |z(¢)|}. We also have that fo, ..., f, have disjoint supports because
By, Beu, Giu, - - -, Gou have disjoint supports.

Next, we bound the size of entries of f;. We have [f;(i)] < le(i)| + |z(¢)] < (1 + 2)au(1 + 57')&'12 <
OLT (walBI) polylog(d))/P(1 +€7) 5.

To bound the number of possible f;, vectors, note that fj is a deterministic function in By 4 and G 4. So,
let By := {Bru : u € N} be the set of all possible “B” index sets generated at layer k, and similarly let
G) = {Bgu : u € M.}. Then, looking across all possible fixings of u € N, each f}, is deterministic in some
81 € By and some Sy € GGi.. So, the number of possible f}. is at most

‘]:]g| = |{fk cu G./\/;_-H < |{(81,82) : Sl S Bk, 32 S Gk}| = |B/€‘ . |Gk|

Next, since By u C {7 € [no] : ex(i) # 0}, and since ey, are a simple bijection with dy, € Dy, we have |By| < |Dy].
The same holds for Gy, so |G| < |Dg|. We conclude that

dplog(ng)
T(1+q)(1 +€r)

log | Fi| < log |By| 4 log|Gk| < 2log |D| =

|

LEMMA 5.7. Let p; := min{l, 2 e \/7} where $1,...,8p, are times samples uniformly at random from [—

Sle 2

and where m = O(=stsz log(d)). Consider the diagonal sampling matriz S € R™*" which takes St, =

with probability p; and S;; = 0 otherwise. Then consider the set of all possible rounding vectors ¥’ created
Lemma 5.6. With probability s, all such x' have ||St'||P € ||r'|| £ P OPTP?.

=

Y

Proof. First, we simplify the probabilities p;. We know by Lemma E.5 that max;
So,

< C.+/ng with probability

2

ﬁ

100

chgl

m 1 <

no \/1—s?

Where the last inequality holds so long as m < O(y/ng) = O(al2 5pO(P)

m. This means that p; = min{1, = can be simplified to just p; =
i {1, ﬁ} P just p;

o 2)) which is satisfied by our choice of
m 1

1o \/1-s2

Now, we move onto proving the correctness of ||Sr'|[?. Fix any compact rounding r’ = Zi:o f). created by
Lemma 5.6. Then, since fy, ..., f; have disjoint support,

¢
ISzly =" ISty
k=0

So it suffices to just prove that [|Sf.||} € [|fy]|h + z+1OPTp for all £, € Fy, for all k € {0,...,¢}. The rest of this
proof shows this concentration across all f; vectors.

Fix any fj € Fj, for any k € {0,...,¢}. Then, we have:

wy[B](i) (1 +e)1h+?

(Lemma 5.6) If:(D)|" < e o OPT? polylog(d)
p%_ fx ()" < ;wq[fjm ALt irg)pq(kﬂ) OPTP polylog(d)
(i = ) - ”ﬁf w8l - LS o P potytog(a)
(Theorem 4.4) = Wﬂé? . <Cri£ s polylog(d)) . u—f# OPT? polylog(d)
= % OPT? polylog(d)
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Next, we will let X; := S%|f,(¢)]” — |f5(¢)|", which are mean-zero random variables such that > %} X; =
|SEr|[5 — [Ifx]|h. Letting B(n,p) be the binomial distribution, we then bound

E[X7] = Var[S}; [£4(0)|"] = 3z |£x ()" Var[B(L,pi)] < o[£ ()

ZIE <Z*Ifk <||fk\|p~m[ax]glfk()|

And so, by Bernstein’s Inequality (Imported Theorem A.1) and since |X;| < maxié Ifx(i)[?, we get the
concentration

r([[ISEl — €xllp] <~ OPT?] = Pr312) Xi| <y OPT?]

Ly opr?
< 2ex —
= PP\ T EE + 3 OPTP) max; L [£.(6)

Since vy = £+1 < land |fi|b < [[Ax —z[|h < (Co + C.)? OPT?, and letting Cp = 2((Co + C,)? + 1):

v2 OPT?)
<2exp| — T —
Cp OPT? - max; - [f4(7)]
v? OPT?
< 2exp | — (14e7) q(k+2>
Cy - “=4—— OPT? polylog(d)

me2p

=2exp | —m 7 e
— TP UM a2 polylog(d)
<4

(1+€T)q(k+2)

This is less than § for m = polylog(d) log(%). Union bounding over all f;, € F, we get

e2r~2
= (1 + Er)q(k—m) dp log(no) 2
= £2py2 : "er(4a) (1 4 gm)ak - polylog(d) log(5)
(1 + €T>2q

= dBW -log(no) polylog(d) log(%)

Note (1 + €7)2¢ < 22¢ < 2% Lastly, we union bound over all k € [f], where ¢ = O(24) 5o that

€
v = ZTpl = O(lig;)), and also recall that ng = O( d°p o? )log( )) so that log(ng) = O(p? log(%d)), and

O(P )
that r < §p, so we conclude that

dp
samples suffice to achieve the embeddings for all f;, and therefore for all r’. O

LEMMA 5.8. Let N be an e-Net on {Ax : ||Ax|, < CoOPT}, so that for any Ax in this set there exists
some u € N such that |Ax — u|, < eOPT. Consider the set of possible residual vectors r = u — z for all
u € N, and the corresponding roundings ¥’ created by Lemma 5.6. Suppose the sampling matriz S ensures that
|S'||b € |[t'[|B £ eOPT. Then, ||Sr|b € x| £ Cye? - OPT?, where Cyr is a constant that depends only on
Co, C,, and p.

Proof. We start with a triangle inequality to show three individual terms we need to bound:

ISTllp = lIellpl < HISTllp = [Ixllp] + v = xll, + (1S — Sr|,
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For two numbers b > a > 0, we have (b —a)? < (b — a)b?~! < P — abP~! < P — aP. So, our given

assumption on ||Sr'[[5 implies that [[|St/||, — [[r'][,|" < |||Sr’||§j — ||r’||§| < ePOPTP. That is, the first term
above is bounded by eéOPT. The second term relies on the first property of Lemma 5.5, which bounds
[r(7) — r'(7)] < emax{|u(?)|,|z(7)|}. From there, we get
r(i) — r'(i)| < emax{lu(d)], |2()[}
[v(7) — ' ()" < e” max{lu(i)[”, z(:)|"}

(5.8) < eP(Ju(@)” + [2(i)")

[r = '[I7 < e”(Jlallf + [|z]1})

< eP(CEOPT? + CPOPTP?)
v —/ll, < (CE +C2)M/P0PT

We lastly have to bound | St — Sr’||,. Recall that S is a diagonal matrix. This lets us expand
n
IS =25 =" Siilr(i) —x'(i)"
i=1

(By Equation 5.8) <eP Z Sii(lu(d)[” + |2(9)[")
i=1
eP([ISullf + [1523)
e?(2%[|ull3 + 100]l|3)
eP(2PCYOPTP + 100CYOPTP)
|S(r —1')||, < (2PCP +100CP)PcOPT

(Subspace Embedding on u and Markov’s Inequality on z)

IA A

‘Which means we can overall bound
ISzllp = lIellsl < NSl = (1]l + (v = 2’|, + [|ST — St
< (14 2(CP + CPYMP 4 2(2PCP +100CP)Y/P))e - OPT
0

LEMMA 5.9. Let N; be an e-Net on {Ax : ||Ax|, < CoOPT}, so that for any Ax in this set there exists some
u € N such that ||Ax —ul|, < cOPT. Consider the set of possible residual vectors r = u — z for all u € N;.
Suppose the sampling matriz S ensures that ||Sr||b € |r|[) = Cne- OPT. Then, for all x with ||Ax|, < CoOPT,
|S(Ax —2z)|b € ||[Ax — 2|} + C3e - OPTP, where C3 is a constant that depends only on Cy,C.,Cyx, and p.

Proof. Fix any x with || Ax|[|, < CoOPT. Let u € N such that |Ax—y||, <eOPT. Then, by triangle inequality
1S(Ax = 2)[l, — [[Ax = z],[ < [[|S(u = 2)[l, - [[u—2z[,| + [[S(Ax = )|, + [|Ax — ul],
(S is a subspace embedding) < CneOPT + 3||Ax —u||,
< (Cn +3)e-OPT

Note that for a,b € [0, %] and p > 2, we have |a? —bP| < |a —b|. Therefore, for any ¢,d > 0, by setting
@ = grapeay and b= m and simplifying, we get |c? — dP| < (2max{c,d})?~!|c —d|. In our setting, we
note that ||Ax —z|, < |Ax||, + |Z]|, < (Co+ C,)OPT. Further, ||S(Ax—2z)||, < ||Ax—2||, +e(3+ Cn)OPT <
(Co+ 34+ Cn)OPT. So, letting Cs := (Cy + C, 4+ 3 + Cyr), we have max{||S(Ax — z)||,, ||[Ax — z||,} < C;OPT,
and so

15(Ax - 2)||} — || Az — z[[}| < (2C.,OPT)"~"[|S(Ax — 2)|, — || Az — z|,,| < (2C,)P~'C'e - OPT?
0

This concludes the proof of Theorem 5.2.
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5.4 Lower Bounds for L, Regression We now show that (1 + ¢)-approximation for L, regression requires
reading at least Q( -7 ) entries of the function f. Later, in Section 6, we show that even 2-approximation for
L, regression requires reading 2(n) entries of f.

THEOREM 5.4. Fiz p > 1. Any algorithm that can output a (1 + €) approzimation to L, polynomial regression
with probability at least 2 must use n = Q(sp%l) queries.

Proof. Suppose an algorithm uses n < = queries. Then there must ex1st an interval Z C [—1,1] of width %
such that none of the algorithm’s querles land within Z with probability 2 5. We then define two functions:
1/p 1/p
+2 - teT -2 teT
f+(t) = ‘ f-(t) == c

0 t¢T 0 t¢T
Both fi and f_ have ||fy|? = [ f-|f = & - 2Z. Let C := 271/ — 1 € (0,%). Then both functions have
Mingeg(g)<d |¢ — fII) < (1 - Cs)||f|\p since the polynomials ¢4 (t) :==1 and g_(t) :== — 1 achieve this L, norm:

1/p
lar = fllh = 1 G = DP + (1= ) (0 - 1)F

<t «f” 1) +Mnf®)
=L (s%(l == )P +4n)
<@ (F0-57)+ 7)

= ﬁ . 6% 1— (27 1p _ %)s)
=(1- Cf)||f+|\£

Or equivalently, || f4[|h > 1%06 MiNgeg(q)<d [|¢—fI5 > (14+C¢) mingeg(g)<a l[g— f||}. Now suppose some polynomial
g has [|§ = f+ |} < (L= f+I5. Since || f4 — f-[lp = 2[[f+]p, we have

la— f-llp > If+ = F—llp = ld = £olp
= 2 filly — (L= )2 f ]
— 2= (=" 51
> (1+ 291/l

ld— f-1E = (DI

That is, if ¢ is a slightly good approximation to f,, then ¢ is a slightly bad approximation to f_. By symmetry,
the inverse claim also holds.

To complete the argument, suppose nature picks fy or f_ uniformly at random. Then with probability % the
algorithm returns some polynomial ¢ without knowing which function nature chose. If [|§ — f1[|5 < [ f+ ||} then
g — f-II5 = [If-I|, and otherwise |[§ — fy|[5 > [|f+[[5. So, with probability 2.1 =1 the resulting polynomial
has error

g = £l = £y > (1+ Ce) | min g = fl;

By adjusting the value of €, we complete the proof. O

6 Near-Optimal L., Regression

We now demonstrate how to extend these guarantees from L, polynomial regression into L., polynomial
regression. We remark that the sample complexity and approximation factor guarantees in this section were
already shown in [KKP17], but with a different algorithm.

For a finite dimensional regression problem with m rows, we could achieve a (1 4 €)-approximation to £u
regression by approximately solving /£, regression with p = 1“% [MMM*22]. However, since polynomials lie
within an infinite dimensional space, we cannot naively apply this argument. In fact, it can be shown that even
with arbitrarily many observations it is impossible to solve polynomial L., regression to better than a 2-factor
approximation:

Copyright © 2023 by SIAM
3989 Unauthorized reproduction of this article is prohibited



Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

THEOREM 6.1. There does not exist an algorithm that can output a 2-approximation to Lo, polynomial regression
with probability at least %

Proof. Consider an algorithm that observes at most a finite number, say n < oo, of queries from f. Then there
exists some interval Z C [—1,1] of nonzero width such that none of the algorithm’s queries land within Z with
probability % We then define two functions:

+1 tel -1 tel
t) = _(t) =
f+(t) {O L¢T f-@) {0 LET
Both fi and f_ have |fi|s = [|f-]| = 1, and both have mingeg(g)<a|lg — fllc < 3. since the polynomials
q+(t) :== 3 and ¢_(t) := — 3 achieve uniform error 1.

