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PERFECT \bfitL \bfitp SAMPLING IN A DATA STREAM\ast 

RAJESH JAYARAM\dagger AND DAVID WOODRUFF\dagger 

Abstract. In this paper, we resolve the one-pass space complexity of perfect Lp sampling for
p \in (0, 2) in a stream. Given a stream of updates (insertions and deletions) to the coordinates of an
underlying vector f \in \BbbR n, a perfect Lp sampler must output an index i with probability | fi| 

p/\| f\| pp
and is allowed to fail with some probability \delta . So far, for p > 0 no algorithm has been shown to solve
the problem exactly using poly(logn)-bits of space. In 2010, Monemizadeh and Woodruff introduced
an approximate Lp sampler which, given an approximation parameter \nu , outputs i with probability
(1\pm \nu )| fi| 

p/\| f\| pp, using space polynomial in \nu  - 1 and log(n). The space complexity was later reduced
by Jowhari, Sa\u glam, and Tardos to roughly O(\nu  - p log2 n log \delta  - 1) for p \in (0, 2), which matches the
general p \geq 0 lower bound of \Omega (log2 n log \delta  - 1) in terms of n and \delta , but is loose in terms of \nu . Given
these nearly tight bounds, it is perhaps surprising that no lower bound exists in terms of \nu ---not
even a bound of \Omega (\nu  - 1) is known. In this paper, we explain this phenomenon by demonstrating the
existence of an O(log2 n log \delta  - 1)-bit perfect Lp sampler for p \in (0, 2). This shows that \nu need not
factor into the space of an Lp sampler, which closes the complexity of the problem for this range of
p. For p = 2, our bound is O(log3 n log \delta  - 1)-bits, which matches the prior best known upper bound
of O(\nu  - 2 log3 n log \delta  - 1), but has no dependence on \nu . Note that there is still a logn gap between
our upper bound and the lower bound for p = 2, the ution of which we leave as an open problem.
For p < 2, our bound holds in the random oracle model, matching the lower bounds in that model.
However, we show that our algorithm can be derandomized with only a O((log logn)2) blow-up in the
space (and no blow-up for p = 2). Our derandomization technique is quite general, and can be used
to derandomize a large class of linear sketches, including the more accurate count-sketch variant of
Minton and Price [Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, 2014, pp. 669--686], resolving an open question in that paper. Finally, we show
that a (1 \pm \epsilon ) relative error estimate of the frequency fi of the sampled index i can be obtained
using an additional O(\epsilon  - p logn)-bits of space for p < 2, and O(\epsilon  - 2 log2 n) bits for p = 2, which was
possible before only by running the prior algorithms with \nu = \epsilon .
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1. Introduction. The streaming model of computation has become increasingly
important for the analysis of massive datasets, where the sheer size of the input
imposes stringent restrictions on the resources available to algorithms. Examples
of such datasets include internet traffic logs, sensor networks, financial transaction
data, database logs, and scientific data streams (such as huge experiments in particle
physics, genomics, and astronomy). Given their prevalence, there is a large body of
literature devoted to designing extremely efficient one-pass algorithms for analyzing
data streams. We refer the reader to [BBD+02, M+05] for surveys of these algorithms
and their applications.

More recently, the technique of sampling has proven to be tremendously powerful
for the analysis of data streams. Substantial literature has been devoted to the study
of sampling for problems in big data [M+05, Haa16, Coh15, CDK+09, CDK+14,
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PERFECT f SAMPLING IN A DATA STREAM 383

CCD11, EV03, GM98a, Knu98, MM12, Vit85a, CCD12, GLH08, GLH06], with ap-
plications to network traffic analysis [TLJ10, HNG+07, GKMS01, MCS+06, Duf04],
databases [Olk93, Haa16, HNSS96, HS92, LNS90, LN95], distributed computation
[WZ16, CMYZ10, CMYZ12, TW11], and low-rank approximation [WZ16, FKV04,
DV06]. While several models for sampling in data streams have been proposed
[BDM02, AKO10, CMYZ10], one of the most widely studied is the Lp samplers intro-
duced in [MW10]. Roughly speaking, given a vector f \in \BbbR 

n, the goal of an Lp sampler
is to return an index i \in \{ 1, 2, . . . , n\} with probability | fi| p/\| f\| pp. In the data stream
setting, the vector f , called the frequency vector, is given by a sequence of updates
(referred to as insertions or deletions) to its coordinates. More formally, in a data
stream the vector f is initialized to 0n and then receives a stream of m updates of the
form (it,\Delta t) \in [n]\times \{  - M, . . . ,M\} for some integer M > 0 and t \in [m]. The update
(it,\Delta t) causes the change fit \leftarrow fit +\Delta t. This is known as the general turnstile model
of streaming. A 1-pass Lp sampler must return an index given only one pass through
the updates of the stream.

Since their introduction, Lp samplers have been utilized to develop alternative
algorithms for important streaming problems, such as the heavy hitters problem, Lp

estimation, cascaded norm estimation, and finding duplicates in data streams [AKO10,
MW10, JST11, BOZ12]. For the case of p = 1 and insertion only streams, where the
updates to f are strictly positive, the problem is easily solved using O(log n) bits
of space with the well-known reservoir sampling algorithm [Vit85a]. When deletions
(negative updates) to the stream are allowed or when p \not = 1, however, the problem is
more complicated. In fact, the question of whether such samplers even exist was posed
by Cormode, Murthukrishnan, and Rozenbaum in [CMR05]. Later on, Monemizadeh
and Woodruff demonstrated that if one permits the sampler to be approximately
correct, such samplers are indeed possible [MW10]. We formally state the guarantee
given by an approximate Lp sampler below.

Definition 1. Let f \in \BbbR 
n and \nu \in [0, 1). For p > 0, an approximate Lp sampler

with \nu -relative error is an algorithm which returns an index i \in \{ 1, 2, . . . , n\} such that
for every j \in \{ 1, 2, . . . , n\} 

Pr[i = j] =
| fj | p
\| f\| pp

(1\pm \nu ) +O(n - c),

where c \geq 1 is some arbitrarily large constant. For p = 0, the problem is to return j

with probability (1\pm \nu ) \bfone fj \not =0

| \{ j : fj \not =0\} | +O(n - c), where 1fj \not =0 is the indicator function, i.e.,

1fj \not =0 = 1 if fj \not = 0 and 1fj \not =0 = 0 otherwise. If \nu = 0, then the sampler is said to be
perfect. An Lp sampler is allowed to output FAIL with some probability \delta . However,
in this case it must not output any index.

The one-pass approximate Lp sampler introduced in [MW10] requires
poly(\nu  - 1, log n) space, albeit with rather large exponents. Later on, in [AKO10], the
complexity was reduced significantly to O(\nu  - p log3(n) log(1/\delta ))-bits1 for p \in [1, 2],
using a technique known as precision sampling. Roughly, the technique of precision
sampling consists of scaling the coordinates fi by random variable coefficients 1/ti as
the updates arrive, resulting in a new stream vector z \in \BbbR 

n with zi = fi/ti. The

1We note that previous works [JST11, KNP+17] have cited the sampler of [AKO10] as using
O(log3(n))-bits of space, but the space bound given in their paper is in machine words and is
therefore a O(log4(n)) bit bound with \delta = 1/poly(n). In order to obtain an O(log3(n) log(1/\delta )) bit
sampler, their algorithm must be modified to use fewer repetitions.
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384 RAJESH JAYARAM AND DAVID WOODRUFF

algorithm then searches for all zi which cross a certain threshold T . Observe that

if ti = u
1/p
i , where ui is uniform on [0, 1], then the probability that fi/ti \geq T is

precisely Pr[ui < | fi| p/T p] = | fi| p/T p. By running an Lp estimation algorithm to
obtain T \in [ 12\| f\| p, 32\| f\| p], an Lp sampler can then return any i with zi \geq T as its
output. These heavy coordinates can be found using any of the well-known \eta -heavy
hitters algorithms for a sufficiently small precision \eta .

Using a tighter analysis of this technique with the same scaling variables ti =

u
1/p
i , Jowhari, Sa\u glam, and Tardos reduced the space complexity of Lp sampling for
p < 2 to O(\nu  - max\{ 1,p\} log2(n) log(1/\delta ))-bits for p \in (0, 2) \setminus \{ 1\} , and O(\nu  - 1 log(\nu  - 1)
log2(n) log(1/\delta )) bits of space for p = 1 [JST11]. Roughly speaking, their improve-
ments result from a more careful consideration of the precision \eta needed to determine
when a zi crosses the threshold, which they do via the tighter tail-error guarantee of
the well-known count-sketch heavy hitters algorithm [CCFC02a]. In addition, they
give an O(log2(n) log(1/\delta )) perfect L0 sampler and demonstrate an \Omega (log2(n))-bit
lower bound for Lp samplers for any p \geq 0. Recently, this lower bound was extended
to \Omega (log2(n) log(1/\delta )) [KNP+17] bits, which closes the complexity of the problem for
p = 0.

For p \in (0, 2), this means that the upper and lower bounds for Lp samplers are
tight in terms of n, \delta , but a gap exists in the dependency on \nu . This being the case, it
would seem natural to search for an \Omega (\nu  - p log2(n) log(1/\delta )) lower bound to close the
complexity of the problem. It is perhaps surprising, therefore, that no lower bound
in terms of \nu exists---not even an \Omega (\nu  - 1) bound is known. This poses the question of
whether the \Omega (log2(n) log(1/\delta )) lower bound is in fact correct.

1.1. Our contributions. In this paper, we explain the phenomenon of the lack
of an \Omega (\nu  - 1) lower bound by showing that \nu need not enter the space complexity of an
Lp sampler at all. In other words, we demonstrate the existence of perfect Lp samplers
using O(log2(n) log(1/\delta )(log logn)2)-bits of space for p \in (0, 2), thus resolving the
space complexity of the problem up to log log(n) terms.2 In the random oracle model,
where we are given random access to an arbitrarily long tape of random bits which do
not count against the space of the algorithm, our upper bound is O(log2(n) log(1/\delta )),
which matches the lower bound in the random oracle model. For p = 2, our space
is O(log3(n) log(1/\delta ))-bits, which matches the best known upper bounds in terms of
n, \delta , yet again has no dependency on \nu . In addition, for p < 2 and the high probabiltiy
regime of \delta < 1/n, we obtain a O(log3(n))-bit perfect Lp sampler, which also tightly
matches the lower bound without paying the extra (log log n)2 factor. A summary of
the prior upper bounds for Lp sampling, along with the contributions of this work, is
given in Figure 1.

In addition to outputting a perfect sample i from the stream, for p \in (0, 2)
we also show that, conditioned on an index being outputted, given an additional
additive O(min\{ \epsilon  - 2, \epsilon  - p log( 1

\delta 2
)\} log(n) log(1/\delta 2))-bits we can provide a (1 \pm \epsilon ) ap-

proximation of the frequency | fi| with probability 1  - \delta 2. This separates the space
dependence on log2(n) and \epsilon for frequency approximation, allowing us to obtain a
(1 \pm \epsilon ) approximation of | fi| in O(log2(n) + \epsilon  - p log(n)) bits of space with constant

2A previous version of this work claimed O(log2(n) log(1/\delta )) bits of space for p < 2, but contained
an error in the derandomization. Thus, this bound only held in the random oracle model. In the
present version we correct this derandomization using a slightly different algorithm, albeit with a
(log logn)2 blow-up in the space. The algorithm from the previous version can be found in Appendix
A, along with a new analysis of its derandomization that allows it to run in O(log2(n)(log log(n))2)-
bits of space.
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Lp sampling upper bound (bits) p range Notes Citation

O(log3(n)) p = 0 perfect L0 sampler, \delta = 1/poly(n) [FIS08]

O(log2(n) log(1/\delta 2)) p = 0 perfect L0 sampler [JST11]
poly log(\nu  - 1, n) p \in [0, 2] \delta = 1/poly(n) [MW10]

O(\nu  - p log3(n) log(1/\delta )) p \in [1, 2] (1\pm \nu )-relative error [AKO10]

O(\nu  - max\{ 1,p\} log2(n) log(1/\delta )) p \in (0, 2) \setminus \{ 1\} (1\pm \nu )-relative error [JST11]

O(\nu  - 1 log(\nu  - 1) log2(n) log(1/\delta )) p = 1 (1\pm \nu )-relative error [JST11]

O(log2(n) log(1/\delta )) p \in (0, 2)
perfect Lp sampler,
random oracle model,
matches lower bound

this work

O(log2(n) log(1/\delta )(log logn)2) p \in (0, 2) perfect Lp sampler this work

O(log3(n) log(1/\delta )) p = 2 perfect L2 sampler this work

O(log3(n)) p \in (0, 2) \delta = 1/poly(n) this work

Fig. 1. Evolution of one pass Lp sampling upper bounds, with the best known lower bound of
\Omega (log2(n) log(1/\delta )) for p \geq 0 [KNP+17] (see also [JST11] for a lower bound for constant \delta ).

probability, whereas before this required O(\epsilon  - p log2(n)) bits of space. For p = 2, our
bound is O(\epsilon  - 2 log2(n) log(1/\delta 2)), which still improves upon the prior best known
bounds for estimating the frequency by an O(log(n))-factor. Finally, we show an
\Omega (\epsilon  - p log(n) log(1/\delta 2)) bits of space lower bound for producing the (1 \pm \epsilon ) estimate
(conditioned on an index being returned).

General derandomization. Along the way to derandomizing our main Lp sampling
algorithm, we develop a generic technique that allows for the black-box derandom-
ization of a large class of linear sketches. This theorem will not be sufficient alone to
derandomize our algorithm, but is suitable for a number of other applications. For
instance, it provides the first efficient derandomization of the count-sketch variant of
Minton and Price [MP14], a discussion of which can be found in section 5.2.3. We
state the generic theorem here. In what follows, for a matrix A, let vec(A) denote
the vectorization of A, obtained by stacking the columns of A together.

Theorem 5. Fix n, t, k \geq 1, and fix f \in \{  - M, . . . ,M\} n, where M = poly(n).
Let X \in \BbbR 

t\times nk be any fixed matrix with entries contained within \{  - M, . . . ,M\} , and
let \scrD be any distribution over matrices A \in \BbbR 

k\times n such that the entries A \sim \scrD are
independent and identically distributed (i.i.d.) and can be sampled using O(log n)-bits.
Let \sigma : \BbbR k \times \BbbR 

t \rightarrow \{ 0, 1\} be any function, and fix any constant c \geq 1. Then there is
a distribution \scrD \prime over matrices A\prime \in \BbbR 

k\times n such that A\prime \sim \scrD \prime can be generated via a
random seed of length O((k + t) log(n)(log log n)2), such that

\bigm| 

\bigm| 

\bigm| 
Pr
\Bigl[ 

\sigma (Af,X \cdot vec(A)) = 1
\Bigr] 

 - Pr
\Bigl[ 

\sigma (A\prime f,X \cdot vec(A\prime )) = 1
\Bigr] \bigm| 

\bigm| 

\bigm| 
< n - c(k+t)

and such that each entry of A\prime can be computed in time \~O(1) using working space
linear in the seed length.

In the above theorem, \sigma can be defined as a tester with \sigma (Af,X \cdot vec(A)) = 1
whenever a streaming algorithm depending only on Af and X \cdot Vec(A) succeeds. Note
that the matrix X allows an algorithm to also depend lightly on A, in addition to
the linear sketch Af . For instance, X \cdot vec(A) could store an entire column of A,
as is needed for count-sketch. We believe Theorem 5 is an important step toward a
universal derandomization of streaming algorithms.

We remark that many streaming algorithms, such as the p-stable sketches of
Indyk [Ind06] for Lp estimation, depend only on a linear sketch Af . Specifically, for
0 < p \leq 2, to estimate \| f\| pp =

\sum 

i\in [n] | fi| p to relative error (1 \pm \epsilon ), the algorithm

of [Ind06] generates a matrix A with O(\epsilon  - 2) rows and entries drawn independently
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386 RAJESH JAYARAM AND DAVID WOODRUFF

from a p-stable distribution. The original derandomization of [Ind06] applied Nisan's
pseudorandom generator (PRG) [Nis92], resulting in a log n blow-up in the space;
namely, the algorithm required O(\epsilon  - 2 log2 n) bits of space. This blow-up was shown
to be unnecessary by Kane, Nelson, and Woodruff [KNW10], who gave an involved
argument demonstrating that it suffices to generate the entries of A with limited
independence, requiring a total of O(\epsilon  - 2 log n) bits. Theorem 5, therefore, gives an
alternative derandomization of Indyk's p-stable sketches, although it requires a slightly
suboptimal O(\epsilon  - 2 log n(log log n)2) bits of space.

1.2. Applications. Since their introduction, it has been observed that Lp sam-
plers can be used as a building block in algorithms for many important streaming
problems, such as finding heavy hitters, Lp-norm estimation, cascaded norm estima-
tion, and finding duplicates in data streams [AKO10, MW10, JST11, BOZ12]. Lp

samplers, particularly for p = 1, are often used as a black-box subroutine to de-
sign representative histograms of f on which more complicated algorithms are run
[GMP, GM98a, Olk93, GKMS02, HNG+07, CMR05]. For these black-box applica-
tions, the only property of the samplers needed is the distribution of their samples.
Samplers with relative error are statistically biased and, in the analysis of more compli-
cated algorithms built upon such samplers, this bias and its propagation over multiple
samples must be accounted for and bounded. The analysis and development of such
algorithms would be simplified dramatically, therefore, with the assumptions that the
samples were truly uniform (i.e., from a perfect L1 sampler). In this case, no error
terms or variational distance need be accounted for. Our results show that such an
assumption is possible without affecting the space complexity of the sampler.

Note that in Definition 1, we allow a perfect sampler to have n - c+1 variation
distance to the true Lp distribution. We note that this definition is in line with prior
work, observing that even the perfect L0 sampler of [JST11] incurs such an error from
derandomizing with Nisan's PRG. Nevertheless, this error will never be detected if the
sampler is run polynomially many times in the course of constructing a histogram,
and such a sampler is therefore statistically indistinguishable from a truly uniform
sampler and can be used as a black-box.

Another motivation for utilizing perfect Lp samplers comes from applications in
privacy. Here f \in \BbbR 

n is some underlying dataset, and we would like to reveal a sample
i \in [n] drawn from the Lp distribution over f to some external party without reveal-
ing too much global information about f itself. Using an approximate Lp sampler
introduces a (1\pm \nu ) multiplicative bias into the sampling probabilities, and this bias
can depend on global properties of the data. For instance, such a sampler might bias
the sampling probabilities of a large set S of coordinates by a (1 + \nu ) factor if a cer-
tain global property P holds for f and may instead bias them by (1 - \nu ) if a disjoint
property P \prime holds. Using only a small number of samples, an adversary would then
be able to distinguish whether P or P \prime holds by determining how these coordinates
were biased. On the other hand, the bias in the samples produced by a perfect Lp

sampler is polynomially small, and thus the leakage of global information could be
substantially smaller when using one.

One formalization of what it means to ``leak"" global information comes from the
literature on private approximations [FIM+01, Woo11], where given a nonnegative
real-valued function g(x) for some input x, the goal is to output a (1\pm \nu ) approxima-
tion R to g(x), such that the value R reveals no more information about the input x
than the actual value of g(x) reveals about x. Specifically, to do this, one must show
that the distribution of the value R can be simulated given only knowledge of the value
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PERFECT f SAMPLING IN A DATA STREAM 387

Input: f \in \BbbR 
n

Output: a sampled index i\ast \in [n]
1. Perform a linear transformation on f to obtain z.
2. Run instance A of count-sketch on z to obtain the estimate y.
3. Find i\ast = argmaxi | yi| . Then run a statistical test on y to decide whether

to output i\ast or FAIL.

Fig. 2. Algorithmic template for Lp sampling.

g(x). In our setting, g(x) = | xi| p/\| x\| pp could be the probability that an exact Lp sam-
pler should output a fixed coordinate i \in [n] on input frequency vector x = f \in \BbbR 

n,
and the corresponding goal of a private sampler would be to output i with probability
R = (1\pm \nu )g(x) without reveling any more information about x than the value g(x). In
this setting, a perfect Lp sampler will allow for a simulation which has 1/poly(n) varia-
tional distance to the true distribution of R resulting from the sampler (just by adding
small 1/poly(n)-sized noise), whereas an approximate (1 + \nu ) relative error sampler
would only allow for a simulation that is correct up to variational distance \nu . This
results in approximate samplers being substantially less private than perfect samplers.

1.3. Our techniques. Our main algorithm is inspired by the precision sampling
technique used in prior works [AKO10, JST11], but with some marked differences.
To describe how our sampler achieves the improvements mentioned above, we begin
by observing that all Lp sampling algorithms since [AKO10] have adhered to the
same algorithmic template (shown in Figure 2). This template employs the classic
count-sketch algorithm of [CCFC02a] as a subroutine, which is easily introduced. For
k \in \BbbN , let [k] denote the set \{ 1, 2, . . . , k\} . Given a precision parameter \eta , count-
sketch selects pairwise independent hash functions hj : [n] \rightarrow [6/\eta 2] and gj : [n] \rightarrow 
\{ 1, - 1\} for j = 1, 2, . . . , d, where d = \Theta (log(n)). Then for all i \in [d], j \in [6/\eta 2], it
computes the following linear function Ai,j =

\sum 

k\in [n],hi(k)=j gi(k)fk and outputs an

approximation y of f given by yk = mediani\in [d]\{ gi(k)Ai,hi(k)\} . We will discuss the
estimation guarantee of count-sketch at a later point.

The algorithmic template is as follows. First, perform some linear transformation
on the input vector f to obtain a new vector z. Next, run an instance A of count-
sketch on z to obtain the estimate y. Finally, run some statistical test on y. If the
test fails, then output FAIL; otherwise output the index of the largest coordinate (in
magnitude) of y. We first describe how the sampler of [JST11] implements the steps
in this template. Afterward we describe the different implementation decisions made
in our algorithm that allow it to overcome the limitations of prior approaches.

Prior algorithms. The samplers of [JST11, AKO10] utilize the technique known
as precision sampling, which employs the following linear transformation. The algo-
rithms first generate random variables (t1, . . . , tn) with limited independence, where

each ti \sim Uniform[0, 1]. Next, each coordinate fi is scaled by the coefficient 1/t
1/p
i to

obtain the transformed vector z \in \BbbR 
n given by zi = fi/t

1/p
i , thus completing step 1

of Figure 2. For simplicity, we now restrict to the case of p = 1 and the algorithm
of [JST11]. The goal of the algorithm is then to return an item zi that crosses the
threshold | zi| > \nu  - 1R, where R = \Theta (\| f\| 1) is a constant factor approximation of the
L1. Note that the probability that this occurs is proportional to \nu | fi| /\| f\| 1.

Next, implementing the second step of Figure 2, the vector z is hashed into
count-sketch to find an item that has crossed the threshold. Using the stronger tail-
guarantee of count-sketch, the estimate vector y satisfies \| y  - z\| \infty \leq \surd \eta \| ztail(1/\eta )\| 2,
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where ztail(1/\eta ) is z with the 1/\eta largest coordinates (in magnitude) set to 0. Now the
algorithm runs into trouble when it incorrectly identifies zi as crossing the threshold
when it has not, or vice-versa. However, if the tail error

\surd 
\eta \| ztail(1/\eta )\| 2 is at most

O(\| f\| 1), then since ti is a uniform variable the probability that zi is close enough
to the threshold to be misidentified is O(\nu ), which results in at most (1\pm \nu ) relative
error in the sampling probabilities. Thus it will suffice to have

\surd 
\eta \| ztail(1/\eta )\| 2 =

O(\| f\| 1) with probability 1  - \nu . To show that this is the case, consider the level

sets Ik = \{ zi | zi \in (
\| f\| p

2(k+1)/p ,
\| f\| p

2k/p )\} . One can show that \BbbE [| Ik| ] = 2k. We observe
here that results of [JST11] can be partially attributed to the fact that for p < 2,

the total contribution \Theta (
\| f\| 2

p

22k/p | Ik| ) of the level sets to \| z\| 22 decreases geometrically
with k, and so with constant probability we have \| z\| 2 = O(\| f\| p). Moreover, if one
removes the top log(1/\nu ) largest items, the contribution of the remaining items to
the L2 is O(\| f\| 1) with probability 1 - \nu . So taking \eta = log(1/\nu ), the tail error from
count-sketch has the desired size. Since the tail error does not include the 1/\eta largest
coordinates, this holds even conditioned on a fixed value ti\ast of the maximizer.

Now with probability \nu the guarantee on the error from the prior paragraph does
not hold, and in this case one cannot still output an index i, as this would result
in a \nu -additive error sampler. Thus, as in step 3 of Figure 2, the algorithm must
implement a statistical test to check that the guarantee holds. To do this, using the
values of the largest 1/\eta coordinates of y, they produce an estimate of the tail-error
and output FAIL if it is too large. Otherwise, the item i\ast = argmaxi | yi| is outputted
if | yi\ast | > \nu  - 1R. The whole algorithm is run O(\nu  - 1 log(1/\delta )) times so that an index
is outputted with probability 1 - \delta .

Our algorithm. Our first observation is that, in order to obtain a truly perfect
sampler, one needs to use different scaling variables ti. Notice that the approach
of scaling by inverse uniform variables and returning a coordinate which reaches a
certain threshold T faces the obvious issue of what to return when more than one
of the variables | zi| crosses T . This is solved by simply outputting the maximum of
all such coordinates. However, the probability of an index becoming the maximum
and reaching a threshold is drawn from an entirely different distribution, and for
uniform variables ti this distribution does not appear to be the correct one. To
overcome this, we must use a distribution where the maximum index i of the variables

(| f1t - 1/p
2 | , | f2t - 1/p

2 | , . . . , | fnt - 1/p
n | ) is drawn exactly according to the Lp distribution

| fi| p/\| f\| pp. We observe that the distribution of exponential random variables has

precisely this property, and thus to implement step 1 of Figure 2 we set zi = fi/t
1/p
i ,

where ti is an exponential random variable. We remark that exponential variables
have been used in the past, such as for Fp moment estimation, p > 2, in [AKO10]
and regression in [WZ13]. However, it appears that their applicability to sampling
has never before been exploited.

Next, we carry out the count-sketch step by hashing our vector z into a count-
sketch data structure A. Because we are only interested in the maximizer of z, we
develop a modified version of count-sketch, called count-max. Instead of producing
an estimate y such that \| y - z\| \infty is small, count-max simply checks, for each i \in [n],
how many times zi hashed into the largest bucket (in absolute value) of a row of A. If
this number is at least a 4/5-fraction of the total number of rows, count-max declares
that zi is the maximizer of z. We show that with high probability, count-max never
incorrectly declares an item to be the maximizer, and moreover if zi > 20(

\sum 

j \not =i z
2
j )

1/2,
then count-max will declare i to be the maximizer. Using the min-stability property of
exponential random variables, we can show that the maximum item | zi\ast | = max\{ | zi| \} 
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is distributed as \| f\| p/E1/p, where E is another exponential random variable. Thus
| zi\ast | = \Omega (\| f\| p) with constant probability. Using a more general analysis of the L2

norm of the level sets Ik, we can show that (
\sum 

j \not =i\ast z
2
j )

1/2 = O(\| f\| p). If all these events
occur together (with sufficiently large constants), count-max will correctly determine
the coordinate i\ast = argmaxi\{ | zi| \} . However, just as in [JST11], we cannot output an
index anyway if these conditions do not hold, so we will need to run a statistical test
to ensure that they do.

