Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. COMPUT. © 2021 Society for Industrial and Applied Mathematics
Vol. 50, No. 2, pp. 382-439

PERFECT L, SAMPLING IN A DATA STREAM*

RAJESH JAYARAM' AND DAVID WOODRUFF

Abstract. In this paper, we resolve the one-pass space complexity of perfect L, sampling for
p € (0,2) in a stream. Given a stream of updates (insertions and deletions) to the coordinates of an
underlying vector f € R™, a perfect L, sampler must output an index ¢ with probability |f;|P/|f||5
and is allowed to fail with some probability d. So far, for p > 0 no algorithm has been shown to solve
the problem exactly using poly(log n)-bits of space. In 2010, Monemizadeh and Woodruff introduced
an approzimate Lp sampler which, given an approximation parameter v, outputs ¢ with probability
(1£v)|fi|P/||f115, using space polynomial in v~! and log(n). The space complexity was later reduced
by Jowhari, Saglam, and Tardos to roughly O(v~? log? nlogd—!) for p € (0,2), which matches the
general p > 0 lower bound of Q(log? nlogd~1) in terms of n and §, but is loose in terms of v. Given
these nearly tight bounds, it is perhaps surprising that no lower bound exists in terms of v—not
even a bound of Q(v~1) is known. In this paper, we explain this phenomenon by demonstrating the
existence of an O(log? nlog §—1)-bit perfect L, sampler for p € (0,2). This shows that v need not
factor into the space of an L, sampler, which closes the complexity of the problem for this range of
p. For p =2, our bound is O(log® nlog §~1)-bits, which matches the prior best known upper bound
of O(v=2 log® n log d~1), but has no dependence on v. Note that there is still a logn gap between
our upper bound and the lower bound for p = 2, the ution of which we leave as an open problem.
For p < 2, our bound holds in the random oracle model, matching the lower bounds in that model.
However, we show that our algorithm can be derandomized with only a O((loglogn)?) blow-up in the
space (and no blow-up for p = 2). Our derandomization technique is quite general, and can be used
to derandomize a large class of linear sketches, including the more accurate count-sketch variant of
Minton and Price [Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, 2014, pp. 669-686], resolving an open question in that paper. Finally, we show
that a (1 & €) relative error estimate of the frequency f; of the sampled index ¢ can be obtained
using an additional O(e~P logn)-bits of space for p < 2, and O(e~2log? n) bits for p = 2, which was
possible before only by running the prior algorithms with v = e.

Key words. streaming, sampling, algorithms
AMS subject classifications. 68W01, 68W20
DOI. 10.1137/18M1229912

1. Introduction. The streaming model of computation has become increasingly
important for the analysis of massive datasets, where the sheer size of the input
imposes stringent restrictions on the resources available to algorithms. Examples
of such datasets include internet traffic logs, sensor networks, financial transaction
data, database logs, and scientific data streams (such as huge experiments in particle
physics, genomics, and astronomy). Given their prevalence, there is a large body of
literature devoted to designing extremely efficient one-pass algorithms for analyzing
data streams. We refer the reader to [BBD+402, M+05] for surveys of these algorithms
and their applications.

More recently, the technique of sampling has proven to be tremendously powerful
for the analysis of data streams. Substantial literature has been devoted to the study
of sampling for problems in big data [M+05, Haal6, Cohl5, CDK+09, CDK+14,

*Received by the editors December 3, 2018; accepted for publication (in revised form) October
14, 2020; published electronically March 30, 2021. A preliminary version of this work appeared in
the Proceedings of the IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
2018.

https://doi.org/10.1137/18M1229912
Funding: The authors are thankful for the partial support by the National Science Foundation
under grant CCF-1815840.

tDepartment of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15217 USA
(rkjayara@cs.cmu.edu, dwoodruf@cs.cmu.edu).

382

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 383

CCD11, EV03, GM98a, Knu98, MM12, Vit85a, CCD12, GLH08, GLHO06], with ap-
plications to network traffic analysis [TLJ10, HNG407, GKMS01, MCS+06, Duf04],
databases [O1k93, Haal6, HNSS96, HS92, LNS90, LN95], distributed computation
[WZ16, CMYZ10, CMYZ12, TW11], and low-rank approximation [WZ16, FKV04,
DV06]. While several models for sampling in data streams have been proposed
[BDMO02, AKO10, CMYZ10], one of the most widely studied is the L, samplers intro-
duced in [MW10]. Roughly speaking, given a vector f € R", the goal of an L, sampler
is to return an index i € {1,2,...,n} with probability |f;[?/[|f[|5. In the data stream
setting, the vector f, called the frequency vector, is given by a sequence of updates
(referred to as insertions or deletions) to its coordinates. More formally, in a data
stream the vector f is initialized to 0™ and then receives a stream of m updates of the
form (34, Ay) € [n] x {—M, ..., M} for some integer M > 0 and ¢ € [m]. The update
(i¢, Ay) causes the change f;, < fi, + 2. This is known as the general turnstile model
of streaming. A 1-pass L, sampler must return an index given only one pass through
the updates of the stream.

Since their introduction, L, samplers have been utilized to develop alternative
algorithms for important streaming problems, such as the heavy hitters problem, L,
estimation, cascaded norm estimation, and finding duplicates in data streams [AKO10,
MW10, JST11, BOZ12]. For the case of p =1 and insertion only streams, where the
updates to f are strictly positive, the problem is easily solved using O(logn) bits
of space with the well-known reservoir sampling algorithm [Vit85a]. When deletions
(negative updates) to the stream are allowed or when p # 1, however, the problem is
more complicated. In fact, the question of whether such samplers even exist was posed
by Cormode, Murthukrishnan, and Rozenbaum in [CMRO05]. Later on, Monemizadeh
and Woodruff demonstrated that if one permits the sampler to be approximately
correct, such samplers are indeed possible [MW10]. We formally state the guarantee
given by an approximate L, sampler below.

DEFINITION 1. Let f € R™ and v € [0,1). Forp > 0, an approzimate L, sampler
with v-relative error is an algorithm which returns an index i € {1,2,...,n} such that
for every j € {1,2,...,n}

_ AP
I1£1I7

where ¢ > 1 is some arbitrarily large constant. For p = 0, the problem is to return j

Prli = j

(1£v)+0(n™),

1y,

with probability (1i1/)% +0(n™°), where 1y,+q is the indicator function, i.e.,
< JJ

1p,20 =1 if f; #0 and 15,40 = 0 otherwise. If v =0, then the sampler is said to be

perfect. An L, sampler is allowed to output FAIL with some probability 6. However,

in this case it must not output any index.

The one-pass approximate L, sampler introduced in [MW10] requires
poly(r~1,logn) space, albeit with rather large exponents. Later on, in [AKO10], the
complexity was reduced significantly to O(v="log®(n)log(1/4))-bits! for p € [1,2],
using a technique known as precision sampling. Roughly, the technique of precision
sampling consists of scaling the coordinates f; by random variable coefficients 1/t; as
the updates arrive, resulting in a new stream vector z € R™ with z; = f;/t;. The

I'We note that previous works [JST11, KNP+17] have cited the sampler of [AKO10] as using
O(log®(n))-bits of space, but the space bound given in their paper is in machine words and is
therefore a O(log*(n)) bit bound with § = 1/poly(n). In order to obtain an O(log®(n)log(1/4)) bit
sampler, their algorithm must be modified to use fewer repetitions.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

384 RAJESH JAYARAM AND DAVID WOODRUFF

algorithm then searches for all z; which cross a certain threshold 7. Observe that
if t; = ug/p, where wu; is uniform on [0, 1], then the probability that f;/t; > T is
precisely Pr[u; < |f;|P/T?] = |fi|P/TP. By running an L, estimation algorithm to
obtain T' € [%]|f|lp. 3]|f|lp], an L, sampler can then return any i with z; > T as its
output. These heavy coordinates can be found using any of the well-known n-heavy
hitters algorithms for a sufficiently small precision 7.

Using a tighter analysis of this technique with the same scaling variables ¢; =
u;/ P Jowhari, Saglam, and Tardos reduced the space complexity of L, sampling for
p < 2 to O(v~m@{1.2} Jog?(n) log(1/6))-bits for p € (0,2) \ {1}, and O(r~"log(v™1)
log?(n)log(1/8)) bits of space for p = 1 [JST11]. Roughly speaking, their improve-
ments result from a more careful consideration of the precision 7 needed to determine
when a z; crosses the threshold, which they do via the tighter tail-error guarantee of
the well-known count-sketch heavy hitters algorithm [CCFCO02a]. In addition, they
give an O(log?(n)log(1/6)) perfect Ly sampler and demonstrate an Q(log?(n))-bit
lower bound for L, samplers for any p > 0. Recently, this lower bound was extended
to Q(log?(n) log(1/5)) [KNP+17] bits, which closes the complexity of the problem for
p=0.

For p € (0,2), this means that the upper and lower bounds for L, samplers are
tight in terms of n, §, but a gap exists in the dependency on v. This being the case, it
would seem natural to search for an Q(v~?log?(n)log(1/6)) lower bound to close the
complexity of the problem. It is perhaps surprising, therefore, that no lower bound
in terms of v exists—mnot even an Q(r~!) bound is known. This poses the question of
whether the Q(log?(n)log(1/6)) lower bound is in fact correct.

1.1. Our contributions. In this paper, we explain the phenomenon of the lack
of an Q(v~1) lower bound by showing that v need not enter the space complexity of an
L, sampler at all. In other words, we demonstrate the existence of perfect L, samplers
using O(log?(n)log(1/6)(loglogn)?)-bits of space for p € (0,2), thus resolving the
space complexity of the problem up to loglog(n) terms.? In the random oracle model,
where we are given random access to an arbitrarily long tape of random bits which do
not count against the space of the algorithm, our upper bound is O(log?(n) log(1/4)),
which matches the lower bound in the random oracle model. For p = 2, our space
is O(log®(n)log(1/d))-bits, which matches the best known upper bounds in terms of
n, d, yet again has no dependency on v. In addition, for p < 2 and the high probabiltiy
regime of § < 1/n, we obtain a O(log®(n))-bit perfect L, sampler, which also tightly
matches the lower bound without paying the extra (loglogn)? factor. A summary of
the prior upper bounds for L, sampling, along with the contributions of this work, is
given in Figure 1.