To complete the argument, suppose nature picks fi or f_ uniformly at random. Then with probability %
the algorithm returns some polynomial § without knowing which function nature chose. If §(t) > 0 anywhere on
Z then ||¢ — -]l > 1, and if (¢) < 0 anywhere on T then |lg — fi o > 1. So, with probability 2 - 2 = & the

resulting vector has error [|§ — f|| > 1 > 2ming.qeg(g)<da [1¢ — flloo- d

In light of the lower bound in Theorem 6.1, we aim to provide a constant-factor approximation for L.,
polynomial regression rather than (1 + ¢)-approximation. This requires a slightly different algorithm than
Algorithm 1, shown below in Algorithm 5. The only changes are that the rescaling matrix now has p in the
numerator, and that x is computed by £, matrix regression.

Algorithm 5 Chebyshev sampling for L., polynomial regression

Input: Access to signal f, parameter p > 1, degree d, number of samples n

Output: Degree d polynomial p(t)

: Sample tq,...,t, € [-1,1] i.i.d. from the pdf \/7—7:&2

Observe signal samples b, := f(¢t;) for all i € [n]

Build A € R**(4+1) and diagonal R € R™*" with [A]; ; =)' and [R];; = (%p\/l - tf)l/p
Compute x = argmingcgat1 [|[RAX — Rb||o

Return p(t) = Y0 @t

THEOREM 6.2. Let B(n,r) denote the binomial distribution. Let ng = O(d’ polylogd) and let p = O(logd).
Suppose an algorithm samples n ~ B(ng, 1/0(d*)) and runs Algorithm 5. Then, with probability %, the resulting
polynomial § satisfies

§— flloo <O(1) min — flloo
g — £l ()qzdeg(q)gdllq 1l

We prove this by mirroring a known proof technique found in Appendix A of [PPP21], which says that having
a subspace embedding suffices to constant-factor approximation guarantees in any normed space. So, to apply
this proof technique, we first have to have a subspace embedding in the L., norm:

LEMMA 6.1. Suppose an algorithm samples n ~ B(d*, O(d3)) and runs Algorithm 5. Then, the matrizc RA on
line 4 of the algorithm is a subspace embedding for P: &||Px|ls < |RAX| o0 < C||PX| oo for all x € R4

This is the conclusion of two shorter lemmas

LEMMA 6.2. Let p > 2 be an integer. Suppose an algorithm samples n ~ B(d*, O(ds)) and runs Algorithm 5.
Then, the matriz RA on line 4 of the algorithm is a subspace embedding for P: &|Px|b < |RAx|E < C||Px|?
for all x € R+,

Proof. We start by using the same trick as Theorem 5.1 in Section 5.2 to build a subspace embedding for large
p. Let Q: R+ — [,([~1,1]) be the extended polynomial operator, so that [Qv](t) = ?20 zitt.
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Notice that (Px)P is just some polynomial raised to integer power p. So, for any x € R¥+L  there exists a
v € R%*! such that (Px)? = Qv. Then, we can write

1 1
HPXM::/;HPXKﬂPﬁ::/¥

We then apply Corollary 4.2 to the L; norm for polynomials of degree dp. This tells us that diagonal § € R"*"
with [S];; = 2./1 — ¢ and Vandermonde B € R"*(@+1) with [B],; =t enjoy

[Qv(®)]di = [|Qvl|x

1
6||QvH1 < ||ISBv|: < C||Qv]1 for all v € R?PT!

Since A and B are just Vandermonde matrices of degree d and dp respectively, we can use the same observation
to equate ||SBv||; = [|[RAx|}:

ISBv =) Su l[Qv](t)] =Y (Ru [[Px](t:)])" = | RAx|E

i=1 i=1

Where we use the fact that [S];; = [R]?, = d—f\/ 1 —t2. So, the subspace embedding guarantee is equivalent to

1
6||77x||§ < [|[RAx|} < C||Px|h for all x € R4!
This complete the process of making a subspace embedding for large p. 0

Next, we take p = O(log d) and show this creates an Lo, subspace embedding.

LEMMA 6.3. Let p = O(logd) be an integer. Suppose an algorithm samples n ~ B(d5,0(d—14)) and runs

Algorithm 5. Then, the matrix RA on line 4 of the algorithm is a subspace embedding for P: %HPXHOO <
|[RAX||0o < C||Px||0o for all x € RIFL,

Proof. We achieve this by showing [|Px||, o) [[PX|« and |RAx|[, o) [RAX]||« for all x.

This is simple to show in the finite dimensional case. By standard finite dimensional ¢, norm inequalities,
|RAX| s < ||RAX|, < nv |RAX||s. Since n = O(d), having p = O(log d) suffices for nv to be 0(1).

The infinite dimension case is more involved. We need to show that for any polynomial h(t) of degree d, we
have [|h|lco ¢ ||B]|p- One direction is simple to show:

1
Inlly = [ e < 20
The other direction follows from the Markov Brothers’ Inequality, using an argument similar to Lemma 4.2.

Without loss of generality assume that ||h||cc = 1, and that h(tg) = 1 for some ¢ty < 0. Then, by Markov Brothers’,
we have |h(tg+z)| > 1 —d? for any 0 < z < 4. In particular, we have |h(t)| > 1 — 1 for t € [ty,to + Z5]. Then,

mu:(/yummg

e

1/p

1 1
= M(l - )
=Q(1)
Where the last line follows from d > 2 and p = O(logd), so that 1 — 2 > 1 and d®/P = O(1). We conclude that

IR]l, = Q1) = Q(1)||h]|co, and therefore that ||Px||, ~c¢ [|PX] co-
Then, we finally combine this with the subspace embedding from the prior lemma to get

1
c1Pxlso < [RAX[lo0 < CPxllo
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Now that we have a subspace embedding, we can complete the proof that Algorithm 5 is correct.
Proof. Let x* := argmin, ||Px — f||o & true optimal solution. We first bound ||RAx* — Rb||oc < C||Px* — f]|oo:

[R)ii = (%2/1— 2)1/Ollogd)

(
(@( d;)ioll(})flgodgd))l/oaog g
(O(

O(logd
))1/ ( g )

R;;i [Ax* —b];

IN

lylog

|RAX* — Rb|x

i€[n]

Ris ([Px" = f1(t)|

sup
i€[n]

< sup O(1)|Px'I(t) — f(L)

te[—1,1]

OMPx" = flloo

(6.9)

And this bound suffices to prove our guarantee. Let X := argmin, | RAx — Rb||, be the solution returned in
line 4 of Algorithm 5. Then,

[PX = flloo < IPX = Px" oo + [[PX* = flloo

(Subspace Embedding) < C||RAX — RAX"||co + |PX" — floo
< C(|[RAX — Rb| o + [RAX" — Rbl|oc) + [|Px" — f|oo
(Optimality of %) < 2C||RAx* — Rb||oo + [|Px* — flloo
(Equation 6.9) S OM[IPx* = fllee + [IPx" = fll
=O0M)[IPx" = fllos
Which completes the proof. 0

7 Analysis of the Clipped Chebyshev Measure

As mentioned in Section 4, the Chebyshev measure itself is not sufficient to achieve the approximate
Lewis weight property for P, since the Chebyshev measure grows to infinity as [t| — 1 while the leverage
function is bounded. Thus we instead analyze the following clipped measure: w(t) := min{C(d + 1)%,v(t)} =

min{C(d + 1)?, md/%} and prove the following result:

THEOREM 2.2 RESTATED. There are fized constants c1,co such that, for all p € [%, 2] and t € [-1,1],

W2 Pt
SR Ui O
log”d w(t)
The basic flow of the proof is broken into two portions. First, recall the overall shape of the rescaled leverage
function:

(V3PP _ )it e 00O

7.10 TIWETEP|(t) = N s
(710 | 0= e, W25 Px|]2 aideg(@)<d | W35 g2

We need to show that this leverage function is close to w(t) for all ¢ € [—1,1]. We split this analysis into two
parts:

1. The “Middle Region” with w(t) = v(t), so that [t| <1 — O(g5):

We show in Section 7.1 that HW%_%PXH% and ||V%_%'PXH% are similar enough that T[W%_%’P] ~ T[V%_%P]
in this region, and so the analysis of Theorem 2.2 is tight enough to ensure the almost Lewis weight property
here.
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2. The “Endcap Region” with w(t) = C(d + 1)2, so that [t| > 1 — O(g):
We know that w(t) and v(t) are very different here, so we use the fact that w(t) = C(d+1)? is independent
of t. This endcap analysis also proceeds in two steps:

e Upper bound 7[W? 5P](t) < O(w(t)) = O(d?):
In Section 7.2.1, we note that w(t) < C(d + 1)? for all t € [~1,1]. We use this to lower bound
||W%_%’PXH% > m | Px||3, and reduce the second form in Ecuation 7.10 to the unweighted leverage
function for P. We appeal to our earlier bound on the leverage function for P from Section 4.1.

e Lower bound T[Wffﬁp]( ) < Q(w(t) log®(d)) = Q(d? log®(d)):
In Section 7.2.2, we plug in a spike polynomial that approximates t > % into the rightmost term in
Equation 7.10, and evaluate the numerator and denominator for that polynomial.

We again break up the analysis into the slightly more approachable p = 1 setting and the more complete p € [%, 2]
setting. Additionally, in this section, we refer to the middle region as

Toia = {t | w(t) = v} = [\/1 — szpairom |1+ sreaiyeen

and the endcap region as Z.qp := [—1,1] \ Z:q. We also often use the notation = ~, y with o > 1 to mean that
éy <z < ay. Lastly, to reduce the messiness of the analysis, we omit the change-of-basis matrix that was used
in prior sections U. For p = 1 analysis, Chebyshev polynomials of the second kind are used. For p = 2 analysis,
Legendre polynomials are used. For p € (%, 2) analysis, Ultraspherical (i.e. Jacobi) polynomials are used.

As an aside, when p > 2 this analysis breaks down in a few places since % — % swaps from being negative

to positive. For instance, this means that ¢ — (w(t))%fi is maximized in the middle region for p < 2 but is
maximized in the endcap for p > 2.

7.1 Middle Region Analysis for p = 1 Our main goal in this section is to prove Lemma 7.4, which states

that W ©(1). We first recall our bound on the leverage function in Section 4.1:

LEMMA 7.1. The leverage function for P has T[P](t) < [-1,1].

We use this lemma to (1) analyze the behavior of w on Z,,;q by showing that the leverage functions on

the operators 7[W~2P](t) and 7[V~2P](t) are very similar inside this middle region Z,,q in Section 7.1.1 and (2)
21

upper and lower bound the ratio of w in Section 7.1.2. Using these bounds, we then prove Lemma 7.4 in

Section 7.1.3.

7.1.1 Relating T[W_%'P] to 7[V"2P] In this section, our main goal is to show in Corollary 7.1 that

W~ 27’]@) ul 27’]('5)
0 ﬁ o) for t € 7,

mid, where we recall that Z,,;q is defined by

Lnia = {t [ w(t) = v(t)} = NPWMHW ’

so that w(t) = v(t) for t € Z,;4. To this end, we first remark that it suffices to show that ||W_%PXH§ N_2

Cc2

||V7%77X||%. To see why this suffices, consider the definitions of the leverage functions:

N _1 t 2 _1 ¢ 2 _1 + 2 )
TIW™2P](t) = max (V2 Px](1)” 21PX]( ) _ max —2Pxi®) Z?X]( ) R_2 _ max (==Px)(t)” Q?X]( ) _ TV 2P|(t).
e e I A PR TN

Hence, we first show in Lemma 7.2 that [[W—2Px|2 ~ g2 HV 2 Px|2.
LEMMA 7.2. For all x € R4 we have
W2 Px|; ~ e (V7 2Px|3
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Proof. We start by looking at the difference between ||[W~2Px|2 and ||V~ 2 Px|[3.