The statistical test. To implement step 3 of the template, our algorithm tests
whether count-max declares any coordinate i \in [n] to be the maximizer, and we
output FAIL if no coordinate is declared as the maximizer. This approach guarantees
that we correctly output the maximizer conditioned on not failing. The primary
technical challenge will be to show that, conditioned on i = argmaxj\{ | zj | \} for some
i, the probability of failing the statistical test does not depend on i. In other words,
conditioning on | zi| being the maximum does not change the failure probability. Let
zD(k) be the kth order statistic of z (i.e., | zD(1)| \geq | zD(2)| \geq \cdot \cdot \cdot \geq | zD(n)| ). Here
the D(k)'s are known as antiranks of the distribution (z1, . . . , zn). To analyze the
conditional dependence, we must first obtain a closed form for zD(k) which separates
the dependencies on k and D(k). Hypothetically, if zD(k) depended only on k, then
our statistical test would be completely independent of D(1), in which case we could
safely fail whenever such an event occurred. Of course, in reality this is not the case.
Consider the vector f = (100n, 1, 1, 1, . . . , 1) \in \BbbR 

n and p = 1. Clearly we expect z1
to be the maximizer, and moreover we expect a gap of \Theta (n) between z1 and zD(2).
On the other hand, if you were told that D(1) \not = 1, it is tempting to think that zD(1)

just barely beat out z1 for its spot as the max, and so z1 would not be far behind.
Indeed, this intuition would be correct, and one can show that the probability that
zD(1) - zD(2) > n conditioned on D(1) = i changes by an additive constant depending
on whether or not i = 1. Conditioned on this gap being smaller or larger, we are
more or less likely (respectively) to output FAIL. In this setting, the probability of
conditional failure can change by an \Omega (1) factor depending on the value of D(1).

To handle scenarios of this form, our algorithm will utilize an additional linear
transformation in step 1 of the template. Instead of only scaling by the random

coefficients 1/t
1/p
i , our algorithm first duplicates the coordinates fi to remove all

heavy items from the stream. If f is the vector from the example above and F is
the duplicated vector, then after poly(n) duplications all copies of the heavy item
f1 will have weight at most | f1| /\| F\| 1 < 1/poly(n). By uniformizing the relative
weight of the coordinates, this washes out the dependency of | zD(2)| on D(1), since

\| F - D(1)\| pp = (1 \pm n - \Omega (c))\| F - j\| pp after nc duplications for any j \in [nc]. Notice that
this transformation blows up the dimension of f by a poly(n) factor. However, since
our space usage is always poly log(n), the result is only a constant factor increase in
the complexity.

After duplication, we scale F by the coefficients 1/t
1/p
i , and the rest of the algo-

rithm proceeds as described above. Using expressions for the order statistics zD(k)

which separate the dependence into the antiranks D(j) and a set of exponentials
E1, E2, . . . En independent of the antiranks, after duplication we can derive tight con-
centration of the zD(k)'s conditioned on fixed values of the Ei's. Using this con-
centration result, we decompose our count-max data structure A into two component
variables: one independent of the antiranks (the independent component) and a small
adversarial noise of relative weight n - c. In order to bound the effect of the adversarial
noise on the outcome of our tests we must (1) randomize the threshold for our failure
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390 RAJESH JAYARAM AND DAVID WOODRUFF

condition and (2) demonstrate the anticoncentration of the resulting distribution over
the independent components of A. This will demonstrate that with high probability,
the result of the statistical test is completely determined by the value of the indepen-
dent component, which allows us to fail without affecting the conditional probability
of outputting i \in [n].

Derandomization. Now the correctness of our sampler crucially relies on the full
independence of the ti's to show that the variable D(1) is drawn from precisely the
correct distribution (namely, the Lp distribution | fi| p/\| f\| pp). This being the case, we
cannot directly implement our algorithm using any method of limited independence.
In order to derandomize the algorithm from requiring full-independence, we will use
a combination of Nisan's PRG [Nis92], as well as an extension of the recent PRG
of [GKM18], which fools certain classes of Fourier transforms. We first use a closer
analysis of the seed length Nisan's generator required to fool the randomness required
for the count-max data structure, which avoids the standard O(log n)-space blow-up,
which would be incurred by using Nisan's as a black-box. Once the count-max has
been derandomized, we demonstrate how the PRG of [GKM18] can be used to fool
arbitrary functions of d halfspaces, as long as each of the half-spaces can be specified
by a normal vector with bounded bit-complexity. Specifically, we require that each
coordinate vi of the normal vector v \in \BbbR 

m that specifies an m-dimensional halfspace
has bounded bit complexity; for our application, each coordinate vi is specified using
O(log n) bits. We use this result to derandomize the exponential variables ti with a
seed of length O(log2(n)(log log n)2), which will allow for the total derandomization
of our algorithm for \delta = \Theta (1) and p < 2 in the same space.

Our derandomization technique is in fact fairly general and can be applied to
streaming algorithms beyond the sampler in this work. Namely, we demonstrate that
any streaming algorithm which stores a linear sketch A \cdot f , where the entries of A are
independent and can be sampled from with O(log(n))-bits, can be derandomized with
only a O((log log n)2)-factor increase in the space requirements (see Theorem 5). This
improves the O(log(n))--blow-up incurred from black-box usage of Nisan's PRG. As
an application, we derandomize the count-sketch variant of Minton and Price [MP14]
to use O(\epsilon  - 2 log2(n)(log log n)2)-bits of space, which gives improved concentration
results for count-sketch when the hash functions are fully independent. The problem of
improving the derandomization of [MP14] beyond the black-box application of Nisan's
PRG was an open problem. We remark that using O(1/\epsilon 2 log3(n))-bits of space in
the classic count sketch of [CCFC02a] has strictly better error guarantees than those
obtained from derandomizing [MP14] with Nisan's PRG to run in the same space. Our
derandomization, in contrast, demonstrates a strong improvement on this, obtaining
the same bounds with an O((log log n)2) instead of an O(log(n)) factor blow-up.

Case of p = 2. Recalling p < 2, we could show that the L2 norm of the
level sets Ik decays geometrically with k. More precisely, for any \gamma \geq 1 we have
\| ztail(\gamma )\| 2 = O(\| F\| p\gamma  - 1/p+1/2) with probability 1 - O(e - \gamma ). Using this, we actually
do not need the tight concentration of the zD(k)'s, since we can show that the top

nc/10 coordinates change by at most (1 \pm n - \Omega (c)) depending on D(1), and the L2

norm of the remaining coordinates is only an O(n - c/10(1/p - 1/2)) fraction of the whole
L2 and can thus be absorbed into the adversarial noise. For p = 2, however, each
level set Ik contributes weight O(\| F\| 2p) to \| z\| 22, so \| ztail(\gamma )\| 2 = O(

\surd 
log n\| F\| p) even

for \gamma = poly(n). Therefore, for p = 2 it is essential that we show concentration of
the zD(k)'s for nearly all k. Since \| z\| 22 will now be larger than \| F\| 22 by a factor of
log n with high probability, count-max will only succeed in outputting the largest co-
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ordinate when it is an O(
\surd 
log n) factor larger than expected. This event occurs with

probability 1/ log n, so we will need to run the algorithm log n times in parallel to get
constant probability for a total O(log3 n)-bits of space. Using the same O(log3 n)-bit
Nisan PRG seed for all O(log n) repititions, we show that the entire algorithm for
p = 2 can be derandomized to run in O(log3 n log 1/\delta )-bits of space.

Optimizing the runtime. In addition to our core sampling algorithm, we show how
the linear transformation step to construct z can be implemented via a parameterized
rounding scheme to improve the update time of the algorithm without affecting the
space complexity, giving a run-time/relative sampling error trade-off. By rounding

the scaling variables 1/t
1/p
i to powers of (1 + \nu ), we discretize their support to have

size O(\nu  - 1 log n). We then simulate the update procedure by sampling from the
distribution over updates to our count-max data-structure A of duplicating an update
and hashing each duplicate independently into A. Our simulation utilizes results on
efficient generation of binomial random variables, through which we can iteratively
reconstruct the updates to A bin-by-bin instead of duplicate-by-duplicate. In addition,
by using an auxiliary heavy hitter data structure, we can improve our query time from
the na\"{\i}ve O(n) to O(poly log n) without increasing the space complexity.

Estimating the frequency. We show that allowing an additional additive
O(min\{ \epsilon  - 2, \epsilon  - p log( 1

\delta 2
)\} log n log \delta  - 1

2 ) bits of space, we can provide an estimate \~f =
(1\pm \epsilon )fi of the outputted frequency fi with probability 1 - \delta 2 when p < 2. To achieve
this, we use our more general analysis of the contribution of the level sets Ik to \| z\| 2
and give concentration bounds on the tail error when the top \epsilon  - p items are removed.
When p = 2, for similar reasons as described in the sampling algorithm, we require
another O(log n) factor in the space complexity to obtain a (1\pm \epsilon ) estimate. Finally,
we demonstrate an \Omega (\epsilon  - p log n log \delta  - 1

2 ) lower bound for this problem, which is nearly
tight when p < 2. To do so, we adapt a communication problem introduced in [JW13],
known as augmented-indexing on large domains. We weaken the problem so that it
need only succeed with constant probability and then show that the same lower bound
still holds. Using a reduction from this problem, we show that our lower bound for Lp

samplers holds even if the output index is from a distribution with constant additive
error from the true Lp distribution | fi| p/\| f\| pp.

2. Preliminaries. For a, b, \epsilon \in \BbbR , we write a = b\pm \epsilon to denote the containment
a \in [b - \epsilon , b+ \epsilon ]. For positive integer n, we use [n] to denote the set \{ 1, 2, . . . , n\} and
\~O(\cdot ) notation to hide log(n) terms. For any vector v \in \BbbR 

n, we write v(k) to denote
the kth largest coordinate of v in absolute value. In other words, | v(1)| \geq | v(2)| \geq 
\cdot \cdot \cdot \geq | v(n)| . For any \gamma \in [n], we define vtail(\gamma ) to be v but with the top \gamma coordinates
(in absolute value) set equal to 0. For any i \in [n], we define v - i to be v with the i
th coordinate set to 0. We write | v| to denote the entrywise absolute value of v, so
| v| j = | vj | for all j \in [n]. All space bounds stated will be in bits. For our runtime
complexity, we assume the unit cost RAM model, where a word of O(log(n))-bits can
be operated on in constant time, where n is the dimension of the input streaming
vector. Finally, we will use \~O notation to hide polylog(n) factors; in other words
O(logc(n)) = \~O(1) for any constant c.

Formally, a data stream is given by an underlying vector f \in \BbbR 
n, called the

frequency vector, which is initialized to 0n. The frequency vector then receives a
stream of m updates of the form (it,\Delta t) \in [n] \times \{  - M, . . . ,M\} for some M > 0 and
t \in [m]. The update (i,\Delta ) causes the change fit \leftarrow fit +\Delta t. For simplicity, we make
the common assumption [BCIW16] that log(mM) = O(log(n)), though our results
generalize naturally to arbitrary n,m. Since the updates (it,\Delta t) can cause coordinates
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392 RAJESH JAYARAM AND DAVID WOODRUFF

fi to become negative, this is known as the general turnstile model of streaming, as
opposed to the sometimes considered strict turnstile model, which forces fi \geq 0 at all
time steps. We remark that both of these models are more general than the insertion
only model, which restricts that \Delta t \geq 0 for all t. In this work, we consider only the
most general model, namely, the general turnstile model.

In this paper, we will need Khintchine's and McDiarmid's inequality.

Fact 1 (Khintchine inequality [Haa81]). Let x \in \BbbR 
n and Q =

\sum n
i=1 \varphi ixi for

i.i.d. random variables \varphi i uniform on \{ 1, - 1\} . Then Pr[| Q| > t\| x\| 2] < 2e - t2/2.

Fact 2 (McDiarmid's inequality [McD89]). Let X1, X2, . . . , Xn be independent
random variables, and let \psi (x1, . . . , xn) by any function that satisfies

sup
x1,...,xn,\^xi

\bigm| 

\bigm| \psi (x1, x2, . . . , xn) - \psi (x1, . . . , xi - 1, \^xi, xi+1, . . . , xn)
\bigm| 

\bigm| \leq ci for 1 \leq i \leq n.

Then for any \epsilon > 0, we have

Pr
\Bigl[ 
\bigm| 

\bigm| 

\bigm| 
\psi (X1, . . . , Xn) - \BbbE 

\Bigl[ 

\psi (X1, . . . , Xn)
\Bigr] 
\bigm| 

\bigm| 

\bigm| 
\geq \epsilon 
\Bigr] 

\leq 2 exp

\biggl(  - 2\epsilon 2
\sum n

i=1 c
2
i

\biggr) 

.

Our analysis will use stability properties of Gaussian random variables.

Definition 2. A distribution \scrD p is said to be p-stable if whenever X1, . . . , Xn \sim 
\scrD p are drawn independently, we have

n
\sum 

i=1

aiXi = \| a\| pX

for any fixed vector a \in \BbbR 
n, where X \sim \scrD p is drawn from the same distribution.

In particular, the Gaussian random variables \scrN (0, 1) are p-stable for p = 2 (i.e.,
\sum 

i aigi = g \cdot \| a\| 2, where g, g1, . . . , gn are Gaussian).

2.1. Count-sketch and count-max. Our sampling algorithm will utilize a
modification of the well-known data structure known as count-sketch (see [CCFC02a]
for further details). We now introduce the description of count-sketch which we will
use for the remainder of the paper. The count-sketch data structure is a table A with d
rows and k columns. When run on a stream f \in \BbbR 

n, for each row i \in [d], count-sketch
picks a uniform random mapping hi : [n] \rightarrow [k] and gi : [n] \rightarrow \{ 1, - 1\} . Generally, hi
and gi need only be 4-wise independent hash functions, but in this paper we will use
fully independent hash functions (and later relax this condition when derandomizing).
Whenever an update \Delta to item v \in [n] occurs, count-sketch performs the following
updates:

Ai,hi(v) \leftarrow Ai,hi(v) +\Delta gi(v) for i = 1, 2, . . . , d.

Note that while we will not implement the hi's as explicit hash functions, and instead
generate i.i.d. random variables hi(1), . . . , hi(n), we will still use the terminology of
hash functions. In other words, by hashing the update (v,\Delta ) into the row Ai of count-
sketch, we mean that we are updating Ai,hi(v) by \Delta gi(v). By hashing the coordinate
fv into A, we mean updating Ai,hi(v) by gi(v)fv for each i = 1, 2, . . . , d. Using this
terminology, each row of count-sketch corresponds to randomly hashing the indices
in [n] into k buckets, and then each bucket in the row is a sum of the frequencies
fi of the items which are hashed to it multiplied by random \pm 1 signs. In general,
count-sketch is used to obtain an estimate vector y \in \BbbR 

n such that \| y - f\| \infty is small.
This vector y satisfies the following guarantee.
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Theorem 1. If d = \Theta (log(1/\delta )) and k = 6/\epsilon 2, then for a fixed i \in [n] we have
| yi  - fi| < \epsilon \| ftail(1/\epsilon 2)\| 2 with probability 1 - \delta , where y is given

yj = mediani\in [d]Ai,hi(j)(gi(j))
 - 1 for all j \in [n].

Moreover, if c \geq 1 is any constant, and we set d = \Theta (log n), then we have \| y  - 
f\| \infty < \epsilon \| ftail(1/\epsilon 2)\| 2 with probability 1  - n - c. Furthermore, if we instead set yj =
mediani\in [d]| Ai,hi(j)| , then the same two bounds above hold replacing f with | f | .

In this work, however, we are only interested in determining the index of the
heaviest item in f , that is, i\ast = argmaxi | fi| . So we utilize a simpler estimation
algorithm based on the count-sketch data structure that tests whether a fixed j \in [n]
if j = argmaxi | fi| . For analysis purposes, instead of having the gi's be random
signs, we draw gi(v) \sim \scrN (0, 1) as i.i.d. Gaussian variables. Then for a fixed j,
set \alpha j =

\bigm| 

\bigm| \{ i \in [d] | | Ai,hi(j)| = maxr\in [k] | Ai,r| \} 
\bigm| 

\bigm| , and we declare j = i\ast to be the

maximizer if \alpha j >
4
5d. The algorithm computes \alpha j for all j \in [n] and outputs the

first index j that satisfies \alpha j >
4
5d (there will only be one with high probability). To

distinguish this modified querying protocol from the classic count-sketch, we refer to
this algorithm as count-max. To refer to the data structure A itself, we will use the
terms count-sketch and count-max interchangeably.

We will prove our result for the guarantee of count-max in the presence of the
following generalization. Before computing the values of \alpha and reporting a maximizer
as above, we will scale each bucket Ai,j of count-max by a uniform random variable
\mu i,j \sim Uniform( 99

100 ,
101
100 ). This generalization will be used for technical reasons in our

analysis of Lemma 3. Namely, we will need it to ensure that our failure threshold of
our algorithm is randomized, which will allow us to handle small adversarial errors.

Lemma 1. Let c \geq 1 be an arbitrarily large constant, set d = \Theta (log(n)) and k = 2,
and let A be a d \times k instance of count-max run on f \in \BbbR 

n using fully independent
hash functions hi and Gaussian random variables gi \sim \scrN (0, 1). Then with probability
1  - n - c the following holds: for every i \in [n], if | fi| > 20\| f - i\| 2, then count-max
declares i to be the maximum, and if | fi| \leq maxj\in [n]\setminus \{ i\} | fj | , then count-max does
not declare i to be the maximum. Thus if count-max declares | fi| to be the largest
coordinate of f , it will be correct with high probability. Moreover, this result still holds
if each bucket Ai,j is scaled by a \mu i,j \sim Uniform( 99

100 ,
101
100 ) before reporting.

Proof. First suppose | fi| > 20\| f - i\| 2, and consider a fixed row j of A. Without
loss of generality (WLOG) i hashes to Aj,1, and thus using the 2-stability of Gaussians
(Definition 2), we have Aj,1 = \mu j,1g

1\| f1\| 2 and Aj,2 = \mu j,2g
2\| f2\| 2, where fk is f

restricted to the coordinates that hash to bucket Aj,k, and g1, g2 \sim \scrN (0, 1). Since
| f1\| 2 > 20| f2\| 2 and \mu i,j \sim Uniform( 99

100 ,
101
100 ), the probability that | Aj,2| > | Aj,1| is

less than the probability that one \scrN (0, 1) Gaussian is 19 times larger than another,
which can be bounded by 15/100 by direct computation. Thus i hashes into the max
bucket in a row of A with probability at least 85/100, so by Chernoff bounds, taking
d = \Omega (c log(n)), with probability 1 - n - 2c we have that fi is in the largest bucket at
least a 4/5 fraction of the time, which completes the first claim.

Now suppose i is not a unique max, and let i\ast be such that | fi\ast | is maximal. Then
conditioned on i, i\ast not hashing to the same bucket, the probability that fi hashes
to a larger bucket than fi\ast is at most 1/2. To see this, note that conditioned on
this, one bucket is distributed as \mu (gj(i

\ast )fi\ast + G) and the other as \mu \prime (gj(i)fi + G\prime ),
where G,G\prime \mu , \mu \prime , and gj(i\ast )fi\ast , gj(i)fi are identically distributed random variables.
Thus the probability that fi is in the maximal bucket is at most 3/4, and so by

D
o
w

n
lo

ad
ed

 0
6
/1

7
/2

3
 t

o
 7

3
.2

2
2
.5

4
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

394 RAJESH JAYARAM AND DAVID WOODRUFF

Chernoff bounds fi will hash to strictly less than (4d/5) of the maximal buckets with
probability 1 - n - 2c. Union bounding over all j \in [n] gives the desired result.

Corollary 1. In the setting of Lemma 1, with probability 1 - O(n - c), count-max
will never report an index i \in [n] as being the maximum if | fi| < 1

100\| f\| 2.
Proof. Suppose | fi| < 1

100\| f\| 2, and in a given row WLOG i hashes to Aj,1. Let
f - i be f with the coordinate i set equal to 0. Then we have Aj,1 = \mu j,1g

1\| f1\| 2
and Aj,2 = \mu j,2g

2\| f2\| 2, where fk is f restricted to the coordinates that hash to
bucket Aj,k, and g1, g2 \sim \scrN (0, 1). Since f1 - i and f2 - i = f2 are identically distrib-
uted, with probability 1/2 we have \| f2 - i\| 2 \geq \| f1 - i\| 2. Conditioned on this, we have

\| f2 - i\| 22 \geq \| f1\| 22  - | f2i | 2 \geq \| f1\| 22  - \| f2 - i\| 22/50, so \| f2 - i\| 2(1 + 1/50)1/2 \geq \| f1\| 22. So
conditioned on \| f2 - i\| 2 > \| f1 - i\| 2, we have | Aj,1| < | Aj,2| whenever one Gaussian is

(101/100)(1 + 1/50)1/2 times larger than another in magnitude, which occurs with
probability greater than 1/2 - 1/25. So i hashes into the max bucket with probability
at most 1/2 + 1/2(1/2 + 1/25) = 77/100, and thus by Chernoff bounds, taking c suf-
ficiently large and union bounding over all i \in [n], i will hash into the max bucket at
most a 79/1000 < 4/5 fraction of the time with probability 1 - O(n - c), as needed.

3. Exponential order statistics. In this section, we discuss several useful
properties of the order statistics of n independent nonidentically distributed exponen-
tial random variables. Let (t1, . . . , tn) be independent exponential random variables
where ti has mean 1/\lambda i (equivalently, ti has rate \lambda i). Recall that ti is given by the
cumulative distribution function Pr[ti < x] = 1 - e - \lambda ix. Our main Lp sampling algo-
rithm will require a careful analysis of the distribution of values (t1, . . . , tn), which we
will now describe. We begin by noting that constant factor scalings of an exponential
variable result in another exponential variable.

Fact 3 (scaling of exponentials). Let t be exponentially distributed with rate \lambda ,
and let \alpha > 0. Then \alpha t is exponentially distributed with rate \lambda /\alpha 

Proof. The cumulative distribution function (cdf) of \alpha t is given by Pr[t < x/\alpha ] =
1 - e - \lambda x/\alpha , which is the cdf of an exponential with rate \lambda /\alpha .

We would now like to study the order statistics of the variables (t1, . . . , tn), where
ti has rate \lambda i. To do so, we introduce the antirank vector (D(1), D(2), . . . , D(n)),
where for k \in [n], D(k) \in [n] is a random variable which gives the index of the kth
smallest exponential.

Definition 3. Let (t1, . . . , tn) be independent exponentials. For k = 1, 2, . . . , n,
we define the kth antirank D(k) \in [n] of (t1, . . . , tn) to be the values D(k) such that
tD(1) \leq tD(2) \leq \cdot \cdot \cdot \leq tD(n).

Using the structure of the antirank vector, it has been observed [Nag06] that there
is a simple form for describing the distribution of tD(k) as a function of (\lambda 1, . . . , \lambda n)
and the antirank vector.

Fact 4 ([Nag06]). Let (t1, . . . , tn) be independently distributed exponentials,
where ti has rate \lambda i > 0. Then for any k = 1, 2, . . . , n, we have

tD(k) =

k
\sum 

i=1

Ei
\sum n

j=i \lambda D(j)
,

where the E1, E2, . . . , En's are i.i.d. exponential variables with mean 1 and are inde-
pendent of the antirank vector (D(1), D(2), . . . , D(n)).
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Fact 5 ([Nag06]). For any i = 1, 2, . . . , n, we have

Pr[D(1) = i] =
\lambda i

\sum n
j=1 \lambda j

.

We now describe how these properties will be useful to our sampler. Let f \in \BbbR 
n

be any vector presented in a general turnstile stream (note that f must have integral
valued coordinates by the definition of the model). We can generate i.i.d. exponen-

tials (t1, . . . , tn), each with rate 1, and construct the random variable zi = fi/t
1/p
i ,

which can be obtained in a stream by scaling updates to fi by 1/t
1/p
i as they ar-

rive. By Fact 3, the variable | zi|  - p = ti/| fi| p is exponentially distributed with
rate \lambda i = | fi| p. Now let (D(1), . . . , D(n)) be the antirank vector of the expo-
nentials (t1/| f1| p, . . . , tn/| fn| 1/p). By Fact 5, we have Pr[D(1) = i] = Pr[i =

argmin\{ | z1|  - p, . . . , | zn|  - p\} ] = Pr[i = argmax\{ | z1| , . . . , | zn| \} ] = \lambda i\sum 
j \lambda j

= | fi| p
\| f\| p

p
. In

other words, the probability that | zi| = argmaxj\{ | zj | \} is precisely | fi| p/\| f\| pp, so for
a perfect Lp sampler it suffices to return i \in [n] with | zi| maximum. Now note
| zD(1)| \geq | zD(2)| \geq \cdot \cdot \cdot \geq | zD(n)| , and in this scenario the statement of Fact 4 becomes

zD(k) =

\biggl( k
\sum 

i=1

Ei
\sum N

j=i \lambda D(j)

\biggr)  - 1/p

=

\biggl( k
\sum 

i=1

Ei
\sum N

j=i f
p
D(j)

\biggr)  - 1/p

,

where Ei's are i.i.d. exponential random variables with mean 1 and are independent
of the antirank vector (D(1), . . . , D(n)). We call the exponentials Ei the hidden
exponentials, as they do not appear in the actual execution of the algorithm, and will
be needed for analysis purposes only.

4. The sampling algorithm. We now provide intuition for the workings of
our main sampling algorithm. Our algorithm scales the input stream by inverse

exponentials to obtain a new vector z. Namely, we scale fi by 1/t
1/p
i to obtain zi. Let

D = (D(1), . . . , D(n)) be the indices such that | zD(1)| \geq | zD(2)| \geq \cdot \cdot \cdot \geq | zD(n)| . Note
that D is precisely the antiranks of the variables (t1, . . . , tn), where ti is exponential
with rate | fi| p, because we have | zi| p = 1/ti and tD(1) \leq tD(2) \leq \cdot \cdot \cdot \leq tD(n). Due
to this correspondence, we will also refer to D as the antirank vector of z. We have
seen in the prior section that we can write the order statistics zD(k) as a function
of the antirank vector D and the hidden exponentials Ei, which describe the ``scale""
of the order statistics. Importantly, the hidden exponentials are independent of the
antiranks. We would like to determine the index i for whichD(1) = i, but this may not
always be possible. This is the case when the largest element | zD(1)| is not sufficently

larger than the remainig L2 mass
\sum 

j>1(| zD(j)| 2)1/2. In such a case, count-max will
not declare any index to be the largest, and we would therefore like to output FAIL.
Note that this event is more likely when there is another element | zD(2)| that is very
close to | zD(1)| in size, as whenever the two elements do not collide in count-max, it
is less likely that | zD(1)| will be in the max bucket.

Now consider the trivial situation where f1 = f2 = \cdot \cdot \cdot = fn. Here the variables
zD(k) have no dependence at all on the antirank vector D. In this case, the condition
of failing is independent of D(1), so we can safely fail whenever we cannot determine
the maximum index. On the other hand, if the values | fi| vary wildly, the variables
zD(k) will depend highly on the antiranks. In fact, if there exists fi with | fi| p \geq \epsilon \| f\| pp,
then the probability that | zD(1)|  - | zD(2)| is above a certain threshold can change by a
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396 RAJESH JAYARAM AND DAVID WOODRUFF

Lp Sampler

1. Set d = \Theta (log n), instantiate a d \times 2 count-max table A, and set \mu i,j \sim 
Uniform[ 99

100 ,
101
100 ] for each (i, j) \in [d]\times [2].

2. Duplicate updates to f to obtain the vector F \in \BbbR 
nc

so that fi = Fij for
all i \in [n] and j = 1, 2, . . . , nc - 1 for some fixed constant c.