In addition to outputting a perfect sample i from the stream, for p € (0,2)
we also show that, conditioned on an index being outputted, given an additional
additive O(min{e=2, e log(é)}log(n) log(1/62))-bits we can provide a (1 & €) ap-
proximation of the frequency |f;| with probability 1 — d5. This separates the space
dependence on log2 (n) and e for frequency approximation, allowing us to obtain a
(1 =+ €) approximation of |f;| in O(log?(n) + e ?log(n)) bits of space with constant

2 A previous version of this work claimed O(log?(n) log(1/4)) bits of space for p < 2, but contained
an error in the derandomization. Thus, this bound only held in the random oracle model. In the
present version we correct this derandomization using a slightly different algorithm, albeit with a
(loglogn)? blow-up in the space. The algorithm from the previous version can be found in Appendix
A, along with a new analysis of its derandomization that allows it to run in O(log?(n)(loglog(n))?)-
bits of space.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 385

L, sampling upper bound (bits) p range Notes Citation
O(log3(n)) p=0 perfect Lo sampler, 6 = 1/poly(n)| [FIS08]
O(log?(n) log(1/52)) p=20 perfect Lo sampler [JST11]
poly log(v—1,n) p € 0,2 0 = 1/poly(n) [MW10]
O(v~Plog>(n) log(1/6)) pel2 (1 £ v)-relative error [AKO10]
O(v=max{1.2} 1og2(n) log(1/8)) |p € (0,2)\ {1} (1 £ v)-relative error JST11
O(v—Tlog(v—T)1logZ(n) log(1/5)) p=1 (1 £ v)-relative error JST11
perfect L, sampler,
O(log?(n) log(1/6)) p €(0,2) random oracle model, this work
matches lower bound
O(logZ(n) log(1/6)(log log n)?) p € (0,2) perfect L, sampler this work
O(log3(n) log(1/6)) p=2 perfect Lo sampler this work
O(log>(n)) p € (0,2) 6 = 1/poly(n) this work

Fic. 1. Ewvolution of one pass Ly sampling upper bounds, with the best known lower bound of
Q(log?(n)log(1/8)) for p > 0 [KNP+17] (see also [JST11] for a lower bound for constant §).

probability, whereas before this required O(e? log®(n)) bits of space. For p = 2, our
bound is O(e~2log®(n)log(1/d2)), which still improves upon the prior best known
bounds for estimating the frequency by an O(log(n))-factor. Finally, we show an
Q(e~Plog(n)log(1/d2)) bits of space lower bound for producing the (1 £ €) estimate
(conditioned on an index being returned).

General derandomization. Along the way to derandomizing our main L, sampling
algorithm, we develop a generic technique that allows for the black-box derandom-
ization of a large class of linear sketches. This theorem will not be sufficient alone to
derandomize our algorithm, but is suitable for a number of other applications. For
instance, it provides the first efficient derandomization of the count-sketch variant of
Minton and Price [MP14], a discussion of which can be found in section 5.2.3. We
state the generic theorem here. In what follows, for a matrix A, let vec(A) denote
the vectorization of A, obtained by stacking the columns of A together.

Theorem 5. Fiz n,t,k > 1, and fix f € {—M,..., M}", where M = poly(n).
Let X € R be any fived matriz with entries contained within {—M, ..., M}, and
let D be any distribution over matrices A € RFX™ such that the entries A ~ D are
independent and identically distributed (i.i.d.) and can be sampled using O(logn)-bits.
Let o : RF x R* — {0,1} be any function, and fiz any constant ¢ > 1. Then there is
a distribution D' over matrices A’ € R*¥*™ such that A’ ~ D’ can be generated via a
random seed of length O((k + t) log(n)(loglogn)?), such that

'Pr [J(Af,X -vec(A)) = 1} —Pr [cr(A’f,X -vec(4)) = 1} ’ < pclktt)

and such that each entry of A’ can be computed in time O(l) using working space
linear in the seed length.

In the above theorem, o can be defined as a tester with o(Af, X - vec(4)) =1
whenever a streaming algorithm depending only on Af and X -Vec(A) succeeds. Note
that the matrix X allows an algorithm to also depend lightly on A, in addition to
the linear sketch Af. For instance, X - vec(A) could store an entire column of A,
as is needed for count-sketch. We believe Theorem 5 is an important step toward a
universal derandomization of streaming algorithms.

We remark that many streaming algorithms, such as the p-stable sketches of
Indyk [Ind06] for L, estimation, depend only on a linear sketch Af. Specifically, for
0 < p < 2, to estimate |[f||} = > ¢, [fil? to relative error (1 & €), the algorithm

of [Ind06] generates a matrix A with O(e~2) rows and entries drawn independently

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

386 RAJESH JAYARAM AND DAVID WOODRUFF

from a p-stable distribution. The original derandomization of [Ind06] applied Nisan’s
pseudorandom generator (PRG) [Nis92], resulting in a logn blow-up in the space;
namely, the algorithm required O(e=2 log? n) bits of space. This blow-up was shown
to be unnecessary by Kane, Nelson, and Woodruff [KNW10], who gave an involved
argument demonstrating that it suffices to generate the entries of A with limited
independence, requiring a total of O(e~2?logn) bits. Theorem 5, therefore, gives an
alternative derandomization of Indyk’s p-stable sketches, although it requires a slightly
suboptimal O(e~2logn(loglogn)?) bits of space.

1.2. Applications. Since their introduction, it has been observed that L, sam-
plers can be used as a building block in algorithms for many important streaming
problems, such as finding heavy hitters, L,-norm estimation, cascaded norm estima-
tion, and finding duplicates in data streams [AKO10, MW10, JST11, BOZ12]. L,
samplers, particularly for p = 1, are often used as a black-box subroutine to de-
sign representative histograms of f on which more complicated algorithms are run
[GMP, GM98a, 01k93, GKMS02, HNG+07, CMRO05]. For these black-box applica-
tions, the only property of the samplers needed is the distribution of their samples.
Samplers with relative error are statistically biased and, in the analysis of more compli-
cated algorithms built upon such samplers, this bias and its propagation over multiple
samples must be accounted for and bounded. The analysis and development of such
algorithms would be simplified dramatically, therefore, with the assumptions that the
samples were truly uniform (i.e., from a perfect L; sampler). In this case, no error
terms or variational distance need be accounted for. Our results show that such an
assumption is possible without affecting the space complexity of the sampler.

Note that in Definition 1, we allow a perfect sampler to have n~°T! variation
distance to the true L, distribution. We note that this definition is in line with prior
work, observing that even the perfect Ly sampler of [JST11] incurs such an error from
derandomizing with Nisan’s PRG. Nevertheless, this error will never be detected if the
sampler is run polynomially many times in the course of constructing a histogram,
and such a sampler is therefore statistically indistinguishable from a truly uniform
sampler and can be used as a black-box.

Another motivation for utilizing perfect L, samplers comes from applications in
privacy. Here f € R™ is some underlying dataset, and we would like to reveal a sample
i € [n] drawn from the L, distribution over f to some external party without reveal-
ing too much global information about f itself. Using an approximate L, sampler
introduces a (1 + v) multiplicative bias into the sampling probabilities, and this bias
can depend on global properties of the data. For instance, such a sampler might bias
the sampling probabilities of a large set S of coordinates by a (1 + v) factor if a cer-
tain global property P holds for f and may instead bias them by (1 — v) if a disjoint
property P’ holds. Using only a small number of samples, an adversary would then
be able to distinguish whether P or P’ holds by determining how these coordinates
were biased. On the other hand, the bias in the samples produced by a perfect L,
sampler is polynomially small, and thus the leakage of global information could be
substantially smaller when using one.

One formalization of what it means to “leak” global information comes from the
literature on private approximations [FIM+01, Wooll], where given a nonnegative
real-valued function g(x) for some input z, the goal is to output a (1 £+ v) approxima-
tion R to g(z), such that the value R reveals no more information about the input x
than the actual value of g(z) reveals about x. Specifically, to do this, one must show
that the distribution of the value R can be simulated given only knowledge of the value

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 387

Input: feR”
Output: a sampled index i* € [n]
1. Perform a linear transformation on f to obtain z.
2. Run instance A of count-sketch on z to obtain the estimate y.
3. Find ¢* = argmax; |y;|. Then run a statistical test on y to decide whether
to output ¢* or FAIL.

Fic. 2. Algorithmic template for Ly, sampling.

g(). In our setting, g(z) = |z;|?/||z||} could be the probability that an exact L, sam-
pler should output a fixed coordinate i € [n] on input frequency vector z = f € R,
and the corresponding goal of a private sampler would be to output ¢ with probability
R = (1£v)g(x) without reveling any more information about x than the value g(z). In
this setting, a perfect L, sampler will allow for a simulation which has 1/poly(n) varia-
tional distance to the true distribution of R resulting from the sampler (just by adding
small 1/poly(n)-sized noise), whereas an approximate (1 + v) relative error sampler
would only allow for a simulation that is correct up to variational distance v. This
results in approximate samplers being substantially less private than perfect samplers.

1.3. Our techniques. Our main algorithm is inspired by the precision sampling
technique used in prior works [AKO10, JST11], but with some marked differences.
To describe how our sampler achieves the improvements mentioned above, we begin
by observing that all L, sampling algorithms since [AKO10] have adhered to the
same algorithmic template (shown in Figure 2). This template employs the classic
count-sketch algorithm of [CCFC02a] as a subroutine, which is easily introduced. For
k € N, let [k] denote the set {1,2,...,k}. Given a precision parameter 7, count-
sketch selects pairwise independent hash functions h; : [n] — [6/9%] and g; : [n] —
{1,—1} for j = 1,2,...,d, where d = O(log(n)). Then for all i € [d], j € [6/n?], it
computes the following linear function A;; = Zke[n]’hi(k):j 9i(k) fr and outputs an
approximation y of f given by yp = median;eiq{gi(k)A;n, ()} We will discuss the
estimation guarantee of count-sketch at a later point.

The algorithmic template is as follows. First, perform some linear transformation
on the input vector f to obtain a new vector z. Next, run an instance A of count-
sketch on z to obtain the estimate y. Finally, run some statistical test on y. If the
test fails, then output FAIL; otherwise output the index of the largest coordinate (in
magnitude) of y. We first describe how the sampler of [JST11] implements the steps
in this template. Afterward we describe the different implementation decisions made
in our algorithm that allow it to overcome the limitations of prior approaches.

Prior algorithms. The samplers of [JST11, AKO10] utilize the technique known
as precision sampling, which employs the following linear transformation. The algo-
rithms first generate random variables (¢1,...,t,) with limited independence, where
each t; ~ Uniform|0, 1]. Next, each coordinate f; is scaled by the coefficient 1 /tz1 /P %o
obtain the transformed vector z € R™ given by z; = f;/ t;/ P thus completing step 1
of Figure 2. For simplicity, we now restrict to the case of p = 1 and the algorithm
of [JST11]. The goal of the algorithm is then to return an item z; that crosses the
threshold |z;| > v~ R, where R = O(]|f]|1) is a constant factor approximation of the
L;. Note that the probability that this occurs is proportional to v|f;|/| f]l1-

Next, implementing the second step of Figure 2, the vector z is hashed into
count-sketch to find an item that has crossed the threshold. Using the stronger tail-
guarantee of count-sketch, the estimate vector y satisfies ||y — z[loc < \/7l|Ztait(1/m 2,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

388 RAJESH JAYARAM AND DAVID WOODRUFF

where zi,i1(1/1) 18 2 with the 1/7 largest coordinates (in magnitude) set to 0. Now the
algorithm runs into trouble when it incorrectly identifies z; as crossing the threshold
when it has not, or vice-versa. However, if the tail error \/n||2¢ai(1/m)ll2 is at most
O(]|f]l1), then since t; is a uniform variable the probability that z; is close enough
to the threshold to be misidentified is O(v), which results in at most (1 4 v) relative
error in the sampling probabilities. Thus it will suffice to have /7| zeii1/m)ll2 =
O(]| f]l1) with probability 1 — v. To show that this is the case, consider the level
sets I, = {z; | z; € (Q(M‘llf/p, !ﬁl/‘;’)} One can show that E[|I;|] = 2*. We observe
here that results of [JST11] can be partially attributed to the fact that for p < 2,

2
the total contribution 9(2”2'7;”/; |I]) of the level sets to |z||3 decreases geometrically

with k, and so with constant probability we have ||z||2 = O(||f|l,). Moreover, if one
removes the top log(1/v) largest items, the contribution of the remaining items to
the Ly is O(]| f]]1) with probability 1 — v. So taking n = log(1/v), the tail error from
count-sketch has the desired size. Since the tail error does not include the 1/ largest
coordinates, this holds even conditioned on a fixed value t;+ of the maximizer.