\nw-%v?xn% — v-tpxip| = \ / 11<[W-%7>x]<t>>2 — (VPR dt\

[ v ipxiop — vipx@) e [ (VPR - (v EPx@) dr.
Teap Tmid

Since W2 Px](t) = [V 2Px](t) for t € Lnia, then Jz...( t)
w(t) is the clipped Chebyshev measure, we have that w( ) v(t) and thus (w(t))~2 > (v(t))~ 2. Hence,

1

[IW=#Px|3 - Vi Pxi| = ‘ | v - ey @

<

/ (W2 Px)())? dt
Zeap

— [ oviPx an
Zeap

Because (w(t))~! = ﬁ on Zqyp, then

d+1)
-1 2 -1 2 1 / 2
2 — 2 < -
‘”W PXH2 HV PX||2’ — C(d+ 1)2 Icap([PX](t)) dt

Since Lemma 7.1 implies ([Px](t))? < %H”Px”%, then

_1 _1 1 d+1 <2
e e B e -

cap cap

To upper bound the length of the interval Z.qy, note that 1 —4/1 — m% < x% for 22 > 1. Hence,

Jz

— 1 2
cap dt=2- (1 - 1- 7r2(d+1)202) S 72(d+1)2C?>

so that

1 -1 P13 2 1 2
WP - V4P| < 553 @ 1ECE ~ mr@+ EcE M

Next, we bound the norm ||Px||2 using the fact that w(t) < C(d + 1)2 to say that 1 < VCO(d + 1) - (w(t)) "2

W2 Px|(t))2 — (V-2 Px]|(t))? dt = 0 Moreover, since

, SO
that
1
IPxl = [ (1 [P0
1 N 2
g/ (\FC’(d+1)~(w(t))’§-[Px](t)) dt
-1
= C(d+ 12w 2 Px|2.
Therefore,
_1 1 _1
IW=EPx|3 - [V APxl| < s IV EPxI = Sl Px:.
Rearranging this inequality,
Lo veErxE ) 1
[WEPx|3| ~ w02
or equivalently,
_1 2
1 < v 2‘173x|\2 < 1 < 1 7
w02 7w Px3 LR
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. 2 ~2 . . .
for C' > % Since 1l = w;rcg_l, then we have the multiplicative error guarantee

W= Px|} ~ IIV 2Px|3
for C > 1 ~0.312. O

s

We now complete the formal proof of Corollary 7.1.

_1
7T[Ww(2t;3](t) X 202 77—[\} (27) fort S Imzd

72021

COROLLARY 7.1.

Proof. By Lemma 7.2, we have that |[W™2Px|2 ~ [V=2Px|2 for all x € R4, Since w(t) = v(t) for
2C’§
t € Ipig, Lemma 7.2 implies through the definition of the leverage functions that
-1 -1 2
WP _ L (e hPx()
w(t) w(t) > |WmEPx|l3
1 —3 2
e EPN0)
v(t) < w2 Px|3
1 -3 2
N e PR
25500 % [V 1Px]3
[ “2P(1)
o(t)

as desired. O

1

7.1.2 Relating 7[V"2P] to v(t) In this section, we relate 7[V~"2P] to v(t) for t € Zpniq, which will ultimately
allow us to relate 7)W= 2P| to w(t) in Section 7.1.3, using Corollary 7.1.

LEMMA 7.3. For t € Tnq, we have that T[V™2P](t) ~ (2422 v(t).

Proof. Note that the claim is equivalent to the statement that % € (%,’y) for v < g + % We will use
the relationship \/% <Ui(t) < ﬁ to prove this.

Specifically, we ensure the two traits

Solving these two inequalities on the right hand side yields

1
< 1-gameer ad <1 gamd e

respectively. Observe that the guarantee on the left implies the guarantee on the right, so we just ensure that one

trait. Rather, we should think of
Zy= {t‘ |’f|§\/1—<2<d+1><i1>1>2}

as the set of time points where we have 7[V~2P](t) ~~ v(t). We now ensure that this interval Z, entirely contains
the middle region Z,,q, i.e., Zmia C Zy. Note that ¢ € Z,,;4 implies that

1
t<|l— 55
= \/ 2(d 1 1)2C?
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For v =1+ %3C+ m, note that we have

1
‘= \/1‘ CE+ -1 -1

as desired. Hence, Z,iq = Z, for m%(d 4 1)°C? = (2(d + 1)(y — 1) — 1) or equivalently, v = 1 + 5C + m.
Since d > 1 implies

™ 1 s 1
1+-CH+——"-<14+-C+-=
+2 +2(d+1)_ +2 +4

+ -G,

= | ot
ol 3

then 7,50 C Zy for v < g—i— 5C. Therefore, the set Z, where the leverage scores of V=3P are ~-close to v(t) covers
the set of time-samples not in the cap for v < 2 4+ ZC. Equivalently, we have that V-2 P|(t) R34 z0) v(t) for
t € Lid- 0

_1
7.1.3 Complete Result in the Middle We now finally relate W by using Corollary 7.1 and

Lemma 7.3.

LEMMA 7.4. Fort € L,,;q, we have
W2 P|(t)

ORI

Proof. By Corollary 7.1 and Lemma 7.3, we have that for ¢ € 7,4,

W2 P|(t) ~a v(t)

where a = % (2 + Z€) for some constant C > 1 ~ 0.312. Furthermore, since v(t) = w(t) in the region
t € Tpniq, this further implies 7[W ™2 P|(t) &4 w(t), as desired. O

7.2 Endcap Region Analysis for p =1 We now turn to ¢t € Z.,;, and we will show that

W EP|(t) ~ o w(t)

1
2C

W3 P)(1)

for t € Zqp. Thus it suffices to upper and lower bound the ratio O]

W2 P)(t)
wt)
Namely, we show in Lemma 7.5 that there exists an absolute constant C', the same constant C' > % in the

1
TIW 2 P](t
% S % for all ¢ S Ica;r

7.2.1 Upper Bounding the Ratio. In this section, we provide an upper bound on the ratio

definition of the clipped Chebyshev measure, such that

LEMMA 7.5. Fort € Z.qp, we have

_1
Proof. Since 7[W~2P](t) = maxy W and w(t) < C(d+ 1)? for all ¢t € [—1,1], we first lower bound
2 X 2

[W=2Px3 by
WP = [ s (PRl0)?
! 1 2 1 2
> [ G PO = s P
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Then we can directly tackle the leverage function:

L VEPKM)? 1 ([Px(1)’

< wTEpx|y w(t) xR Px3
L (P

Cld+1)2 "< |W—:Px|]2

since w(t) = C(d +1)? for t € Z,4p. Thus,

1 ([Px](t))*

W2 P|(t) < max =
GRS -

Then we can then conclude

2
WP
w(t) ~Cd+1)2 2C
O
_1
7.2.2 Lower Bounding the Ratio. In this section, we provide a lower bound on the ratio W. Namely,

1
W2 P(t)
WD)
We first require the following structural result from polynomial approximation theory.

we show in Lemma 7.6 that there exists an absolute constant C’ such that

10(;351 for all ¢ € Zcqp.

THEOREM 7.1. (LOW-DEGREE APPROXIMATION OF HIGH-DEGREE POLYNOMIAL, THEOREM 3.3 IN [SV14])
For any positive integers s and d, there exists a degree d polynomial F' such that

sup |f(t) —t°| < 2e7F.
te[—1,1]

Moreover, for any 6 >0 and d > [,/28 log %‘ , there exists a polynomial f of degree d such that

sup |f(t) —¢t°| <.
te[—1,1]

LEMMA 7.6. Fort € Z.qp, we have

W2 P(t) . (1 13d> _
og

W3 P(1)

o we first note that for ¢ € Zcqp, we have that w(t) = C(d+1)? and

Proof. To lower bound the ratio
thus it suffices to lower bound
_1
T[Wfé’P] (t) = max —([W 2 Px|(1)”
< w3
by analyzing the quantity for a specific choice of x € R¥+1,

Let q=0 (“ﬁ;j) so that by Theorem 7.1, there exists a degree d polynomial f such that

sup [ f(t) =t <d™7,
te[—1,1]

for some constant v > 0. We set x € R%! so that the operator Px corresponds to f(¢) and lower bound
(W3 Px(1))?
W= EPxi3
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First, note that since t? = 1 at ¢t = 1, then we have f(1) > 1 —d~7. Similarly, since |t| > ,/1 — W >

for t € Zcqp, then we have t9 > % since ¢ = O ((dH)Q). Thus, we have f(t) > % —d7 for all

1— — 1
272 (d+1)2C? logd

t € Leap. Since w(t) = C(d+ 1) for all ¢ € T4y, then
1

([Wiépx](t))Q > m

It remains to upper bound ||[W~2Px||2 when the operator Px corresponds to F(t). Since supye—1,1) [f(t) —
t?| < d~7, then we have

an%m3=/’4i4ﬂwfﬁ

_7 w(t)

| |
< 2/ — a4 dt+2/ — 294t
1 w(t) 1 w(t)

Since w(t) = min{C(d + 1)?, dirlﬁ} then Tt) < Z7- Thus,

And—27 |
e +4/ — 29 4t.

We decompose the interval [0,1] into Z; = [O, 1— %llo)gjd) and Zp = [./1 - %lf)g;d 1} Note that for

teZ;, wehavet <1— % and thus 127 < exp (—O (C?n?logd)) for ¢ = O ((Clljgl; ) Hence for sufficiently

large C' > 0, we have that t2¢ for all ¢t € Z;. Thus since ﬁt) < d+1’ then

1 167 1
4 — 2 < / R —
/z1 w(t) T d+1 /g, T (d+1)?

2
Note that |Ig| < % and t?¢ < 1 for t € Zo. Moreover for t € T, we have mc/l;%tz > C(ligcll) so that

1 log
wn < oz Henee

W=z £z <

1
< 167 (d+1)3

1 logd
— i< | ———dt
/IQ w(t) = )z, C(d+1)2
logd  C®z’log’d _ Cw*log’d
T Cd+1)?2 2d+1)2  2(d+1)4

Therefore in summary, we have

4rd=—2 |
W=tz <2 +4/ 2t
0

d+1 w(t)
And—2 1 1
_ T +4/ —tzth+4/ — %94t
d + 1 ) UI(t) I UI(t)
drd =27 1 Cn2log®d

S 031 Tarn T2
Hence for sufficiently large v > 0, we have that

_1 log® d
Wil =o (5:1).

Combined with the previous bound of (W ~2Px](t))? > m =Q (), then

qw%?ﬂwfzg<di).
IW~2Px||3 log” d
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Finally, since w(t) < C(d + 1), then

0 P = (1og13d> '

7.3 Putting It All Together We finally obtain Theorem 2.2 from Lemma 7.4, Lemma 7.5, and Lemma 7.6.

THEOREM 2.2 RESTATED. There are fixed constants ¢y, ca,c3 such that, letting w(t) = min (cl(d + 1 d—lth)

be the clipped Chebyshev measure on [—1,1] and letting W be the corresponding diagonal operator with [Wm] =
w(t) - z(t), for any t € [-1,1],
2 _ T[WEPI(1)
log3 d w(t)
Proof. We consider casework on ¢ € [—1,1]. Recall that

Lnia = {t | w(t) = v(t)} = [\/1 - m,\/u WMJ

< C3.

and Zeqp = [—1,1] \ Znig. We have from Lemma 7.4 that there exists a constant Cy > 1 such that
_1
Cio < W < Cp for all t € Z,,;4. We have from Lemma 7.5 and Lemma 7.6 that there exist constants

C3, Cy4 such that

_1
C’g < TIW™2P|(t) <

log” d w(t)
for all ¢ € Zqp. Thus by setting C; = min (03, C%.) and Cy = max(Cyp, Cy), we have that

G VRN
log” d w(t)

for all t € [-1,1]. O

We now move onto the slightly messier analysis which works for all p € [1,2]. The core ideas are all the same,
but the mathematical arguments are slightly more nuanced.

7.4 Middle Region Analysis for p € [%,2] In this section, we show that w O(1) for t € Tynia
defined by

Lnia = {t | w(t) = v(t)} = {\/1 - P \/1 * Wll)?cz}
and the clipped Chebyshev measure w(t) defined by

w(t) := min{C(d +1)2, v(t)} = min{C(d + 1), m”/l%}.

1_1
7.4.1 Relating T[Wéf%P] to T[Véf%P] We first show that ZY° 2210 LP)PW) for t € Iy,

w(t) ooz v(t

Observe that since Z,,;q is defined by

Tnia = {t | w(t) = v(t)} = Wlfmv\ﬁ*m ’

then we have w(t) = v(t) for ¢ € Z,,,;q. Thus it suffices to show that ||V\/2 P77x||2 N HV2 PPX||2 since
1 1 5_; 2 5_5
AR = e VPR ix}(t»
R (e *wETEePx|3
Vi Px](1))2 P
~ o max ZPAOR iy,
T vETE Pl

~vPx|2.