3. Choose i.i.d. exponential random variables t = (t1, t2, . . . , tnc), and con-

struct the stream \zeta i = Fi \cdot rnd\nu (1/t1/pi ).
4. Run A on the stream \zeta . Upon the end of the stream, set Ai,j \leftarrow \mu i,jAi,j

for all (i, j) \in [d]\times [2].
5. If count-max declares that an index ij \in [nc] is the max for some j \in [nc - 1]

based on the data structure A, then output i \in [n]. If A does not declare
any index to be the max, output FAIL.

Fig. 3. Our main Lp sampling algorithm.

(1\pm \epsilon ) factor conditioned onD(1) = i, as opposed toD(1) = j for a smaller | fj | . Given
this, the probability that we fail can change by a multiplicative (1 \pm \epsilon ) conditioned
on D(1) = i as opposed to D(1) = j. In this case, we cannot output FAIL when
count-max does not report a maximizer, lest we suffer a (1 \pm \epsilon ) error in outputting
an index with the correct probability.

To handle this, we must remove the heavy items from the stream to weaken the
dependence of the values zD(k) on the antiranks, which we carry out by duplication
of coordinates. For the purpose of efficiency, we carry out the duplication via a
rounding scheme which will allow us to generate and quickly hash updates into our
data-structures (section 5). We will show that, conditioned on the fixed values of the
Ei's, the variables zD(k) are highly concentrated and therefore nearly independent of
the antiranks (zD(k) depends only on k and not D(k)). By randomizing the failure
threshold to be anticoncentrated, the small adversarial dependence of zD(k) on D(k)
cannot nontrivially affect the conditional probabilities of failure, leading to small
relative error in the resulting output distribution.

The Lp sampler. We now describe our sampling algorithm, as shown in Figure
3. To begin with, we instantiate a d\times 2 count-max table A, where d = \Theta (log n), and
generate uniform variables \mu i,j \sim Uniform[ 99

100 ,
101
100 ] for each (i, j) \in [d]\times [2] to use as

scalings for each bucket in the table. Let f \in \BbbR 
n be the input vector of the stream. As

the stream arrives, we duplicate updates to each coordinate fi a total of nc - 1 times
to obtain a new vector F \in \BbbR 

nc

. More precisely, for i \in [n] we set ij = (i - 1)nc - 1+ j
for j = 1, 2, . . . , nc - 1, and then we will have Fij = fi for all i \in [n] and j \in [nc - 1].
We then call Fij a duplicate of fi. Whenever we use ij as a subscript in this way it
will refer to a duplicate of i, whereas a single subscript i will be used both to index
into [n] and [nc]. Note that this duplication has the effect that | Fi| p \leq n - c+1\| F\| pp
for all p > 0 and i \in [nc].

We then generate i.i.d. exponential rate 1 random variables (t1, . . . , tnc) and de-

fine the vector z \in \BbbR 
nc

by zi = Fi/t
1/p
i . As shown in section 3, we have Pr[ij =

argmaxi\prime ,j\prime \{ | zi\prime 
j\prime 
| \} ] = | Fij | p/\| F\| pp. Since

\sum 

j\in [nc - 1] | Fij | p/\| F\| pp = | fi| p/\| f\| pp, it will

therefore suffice to find ij \in [nc] for which ij = argmaxi\prime ,j\prime \{ | zi\prime 
j\prime 
| \} and return the

index i \in [n]. The assumption that the ti's are i.i.d. will later be relaxed in section 5
while derandomizing the algorithm. In section 5, we also demonstrate that all relevant
continuous distributions will be made discrete without affecting the perfect sampling
guarantee.
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Now fix any sufficiently large constant c, and fix \nu > n - c. To speed up the

update time, instead of explicitly scaling Fi by 1/t
1/p
i to construct the stream z, our

algorithm instead scales Fi by rnd\nu (1/t
1/p
i ), where rnd\nu (x) rounds x > 0 down to

the nearest value in \{ . . . , (1 + \nu ) - 1, 1, (1 + \nu ), (1 + \nu )2, . . . \} . In other words, rnd\nu (x)
rounds x down to the nearest power of (1+ \nu )j (for j \in \BbbZ ). This results in a separate

stream \zeta \in \BbbR 
nc

, where \zeta i = Fi \cdot rnd\nu (1/t1/pi ). Note \zeta i = (1\pm O(\nu ))zi for all i \in [nc].
Importantly, note that this rounding is order preserving. Thus, if \zeta has a unique
largest coordinate | \zeta i\ast | , then | zi\ast | will be the unique largest coordinate of z.

Having constructed the transformed stream \zeta , we then run a d\times 2 instance A \in 
\BbbR 

d\times 2 of count-max (from section 2.1), with d = \Theta (log(n)), on \zeta . At the end of
the stream, we scale each bucket Ai,j by a uniform random variable \mu i,j from the
interval [ 99

100 ,
101
100 ]. This step ensures that the failure threshold is randomized, so that

a small adversarial error can only affect the output of the algorithm with extremely
low probability (see Lemma 3). Now recall that count-max will either declare an index
ij \in [nc] as being the maximum or report nothing. If an index ij is returned, where ij
is the jth copy of index i \in [n], then our algorithm outputs the index i. If count-max
does not report an index, we return FAIL. Let i\ast = argmaxi | \zeta i| = D(1) (where D(1)
is the first antirank as in section 3). By the guarantee of Lemma 1, we know that
if | \zeta i\ast | \geq 20\| \zeta  - i\ast \| 2, then with probability 1  - n - c count-max will return the index
i\ast \in [nc]. Moreover, with the same probability, count-max will never return an index
that is not the unique maximizer. To prove correctness, therefore, it suffices to analyze
the conditional probability of failure given D(1) = i. Let N = | \{ i \in [nc] | Fi \not = 0\} | (N
is the support size of F ). We can assume that N \not = 0 (to check this one could run, for
instance, the O(log2(n))-bit support sampler of [JST11]). Note that nc - 1 \leq N \leq nc.
The following fact is straightforward.

Fact 6. For p \in (0, 2], suppose that we choose the constant c such that mM \leq 
nc/20, where note we have | Fi| \leq mM for all i \in [N ]. Then if S \subset \{ i \in [nc] | Fi \not = 0\} 
is any subset, then

\sum 

i\in S | Fi| p \geq | S| 
N n - c/10\| F\| pp.

Proof. We know that | Fi| p \leq (mM)p \leq nc/10 using p \leq 2. Then each nonzero
value | Fi| p is at most an n - c/10 fraction of any other item | Fj | p, and in particular

of the average item weight. It follows that | Fi| p \geq n - c/10 \| F\| p
p

N for all i \in [N ], which
results in the stated fact.

As in section 3, we now use the antirank vectorD(k) to denote the index of the kth
largest value of zi in absolute value. In other words, D(k) is the index such that | zD(k)| 
is the kth largest value in the set \{ | z1| , | z2| , . . . , | znc | \} . Note that the D(k)'s are also
the antiranks of the vector \zeta , since rounding z into \zeta preserves partial ordering. For
the following lemma, it suffices to consider only the exponentials ti with Fi \not = 0, and we
thus consider only values of k between 1 andN . Thus | zD(1)| \geq | zD(2)| \geq \cdot \cdot \cdot \geq | zD(N)| .
Moreover, we have that | zD(k)|  - p =

tD(k)

| FD(k)| p is the kth smallest of all the ti
| Fi| p 's and

by the results of section 3 can be written as | zD(k)|  - p =
\sum k

\tau =1
E\tau \sum N

j=\tau | FD(j)| p
, where the

E\tau are i.i.d. exponentials and independent of the antirank vector D. We will make
use of this in the following lemma.

Lemma 2. For every 1 \leq k < N  - n9c/10, we have

| zD(k)| =
\Biggl[ 

(1\pm O(n - c/10))

k
\sum 

\tau =1

E\tau 

\BbbE [
\sum N

j=\tau | FD(j)| p]

\Biggr]  - 1/p

with probability 1 - O(e - nc/3

).
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Proof. Let \tau < N - n9c/10. We can write
\sum N

j=\tau | FD(j)| p as a deterministic function
\psi (t1, . . . , tN ) of the random scaling exponentials t1, . . . , tN corresponding to Fi \not = 0.
We first argue that

| \psi (t1, . . . , tN ) - \psi (t1 . . . , ti - 1, t
\prime 
i, ti+1, . . . , tN )| < 2max

j
\{ F p

j \} < 2n - c+1\| F\| pp.

This can be seen from the fact that changing a value of ti can only have the effect
of adding (or removing) | Fi| p to the sum

\sum N
j=\tau | FD(j)| p and removing (or adding) a

different | Fl| from the sum. The resulting change in the sum is at most 2maxj\{ | Fj | p\} ,
which is at most 2n - c+1\| F\| pp by duplication. Set T = N  - \tau + 1. Since the ti's are
independent, we apply McDiarmid's inequality (Fact 2) to obtain

Pr

\biggl[ 
\bigm| 

\bigm| 

\bigm| 

\bigm| 

N
\sum 

j=\tau 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

FD(j)| p  - \BbbE 

\biggl[ N
\sum 

j=\tau 

| FD(j)| p
\biggr] 

| > \epsilon Tn - c\| F\| pp
\biggr] 

\leq 2 exp

\biggl(  - 2\epsilon 2T 2n - 2c\| F\| 2pp
nc(2n - c+1\| F\| pp)2

\biggr) 

\leq 2 exp

\biggl( 

 - 1

2
\epsilon 2T 2n - c - 2

\biggr) 

.

(1)

Setting \epsilon = \Theta (n - c/5) and using T > n9c/10, this is at most 2 exp( - 1
2n

2c/5 - 2).

To show concentration up to a (1 \pm O(n - c/10)) factor, it remains to show that

\BbbE [
\sum N

j=\tau | FD(j)| p] = \Omega (Tn - 11c/10\| F\| pp). This follows from the Fact 6, which gives
\sum T

j=0 | FD( - j)| p \geq n - c/10(Tn - c\| F\| pp) deterministically. Now recall that | zD(k)| =
[
\sum k

\tau =1
E\tau \sum N

j=\tau | FD( - j)| p
] - 1/p. We have just shown that

N
\sum 

j=\tau 

| FD(j)| p = (1\pm O(n - c/10))\BbbE 

\biggl[ N
\sum 

j=\tau 

| FD(j)| p
\biggr] 

,

so we can union bound over all \tau = 1, 2, . . . , N  - n9c/10 to obtain

| zD(k)| =
\biggl[ 

(1\pm O(n - c/10))

k
\sum 

\tau =1

E\tau 

\BbbE [
\sum N

j=\tau | FD(j)| p]

\biggr]  - 1/p

for all k \leq N  - n9c/10 with probability

1 - O(nce - n2c/5 - 2

) = 1 - O(en
c/3

).

We use this result to show that our failure condition is nearly independent of the
value D(1). Let \scrE 1 be the event that Lemma 2 holds. Let \neg FAIL be the event that
the algorithm Lp Sampler does not output FAIL.

Lemma 3. For p \in (0, 2] a constant bounded away from 0 and any \nu \geq n - c/60,
Pr[\neg FAIL | D(1)] = Pr[\neg FAIL]\pm \~O(\nu ) for every possible D(1) \in [N ].

Proof. Let UD(k) = (
\sum k

\tau =1
E\tau 

\BbbE [
\sum N

j=\tau | FD(j)| p]
) - 1, which is independent of the an-

tirank vector D (in fact, it is totally determined by k and the hidden exponen-
tials Ei). Then by Lemma 2, conditioned on \scrE 1, for every k < N  - n9c/10 we

have | zD(k)| = U
1/p
D(k)(1 \pm O(n - c/10))1/p = U

1/p
D(k)(1 \pm O( 1pn

 - c/10)) (using the iden-
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tity (1 + x) \leq ex and the Taylor expansion of ex). Then for c sufficiently large, we

have | \zeta D(k)| = U
1/p
D(k)(1\pm O(\nu )), and so for all p \in (0, 2] and k < N  - n9c/10

| \zeta D(k)| = U
1/p
D(k) + U

1/p
D(k)VD(k),

where VD(k) is some random variable that satisfies | VD(k)| = O(\nu ). Now consider a
bucket Ai,j for (i, j) \in [d]\times [2]. Let \sigma k = sign(zk) = sign(\zeta k) for k \in [nc]. Then we
write Ai,j/\mu i,j =

\sum 

k\in Bij
\sigma D(k)| \zeta D(k)| gi(D(k)) +

\sum 

k\in Sij
\sigma D(k)| \zeta D(k)| gi(D(k)), where

Bij = \{ k \leq N - n9c/10 | hi(D(k)) = j\} and Sij = \{ nc \geq k > N - n9c/10 | hi(D(k)) = j\} .
Here we define \{ D(N + 1), . . . , D(nc)\} to be the set of indices i with Fi = 0 (in any
ordering, as they contribute nothing to the sum). Also recall that gi(D(k)) \sim \scrN (0, 1)
is the i.i.d. Gaussian coefficent associated to item D(k) in row i of A. So

Ai,j/\mu i,j

=
\sum 

k\in Bij

gi(D(k))\sigma D(k)U
1/p
D(k) +

\sum 

k\in Bij

gi(D(k))\sigma D(k)U
1/p
D(k)VD(k) +

\sum 

k\in Sij

gi(D(k))\zeta D(k).

Importantly, observe that since the variables hi(D(k)) are fully independent, the
sets Bi,j , Si,j are independent of the antirank vector D. In other words, the values
hi(D(k)) are independent of the values D(k) (and of the entire antirank vector), since
\{ hi(1), . . . , hi(nc)\} = \{ hi(D(1)), . . . , hi(D(nc))\} are i.i.d. Note that this would not
necessarily be the case if \{ hi(1), . . . , hi(nc)\} were only \ell -wise independent for some
\ell = o(nc). So we can condition on a fixed set of values \{ hi(D(1)), . . . , hi(D(nc))\} 
now, which fixes the sets Bi,j , Si,j . Now let U\ast 

i,j = | 
\sum 

k\in Bij
gi(D(k))\sigma D(k)U

1/p
D(k)| .

Claim 1. For all i, j,\in [d]\times [2] and p \in (0, 2], we have

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\sum 

k\in Bij

gi(D(k))\sigma D(k)U
1/p
D(k)VD(k) +

\sum 

k\in Sij

gi(D(k))\zeta D(k)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

= O (\nu (| Ai,1| + | Ai,2| ))

with probability 1 - O(log(n)n - c/60).

Proof. By the 2-stability of Gaussians (Definition 2),

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\sum 

k\in Sij

gi(D(k))\zeta D(k)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

= O(
\sqrt{} 

log(n)(
\sum 

k\in Si,j

(2zD(k))
2)1/2)

with probability 1 - n - c. This is a sum over a subset of the n9c/10 smallest items | zi| ,
and thus

\sum 

k\in Si,j
z2D(k) <

n9c/10

N \| z\| 22, giving
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\sum 

k\in Sij

gi(D(k))\zeta D(k)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

= O(
\sqrt{} 

log(n)n - c/30\| z\| 2).

Now WLOG Ai,1 is such that
\sum 

k\in Bi,1\cup Si,1
\zeta 2D(k) >

1
2\| \zeta \| 22. Then | Ai,1| \geq | g| \| z\| 22/3,

where g \sim \scrN (0, 1). Via the cdf of a Gaussian, it follows with probability 1  - 
O(n - c/60) that | Ai,1| > n - c/60\| z\| 22 = \Omega ((nc/60/

\sqrt{} 

log(n))| \sum k\in Sij
gi(D(k))\zeta D(k)| ).

Scaling \nu by a log(n) factor gives | \sum k\in Sij
gi(D(k))\zeta D(k)| = O(\nu | Ai,1| ). Next, using

that | VD(k)| = O(\nu ), we have | \sum k\in Bij
gi(D(k))\sigma D(k)U

1/p
D(k)VD(k)| = O(\nu )| \sum k\in Bij
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400 RAJESH JAYARAM AND DAVID WOODRUFF

gi(D(k))\sigma D(k)U
1/p
D(k)| = O(\nu U\ast 

i,j). Combined with the prior paragraph, we have

U\ast 
i,j = O((| Ai,1| + | Ai,2| )) as needed. Note that there are only O(log(n)) terms i, j to

union bound over, and from which the claim follows.

Call the event where Claim 1 holds \scrE 2. Conditioned on \scrE 2, we can decompose
| Ai,j | /\mu i,j for all i, j into U

\ast 
i,j+\scrV ij , where \scrV ij is some random variable satisfying | \scrV ij | =

O(\nu (| Ai,1| + | Ai,2| )) and U\ast 
i,j is independent of the antirank vector D (it depends only

on the hidden exponentials Ek and the uniformly random Gaussians gi(D(k))). Now
fix any realization of the count-max randomness, let E = (E1, . . . , EN ) be the hidden
exponential vector, \mu = \{ \mu i,1, \mu i,2\} i\in [d], D = (D(1), D(2), . . . , D(N)), and observe

Pr
\Bigl[ 

\neg FAIL | D(1)
\Bigr] 

=
\sum 

E,\mu 

Pr
\Bigl[ 

\neg FAIL | D(1), E, \mu 
\Bigr] 

Pr
\Bigl[ 

E, \mu 
\Bigr] 

.

Here we have used the fact that E, \mu are independent of the antiranks D. Thus, it will
suffice to bound the probability of obtaining E, \mu such that the event of failure can
be determined by the realization of D. So consider any row i, and consider the event
\scrQ i that | \mu i,1U

\ast 
i,1  - \mu i,2U

\ast 
i,2| < 2(| \scrV \ast 

i,1| + | \scrV \ast 
i,2| ) = O(\nu (| Ai,1| + | Ai,2| ) (where here we

have conditioned on the high probability event \scrE 2). WLOG, U\ast 
i,1 \geq U\ast 

i,2, giving U
\ast 
i,1 =

\Theta (| Ai,1| + | Ai,2| ). Since the \mu i,j 's are uniform, Pr[\scrQ i] = O(\nu (| Ai,1| + | Ai,2| )/U\ast 
i,1) =

O(\nu ), and by a union bound Pr[\cup i\in [d]\scrQ i] = O(log(n)\nu ). Thus conditioned on \scrE 1 \cap \scrE 2
and \neg (\cup i\in [d]\scrQ i), the event of failure is completely determined by the values E, \mu and
in particular is independent of the antirank vector D. Thus

Pr
\Bigl[ 

\neg FAIL | D(1), E, \mu ,\neg (\cup i\in [d]\scrQ i), \scrE 1 \cap \scrE 2
\Bigr] 

= Pr
\Bigl[ 

\neg FAIL | E, \mu ,\neg (\cup i\in [d]\scrQ i), \scrE 1 \cap \scrE 2
\Bigr] 

.

So averaging over all E, \mu ,

Pr
\Bigl[ 

\neg FAIL | D(1)
\Bigr] 

= Pr
\Bigl[ 

\neg FAIL | D(1),\neg (\cup i\in [d]\scrQ i), \scrE 1 \cap \scrE 2
\Bigr] 

+O(log(n)\nu )

= Pr
\Bigl[ 

\neg FAIL | \neg (\cup i\in [d]\scrQ i), \scrE 1 \cap \scrE 2
\Bigr] 

+O(log(n)\nu )

= Pr
\Bigl[ 

\neg FAIL
\Bigr] 

+O(log(n)\nu )

as needed.

In Lemma 3, we demonstrated that the probability of failure can only change by
an additive \~O(\nu ) term given that any one value of i \in [N ] achieved the maximum
(i.e., D(1) = i). This property will translate into a (1 \pm \~O(\nu ))-relative error in our
sampler, where the space complexity is independent of \nu . To complete the proof of
correctness of our algorithm, we now need to bound the probability that we fail at
all. To do so, we first prove the following fact about \| ztail(s)\| 2, or the L2 norm of z
with the top s largest (in absolute value) elements removed.

Proposition 1. For any s = 2j \leq nc - 2 for some j \in \BbbN , we have
\sum N

i=4s z
2
D(i) =

O(\| F\| 2p/s2/p - 1) if p \in (0, 2) is a constant bounded below 2, and
\sum N

i=4s z
2
(i) =

O(log(n)\| F\| 2p) if p = 2, with probability 1 - 3e - s.

Proof. Let Ik = \{ i \in [N ] | zi \in (
\| F\| p

2(k+1)/p ,
\| F\| p

2k/p )\} for k = 0, 1, . . . , p log(\| F\| p)
(where we have log(\| F\| pp) =O(log(n))). Note thatPr[i \in Ik] =Pr[ti \in (

2kFp
i

\| F\| p
p
,
2k+1Fp

i

\| F\| p
p
)]

<
2kFp

i

\| F\| p
p
, where the inequality follows from the fact that the pdf e - x of the exponential

distribution is upper bounded by 1, and the probability results from integrating the
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pdf over an interval of size at most
2kFp

i

\| F\| p
p
. Thus \BbbE [| Ik| ] < 2k, so for every k \geq log(s) =

j, we have Pr[| Ik| > 4(2k)] < e - s2k - j

by Chernoff bounds. By a union bound, the

probability that | Ik| > 4(2k) for any k \geq log(s) is at most e - s
\sum O(log(n))

i=0 e2
i \leq 2e - s.

Now observe Pr[zi > \| F\| p/s1/p] < sFp
i

\| F\| p
p
, so \BbbE [| \{ i| zi > \| F\| p/s1/p\} | ] < s, and as be-

fore the number of such i with zi > \| F\| p/s1/p is at most 4s with probability 1 - e - s.

Conditioning on this,
\sum N

i=4s z
2
(i) does not include the weight of any of these items, so

N
\sum 

i=4s

z2(i) \leq 
O(log(n))
\sum 

k=log(s)

| Ik| 
\biggl( \| F\| p

2k/p

\biggr) 2

\leq 4

O(log(n))
\sum 

k=0

\| F\| 2p
2(log(s)+k)(2/p - 1)

.

First, if p < 2, the above sum is geometric and converges to at most 4
\| F\| 2

p

1 - 2 - 2/p+1
1

s2/p - 1 =

O(\| F\| 2p/s2/p - 1) for p a constant bounded below by 2. If p = 2 or is arbitrarily close to
2, then each term is at most \| F\| 2p, and the sum is upper bounded by O(log(n)\| F\| 2p) as
stated. Altogether, the probability of failure is at most 1 - 3e - s by a union bound.

Lemma 4. For 0 < p < 2 a constant bounded away from 0 and 2, the probability
that Lp Sampler outputs FAIL is at most 1 - \Omega (1), and for p = 2 is 1 - \Omega (1/ log(n)).

Proof. By Proposition 1, with probability 1  - 3e - 4 > .9 we have \| ztail(16)\| 2 =

O(| F\| p) for p < 2, and \| ztail(16)\| = O(
\sqrt{} 

log(n)\| F\| p) when p = 2. Observe that for

t = 2, 3, . . . , 16, we have | zD(t)| < \| F\| p( 2\sum t
\tau =1 E\tau 

)1/p, and with probability 99/100 we

have Et > 1/100, which implies that | zD(t)| = O(\| F\| p) for all t \in [16]. Conditioned
on this, we have \| ztail(2)\| 2 < q\| F\| p, where q is a constant when p < 2, and q =

\Theta (
\sqrt{} 

log(n)) when p = 2. Now | zD(1)| = \| F\| p

E
1/p
1

, and using the fact that the pdf

exponential random variables around 0 are bounded above by a constant, we will have
| zD(1)| > 20\| z - D(1)\| 2 with probability \Omega (1) when p < 2, and probability \Omega ( 1

log(n) )

when p = 2. Conditioned on this, by Lemma 1, count-max will return the index D(1)
with probability 1 - n - c, and thus the sampling algorithm will not fail.

Putting together the results of this section, we obtain the correctness of our
algorithm as stated in Theorem 2. In section 5, we will show that the algorithm
can be implemented to have \~O(\nu  - 1) update and \~O(1) query time and that the entire
algorithm can be derandomized to use O(log2 n(log log n)2) bits of space for p \in (0, 2)
and O(log3(n)) bits for p = 2.

Theorem 2. Given any constant c \geq 2, \nu \geq n - c, and 0 < p \leq 2, there is a

one-pass Lp sampler which returns an index i \in [n] such that Pr[i = j] =
| fj | p
\| f\| p

p
(1 \pm 

\nu )\pm n - c for all j \in [n], and which fails with probability \delta > 0. The space required is
O(log2(n) log(1/\delta )(log log n)2) bits for p < 2 and O(log3(n) log(1/\delta )) bits for p = 2.
For p < 2 and \delta = 1/poly(n), the space is O(log3(n))-bits. The update time is \~O(\nu  - 1),
and the query time is \~O(1).

Proof. Conditioned on not failing, by Lemma 1, with probability 1 - n - c we have
that the output ij \in [nc] of count-max will in fact be equal to argmaxi\{ | \zeta i| \} . Recall
that \zeta i = (1\pm O(\nu ))zi for all i \in [nc] (and this rounding of z to \zeta is order preserving).
By Lemma 1 count-max only outputs a coordinate which is the unique maximizer of
\zeta . Now if there was a unique maximizer of \zeta , there must also be a unique maximizer
in z, from which it follows that ij = argmaxi\{ | zi| \} .

Now Lemma 3 states for any ij \in [nc] that Pr[\neg FAIL | ij = argmaxi\prime ,j\prime \{ | zi\prime 
j\prime 
| \} ] =

Pr[\neg FAIL] \pm \~O(\nu ) = q \pm \~O(\nu ), where q = Pr[\neg FAIL] = \Omega (1) for p < 2, and q =
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\Omega ( 1
log(n) ) for p = 2, both of which follow from Lemma 4, which does not depend on

any of the randomness in the algorithm. Since conditioned on not failing, the output
ij of count-max satisfies ij = argmaxi\{ | zi| \} , and the probability we output ij \in [nc] is
Pr[\neg FAIL\cap ij = argmax\{ | zi| \} ], so the probability our final algorithm outputs i \in [n] is

\sum 

j\in [nc - 1]

Pr[\neg FAIL | ij = argmax
i\prime ,j\prime 
\{ | zi\prime 

j\prime 
| \} ]Pr[ij

= argmax
i\prime ,j\prime 
\{ | zi\prime 

j\prime 
| \} ] =

\sum 

j\in [nc - 1]

| fi| p
\| F\| pp

(q \pm \~O(\nu ))

=
| fi| p
\| f\| pp

(q \pm \~O(\nu )).

Note that we can scale the c value used in the algorithm by a factor of 60, so that
the statement of Lemma 3 holds for any \nu \geq n - c. The potential of the failure of
the various high probability events that we conditioned on only adds another additive
O(n - c) term to the error. Thus, conditioned on an index i being returned, we have

Pr[i = j] =
| fj | p
\| f\| p

p
(1 \pm \~O(\nu ))) \pm n - c for all j \in [n], which is the desired result after

scaling \nu by a poly(log(n)) term. Running the algorithm O(log(\delta  - 1)) times in parallel
for p < 2 and O(log(n) log(\delta  - 1)) for p = 2, it follows that at least one index will be
returned with probability 1 - \delta .

For the complexity, the update time of count-max data structure A follows from
the routine Fast-Update of Lemma 6, and the query time follows from Lemma 9.
Theorem 7 shows that the entire algorithm can be derandomized to use a random
seed with O(log2(n)(log log(n))2)-bits, so to complete the claim it suffices to note
that using O(log(n))-bit precision as required by Fast-Update (Lemma 6), it follows
that our whole data structure A can be stored with O(log2(n)) bits, which is domi-
nated by the cost of storing the random seed. This gives the stated space after taking
O(log(\delta  - 1)) parallel repetitions for p < 2. For p = 2, we only need a random seed
of length O(log3(n)) for all O(log(n) log(\delta  - 1)) repetitions by Corollary 4, which gives
O(log3(n) log(\delta  - 1) + log3(n)) = O(log3(n) log(1/\delta )) bits of space for p = 2 as stated.
Similarly for the case of p < 2 and \delta = 1/poly(n), the stated space follows from
Corollary 4.