Now with probability v the guarantee on the error from the prior paragraph does
not hold, and in this case one cannot still output an index ¢, as this would result
in a v-additive error sampler. Thus, as in step 3 of Figure 2, the algorithm must
implement a statistical test to check that the guarantee holds. To do this, using the
values of the largest 1/n coordinates of y, they produce an estimate of the tail-error
and output FAIL if it is too large. Otherwise, the item i* = arg max; |y;| is outputted
if |y;«| > v~'R. The whole algorithm is run O(v~!log(1/§)) times so that an index
is outputted with probability 1 — §.

Our algorithm. Our first observation is that, in order to obtain a truly perfect
sampler, one needs to use different scaling variables ¢;. Notice that the approach
of scaling by inverse uniform variables and returning a coordinate which reaches a
certain threshold T faces the obvious issue of what to return when more than one
of the variables |z;| crosses T'. This is solved by simply outputting the maximum of
all such coordinates. However, the probability of an index becoming the maximum
and reaching a threshold is drawn from an entirely different distribution, and for
uniform variables ¢; this distribution does not appear to be the correct one. To
overcome this, we must use a distribution where the maximum index i of the variables
(|f1t;1/p|, |f2t;1/p|, e |fntﬁl/p|) is drawn ezactly according to the L, distribution
|fiP/IIf|I5. We observe that the distribution of exponential random variables has

precisely this property, and thus to implement step 1 of Figure 2 we set z; = f; /tl1 /p ,
where t; is an exponential random variable. We remark that exponential variables
have been used in the past, such as for F,, moment estimation, p > 2, in [AKO10]
and regression in [WZ13]. However, it appears that their applicability to sampling
has never before been exploited.

Next, we carry out the count-sketch step by hashing our vector z into a count-
sketch data structure A. Because we are only interested in the maximizer of z, we
develop a modified version of count-sketch, called count-maz. Instead of producing
an estimate y such that ||y — z||o0 is small, count-max simply checks, for each i € [n],
how many times z; hashed into the largest bucket (in absolute value) of a row of A. If
this number is at least a 4/5-fraction of the total number of rows, count-max declares
that z; is the maximizer of z. We show that with high probability, count-max never
incorrectly declares an item to be the maximizer, and moreover if z; > 20(3_; z?)l/ 2
then count-max will declare ¢ to be the maximizer. Using the min-stability property of
exponential random variables, we can show that the maximum item |z;+| = max{]|z;|}

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 389

is distributed as || f||,/E'/?, where E is another exponential random variable. Thus
|zi«| = Q|| f|lp) with constant probability. Using a more general analysis of the Lo
norm of the level sets Ij,, we can show that (3, ;. 2]2)1/2 = O(]| fl|p)- If all these events
occur together (with sufficiently large constants), count-max will correctly determine
the coordinate * = arg max;{|z;|}. However, just as in [JST11], we cannot output an
index anyway if these conditions do not hold, so we will need to run a statistical test
to ensure that they do.

The statistical test. To implement step 3 of the template, our algorithm tests
whether count-max declares any coordinate ¢ € [n] to be the maximizer, and we
output FAIL if no coordinate is declared as the maximizer. This approach guarantees
that we correctly output the maximizer conditioned on not failing. The primary
technical challenge will be to show that, conditioned on ¢ = argmax;{|z;|} for some
i, the probability of failing the statistical test does not depend on i. In other words,
conditioning on |z;| being the maximum does not change the failure probability. Let
Zp(k) be the kth order statistic of z (i.e., [2p)| > |zp)| > -+ > |2pm)|). Here
the D(k)’s are known as antiranks of the distribution (z1,...,2,). To analyze the
conditional dependence, we must first obtain a closed form for zp) which separates
the dependencies on k and D(k). Hypothetically, if zp ;) depended only on &, then
our statistical test would be completely independent of D(1), in which case we could
safely fail whenever such an event occurred. Of course, in reality this is not the case.
Consider the vector f = (100n,1,1,1,...,1) € R™ and p = 1. Clearly we expect z;
to be the maximizer, and moreover we expect a gap of ©(n) between z; and zp(g).
On the other hand, if you were told that D(1) # 1, it is tempting to think that zp)
just barely beat out z; for its spot as the max, and so z; would not be far behind.
Indeed, this intuition would be correct, and one can show that the probability that
Zp(1) — #p(2) > n conditioned on D(1) = i changes by an additive constant depending
on whether or not ¢ = 1. Conditioned on this gap being smaller or larger, we are
more or less likely (respectively) to output FAIL. In this setting, the probability of
conditional failure can change by an (1) factor depending on the value of D(1).

To handle scenarios of this form, our algorithm will utilize an additional linear
transformation in step 1 of the template. Instead of only scaling by the random
coefficients 1 /t;/ P our algorithm first duplicates the coordinates f; to remove all
heavy items from the stream. If f is the vector from the example above and F' is
the duplicated vector, then after poly(n) duplications all copies of the heavy item
f1 will have weight at most |f1|/||F|l1 < 1/poly(n). By uniformizing the relative
weight of the coordinates, this washes out the dependency of |zp(9)| on D(1), since
IF_pwllh = (1 £ n*Q(C))HF_ng after n° duplications for any j € [n¢]. Notice that
this transformation blows up the dimension of f by a poly(n) factor. However, since
our space usage is always polylog(n), the result is only a constant factor increase in
the complexity.

After duplication, we scale F' by the coefficients 1/ t; /p , and the rest of the algo-
rithm proceeds as described above. Using expressions for the order statistics zpx)
which separate the dependence into the antiranks D(j) and a set of exponentials
Ey, Es,... E, independent of the antiranks, after duplication we can derive tight con-
centration of the zp)’s conditioned on fixed values of the E;’s. Using this con-
centration result, we decompose our count-max data structure A into two component
variables: one independent of the antiranks (the independent component) and a small
adversarial noise of relative weight n~¢. In order to bound the effect of the adversarial
noise on the outcome of our tests we must (1) randomize the threshold for our failure

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

390 RAJESH JAYARAM AND DAVID WOODRUFF

condition and (2) demonstrate the anticoncentration of the resulting distribution over
the independent components of A. This will demonstrate that with high probability,
the result of the statistical test is completely determined by the value of the indepen-
dent component, which allows us to fail without affecting the conditional probability
of outputting ¢ € [n].

Derandomization. Now the correctness of our sampler crucially relies on the full
independence of the t;’s to show that the variable D(1) is drawn from precisely the
correct distribution (namely, the L, distribution |f;[P/|[f[|P). This being the case, we
cannot directly implement our algorithm using any method of limited independence.
In order to derandomize the algorithm from requiring full-independence, we will use
a combination of Nisan’s PRG [Nis92], as well as an extension of the recent PRG
of [GKM18], which fools certain classes of Fourier transforms. We first use a closer
analysis of the seed length Nisan’s generator required to fool the randomness required
for the count-max data structure, which avoids the standard O(logn)-space blow-up,
which would be incurred by using Nisan’s as a black-box. Once the count-max has
been derandomized, we demonstrate how the PRG of [GKM18] can be used to fool
arbitrary functions of d halfspaces, as long as each of the half-spaces can be specified
by a normal vector with bounded bit-complexity. Specifically, we require that each
coordinate v; of the normal vector v € R™ that specifies an m-dimensional halfspace
has bounded bit complexity; for our application, each coordinate v; is specified using
O(logn) bits. We use this result to derandomize the exponential variables t; with a
seed of length O(log?(n)(loglogn)?), which will allow for the total derandomization
of our algorithm for § = ©(1) and p < 2 in the same space.

Our derandomization technique is in fact fairly general and can be applied to
streaming algorithms beyond the sampler in this work. Namely, we demonstrate that
any streaming algorithm which stores a linear sketch A - f, where the entries of A are
independent and can be sampled from with O(log(n))-bits, can be derandomized with
only a O((loglogn)?)-factor increase in the space requirements (see Theorem 5). This
improves the O(log(n))-blow-up incurred from black-box usage of Nisan’s PRG. As
an application, we derandomize the count-sketch variant of Minton and Price [MP14]
to use O(e~2log?(n)(loglogn)?)-bits of space, which gives improved concentration
results for count-sketch when the hash functions are fully independent. The problem of
improving the derandomization of [MP14] beyond the black-box application of Nisan’s
PRG was an open problem. We remark that using O(1/¢?log®(n))-bits of space in
the classic count sketch of [CCFCO02a] has strictly better error guarantees than those
obtained from derandomizing [MP14] with Nisan’s PRG to run in the same space. Our
derandomization, in contrast, demonstrates a strong improvement on this, obtaining
the same bounds with an O((loglogn)?) instead of an O(log(n)) factor blow-up.

Case of p = 2. Recalling p < 2, we could show that the Ls norm of the
level sets I decays geometrically with k. More precisely, for any v > 1 we have
| 2taii(y) |2 = O(||F|lpy~/P+1/2) with probability 1 — O(e~?). Using this, we actually
do not need the tight concentration of the zp)’s, since we can show that the top
n¢/19 coordinates change by at most (1 & n~)) depending on D(1), and the Lo
norm of the remaining coordinates is only an O(n~=¢/10(1/P=1/2)) fraction of the whole
Lo and can thus be absorbed into the adversarial noise. For p = 2, however, each
level set I, contributes weight O(||F|2) to [|z[|3, s0 || 2taii(y) l2 = O(vIog n|| F||,) even
for v = poly(n). Therefore, for p = 2 it is essential that we show concentration of
the zp(x)’s for nearly all k. Since ||z[|3 will now be larger than ||F||3 by a factor of
log n with high probability, count-max will only succeed in outputting the largest co-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 391

ordinate when it is an O(y/logn) factor larger than expected. This event occurs with
probability 1/logn, so we will need to run the algorithm logn times in parallel to get
constant probability for a total O(log® n)-bits of space. Using the same O(log® n)-bit
Nisan PRG seed for all O(logn) repititions, we show that the entire algorithm for
p = 2 can be derandomized to run in O(log® nlog 1/8)-bits of space.

Optimizing the runtime. In addition to our core sampling algorithm, we show how
the linear transformation step to construct z can be implemented via a parameterized
rounding scheme to improve the update time of the algorithm without affecting the
space complexity, giving a run-time/relative sampling error trade-off. By rounding

the scaling variables 1 /ti/ P to powers of (1 + v), we discretize their support to have
size O(v~'logn). We then simulate the update procedure by sampling from the
distribution over updates to our count-max data-structure A of duplicating an update
and hashing each duplicate independently into A. Our simulation utilizes results on
efficient generation of binomial random variables, through which we can iteratively
reconstruct the updates to A bin-by-bin instead of duplicate-by-duplicate. In addition,
by using an auxiliary heavy hitter data structure, we can improve our query time from
the naive O(n) to O(poly logn) without increasing the space complexity.