Therefore, we first show that ||W%_%Px||§ N2
< C
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LEMMA 7.7. For all x € R we have

W= Px]3 ~ ||VTE7’XH2
Proof. We first bound the difference between HW%_%PxH% and HV%_%PXH%.

Wi - v

1
_ ' [ ovi e - ) a

[ i@ - e are [ 0P - (v PRI(0)? at .

Zmid

Because [Wéf%Px](t) = [Véf%Px](t) for t € Zpg, then it follows that fzmd([VV%*%PX](IS))2 -

([V§_5 x](t))? = 0. Since w(t) is the clipped Chebyshev measure, we have that w(t) < v(¢) and thus
(w(t)2 7 > (v (t))%’%. Therefore,

Zea P

WA 5P — Vi 5P| = ‘/ (W Px)())? — (VE 5 Px](1))? di

< /I (WEEPx(1))? dt :/I (WEEPx(1))? dt.

Since w(t) = C(d + 1) on Zeqp,

[IWE=3 P - V33 Px|3| < (C(d+ 1)*)' / ((Px](®))"t

cap

By Lemma 7.1, we have that ([Px](t))? < @H”PXH% Thus,

L 11 _z (d+1
w3 - il < ca+ ) ey [

cap
2
1-2
Cc p

@' 2 / d.
Z

cap

Jr o dt=2-[1—,]1- ! < .
Leap m2(d +1)2C? m2(d+1)2C?

We upper bound the length of the interval Z.,, by observing that 1 — /1 — -5 < = for z% > 1 and thus,
2

Therefore,

2 e T TE T (d+1)*s
WP — VA PXIE] < e S IPxIE = S P
[

N

We then bound the norm ||Px||2 by noting that w(t) < C(d+1)2. Thus, 1 < C# 2(d+ 1)z " (w(t))? %, so
that

1
1P| = / (1 [Px](6)2dt

-1

3=

< / (3 3@+ 0F - )i - [Pu()) ar

-1

=Cr N d+ 1) YW Px|2.
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Therefore,

(d+1)>

WP} — V3 P3| < oh
ﬂ

Rearranging this inequality, we have that

c%—1<d+ 1) 2 |w2 e Px|} =

1_1
,,%CzIIWZ » Px|[3.

P e
Wi Px3| 2
or equivalently,
1_
1 < V2~ 77x||2 < 1 ’
PO S | wE g P07 T T
for C' > % Since - —_— W?égil, then we have the multiplicative error guarantee
w202
W2~ Px|3 ~ ||V2 »Px|3
for C>L~0312. O
We now relate 72 w(p)P](t) to iy (p)m(t for t € Tinia
%,l %,l
COROLLARY 7.2. W N o w fort € Imia-

w2021

Proof. By Lemma 7.7 HW§75PX||2 S ||V2 P7)X||2 for all x
#C —

follows from the definition of the leverage functlons that

€ R4+ Since w(t) = v(t) for t € Lia, it

(W2~ Px|(1))?

max

WErP|t) 1
w(t) —w(t)

u(t) X wrTE P

as desired. 0

7.4.2 Complete Result in the Middle We now show that T[Wéi

factor for t € Z,,54-

LEMMA 7.8. Fort € I,,;q4, we have

Proof. By Corollary 7.2 and Corollary 4.1, we have that for t € Z,,,;4,

TIWE5P)(t) ~q v(t)
for o = % - Cy for some constants Cy and C' > % ~

t € Zynia, this further implies T[Wéf%P] (t) o w(t), as desired.

vz Px3

W35 Px3
b=y (1)?
RN (e 250)

x|13

»Px](1))>

1
»P](t) and w(t) are within a constant

0.312. Furthermore, since v(t) = w(t) in the region

|
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7.5 Endcap Region Analysis for p € [%, 2] We now bound the ratio for ¢ € Z.,,, and we will show that

W2 B P(8)

7.5.1 TUpper Bounding the Ratio. In this section, we provide an upper bound on the ratio O]

LEMMA 7.9. Fort € Z.qp, we have
W= P(t)
— 2 =0(1).
o) o(1)

1_1
Proof. Since T[Wéf%P](t) = maxy W and w(t) < C(d+ 1)? for all ¢ € [~1,1], then for p € [3,2], we
w2 rPx|3

can first lower bound ||W%7%77x||§ by
1
IWEEPxi = [ (o) (PRI ai

> [ (Clar 1) R (PR dt = (Cd+ 1)) [P,

—1
On the other hand, the leverage function T[W%_%P} satisfies

(V2 Px(1)? v (P
TIW?27?»P|(t) = max T T = (w(t P max ———5————
| =y w=">Px|3 e * v Px|3

2\1-2 ([Px](t))?
= (C(d+1 )1 P max ———5———
(o ) x |IW2"rPx|)3

because w(t) = C(d + 1)? for t € Z,,p. Therefore, from the above inequality, we have

ool < sz (PW? (1)
W2TrPl(t) < (C(d+1)7) s D7) E [P [PI(t) = —
Hence,
A O S
w(t) - Cd+1)2 20
as desired. O

11
7.5.2 Lower Bounding the Ratio. We now lower bound the ratio W

LEMMA 7.10. Fort € Zcqp, we have

Wz 5 P|(t) Q<1 13d).
og

W25 Pl(t)

Proof. To lower bound the ratio = wlt) , we observe that w(t) = C(d+ 1)? for t € Z.,p. Hence, it suffices to

lower bound

T[W%—%”P](t) = max ([Wézé?x}(tlﬁ
e

by choosing a specific polynomial represented by x € R*+1.
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We choose ¢ = O ((‘f;;j) so that by Theorem 7.1, there exists a degree d polynomial f such that

sup [ f(t) =t <d™7,
te[—1,1]

for some fixed constant v > 0 to be set at a later pomt in the analysis. We choose x € R4 so that the operator

Px corresponds to f(t). We then lower bound W
w 2 Px||2

Becausetqzlattzl, then f(l) zl—d 7. Since ‘t| Z 1/1—W 2 1—Wf0rtezcap7

then t7 > 1 for ¢ = O ((‘fjglj) Hence, f(t) > + —d ™7 for all t € I,,,. Since w(t) = C(d + 1)? for all t € Ly,
then

1

(WA P > S(Ca+ 1) F =0 (3).

We now upper bound HW%_%PxH% for the operator Px that corresponds to f(t). Since sup,e_q 17 [f(t)—29| <
d™7, then

Wi f|3 = / (@) (P02
< 2/1 (w(t))'~Fd 2 dt + 2/1 (w(t))' ™72 dt.

-1 —1

Since w(t) = min{C(d + 1)?, m‘}%}, then (w(t ))1_7 O (dl ) for p € [2,2]. Thus,

1
Wi I3 <0 (@3 ) +4 / (w(t)'~# 24 dt.

Consider a decomposition of the interval [0,1] into intervals Z; = {O, 1-— %W) and Zp, =

{,/1— %llo)gm 1} For t € 7, we have t < 1 — % so that t2¢ < exp (—O (C27r210gd)) for

=0 ( (dt1) ) Thus for sufficiently large C' > 0, we have that t*¢ = O () for all ¢ € Z;. Because (w(t))lf% <1

logd
4/ (W) 22a =0 (L),
Il d7

On the other hand, |Z3| < % and t2¢ < 1 for t € Z,. For t € I, we also have either w(t) = C(d + 1)? or

d d+1)2 _2 _4
w(t) = m‘}% > éﬂﬁ;d so that either way w(t) > C(ﬂﬁ;d, and so (w(t))' ™7 = O (d2 » log? d). Hence,

forp € [3, 2], then

4/ (w(t))l’%thdﬂlg/ o(dQ*%bg?d) dt
IQ IQ

C?712log? d

<0 (@ Flogd). 2(d +1)2

= O( _%log4d>.
Thus in all,

1
a5 +4/ (w(t))~ 5429 dt
0
O(d1*%*27)+4/ (w(t) 1**t2‘1dt+4/( (1)~ 72 dt
Il 12

~0 (dl-%—%) +o <d17> +o (d—% log* d) :

wis sz <o
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Hence for v =5, for all p € [%, 1], we have that
W25 F|2 = 0 (d# log* d) :

Combined with our previous bound that ([VV%_%PX](t))2 >Q <d2 %) for p € [2,2] and therefore,

TR ()

Finally, because w(t) < C(d + 1)2, then

WPl _ 0 (1 14d) |
og

d

7.6 Putting It All Together We finally obtain Theorem 2.2 from Lemma 7.8, Lemma 7.9, and Lemma 7.10.

THEOREM 2.2 RESTATED. There are fized constants ci,ca,cs such that, letting w(t) = min (01 (d+1)? ﬂj%)

be the clzpped Chebyshev measure on [—1,1] and letting W be the corresponding diagonal operator with [Wzx](t) =
w(t) - x(t), for any p € [2,2] and t € [-1,1],

o TIWTEP(t)
g d = w() :

C3.

Proof. We consider casework on t € [—1,1]. Recall that

Tinid := {t | w( } = [\/1 d+1)202 ) \/1 =+ WJ

S
=

and Zeqp = [—1,1] \ Zyniqg. By Lemma 7.8, there exists a constant Cy > 1 such that C%) < il t) < Cy for

all t € Z,,;,4. By Lemma 7.9 and Lemma 7.10, there exists a constant C3 such that

Cs _ 7w Pl(1)

<C
log'd = w(t) T

for all ¢ € Z;qp. Thus by setting C; = min (Cg, C%)) and Cy = max(Cy, C3), we have that

Ci _ WP

<C
1og4d - w(t) =2

for all t € [-1,1]. O
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A Operator Sensitivity Sampling

In this section, we show Theorem 4.3, which shows that uniform sampling can achieve a constant factor
approximation to the L, polynomial regression problem.

THEOREM 4.3 RESTATED. Let p > 1 and suppose si,...,sp, are drawn uniformly from [-1,1]. Let A €
R"0* @+ pe the associated Vandermonde matriz, so that A;; = s) ", Let b € R™ be the evaluations of f,
so that b; = f(s;). Forng =0 (d52pp2 log d), there exists a universal constant ¢ such that the sketched solution
X = argmin, | Ax — b||, satisfies
o < . B
1P% — fllp < _min [Px— /I,

with probability at least i%. Further, let ¢ € (0,1) and suppose |f|l, < C mink||Px — fll,. If no =
O (Eo(lpz) d®pP ) Jog g), then

[P = fII; < (1+¢&)min|[Px — £}
with probability at least %
Throughout this paper, we use two formulations of Bernstein’s inequality in the analysis for general p.

IMPORTED THEOREM A.l. (BERNSTEIN’S INEQUALITY, THEOREMS 3.6 AND 3.7 FROM [CL0G]) Let
X1,..., X, be independent zero-mean random variables with |X;| < M for all i. Then,

n 1.2

27
Pr Xi| >v| <2exp | ——=5 2 )
[Z ”] - p< S E[X?] + S

i=1
IMPORTED THEOREM A.2. (BOUNDED DIFFERENCES CONCENTRATION, THEOREM 17 FROM [CLOG]) Let
Xi,..., X, be independent random variables such that |X; — E[X;]| < ¢; for alli € [n]. Let X = >, X; and
v > 0. Then

Pr|X — E[X]| > 7] < exp (25 Cz)
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We first show the constant-factor regression guarantee using O(d°p?2? log(d) samples.

LEMMA A.1. Let A be the Vandermonde matriz formed by sampling ng = O(d°p*2? log(d)) points from [—1,1]
uniformly at random, and let b be the corresponding observations of f. Then, with probability at least %, the
sketched solution X := miny ||Ax — b||, has

IPx = fll, < € min [Px—fl,
for some universal constant C' > 1.