In particular, it follows that perfect Lp samplers exist using O(log2(n)
log(1/\delta )(log log n)2) and O(log3(n) log(1/\delta )) bits of space for p < 2 and p = 2, re-
spectively.

Theorem 3. Given 0 < p \leq 2, for any constant c \geq 2 there is a perfect Lp

sampler which returns an index i \in [n] such that Pr[i = j] =
| fj | p
\| F\| p

p
\pm O(n - c) for

all j \in [n], and which fails with probability \delta > 0. The space required is O(log2(n)
log(1/\delta )(log log n)2) bits for p < 2, and O(log3(n) log(1/\delta )) bits for p = 2. For p < 2
and \delta = 1/poly(n), the space is O(log3(n))-bits.

Finally, we note that the cause of having to pay an extra (log log n)2 factor in
the space complexity for p < 2 is only due to the derandomization. Thus, in the
random oracle model where the algorithm has access to a poly(n)-length random
tape which does not count against its space requirement, the space is an optimal
O(log2(n) log(1/\delta )). We remark that the \Omega (log2(n) log(1/\delta )) of [KNP+17] lower
bound also holds in the random oracle model.
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Corollary 2. For p \in (0, 2), in the random oracle model, there is a perfect Lp

sampler which fails with probability \delta > 0 and uses O(log2(n) log(1/\delta )) bits of space.

Remark 1. Note that for p arbitrarily close to 2, the bound on \| z\| 2 of Proposition
1 as used in Lemma 4 degrades, as the sum of the L2 norms of the level sets is no
longer geometric and must be bounded by O(

\sqrt{} 

log(n)\| F\| 2). In this case, the failure
probability from Lemma 4 goes to \Theta ( 1

log(n) ), and so we must use the upper bound for

p = 2. Similarly, for p arbitrarily close to 0, the bound also degrades since the values
VD(k) in Lemma 3 blow up. For such nonconstant p arbitrarily close to 0, we direct

the reader to the O(log2(n))-bit perfect L0 sampler of [JST11].

5. Time and space complexity. In this section, we will show that our al-
gorithm can be implemented with the desired space and time complexity. First, in
section 5.1, we show how Lp Sampler can be implemented with the update procedure

Fast-Update to result in \~O(\nu  - 1) update time. Next, in section 5.2, we show that the
algorithm Lp Sampler with Fast-Update can be derandomized to use a random seed
of length O(log2(n)(log log n)2)-bits, which will give the desired space complexity. Fi-
nally, in section 5.3, we show how using an additional heavy hitters data structure as
a subroutine, we can obtain \~O(1) update time as well. This additional data structure
will not increase the space or update time complexity of the entire algorithm and does
not need to be derandomized.

5.1. Optimizing the update time. In this section we prove Lemma 6. Our
algorithm utilizes a single data structure run on the stream \zeta , which is count-max
matrix A \in \BbbR 

d\times 2, where d = \Theta (log(n)). We will introduce an update procedure,
Fast-Update, which updates the data structure A of Lp Sampler in \~O(\nu  - 1) time. We
assume the unit cost RAM model of computation, where a word of length O(log(n))-
bits can be operated on in O(1) time. (Note that replacing O(1) with poly(log(n))
time here would not affect our results, as the additional cost would be hidden in the
\~O.) Throughout this section, we will refer to the original algorithm as the algorithm
that implements Lp sampler by individually generating each scaling exponential ti
for i \in [nc] and hashing them individually into A (na\"{\i}vely taking nc update time). Our
procedure will utilize the following result about efficiently sampling binomial random
variables, which can be found in [BKP+14].

Proposition 2. For any constant c > 0, there is an algorithm that can draw a
sample X \sim Bin(n, 1/2) in expected O(1) time in the unit cost RAM model. More-
over, it can be sampled in time \~O(1) with probability 1  - n - c. The space required is
O(log(n))-bits.

Proof. The proof of the running time bounds and correctness can be found in
[BKP+14]. Since they do not analyze the space complexity of their routine, we do
so here. Their algorithm is as follows. We can assume n is even; otherwise we could
sample Bin(n, q) \sim Bin(n  - 1, q) + Bin(1, q), where the latter can be sampled in
constant time (unit cost RAM model) and O(log(n))-bits of space. The algorithm
first computes \Delta \in [

\surd 
n,
\surd 
n+ 3], which can be done via any rough approximation of

the function
\surd 
x, and requires only O(log(n))-bits. Define the block \scrB k = \{ km, km+

1, . . . , km+m - 1\} for k \in \BbbZ , and set

f(i) =
4

2max\{ k, - k - 1\} m
s.t. i \in \scrB k,

p(i) = 2 - n

\biggl( 

n

n/2 + i

\biggr) 

.
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404 RAJESH JAYARAM AND DAVID WOODRUFF

Note that given i, f(i) can be computed in constant time and O(log(n)) bits of space.
The algorithm then performs the following loop:

1. Sample i via the normalized probability distribution \=f = f/16.
2. Return n/2 + i with probability p(i)/f(i).
3. Else, reject i and return to step 1.

To compute the first step, the symmetry around n/2 of f is utilized. We flip unbiased
coins C1, C2, . . . until we obtain Ct+1 which lands tails, and pick i uniformly from
block \scrB t or \scrB  - t (where the choice is decided by a single coin flip). The procedure
requires at most O(log(n))-bits to store the index t. Next, to perform the second step,
we obtain 2 - L additive error approximations \~q of q = (p(i)/f(i)) for L = 1, 2, . . . ,
which (using the fact that 0 \leq q \leq 1) can be done by obtaining a 2 - L-relative error
approximation of q. Then we flip L random bits to obtain a uniform \~R \in [0, 1] and
check if | \~R  - \~q| > 2 - L. If so, we can either accept or reject i based on whether
\~R > \~q + 2 - L or not; otherwise we repeat with L\leftarrow L+ 1.

To obtain \~q, it suffices to obtain a 2 - L - 1 relative error approximation of the
factorial function x!. g, the 2 - L approximation

x! \approx (x+ L)x+1/2e - (x+L)

\biggl[ \surd 
2\pi +

L - 1
\sum 

k=1

ck
x+ k

\biggr] 

,

is used, where ck = ( - 1)k - 1

(k - 1)! (L - k)k - 1/2eL - k. This requires estimating the functions

ex,
\surd 
x, and \pi , all of which, as well as each term in the sum, need only be estimated

to O(L)-bits of accuracy (as demonstrated in [BKP+14]). Thus the entire procedure
is completed in O(L) = O(log(n))-bits of space (L can never exceed O(log(n)), as q
is specified with at most O(log(n)) bits), which completes the proof.

We now utilize a straightforward reduction from the case of sampling from Bin(n, q)
for any q \in [0, 1] to sampling several times from Bin(n\prime , 1/2), where n\prime \leq n. This
reduction has been observed before [FCT15], but we will state it here to clearly
demonstrate our desired space and time bounds.

Lemma 5. For any constant c > 0 and q \in [0, 1], there is an algorithm that can
draw a sample X \sim Bin(n, q) in expected O(1) time in the unit cost RAM model.
Moreover, it can be sampled in time \~O(1) with probability 1  - n - c, and the space
required is O(log(n))-bits.

Proof. The reduction is as follows (for a more detailed proof of correctness, see
[FCT15]). We sample Bin(n, q) by determining how many of the n trials were suc-
cessful. This can be done by generating variables u1, . . . , un uniform on [0, 1] and
determining how many are less than q. We do this without generating all the vari-
ables ui explicitly as follows. First write q in binary as q = (0.q1q2, . . . )2. Set b\leftarrow 0,
j \leftarrow 1, nj \leftarrow n and sample bj \sim Bin(nj , 1/2). If qj = 1, then set b = b+ bj , as these
corresponding bj trials ui with the first bit set to 0 will all be successful trials given
that qj = 1. Then set nj+1 \leftarrow nj - bj and repeat with j \leftarrow j+1. Otherwise, if qj = 0,
then we set nj+1 \leftarrow nj  - (nj  - bj) = bj , since this represents the fact that (nj  - bj)
of the variables ui will be larger than q. With probability 1  - n - 100c, we reach the
point where nj = 0 within O(log(n)) iterations, and we return the value stored in b

at this point. By Proposition 2, each iteration requires \~O(1) time, and thus the entire
procedure is \~O(1). For space, note that we need only store q to its first O(log(n))
bits, since the procedure terminates with high probability within O(log(n)) iterations.
Then the entire procedure requires O(log(n)) bits, since each sample of Bin(nj , 1/2)
requires only O(log(n)) space by Proposition 2.
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PERFECT f SAMPLING IN A DATA STREAM 405

The Fast-Update procedure. We are now ready to describe the implementation
of our algorithm's update procedure. Specifically, our goal is to show that the update
time of our algorithm can be made \~O(1/\nu ), where \nu is the relative error in the sampler.
Now recall that for our perfect Lp sampler we require \nu = 1/poly(n), and thus the
Fast-Update procedure will not improve the update time of our perfect Lp sampler
(beyond the na\"{\i}ve poly(n)). However, if one allows the relative error \nu to be larger
(i.e., an approximate sampler), then a \~O(1/\nu ) update time is now much faster. Thus,
the Fast-Update procedure allows for a trade-off between the update time and the
relative error of the sampler. Note that all prior works had a dependency on the
relative error \nu in both the spacial complexity and the update time of the sampler.3

Recall that our algorithm utilizes just a single data structure on the stream \zeta :
the d \times 2 count-max matrix A (where d = \Theta (log(n))). Upon receiving an update
(i,\Delta ) to a coordinate fi for i \in [n], we proceed as follows. Our goal is to compute

the set \{ rnd\nu (1/t1/pi1
), rnd\nu (1/t

1/p
i2

), . . . , rnd\nu (1/t
1/p
inc - 1

)\} and update each row of A

accordingly in \~O(\nu  - 1) time, where \nu is the error parameter for Lp sampling which
will factor only into the update time of the algorithm and not the space complexity.
Na\"{\i}vely, this could be done by computing each value individually and then updating
each row of A accordingly, but this would require O(nc - 1) time. To avoid this and
obtain speed-ups when the relative error \nu is made larger than 1/poly(n), we exploit
the fact that the support size of rnd\nu (x) for 1/poly(n) \leq x \leq poly(n) is \~O(\nu  - 1), so

it will suffice to determine how many variables rnd\nu (1/t
1/p
ij

) are equal to each value

in the support of rnd\nu (x).
Our update procedure is then as follows. Let Ij = (1 + \nu )j for j =  - \Pi , - \Pi +

1, . . . ,\Pi  - 1,\Pi , where \Pi = O(log(n)\nu  - 1). We utilize the c.d.f. \psi (x) = 1  - e - x - p

of
the 1/pth power of the inverse exponential distribution t - 1/p (here t is exponentially
distributed). Then beginning with j =  - \Pi , - \Pi +1, . . . ,\Pi we compute the probability
qj = \psi (Ij+1) - \psi (Ij) that rnd\nu (1/t1/p) = Ij and then compute the number of values

Qj in \{ rnd\nu (1/t1/pi1
), rnd\nu (1/t

1/p
i2

), . . . , rnd\nu (1/t
1/p
inc - 1

)\} which are equal to Ij . With

probability 1  - n100c, we know that 1/poly(n) \leq ti \leq poly(n) for all i \in [N ], and
thus conditioned on this, we will have completely determined the values of the items

in \{ rnd\nu (1/t1/pi1
), rnd\nu (1/t

1/p
i2

), . . . , rnd\nu (1/t
1/p
inc - 1

)\} by looking at the number equal to

Ij for j =  - \Pi , . . . ,\Pi .
Now we know that there are Qj updates which we need to hash into A (along with

i.i.d. Gaussian scalings), each with the same value \Delta Ij . This is done by the procedure
Fast-Update-CS (Figure 4), which computes the number of updates bk,\theta that hashes
to each bucket Ak,\theta by drawing binomial random variables. Once this is done, we

know that the value of Ak,\theta should be updated by the value
\sum bk,\theta 

t=1 gt\Delta Ij , where each

gt \sim \scrN (0, 1). Na\"{\i}vely, computing the value
\sum bk,\theta 

t=1 gt\Delta Ij would involve generating bk,\theta 
random Gaussians. To avoid this, we utilize the 2-stability of Gaussians (Definition

2), which asserts that
\sum bk,\theta 

t=1 gt\Delta Ij \sim g
\sqrt{} 

bk,\theta \Delta Ij , where g \sim \scrN (0, 1). Thus we can
simply generate and store the Gaussian g associated with the item i \in [n], rounding
Ij , and bucket Ak,\theta , and on each update \Delta to fi we can update Ak,\theta by g

\sqrt{} 

bk,\theta \Delta Ij .
Finally, once the number of values in

\{ rnd\nu (1/t1/pi1
), rnd\nu (1/t

1/p
i2

), . . . , rnd\nu (1/t
1/p
inc - 1

)\} 

3Note that our algorithm has no dependency on \nu in the spacial complexity as long as 1/\nu =
O(poly(n)).
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406 RAJESH JAYARAM AND DAVID WOODRUFF

Fast-Update-CS (A,Q, I,\Delta , i)
Set Wk = Q for k = 1, . . . , d
For k = 1, . . . , d,

1. For \theta = 1, 2:

(a) Draw bk,\theta \sim Bin(Wk,
1

2 - \theta +1 ).
(b) Draw and store gk,\theta ,I,i \sim \scrN (0, 1). Reuse on every call to

Fast-Update-Cs with the same parameters (k, \theta , I, i).
(c) Set Ak,\theta \leftarrow Ak,\theta + gk,\theta ,I,i

\sqrt{} 

bk,\theta \Delta I.
(d) Wk \leftarrow Wk  - bk,\theta .

Fig. 4. Update A via updates to Q coordinates, each with a value of \Delta I.

Fast-Update (i,\Delta , A)
Set L = nc - 1, and fix K = \Theta (log(n)) with a large enough constant.
For j =  - \Pi , - \Pi + 1, . . . ,\Pi  - 1,\Pi :

1. Compute qj = \psi (Ij+1) - \psi (Ij).
2. Draw Qj \sim Bin(L, qj).
3. If L < K, hash the Qj items individually into each row A\ell using explicitly

stored uniform i.i.d. random variables h\ell : [nc] \rightarrow [2] and Gaussians g\ell (j)
for \ell \in [d].

4. Else: update count-max table A by via Fast-Update-CS(A,Qj , Ij ,\Delta , i).
5. L\leftarrow L - Qj .

Fig. 5. Algorithm to Update count-max A.

that are left to determine is less than K for some K = \Theta (log(n)), we simply generate
and hash each of the remaining variables individually. The generation process is the
same as before, except that for each of these at most K remaining items we associate
a fixed index ij for j \in [nc - 1] and store the relevant random variables h\ell (ij), g\ell (ij)
for \ell \in [d]. Since the value of j that is chosen for each of these coordinates does
not affect the behavior of the algorithm---in other words the index of the duplicate
that is among the K largest is irrelevant---we can simply choose these indices to be
i1, i2, . . . , iK \in [N ] so that the first item hashed individually via step 3 corresponds
to \zeta i1 , the second to \zeta i2 , and so on.

Note that the randomness used to process an update corresponding to a fixed
i \in [n] is stored so it can be reused to generate the same updates to A whenever
an update to i is made. Thus, each time an update +1 is made to a coordinate
i \in [n], each bucket of count-max is updated by the same value. When an update
of size \Delta comes, this update to the count-max buckets is scaled by \Delta . For each
i \in [n], let Ki denote the size of L when step 3 of Figure 5 was first executed while
processing an update to i. In other words, the coordinates \zeta i1 , . . . , \zeta iKi

were hashed
into each row \ell \in [d] of A using explicitly stored random variables h\ell (ij), g\ell (ij). Let

\scrK = \cup i\in [n]\cup Ki
j=1\{ ij\} . Then on the termination of the algorithm, to find the maximizer

of \zeta , the count-max algorithm checks for each i \in \scrK , whether i hashed to the largest
bucket (in absolute value) in a row at least a 4

5 fraction of the time. Count-max then
returns the first i that satisfies this, or FAIL. In other words, the count-max algorithm
decides to fail or output an index i based on computing the fraction of rows for which
i hashes into the largest bucket, except now it only computes these values for i \in \scrK 
instead of i \in [nc]; thus count-max can only return a value of i \in \scrK . We now argue
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that the distribution of our algorithm is not changed by using the update procedure
Fast-Update. This will involve showing that argmax\{ | \zeta i| \} \in \scrK if our algorithm was
to return a coordinate originally.

Lemma 6. Running the Lp sampler with the update procedure given by
Fast-Update results in the same distribution over the count-max table A as the orig-
inal algorithm. Moreover, conditioned on a fixed realization of A, the output of the
original algorithm will be the same as the output of the algorithm using Fast-Update.
For a given i \in [n], Fast-Update requires \~O(\nu  - 1)-random bits and runs in time
\~O(\nu  - 1).

Proof. To hash an update \Delta to a coordinate fi, the procedure Fast-Update com-

putes the number Qj of variables in the set \{ rnd\nu (1/t1/pi1
), rnd\nu (1/t

1/p
i2

),

2 . . . , rnd\nu (1/t
1/p
inc - 1

)\} which are equal to Ij for each j \in \{  - \Pi , . . . ,\Pi \} . Instead of

computing Qj by individually generating the variables and rounding them, we utilize
a binomial random variable to determine Qj , which results in the same distribution

over \{ rnd\nu (1/t1/pi1
), rnd\nu (1/t

1/p
i2

), 2 . . . , rnd\nu (1/t
1/p
inc - 1

)\} . As noted, with probability

1  - n100c none of the variables rnd\nu (1/t
1/p
ij

) will be equal to Ik for | k| > \Pi , which

follows from the fact that n - 101c < ti < O(log(n)) with probability 1  - n - 101c and
then union bounding over all nc exponential variables ti. So we can safely ignore this
low probability event.

Once computed, we can easily sample from the number of items of the Qj

that go into each bucket Ak,\theta , which is the value bk,\theta in Fast-Update-CS (Figure
4). By 2-stability of Gaussians (Definition 2), we can update each bucket Ak,\theta by
gk,\theta ,Ij ,i

\sqrt{} 

bk,\theta \Delta Ij , which is distributed precisely the same as if we had individually
generated each of the bk,\theta Gaussians and taken their inner product with the vector

\Delta Ij\vec{}1, where \vec{}1 is the all 1's vector. Storing the explicit values h\ell (ij) for the top K

largest values of rnd\nu (1/t
1/p
ij

) does not affect the distribution but only allows the al-
gorithm to determine the induces of the largest coordinates ij corresponding to each
i \in [n] at the termination of the algorithm. Thus the distribution of updates to A is
unchanged by the Fast-Update procedure.

We now show that the output of the algorithm run with this update procedure
is the same as it would have been had all the random variables been generated and
hashed individually. First observe that for \nu < 1/2, no value qj = \psi (Ij+1) - \psi (Ij) is
greater than 1/2. Thus at any iteration, if L > K, then L  - Bin(L, qj) > L/3 with
probability 1 - n - 100c by Chernoff bounds (using that K = \Omega (log(n))). Thus for the
first iteration at which L drops below K, we will have L > K/3. So for each i \in [n]
the top K/3 values \zeta ij will be hashed into each row A\ell using stored random variables
h\ell (ij), so Ki > K/3 = \Omega (log(n)) for all i \in [n]. In particular, Ki > 0 for all i \in [n].

Now the only difference between the output procedure of the original algorithm
and that of the efficient-update time algorithm is that in the latter we only compute
the values of \alpha ij =

\bigm| 

\bigm| \{ t \in [d] | | At,ht(ij)| = maxr\in \{ 1,2\} | At,r| \} 
\bigm| 

\bigm| for the ij \in [nc]

corresponding to the Ki largest values t
 - 1/p
ij

in the set \{ t - 1/p
i1

, . . . , t
 - 1/p
inc - 1

\} , whereas
in the former all values of \alpha ij are computed to find a potential maximizer. In other
words, count-max with Fast-Update only searches through the subset \scrK \subset [nc] for a
maxmizer instead of searching through all of [nc] (here \scrK is as defined earlier in this
section). Since count-max never outputs a index ij that is not a unique maximizer
with high probability, we know that the output of the original algorithm, if it does
not fail, must be ij such that j = argmaxj\prime \{ tij\prime \} , and therefore ij \in \scrK . Note the n - c
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408 RAJESH JAYARAM AND DAVID WOODRUFF

failure probability can be safely absorbed into the additive n - c error of the perfect
Lp sampler. Thus the new algorithm will also output ij . Since the new algorithm
with Fast-Update searches over the subset \scrK \subset [nc] for a maximier, if the original
algorithm fails, then certainly so will Fast-Update. Thus the output of the algorithm
using Fast-Update is distributed identically (up to n - c additive error) as the output
of the original algorithm, which completes the proof.

Runtime \& Random Bits. For the last claim, first note that it suffices to generate
all continuous random varaibles used up to (nmM) - c = 1/poly(n) precision, which
is 1/poly(n) additive error after conditioning on the event that all random variables
are all at most poly(n) (which occurs with probability 1  - n - c) and recalling that
the length of the stream m satisfies m < poly(n) for a suitably smaller poly(n)
then as in the additive error. More formally, we truncate the binary representation
of every continuous random variable (both the exponentials and Gaussians) after
O(log(n))-bits with a sufficiently large constant. This will result in at most an additive
1/poly(n) error for each bucket Ai,j of A, which can be absorbed by the adversarial
error \scrV i,j with | \scrV i,j | = O(\nu (| Ai,1| + | Ai,2| )) that we incur in each of these buckets
already in Lemma 3. Thus each random variable requires O(log(n)) bits to specify.
Similarly, a precision of at most (nmM) - c is needed in the computation of the qj 's
in Figure 5 by Lemma 5, since the routine to compute Bin(n, qj) will terminate with
probability 1  - n - 100c after querying at most O(log(n)) bits of qj . Now there are
at most 2\Pi = O(\nu  - 1 log(n)) iterations of the loop in Fast-Update. Within each,
our call to sample a binomial random variable is carried out in \~O(1) time with high
probability by Lemma 5 (and thus use at most \~O(1) random bits), and there are
\~O(1) entries in A to update (which upper bounds the running time and randomness
requirements of Fast-Update-CS).

Note that since the stream has length m = poly(n), and there are at most \~O(\nu )
calls made to sample binomial random variables in each, we can union bound over
each call to guarantee that each returns in \~O(1) time with probability 1  - n - 100c.
Since K = \~O(1), we must store an additional \~O(1) random bits to store the indi-
vidual random variables h\ell (ij) for ij \in \{ i1, . . . , iKi\} . Similarly, we must store \~O(\nu )
independent Gaussians for the procedure Fast-Update-CS, which also terminates in
\~O(1) time, which completes the proof.

5.2. Derandomizing the algorithm. We now show that our algorithm Lp

Sampler with Fast-Update can be derandomized without affecting the space or
time complexity. Recall that our main Lp sampling algorithm utilizes two main
sources of randomness. First, it uses randomness to generate the exponential ran-
dom scaling variables (t1, . . . , tnc) (the ``exponential randomness""), and second, it
uses randomness to generate the Gaussian coefficients gi(j) and fully random hash
functions hi(j) needed for count-max (the ``count-max randomness""). To deran-
domize both these sources of randomness, we will need to use a combination of
Nisan's PRG [Nis92] and the PRG of Goplan, Kane, and Meka [GKM18]. Specif-
ically, we will derandomize the exponential randomness with the PRG of Goplan,
Kane, and Meka, and we will derandomize the count-max randomness with Nisan's
PRG.

We begin by introducing Nisan's PRG, which is a deterministic map G : \{ 0, 1\} \ell \rightarrow 
\{ 0, 1\} T , where T \gg \ell (for instance, one can think of T = poly(n) and \ell = O(log2(n))).
Let \sigma : \{ 0, 1\} T \rightarrow \{ 0, 1\} be a tester (a function computable under some specified
restrictions). For the case of Nisan's PRG, \sigma must be a tester which reads its random
T -bit input in a stream, left to right, and outputs either 0 or 1 at the end. Nisan's
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PRG can be used to fool any such tester, which means

\bigm| 

\bigm| Pr[\sigma (UT ) = 1] - Pr[\sigma (G(U\ell )) = 1]
\bigm| 

\bigm| <
1

T c
,

where Ut indicates t uniformly random bits for any t, and c is a sufficiently large
constant. Here the probability is taken over the choice of the random bits UT and U\ell .
In other words, the probability that \sigma outputs 1 is nearly the same when it is given
random input as opposed to input from Nisan's generator. Note that since \sigma (UT )
is a 0, 1 random variable, the left-hand side of the above equation can be rewritten
as | \BbbE [\sigma (UT )]  - \BbbE [\sigma (G(U\ell ))]| . Nisan's theorem states if \sigma can be computed by an
algorithm with at most poly(T ) states and which uses a working memory tape of size
at most O(log T ), then a seed length of \ell = O(log2 T ) suffices for the above result
[Nis92]. More generally, if \sigma can be computed by an algorithm with poly(T ) states
and which uses a working memory of tape of size S = \Omega (log T ), then a seed length of
\ell = O(S log T ) suffices for the above result. Thus Nisan's PRG fools space bounded
testers \sigma that read their randomness in a stream.

Why Nisan's PRG alone is insufficient. We remark that it is possible to deran-
domize our entire algorithm with Nisan's PRG, albeit with suboptimal seed length.
Since our algorithm is a linear sketch and is therefore independent of the ordering
of the stream, one can assume for the sake of the derandomization that the stream
is ordered so that all updates to a single coordinate occur consecutively (this is a
fairly standard argument, e.g., [Ind06]). Reading the exponential and count-max ran-
domness in a stream, one can then fully construct the state of the algorithm's data
structure at the end of the stream, by adding the contribution of each coordinate to
the whole data structure one by one. The space required to do this is the size of the
data structure, which is O(log2 n) bits. Then to derandomize with Nisan's PRG, we
would require a seed length of O(log3 n)-bits, which does not match our desired space
complexity. Thus to improve the seed length to O(log2 n(log log n)2), we will need the
approach followed here.

We remark that the main difficulty in applying Nisan's PRG alone is that, for a
given i, to test if i is returned by count-max, one must check for each pair of buckets
in count-max whether i hashes to the larger bucket. Since each bucket depends on
the same exponential randomness, one would either need to make multiple passes over
the exponential randomness (which is not allowed by Nisan's), once for each bucket,
or one would need to store all the buckets simultaneously. On the other hand, if the
exponential randomness was fixed, and hard-coded into the tester \sigma , then one could
construct the buckets one at a time, reading only the count-max randomness in a
stream, and thus only using O(log n) bits of space. We make use of this latter fact,
by generating the exponential randomness with a separate PRG from [GKM18], to
obtain our main result.