Estimating the frequency. We show that allowing an additional additive
O(min{e=2 7P log(é)} lognlogd, ') bits of space, we can provide an estimate f=
(1+£e€)f; of the outputted frequency f; with probability 1 —ds when p < 2. To achieve
this, we use our more general analysis of the contribution of the level sets Ij to ||z||2
and give concentration bounds on the tail error when the top €™? items are removed.
When p = 2, for similar reasons as described in the sampling algorithm, we require
another O(logn) factor in the space complexity to obtain a (1 4 €) estimate. Finally,
we demonstrate an Q(e~Plognlogdy 1) lower bound for this problem, which is nearly
tight when p < 2. To do so, we adapt a communication problem introduced in [JW13],
known as augmented-indexing on large domains. We weaken the problem so that it
need only succeed with constant probability and then show that the same lower bound
still holds. Using a reduction from this problem, we show that our lower bound for L,
samplers holds even if the output index is from a distribution with constant additive
error from the true L, distribution |f;[?/|| f|[b.

2. Preliminaries. For a,b,e € R, we write a = b+ € to denote the containment
a € [b— e, b+ €. For positive integer n, we use [n] to denote the set {1,2,...,n} and
O(-) notation to hide log(n) terms. For any vector v € R”, we write V() to denote
the kth largest coordinate of v in absolute value. In other words, v > |v(g)| >
-+ > |vyl|. For any v € [n], we define vi,j1(,) to be v but with the top v coordinates
(in absolute value) set equal to 0. For any ¢ € [n], we define v_; to be v with the ¢
th coordinate set to 0. We write |v| to denote the entrywise absolute value of v, so
|v|; = |v;| for all j € [n]. All space bounds stated will be in bits. For our runtime
complexity, we assume the unit cost RAM model, where a word of O(log(n))-bits can
be operated on in constant time, where n is the dimension of the input streaming
vector. Finally, we will use O notation to hide polylog(n) factors; in other words
O(log®(n)) = O(1) for any constant c.

Formally, a data stream is given by an underlying vector f € R", called the
frequency wvector, which is initialized to 0". The frequency vector then receives a
stream of m updates of the form (iz, A¢) € [n] x {—M, ..., M} for some M > 0 and
t € [m]. The update (i, A) causes the change f;, < f;, + A¢. For simplicity, we make
the common assumption [BCIW16] that log(mM) = O(log(n)), though our results
generalize naturally to arbitrary n, m. Since the updates (i;, A;) can cause coordinates

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

392 RAJESH JAYARAM AND DAVID WOODRUFF

fi to become negative, this is known as the general turnstile model of streaming, as
opposed to the sometimes considered strict turnstile model, which forces f; > 0 at all
time steps. We remark that both of these models are more general than the insertion
only model, which restricts that A; > 0 for all ¢. In this work, we consider only the
most general model, namely, the general turnstile model.

In this paper, we will need Khintchine’s and McDiarmid’s inequality.

Fact 1 (Khintchine inequality [Haa81]). Let z € R™ and Q = Y., giz; for
i.i.d. random variables p; uniform on {1,—1}. Then Pr[|Q| > t||z|2] < 2¢—t7/2,

Fact 2 (McDiarmid’s inequality [McD89]). Let X1, Xo,...,X, be independent
random variables, and let (x1,...,2,) by any function that satisfies

sup ‘w(ﬂcl,xg,...,xn)—1/}(9517...,%,1,@,90”1,...,xn)‘§ci for1 <i<n.

L1y Tn T

Then for any € > 0, we have

Our analysis will use stability properties of Gaussian random variables.

DEFINITION 2. A distribution D), is said to be p-stable if whenever Xq,..., X, ~
D, are drawn independently, we have

> aiX; = |lall,X
=1

for any fired vector a € R", where X ~ D, is drawn from the same distribution.
In particular, the Gaussian random variables N'(0,1) are p-stable for p = 2 (i.e.,
> aigi = g - ||all2, where g, g1, ..., gn are Gaussian).

2.1. Count-sketch and count-max. Our sampling algorithm will utilize a
modification of the well-known data structure known as count-sketch (see [CCFC02a]
for further details). We now introduce the description of count-sketch which we will
use for the remainder of the paper. The count-sketch data structure is a table A with d
rows and k columns. When run on a stream f € R", for each row i € [d], count-sketch
picks a uniform random mapping h; : [n] — [k] and g; : [n] — {1, —1}. Generally, h;
and g; need only be 4-wise independent hash functions, but in this paper we will use
fully independent hash functions (and later relax this condition when derandomizing).
Whenever an update A to item v € [n] occurs, count-sketch performs the following
updates:

Ai,m(v) — Ai,hi(v) + Agi(v) fori=1,2,...,d.

Note that while we will not implement the h;’s as explicit hash functions, and instead
generate i.i.d. random variables h;(1),...,h;(n), we will still use the terminology of
hash functions. In other words, by hashing the update (v, A) into the row A; of count-
sketch, we mean that we are updating A; 5, () by Agi(v). By hashing the coordinate
fv into A, we mean updating A; j,) by gi(v)f, for each i = 1,2,...,d. Using this
terminology, each row of count-sketch corresponds to randomly hashing the indices
in [n] into k buckets, and then each bucket in the row is a sum of the frequencies
fi of the items which are hashed to it multiplied by random =+1 signs. In general,
count-sketch is used to obtain an estimate vector y € R™ such that ||y — f]|co is small.
This vector y satisfies the following guarantee.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 393

THEOREM 1. If d = ©(log(1/4)) and k = 6/€2, then for a fived i € [n] we have
lyi — fil < €ll fraii(1/e2)ll2 with probability 1 — 5, where y is given

y; = median;epg A p,j)(9:(4)) " for all j € [n].

Moreover, if ¢ > 1 is any constant, and we set d = O(logn), then we have ||y —
flloo < €l franae2yll2 with probability 1 — n=¢. Furthermore, if we instead set y; =

median;e(q)|A; n, (|, then the same two bounds above hold replacing f with |f].

In this work, however, we are only interested in determining the index of the
heaviest item in f, that is, i* = argmax;|f;|. So we utilize a simpler estimation
algorithm based on the count-sketch data structure that tests whether a fixed j € [n]
if j = argmax;|f;|. For analysis purposes, instead of having the g;’s be random
signs, we draw g;(v) ~ N(0,1) as i.i.d. Gaussian variables. Then for a fixed j,
set a; = |{i € [d] | |Ajp,(j)] = max e |Air|}|, and we declare j = i* to be the
maximizer if o; > 2d. The algorithm computes «; for all j € [n] and outputs the
first index j that satisfies o;; > %d (there will only be one with high probability). To
distinguish this modified querying protocol from the classic count-sketch, we refer to
this algorithm as count-max. To refer to the data structure A itself, we will use the
terms count-sketch and count-max interchangeably.

We will prove our result for the guarantee of count-max in the presence of the
following generalization. Before computing the values of a and reporting a maximizer
as above, we will scale each bucket A; ; of count-max by a uniform random variable
ti; ~ Uniform(5s, 105). This generalization will be used for technical reasons in our
analysis of Lemma 3. Namely, we will need it to ensure that our failure threshold of
our algorithm is randomized, which will allow us to handle small adversarial errors.

LEMMA 1. Let ¢ > 1 be an arbitrarily large constant, set d = O(log(n)) and k = 2,
and let A be a d X k instance of count-max run on f € R™ using fully independent
hash functions h; and Gaussian random variables g; ~ N(0,1). Then with probability
1 —n=¢ the following holds: for every i € [n], if |fi] > 20||f-:ll2, then count-max
declares i to be the marimum, and if |fi| < max;ep iy |f5l, then count-maz does
not declare i to be the mazimum. Thus if count-max declares |f;| to be the largest
coordinate of f, it will be correct with high probability. Moreover, this result still holds

if each bucket A; ; is scaled by a p; j ~ Umlfo'r‘m(%7 %) before reporting.

Proof. First suppose |f;| > 20]|f_i||2, and consider a fixed row j of A. Without
loss of generality (WLOG) 7 hashes to A; 1, and thus using the 2-stability of Gaussians
(Definition 2), we have A;1 = ;10 |f 2 and Aj2 = p;20°(|f?||2, where f* is f
restricted to the coordinates that hash to bucket A4;, and g',g? ~ N(0,1). Since
|fHll2 > 20 £2l2 and g, ; ~ Uniform(is, 191), the probability that |4 2| > |A;1] is
less than the probability that one N'(0,1) Gaussian is 19 times larger than another,
which can be bounded by 15/100 by direct computation. Thus ¢ hashes into the max
bucket in a row of A with probability at least 85/100, so by Chernoff bounds, taking
d = Q(clog(n)), with probability 1 — n~2¢ we have that f; is in the largest bucket at
least a 4/5 fraction of the time, which completes the first claim.

Now suppose i is not a unique max, and let i* be such that | f;+| is maximal. Then
conditioned on 7,7* not hashing to the same bucket, the probability that f; hashes
to a larger bucket than f;« is at most 1/2. To see this, note that conditioned on
this, one bucket is distributed as p(g;(i*) fi+ + G) and the other as u'(g;(7)f; + G'),
where G, G’ p, 1/, and g;(i*) fi=, g; (i) fi are identically distributed random variables.
Thus the probability that f; is in the maximal bucket is at most 3/4, and so by

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

394 RAJESH JAYARAM AND DAVID WOODRUFF

Chernoff bounds f; will hash to strictly less than (4d/5) of the maximal buckets with
probability 1 — n~2¢. Union bounding over all j € [n] gives the desired result. 0

COROLLARY 1. In the setting of Lemma 1, with probability 1—O(n~°), count-max
will never report an index i € [n] as being the mazimum if | f;| < 55| f]l2-

Proof. Suppose |fi| < 15511fll2, and in a given row WLOG 4 hashes to A 1. Let
f—i be f with the coordinate i set equal to 0. Then we have A;1 = uj1g'(f]2
and Ajo = pj292||f?|l2, where f* is f restricted to the coordinates that hash to
bucket A, and g', g% ~ N(0,1). Since f!, and f2, = f? are identically distrib-
uted, with probability 1/2 we have || f2;]|2 > ||f1;]|2. Conditioned on this, we have
1208 = 1713 — 122 = £ — 172, 03/50, s0 [172,2(1 + 1/50)1/2 > [[f1[3. So
conditioned on || f2;|l2 > ||f,]2, we have |A;1| < |A;2| whenever one Gaussian is
(101/100)(1 4 1/50)'/2 times larger than another in magnitude, which occurs with
probability greater than 1/2—1/25. So ¢ hashes into the max bucket with probability
at most 1/2+1/2(1/2+1/25) = 77/100, and thus by Chernoff bounds, taking ¢ suf-
ficiently large and union bounding over all ¢ € [n], ¢ will hash into the max bucket at
most a 79/1000 < 4/5 fraction of the time with probability 1 —O(n~°), as needed. 0O

3. Exponential order statistics. In this section, we discuss several useful
properties of the order statistics of n independent nonidentically distributed exponen-
tial random variables. Let (¢1,...,t,) be independent exponential random variables
where t; has mean 1/); (equivalently, ¢; has rate \;). Recall that ¢; is given by the
cumulative distribution function Pr[t; < #] = 1 —e~**. Our main L, sampling algo-
rithm will require a careful analysis of the distribution of values (¢1, ..., t,), which we
will now describe. We begin by noting that constant factor scalings of an exponential
variable result in another exponential variable.