Proof. This proof is completed in two standard arguments. First, we show that uniformly sampling enough
points yields a ¢, subspace embedding, via an e—Net argument. Second, we use a standard argument that
triangle inequality and subspace embedding suffice for constant factor regression [ELMM20, MM20, PPP21].
Let si,...,5,, denotes the uniformly sampled times. First, fix any vector x € Rt Then let
Y, = 2%|’P)<:(si)|p, so that E[Yi] = L[Px]. 2Note that |Px(s;)|” < d*(p + 1) by Lemma 4.2, so that
Y < %’?”HPXH% and therefore |Y; — E[Y;]| < %@HPXH%. Then by letting Y = 7", ¥; = ||r Ax|[5, where

r = (%0)1/17 is a rescaling factor, and applying the Bounded Differences Inequality (Imported Theorem A.2) for
v = 27P||Px|[}, yields

2P|
2n 2G| Px| |3
—9exp ("0
TP 9wt (p 1 1)2
1
< - -
~ exp(O(dlogd))

Pr[[[lrAx|) — [Px|5] = 27| Px[}] < 2exp

Where the last line uses the fact that ng = O(d°p?2Plog(d)). Note that |a — b| < |a? — bp|1/p for all a,b > 0 and
p > 1. So, we get |[|rAx|, — ||Px],| < |[rAx]||? — ||73X||£’1/p < 1||Px||, with high probability. That is,

1

1
‘ _ > _||P < ——
(A1) PrllirAxlly, =1Pxls| = 51Pxly | < CoG @z a)

We now union bound this guarantee over a net. We first define the ball B = {x | [|Px||, =1}. The let '
denote a net over B such that, for any x € B, there exists some y € N such that ||Px — Py||, < 0.1. By Lemma
2.4 of [BLMS9], A has at most 10°(® elements.

Next, note that any x € B can be written as x = > .- a;y; where ap = 1 and |a;| < 0.1° and y; € N. So,
we can union bound Equation A.1 over all y € A to upper bound

oo
IrAx|l, < aillr Ay,
=0

<15 aillPyl,

=0

< 1.5%0.11'
i=0

1.5
1-0.1
1.825

IN
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And lower bound

o0
I Ax|l, > aollrAyoll, — Y aillrAyill,
i=1

> (1= 0.5)a0[Pyoll, — (1+0.5) > il Pyl
=1
> 0.5 — 1.520.1@'
=1

=0.3

That is, ||rAx||, = 1£0.9 for any x such that ||Px||, = 1. So, just by scaling this guarantee, we have shown that
for all x € R4 we have

[l Ax|, = [[Pxl|,

< 0.9Px|[,

This is the complete subspace guarantee. We now bound the error of the sketched solution %.
Let x* := argmin, ||Px — f||, attain the best optimal loss. Then, by repeated use of the triangle inequality
and our subspace embedding,

[Px — fllp < IPx = Px*|[, + [[Px* = fllp
< 2r[|Ax — AXT|p + |Px" = fllp
< 2r(]|[Ax = b||, + [[Ax" = b,) + [|[Px" = fll,
(Optimality of %) < Ar|Ax* —b||, + |Px* — flp

Then, noting that E[||r(Ax* — b)|[F] = [[Px* — f[|} so that by Markov’s inequality we have [r(Ax* —b)||, <
10[|Px* — f||b with probability 0.9, we conclude that

[Px = fllp < 41|Px" = £,
which completes the proof. 0

We next show that any near-optimal solution to the L, matrix regression problem formed from subsampling
a large number of points in [—1, 1] also corresponds to a near-optimal solution to the L, polynomial regression
problem.

LEMMA A.2. Let A be the Vandermonde matriz formed by sampling ng = O(d°p?2P log(d)) points on [—1,1], and
let b be the corresponding observations of f. Let OPT = minycga+: ||Px — fllp. Then with probability at least
0.9, all x € R with ||Ax — b||, < 11OPT have ||Px — f||, < 240PT.

Proof. Let x* be a minimizer of ||Px — f||, so that OPT = ||Px* — f||,. We now suppose by contradiction that
|Px — fll, > 240OPT. By triangle inequality,

[Ax —b|, > [A(x - x|, — [Ax" = b,

Since A is formed by uniform sampling with ng = poly(dp/e) points from [—1, 1], then with high probability,

23 25
2 lAxl, < [Pl < ol Axl,
for all x € R¥!. Formally, we prove such a bound in the proof of Lemma A.1. Moreover, note that since
x* = argmin, cga+1 [|Px — f||, has OPT = ||Px* — f||,, then we have E[||Ax* — b|[b] = OPT?. Thus by Jensen’s
inequality for p > 1, we have E[||Ax* — b||,] < OPT and by Markov’s inequality,
1
Pr[||Ax* — bl|, > 110PT] < o
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Thus with probability at least 0.9,
|4% ~bl, > 22 |P(x —x)], ~ 11OPT.

By triangle inequality,

| 4%~ bll, > 2 [P% ~ fll, - [Px* ~ fll, - LOPT.
Thus if [|[Px — f||, > 240PT, then

|A% — b, > 230PT — OPT — 110PT = 110PT,
which contradicts the given fact that ||A% — b||, < 110PT. Hence we must have
[Px — fll, < 240PT.
|

LEMMA A.3. Let OPT = min,cgat1 ||Px— f|, and suppose that ||f|l, < C-OPT for some fized constant C > 1.

1
£0(p?)
from [—1,1]. Let b be the corresponding evaluations of f. Then with probability at least 0.9, the minimizer X to
min, cga+1 || Ax — b||, satisfies

Let A be the Vandermonde matriz formed by sampling ng = O ( d5po(p2) log g) random points uniformly

Px = fllp < (1+€)OPT.

Proof. We first note that by Lemma 4.2, all sensitivities of P are at most M := d?(p + 1).
Note that if x* = argmin, cga+1 [|[Px— fl|,, so that OPT = ||Px* — f||,, then we have E[|| Ax* — f|[}] = OPT™.
By Jensen’s inequality for p > 1, we have E[|Ax* — f||,] < OPT. Thus by Markov’s inequality,

1
Pr [ Ax" — b, > 110PT] < —.

We condition against this event. Then, we have ||Ax — b||, < ||Ax* — b||, < 110PT, so by Lemma A.2 we also
have |[Px — fl|, < 240PT.
For the rest of this proof, let z € R%*! be any vector such that ||Pz — fllp < 240PT. By triangle inequality,
we have
1Pz, < [Pz — fllp + I fll, < 25C - OPT

Since the sensitivities of P are all at most M, then by definition of sensitivities, we have that for all u € [—1, 1],
P
(Prwl _
1Pzl

In particular, for all u € [—1,1],

[[Pz)(u)|P < 7:= M25°CPOPT?.
We partition the points of interval [—1,1] into two groups. We define G = {t : |f(t)[? < 7p**/eP’} and
B={t:|f(t)|]P > rp? /5”2}. Intuitively, B is a set of “bad times” where f is so large that polynomials cannot fit
it, and G is the remaining set of “good times”. So for any z with ||Pz — f||, < 240PT, we have |[Pz](t)| < 7!/P

as before, and also for any u € B we have |f(u)| > ’6’—27'1/1’. Thus, for any v € B, we have

(1- %) el < 1Pat) - sl < (14 5 ) 170

Therefore,

(A2) (L =alf W) < [Pz](u) = f(w)[” < (1 +e)|f(w)’.

This formalizes the idea that f cannot be fit by a polynomial on B. On the other hand, for G, we have
(A.3) |Az — b||} = [[Agz — bg||) + [|[Apz — bg|[},

where Ag and bg are the rows of A and b associated with points sampled in G, and where Ap and bp are
similarly the rows associated with points sampled in B. We will next show via an e-Net argument that the residual
|Agz — bgl|, is preserved for all valid z vectors.
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Accuracy of A on a single coefficient vector z at points in G. For each sample s; with ¢ € [ng], if
s; € G, we define X; = %|’Pz(si) — f(s;)|P to be the corresponding contribution to the empirical residue by the
sample. Otherwise, if s; ¢ G, we define X; = 0. Since we sample uniformly, i.e., the probability density function
for s; satisfies p(t) = 3 for all t € [~1,1], then

1 p — 1 _ P
E[X;] = - /tEG [Palt) - SO dt = —[[P2 — fI,

o

where ||f[|; == [,c |fI” dt is the integral only over the set G. Because [Pz(u)|P < 7 and |f(u)[? < TP /eP” for
all u € G, we have

Pata) — )| < 2

P
so that
Xi— B < 2 (Pato) — S0P + e gl < - (2] 0
Then let X = Zie[no] X, so that, letting r := (nlo)l/p be a rescaling factor,
Ellr(Acz — be)|}] = E[X] = [Pz — f|&
Setting v = 20(p2> [ f]I7 in the formulation of Bernstein’s concentration inequality in Imported Theorem A.2, we
have

Pr[|X —E[X]| > 1] <ex ~ 3067 s I FIZP o 242 .
=P e @2 )~ TP\ B20cy Ao )
1 N, 0

eP

2+42p

|

which implies by concavity (and therefore subadditivity) of ¢ +— t'/P for p > 1,

Thus for ng :O( —L . d - M?p op? ) log 4 ) we have
1

r(Acz = bo)ll; — Pz — fI2| > 3505 ||fp]—exp<o<dplogd/e))’

1
r(Agz = ba)l, = Pz - flle| =

3
(A.4) Pr [ = QO@Hflp] = =xp(O(dplog dje))’

By a similar argument, let Y; := n% |Pz(s;)|? for all s;, so that E[Y;] = nio||73z||§ and |Y; —E[Y;]| < %HPZH%

Then Y := 37,1, Ys, by Imported Theorem A.2 for v = el Pz|B, yields
(45) Pr ||lrAzl, ~ [Paly| < clPally| < ———
. r ||||rAz], — ||Pz z .
P p| = E2p | = Cp(O(dlog d/e))

Since M = (p+ 1)(d + 1)?, the total number of samples is ng = O ( d5pO*) log ?)

The arguments so far, when combined carefully (see the last part of this proof), imply that the error from
uniform sampling does not matter on B, and that for any fixed z such that |Pz — f||, < 24O0PT, the error on G
is preserved. So, for any such z, we can say with high probability that

24+2p2

(1 =e)lPz = fly < Az = bl[f < (1 +¢)[|Pz - f|}

However, the epsilon-net argument needs to be applied to just G on its own, so we now construct a net under the
Il - ll¢ norm.
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e-net argument for subspace embedding. We now union bound over a net by first defining the ball
B = {x| ||Px|, =1}. The let N denote a net over B such that, for any x € B, there exists some y € A such

that [|Px — Py||, < e. By Lemma 2.4 of [BLM89], V" has at most (1)@ elements.
Next, note that any x € B can be written as x = > oyy; where ap =1 and |a;| < €* and y; € N. So, we
can union bound Equation A.5 over all y € N to upper bound

e}
IrAx]l, < aillr Ayl
=0

<(1+9) ) @lPyily

i=0
<(1+¢) Z g
i=0

1+¢
1—c¢
<1+4e

And lower bound

oo
I Axl, > aollrAyoll, — D aillrAyill,
i=1

> (1—e)agl|Pyolly, — (1+¢) ZO%HP}%HP
i1

Z(l—&)—(l—F&)Z&i

i=1
>1—6¢

That is, ||rAx||, = 1+ 6¢ for any x such that ||Px||, = 1. So, just by scaling this guarantee, we have shown that
for all x € R4*! we have

lr Ax|lp = IPx]lp| < 62l Px|l,

e-net argument over all coefficient vectors. Now again consider any z such that ||Pz — f||, < 240PT.
Then [Pz, < 25(|fl,:

[Pzl < [Pz = fllp + /], < 24min [|Px = fll, + | Fll, < 25[| 1,

Then let y = aiy, be the corresponding net vector as in the previous paragraph. Then we have ||Py— f||, < 260PT
for e < O(1):

1Py = fllp < Pz = fllp + [Pz = Pyll, < 240PT + Ge|[PX'||, < 240PT + 621||f||, < (20 + 21 - 6eC)OPT

Let N’ be a net over B’ := {z | ||Pz||, < 260PT} such that any z € B’ has some y € B’ such that
[Pz — Pyllp < 555 - 260PT. Since 55557 /N’ is a e-Net for the unit ball in the range of P, Lemma 2.4 from

[BLM89] tells us that this net has size (@)O(d). We union bound Equation A.4 over all y € N”.
Then, we can write z = Zfio apy; with ag =1, oy < ¢, and y,; € V. We will then write z =y, + A where
A = Y oy, and apply the triangle inequality:
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[r(Acz —ba)ll, — Pz — fllc| < |IIr(Acyo — ba)ll, — Pyo — flla| + [IrAcAollp, + [[PAllc

IN

Ir(Acyo —ba)lly = IPyo — flla| + lrAloll, + [[PAoll,

IN

Ir(Acyo —ba)lly — IPyo — flla| + (1 +6¢)[[PAg||,

A

— QOE(P) ||pr ]'+ 65 Z 2o(p) 260PT
=1

< Olgow)lflle

In other words, we have that with high probability for all z with ||Pz — f||, < 24O0PT,