5.2.1. Road-map for the derandomization. We now briefly lay out the
structure of this section. First, in section 5.2.2, we introduce the PRG of Goplan,
Kane, and Meka [GKM18], along with the notion of a half-space tester, which will be
crucial for us. We then demonstrate in Lemma 7 how the PRG of [GKM18] can be
used to fool such half-space testers with a small seed length. Recall the PRG is just
a function G : \{ 0, 1\} \ell \rightarrow \{  - M, . . . ,M\} n for some M = poly(n). However, in order
to use this PRG for our streaming algorithm, we must show not only that the seed
length is small, but also that given a seed x, one can compute each coordinate of G(x)
in small space and small runtime, which we do in Proposition 3. We then use this fact
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410 RAJESH JAYARAM AND DAVID WOODRUFF

that G can fool half-space testers to prove a set of general results about derandomizing
streaming algorithms, which is captured in Theorem 5. As a corollary, we obtain a
novel and improved derandomization of the count-sketch variant of [MP14]. Finally,
in section 5.2.4, we present our main theorem, Theorem 7, which uses a combination
of the PRG of Goplan, Kane, and Meka as well as Nisan's PRG to derandomize our
streaming algorithm.

5.2.2. Half space fooling PRG’s. Our derandomization crucially uses the
PRG of Goplan, Kane, and Meka [GKM18], which fools a certain class of Fourier trans-
forms. Utilizing the results of [GKM18], we will design a PRG that can fool arbitrary
functions of \lambda = O(log(n)) halfspaces, using a seed of length O(log2(n)(log log(n))2).
We remark that in [GKM18] it is shown how to obtain such a PRG for a func-
tion of a single half-space. Using extensions of the techniques in that paper, we
demonstrate that the same PRG with a smaller precision \epsilon can be used to fool
functions of more half-spaces. We now introduce the main result of [GKM18]. Let
\BbbC 1 = \{ c \in \BbbC | | c| \leq 1\} .

Definition 4 (Definition 1 [GKM18]). An (m,n)-Fourier shape f : [m]n \rightarrow \BbbC 1

is a function of the form f(x1, . . . , xn) =
\prod n

j=1 fj(xj), where each fj : [m]\rightarrow \BbbC 1.

Theorem 4 (Theorem 1.1 [GKM18]). There is a PRG G : \{ 0, 1\} \ell \rightarrow [m]n that
fools all (m,n)-Fourier shapes f with error \epsilon using a seed of length

\ell = O(log(mn/\epsilon )(log log(mn/\epsilon ))2),

meaning
\bigm| 

\bigm| 

\bigm| 
\BbbE 

\Bigl[ 

f(x)
\Bigr] 

 - \BbbE 

\Bigl[ 

f(G(y))
\Bigr] \bigm| 

\bigm| 

\bigm| 
\leq \epsilon ,

where x is uniformly chosen from [m]n and y from \{ 0, 1\} \ell .
For any a1, . . . , a\lambda \in \BbbZ 

n and \theta 1, . . . , \theta \lambda \in \BbbZ , let Hi : \BbbR 
n \rightarrow \{ 0, 1\} be the function

given by Hi(X1, . . . , Xn) = 1[ai1X1 + ai2X2 + \cdot \cdot \cdot + ainXn > \theta i], p where 1 is the
indicator function. We now define the notion of a \lambda -halfspace tester and what it
means to fool one.

Definition 5 (\lambda -halfspace tester). A \lambda -halfspace tester is any function \sigma H :
\BbbR 

n \rightarrow \{ 0, 1\} which, on input X = (X1, . . . , Xn), outputs \sigma 
\prime 
H(H1(X), . . . , H\lambda (X)) \in 

\{ 0, 1\} , where \sigma \prime 
H is any fixed function \sigma \prime 

H : \{ 0, 1\} \lambda \rightarrow \{ 0, 1\} . In other words, the
Boolean valued function \sigma H(X) only depends on the values (H1(X), . . . , H\lambda (X)). A
\lambda -halfspace tester is said to be M bounded if all the half-space coefficents aij and \theta i are
integers of magnitude at most M , and each Xi is drawn from a discrete distrubtion
\scrD with support contained in \{  - M, . . . ,M\} \subset \BbbZ .

Definition 6 (fooling a \lambda -halfspace tester). A PRG G : \{ 0, 1\} \ell \rightarrow \BbbR 
n is said to

\epsilon -fools the class of \lambda -halfspace testers under a distribution \scrD over \BbbR 
n if for every set

of \lambda halfspaces H = (H1, . . . , H\lambda ) and every \lambda -halfspace tester \sigma H : \BbbR n \rightarrow \{ 0, 1\} , we
have

\bigm| 

\bigm| \BbbE X\sim \scrD 
\bigl[ 

\sigma H(X) = 1
\bigr] 

 - \BbbE y\sim \{ 0,1\} \ell 

\bigl[ 

\sigma H(G(y)) = 1
\bigr] \bigm| 

\bigm| < \epsilon .

Here \ell is the seed length of G.

We will consider only product distributions \scrD . In other words, we assume that
each coordiante Xi is drawn i.i.d. from a fixed distribution \scrD over \{  - M, . . . ,M\} \subset \BbbZ .
We consider PRG's G : \{ 0, 1\} \ell \rightarrow \{  - M, . . . ,M\} n which take in a random seed of
length \ell and output a X \prime \in \{  - M, . . . ,M\} n such that any M -bounded \lambda -halfspace
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tester will be unable to distinguish X \prime from X \sim \scrD n (where \scrD n is the product
distribution of \scrD , such that each Xi \sim \scrD independently). The following lemma
demonstrates that the PRG of [GKM18] can be used to fool M -bounded \lambda -halfspace
testers. The authors would like to thank Raghu Meka for providing us with a proof
of Lemma 7.

Lemma 7. Suppose Xi \sim \scrD is a distribution on \{  - M, . . . ,M\} that can be sam-
pled from with log(M \prime ) = O(log(M)) random bits. Then, for any \epsilon > 0 and con-
stant c \geq 1, there is a PRG G : \{ 0, 1\} \ell \rightarrow \{  - M, . . . ,M\} n which \epsilon (nM) - c\lambda -fools the
class of all M -bounded \lambda -halfspace testers on input X \sim \scrD n with a seed of length
\ell = O(\lambda log(nM/\epsilon )(log log(nM/\epsilon ))2) (assuming \lambda \leq n). Moreover, if G(y) = X \prime \in 
\{  - M, . . . ,M\} n is the output of G on random seed y \in \{ 0, 1\} \ell , then each coordinate
X \prime 

i can be computed in O(\ell )-space and in \~O(1) time, where \~O hides poly(log(nM))
factors.

Proof. Let X = (X1, . . . , Xn) be uniformly chosen from [M \prime ]n for some M \prime =
poly(M), and let Q : [M \prime ] \rightarrow \{  - M, . . . ,M\} be such that Q(Xi) \sim \scrD n for each
i \in [n]. Let a1, . . . , a\lambda \in \BbbZ 

n, \theta 1, . . . , \theta \lambda \in \BbbZ be log(M)-bit integers, where Hi(x) =
1[\langle ai, x\rangle > \theta i]. Let Yi = \langle Q(X), ai\rangle  - \theta i. Note that Yi \in [ - 2M2n, 2M2n]. So
fix any \alpha i \in [ - 2M2n, 2M2n] for each i \in [\lambda ], and let \alpha = (\alpha 1, . . . , \alpha \lambda ). Let
h\alpha (x) = 1(Y1 = \alpha 1) \cdot 1(Y2 = \alpha 2) \cdot \cdot \cdot 1(Y\lambda = \alpha \lambda ), where 1(\cdot ) is the indicator function.

Now define f(x) =
\sum \lambda 

j=1(2M
2n)j - 1\langle ai, x\rangle for any x \in \BbbZ 

n. Note that f(Q(X)) \in 
\{  - (Mn)O(\lambda ), . . . , (Mn)O(\lambda )\} . We define the Kolmogorov distance between two inte-
ger valued random variables Z,Z \prime by dK(Z,Z \prime ) = maxk\in \BbbZ (| Pr[Z \leq k] - Pr[Z \prime \leq k]| ).
Let X \prime \in [M \prime ]n be generated via the (M \prime , n)-Fourier shape PRG of [GKM18]
with error \epsilon \prime (Theorem 1.1 [GKM18]). Observe \BbbE [h\alpha (Q(X))] = Pr[f(Q(X)) =
\sum \lambda 

j=1(Mn)j - 1\alpha j ], so

| \BbbE [h\alpha (Q(X))] - \BbbE [h\alpha (Q(X \prime )]| \leq dK(f(Q(X)), f(Q(X \prime ))).

Now by Lemma 9.2 of [GKM18],

dK(f(Q(X)), f(Q(X \prime ))) = O
\bigl( 

\lambda log(Mn)dFT

\bigl( 

f(Q(X)), f(Q(X \prime ))
\bigr) \bigr) 

,

where for integer valued Z,Z \prime , we define

dFT (Z,Z
\prime ) = max

\beta \in [0,1]
| \BbbE [exp(2\pi i\beta Z)] - \BbbE [exp(2\pi i\beta Z \prime )]| .

Now exp(2\pi i\beta f(Q(X))) =
\prod n

i=1((
\sum \lambda 

j=1(2M
2n)j - 1aji )Q(Xi)), which is a (M \prime , n)-

Fourier shape as in Definition 4. Thus by Theorem 4 (Theorem 1.1 of [GKM18]),
we have dFT (f(Q(X)), f(Q(X \prime ))) \leq \epsilon \prime . Thus

| \BbbE [h\alpha (Q(X))] - \BbbE [h\alpha (Q(X \prime )]| = O(\lambda log(Mn)\epsilon \prime ).

Now let \sigma H(x) = \sigma \prime 
H(H1(x), . . . , H\lambda (x)) be anyM -bounded \lambda -halfspace tester on x \sim 

\scrD n. Since the inputs to the halfspaces Hi of \sigma 
\prime 
H are all integers in \{  - 2M2n, 2M2n\} ,

let A \subset \{  - 2M2n, 2M2n\} be the set of \alpha \in A such that Y = (Y1, . . . , Y\lambda ) = \alpha 
implies that \sigma H(Q(X)) = 1, where Q(X) \sim \scrD n as above. Recall here that Yi =
\langle Q(X), ai\rangle  - \theta i. Then we can think of a \sigma H(X) = \sigma \prime \prime 

H(Y1, . . . , Y\lambda ) for some func-
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412 RAJESH JAYARAM AND DAVID WOODRUFF

tion \sigma \prime \prime 
H : \{  - 2M2n, . . . , 2M2n\} \lambda \rightarrow \{ 0, 1\} , and in this case we have A = \{ \alpha \in 

\{  - 2M2n, 2M2n\} | \sigma \prime \prime 
H(\alpha ) = 1\} . Then

| \BbbE [\sigma H(Q(X))] - \BbbE [\sigma H(Q(X \prime ))]| \leq 
\sum 

\alpha \in A

| \BbbE [h\alpha (Q(X))] - \BbbE [h\alpha (Q(X \prime )]| 

\leq 
\sum 

\alpha \in A

O(\lambda log(Mn)\epsilon \prime ).

Now note that | A| = (nM)O(\lambda ), so setting \epsilon \prime = \epsilon (nM) - O(\lambda ) with a suitably large con-
stant, we obtain | \BbbE [\sigma H(Q(X))] - \BbbE [\sigma H(Q(X \prime ))]| \leq \epsilon (nM) - c\lambda as needed. By Theorem
4, the seed required is \ell = O(\lambda log(nM/\epsilon )(log log(nM/\epsilon ))2) as needed. The space and
time required to compute each coordinate follows from Proposition 3 below.

Proposition 3. In the setting of Lemma 7, if G(y) = X \prime \in \{  - M, . . . ,M\} n is
the output of G on random seed y \in \{ 0, 1\} \ell , then each coordinate X \prime 

i can be computed
in O(\ell )-space and in \~O(1) time, where \~O hides poly(log(nM)) factors.

Proof. In order to analyze the space complexity and runtime needed to compute
a coordinate X \prime 

i, we must describe the PRG of Theorem 4. The Goplan--Kane--Meka
PRG has three main components, which themselves use other PRGs such as Nisan's
PRG as subroutines. Recall that the PRG generates a pseudouniform element from
X \sim [M ]n that fools a class of Fourier shapes f : [M ]n \rightarrow \BbbC on truly uniform input
in [M ]n. Note that because of the definition of a Fourier shape, if we wish to sample
from a distribution X \sim \scrD over \{  - M, . . . ,M\} n that is not uniform, but such that Xi

can be sampled with log(M \prime )-bits, we can first fool Fourier shapes f \prime : [M \prime ]n \rightarrow \BbbC ,
and then use a function Q : [M \prime ] \rightarrow \{  - M, . . . ,M\} which samples Xi \sim \scrD given
log(M \prime ) uniformly random bits. We then fool Fourier shapes F =

\prod n
j=1 f

\prime 
j(x) =

\prod n
j=1 fj(Q(y)), where x, y are uniform, and thus Q(y) \sim \scrD . Thus it will suffice to

fool (M \prime , n)-Fourier shapes on uniform distributions. For simplicity, for the most part
we will omit the parameter \epsilon in this discussion.

The three components of the PRG appear in sections 5, 6, and 7 of [GKM18],
respectively. In this proof, when we write section x we are referring to the corre-
sponding section of [GKM18]. They consider two main cases: one where the function
f has high variance (for some notion of variance), and one where it has low variance.
The PRGs use two main pseudorandom primitives, \delta -biased and k-wise independent
hash function families. Formally, a family \scrH = \{ h : [n]\rightarrow [M ]\} is said to be \delta -biased
if for all r \leq n distinct indices i1, . . . , ir \in [n] and j1, . . . , jr \in [M ] we have

Prh\sim \scrH [h(i1) = j1 \wedge \cdot \cdot \cdot \wedge h(ir) = jr] =
1

Mr
\pm \delta .

The function is said to be k-wise independent if it holds with \delta = 0 for all r \leq k.
It is standard that k-wise independent families can be generated by taking a poly-
nomial of degree k over a suitably large finite field (requiring space O(k log(Mn))).
Furthermore, a value h(i) from a \delta -biased family can be generated by taking products
of two O(log(n/\delta ))-bit integers over a suitable finite field [Kop13] (requiring space
O(log(n/\delta ))). So in both cases, computing a value h(i) can be done in space and time
that is linear in the space required to store the hash functions (or O(log(n/\delta ))-bit
integers). Thus, any nested sequence of such hash functions used to compute a given
coordinate X \prime 

i can be carried out in space linear in the size required to store all the
hash functions.
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Now the first PRG (section 5 [GKM18]) handles the high variance case. The PRG
first subsamples the n coordinates at log(n) levels using a pairwise hash function (note
that a 2-wise permutation is used in [GKM18], which reduces to computation of a
2-wise hash function). In each level Sj of subsampling, it uses O(1)-wise independent
hash functions to generate the coordinates Xi \in Sj . So if we want to compute a value
Xi, we can carry out one hash function computation h(i) to determine j such that
Xi \in Sj and then carry out another hash function computation hj(i) = Xi. Instead
of using log(n) independent hash functions hj , each of size O(log(nM)), for each of
the buckets Sj , they derandomize this with the PRG of Nisan and Zuckerman [NZ96]
to use a single seed of length O(log n). Now the PRG of Nisan and Zuckerman can
be evaluated online, in the sense that it reads its random bits in a stream and writes
its pseudorandom output on a one-way tape, and runs in space linear in the seed
required to store the generator itself (see Definition 4 of [NZ96]). Such generators are
composed to yield the final PRG of Theorem 2 [NZ96], but by Lemma 4 of the paper,
such online generators are composable. Thus the entire generator of [NZ96] is online,
and so any substring of the pseudorandom output can be computed in space linear
in the seed of the generator by a single pass over the random input. Moreover, by
Theorem 1 of [NZ96] in the setting of [GKM18], such a substring can be computed in
\~O(1) time, since it is only generating \~O(1) random bits to begin with.

On top of this, the PRG of section 5 [GKM18] first splits the coordinates [n]
via a limited independence hash function into poly(log(1/\epsilon )) buckets and applies the
algorithm described above on each. To do this second layer of bucketing and not
need fresh randomness for each bucket, they use Nisan's PRG [Nis92] with a seed of
length log(n) log log(n). Now any bit of Nisan's PRG can be computed by several
nested hash function computations, carried out in space linear in the seed required to
store the PRG. Thus any substring of Nisan's can be computed in space linear in the
seed and time \~O(1). Thus to compute X \prime 

i, we first determine which bucket it hashes
to, which involves computing random bits from Nisan's PRG. Then we determine a
second partitioning, which is done via a 2-wise hash fucntion, and finally we compute
the value of X \prime 

i via an O(1)-wise hash function, where the randomness for this hash
function is stored in a substring output by the PRG of [NZ96]. Altogether, we con-
clude that the PRG of section 5 [GKM18] is such that value X \prime 

i can be computed in
space linear in the seed length and \~O(1) time.

Next, in section 6 of [GKM18], another PRG is introduced which reduces the
problem to the case of M \leq poly(n). Assuming a PRG G1 is given which fools
(M,n)-Fourier shapes, they design a PRG G2 using G1 which fools (M2, n)-Fourier
shapes. Applying this O(log log(M)) times reduces to the case of m \leq n4. The
PRG is as follows. Let G1, . . . , Gt be the iteratively composed generators, where
t = O(log log(M)). To compute the value of (Gi)j \in [M ], where (Gi)j is the jth coor-

dinate of Gi \in [M ]n, the algorithm first implicitly generates a matrix Z \in [M ]
\surd 
M\times M .

An entry Zp,q is generated as follows. First one applies a k-wise hash function h(q)
(for some k) and uses the O(logM)-bit value of h(q) as a seed for a second 2-wise
indepedent hash function h\prime h(q). Then Zp,q = h\prime h(q)(p). Thus within a column q of
Z, the entries are 2-wise independent, and separate columns of Z are k-wise indepen-
dent. This requires O(k logM)-space to store, and the nested hash functions can be
computed in O(k logM)-space. Thus computing Zi,j is done in \~O(1) time and space
linear in the seed length. Then we set (Gi)j = Z(Gi - 1)j ,j for each j \in [n]. Thus (Gi)j
only depends on (Gi - 1)j , and the random seeds stored for two hash functions to eval-
uate entries of Z. So altogether, the final output coordinate (Gt)j can be computed
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in space linear in the seed length required to store all required hash functions, and in
time \~O(1). Note importantly that the recursion is linear, in the sense that computing
(Gi)j involves only one query to compute (Gi)j\prime for some j\prime .

Next, in section 7 of [GKM18], another PRG is introduced for the low-variance
case, which reduces the size of n to

\surd 
n, but blows up m polynomially in the process.

Formally, it shows given a PRG G\prime 
1 that fools (poly(n),

\surd 
n) Fourier shapes, one can

design a PRG G\prime 
2 that fools O(M,n)-Fourier shapes with M < n4 (here the poly(n)

can be much larger than n4). To do so, the PRG first hashes the n coordinates into\surd 
n buckets k-wise independently and then in each bucket uses k-wise independence

to generate the value of the coordinate. A priori, this requires
\surd 
n independent seeds

for the hash function in each of the buckets. To remove this requirement, it uses G\prime 
1

to generate the
\surd 
n seeds required from a smaller seed. Thus to compute a coordinate

i of G\prime 
2, simply evaluate a k-wise independent hash function on i to determine which

bucket j \in [
\surd 
n] the item i is hashed into. Then evaluate G\prime 

1(j) to obtain the seed
required for the k-wise hash function hj , and the final result is given by hj(i). Note
that this procedure only requires one query to the prior generator G\prime 

1. The space
required to do so is linear in the space required to store the hash functions, and the
space required to evaluate a coordinate of the output of G\prime 

1, which will be linear in
the size used to store G\prime 

1 by induction.
Finally, the overall PRG composes the PRG from sections 6 and 7 to fool larger

n,M in the case of low variance. Suppose we are given a PRG G0 which fools
(M \prime \prime ,

\surd 
n\prime )-Fourier shapes for some M \prime \prime < (n\prime )2. We show how to construct a PRG

G1 which fools (M \prime , n\prime )-Fourier shapes for any M \prime \leq (n\prime )4. Let G6+7 be the PRG
obtained by first applying the PRG from section 6 on G0 as an initial point, which
gives a PRG that fools (poly(n\prime ),

\surd 
n\prime )-Fourier shapes, and then applying the PRG

from section 7 on top, which now fools (M \prime , n\prime )-Fourier shapes (with low variance).
Let G5 be the generator from section 5 which fools (M \prime , n\prime )-Fourier shapes with high
variance. The final algorithm for fooling the class of all (M \prime , n\prime )-Fourier shapes given
G0 computes a generator G1 such that the ith coordinate is (G1)i = (G6+7)i\oplus (G5)i,
where \oplus is addition mod M \prime . This allows one to simultaneously fool high and low
variance Fourier shapes of the desired M \prime , n\prime . If M > (n\prime )4, one can apply the PRG
for section 6 one last time on top of G1 to fool arbitrary M . Thus if for any i, the
ith coordinate of G6+7 and G5 can be composed in \~O(1) time and space linear in the
size required to store the random seed, then so can Gi. Thus going from G0 to G1

takes a generator that fools (M \prime \prime ,
\surd 
n\prime ) to (M \prime , n\prime )-Fourier shapes, and similarly we

can compose this to design a G2 that fools (M \prime , (n\prime )2)-Fourier shapes. Composing
this t = O(log log n)-times, we obtain Gt which fools O(M,n) Fourier shapes for any
M,n. As a base case (to define the PRG G0), the PRG of [NZ96] is used, which we
have already discussed can be evaluated on-line in space linear in the seed required
to store it and time polynomial in the length of the seed.

Now we observe an important property of this recursion. At every step of the
recursion, one is tasked with computing the jth coordinate output by some PRG for
some j, and the result will depend only on a query for the j\prime th coordinate of another
PRG for some j\prime (as well as some additional values which are computed using the
portion of the random seed dedicated to this step in the recursion). Thus at every
step of the recursion, only one query is made for a coordinate to a PRG at a lower
level of the recursion. Thus the recursion is linear, in the sense that the computation
path has only L nodes instead of 2L (which would occur if two queries to coordinate
j\prime , j\prime \prime were made to a PRG in a lower level). Since at each level of recursion, comput-
ing G6+7 itself uses O(log log(nM)) levels of recursion, and also has the property that
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each level queries the lower level at only one point, it follows that the total depth of
the recursion is O((log log(nM))2). At each point, to store the information required
for this recursion on the stack requires only O(log(nM))-bits of space to store the
relevant information identifying the instance of the PRG in the recursion, along with
its associated portion of the random seed. Thus the total space required to compute a
coordinate via these O(log log(nM))2) recursions is O(log(nM)(log log nM)2), which
is linear in the seed length. Moreover, the total runtime is \~O(1), since each step of
the recursion requires at most \~O(1) time.

We use the prior technique to derandomize a wide class of linear sketches A \cdot f
such that the entries of A are independent and can be sampled using O(log(n))-bit,
and such that the behavior of the algorithm only depends on the sketch Af . It is
well known that there are strong connections between turnstile streaming algorithms
and linear sketches, insofar as practically all turnstile streaming algorithms are in
fact linear sketches. The equivalence of turnstile algorithms and linear sketches has
even been formalized [LNW14], with some restrictions. Our results show that all such
sketches that use independent, efficiently sampled entries in their sketching matrix A
can be derandomized with our techniques. As an application, we derandomize the
count-sketch variant of Minton and Price [MP14], a problem which to the best of the
authors' knowledge was hitherto open.

Lemma 8. Let ALG be any streaming algorithm which, on stream vector f \in 
\{  - M, . . . ,M\} n for some M = poly(n), stores only a linear sketch A \cdot f such that
the entries of the random matrix A \in \BbbR 

k\times n are i.i.d., and can be sampled using
O(log(n))-bits. Fix any constant c \geq 1. Then ALG can be implemented using a ran-
dom matrix A\prime using O(k log(n)(log log n)2) bits of space, such that for every vector
y \in \BbbR 

k with entrywise bit-complexity of O(log(n)),

\bigm| 

\bigm| 

\bigm| 
Pr
\Bigl[ 

Af = y
\Bigr] 

 - Pr
\Bigl[ 

A\prime f = y
\Bigr] \bigm| 

\bigm| 

\bigm| 
< n - ck.

Proof. We can first scale all entries of the algorithm by the bit complexity so
that each entry in A is a O(log(n))-bit integer. Then by Lemma 7, we can store the
randomness needed to compute each entry of A\prime with O(k log(n)(log log n)2)-bits of
space, such that A\prime n - ck-fools the class of all O(k)-halfspace testers, in particular
the one which checks, for each coordinate i \in [k], whether both (A\prime f)i < y + 1 and
(A\prime f)i > yi  - 1, and accepts only if both hold for all i \in [k]. By Proposition 3, the
entries of A\prime can be computed in space linear in the size of the random seed required
to store A\prime . Since we have scaled all values to be integers, n - ck fooling this tester is
equivalent to the theorem statement. Note that the test (A\prime f)i < y + 1 can be made
into a half-space test as follows. Let Xi \in \BbbR 

nk be the vector such that Xi
j+(i - 1)n = fj

for all j \in [n] and Xi
j = 0 otherwise. Let vec(A) \in \BbbR 

nk be the vectorization of A.

Then (Af)i = \langle vec(A), Xi\rangle , and all the entries of vec(A) are i.i.d., which allows us
to make the stated constraints into the desired half-space constraints.

Observe that the above lemma derandomized the linear sketch Af by writing each
coordinate (Af)i as a linear combination of the random entries of vec(A). Note, how-
ever, that the above proof would hold if we added the values of any O(k) additional
linear combinations \langle Xj , vec(A) to the lemma, where each Xj \in \{  - M, . . . ,M\} kn.
This will be useful, since the behavior of some algorithms, for instance, count-sketch,
may depend not only on the sketch Af but also on certain values or linear combina-
tions of values within the sketch A. This is formalized in the following corollary.
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Corollary 3. Let the entries of A \in \BbbR 
k\times n be drawn i.i.d. from a distribution

which can be sampled using O(log n)-bits, and let vec(A) \in \BbbR 
nk be the vectorization

of A. Let X \in \BbbR 
t\times nk be any fixed matrix with entries contained within \{  - M, . . . ,M\} ,

where M = poly(n). Then there is a distribution over random matrices A\prime \in \BbbR 
k\times n

which can be generated and stored using O(t log(n)(log log n)2) bits of space, such that
for every vector y \in \BbbR 

t with entrywise bit-complexity of O(log(n)),
\bigm| 

\bigm| 

\bigm| 
Pr
\Bigl[ 

X \cdot vec(A) = y
\Bigr] 

 - Pr
\Bigl[ 

X \cdot vec(A\prime ) = y
\Bigr] \bigm| 

\bigm| 

\bigm| 
< n - ct.

Proof. The proof is nearly identical to Lemma 8, where we first scale entries to
be O(log(n))-bit integers, and then apply two half-space tests to each coordinate of
X \cdot vec(A\prime ).

Theorem 5. Let ALG be any streaming algorithm which, on stream vector f \in 
\{  - M, . . . ,M\} n and fixed matrix X \in \BbbR 

t\times nk with entries contained within \{  - M, . . . ,M\} ,
for some M = poly(n), outputs a value that only depends on the sketches A \cdot f and
X \cdot vec(A). Assume that the entries of the random matrix A \in \BbbR 

k\times n are i.i.d. and
can be sampled using O(log(n))-bits. Let \sigma : \BbbR k \times \BbbR 

t \rightarrow \{ 0, 1\} be any tester which
measures the success of ALG, namely, \sigma (Af,X \cdot vec(A)) = 1 whenever ALG succeeds.
Fix any constant c \geq 1. Then ALG can be implemented using a random matrix A\prime 

using a random seed of length O((k + t) log(n)(log log n)2), such that
\bigm| 

\bigm| 

\bigm| 
Pr
\Bigl[ 

\sigma (Af,X \cdot vec(A)) = 1
\Bigr] 

 - Pr
\Bigl[ 

\sigma (A\prime f,X \cdot vec(A\prime )) = 1
\Bigr] \bigm| 

\bigm| 

\bigm| 
< n - c(k+t)

and such that each entry of A\prime can be computed in time \~O(1) and using working space
linear in the seed length.