FACT 3 (scaling of exponentials). Let t be exponentially distributed with rate A,
and let « > 0. Then at is exponentially distributed with rate A/«

Proof. The cumulative distribution function (cdf) of at is given by Pr[t < z/a] =
1 —e=?#/® which is the cdf of an exponential with rate \/cv. d

We would now like to study the order statistics of the variables (¢4, ...,t,), where
t; has rate \;. To do so, we introduce the antirank vector (D(1),D(2),...,D(n)),
where for k € [n], D(k) € [n] is a random variable which gives the index of the kth
smallest exponential.

DEFINITION 3. Let (t1,...,t,) be independent exponentials. For k =1,2,...,n
we define the kth antirank D(k) € [n] of (t1,...,tn) to be the values D(k) such that
tpa) <ipe) < <tpm)-

Using the structure of the antirank vector, it has been observed [Nag06] that there

is a simple form for describing the distribution of ¢ y) as a function of (A1,...,A,)
and the antirank vector.

FacT 4 ([Nag06]). Let (t1,...,t,) be independently distributed exponentials,
where t; has rate \; > 0. Then for any k =1,2,...,n, we have

tp(k) = Z Z

where the E1, Fs, ..., E,’s are i.i.d. exponential variables with mean 1 and are inde-
pendent of the antirank vector (D(1), D(2),...,D(n)).

Jj=1 AD(])

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 395

Fact 5 ([Nag06]). For anyi=1,2,...,n, we have

M
E?:l Aj .

We now describe how these properties will be useful to our sampler. Let f € R™
be any vector presented in a general turnstile stream (note that f must have integral

valued coordinates by the definition of the model). We can generate i.i.d. exponen-
1/p

tials (t1,...,t,), each with rate 1, and construct the random variable z; = f;/t;’",
which can be obtained in a stream by scaling updates to f; by 1 /tg/ P as they ar-
rive. By Fact 3, the variable |z;|™? = t;/|fi|’ is exponentially distributed with
rate \; = |fi|’. Now let (D(1),...,D(n)) be the antirank vector of the expo-
nentials (t1/|f1[?,...,tn/|fn|'/?). By Fact 5, we have Pr[D(1) = i] = Pr[i =

argmin{|z1|7?,...,|z,| P} = Pr[i = argmax{|z1],...,|z.|}] = Z?i% = i In

other words, the probability that |z;| = argmax;{|z;|} is precisely |fi|?/[|f[|}, so for
a perfect L, sampler it suffices to return i € [n] with |z;| maximum. Now note
lzp)| > 12p(2)] = -+ > |2D(w)|, and in this scenario the statement of Fact 4 becomes

k —1/p k —1/p
E; E;
>i=i o)

N
i=1 Zj:i)‘D(j) i=1

where FE;’s are i.i.d. exponential random variables with mean 1 and are independent
of the antirank vector (D(1),...,D(n)). We call the exponentials E; the hidden
exponentials, as they do not appear in the actual execution of the algorithm, and will
be needed for analysis purposes only.

4. The sampling algorithm. We now provide intuition for the workings of
our main sampling algorithm. Our algorithm scales the input stream by inverse
exponentials to obtain a new vector z. Namely, we scale f; by 1/ t; /P to obtain zi. Let
D = (D(1),...,D(n)) be the indices such that |zpu)| > |zp2)| > - -+ > |2p(n)|- Note
that D is precisely the antiranks of the variables (¢1,...,t,), where t; is exponential
with rate |f;|P, because we have |z|P = 1/t; and tpay < tpey < --- < tp). Due
to this correspondence, we will also refer to D as the antirank vector of z. We have
seen in the prior section that we can write the order statistics zp(x) as a function
of the antirank vector D and the hidden exponentials F;, which describe the “scale”
of the order statistics. Importantly, the hidden exponentials are independent of the
antiranks. We would like to determine the index 4 for which D(1) = 7, but this may not
always be possible. This is the case when the largest element |zp(1)| is not sufficently
larger than the remainig Lo mass Zj>1(|ZD(j)|2)1/2' In such a case, count-max will
not declare any index to be the largest, and we would therefore like to output FAIL.
Note that this event is more likely when there is another element |zp 2| that is very
close to [zp(1)| in size, as whenever the two elements do not collide in count-max, it
is less likely that |2p(1)| will be in the max bucket.

Now consider the trivial situation where f; = fo = --- = f,,. Here the variables
Zp(k) have no dependence at all on the antirank vector D. In this case, the condition
of failing is independent of D(1), so we can safely fail whenever we cannot determine
the maximum index. On the other hand, if the values |f;| vary wildly, the variables
zp(xy Will depend highly on the antiranks. In fact, if there exists f; with [f;[? > €| f||?,
then the probability that |2p1)| —|2p(2)| is above a certain threshold can change by a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

396 RAJESH JAYARAM AND DAVID WOODRUFF

L, Sampler
1. Set d = ©(logn), instantiate a d x 2 count-max table A, and set p; ; ~
Uniform[-, 23] for each (i,j) € [d] x [2].

100° 100
2. Duplicate updates to f to obtain the vector F € R™ so that f; = F;; for
alli € [n] and j = 1,2,...,n°"! for some fixed constant c.
3. Choose i.i.d. exponential random variables ¢ = (t1,ts,...,t,c), and con-

struct the stream (; = Fj; - rndl,(l/tg/p).

4. Run A on the stream ¢. Upon the end of the stream, set A;; « i jA;;
for all (i,7) € [d] x [2].

5. If count-max declares that an index i; € [n°] is the max for some j € [n
based on the data structure A, then output ¢ € [n]. If A does not declare
any index to be the max, output FAIL.

c—l]

Fic. 3. Our main Ly sampling algorithm.

(1=%e) factor conditioned on D(1) = ¢, as opposed to D(1) = j for a smaller | f;|. Given
this, the probability that we fail can change by a multiplicative (1 £ €) conditioned
on D(1) = i as opposed to D(1) = j. In this case, we cannot output FAIL when
count-max does not report a maximizer, lest we suffer a (1 & €) error in outputting
an index with the correct probability.

To handle this, we must remove the heavy items from the stream to weaken the
dependence of the values zp) on the antiranks, which we carry out by duplication
of coordinates. For the purpose of efficiency, we carry out the duplication via a
rounding scheme which will allow us to generate and quickly hash updates into our
data-structures (section 5). We will show that, conditioned on the fixed values of the
E;’s, the variables zp) are highly concentrated and therefore nearly independent of
the antiranks (2p() depends only on & and not D(k)). By randomizing the failure
threshold to be anticoncentrated, the small adversarial dependence of zp) on D(k)
cannot nontrivially affect the conditional probabilities of failure, leading to small
relative error in the resulting output distribution.

The L, sampler. We now describe our sampling algorithm, as shown in Figure
3. To begin with, we instantiate a d X 2 count-max table A, where d = O(logn), and
generate uniform variables p1; ; ~ Uniform[5, 18] for each (i, j) € [d] x [2] to use as
scalings for each bucket in the table. Let f € R™ be the input vector of the stream. As
the stream arrives, we duplicate updates to each coordinate f; a total of n°~! times
to obtain a new vector F' € R™". More precisely, for i € [n] we set i; = (i —1)n°"' +j
for j = 1,2,...,n°7!, and then we will have F;, = f; for all i € [n] and j € [n“"].
We then call F;; a duplicate of f;. Whenever we use i; as a subscript in this way it
will refer to a duplicate of 7, whereas a single subscript ¢ will be used both to index
into [n] and [n°]. Note that this duplication has the effect that |F;[P < n=¢t![|F[}2
for all p > 0 and i € [n¢].

We then generate i.i.d. exponential rate 1 random variables (t1,...,t,c) and de-
fine the vector 2 € R™ by z; = Fi/t;/p. As shown in section 3, we have Pr[i; =
argmay {|2 Y] = |Fy, [P/IIFIE. Since Yjcien |5, /IR = |fi7/1 £, it wil
therefore suffice to find i; € [n¢] for which i; = arg maxir,jz{\zi/j/ |} and return the

index ¢ € [n]. The assumption that the ¢,;’s are i.i.d. will later be relaxed in section 5
while derandomizing the algorithm. In section 5, we also demonstrate that all relevant
continuous distributions will be made discrete without affecting the perfect sampling
guarantee.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 397

Now fix any sufficiently large constant ¢, and fix v > n™¢. To speed up the

update time, instead of explicitly scaling F; by 1 /tz1 /P to construct the stream z, our

algorithm instead scales F; by rnd,,(l/ti/p), where rnd, (z) rounds = > 0 down to
the nearest value in {...,(1+v)"1,1,(1 +v),(1+v)?, ...}. In other words, rnd, ()
rounds = down to the nearest power of (1+v)7 (for j € Z). This results in a separate
stream ¢ € R™", where (; = F; - rndy(l/tz/p). Note ¢; = (1 £ O(v))z; for all i € [n°].
Importantly, note that this rounding is order preserving. Thus, if (has a unique
largest coordinate |(;«|, then |z;+| will be the unique largest coordinate of z.

Having constructed the transformed stream (, we then run a d x 2 instance A €
R9*2 of count-max (from section 2.1), with d = O(log(n)), on (. At the end of
the stream, we scale each bucket A;; by a uniform random variable p; ; from the
interval [Wv 12L]. This step ensures that the failure threshold is randomized, so that
a small adversarial error can only affect the output of the algorithm with extremely
low probability (see Lemma 3). Now recall that count-max will either declare an index
ij € [n°] as being the maximum or report nothing. If an index 4; is returned, where i;
is the jth copy of index i € [n], then our algorithm outputs the index . If count-max
does not report an index, we return FAIL. Let ¢* = argmax; |[(;| = D(1) (where D(1)
is the first antirank as in section 3). By the guarantee of Lemma 1, we know that
if |Ci«| > 20]|¢—ix||2, then with probability 1 — n~¢ count-max will return the index
i* € [n°]. Moreover, with the same probability, count-max will never return an index
that is not the unique maximizer. To prove correctness, therefore, it suffices to analyze
the conditional probability of failure given D(1) = i. Let N = |{i € [n°]| F; # 0}| (N
is the support size of F'). We can assume that N #£ 0 (to check this one could run, for
instance, the O(log?(n))-bit support sampler of [JST11]). Note that n~* < N < n°.
The following fact is straightforward.

FacT 6. For p € (0,2], suppose that we choose the constant ¢ such that mM <
n¢/?9 where note we have |F;| < mM for all i € [N]. Then if S C {i € [n°]| F; # 0}
is any subset, then Y . ¢ |FilP > %n*/mHFﬂg.