(A.6) 1Pz — flle — Olzom ) fllp < Ir(Acz = ba)llp < IPz — flla + O(zom)IIfllp

Now we extend Equation A.G to holds for norms with the exponent of p on them. We do this by case analysis,
with either [Pz — fll¢ < i|fllp or [Pz = flle = 2lfllp- If [Pz = fllc < &|/f|lp, then we use the bound
(u+e)P < uP + 2ep for u+e <1, as proven later in Lemma A .4:

l1AGz — ba|2 < (P2 — fllc + Oz fllp)”
= £l + O ()7

(Pefle 4 O(35) < 1) < (1715 BetS + O(5p))
=[Pz~ fII% + O(zzmp)If 115
<Pz — % + 0@ fII;

and similarly the lower bound is

lAcz — bel2 > (IP2z — fle — Olz55)IIf )"
= [Iflp(Errtle — O(z57))7
(Fedle 4 O(555) < 1) > |5 — O(5p))
=Pz~ fI% — O(z5mP) I f12
> [Pz~ £t — O@)|IfI15

Which completes the first case. For the second case, where [Pz — f| ¢ > 3/ f|, so that % < 2, we use the
bound (1 + u)? € 1+ p(2e)P/?u for u € [0,1], as proven later in Lemma A .4:
[Acz —bely € (IPz - flle + O(zom) 1 f1p)”
= [Pz — FIZ(L + O553) e )
€ [Pz — FII%(1 £ O (5555200 pdle )
= [Pz~ fll, = 0@l f P2 - fll&;”
(IPz = flle < ClIfllp) € [Pz — fll, £ O@)IfI}
Which concludes the case analysis, and we find that all z with ||Pz — f||, < 24OPT have
1Pz = flie — OIS} < Ir(Agz = be)ll; < 1Pz — flie + 0@}
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Finishing the argument. Recall that the interval [—1, 1] is partitioned into two groups G and B and that
we analyze the samples s; with i € [ng] depending on whether s; € G or s; € B. Moreover, recall that by
Equation A.3, we have

|Az — b||} = [[Acz — b}, + | Asz — bsl}
where Ag and bg contain the points in G while Ag and bp contain the points in B. For any z with

Pz — f||, < 240PT and u € B, we have by Equation A .2,

(1 =o)lf ()P < [Pz(u) = f(w)]” < (1 +e)|f(u)”.

(u
Since this loss is independent of the value of z, we can view Y. 5 [f(si)|" effectively as the sample error of

any z on the bad set. Since B[}, cp [f(si)"] = X721 Ells,em [ (s:)["] = B fI5, we get 3o eplf(si)l” <
50n || f||% with probability % by Markov’s Inequality. Recalling that r? = n—o, we get

Ir(Apz—bo)l; = 3 ni Pals:) — £l

i:s;,€B

ey (P 21 (s0)P)

15163
= ES |f(si |pi€< > | f(si )
) o

i:8,€B zszeB

C lIrbsll; + 0@ fII5
C [lrball; £ O£

Next recall that for any z with ||Pz — f||, < 240PT, we have

Az —ballp = 1Pz — flie; — O/}
Az = belly < Pz — flig + 0@/}

Thus, the minimizer X to minycga+: || Ax — b||, and x* = argmin, a1 [|Px — f]|, must satisfy

[P% — flle; < llr(Acx —be)ll} + O fII}
= [[r(A%x = b)|[} — [Ir(Apx = bp)[I} + O]}
< [lr(Ax = b)[[F = Irbsly + O@)IIfI}
Ir(
(

=)

< |[lr(Ax” =Db)[I7 = [Irbsl; + O 17

< [lr(Ax* =b)[|f — [[r(Apx" —bp)|l; + O(e)|If[I}
= [[r(Acx™ = bo)|[; + O£}

< |Px" = flle + O@IfI}

Since ||f|l, = O(OPT), it follows that
[P — fI1% < [Px* — I + O(=C")OPT
Finally, since for v € B we have both

F@)P < Px(u) = f(w)|P < (L+e)[f(w)”
F)P < [Px*(u) = f(u)|P < (L +e)[f(w)”

by Equation A.2, it then follows that

/ IPx(t) — ()P dt < / IPx*(t) — f(£)|P dt + O(eCP)OPT?
teB teB
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Therefore, we have

/ 1 |Px(t) — f(t)[? dt < O(eCP)OPT?

The claim then follows from rescaling € to ;. O

LEMMA A4, Fizu >0, e > 0, and even integer p > 1. Ifu+¢e <1, then (u+¢&)? < uP + 2ep. If u € [0,1], then
(1+u) € 1+ p(2e)P/?u.

Proof. Since u+¢ <1 and uP + 2ep > 1 for p > %, then we have that
(u+e)? <1< uP + 2ep,

for all p > % and thus it remains to consider the case where p < %
To that end, note that by the binomial expansion, we have

wear =142y

e (e (e () O () @)

For p < é, we thus have

2,2 3.3 PP
Ep  €°p e’p ePp
PP (14— 4 o = .
(ute) <u ( t— ottt +p!up>
Ep | Ep | Ep ep
p = __r . I
<u (1+u+21u2+3!u3+ +p,up>
v, .p(EP € Ep ep
<utu < P+2!up+3!up plup
1

<P 1 1 1
<u” +é€p +§+§+...+ﬁ

1 1
<up+6p(l+2'+3'+...> =uP +eple — 1) < uP + 2ep,

as desired.
For the second claim, consider any u € [0, 1].

(1+u)p

I
—
_|_
TN
>3
N
<
Ea
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A.1 Tighter Bounds for L, Sensitivities

In this section, we show tighter bounds for the L, sensitivities. While we do not use this result in the paper,
we find that it may be useful for future research on polynomial regression. We first require the following results
from polynomial approximation theory.

When ¢t is not near the boundaries of the interval [—1, 1], we have a sharper upper bound on the magnitude
of the derivative when compared to the Markov brothers’ inequality.

THEOREM A.l. (BERNSTEIN’S INEQUALITY, E.G., THEOREM 2.8 IN [GMO99]) Suppose q(t) is a polynomial of

degree at most d such that |q(t)] <1 fort € [-1,1]. Then for allt € [-1,1], |¢'(t)| < 1d_t2.

THEOREM A.2. (POLYNOMIAL APPROXIMATION OF THE INVERSE EXPONENTIAL FUNCTION, E.G., THEOREM 4.1 IN [SV14])

For every ¢ > 0 and € € (0,1], there exists a polynomial q. . with degree O <\/max (c, log %) -log %) such that

max ™% —q..(x)] <e

z€(0,c]
COROLLARY A.l. (POLYNOMIAL APPROXIMATION OF THE GAUSSIAN KERNEL) There exists a polynomial g with
degree O(dlog(pd)) such that |q(x)| <1 for all z € [—2,2] and

—20d? log(d)z? < 1
max |e — x —
z€[—2,2] | Q( )l - p(i4

Proof. By Theorem A.2, there exists a polynomial ¢ of degree O(dlog(pd)) such that

1
— 4 < —

ma, -

:L’E[O,SOdz)Tog(d)] }e

By taking the polynomial G(z) = §(20d? log(d)z?), we find a polynomial ¢ with degree O(dlogd) such that

max

‘6—20d2 log(d)z?
z€[—2,2]

1
< =
q(x)’ — 2pd*

Then, since 0 < e~44°108()=” < 1 it suffices to take ¢(t) = §(t) — ﬁ to ensure |g(x)| < 1 for all z € [-2,2].
]

We now prove an upper bound on the L, sensitivities that is linear in d in the interior of the interval [—1, 1],
which crucially improves upon known quadratic bounds, e.g., Lemma 4.2.

THEOREM A.3. (UPPER BOUND ON SENSITIVITY) Let p > 1 be a fized constant and let q be a polynomial of
degree at most d > 12. Then for t € [—1,1], the L, sensitivity of t satisfies

e
max % <d(p+1).
deg()<d |7 |q(x)[P dx

Up[PI(t) =

Moreover for |t| <1 — é, the L, sensitivity of t satisfies

- lg@®)P . (dplog(dp)
Yp[P(t) == dergr%qa));d f_ll @) de =0 (h — )

Proof. The first bound is just Lemma 4.2 restated, which directly relied on the Markov brothers’ bound. So here
we show that for [t| < 1— 1, we have

__la@®l” _, (dplogldp)
2 la(@)lP de O< Vi—i2 )

For this sharper bound on the sensitivity in the middle of the interval [—1, 1], we need a more sophisticated
argument.
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Let ¢ := argmax) g _—; % maximize the sensitivity at ¢.
e P

We would ideally like to use Bernstein’s Inequality (Theorem A.1) to lower bound the mass of ¢ around ¢,
much like the proof of Lemma 4.2. Indeed, if ¢ were maximized at ¢, then such a proof would be as simple as
Lemma 4.2. That proof picks any ¢* such that [¢(¢*)| = 1 and lower bounds ||¢||} by integrating over an interval of
length = around ¢*. Crucially, this is tight because even if ¢* is far from ¢, the Markov Brothers’ bound on |¢'(z)|
is independent of x. However, Bernstein’s bound |¢'(z)| < ﬁ would give very different results depending on
how far t* is from ¢t. So, the weight of this proof is in showing that ¢ must be maximized near ¢.

We first show that ¢(¢) is not terribly small. Since ||¢|lcc = 1, by the proof of Lemma 4.2, we know that

lqlls > m. Let ¢(t) := 1 be the constant function. Since ¢ maximizes the sensitivity function, we get
y P

have % > \T‘(ctl‘)zlf’ = 1. So, |q(t)]" > % > m. Without loss of generality g(t) > 0, so we just write
p p

q(t) > m > # (since (2p—|—2)1/p <4 forp>1).

Next, we multiply ¢ with a degree O(d) polynomial approximation of a Gaussian pdf centered at ¢, which
effectively erases ¢ outside of a small interval of ¢. Intuitively, this negligibly changes the degree of ¢ but ensures
that the maximum is achieved near .

We first argue that multiplying by an exact Gaussian bump maximizes ¢ near ¢. Let a(z) 1= ¢
be this Gaussian bump. Let C := ¢(t). By Markov Brothers’, |¢’(z)| < d?. So, we can bound the growth of ¢
around t¢:

—4(x—t)%d? log(d)

lg(t+ ) < C+d*|z| <1+ d*|a|

Scaling by the Gaussian,
2 42
alt+ )gft +0)] < (14 e 0x(0)
1

—202°d? log(d —5logd
For |z| > 55, we have e g(d) < e=Plogd — L So, for |z| > 55,

3
il
And since a(t)q(t) = q(t) = C > 15, we guarantee that argmax_y 1ja(z)q(z) € [t — 23, t+ 5] for d > 12.

Next, we substitute a(x) with the polynomial approximation b(x) guaranteed by Corollary A.1. Namely,
we know that b(z) has degree at most £dlog(pd) for some constant & > 1, and that |b(z) — a(z)| < ¢ for
all x € [—1,1]. Then, we get that f(x) := b(z)q(x) is a degree d + &dlog(pd) < 2&dlog(pd) polynomial with
f(t) > = — Jr and |f(t +2)| < 2 + 4, so that [ is still maximized in [t — 55, ¢ + o).

Now, we can appeal to Bernstein’s bound to control the sensitivity of f. Let r(z) := ﬁf( x) be a rescaling

| < M and therefore that

la(t + z)q(t + x)| < dl (1+d?|z|) <

of f so that ||| = 5 and r(t) = 1. By Bernstein’s bound, we have |1’ (z)

Hvi-c2’
[r'(t +x)| < %\/gl(’;i) for z € [0,55] (via the smoothness of the Chebyshev measure — see Lemma E.3 in the
appendix). Let m; := %\/%’2’@ be this locally accurate bound on the derivative (but without f(¢)), and let
t*:= argmax_; y)r(z) € [t — 23, + 53], so that we have:
1 my
t“+x —xz>1—-—mx >0 Yz e [0, X+
SRR R0 t 0 )
which follows since f(t) < ¢q(t) < 1. Then, we get
1/my 1
r||P > 1 —myz)Pde = ———
= [ 0= mapde = s
So that v »
SOF _ k@ o 1 4&p + 1)dlog(pd)

T e v wur-
Then, since [b(z)| < 1, we have |g(z)| > [f(x)], so that [lg|[} > [|f[|5. Further, since ¢(t) = 'Z((—f) < 1{%, we get
pd
)" < (1= 52) P IF @O < 2| (1)]". We conclude:

pd*
g _ IFOF < 8¢(p + 1)dlog(pd)
qulp ||f||p VI—t2
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|

We also offer the following lower bound on the L, sensitivities.