Proof. As in Lemma 8, we first scale all entries of the algorithm by the bit com-
plexity so that each entry in A is a O(log(n))-bit integer. Then there is aM \prime = poly(n)
such that each entry of A \cdot f and X \cdot vec(A) will be a integer of magnitude at most
M \prime . First note that the sketch A \cdot f and X \cdot vec(A) can be written as one linear sketch
X0 \cdot vec(A), where X0 \in \BbbR 

k+t\times kn. Then \sigma can be written as a function \sigma : \BbbR k+t \rightarrow 
\{ 0, 1\} evaluated on \sigma (X0 \cdot vec(A)). Let S = \{ y \in \{  - M \prime , . . . ,M \prime \} k+t | \sigma (y) = 1\} .
Then by Corollary 3, we have

| Pr[X0 \cdot vec(A) = y] - Pr[X0 \cdot vec(A\prime ) = y]| < n - c(k+t)

for all y \in S. Taking c sufficiently large, and noting | S| = n - O(k+t), we have Pr[\sigma (X0 \cdot 
vec(A)) = 1] =

\sum 

y\in S Pr[X0 \cdot vec(A) = y] =
\sum 

y\in S(Pr[X0 \cdot vec(A\prime ) = y]\pm n - c(k+t)) =

Pr[\sigma (X0\cdot vec(A\prime )) = 1]+n - O(k+t) as desired. The final claim follows from Proposition
3.

5.2.3. Derandomizing the count-sketch of Minton and Price. We now
show how this general derandomization procedure can be used to derandomize the
count-sketch variant of Minton and Price [MP14]. Our discussion will utilize the nota-
tion for count-sketch as defined in section 2.1. Minton and Price's analysis shows im-
proved concentration bounds for count-sketch when the random signs gi(k) \in \{ 1, - 1\} 
are fully independent. They demonstrate that in this setting, if y \in \BbbR 

n is the count-
sketch estimate of a stream vector f , where the count-sketch table A has k columns
and d rows, then for any t \leq d and index i \in [n] we have

Pr
\Bigl[ 

(fi  - yi)2 >
t

d

\| ftail(k))\| 22
k

\Bigr] 

\leq 2e - \Omega (t).
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Notice that by setting t = d = \Theta (log 1/\delta ), one recovers the standard count-sketch
result of Theorem 1. However, in order to apply this algorithm in o(n) space, one
must first derandomize it from using fully independent random signs, which are not
required for the original count-sketch of [CCFC02a]. To the best of the authors'
knowledge, the best known derandomization procedure was a black-box application
of Nisan's PRG which results in O(\epsilon  - 2 log3(n))-bits of space when k = O(1/\epsilon 2) and
d = O(log n). Due to this log n blow-up in the space, the guarantees of this count-
sketch variant, if derandomized with Nisan's PRG, are strictly worse than using the
original count sketch of [CCFC02a]. Our derandomization, in contrast, demonstrates
a strong improvement on this, obtaining the same bounds with an (log log n)2 instead
of an log n factor blow-up. For the purpose of the theorem, we replace the notation
1/\epsilon 2 with k (the number of columns of count-sketch up to a constant).

Theorem 6. The count-sketch variant of [MP14] can be implemented so that if
A \in \BbbR 

d\times k is a count-sketch table, then for any t \leq d and index i \in [n] we have

Pr
\Bigl[ 

(fi  - yi)2 >
t

d

\| ftail(k))\| 22
k

\Bigr] 

\leq 2e - \Omega (t)

and such that the total space required is O(kd log(n)(log log n)2).

Proof. We first remark that the following modifcation to the count-sketch proce-
dure does not affect the analysis of [MP14]. Let A \in \BbbR 

d\times k be a d \times k count-sketch
matrix. The modification is as follows: instead of each variable hi(\ell ) being uni-
formly distributed in \{ 1, 2, . . . , k\} , we replace them with variables hi,j,\ell \in \{ 0, 1\} for
(i, j, \ell ) \in [d] \times [k] \times [n], such that hi,j,\ell are all i.i.d. and equal to 1 with probability
1/k. We also let gi,h,\ell \in \{ 1, - 1\} be i.i.d. Rademacher variables (1 with probability
1/2). Then Ai,j =

\sum n
\ell =1 f\ell gi,j,\ell hi,j,\ell , and the estimate y\ell of f\ell for \ell \in [n] is given by

y\ell = median\{ gi,j,\ell Ai,j | hi,j,\ell = 1\} .

Thus the element f\ell can be hashed into multiple buckets in the same row of A,
or even be hashed into none of the buckets in a given row. By Chernoff bounds,
| \{ gi,j,\ell Ai,j | hi,j,\ell = 1\} | = \Theta (d) with high probability for all \ell \in [n]. Observe that the
marginal distribution of each bucket is the same as the count-sketch used in [MP14],
and moreover seperate buckets are fully independent. The key property used in the
analysis of [MP14] is that the final estimator is a median over estimators whose error
is independent and symmetric, and therefore the bounds stated in the theorem still
hold after this modification [Pri18].

Given this, the entire sketch stored by the streaming algorithm is B \cdot f , where

Bj =

\left\{ 

 

 

 

 

1 with prob 1
2k ,

 - 1 with prob 1
2k ,

0 otherwise.

Thus the entries of B are i.i.d. and can be sampled with O(log(k)) \leq O(log(n)) bits,
and vec(A) = B \cdot f , where vec(A) is the vectorization of the count-sketch table A.
Here B \in \BbbR 

dk\times n.

Now note that for a fixed i, to test the statement that (fi  - yi)2 > t
d

\| ftail(k))\| 2
2

k ,
one needs to know both the value of the sketch Bf , in addition to the value of the
ith column of B, since the estimate can be written as yi = medianj\in [kd],Bj,i \not =0\{ Bj,i \cdot 
(Bf)j\} . Note that the ith column of B (which has kd entries) can simply be written
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as a sketch of the form X \cdot vec(B), where X \in \BbbR 
kd\times dkn is a fixed matrix such

that X \cdot vec(B) = Bi, so we also need to store X \cdot vec(B). Thus by Theorem 5,
the algorithm can be derandomized to use O(kd log(n)(log log n)2) bits of space, and

such that for any t \leq d and any i \in [n] we have Pr[(fi  - yi)
2 > t

d

\| ftail(k))\| 2
2

k ] \leq 
2e - \Omega (t) \pm n - \Omega (dk).

5.2.4. Derandomizing the \bfitL \bfitp sampling algorithm. We now introduce the
notation which will be used in our derandomization. Our Lp sampler uses two sources
of randomness which we must construct PRGs for. The first, re, is the randomness
needed to construct the exponential random variables ti, and the second, rc, is the
randomness needed for the fully random hash functions and signs used in count-max.
Note that re, rc both require poly(n) bits by Lemma 6. From here on, we will fix any
index i \in [n]. Our Lp sampler can then be thought of as a tester \scrA (re, rc) \in \{ 0, 1\} ,
which tests on inputs re, rc, whether the algorithm will output i \in [n]. Let G1(x) be
Nisan's PRG, and let G2(y) be the half-space PRG. For two values b, c \in \BbbR , we write
a \sim \epsilon b to denote | a - b| < \epsilon . Our goal is to show that

Prre,rc
\bigl[ 

\scrA (re, rc)
\bigr] 

\sim n - c Prx,y
\bigl[ 

\scrA (G2(y), G1(x))
\bigr] 

,

where x, y are seeds of length at most O(log2 n(log log n)2), and c is an arbitrarily
large constant.

Theorem 7. A single instance of the algorithm Lp Sampler using Fast-Update

as its update procedure can be derandomized using a random seed of length O(log2(n)
(log log n)2), and thus can be implemented in this space. Moreover, this does not affect
the time complexity as stated in Lemma 6.

Proof. First note that by Lemma 6, we require \~O(\nu  - 1) random bits for each
i \in [n], and thus we require a total of \~O(n\nu  - 1) = poly(n) random bits to be generated.
Since Nisan's PRG requires the tester to read its random input in a stream, we can
use a standard reordering trick of the elements of the stream, so that all the updates
to a given coordinate i \in [n] occur at the same time (see [Ind06]). This does not
affect the output distribution of our algorithm, since linear sketches do not depend
on the ordering of the stream. Now let c\prime be the constant such that the algorithm
Lp Sampler duplicates coordinates nc\prime times. In other words, the count-max is run

on the stream vector F \in \BbbR 
nc\prime 

, and let N = nc\prime . Now, as above, we fix any index
i \in [N ] and attempt to fool the tester which checks if, on a given random string,
our algorithm would output i. For any fixed randomness re for the exponentials, let
\scrA re(rc) be the tester which tests if our Lp sampler would output the index i, where
now the bits re are hard-coded into the tester, and the random bits rc are taken as
input and read in a stream. We first claim that this tester can be implemented in
O(log(n))-space.

To see this, note that \scrA re(rc) must simply count the number of rows of count-max
such that item i is hashed into the largest bucket (in absolute value) of that row, and
output 1 if this number is at least 4d

5 , where d is the number of rows in count-max.
To do this, \scrA re(rc) can break rc into d blocks of randomness, where the jth block is
used only for the jth row of count-max. It can then fully construct the values of the
counters in a row, one row at a time, reading the bits of rc in a stream. To build a
bucket, it looks at the first element of the stream, uses rc to find the bucket it hashes
to and the Gaussian scaling it gets, then adds this value to that bucket, and then
continues with the next element. Note that since re is hardcoded into the tester, we
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can assume the entire stream vector \zeta is hardcoded into the tester. Once it constructs
a row of count-max, it checks if i is in the largest bucket by absolute value, and
increments a O(log(d))-bit counter if so. Note that it can determine which bucket i
hashes to in this row while reading off the block of randomness corresponding to that
row. Then, it throws out the values of this row and the index of the bucket i hashed
to in this row and builds the next row. Since each row has O(1) buckets, \scrA re(rc) only
uses O(log(n))-bits of space at a time. Then using G1(x) as Nisan's generator with a
random seed x of length O(log2(n))-bits, we have Pr[\scrA re(rc)] \sim n - c0 Pr[\scrA re(G1(x))],
where the constant c0 is chosen to be sufficiently larger than the constant c1 in the
n - c1 additive error of our perfect sampler, as well as the constant c\prime . Moreover,

Pr
\Bigl[ 

\scrA (re, rc)
\Bigr] 

=
\sum 

re

Pr
\Bigl[ 

\scrA re(rc)
\Bigr] 

Pr
\Bigl[ 

re

\Bigr] 

=
\sum 

re

\biggl( 

Pr
\Bigl[ 

\scrA re(G1(x))
\Bigr] 

\pm n - c0

\biggr) 

Pr
\Bigl[ 

re

\Bigr] 

=
\sum 

re

Pr
\Bigl[ 

\scrA re(G1(x))
\Bigr] 

Pr
\Bigl[ 

re

\Bigr] 

\pm 
\sum 

re

n - c0Pr
\Bigl[ 

re

\Bigr] 

\sim n - c0 Pr
\Bigl[ 

\scrA (re, G1(x))
\Bigr] 

.

Now fix any Nisan seed x and consider the tester \scrA G1(x)(re), which on fixed
count-max randomness G1(x) tests if the algorithm will output i \in [n] on the random
input re for the exponential variables. We first observe that it seems unlikely that
\scrA G1(x)(re) can be implemented in log(n) space while reading its random bits re in
a stream. This is because each row of count-max depends on the same random bits
in re used to construct the exponentials ti, and thus it seems \scrA G1(x)(re) would need

to store all log2(n) bits of count-max at once. However, we will now demonstrate
that \scrA G1(x)(re) is in fact a poly(n) bounded O(d)-halfspace tester (as defined earlier
in this section) where d is the number of rows of count-max, and therefore can be
derandomized with the PRG of [GKM18]. By the Runtime \& Random Bits analysis
in Lemma 6, it suffices to take all random variables in the algorithm to be O(log(n))-
bit rational numbers. Scaling by a sufficiently large poly(n), we can assume that

1/t
1/p
j is a discrete distribution supported on \{  - T, . . . , T\} , where T \leq poly(n) for a

sufficiently large poly(n). We can then remove all values in the support which occur
with probability less than poly(n), which only adds an n - c0 additive error to our
sampler. After this, the distribution can be sampled from with poly(T ) = poly(n)
random bits, which is as needed for the setting of Lemma 7. Note that we can also
apply this scaling to the Gaussians in count-max, so that they too are integers of
magnitude at most poly(n).

Given this, the distribution of the variables 1/t
1/p
j satisfy the conditions of Lemma

7, in particular being poly(n)-bounded; thus we must now show that \scrA G1(x)(re) is
indeed a O(d)-halfspace tester, with integer valued half-spaces bounded by poly(n).
First consider a given row of count-max, and let the buckets be B1, B2. WLOG i
hashes into B1, and we must check if | B1| > | B2| . Let gj be the random count-max
signs (as specified by G1(x)), and let S1, S2 be the set of indices which hash to B1 and
Bt, respectively. We can run the following six half-space tests to test if | B1| > | B2| :

(2)
\sum 

j\in S1

gjfj

\biggl( 

1

t
1/p
j

\biggr) 

> 0,
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(3)
\sum 

j\in S2

gjfj

\biggl( 

1

t
1/p
j

\biggr) 

> 0,

(4) a1
\sum 

j\in S1

gjfj

\biggl( 

1

t
1/p
j

\biggr) 

+ a2
\sum 

j\in S2

gjfj

\biggl( 

1

t
1/p
j

\biggr) 

> 0,

where a1, a2 range over all values in \{ 1, - 1\} 2. The tester can decide whether | B1| >
| B2| by letting a1 be the truth value (where  - 1 is taken as fail) of the first test 2 and
a2 the truth value of 3. It then lets b2 \in \{ 0, 1\} be the truth value of 4 on the resulting
a1, a2 values, and it can correctly declare | B1| > | B2| iff b2 = 1. Thus for each pair of
buckets, the tester uses six halfspace testers to determine if | B1| > | B2| , and so can
determine if i is hashed to the max bucket with O(1) halfspace tests. So \scrA G1(x)(re)
can test if the algorithm will output i by testing if i is hashed to the max bucket in
a 4/5 fraction of the d rows of count-max, using O(d) = O(log(n)) halfspace tests.
Note that by the scaling performed in the prior paragraphs, all coefficents of these
half-spaces are integers of magnitude at most poly(n). So by Lemma 7, the PRG
G2(y) of [GKM18] fools \scrA G1(x)(re) with a seed y of O(log2(n)(log log n)2)-bits. So
Pr[\scrA G1(x)(re)] \sim n - c0 Pr[\scrA G1(x)(G2(y))], and so by the same averaging argument as
used for the Nisan PRG above, we have Pr[\scrA (re, G1(x))] \sim n - c0 Pr[\scrA (G2(y), G1(x))],
and so Pr[\scrA (re, rc)] \sim n - c0 Pr[\scrA (G2(y), G1(x))] as desired. Now fixing any i \in [n],
let \scrA \prime (re, rc) be the event that the overall algorithm outputs the index i. In other
words, \scrA \prime 

i(re, rc) = 1 if \scrA ij (re, rc) = 1 for some j \in [nc\prime  - 1], where \scrA ij (re, rc) = 1 is
the event that count-max declares that ij is the maximum in Algorithm Lp Sampler.
Thus, the probability that the algorithm outputs a nonduplicated coordinate i \in [n]
is given by

Pr
\Bigl[ 

\scrA \prime 
i(re, rc)

\Bigr] 

=

nc\prime 

\sum 

j=1

Pr
\Bigl[ 

\scrA ij (re, rc)
\Bigr] 

=
nc\prime 

\sum 

j=1

Pr
\Bigl[ 

\scrA ij (G2(y), G1(x))
\Bigr] 

\pm n - c0

= Pr
\Bigl[ 

\scrA \prime 
i(G2(y), G1(x))

\Bigr] 

\pm n - c1 ,

(5)

where in the last line we set c0 > c\prime + c1, where recall c1 is the desired additive
error in our main sampler. In conclusion, replacing the count-max randomness with
Nisan's PRG and the exponential random variable randomness with the half-space
PRG G2(y), we can fool the algorithm which tests the output of our algorithm with
a total seed length of O(log2(n)(log log n)2).

To show that the stated update time of Lemma 6 is not affected, we first remark
that Nisan's PRG simply involves performing O(log(n)) nested hash computations on
a string of length O(log(n)) in order to obtain any arbitrary substring of O(log(n))
bits. Thus the runtime of such a procedure is \~O(1) to obtain the randomness needed
in each update of a coordinate i \in [nc]. By Lemma 7, the PRG of [GKM18] requires
\~O(1) time to sample the O(log(n))-bit string needed to generate an exponential, and
moreover can be computed with working space linear in the size of the random seed.
(Note that this is also true of Nisan's PRG, which just involves O(log(n))-nested hash
function computations.) Thus the update time is only blown up by a \~O(1) factor,
which completes the proof.
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Corollary 4. For p = 2, the entire algorithm can be derandomized to run using
O(log3(n) log(1/\delta ))-bits of space with failure probability of \delta . For p < 2, the algorithm
can be derandomized to run using O(log3(n))-bits of space with \delta = 1/poly(n).

Proof. We can simply derandomize a single instance of our sampling algorithm
using Nisan's PRG as in Theorem 7, except that we derandomize all the randomness in
the algorithm at once. Since such an instance requires O(log2(n))-bits of space, using
Nisan's blows up the complexity to O(log3(n)). (The tester can simply simulate our
entire algorithm in O(log2(n))-bits of space, reading the randomness in a stream by
the reordering trick of [Ind06].) Since the randomness for separate parallel instances
of the main sampling algorithm is disjoint and independent, this same O(log2(n))-bit
tester can test the entire output of the algorithm by testing each parallel instance
one by one, and terminating on the first instance that returns an index i \in [n].
Thus the same O(log3(n))-bit random seed can be used to randomize all parallel
instances of our algorithm. For p < 2, we can run O(log(n)) parallel instances to
get 1/poly(n) failure probability in O(log3(n))-bits of space as stated. For p = 2,
we can run O(log(n) log(1/\delta )) parallel repetitions needed to get \delta failure probability
using the same random string, for a total space of O(log3(n) log(1/\delta ) + log3(n)) =
O(log3(n) log(1/\delta )) as stated. As noted in the proof of Theorem 7, computing a
substring of O(log(n))-bits from Nisan's PRG can be done in \~O(1) time and using
space linear in the seed length, which completes the proof.

5.3. Query time. We will now show the modifications to our algorithm neces-
sary to obtain \~O(1) query time. Recall that our algorithm maintains a count-max
matrix A. Our algorithm then searches over all indices i \in \scrK to check if i is hashed
into the maximum bucket in a row of A at least a 4/5 fraction of the time. Since
| \scrK | = \~O(n), running this procedure requires \~O(n) time to produce an output on a
given query. To avoid this and obtain \~O(1) running time, we will utilize the heavy
hitters algorithm of [LNNT16], which has a \~O(1) update and query time, and which
does not increase the complexity of our algorithm.

Theorem 8 ([LNNT16]). For any precision parameter 0 < \epsilon < 1/2, given a
general turnstile stream x \in \BbbR 

n there is an algorithm, ExpanderSketch, which with
probability 1 - n - c for any constant c returns a set S \subset [n] of size S = O(\epsilon  - 2) which
contains all indices i such that | xi| \geq \epsilon \| x\| 2. The update time is O(log(n)), the query
time is \~O(\epsilon  - 2), and the space required is O(\epsilon  - 2 log2(n))-bits.

Using ExpanderSketch to speed up query time. The modifications to our main
algorithm Lp Sampler with Fast-Update are as follows. We run our main algorithm
as before, maintaining the same count-max data structures A. Upon initialization of
our algorithm, we also initialize an instance ExSk of ExpanderSketch as in Theorem
8, with the precision parameter \epsilon = 1/100.

Now recall in our Fast-Update procedure, for each i \in [n] we hash the top Ki =
O(log(n)) largest duplicates \zeta ij corresponding to fi individually and store the random
variables h\ell (ij) that determine which buckets in A they hash to. While processing
updates to our algorithm at this point, we make the modification of additionally
sending these top Ki items to ExSk to be sketched. More formally, we run ExSk on
the stream \zeta \scrK , where \zeta \scrK is the vector \zeta projected onto the coordinates of \scrK . Since
Ki = \~O(1), this requires making \~O(1) calls to update ExSk on different coordinates,
which only increases our update time by an \~O(1) additive term.

On termination, we obtain the set S containing all items \zeta i such that i \in \scrK 
and \zeta i \geq (1/100)\| \zeta \scrK \| 2. Instead of searching through all coordinates of \scrK to find a
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422 RAJESH JAYARAM AND DAVID WOODRUFF

maximizer, we simply search through the coordinates in S, which takes \~O(| S| ) = \~O(1)
time. We now argue that the output of our algorithm does not change with these new
modifications. We refer collectively to the new algorithm with these modifications as
Lp Sampler with Fast-Update and ExSk, and the algorithm of section 5.1 as simply
Lp Sampler with Fast-Update.

Lemma 9. For any constant c > 0, with probability 1  - n - 100c the algorithm Lp

Sampler with Fast-Update and ExSk as described in this section returns the same
output (an index i \in [n] or FAIL) as Lp Sampler using Fast-Update but without
ExSk. The space and update time are not increased by using ExSk, and the query time
is now \~O(1).

Proof. We condition on the event that S contains all items i such that i \in \scrK and
| \zeta i| \geq 1/100\| \zeta \scrK \| 2, which occurs with probability 1 - n - 100c by Theorem 8. Since Lp

Sampler already uses at least O(log2(n)) bits of space, the additional O(log2(n)) bits
of overhead required to run an instance ExSk of ExpanderSketch with sensitivity pa-
rameter \epsilon = 1/100 does not increase the space complexity. Furthermore, as mentioned
above, the update time is blown up by a factor of \~O(1), since we make Ki = \~O(1) calls
to update ExSk, which has an update time of \~O(1) by Theorem 8. Furthermore, our
algorithm does not require any more random bits, as it only uses ExpanderSketch as
a subroutine, and thus no further derandomization is required. Thus the complexity
guarantees of Lemma 6 are unchanged. For the query time, we note that obtaining S
requires \~O(1) time (again by Theorem 8), and querying each of the | S| = O(1) items
in our count-max A requires \~O(1) time. To complete the proof, we now consider the
output of our algorithm. Since we are searching through a strict subset S \subset [nc], it
suffices to show that if the original algorithm outputted an ij \in [nc], then so will we.
As argued in Lemma 6, such a coordinate must be contained in \scrK . By Corollary 1,
we must have | \zeta ij | > 1

100\| \zeta \| 2 \geq 1
100\| \zeta \scrK \| 2 with probability 1  - n - 100c (scaling c by

100 here), and thus ij \in S, which completes the proof.

6. Estimating the frequency of the sampled coordinate. In this section,
we will show how, conditioned on our algorithm Lp Sampler returning a sampled in-

dex i \in [n], we can obtain an estimate \~fi = (1\pm \epsilon )fi with probability 1 - \delta 2. We now
describe how to do this. Our algorithm, in addition to the count-max matrix A used
by Lp Sampler, stores a count-sketch matrix A\prime with d\prime = O(log(1/\delta 2)) rows and
O(\gamma ) = O(min

\bigl\{ 

\epsilon  - 2, \epsilon  - p log
\bigl( 

1
\delta 2

\bigr) 

\} 
\bigr\} 

) columns. Recall in our Fast-Update procedure,
for each i \in [n] we hash the top Ki = O(log(n)) largest duplicates \zeta ij correspond-
ing to fi individually into A, and store the random variables h\ell (ij) that determine
which buckets in A they hash to. Thus if count-max outputs an ij \in [nc] we know

that ij \in \scrK , where \scrK = \cup i\in [n] \cup Ki
j=1 \{ ij\} as in section 5 (since our algorithm only

searches through \scrK to find a maximizer). Thus it suffices to run the count-sketch
instance A\prime on the stream \zeta \scrK , where \zeta \scrK is the vector \zeta with the coordinates not in
\scrK set to 0. Since Ki = \~O(1), we perform at most \~O(1) updates to count-sketch at
every step in the stream. This requires making \~O(1) calls to update count-sketch
on each stream update, which only increases our update time by an \~O(1) additive
term.

Now if Lp Sampler returns ij \in [nc] (corresponding to some duplicate ij of
i), then we must have ij \in \scrK . Thus we can query A\prime for a value \~yij such that

| \~yij  - \zeta ij | <
\sqrt{} 

1/\gamma \| \zeta tail(\gamma )\| 2 with probability 1  - \delta 2 by Theorem 1. Furthermore,
since ij \in \scrK , we can compute the value Ik such that Ik = (rnd\nu (1/tij )) by simulating
the Fast-Update procedure on an update to i. We will argue that the estimate
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\~f = \~yij (rnd\nu (1/t
1/p
ij

)) - 1 satisfies \~f = (1 \pm \epsilon )fi. Putting this together with Theorem
2, we will obtain the following result.

Theorem 9. There is an algorithm \scrA which, on a general turnstile stream f , out-
puts i \in [n] with probability | fi| p/\| f\| pp(1\pm \nu )+O(n - c) and outputs FAIL with probabil-

ity at most \delta 1. Conditioned on outputting some i \in [n], \scrA will then output \~f such that
\~f = (1 \pm \epsilon )fi with probability 1  - \delta 2. The space required is O((log2(n)(log log n)2 +
\beta log(n) log(1/\delta 2)) log(1/\delta 1)) for p \in (0, 2) and O((log3(n) + \epsilon  - 2 log2(n) log(1/\delta 2))
log(1/\delta 1)) for p = 2, where \beta = min\{ \epsilon  - 2, \epsilon  - p log( 1

\delta 2
)\} \} . The update time is \~O(\nu  - 1)

and the query time is \~O(1).

Proof. We first consider the complexity. The first term in each of the upper
bounds follows from Theorem 2, as well as the log(1/\delta 1) term which comes from
repeating the entire algorithm log(1/\delta 1) times for p < 2 and log(n) log(1/\delta 1) times for
p = 2. The second term in the space bound results from storing the d\prime \times \gamma count-sketch
table A\prime , which is O(\gamma log(n) log(1/\delta 2)) as stated. Moreover, the update time for the
new data structure is at most \~O(1), since the only additional work we do on each
update is to hash Ki = O(log(n)) items into d\prime = O(log(n)) rows of A\prime . Furthermore,
the query time just requires computing a median of O(log(n)) entries of A\prime . Each of
these actions is \~O(1) time in the unit cost RAM model, so the additional update and
query time is \~O(1). The remaining \~O(\nu ) update time follows from Lemma 6.

For correctness, note that if Lp Sampler does not fail and instead outputs ij \in 
[nc], we know that | \zeta ij | > 1/100\| \zeta \| 2. Furthermore, we have | \~yij - \zeta ij | <

\sqrt{} 

1/\gamma \| \zeta tail(\gamma )\| 2
\leq 
\sqrt{} 

1/\gamma \| \zeta \| 2 with probability 1 - \delta 2, so setting \gamma = \Theta (1/\epsilon 2) sufficiently large, it follows

that \~yij = (1 \pm O(\epsilon ))\zeta ij . Then \~yij (rnd\nu (1/t
1/p
ij

)) - 1 = (1 \pm \epsilon )fi follows immediately

from the fact that fi = \zeta ij (rnd\nu (1/t
1/p
ij

)) - 1 (and a rescaling of \epsilon by a constant). This

shows that O(\epsilon  - 2) bits is always an upper bound for the value of \gamma = \Theta (\beta ) needed
for p \in (0, 2].