Proof. We know that |F;|P? < (mM)P < n®/10 using p < 2. Then each nonzero
value |F;|P is at most an n~%/1° fraction of any other item |F [P, and in particular

of the average item weight. It follows that |F;|P > n—¢/10 1= p for all i € [N], which
results in the stated fact. |

As in section 3, we now use the antirank vector D (k) to denote the index of the kth
largest value of z; in absolute value. In other words, D(k) is the index such that [zp)]
is the kth largest value in the set {|z1], |22|, ..., |2nc|}. Note that the D(k)’s are also
the antiranks of the vector (, since rounding z into (preserves partial ordering. For
the following lemma, it suffices to consider only the exponentials ¢; with F; # 0, and we
thus consider only values of k£ between 1 and N. Thus |zp(1)| > [2p2)| > -+ > [2pav)]-

Moreover, we have that |zpg| ™ = |F§(<:>‘p is the kth smallest of all the \I‘E s and
by the results of section 3 can be written as |zp)| ™" = Sk S ol IF , where the

|
E, are i.i.d. exponentials and independent of the antirank vector D. We will make
use of this in the following lemma.

LEMMA 2. For every 1 <k < N — n9c/10, we have
k —1/p

E
lzp| = | (1 £0(n19)) .
Tz:l B[S0, [Fpg)lP]

with probability 1 — O(eiﬂc/s)‘

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

398 RAJESH JAYARAM AND DAVID WOODRUFF

Proof. Let 7 < N—n%/19 We can write Z;V:T |Fp(j [P as a deterministic function
Y(ty,...,ty) of the random scaling exponentials ¢1,...,ty corresponding to F; # 0.
We first argue that

[V(t1, .. o tn) =Pt timg, B tivs, . tN)| < Qm?x{FJ’.’} <2n~ T F|P.

This can be seen from the fact that changing a value of ¢; can only have the effect
of adding (or removing) |F;[P to the sum " |Fp(;) | and removing (or adding) a
different |Fj| from the sum. The resulting change in the sum is at most 2 max; {|F;|"},
which is at most 2n~*![|F||5 by duplication. Set T'= N — 7 + 1. Since the t;’s are
independent, we apply McDiarmid’s inequality (Fact 2) to obtain

(1)

N
Pr{

> —2E2T2n—2CF||gp>

N
> [Foy b ~B| ot] 1> w115 < 20w S

j=r j=r

1
< 2exp (— 262T2n_c_2>.

Setting e = O(n~%°) and using 7' > n°/1% this is at most 2exp(—3n?*/5-2).
To show concentration up to a (1 + O(n~¢10)) factor, it remains to show that
IE[Z;V:T |[Fpj|P] = Q(Tn= 11| F||5). This follows from the Fact 6, which gives
Z]‘Tzo |Fp(—j|? > n=¢/1(Tn=¢||F||b) deterministically. Now recall that |zpg| =

k _ .
Doy m] /P We have just shown that

N N
> Pl =1+ O(H‘C”O))E{Z |FD(j)|p}

j=7 j=r
so we can union bound over all 7 =1,2,..., N — n/10 to obtain
—c/10 : Er o
o] = [0077 Y]

for all k < N — n%/10 with probability

1—0me ™"y =1-0(""). 0

We use this result to show that our failure condition is nearly independent of the
value D(1). Let & be the event that Lemma 2 holds. Let —FAIL be the event that
the algorithm L, Sampler does not output FAIL.

LEMMA 3. For p € (0,2] a constant bounded away from 0 and any v > n—¢/60,

Pr[-FAIL | D(1)] = Pr[-FAIL] + O(v) for every possible D(1) € [N].
_ k E, 1 . .
Proof. Let Upuy = (37— m) , which is independent of the an-

tirank vector D (in fact, it is totally determined by k and the hidden exponen-
tials E;). Then by Lemma 2, conditioned on &, for every k < N — n%/10 we

have |zp k)| = U}J/(q;)u + O(n=¢/10)V/p = U];/(f;;)u + O(2n=¢/1%)) (using the iden-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 399

¥ and the Taylor expansion of e*). Then for ¢ sufficiently large, we

tity (14+2) <e
| = UH2 (14+0(v)), and so for all p € (0,2] and k < N — n%/10

have ‘CD(k) D(k)
1 1
o0 = Uy + Up ey Vo,
where Vi) is some random variable that satisfies |[Vp)| = O(v). Now consider a

bucket A; ; for (4,7) € [d] x [2]. Let oy = sign(zx) = sign(¢x) for k € [n°]. Then we
write Ai,j/ﬂi,j = ZkEBM O—D(k)KD(k)‘gi(D(k)) + ZkeSij O—D(k)|CD(k)|gi(D(k))a where
Bij = {k < N—n/10h;(D(k)) = j} and S;; = {n® > k > N—n"/10|h;(D(k)) = j}.
Here we define {D(N + 1),...,D(n°)} to be the set of indices ¢ with F; = 0 (in any
ordering, as they contribute nothing to the sum). Also recall that g;(D(k)) ~ N(0,1)
is the i.i.d. Gaussian coefficent associated to item D(k) in row i of A. So

Aij /i
=) gi(D(k))UD(k)Ullj/(I;;) + Y gi(D(k))UD(k)Ué/&)VD(k) + Y gi(D(k) -
keB;; kEB;; keS;;

Importantly, observe that since the variables h;(D(k)) are fully independent, the
sets B j,S;; are independent of the antirank vector D. In other words, the values
h;(D(k)) are independent of the values D(k) (and of the entire antirank vector), since
{hi(1),...,hi(n®)} = {hy(D(1)),...,h;(D(n))} are i.i.d. Note that this would not
necessarily be the case if {h;(1),...,h;(n°)} were only ¢-wise independent for some
¢ = o(n®). So we can condition on a fixed set of values {h;(D(1)),...,h;(D(n))}

now, which fixes the sets B; j, S; j. Now let U}; = |Ek€BH gi(D(kJ))aD(k)Ug(Z)L
CLAIM 1. For all i, j, € [d] x [2] and p € (0,2], we have

> 9D py Uy Vo) + Y 9i(DU))Cnay| = O (v(|Aia| + A 2])

kEB;; keS;;

with probability 1 — O(log(n)n*C/GO)‘
Proof. By the 2-stability of Gaussians (Definition 2),

= O(y/log(n)(Z (22D(k))2)1/2)

kESi,j

Z gi(D(k))CD(k)

keSi;

with probability 1 —n~¢. This is a sum over a subset of the n9¢/10

9¢/10 L.
and thus Zkeswv z%(k) < 2|23, giving

smallest items |z;],

> 9i(DR)Cpery| = O(Vog(n)n™/*|z])).

keSi;

Now WLOG A; is such that 3, p. s, , Chry > 2[I¢lI3. Then [4;1] > |g]l1z]13/3,
where g ~ AN(0,1). Via the cdf of a Gaussian, it follows with probability 1 —
O(n~/%) that |Ai| > n=2[3 = Q((n*/%/\/log(n))| X yes,, 9:(D(k)Cnw)-
Scaling v by a log(n) factor gives |}, gi(D(k))Cpu| = O(v|Aiz]). Next, using

that [Vpuy| = O(v), we have |EkeBij gi(D(k))aD(k)U}D/(i)VD(k)\ = O(”)‘ZkeBij

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

400 RAJESH JAYARAM AND DAVID WOODRUFF

gi(D(k))aD(k)UE/&ﬂ = O(U;;). Combined with the prior paragraph, we have
Ur; = O((|Ai| + |Ai2])) as needed. Note that there are only O(log(n)) terms i, j to
union bound over, and from which the claim follows. 0

Call the event where Claim 1 holds &. Conditioned on &, we can decompose

|Ai j|/i,j for all 4, j into U ;+Vi;, where V;; is some random variable satisfying [V;;| =

O(v(|Aia| +|Ai2])) and U/ is independent of the antirank vector D (it depends only

on the hidden exponentials Ek and the uniformly random Gaussians g;(D(k))). Now

fix any realization of the count-max randomness, let £ = (Ey,..., Ey) be the hidden
exponential vector, p = {1, pi,2 }ica, D = (D(1),D(2),...,D(N)), and observe

Pr|-FAIL | D(1 } ZPr[—\FAIL | D(1), E,M}Pr[E,u]

Here we have used the fact that E, o are independent of the antiranks D. Thus, it will
suffice to bound the probability of obtaining F, u such that the event of failure can
be determined by the realization of D. So consider any row %, and consider the event
Q; that [p; 1 Usy — pi2Ufs| < 2(]V71| + [Vis]) = O(v(JAi 1| + [Ai2]) (where here we
have conditioned on the high probability event £). WLOG, U7y > U7, giving UZ 1=
O(|A;1| + |Ai2]). Since the p; ;’s are uniform, Pr[Q;] = O(v (\AZ 1+ Ai2])/Uf) =
O(v), and by a union bound Pr[U;c(q Q:] = O(log(n)v). Thus conditioned on 51 N&s
and —(U;eq) Qs), the event of failure is completely determined by the values E, i and
in particular is independent of the antirank vector D. Thus

Pr {—‘FAIL |D(1), B, pt, 7(Uie[q) i), €1 N 52} =Pr {ﬂFAIL |E, i, =(Uierq) i), E1 N Ea|.
So averaging over all F, ,
Pr {—|FAIL \D(1)] =Pr [—|FAIL ID(1), ~(Ueq Qi), €1 N 52] + O(log(n)v)
— Pr [—|FAIL (Ui Qi), & N 52} + O(log(n)v)
=Pr [—\FAIL} + O(log(n)v)

as needed. 0

In Lemma 3, we demonstrated that the probability of failure can only change by
an additive O(v) term given that any one value of i € [N] achieved the maximum
(i.e., D(1) = i). This property will translate into a (1 & O(v))-relative error in our
sampler, where the space complexity is independent of v. To complete the proof of
correctness of our algorithm, we now need to bound the probability that we fail at
all. To do so, we first prove the following fact about [|z¢ai(s)[|2, or the Ly norm of z
with the top s largest (in absolute value) elements removed.

PROPOSITION 1. For any s = 27 < n°"2 for some j € N, we have Zf\;ls 22D(2.) =
O(||FH?,/52/”_1) if p € (0,2) is a constant bounded below 2, and Zf\;s Z(Qi) =
O(log(n)HFH%) if p= 2, with probability 1 — 3e~".

Proof. Let I, = {i € [N] | z; € (%7%)} for k = 0,1,...,plog(||F|lp)

(Wherewehavelog(HFHp):O(log())). Note that Prli € 1] = Prlt; € (3, 2080)]
2k

[F3 Hp’
distribution is upper bounded by 1, and the probability results from integrating the

where the inequality follows from the fact that the pdf e~ of the exponential

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 401

pdf over an interval of size at most HFH” Thus E[|1x|] < 2, so for every k > log(s) =

4, we have Pr[|I;| > 4(2)] < e7*2""" by Chernoff bounds. By a union bound, the
probability that |Iz| > 4(2%) for any k > log(s) is at most e~* Zioz%og(n)) e? < 275,
Now observe Pr[z; > ||F||,/s'/?] < %, so E[|{i|z; > ||F||,/s'/P}|] < s, and as be-
fore the number of such i with z; > ||[F||,/s'/P is at most 4s with probability 1 —e~*.