LEMMA A.5. (LOWER BOUND ON SENSITIVITY) For anyt € [—1,1], p > 1, and d > Q(p) we have

e lg@®F o[ VP
UplPI(t) = max T Q( 10gd>

Proof. Let t € [—1,1]. By Corollary A.1, there exists a polynomial ¢ with degree d such that

1
max e~ (CIVIED 0T ga)] < -,
z€[—1,1] d

for a fixed constant C' > 0. Let f(x) = e~ (Cd/Viog * (2= g6 that f(t)=1and for p > 1,

1 1 o0 2 2 7T10gd
T pdx:/ T pdx</ e P(Cd/VIogd)y ™ go . Y "B 7
| it@rie= [ Geypas< [ eren Y

Hence, 4 “f;}(t;‘)’l’p — > ﬂ@- Since max, (1.1 e~ (C4/VIED @07 _ g(z)| < L then it follows that
-1
1
t)| > =
la(®)] = 3
and
- g < [ o=
¢ e A T
Therefore,

lally < (Ifllp + lla = flIp)
(CE)" =)

“Cayp q
< (14— (W)”P ’
- T Cd/p
(1 vAlod
p% Cd\/f)
_,VToad
- Cdyp
where the third inequality comes showing that # < Q (%)UP, which holds when d > p(2C\/ﬁ)p7i1 =
P P
Q(p). We therefore conclude that
a3 dyp
1 - 7 lo -
Sy la(@)[P da Q#j; 44/ log(d)
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B Reweighted Operator L, Subspace Embedding

THEOREM B.1. Suppose s1,..., sy, are drawn uniformly from [-1,1]. Let A € R™*@+1) pe the associated
Vandermonde matriz, so that A; ; = sJ_1 Let v := 2 Let W € R™0*" pe diagonal with W;; = yw(s;). Then

for ng = Q(d*logd), we have that with pmbabzlzty at least i,

%PTW“%P <A P ATWI T A< 2P T WP,
where W is the operator that rescales by the truncated Chebyshev density w(t) and p € [1,2].

To prove this claim, it will be more convenient to shift where the v term is located, into the matrix A:

THEOREM B.2. Suppose si,...,Sn, are drawn uniformly from [—1,1], and we construct the associated scaled
Vandermonde matriz A € R™*(4+Y) 5o that A; ; = (n2 )lsj Y. Let W € R™*" be the diagonal matriz with

Wi =w(t;). If ng = Q(d°logd), then with probability at least +5

13, we have

%PTwl’%P < ATWI A< 2P WP,
where W is the operator that rescales by the truncated Chebyshev density w(t) and p € [%, 2].

Proof. We first prove a more general statement by considering a general operator W , which we eventually set to
be the Lewis weight operator. Let W : La([—1,1]) — R be any operator so that max;c[_; 1) xera+t ﬁ <6
2

for some & < oo. Consider a fixed x € R?! and suppose we uniformly sample ng = O (E—Qlog E) points

from [—1,1]. For each i € [ng], let X; be the random variable with value |[W Ax](i)| = %|W7’x(si)|2. Then
E[X;] = ,%OHW,PXH% Moreover, since |WPx(t)|> < & - [|[WPx||3, we get |X; — E[X;]| < %0(26—1— 1)[|[WPx||3. Let
X =2 e Xi = |W Ax||3 so that by linearity of expectation, E[X] = ||WPx||3. Setting v = ||[WPx||3 in the
formulation of Bernstein’s concentration inequality in Imported Theorem A.2, we thus have

r [||[WAx[|3 — [WPx|3| < e|WPx|[3] < exp(—O(dlogd/e))

for any fixed x € R4*!. That is, we have
(1-9)[WPx|3 < *||WAX||2 (1+9)[WVPx|3,

with probability at least 1 — exp(—O(dlogd/e)).
e-net argument over all coefficient vectors. We now union bound over an e-net over all coefficient
vectors x € R¥!. Let B= {WPx | [[WPx|3 <1}. By Lemma 2.4 of [BLM89], we construct a net A over B by
greedily adding in points that are within L distance (5), so that |N| < (4) O _ codlogd/e) Note that since we
; - &2 d
have (1 + ¢)-accuracy for any WPx € N with probability 1 — exp(—O(dlogd/e)) by sampling ng = O (;’—2 log g)
points from [—1,1], then by a union bound, we have (1 + ¢)-accuracy for all points in A/ with high probability.
For any WPx with |[WPz|ls = 1, we construct a sequence WPyl,WPy2, ... such that |[WPz —
Z] L WPy;ll2 < €' and such that there exists constants v; < ¢~' with V\/PyZ € N for all i. Formally,
we let WPy, be the point in the net N that is closest to WPx, so that HWPZ — WPy1ll2 < e. We can

then define the remaining points WPy; inductively: For a sequence WPy1,...,WPy;_1 such that v; :=
IWPs — 23;11 WPy,lla < &1, observe that %HWPS - Z;;ll WPyl = 1. Thus, there exists a function

WPy; € N that is within distance & of WPs — 23;11 WPy, which completes the induction.
Therefore, for the matrix A sampled by the algorithm, by triangle inequality,

IWPx]l2 — [WAX|o| <Y [[WPyilla = [WAy;[l2| < D WPyl = O(e) [WPx|l2

i=1 i=1
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The correctness over all x € R4 then follows from a rescaling of . Hence, we have that with high probability
all x € R¥*! enjoy
(1 - e)WPx|3 < [WAx][3 < (1 +¢)[WPx|f3

or equivalently
2
1—e)PWP<ATW" 2 A=< (1+e)PTWP
Finishing the argument for the Chebyshev density. Observe that the Chebyshev density satisfies
2
w(t) € [d, (d+1)?] for each t € [~1,1]. Since MaX;e[—1,1],q:deg(q)<d % < O(d?), then by substituting the Lewis
- 2

weight operator W25 in place of the general operator W in the above analysis, we have that

Px(?)]

1 1
(W27 Px(t)P 3
_ V2 XN < o oo
S ( )te[—l,l]éi(ERd+1 ||7DX||%

< O(d®
te[—1,1],xeRd+1 ||W%_%PXH£ s < ( p)

for the operator W that corresponds to the Chebyshev weights. Hence the claim follows by taking ¢ = O(1).
O

C From Two-Stage Sampling to One-Stage Sampling

LeMMA C.1. Fix parameter ng and function f : [-1,1] — [0,1]. Suppose s1,...,8n, are drawn iid uniformly
from [—1,1], and we sample biased coins ¢; ~ B(1, f(s;)) fori = 1,...,n9. Then, the marginal distribution of
{silc; = 1} is a distribution with B(ng, 3 f_ll f(r)dr) i.4.d. samples with PDF proportional to f.

Proof. For intuition, we can think of the event ¢; = 1 as indicating that sample 7 is accepted. Then {s;|c; = 1}
is the set of time samples returned by this rejection sampling scheme. We now formalize this intuition.

Let p; denote the PDF of the ¢ variables. We first write simplify two probabilities for a fixed ¢ € [ng]. First
we expand the marginal distribution of the coins:

1
Pr[e; = 1] = [ Pr[e; =1 s; = 7]|pe(7)dr

1
1
5/_1f(7')d7'

1
= 5Ifll

Since each coin is marginally distributed as a B(1, || f||1) random variable, and the number of items in the set
{tilc; = 1} is the sum of the coins, we conclude that |{t;|c; = 1}| ~ B(no, 3| fll1)-

Let py,|c,=1 denote the PDF for #; when conditioned on ¢; = 1. Using Bayes’ Theorem for continuous and
discrete random variables,

Prlc; = 1|t; = 7] - pe(T)
Prlc; = 1]
_f) -3
511l
G
Sy f(s)ds

Thus, each item in {¢;|¢; = 1} (which are trivially independent of each-other), is distributed with PDF proportional
to f. 0

pt|ci=1(7—) =

LEMMA 4.3 RESTATED. Suppose ng time samples are drawn uniformly from [—1,1], and each sample is thrown
away with probability 1 — min{%ﬁ, 1}. Let n denote the number of remaining samples. Then n is distributed

as B(nyg, O(nmo)), and with probability % the resulting samples cannot be distinguished from iid samples from the
Chebyshev measure.
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Proof. Below this paragraph, we isolate a simple probability theory claim. Specifically, we apply the below lemma
with f(¢) = min{1, % m} so that the remaining number of samples are distributed as B(no, 3,,-). Since the

total variation distance between sampling 1 time with respect to f and with respect to v is O((2* ) ), the distance

between m i.i.d. samples from the two distributions is O(ZL; )= So, the difference in success probability of

O(d7)

our algorithm and one that samples by f is at most O(d7) < 110 0

D Compact Rounding

LEMMA D.1. Let B € R™*95 and q € [0,2]. Let v € R™ with |v(i)] < L(w,[B](i))"/?. Let N. be an e-
Net over |By|lg = 1 with log|NZ| = O(dlog(L)). Let ¢ = log, . ((2dp)/ 7). Then, there exists sets of vectors
Do, ..., Dy CR™, such that: For allu € N, we can define r :==u— v and pick dg € Dy, ...,d, € Dy to create a

“compact rounding” v’ = Ei:o d; where:
1. r(i) = '(3)| < emax{|u(@)|, |v(i)|} for alli € [ng]
2. |di(9)] < 2(3(22lP1D 1 Ly\a(1 4 )e+2 for alli € [no], k € {0, ..., £}
3. dyg,...,dy all have disjoints supports

Further, we have that the sets Dy, ..., Dy are not too large:

dplog(no)

< = or 7
log 1Pl < & g oy

To prove Lemma D.1, we need the following structural statement from [MMWY22], attributed to Corollary
4.7 and Proposition in [BLM89] as well as Proposition 3.1 and Remark 3.2 in [SZ01].

LEMMA D.2. (ENTROPY ESTIMATES, [BLMS9, MMWY22, SZ01]) Let B € R4 with ng > dg and let
€ (0,2) be a fized constant. Let W € R™0*"0 be the diagonal matriz with W;; = 3 (w“[B](l) + ) Let
B, = {By : |Byll, < 1}. Then for any v € [1,d"/9], there exists a net Noo C R™ such that for any u € By,

there exists £ € Noo with |[W=4(u —f)| o <7 and

dp 1

10g|NOO| S cq. Lg,no

«')/q

where cq 1s a constant that only depends on q.

We next define the index sets and state a structural property on the index sets. The following proof is almost
identical to the structural property on the index sets by [MMWY22].

LEMMA D.3. (INDEX SETS, [BLM&9, MMWY22]) For each k € {0,...,¢}, let Ny be the net defined by
Lemma D.2 for v = e(14¢€)* > 1. Otherwise if v < 1, let Nj; = N... For each u € Nz and k € {0,...,(}, let
fru € Ny satisfy

W4 — )l < Fe(1+6)"

as defined in Lemma D.2. Define the index sets

Chui= {i €] | Wi teu(@)] = (1+2)1)
Diy = Chu \ U Ci

k'>k
Do = [no]\ |J Crou

B>1

Then for each k, we have log |N| = O (&%) and for every i € Dy u, we have

Wi/ U1+ )k =2 < Ju(i)] < Wi/ 9(1 + )"+
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Proof. First note that the largest v value we use is $e(1 +¢)* = %(Qd)l/q < d'1, so we can safely create all of

these Ny sets. Because |[W=V4(fy y — u)|oe < 2e(1 4 ¢)¥, we get that all i € Cyu have
()] > [fru(@)] = W5 (1 + )"
> Wi/ ((1+0)" ! = (1 +)")
> Wili/q(l + 6)]672
where the second inequality follows from the definition that | fw(i)| = W5/ 9(14¢)¥=1 for i € Cj. We similarly
have |u(i)| < Wil/q(l +&)k*2 for i ¢ Cru. Hence for i € Dy = Cru \ U spy1 Chou for k € [1,4), we have
W11+ ) < fu(i)] < Wi/ ?(14€)*+?

as desired. We next show this bound holds for all ¢ € Dy ,,. The lower bound follows from the same argument as
above, but the upper bound needs to be argued separately since there is no C;11,,. We do this by going through
the sensitivity bounds on u, which is in the range of B:

la(i)] < (vg[B] (i) ullg
(Lemma 3.8 from [CWW19]) < (wy[B](i))Y4
(¢ = log, , . (2d5)"/7) = (2elBlO iy o

2dp
S Wilz/q(l + 5)54—2

Lemma 3.8 from [CWW19] simply says that for ¢ € [1,2]|, the ¢, sensitivities lower bound the ¢, Lewis
weights. This then completes the bulk of the proof since ﬁwq[B](i) < %(%;](i) + nio) = W;;. As a last
note, when v < 1, or equivalently k¥ < log, . g, we take fru = u since N, = N, which trivially gives
[W=9(f) 0 — u)|la < Le(1+e)F. Further log |Ny| = log|N.| < O(dlogl) < O(dlog(ng)) = O(2alo)

Ed+e)F)
by Lemma 2.4 of [BLM89], and since 1 < ny. 0

We similarly define index sets on the measurement vector v, though we remark that the definition is conceptual
and not algorithmic, in the sense that the entries of v do not need to be read.