To show the other upper bound in the definition of \beta (for cases when p < 2), first
define T\gamma \subset [nc] as the set of nc  - \gamma smallest coordinates (in absolute value) of z. In
other words zT\gamma 

= ztail(\gamma ), where for any set S \subseteq [nc] zS denotes z projected onto the

coordinates of S. Note that if S is any set of size nc  - s and v \in \BbbR 
nc

any vector, we
have \| vtail(s)\| 2 \leq \| vS\| 2. Then by Proposition 1, using the fact that \zeta i = (1\pm O(\nu ))zi
for all i \in [nc], we have \| \zeta tail(\gamma )\| 2 \leq \| \zeta T\gamma 

\| 2 \leq 2\| ztail(\gamma )\| 2 = O(\| F\| p(\gamma ) - 1/p+1/2)
for p < 2 with probability 1  - O(e - \gamma ) > 1  - \delta 2, where now we are setting \gamma =
\Theta (max\{ \epsilon  - p, log(1/\delta 2)\} ). Condition on this now. Then we obtain error | \~yij  - \zeta ij | <
\sqrt{} 

1/\gamma \| \zeta tail(\gamma )\| 2 = O(\| F\| p\gamma  - 1/p) = O(\epsilon (log(1/\delta 2))
 - 1/p\| F\| p) from our second count-

sketch A\prime . Now zD(1) = \| F\| p/E1/p
1 , which is at least \Omega (\| F\| p/(log(1/\delta 2))1/p) with

probability greater than 1  - \delta 2 using the pdf of an exponential. Conditioned on
this, the error from our second count-sketch A\prime gives, in fact, a (1 \pm O(\epsilon )) relative
error approximation of \zeta ij , which is the desired result. Note that we conditioned

only on our count-sketch giving the desired | \~yij  - \zeta ij | <
\sqrt{} 

1/\gamma \| \zeta tail(\gamma )\| 2 error, on

\| ztail(\gamma )\| 2 = O(\| F\| p(\gamma ) - 1/p+1/2), and on E1 = O(log(1/\delta 2)), each of which holds
with probability at least 1 - O(\delta 2), so the Theorem follows after a union bound.

7. Lower bounds. In this section, we obtain a lower bound for providing rel-
ative error approximations of the frequency of a sampled item. Our lower bound is
derived from one-way two-party communication complexity. Let \scrX ,\scrY be input do-
mains to a two party communication complexity problem. Alice is given x \in \scrX and
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424 RAJESH JAYARAM AND DAVID WOODRUFF

Bob is given y \in \scrY . Their goal is to solve some relational problem Q \subseteq \scrX \times \scrY \times \scrO ,
where for each (x, y) \in \scrX \times \scrY the set Qxy = \{ z| (x, y, z) \in Q\} represents the set of
correct solutions to the communication problem.

In the one-way communication protocol \scrP , Alice must send a single message M
to Bob (depending on her input X), from which Bob must output an answer in o \in \scrO 
depending on his input Y and the message M . The maximum possible length (in
bits) of M over all inputs (x, y) \in \scrX \times \scrY is the communication cost of the protocol \scrP .
Communication protocols are allowed to be randomized, where each player has private
access to an unlimited supply of random bits. The protocol \scrP is said to solve the
communication problem Q if Bob's output o belongs to Qxy with failure probability
at most \delta < 1/2. The one-way communication complexity of Q, denoted R\rightarrow 

\delta (Q),
is the minimum communication cost of a protocol which solves the protocol Q with
failure probability \delta .

Now a similar measure of complexity is the distributional complexity D\rightarrow 
\mu ,\delta (Q),

where \mu is a distribution over \scrX \times \scrY , which denotes the minimum communication
cost of the best deterministic protocol of Q with failure probability at most \delta when
the inputs (x, y) \sim \mu . By Yao's lemma, we have that R\rightarrow 

\delta (Q) = max\mu D
\rightarrow 
\mu ,\delta (Q). We

first review some basic facts about entropy and mutual information (see Chapter
2 of [CT12] for proofs of these facts). Recall that for a discrete random variable
X supported on a finite domain \Omega , the entropy H(X) of X is given by H(X) =
 - \sum a\in \Omega Pr[X = a] log(Pr[X = a]).

Proposition 4.
1. Entropy span: If X takes on at most s values, then 0 \leq H(X) \leq log s.
2. I(X : Y ) := H(X) - H(X| Y ) \geq 0, that is, H(X| Y ) \leq H(X).
3. Chain rule: I(X1, X2, . . . , Xn : Y | Z) =\sum n

i=1 I(Xi : Y | X1, . . . , Xi - 1, Z).
4. Subadditivity: H(X,Y | Z) \leq H(X| Z)+H(Y | Z) and equality holds if and only

if X and Y are independent conditioned on Z.
5. Fano's inequality: Let M be a predictor of X. In other words, there exists a

function g such that Pr[g(M) = X] > 1 - \delta , where \delta < 1/2. Let \scrU denote the
support of X, where \scrU \geq 2. Then H(X| M) \leq \delta log(| \scrU |  - 1) + h2(\delta ), where
h2(\delta ) := \delta log(\delta  - 1) + (1 - \delta ) log( 1

1 - \delta ) is the binary entropy function.

We now define the information cost of a protocol \scrP .
Definition 7. Let \mu be a distribution of the input domain \scrX \times \scrY to a commu-

nication problem Q. Suppose the inputs (X,Y ) are chosen according to \mu , and let M
be Alice's message to Bob, interpreted as a random variable which is a function of X
and Alice's private coins. Then the information cost of a protocol \scrP for Q is defined
as I(X :M).

The one-way information complexity of Q with respect to \mu and \delta , denoted by
IC\rightarrow 

\mu ,\delta (Q), is the minimum information cost of a one-way protocol under \mu that solves
Q with failure probability at most \delta .

Note that by Proposition 4, we have

I(X :M) = H(M) - H(M | X) \leq H(M) \leq | M | ,

where | M | is the length of the message M in bits. This results in the following
proposition.

Proposition 5. For every probability distribution \mu on inputs,

R\rightarrow 
\delta (Q) \geq IC\rightarrow 

\mu ,\delta (Q).
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7.1. Augmented indexing on large domains. We now introduce the follow-
ing communication problem, known as augmented index problem on large domains.
Our communication problem is derived from the communication problem (of the same
name) introduced in [JW13], but we modify the guarantee of the output required so
that constant probability of error is allowed. The problem is as follows.

Definition 8. Let \scrU be an alphabet with | \scrU | = k \geq 2. Alice is given a string
x \in \scrU d, and Bob is given i \in [d] along with the values xi+1, xi+2, . . . , xd. Alice must
send a message M to Bob, and then Bob must output the value xi \in \scrU with probability
3/4. We refer to this problem as the augmented index problem on large domains, and
denote it by indd

\scrU .

Note that in [JW13], a correct protocol is only required to determine whether
xi = a for some fixed input a \in \scrU given only to Bob, but such a protocol must
succeed with probability 1  - \delta . For the purposes of both problems, it is taken that
| \scrU | = \Theta (1/\delta ). In this scenario, we note that the guarantee of our communication
problem is strictly weaker, since if one had a protocol that determined whether xi = a
for a given a \in \scrU with probability 1  - \delta , one could run it on all a \in \scrU and union
bound over all | \scrU | trails, from which the exact value of xi could be determined with
probability 3/4, thereby solving the form of the communication problem we have
described. We show, nevertheless, that the same lower bound on the communication
cost of our protocol holds as the lower bound in [JW13].

Let \scrX be the set of all x \in \scrU d, let \scrY = [d], and define \mu to be the uniform
distribution over \scrX \times \scrY .

Lemma 10. Suppose | \scrU | \geq c for some sufficiently large constant c. We have
IC\rightarrow 

\mu ,3/4(ind
d
\scrU ) \geq d log(| \scrU | )/2.

Proof. Fix any protocol \scrP for indd
\scrU which fails with probability at most 1/4. Let

X = (X1, X2, . . . , Xd) denote Alice's input as chosen via \mu , and let M be Alice's
message to Bob given X. By Proposition 4

I(X :M) =

d
\sum 

i=1

I(Xi :M | X1, . . . , Xi - 1)

=
d
\sum 

i=1

\Bigl( 

H(Xi| X1, . . . , Xi - 1) - H(Xi| M,X1, . . . , Xi - 1)
\Bigr) 

.

First note that sinceXi is independent ofXj for all j \not = i, we haveH(Xi| X1, . . . , Xi - 1)
= H(Xi) = log(| \scrU | ). Now since the protocol \scrP is correct on indd

\scrU , then the variables
M,X1, . . . , Xi - 1 must be a predictor for Xi with failure probability 1/4 (since Bob
outputs Xi with probability 3/4 given onlyM,X1, . . . , Xi - 1 and his private, indepen-
dent randomness). So by Fano's inequality (Proposition 4), we have

H(Xi| M,X1, . . . , Xi - 1) \leq 
1

4
log(| \scrU |  - 1) + h2

\biggl( 

1

4

\biggr) 

\leq 1

2
log(| \scrU | ),

which holds when | \scrU | is sufficiently large. Putting this together, we obtain

I(X :M) \geq d log(| \scrU | )
2

.
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426 RAJESH JAYARAM AND DAVID WOODRUFF

Corollary 5. We have R\rightarrow 
3/4(ind

d
\scrU ) = \Omega (d log(| \scrU | )).

We now use this lower bound on indd
\scrU to show that, even when the index output

is from a distribution with constant additive error from the true Lp distribution,
returning an estimate with probability 1 - \delta 2 still requires \Omega (\epsilon  - p log(n) log(1/\delta 2)) bits
of space.

Theorem 10. Fix any p > 0 constant bounded away from 0, and let \epsilon < 1/3 with
\epsilon  - p = o(n). Then any Lp sampling algorithm that outputs FAIL with probability at
most 1/100, and otherwise returns an item \ell \in [n] such that Pr[\ell = l] = | fl| p/\| f\| pp \pm 
1/50 for all l \in [n], along with an estimate \~f\ell such that \~f\ell = (1\pm \epsilon )f\ell with probability
1 - \delta 2, requires \Omega (\epsilon  - p log(n) log(1/\delta 2)) bits of space.

Proof. We reduce via indd
\scrU . Suppose we have a streaming algorithm \scrA which

satisfies all the properties stated in the theorem. Set | \scrU | = 1/(10\delta 2), and let X \in \scrU d

be Alice's input, where d = rs, where r = 1
10p+1\epsilon p and s = log(n). Alice conceptually

dividesX into s blocksX1, . . . , Xs, each containing r itemsXi = Xi
1, X

i
2, . . . , X

i
r \in \scrU .

Fix some labeling \scrU = \{ \sigma 1, . . . , \sigma k\} , and let \pi (Xi
j) \in [k] be such that Xi

j = \sigma \pi (Xi
j)
.

Then each Xi
j can be thought of naturally as a binary vector in \BbbR 

rsk with support 1,

where (Xi
j)t = 1 when t = (i - 1)r + (j  - 1)k + \pi (Xi

j), and (Xi
j)t = 0 otherwise. Set

n\prime = rsk < n for \epsilon  - p = o(n). Using this interpretation of Xi
j \in \BbbR 

rsk, we define the

vector f \in \BbbR 
rsk by

f =

s
\sum 

i=1

r
\sum 

j=1

BiXi
j ,

where B = 101/p. Alice can construct a stream with the frequency vector f by
making the necessary insertions, and then send the state of the streaming algorithm
\scrA to Bob. Now Bob has some index i\ast \in [d] = [rs], and his goal is to output the
value of Xi\prime 

j\prime = Xi\ast such that i\ast = (i\prime  - 1)r+ j\prime . Since Bob knows Xj
i for all (i, j) with

i > i\prime , he can delete off the corresponding values of BiXi
j from the stream, leaving

the vector f with the value

f =

i\prime 
\sum 

i=1

r
\sum 

j=1

BiXi
j .

For j \in [k], let \gamma j \in \BbbR 
rsk be the binary vector with \gamma j(i\prime  - 1)r+(j\prime  - 1)k+j = Bi\prime /(10\epsilon )

and \gamma jt = 0 at all other coordinates t \not = (i\prime  - 1)r + (j\prime  - 1)k + j. Bob then constructs
the streams f j = f + \gamma j for j = 1, . . . , k sequentially. After he constructs f j , he
runs \scrA on f j to obtain an output (\ell j , \~f

j
\ell j
) \in ([n\prime ]\times \BbbR ) \cup (\{ FAIL\} \times \{ FAIL\} ) from the

streaming algorithm, where if the algorithm did not fail we have that \ell j \in [n\prime ] is the

index output and \~f j\ell j is the estimate of f j\ell j . By union bounding over the guarantee

of \scrA we have that if \ell j \not = FAIL, then \~f\ell j = (1 \pm \epsilon )f j\ell j for all j = 1, 2, . . . , k with

probability 1  - k\delta 2 > 9/10. Call this event \scrE 1. Conditioned on \scrE 1, it follows that if
for each \ell j with \ell j = (i\prime  - 1)r + (j\prime  - 1)k + j, if Xi\prime 

j\prime = \sigma j , then

\~f j\ell j > Bi\prime 
\biggl( 

1 +
1

10\epsilon 

\biggr) 

(1 - \epsilon ) > Bi\prime 

10\epsilon 
+

9

10
Bi\prime  - \epsilon Bi\prime .
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On the other hand, if Xi\prime 

j\prime \not = \sigma j , then we will have

\~f j\ell j < (Bi\prime /(10\epsilon ))(1 + \epsilon ) =
Bi\prime 

10\epsilon 
+
Bi\prime 

10

<
Bi\prime 

10\epsilon 
+

9

10
Bi\prime  - \epsilon Bi\prime 

using that \epsilon < 1/3. Thus if \ell j = (i\prime  - 1)r+(j\prime  - 1)k+ j, Bob can correctly determine

whether or not Xi\prime 

j\prime = \sigma j . Now suppose that, in actuality, Alice's item was Xi\prime 

j\prime =
\sigma \tau \in \scrU for some \tau \in [k]. Set \lambda = (i\prime  - 1)r + (j\prime  - 1)k + \tau . To complete the proof, it
suffices to lower bound the probability that \ell \tau \not = \lambda .

Thus we consider only the event of running \scrA on f\tau . We know that with proba-
bility 99/100, \ell \tau \not = FAIL. We write \scrE 2 to denote the event that \ell \tau \not = FAIL. Let f - \lambda 

be equal to f everywhere except with the coordinate \lambda set equal to 0. Then

\| f\tau  - \lambda \| pp <
i\prime 
\sum 

i=1

r
\sum 

j=1

(Bp)i

\leq r
i\prime 
\sum 

i=1

10i \leq 
\biggl( 

1

10p+1\epsilon p

\biggr) 

10i
\prime +1

9
,

so
| f\tau \lambda | p
\| f\tau  - \lambda \| 

p
p
\geq 10i

\prime 

( 1
10\epsilon )

p

( 1
10p+1\epsilon p )

10i\prime +1

9

\geq 9( 1
10\epsilon )

p

( 1
10\epsilon )

p
\geq 9.

Since \scrA has 1/50-additive error, we conclude Pr[\ell \tau = \lambda ] > 9/10 - 1/50 = 22/25, and
call the event that this occurs \scrE 3. Then conditioned on \scrE = \scrE 1\cap \scrE 2\cap \scrE 3 Bob sucsessfully
recovers the value of Xi\prime 

j\prime = Xi\ast , and thus solves the communication problem. Note
that the probability of success is Pr[\scrE ] > 1  - (1/10 + 1/100 + 3/25) > 3/4, and
thus this protocol solves indd

\scrU . So by Corollary 5, it follows that any such streaming
algorithm \scrA requires \Omega (rs log(| \scrU | )) = \Omega (\epsilon  - p log(n) log(1/\delta 2)) bits of space. Note that
the stream f in question had length n\prime < n for p constant bounded from 0, and no
coordinate in the stream ever had a value greater than poly(n), and thus the stream
in question is valid in the given streaming model.

8. Conclusion. This work demonstrates the existence of perfect Lp samplers for
p \in (0, 2) using O(log2(n) log(1/\delta )) bits of space in the random oracle model. This
bound is tight in terms of both n and \delta . However, to derandomize our algorithm for
p < 2, our space increases by a O((log logn)2)-factor, which is perhaps unnecessary.
There are also several other open problems for Lp samplers which this work does not
close. Notably, there is still a log(n) factor gap between the upper and lower bounds
for L2 samplers, as the best known lower bound for any p \geq 0 is \Omega (log2 n), compared to
our upper bound of O(log3 n). While perfect L2 samplers using polylogarithmic space
were not known before this work, our upper bound matches the best upper bounds
of prior approximate L2 samplers with constant \nu = \Omega (1). It is therefore an open
question whether this additional factor of log n is required in the space complexity of
an L2 sampler, perfect or otherwise.

Second, one notable shortcoming of the perfect sampler presented in this paper is
the large update time. To obtain a perfect sampler as defined in the introduction, the
algorithm in this paper takes polynomial (in n) time to update its data structures after
each entry in the stream. This is clearly nonideal, since most streaming applications
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428 RAJESH JAYARAM AND DAVID WOODRUFF

demand constant or polylogarithmic update time. Using our rounding procedure, we
can obtain a (1 \pm 1/poly(log n)) relative error sampler with polylogarithmic update
time (and the same space as the perfect sampler), but it is still an open problem to
design a perfect Lp sampler with optimal space dependency as well as polylogarithmic
update time.

Finally, there are several gaps in the dependency on \epsilon , \delta 2 in our procedure which,
in addition to outputting an index i \in [n], also outputs a (1 \pm \epsilon ) estimate of the
frequency fi. Taking Theorem 10 along with the known lower bounds for Lp sampling,
our best lower bound for the problem is \Omega (log2(n) log(1/\delta 1) + \epsilon  - p log(n) log(1/\delta 2)),
where \delta 1 is the probability that the sampler fails to output an index i. On the other
hand, our best upper bound is O

\bigl( \bigl( 

log2(n)(log log n)2 + \beta log(n) log(1/\delta 2)
\bigr) 

log(1/\delta 1)
\bigr) 

for p \in (0, 2), and O
\bigl( \bigl( 

log3(n) + \epsilon  - 2 log2(n) log(1/\delta 2)
\bigr) 

log(1/\delta 1)
\bigr) 

for p = 2, where

\beta = min
\bigl\{ 

\epsilon  - 2, \epsilon  - p log
\bigl( 

1
\delta 2

\bigr) \bigr\} 

. Notably, the log(1/\delta 1) multiplies the log(1/\delta 2) term in
the upper bound but not in the lower bound. We leave it as an open problem to
determine precisely the right dependencies of such an algorithm on \epsilon , \delta 1, \delta 2.

Appendix A. Original \bfitL \bfitp sampling via count-sketch. In a previous
version of this work, we used a slightly different testing algorithm for the Lp sampler.
Namely, we used the classic count-sketch estimation procedure of Theorem 1 to obtain
a y such that \| y - \zeta \| \infty is small. We then take the largest coordinate of y as our guess of
the maximizer in \zeta . The algorithm presented in the current version has the advantage
of being slightly simpler and does not incur the (log log n)2 blow-up in space for p = 2
from the derandomization. In this section, we show how the algorithm in the original
version can be derandomized using the general derandomization results for linear
sketches of Theorem 5. First, we introduce a few preliminary tools that we will need.

A.1. Preliminaries. We first introduce the L2 estimation algorithm of [Ind06].
To estimate \| f\| 2 for f \in \BbbR 

n, we generate i.i.d. Gaussians \varphi i,j \sim \scrN (0, 1) for i \in [n]
and j \in [r], where r = \Theta (log(n)). We will later derandomize this assumption. We
then store the vector B \in \BbbR 

r, where Bj =
\sum n

i=1 fi\varphi i,j for j = 1, . . . , r, which can
be computed update by update throughout the stream. We return the estimate

R = medianj
5| Bj | 

4 .

Lemma 11. For any constant c > 0, the value of R as computed in the above
algorithm satisfies 1

2\| f\| 2 \leq R \leq 2\| f\| 2 with probability 1 - n - c.

Proof. Each coordinate Bj is distributed as | Bj | = | gj | \| f\| 2, where gj are i.i.d.
Gaussian random variables. A simple computation shows that Pr[| gj | \in [2/5, 8/5]] >
.55, and thus Pr[(5/4)| Bj | \in [1/2\| f\| 2, 2\| f\| 2]] > .55. Then by Chernoff--Hoeffding
bounds, the median of O(log(n)) repetitions satisfies this bound with probability
1 - n - c as stated.

Finally, we remark that making a simple modification to the classic count-sketch
algorithm (see Theorem 1) still results in the same error guarantee. Let A \in \BbbR 

d\times k be a
d\times k count-sketch matrix. The modification is as follows: instead of each variable hi(\ell )
being uniformly distributed in \{ 1, 2, . . . , k\} , we replace them with variables hi,j,\ell \in 
\{ 0, 1\} for (i, j, \ell ) \in [d] \times [k] \times [n], such that hi,j,\ell are all i.i.d. and equal to 1 with
probability 1/k. We also let gi,h,\ell \in \{ 1, - 1\} be i.i.d. Rademacher variables (1 with
probability 1/2). Then Ai,j =

\sum n
\ell =1 f\ell gi,j,\ell hi,j,\ell , and the estimate y\ell of f\ell is given by

y\ell = median\{ gi,j,\ell Ai,j | hi,j,\ell = 1\} .
Thus the element f\ell can be hashed into multiple buckets in the same row of A,
or even be hashed into none of the buckets in a given row. By Chernoff bounds,
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PERFECT f SAMPLING IN A DATA STREAM 429

Lp Sampler

1. For 0 < p < 2, set \epsilon = \Theta (1), and for p = 2, set \epsilon = \Theta (
\sqrt{} 

1/ log(n)). Let
d = \Theta (log(n)), and instantiate a d \times 6/\epsilon 2 count-sketch table A, and set
\mu \sim Uniform[ 12 ,

3
2 ].

2. Duplicate updates to f to obtain the vector F \in \BbbR 
nc

so that fi = Fij for
all i \in [n] and j = 1, 2, . . . , nc - 1 for some fixed constant c.

3. Choose i.i.d. exponential random variables t = (t1, t2, . . . , tnc), and con-

struct the stream \zeta i = Fi \cdot rnd\nu (1/t1/pi ).
4. Run A on \zeta to obtain an estimate y with \| y  - | \zeta | \| \infty < \epsilon \| \zeta tail(1/\epsilon 2)\| 2 as in

Theorem 11.
5. Run L2 estimator on \zeta to obtain R \in [ 12\| \zeta \| 2, 2\| \zeta \| 2] with high probability.
6. If y(1)  - y(2) < 100\mu \epsilon R or if y(2) < 50\epsilon \mu R, report FAIL, else return i \in [n]

such that yij = y(1) for some j \in [nc - 1].

Fig. 6. Our main Lp sampling algorithm.

| \{ gi,j,\ell Ai,j | hi,j,\ell = 1\} | = \Theta (d) with high probability for all \ell \in [n]. Observe that
the marginal distribution of each bucket is the same as before, and thus the original
analysis of count-sketch ([CCFC02a]) is unchanged, as it only relies on taking the
median of \Theta (d) buckets, each of which independently succeed in giving a good estimate
with probability at least 2/3, as is the case here. Thus the bounds of Theorem 1 apply
as usual.

Theorem 11. Let A \in \BbbR 
d\times k be the modified count-sketch as described above. If

d = \Theta (log(n)), k = 6/\epsilon 2, and c \geq 1 is any constant, then we have \| y  - f\| \infty <
\epsilon \| ftail(1/\epsilon 2)\| 2 with probability 1 - n - c.

A.2. The \bfitL \bfitp sampler. We begin by describing the original sampling algorithm,
as shown in Figure 6. The algorithm duplicates coordinates just as the sampler of

Figure 3 and scales it by inverse 1/pth powers of i.i.d. exponentials 1/t
1/p
i . We also

perform the same rounding procedure, turning z into \zeta . Having constructed the
transformed stream \zeta , we then run a \Theta (log(n))\times 6/\epsilon 2 instance A of count-sketch on
\zeta to obtain an estimate vector y with \| y  - | \zeta | \| \infty < \epsilon \| \zeta tail(1/\epsilon 2)\| 2 with probability
1  - n - c (as in Theorem 11). Here, for a vector v \in \BbbR 

n, | v| \in \BbbR 
n is the vector such

that (| v| )i = | vi| for all i \in [n]. Thus yj is an estimate of the absolute value \zeta j and
is always positive. This is simply accomplished by taking the absolute value of the
usual estimate y obtained from count-sketch.

Then for 0 < p < 2, we set \epsilon = \Theta (1), and for p = 2, we set \epsilon = \Theta (1/
\sqrt{} 

log(n)).
Next, we obtain estimates R \in [ 12\| \zeta \| 2, 2\| \zeta \| 2] via the algorithm of Lemma 11 with
high probability. The algorithm then finds y(1), y(2) (the two largest coordinates of
y) and samples \mu \sim Uniform[1/2, 3/2]. It then checks if y(1)  - y(2) < 100\mu \epsilon R or
if y(2) < 50\epsilon \mu R and reports FAIL if either occur; otherwise it returns i \in [n] with
yij = y(1) for some j \in [nc - 1].

Let i\ast \in [nc] be the index of the maximizer in y, so yi\ast = y(1). By checking that
y(1) - y(2) > 100\mu \epsilon R and noting that 100\mu \epsilon R \geq 25\| y - | \zeta | \| \infty and zk = (1\pm \nu )\zeta k for all
k \in [nc], for \nu < \epsilon sufficiently small we ensure that | zi\ast | is also the maximum element
in z. The necessity for the test y(2) \geq 50\epsilon \mu R is less straightforward (see Remark 2 for
justification). To prove correctness, we need to analyze the conditional probability of
failure given D(1) = i. Let N = | \{ i \in [nc] | Fi \not = 0\} | (N is the support size of F ). We
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430 RAJESH JAYARAM AND DAVID WOODRUFF

can assume that N \not = 0 (to check this, one could run, for instance, the O(log2(n))-bit
support sampler of [JST11]). Note that nc - 1 \leq N \leq nc. We now will prove the
propositions and lemmas needed to demosntrate correctness of this sampler. Lemmas
12 and 13 are the analogous results to Lemmas 3 and 4 in section 4 and will follow
nearly the same proofs.

Proposition 6. Let X,Y \in \BbbR 
d be random variables where Z = X + Y . Suppose

X is independent of some event E, and let M > 0 be such that for every i \in [d] and
every a < b we have Pr[a \leq Xi \leq b] \leq M(b  - a). Suppose further that | Y | \infty \leq \epsilon .
Then if I = I1\times I2\times \cdot \cdot \cdot \times Id \subset \BbbR 

n, where each Ij = [aj , bj ] \subset \BbbR ,  - \infty \leq aj < bj \leq \infty 
is a (possibly unbounded) interval, then

Pr[Z \in I| E] = Pr[Z \in I] +O(\epsilon dM).

Proof. For j \in [d], let Ij = [aj  - \epsilon , bj + \epsilon ], Ij = [aj + \epsilon , bj  - \epsilon ], and let I =

I1 \times \cdot \cdot \cdot \times Id, and I = I1 \times \cdot \cdot \cdot \times Id. If one of the endpoints is unbounded we simply
use the convention \infty \pm c =\infty ,  - \infty \pm c =  - \infty for any real c. Then

Pr[Z \in I| E] \leq Pr[X \in I| E] = Pr[X \in I]

\leq Pr[X \in I] +Pr

\biggl[ d
\bigcup 

i=1

Xi \in Ij \setminus Ij
\biggr] 

.