Conditioning on this, va 4s z(does not include the weight of any of these items, so

& EI
p

al & IF),\
2
Z IO Z i < ok/p) <4 Z 9(log(s)+k)(2/p—1)

i1=4s k:log()

2
£, 1

First, if p < 2, the above sum is geometric and converges to at most 4=/ Z7—1 =

O(IlF |12 /s%/P=1) for p a constant bounded below by 2. If p = 2 or is arbitrarily close to
2, then each term is at most | F||2, and the sum is upper bounded by O(log(n)||F||2)
stated. Altogether, the probablhty of failure is at most 1 —3e™* by a union bound EI

LEMMA 4. For 0 < p < 2 a constant bounded away from 0 and 2, the probability
that L, Sampler outputs FAIL is at most 1 —Q(1), and for p =2 is 1 —Q(1/log(n)).
Proof. By Proposition 1, with probability 1 — 3e~% > .9 we have | Ztaitc16) l2 =
O(|F|p) for p < 2, and || ztaii16)l| = O(\/log) F|lp) when p = 2. Observe that for
t=2,3,...,16, we have |zp)| < ||F|l, (Z,)1/1’ and with probability 99/100 we
have E; > 1/100, which implies that |zp)| = O(||F||,) for all ¢ € [16]. Conditioned
on this, we have | ziai2)ll2 < ¢||F|p, where g is a constant when p < 2, and ¢ =
O(y/log(n)) when p = 2. Now |zp(y)| = U;‘);;, and using the fact that the pdf
1

exponential random variables around 0 are bounded above by a constant, we will have
|zp(y| > 20]|z_p(1yll2 with probability ©(1) when p < 2, and probability Q(m)
when p = 2. Conditioned on this, by Lemma 1, count-max will return the index D(1)
with probability 1 — n~¢, and thus the sampling algorithm will not fail. 0

Putting together the results of this section, we obtain the correctness of our
algorithm as stated in Theorem 2. In section 5, we will show that the algorithm
can be implemented to have O(r~') update and O(1) query time and that the entire
algorithm can be derandomized to use O(log? n(loglogn)?) bits of space for p € (0,2)
and O(log®(n)) bits for p = 2.

THEOREM 2. Given any constant ¢ > 2, v > n~ ¢, and 0 < p < 2, there is a
one-pass L, sampler which returns an index i € [n] such that Pr[i = j] = :‘J}Jl‘lp 1+

v)x£n~¢ for all j € [n], and which fails with probability § > 0. The space required is
O(log?(n)log(1/6)(loglogn)?) bits for p < 2 and O(log®(n)log(1/8)) bits for p = 2.
Forp < 2 and § = 1/poly(n), the space is O(log®(n))-bits. The update time is O(v~1),
and the query time is O(1).

Proof. Conditioned on not failing, by Lemma 1, with probability 1 —n~¢ we have
that the output i; € [n°] of count-max will in fact be equal to argmax;{|(;|}. Recall
that ¢; = (1£0(v))z; for all i € [n°] (and this rounding of z to ¢ is order preserving).
By Lemma 1 count-max only outputs a coordinate which is the unique maximizer of
(. Now if there was a unique maximizer of (, there must also be a unique maximizer
in z, from which it follows that i; = arg max;{|z|} .

Now Lemma 3 states for any i; € [n¢] that Pr[-FAIL |i; = arg maxi/’j/{|zi;/ I} =

Pr[-FAIL] = O(v) = q + O(v), where ¢ = Pr[-FAIL] = Q(1) for p < 2, and ¢ =

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

402 RAJESH JAYARAM AND DAVID WOODRUFF

Q(m) for p = 2, both of which follow from Lemma 4, which does not depend on
any of the randomness in the algorithm. Since conditioned on not failing, the output
i, of count-max satisfies i; = arg max;{|z;|}, and the probability we output i; € [n¢] is
Pr[-FAILNi; = arg max{|z;|}], so the probability our final algorithm outputs ¢ € [n] is

Z Pr[—-FAIL | i; = arg max{|z; |}|Pr[i;
i

j€ne1]
B B | fil” ~
= argrg}ay{\zi;, = > Tl (g +0(v))
’ e
| fil? ~
= (g O0(v)).
1£115

Note that we can scale the ¢ value used in the algorithm by a factor of 60, so that
the statement of Lemma 3 holds for any v > n~¢. The potential of the failure of
the various high probability events that we conditioned on only adds another additive
O(n~¢) term to the error. Thus, conditioned on an index 4 being returned, we have

Prfi = j] = I‘\?\llz (14 O(v))) £n ¢ for all j € [n], which is the desired result after

scaling v by a poly(log(n)) term. Running the algorithm O(log(6=1)) times in parallel
for p < 2 and O(log(n)log(d~1)) for p = 2, it follows that at least one index will be
returned with probability 1 — 4.

For the complexity, the update time of count-max data structure A follows from
the routine Fast-Update of Lemma 6, and the query time follows from Lemma 9.
Theorem 7 shows that the entire algorithm can be derandomized to use a random
seed with O(log?(n)(loglog(n))?)-bits, so to complete the claim it suffices to note
that using O(log(n))-bit precision as required by Fast-Update (Lemma 6), it follows
that our whole data structure A can be stored with O(log?(n)) bits, which is domi-
nated by the cost of storing the random seed. This gives the stated space after taking
O(log(61)) parallel repetitions for p < 2. For p = 2, we only need a random seed
of length O(log®(n)) for all O(log(n)log(d~1)) repetitions by Corollary 4, which gives
O(log®(n)log(6~1) + log®(n)) = O(log®(n) log(1/8)) bits of space for p = 2 as stated.
Similarly for the case of p < 2 and § = 1/poly(n), the stated space follows from
Corollary 4.]

In particular, it follows that perfect L, samplers exist using O(log?(n)
log(1/6)(loglogn)?) and O(log®(n)log(1/4)) bits of space for p < 2 and p = 2, re-
spectively.

THEOREM 3. Given 0 < p < 2, for any constant ¢ > 2 there is a perfect Ly,

sampler which returns an index ¢ € [n] such that Pr[i = j] = I‘lj;l"lé + O(n=¢) for

all j € [n], and which fails with probability § > 0. The space required is O(log?(n)
log(1/6)(loglogn)?) bits for p < 2, and O(log®(n)log(1/8)) bits for p = 2. Forp < 2
and § = 1/poly(n), the space is O(log®(n))-bits.

Finally, we note that the cause of having to pay an extra (loglogn)? factor in
the space complexity for p < 2 is only due to the derandomization. Thus, in the
random oracle model where the algorithm has access to a poly(n)-length random
tape which does not count against its space requirement, the space is an optimal
O(log®(n)log(1/5)). We remark that the Q(log?(n)log(1/8)) of [KNP+17] lower
bound also holds in the random oracle model.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 403

COROLLARY 2. For p € (0,2), in the random oracle model, there is a perfect L,
sampler which, fails with probability § > 0 and uses O(log?(n)log(1/8)) bits of space.

Remark 1. Note that for p arbitrarily close to 2, the bound on ||z||2 of Proposition
1 as used in Lemma 4 degrades, as the sum of the Lo norms of the level sets is no
longer geometric and must be bounded by O(4/log(n)||F||2). In this case, the failure
probability from Lemma 4 goes to @(m), and so we must use the upper bound for
p = 2. Similarly, for p arbitrarily close to 0, the bound also degrades since the values
Vp(k) in Lemma 3 blow up. For such nonconstant p arbitrarily close to 0, we direct

the reader to the O(log?(n))-bit perfect Lo sampler of [JST11].

5. Time and space complexity. In this section, we will show that our al-
gorithm can be implemented with the desired space and time complexity. First, in
section 5.1, we show how L,, Sampler can be implemented with the update procedure
Fast-Update to result in O(v~') update time. Next, in section 5.2, we show that the
algorithm L, Sampler with Fast-Update can be derandomized to use a random seed
of length O(log?(n)(loglog n)?)-bits, which will give the desired space complexity. Fi-
nally, in section 5.3, we show how using an additional heavy hitters data structure as
a subroutine, we can obtain 0(1) update time as well. This additional data structure
will not increase the space or update time complexity of the entire algorithm and does
not need to be derandomized.

5.1. Optimizing the update time. In this section we prove Lemma 6. Our
algorithm utilizes a single data structure run on the stream (, which is count-max
matrix A € R¥2 where d = O(log(n)). We will introduce an update procedure,
Fast-Update, which updates the data structure A of L, Sampler in O(r~') time. We
assume the unit cost RAM model of computation, where a word of length O(log(n))-
bits can be operated on in O(1) time. (Note that replacing O(1) with poly(log(n))
time here would not affect our results, as the additional cost would be hidden in the
O) Throughout this section, we will refer to the original algorithm as the algorithm
that implements L, sampler by individually generating each scaling exponential ¢;
for i € [n¢] and hashing them individually into A (naively taking n® update time). Our
procedure will utilize the following result about efficiently sampling binomial random
variables, which can be found in [BKP+14].

PROPOSITION 2. For any constant ¢ > 0, there is an algorithm that can draw a
sample X ~ Bin(n,1/2) in expected O(1) time in the unit cost RAM model. More-
over, it can be sampled in time O(1) with probability 1 — n=¢. The space required is

O(log(n))-bits.

Proof. The proof of the running time bounds and correctness can be found in
[BKP+14]. Since they do not analyze the space complexity of their routine, we do
so here. Their algorithm is as follows. We can assume n is even; otherwise we could
sample Bin(n,q) ~ Bin(n — 1,¢) + Bin(1,¢q), where the latter can be sampled in
constant time (unit cost RAM model) and O(log(n))-bits of space. The algorithm
first computes A € [\/n, v/n + 3], which can be done via any rough approximation of
the function /7, and requires only O(log(n))-bits. Define the block By, = {km, km +
1,....,km+m—1} for k € Z, and set

. 4
fi) = omax{k,—k—1}

p(i) =277 (n/2n+ z) '

s.t. i € By,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

404 RAJESH JAYARAM AND DAVID WOODRUFF

Note that given 4, f(i) can be computed in constant time and O(log(n)) bits of space.
The algorithm then performs the following loop:

1. Sample i via the normalized probability distribution f = f/16.

2. Return n/2 + ¢ with probability p(i)/f(4).

3. Else, reject 7 and return to step 1.
To compute the first step, the symmetry around n/2 of f is utilized. We flip unbiased
coins C4,Cs,... until we obtain C;1; which lands tails, and pick ¢ uniformly from
block B; or B_; (where the choice is decided by a single coin flip). The procedure
requires at most O(log(n))-bits to store the index ¢. Next, to perform the second step,
we obtain 27 additive error approximations § of ¢ = (p(i)/f(i)) for L = 1,2,...,
which (using the fact that 0 < ¢ < 1) can be done by obtaining a 2~ *-relative error
approximation of ¢. Then we flip L random bits to obtain a uniform R € [0, 1] and
check if |R — G| > 27, If so, we can either accept or reject i based on whether
R> G+ 27 or not; otherwise we repeat with L < L + 1.