LEMMA D.4. (INDEX SETS FOR v) [MMWY22] Fiz some u € N.. Consider the following sets:

(for k € {0,...,0}) By = {z € D+ V(i) < 2Wi/i1 +s)k+2}
(for k € {1,...,0}) Hy, = {z € [no] : LW+ )k < v(i)| < L +g)k+2}
(for k€ {1,...,£}) G =Hi\ | Crr

K>k
Then By, ..., Beu, G, - -, Geu form a partition of [no].

Proof. We first prove that By u,- - ., Beu, Gius - - -, Geu are disjoint. We then prove that their union is [ng].
First note that Dgy,...,D¢u are clearly disjoint by their definition. Further, since Dy, is defined by
subtracting away all other Dy, from [ng], we know that the union of all Dgy,...,Deu is [ng]. That is,
Do, - - ., Dy partition [ng].
Now consider any k, k’. Then,

® Biu()Biu=0since i € By, implies i € Dy, implies ¢ ¢ Dy implies ¢ ¢ By y.
o Giu(\Giku C Hi () Hy = 0 since Hy, and Hys have no intersection by definition.

o For k > k', By u(\Gr'u = 0 since i € By € Dy w C Ciu implies ¢ € Upisps Crru,y 80 that @ ¢ Gy by
definition. B
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o For k <}, Bru(Gru = 0 since ¥ > k+1and i € Gy € Hp means [x(i)| > %Wili/q(l +E)k,+1 >
%Wil/q(l + €)**2 which contradicts i € Byy C Dk u-

So, Bous - -3 Bew; Giu, - - -, Geu are disjoint.

Now, consider any 7 € [ng]. Then there exists some k such that i € Dy . If [v(i)] < %Wili/q(l + g)ktl
then we immediately get that ¢ € By,. Otherwise, if |v(:)] > %Wili/q(l + ¢)k*1 then there exists some
k' > k such that ¢ € Hy,. Notably, this uses the fact that H, can contain the largest entries of |v(¢)|, since
[v(i)] < L(wy[B](i)/ < éWili/q(l +€)**2. Since i € Diy = Cru \ Uprop, Ciru, We know that i ¢ Cir y for
any k" > k. Therefore, we know that i € Gy, since both ¢ € Hy and i € Uy~ Crrru. Therefore, all i € [ng]
belongs to exactly one of By y,...,Beu, Gius---,Geu. In other words, By, ..., Bru, Giu, - -, Geu partitions
[no]. 0

LEMMA D.5. (o ERROR BOUND) [MMWY22] Fiz some u € N;. Then we let v/ = e+ Zi:o dy with e and dy,
as follows:

do(i) == u(i) — v(4) i € Bou
dy(7) == fiu(i) — v(i) ke [l),i € Biu
di(i) == (1+ )% - WL = v(i) kel[l],i € By
dp,(i) == — v(i) i € Grn
di(i) :==0 otherwise

Then |r(i) — r'(7)] < emax{|u(i)l,|v(i)|} for all i € [ng].

Proof. Fix any i € [ng]. Since By, ..., Bru, G, - .., Geu partition [ng), it suffices to show that if ¢ € By, or
i € By or i € Gy then |r(i) — r'(i)| < emax{|u(i)|,|v(¢)|}. That is, this proof proceeds by case analysis over
these three possible cases. First, if i € By then r'(¢) = u(i) — v(7), so that |r(7) — r/(¢)] = 0. Second, if i € By 4
for k > 1, then /(i) = f4 w (i) — v(i), and since i € Dy 4 we get

(i) = ¥ ()] = [Fra(i) — u(i)] < e S50 WY1 4+ )2 < - [u(i)

Third, if i € Gy then r/(i) = —v(i), so that |r(i) — r'(¢)| = |u(i)]. We have |v(i)| > éWiyq(l +¢)**1 and since
i € Gyu implies i ¢ Cys y for all &' > k, we also have |u(4)] < Wil/q(l +)**+2 So,
[r(i) =1/ (i)] = [u(@)| < W/ (1 4+ )2 < e |v(i)]
]

We now prove the compact rounding of Lemma D.1:

Levva D.1 RESTATED. Let B € R™* and g € [0,2]. Let v € R™ with [v(i)| < 1(wy[B](i))"/9. Let N. be an
e-Net over |By|lq = 1 with log |[N:| = O(dlog(2)). Let £ = log,..((2dp)Y/7). Then, there exists sets of vectors
Do, ..., Dy CR™, such that: For allu € N, we can define r :==u — v and pick dg € Dy, ...,d, € Dy to create a
“compact rounding” r' = Zi:o d; where:

1. (i) = v'(3)| < emax{|u(@)|, |v(i)|} for alli € [ng]
2. |di(i)] < g(%(%;““ + =NV U1 4 &)k for alli € [ngl,k € {0, ..., £}

3. dg,...,dy all have disjoints supports

Further, we have that the sets Dy, ..., Dy are not too large:

dp log(no)
log |Di| < _
o8 |Pkl < Cr e 1 oyaR
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Proof. Fix any u € N;. Observe that the first property follows from Lemma D.5. Moreover, note that {dy,...,d}
are disjoint by Lemma 1.4, since the vectors dj only have nonzero support on the indices in By, ,, and Gy, . Hence,
the third property holds.

Furthermore, note that |dg(:)] < |v()] + max <|u(z)| ,(1 +€)kWi1i/q) for i € Biu U Ggu. In particular,
[v(i)] < %Wili/q(l + &)¥*2. Similarly, we have from Lemma D.3 that |[u(i)| < Wil/q(l + g)k*1. Therefore,
[di(2)] < gWil/q(l +¢)F*+2, which gives the second property.

To bound the number of possible vectors d, note that dj, is a deterministic function of £ y, By u, and Gy 4.
So, let By := {Bku : u € N} be the set of all possible “B” index sets generated by the net M, at layer k, and

similarly let Gy, := {Gpu : u € N.}. Then, looking across all possible fixings of u € N¢, each dj, is deterministic
in some fj, y € Ny, in some S; € By, and in some Sy € Gj. So, the number of possible dj, is at most

|Dk| = |{dk cuc Ng}| < ‘{(fk7u781,82) : fk,u G./\/k, 51 S Bk, SQ c Gk}| = |Nk| . |Bk| . |Gk|
Next, recall that By .y € Dg,u, 50 |Bgu| < |Dyu|. Further, recall that Dy u = Cru\ U/~ Crr,u and that all Cy, u

are deterministic in some vector fj , from the net Ny. So, Ej := {Dju :ue N} has'!

¢
|Bi| < |Ex| = {Diku : we N} < {(frpus -5 fru) s ue N} < H N

k'=k
By Lemma D.2, we have log |NVy/| < ¢4 7(3?1:(_’5;9)4, so that
dB log no dg log ng
a .34, 4B OST0
log(|Bg|) < E 3c e <2-3 Cq€1+q(1 T

1 _ 1, _(+e) 1
(14e)9* 7 (14e)2*  (14e)i—1 — (1+4e)9k

. Similarly, since Gy = Hi \ Uk,,> w Ciru where Hy, is a fixed set independent of u, we again

Where the last inequality comes from bounding Zk, G H)qk <>k

(1+¢)?
I+e—-1 — s(1+

get log |G| < Hk,:k |NVir|, and so we conclude:

dplogng

q —
log [Di| < log || + log | Bi| +log |G| < 6,3 oo s

which completes the bulk of the proof. ]

E Smaller Relegated Proofs
E.1 Bounding the Generalized Christoffel Function

LEMMA E.1. Let f(s) be a differentiable concave function on interval [a—A, a+A]. Then, fa+A f(s)ds < 2Af(a).

Proof. First recall that concave functions have f(s) < f(a) + f'(a)(s — a), so we have

a+A

a+A a+A
/ f(s)dz < / ((a) - f'(a)(s — a)) ds = 2Af(a) + /'(a) / (s — ) ds = 2Af(a) + 0

-A -A a—A
|

1 S 2a S S
LEMMA E.2. The genemlized Christoﬁel function A\g(a,2,t) := Minggeg(q)<d %7 where a(s) = (1 —

52)%_%, has Aa(z,2,t) < (1 — tz) for some universal constant C, for all t € T,;q4, for all p € [ ,2].

TWe use Ej, instead of Dy, to avoid confusion with Dj,.
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Proof. By Theorem 2.1 of [EN92], we know that

Ad(O[a 25 t) S CF+3&M (t)

where C is a universal constant, I' = % — 1 < 1, and ap(t) = f|s—t|<AM(t) a(s)ds where
Aps(s) = max{¥= ‘52, =tand M =1+ 2(;1;31) 1+ 5(d-1) € [41,d]. To bounfi tshe integral within
ap (), we use the above lemma about concave functions. Since @a(s) = —2(; -3 —t2)?7§((% -3)t-1)<0

for all t € [~1,1] for all p > 2, we know that « is concave. Then, since a(s) is concave on [—1,1], we find that
for any ¢ such that [¢| + Aps(t) < 1 (for which [¢| < /1 — 53z suffices), we get

[0 e < 2aniam =25 T eyt < Za o)
a(s)ds < 2Ap(Ha(t) =2 1—t9)r 2 < —(1—t%)»
t—A]u(t) M M
Putting this together,
2 1 3C4 1
Aa(,2,t) <CTHPapy () < C g5 (1 - 177 = ﬁ(l — %)%
T -

d

E.2 Smoothness of the Chebyshev Measure

LEMMA E.3. Let w € (—1,1), and let y € (~1+ A, 1 — A) for A =15Z. Then,

1 2
<
V1i-y2 T V1-—2a?
In particular, if  =1— % then we get y € [1 — 1,1 — L.
Proof. WLOG, we consider = > 0. Since = — \/1%7 is monotonically increasing on x > 0, we just need to show

that 7 (1 T < \/12 —. Rearranging that equation, we get
—(z =

4A% + 8z A+ (32% —3) <0
Plugging in A = 25% and simplifying, we see the bound holds for all z < 1. ]

E.3 Binomial Approximation

LEMMA E.4. Letx >0, p>2, andx < Then,

1
-

1—ipz < (1—a)P (1+2)P <1+ 3px
In other words, (1 £ z)? =1+ O(px).

Proof. Let f(u) := (1 +u)?, so that the Taylor Approximation f(u) := f(0) + f(0)u = 1 + pu has the following
residual for u € [—x, z]:

z e o 1 2 2 _ 14, -2
_ < g N7 — _ _ p < = p
[F(w) = Fl)| < max 5300 = Sp(p — D max(1+ €077 < SpPu max(1 4 €)
Where Z = [0,2] if u > 0 and where Z = [—#,0] if u < 0. For u < 0, we have maxge[_, /(1 + P72 = 1,
so that ‘f(u) — f(u)‘ < p*? So, |(1—=)P —(1—px)| = |f(-2)+ f(=z)| < sp*2? < ipz, and so

(1-2)P>1—pz— ipx=1-3px.
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For u > 0, we need to be more detailed. We get maxgez(1+ £)P~2 = (1 + 2)P~2. Since x < zlv < p%, we get

1

p<2+ 1 sothat (1+2)P2 < (1+2)= <3. So,

(U 2) — (4 po)| < (1 + )P < SpPa < p
And therefore 5
(1+2)P < 1+px+§px <1+ 3pz
0
LeMMA E.5. Suppose we sample ng times s1, ..., 8n, uniformly from [—1,1]. Then, max; v(s;) < 4L, /™0 (@) _

T ln(ﬁ)

@(d\\/f:?”) with probability 1 — 9.

Proof.

Primax [v(s;)| < F] = (Pr[v(s1) < F]))"°

ng
(Pr [sz € +y/1-— (ij;);})

(Inverse Function of v(s))

(x> 2) >0.257
(0.25 = 272) =27

Making this fail with probability §, we get

275 >1-4

0 1n(2) > In(1 - 8)

x

no 111(2)

U= —9)
12 < ng 1n1(2)

h’l(ﬁ)
< d+1 [ng ln1(2)

TF

(d—I—l

F
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