By the union bound, this is at most Pr[X \in I]+4d\epsilon M \leq Pr[Z \in I]+4d\epsilon M . Similarly,
Pr[Z \in I| E] \geq Pr[X \in I] \geq Pr[X \in I] - 4d\epsilon M \geq Pr[Z \in I] - 4d\epsilon M .

Lemma 12. For p \in (0, 2] a constant bounded away from 0 and any \nu \geq n - c,
Pr[\neg FAIL | D(1)] = Pr[\neg FAIL]\pm O(log(n)\nu ) for every possible D(1) \in [N ].

Proof. By Lemma 2, conditioned on \scrE 1, for every k < N - n9c/10 we have | zD(k)| =
U

1/p
D(k)(1 \pm O(n - c/10))1/p = U

1/p
D(k)(1 \pm O( 1pn

 - c/10)) (using the identity (1 + x) \leq ex

and the Taylor expansion of ex), where UD(k) = (
\sum k

\tau =1
E\tau 

\BbbE [
\sum N

j=\tau | FD(j)| p]
) - 1 is indepen-

dent of the antirank vector D (in fact, it is totally determined by k and the hidden

exponentials Ei). Then for c sufficiently large, we have | \zeta D(k)| = U
1/p
D(k)(1 \pm O(\nu )),

and so for all p \in (0, 2] and k < N  - n9c/10

| \zeta D(k)| = U
1/p
D(k) + U

1/p
D(k)VD(k),

where VD(k) is some random variable that satisfies | VD(k)| = O(\nu ). Now consider a
bucket Ai,j for (i, j) \in [d]\times [6/\epsilon 2]. Let \sigma k = sign(zk) = sign(\zeta k) for k \in [nc]. Then we
write Ai,j =

\sum 

k\in Bij
\sigma D(k)| \zeta D(k)| gi,j,D(k) +

\sum 

k\in Sij
\sigma D(k)| \zeta D(k)| gi,j,D(k), where Bij =

\{ k \leq N  - n9c/10 | hi,j,D(k) = 1\} and Sij = \{ nc \geq k > N  - n9c/10 | hi,j,D(k) = 1\} (see
the notation above Theorem 11). Here we define \{ D(N +1), . . . , D(nc)\} to be the set
of indices i with Fi = 0 (in any ordering, as they contribute nothing to the sum). So

Ai,j =
\sum 

k\in Bij

gi,j,D(k)\sigma D(k)U
1/p
D(k) +

\sum 

k\in Bij

gi,j,D(k)\sigma D(k)U
1/p
D(k)VD(k) +

\sum 

k\in Sij

gi,j,D(k)\zeta D(k).

Importantly, observe that since the variables hi,j,D(k) are fully independent, the sets
Bi,j , Si,j are independent of the antirank vector D. In other words, the values hi,j,D(k)
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are independent of the values D(k) (and of the entire antirank vector). Note that this
would not necessarily be the case if these were only \ell -wise independent for some
\ell = o(nc). So we can condition on a fixed set of values \{ hi,j,D(1), . . . , hi,j,D(nc)\} now,
which fixes the sets Bi,j , Si,j .

Claim 2. For all i, j, and p \in (0, 2], we have | \sum k\in Bij
gi,j,D(k)\sigma D(k)U

1/p
D(k)VD(k)| +

| \sum k\in Sij
gi,j,D(k)\zeta D(k)| = O(

\sqrt{} 

log(n)\nu \| z\| 2) with probability 1 - O(log2(n)n - c).

Proof. By Khintchines's inequality (Fact 1), we have | \sum k\in Sij
gi,j,D(k)\zeta D(k)| =

O(
\sqrt{} 

log(n))(
\sum 

k\in Si,j
(2zD(k))

2)1/2 with probability 1  - n - c. This is a sum over a

subset of the n9c/10 smallest items | zi| , and thus
\sum 

k\in Si,j
z2D(k) <

n9c/10

N \| z\| 22, giv-

ing | \sum k\in Sij
gi,j,D(k)\zeta D(k)| = O(

\sqrt{} 

log(n)n - c/30\| z\| 2). Furthermore, using the fact

that for k \leq N  - n9c/10 we have | \zeta D(k)| < 2U
1/p
D(k) and | VD(k)| = O(\nu ), we have

| \sum k\in Bij
gi,j,D(k)\sigma D(k)U

1/p
D(k)VD(k)| = O(

\sqrt{} 

log(n)\nu \| z\| 2) with probability 1 - n - c again

by Khintchine's inequality, as needed. Note that there are only O(\epsilon  - 2 log(n)) =
O(log2(n)) (for p < 2 this is O(log(n))) terms

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\sum 

k\in Bij

gi,j,D(k)\sigma kU
1/p
D(k)VD(k)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

+

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\sum 

k\in Sij

gi,j,D(k)\zeta D(k)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

which ever occur in all of the Ai,j 's, since the count-sketch has size O(\epsilon  - 2 log(n)).
Union bounding over these buckets, and taking c sufficiently large, the claim follows.

Call the event where Claim 2 holds \scrE 2. Conditioned on \scrE 2, we can decompose

| Ai,j | for all i, j into | \sum k\in Bij
gi,j,D(k)\sigma D(k)U

1/p
D(k)| + \scrV ij , where \scrV ij is some random

variable satisfying | \scrV ij | = O(
\sqrt{} 

log(n)\nu \| z\| 2) and
\sum 

k\in Bij
gi,j,D(k)\sigma D(k)U

1/p
D(k) is inde-

pendent of the antirank vector D (it depends only on the hidden exponentials Ek and

the uniformly random signs gi,j,D(k)\sigma D(k)). Let U\ast 
ij = | \sum k\in Bij

gi,j,D(k)\sigma D(k)U
1/p
D(k)| .

Let \Gamma (k) = \{ (i, j) \in [d] \times [k] | hi,j,D(k) = 1\} . Then our estimate for | \zeta D(k)| is
yD(k) = median(i,j)\in \Gamma (k)\{ U\ast 

i,j+\scrV i,j\} = median(i,j)\in \Gamma (k)\{ U\ast 
i,j\} +\scrV \ast 

D(k), where | \scrV \ast 
D(k)| =

O(
\sqrt{} 

log(n)\nu \| z\| 2) for all k \in [nc].
We now consider our L2 estimate, which is given byR = 5

4medianj\{ | 
\sum 

k\in [nc] \varphi kj\zeta k| \} ,
where the \varphi kj 's are i.i.d. normal Gaussians. We can write this as

R =
5

4
medianj

\biggl\{ \bigm| 

\bigm| 

\bigm| 

\bigm| 

\sum 

k\in B

\varphi D(k)j\sigma D(k)U
1/p
D(k)

+

\biggl( 

\sum 

k\in B

\varphi D(k)j\sigma D(k)U
1/p
D(k)VD(k) +

\sum 

k\in S

\varphi D(k)j\zeta D(k)

\biggr) 
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\biggr\} 

,

where B = \cup ijBij and S = [nc] \setminus B. Now the \varphi D(k)j 's are not \pm 1 random variables,
so we cannot apply Khintchine's inequality. However, by the 2-stability of Gaussians
(Definition 2), if \varphi 1, . . . , \varphi n are i.i.d. Gaussian, then Pr[| \sum i \varphi iai| > O(

\sqrt{} 

log(n))\| a\| 2]
= Pr[| \varphi | \| a\| 2 > O(

\sqrt{} 

log(n))\| a\| 2], where \varphi is again Gaussian. This latter probabil-
ity can be bounded by n - c via the pdf of a Gaussian, which is the same bound
as Khintchine's inequality. So applying the same argument as in Claim 2, we have

R = 5
4medianj\{ (| 

\sum 

k\in B \varphi D(k)j\sigma D(k)U
1/p
D(k)| \} +\scrV R with probability 1 - O(n - c), where

| \scrV R| = O(
\sqrt{} 

log(n)\nu \| z\| 2). Call this event \scrE 3. By the symmetry of Gaussians, the
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value \varphi D(k)j\sigma D(k) is just another i.i.d. Gaussian, so | \sum k\in B \varphi D(k)j\sigma D(k)U
1/p
D(k)| is in-

dependent of the antirank vector.
Let U\ast 

D(k) = median(i,j)\in \Gamma (k)\{ U\ast 
i,hi(D(k))\} for k \in [nc], and

U\ast 
R =

5

4
medianj

\biggl( \bigm| 

\bigm| 

\bigm| 

\bigm| 

\sum 

k\in B

\varphi D(k)j\sigma D(k)U
1/p
D(k)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\biggr) 

.

Then both U\ast 
D(k), U

\ast 
R are independent of the antiranksD(k) (the former does, however,

depend on k), and yD(k) = U\ast 
D(k) + V \ast 

D(k). Now to analyze our failure condition, we

define a deterministic function \Lambda (x, v) \in \BbbR 
2. For vector x and a scalar v, set \Lambda (x, v)1 =

x(1)  - x(2)  - 100\epsilon v and \Lambda (x, v)2 = x(2)  - 50\epsilon v. Note \Lambda (y, \mu R) \geq 0 (coordinatewise) if
and only if \neg FAIL.

Claim 3. Conditioned on \scrE 1 \cap \scrE 2 \cap \scrE 3, we have the decomposition \Lambda (y, \mu R) =

\Lambda (\vec{}U\ast , \mu U\ast 
R)+V , where the former term is independent of the max index and \| V \| \infty =

O(
\sqrt{} 

log(n)\nu \| z\| 2).
Proof. We have shown that | \scrV \scrR | and | \scrV \ast 

D(k)| are both O(
\sqrt{} 

log(n)\nu \| z\| 2) for all

k \in [nc] conditioned on \scrE 1 \cap \scrE 2 \cap \scrE 3. We have y = \vec{}U\ast + \vec{}\scrV \ast , where \vec{}U\ast 
D(k) = U\ast 

D(k)

and \vec{}V \ast 
D(k) = V \ast 

D(k), so
\vec{}\scrV \ast can change the value of the two largest coordinates in y by

at most \| \vec{}\scrV \ast \| \infty = O(
\sqrt{} 

log(n)\nu \| z\| 2). Similarly | \scrV \scrR | can change the value of R by at

most O(
\sqrt{} 

log(n)\nu \| z\| 2), which completes the proof of the decomposition. To see the

claim of independence, note that \Lambda (\vec{}U\ast , \mu U\ast 
R) is a deterministic function of the hidden

exponentials E1, . . . , EN , the random signs g, and the uniform random variable \mu , the
joint distribution of all of which is marginally independent of the antirank vector D,
which completes the claim.

To complete the proof of the lemma, it suffices to show the anticoncentration of
\Lambda (\vec{}U\ast , \mu U\ast 

R). Now for any interval I

Pr[\Lambda (\vec{}U\ast , \mu U\ast 
R)1 \in I] = Pr[\mu \in I \prime /(100\epsilon U\ast 

R)]

= O(| I| /(\epsilon U\ast 
R))

and

Pr[\Lambda (\vec{}U\ast , \mu U\ast 
R)2 \in I] = Pr[\mu \in I \prime \prime /(50\epsilon U\ast 

R)]

= O(| I| /(\epsilon U\ast 
R)),

where I \prime and I \prime \prime are the result of shifting the interval I by a term which is independent
of \mu . Here | I| \in [0,\infty ] denotes the size of the interval I. Thus it suffices to lower bound
U\ast 
R. We have 2U\ast 

R > R > 1
2\| z\| 2 after conditioning on the success of our L2 estimator,

an event we call \scrE 4, which holds with probability 1  - n - c by Lemma 11. Thus
Pr[\Lambda (\vec{}U\ast , \mu U\ast 

R)1 \in I] = O(\epsilon  - 1| I| /\| z\| 2) and Pr[\Lambda (\vec{}U\ast , \mu U\ast 
R)2 \in I] = O(\epsilon  - 1| I| /\| z\| 2)

for any interval I. So by Proposition 6, conditioned on \scrE 1 \cap \scrE 2 \cap \scrE 3 \cap \scrE 4 we have

(6) Pr
\Bigl[ 

\Lambda (y, \mu R) \geq \vec{}0 \in \BbbR 
2
\bigm| 

\bigm| D(1)
\Bigr] 

= Pr
\Bigl[ 

\Lambda (y, \mu R) \geq \vec{}0
\Bigr] 

\pm O(log(n)\nu ).

Note that \scrE 1 \cap \scrE 2 \cap \scrE 3 \cap \scrE 4 holds with probability 1  - O(n - c+1), so choosing c such
that n - c < log(n)\nu , equation (6) holds without conditioning on \scrE 1 \cap \scrE 2 \cap \scrE 3 \cap \scrE 4,
which completes the proof of the lemma.
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Lemma 13. If y is the vector obtained via count-sketch as in the algorithm Lp

Sampler, and 0 < p \leq 2 a constant, then we have Pr[y(1)  - y(2) > 100\epsilon \mu R, y(2) >

50\epsilon \mu R] \geq 1/2, where \epsilon = \Theta (1) when p < 2, and \epsilon = \Theta (1/
\sqrt{} 

log(n)) when p = 2.

Proof. By Proposition 1, with probability 1  - 3e - 4 > .9 we have \| ztail(16)\| 2 =

O(| F\| p) for p < 2, and \| ztail(16)\| = O(
\sqrt{} 

log(n)\| F\| p) when p = 2. Observe that for

t \in [16] we have | zD(t)| < \| F\| p( 2\sum t
\tau =1 E\tau 

)1/p, and with probability 99/100 we have

E1 > 1/100, which implies that | zD(t)| = O(\| F\| p) for all t \in [16]. Conditioned on

this, we have \| z\| 2 < q\| F\| p, where q is a constant when p < 2, and q = \Theta (
\sqrt{} 

log(n))
when p = 2. In either case, we know that the estimate y from count sketch satisfies
\| y  - | \zeta | \| \infty < \epsilon \| \zeta \| 2 < 2\epsilon \| z\| 2 = O(\| F\| p). Thus conditioning on the high probability
event that R = \Theta (\| \zeta \| 2), we have that 100\epsilon \mu R = O(\| F\| p), where we can rescale the
quantity down by any constant by a suitable rescaling of \epsilon .

Now note that | zD(1)| = \| F\| p/E1/p
1 and | zD(1)| = \| F\| p/(E1+E2(1\pm n - c+1))1/p,

where E1, E2 are independent exponentials. So with probability 7/8, we have all
of | zD(1)| = \Theta (\| F\| p), | zD(2)| = \Theta (\| F\| p), and | zD(1)|  - | zD(2)| = \Theta (\| F\| p) with
sufficiently scaled constants, so scaling \nu by a sufficiently small constant we have
| \zeta D(1)| = \Theta (\| F\| p), | \zeta D(1)|  - | \zeta D(2)| = \Theta (\| F\| p) and | \zeta D(2)| = \Theta (\| F\| p). Conditioned
on the event in the prior paragraph and on the high probability of success of our L2

estimation algorithm and our count-sketch error, our estimates of | \zeta D(1)| , | \zeta D(2)| via
y are \Theta (1)-relative error estimates, so for \epsilon small enough the maximum indices in
y and \zeta will coincide, and we will have both y(1)  - y(2) > 100\epsilon \mu R = O(\| F\| p) and
y(2) > 50\epsilon \mu R = O(\| F\| p). By a union bound, it follows that this condition holds with
probability at least 1 - (1/10 + 99/100 + 1/8 +O(n - c)) > 1/2 as desired.

Putting together the results of this section, we obtain the correctness of our
algorithm as stated in Theorem 12.

Theorem 12. Given any constant c \geq 2, \nu \geq n - c, and 0 < p \leq 2, there is a

one-pass Lp sampler which returns an index i \in [n] such that Pr[i = j] =
| fj | p
\| F\| p

p
(1 \pm 

\nu ) + n - c for all j \in [n], and which fails with probability \delta > 0. The space required is
O(log2(n) log(1/\delta )(log log n)2) bits for p < 2, and O(log3(n) log(1/\delta )(log log n)2) bits
for p = 2.

Proof. We claim that conditioned on not failing, we have that i\ast = argmaxi\{ yi\} =
argmaxi\{ | zi| \} . First, condition on the success of our count-sketch estimator, and on
the guarantees of our estimate R, which occur with probability 1 - n - c together. Since
the gap between the two largest coordinates in y is at least 100\epsilon \mu R > 20\epsilon \| \zeta \| 2 \geq 
20\| y  - | \zeta | \| \infty (20 times the additive error in estimating | \zeta | ), it cannot be the case
that the index of the maximum coordinate in y is different from the index of the
maximum coordinate (in absolute value) in \zeta , and moreover both y and \zeta must have
a unique maximizer. Then we have | \zeta i\ast |  - | \zeta (2)| = | \zeta (1)|  - | \zeta (2)| > 18\epsilon \| \zeta \| 2, and since
zi = (1 \pm O(\nu ))\zeta i for all i, we have \| | \zeta |  - | z| \| \infty \leq O(\nu )\| \zeta \| 2. Scaling \nu down by a
factor of \epsilon = \Omega (

\sqrt{} 

1/ log(n)) (which is absorbed into the \~O(\nu  - 1) update time), the gap
between the top two items in \zeta is 18 times large than the additive error in estimating
z via \zeta . Thus we must have i\ast = argmaxi\{ | \zeta i\| \} = argmaxi\{ | zi| \} , which completes
the proof of the claim.

Now Lemma 12 states for any ij \in [nc] that Pr[\neg FAIL | ij = argmaxi\prime ,j\prime \{ | zi\prime 
j\prime 
| \} ] =

Pr[\neg FAIL] \pm O(log(n)\nu ) = q \pm O(log(n)\nu ), where q = Pr[\neg FAIL] = \Omega (1) is a fixed
constant, by Lemma 13, which does not depend on any of the randomness in the
algorithm. Since conditioned on not failing we have argmaxi\{ yi\} = argmaxi\{ | zi| \} ,
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the probability we output ij \in [nc] is Pr[\neg FAIL\cap yij is the max in y] = Pr[\neg FAIL\cap 
| zij | is the max in | z| ] (conditioned on the high probability events in the prior para-
graph), so the probability our final algorithm outputs i \in [n] is

\sum 

j\in [nc - 1]

Pr[\neg FAIL | ij = argmax
i\prime ,j\prime 
\{ | zi\prime 

j\prime 
| \} ]Pr[ij = argmax

i\prime ,j\prime 
\{ | zi\prime 

j\prime 
| \} ]

=
\sum 

j\in [nc - 1]

| fi| p
\| F\| pp

(q \pm O(log(n)\nu )) =
| fi| p
\| f\| pp

(q \pm O(log(n)\nu )).

The potential of the failure of the various high probability events that we conditioned
on only adds another additive O(n - c) term to the error. Thus, conditioned on an

index i being returned, we have Pr[i = j] =
| fj | p
\| f\| p

p
(1\pm O(log(n)\nu ))\pm n - c for all j \in [n],

which is the desired result after rescaling \nu down by a factor of \Omega (1/ log(n)). (We
need only scale down by \Omega (1/

\sqrt{} 

log(n)) after already rescaling by \epsilon = \Theta (1/
\sqrt{} 

log(n)
when p = 2.) Running the algorithm O(log(\delta  - 1)) times in parallel, it follows that at
least one index will be returned with probability 1 - \delta .

Theorem 13 shows that the entire algorithm can be derandomized to use a random
seed with O(log2(n)(log log n)2)-bits for p < 2 and O(log3(n)(log log n)2)-bits for p =
2, which dominates the space required to store the sketches of the sampling algorithm
themselves. Repeating O(log(1/\delta )) times to obtain \delta failure probability gives the
stated space bounds.

Remark 2. Using roughly the same update procedures and a similar analysis as in
section 5, one can implement the above Lp sampling algorithm to have \~O(\nu ) update

time and \~O(1) report time, just as in Theorem 2. The only difference is the use
of Rademacher \{ 1, - 1\} variables in the count-sketch instead of Gaussians and the
change to make the variables gi,j,k independent. These Rademacher variables are
easier to handle, as one can just compute, for a given bucket Ai,j of count-sketch,
the number of items which hash into this bucket with a 1 and  - 1 sign and add the
corresponding value to that bucket. This is simply another computation of a binomial
random variable. The variables gi,j,k can be handled in Fast-Update by modifying
the procedure to draw a binomial to determine how many items hash to each bucket
Ai,j independently for each j \in [k]. This is as opposed to the Fast-Update of Figure
4, which only allows an item to be hashed into a single bucket in each row of A. In
other words, we change Figure 4 to deal with the modified variables gi,j,k by simply
removing step 1(d), which decrements the value of Wk, which is the counter of items
left to be hashed in a row k of A.

To show that the output of this algorithm is the same when only searching
through a subset \scrK of the coordinates (where \scrK is as in section 5) for the maxi-
mizers y(1), y(2), observe that the test y(2) \geq 50\epsilon \mu R enforces that, conditioned on not
failing, both y(1) and y(2) will be large enough to be contained in the set \scrK . Thus we
can safely implement the Fast-Update procedure to give improved update time and
the ExpanderSketch of Theorem 8 to obtain the improved query time.

Appendix B. Derandomizing the original algorithm. We now show how
our original algorithm can be derandomized using the same techniques as in section
5. For this section, we let B \in \BbbR 

O(log(n)) be the sketch stored for the high probability
L2 estimation used in the Lp sampler as in Lemma 11. Note that B = G \cdot \zeta , where G
is a matrix of i.i.d. Gaussian variables.
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Theorem 13. The algorithm of section A.2 can be derandomized to run in
O(log2(n) log(1/\delta )(log log(n))2) space for p < 2 and O(log3(n) log(1/\delta )(log log(n))2)
space for p = 2.

Proof. We use the same notation \scrA (re, rc) as in Theorem 7. Recall here that re
is the randomness required for the exponentials, and rc is the randomness required
for count-sketch (and now rc must also include the randomness required for the L2

estimation sketch B). For any fixed randomness rc, let \scrA rc(re) be the tester which
tests if our Lp sampler would output the index i, where now the bits rc are hard-coded
into the tester, and the random bits re for the exponentials are taken as input.

Now note that the entire sketch stored by our algorithm can be written as Z \cdot \zeta ,
where Z \in \BbbR 

O(log(n)/\epsilon 2)\times n is a fixed matrix defined by the count-sketch randomness
rc, and \zeta is the scaled (by inverse exponentials) and rounded stream vector of the
algorithm. Here Z \cdot \zeta = [vec(A); vec(B)], where vec(A) denotes the vectorization of
the count-sketch matrix A (and, respectively, B), and [x; y] is vector which stacks x
on top of y. Note that we can pull the scalings by F into the matrix Z (making it
into a new fixed matrix Z \prime ), so our sketch can be written as Z \prime \cdot t, where for j \in [nc]

we have tj = rnd\nu (1/t
1/p
j ) and tj 's are the i.i.d. exponentials.

Since we are rounding the exponentials to powers of (1+\nu ) anyway, we can restrict
the support of the coordinates in t to a discrete support of size O(poly(n)) such that
each value occurs with probability at least 1/poly(n) for a suitably larger poly(n).

This allows us to sample the variables rnd\nu (1/t
1/p
i ) using O(log(n))-bits of space as

needed for Lemma 7. Thus our entire algorithm requires poly(n) random bits to be
generated for the exponentials. Similarly, for the random Gaussians used to estimate
the L2 in the sketch B, one can truncate to O(log(n))-bits, incurring only an additive
n - c error in these buckets, which can be absorbed into the adversarial error which
is already handled in Lemma 12. Restricting the support of the Gaussians so that
each value occurs with probability at least 1/poly(n), it follows that these Gaussians
can also be sampled using O(log(n))-bits each. The only remaining randomness is
the random signs and hi,j,k in count sketch, each of which have a support of size 2
and can be sampled with O(log(n))-bits. So using Lemma 7, we can fool the tester
which tests if Z \prime \cdot t = y for any y with O(log(n)) bounded bit-complexity, using a
seed of O(log2(n)(log log n)2) bits (and O(log3(n)(log log n)2) for p = 2). Then as
in Theorem 5, since we can fool Pr[Z \prime \cdot t = y], we can also fool any tester which
takes as input y = Z \prime \cdot t and outputs whether or not on input y our algorithm would
output i \in [n]. Thus if G(x) is one instance of the PRG from Lemma 7, we have
Pr[\scrA rc(re)] \sim n - O(log(n)) Pr[\scrA rc(G(x))], and similarly, as in Theorem 7

Pr
\Bigl[ 

\scrA (re, rc)
\Bigr] 

=
\sum 

rc

Pr
\Bigl[ 

\scrA rc(re)
\Bigr] 

Pr
\Bigl[ 

rc

\Bigr] 

=
\sum 

rc

((Pr
\Bigl[ 

\scrA rc(G(x))
\Bigr] 

\pm n - O(log(n)))Pr
\Bigl[ 

rc

\Bigr] 

=
\sum 

rc

(Pr
\Bigl[ 

\scrA rc(G(x))
\Bigr] 

Pr
\Bigl[ 

rc

\Bigr] 

\pm 
\sum 

rc

n - O(log(n))Pr
\Bigl[ 

rc

\Bigr] 

\sim n - O(log(n)) Pr
\Bigl[ 

\scrA (G(x), rc)
\Bigr] 

.

Now fix any seed G(x), and consider \scrA G(x)(rc) which on fixed exponential ran-
domness G(x) and fresh count-sketch randomness rc, tests whether our algorithm
would output i \in [n]. Note that this algorithm simply maintains the same sketch
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Z \cdot \zeta = [vec(A), vec(B)] as above. Note that the entries of Z are of two forms:
the i.i.d. count-sketch randomness and the i.i.d. Gaussians needed for the sketch B.
By Theorem 5, we can derandomize both of these separately by two more instances
G(x2), G(x3) of the PRG of Lemma 7, each using seeds x2, x3 of O(log2(n)(log log n)2)
bits of space for p < 2 and O(log3(n)(log log n)2) bits of space for p = 2. So if Z1 is the
first set of rows of Z which correspond to the count-sketch randomness, and Z2 is the
rest of the rows which contain i.i.d. Gaussians, we have that for all y, y\prime with O(log(n))-
entrywise bounded bit complexity, Pr[Z1 \cdot \zeta = y] \sim n - O(log(n)) Pr[G(x2) \cdot \zeta = y] and
Pr[Z2 \cdot \zeta = y\prime ] \sim n - O(log(n)) Pr[G(x3) \cdot \zeta = y\prime ]. Here we are abusing notation and
thinking of the PRG randomness G(x2) as being formed into the matrix which it
defines.

Since G(x2) is independent of G(x3), for any y of O(log(n))-entrywise
bounded bit complexity, we have Pr[Z \cdot \zeta = y] \sim n - O(log(n)) Pr[[G(x2);G(x3)] \cdot \zeta =
y]. Thus we fool the entire tester \scrA G(x)(rc) with \scrA G(x)(G(x2) \cup G(x3)), meaning
Pr[\scrA G(x)(rc)] \sim n - O(log(n)) Pr[\scrA G(x)(G(x2) \cup G(x3))], and by a similar averaging ar-
guement as above, we have Pr[\scrA (G(x), rc)] \sim n - O(log(n)) Pr[\scrA (G(x), G(x2) \cup G(x3))],
and thus Pr[\scrA (re, rc)] \sim n - O(log(n)) Pr[\scrA (G(x), G(x2) \cup G(x3))], which completes the
proof. We note that any coordinate output by the PRG of Lemma 7 (and thus Theo-
rem 5) can be computed in space linear in the seed length required by Proposition 3,
and thus the space required to evaluate the generator is linear in the seed length.

Acknowledgments. The authors would like to thank Raghu Meka for a helpful
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