To obtain §, it suffices to obtain a 27%~! relative error approximation of the

factorial function x!. g, the 2~ approximation

k—1
is used, where c; = %(L — k)k=1/2eL=k_ This requires estimating the functions

x

L1
!~ (z+ L)IH/Qe*(‘r*L) [\/%—F Z lej i
k=1

e”, /x, and 7, all of which, as well as each term in the sum, need only be estimated
to O(L)-bits of accuracy (as demonstrated in [BKP+14]). Thus the entire procedure
is completed in O(L) = O(log(n))-bits of space (L can never exceed O(log(n)), as ¢
is specified with at most O(log(n)) bits), which completes the proof. o

We now utilize a straightforward reduction from the case of sampling from Bin(n, q)
for any ¢ € [0,1] to sampling several times from Bin(n’,1/2), where n’ < n. This
reduction has been observed before [FCT15], but we will state it here to clearly
demonstrate our desired space and time bounds.

LEMMA 5. For any constant ¢ > 0 and q € [0,1], there is an algorithm that can
draw a sample X ~ Bin(n,q) in expected O(1) time in the unit cost RAM model.
Moreover, it can be sampled in time O(l) with probability 1 — n=¢, and the space
required is O(log(n))-bits.

Proof. The reduction is as follows (for a more detailed proof of correctness, see
[FCT15]). We sample Bin(n,q) by determining how many of the n trials were suc-
cessful. This can be done by generating variables ui,...,u, uniform on [0,1] and
determining how many are less than q. We do this without generating all the vari-
ables u; explicitly as follows. First write ¢ in binary as ¢ = (0.¢g1g2, ...)2. Set b <+ 0,
j < 1, nj < n and sample b; ~ Bin(n;,1/2). If ¢; = 1, then set b = b+ b;, as these
corresponding b; trials u; with the first bit set to 0 will all be successful trials given
that ¢; = 1. Then set nj 1 < n; —b; and repeat with j < j+1. Otherwise, if ¢; = 0,
then we set nj1 < n; — (n; — b;) = b;, since this represents the fact that (n; — b;)
of the variables u; will be larger than ¢. With probability 1 — n=19%¢ we reach the
point where n; = 0 within O(log(n)) iterations, and we return the value stored in b
at this point. By Proposition 2, each iteration requires O(l) time, and thus the entire
procedure is O(1). For space, note that we need only store ¢ to its first O(log(n))
bits, since the procedure terminates with high probability within O(log(n)) iterations.
Then the entire procedure requires O(log(n)) bits, since each sample of Bin(n;, 1/2)
requires only O(log(n)) space by Proposition 2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 405

The Fast-Update procedure. We are now ready to describe the implementation
of our algorithm’s update procedure. Specifically, our goal is to show that the update
time of our algorithm can be made O(l/l/), where v is the relative error in the sampler.
Now recall that for our perfect L, sampler we require v = 1/poly(n), and thus the
Fast-Update procedure will not improve the update time of our perfect L, sampler
(beyond the naive poly(n)). However, if one allows the relative error v to be larger
(i.e., an approximate sampler), then a O(1/v) update time is now much faster. Thus,
the Fast-Update procedure allows for a trade-off between the update time and the
relative error of the sampler. Note that all prior works had a dependency on the
relative error v in both the spacial complexity and the update time of the sampler.?

Recall that our algorithm utilizes just a single data structure on the stream (:
the d x 2 count-max matrix A (where d = O(log(n))). Upon receiving an update
(i, A) to a coordinate f; for i € [n], we proceed as follows. Our goal is to compute

the set {rnd,,(l/t;/p)rnd,,(l/t;/pL...,rndy(l/tiﬂ/f_l)} and update each row of A
accordingly in O(l/_l) time, where v is the error parameter for L, sampling which
will factor only into the update time of the algorithm and not the space complexity.
Naively, this could be done by computing each value individually and then updating
each row of A accordingly, but this would require O(n¢~!) time. To avoid this and
obtain speed-ups when the relative error v is made larger than 1/poly(n), we exploit
the fact that the support size of rnd, () for 1/poly(n) < z < poly(n) is O(v~1), so
it will suffice to determine how many variables rnd, (1 /tl1 7/ Py are equal to each value
in the support of rnd, (z). '

Our update procedure is then as follows. Let I; = (14 v)7 for j = —II,—I1 +
1,...,011 — 1,0, where T = O(log(n)r~"). We utilize the c.d.f. ¥(z) =1 —e"* " of
the 1/pth power of the inverse exponential distribution t—1/r (here t is exponentially
distributed). Then beginning with j = —II, —II+1,...,II we compute the probability
¢j = ¥(I;+1) — ¢(I;) that rnd, (1/t'/?) = I; and then compute the number of values

Q; in {rndl,(l/til/p),rndl,(l/té/p), . ,rnd,,(l/tiljfil)} which are equal to I;. With
probability 1 — n!%%¢ we know that 1/poly(n) < t; < poly(n) for all i € [N], and
thus conditioned on this, we will have completely determined the values of the items
in {rndl,(l/t;/p)7 rnd,,(l/t;/p)7 . ,rndl,(l/tg/i1)} by looking at the number equal to
I, for j = —TI,...,IL ’

Now we know that there are @); updates which we need to hash into A (along with
ii.d. Gaussian scalings), each with the same value Al;. This is done by the procedure
Fast-Update-CS (Figure 4), which computes the number of updates by o that hashes

to each bucket Ay by drawing binomial random variables. Once this is done, we
know that the value of Ay ¢ should be updated by the value Ziif g+Al;, where each
g: ~ N(0,1). Naively, computing the value Zf’;f gtAI; would involve generating by,
random Gaussians. To avoid this, we utilize the 2-stability of Gaussians (Definition
2), which asserts that S 0% G AL ~ gy/bygAl;, where g ~ N(0,1). Thus we can
simply generate and store the Gaussian g associated with the item ¢ € [n], rounding
1;, and bucket Ay, 9, and on each update A to f; we can update Ay g by g/broAlL;.
Finally, once the number of values in

{rnd,,(l/?f;l/p)7 rnd,,(l/ﬁzt/p)7 o ,rndy(l/tl/p)}

tpe—1

3Note that our algorithm has no dependency on v in the spacial complexity as long as 1/v =

O(poly(n)).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

406 RAJESH JAYARAM AND DAVID WOODRUFF

Fast-Update-CS (A, Q,I,A,1)
Set Wy =Q fork=1,...,d
For k=1,...,d,
1. For 0 =1,2:
(a) Draw bk’g ~ Bin(Wk, ﬁ)
(b) Draw and store grgr: ~ N(0,1). Reuse on every call to
Fast-Update-Cs with the same parameters (k,0,1,1).

(c) Set Ao < Apo + gro,1,i\/bk,o AL
(d) Wi < Wy, — bkﬂ.

Fic. 4. Update A via updates to QQ coordinates, each with a value of Al.

Fast-Update (i, A, A)
Set L = n°~!, and fix K = O(log(n)) with a large enough constant.
For j=—-II,-IT+1,...,IT—1,1I:
1. Compute q; = ¢(Ij+1) — d)(lj)
2. Draw @; ~ Bin(L, ¢;).
3. If L < K, hash the @; items individually into each row A, using explicitly
stored uniform i.i.d. random variables hy : [n¢] — [2] and Gaussians g.(j)
for ¢ € [d].
4. Else: update count-max table A by via Fast-Update-CS(A4, Q;, [;, A, 7).
5. L L—Q;.

Fic. 5. Algorithm to Update count-mazx A.

that are left to determine is less than K for some K = ©(log(n)), we simply generate
and hash each of the remaining variables individually. The generation process is the
same as before, except that for each of these at most K remaining items we associate
a fixed index i; for j € [n°7!] and store the relevant random variables hy(i;), ge(i;)
for ¢ € [d]. Since the value of j that is chosen for each of these coordinates does
not affect the behavior of the algorithm—in other words the index of the duplicate
that is among the K largest is irrelevant—we can simply choose these indices to be
i1,42,...,ix € [N] so that the first item hashed individually via step 3 corresponds
to (i, , the second to (;,, and so on.

Note that the randomness used to process an update corresponding to a fixed
i € [n] is stored so it can be reused to generate the same updates to A whenever
an update to ¢ is made. Thus, each time an update +1 is made to a coordinate
i € [n], each bucket of count-max is updated by the same value. When an update
of size A comes, this update to the count-max buckets is scaled by A. For each
1 € [n], let K; denote the size of L when step 3 of Figure 5 was first executed while
processing an update to <. In other words, the coordinates ¢;,, ..., (i, were hashed
into each row ¢ € [d] of A using explicitly stored random variables h(z;), g¢(i;). Let
K = Uiem UJKZ"l {i;}. Then on the termination of the algorithm, to find the maximizer
of (, the count-max algorithm checks for each ¢ € IC, whether 7 hashed to the largest
bucket (in absolute value) in a row at least a % fraction of the time. Count-max then
returns the first ¢ that satisfies this, or FAIL. In other words, the count-max algorithm
decides to fail or output an index ¢ based on computing the fraction of rows for which
i hashes into the largest bucket, except now it only computes these values for i € K
instead of i € [n°]; thus count-max can only return a value of ¢ € K. We now argue

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 407

that the distribution of our algorithm is not changed by using the update procedure
Fast-Update. This will involve showing that arg max{|(;|} € K if our algorithm was
to return a coordinate originally.

LEMMA 6. Running the L, sampler with the update procedure given by
Fast-Update results in the same distribution over the count-mazx table A as the orig-
inal algorithm. Moreover, conditioned on a fized realization of A, the output of the
original algorithm will be the same as the output of the algorithm using Fast-Update.
For a given i € [n], Fast-Update requires O(v=")-random bits and runs in time

Oo(v=1).

Proof. To hash an update A to a coordinate f;, the procedure Fast-Update com-
putes the number (; of variables in the set {rndy(l/tl/p), rndy(l/tl/p),

i i
2...,rndu(1/t;/f_l)} which are equal to I; for each j € {—II,... ,II}. Instead of
computing Q; by individually generating the variables and rounding them, we utilize

a binomial random variable to determine @);, which results in the same distribution
over {rnd,(1/t./?),rnd,(1/t:/),2... 7rndl,(l/ti/fil)}. As noted, with probability

1 2
1 — n'9%¢ none of the variables rnd,,(l/tllj/p) will be equal to Ij for |k| > II, which
follows from the fact that n=19¢ < ¢; < O(log(n)) with probability 1 — n=19%¢ and
then union bounding over all n® exponential variables ¢;. So we can safely ignore this
low probability event.

Once computed, we can easily sample from the number of items of the @;
that go into each bucket Ay g, which is the value by ¢ in Fast-Update-CS (Figure
4). By 2-stability of Gaussians (Definition 2), we can update each bucket Ay g by
9k.0.1;.i\/bk,9 AL, which is distributed precisely the same as if we had individually
generated each of the by ¢ Gaussians and taken their inner product with the vector
AT, where T is the all 1’s vector. Storing the explicit values hy(i;) for the top K

largest values of rnd, (1/ t;j/) does not affect the distribution but only allows the al-
gorithm to determine the induces of the largest coordinates ¢; corresponding to each
i € [n] at the termination of the algorithm. Thus the distribution of updates to A is
unchanged by the Fast-Update procedure.

We now show that the output of the algorithm run with this update procedure
is the same as it would have been had all the random variables been generated and
hashed individually. First observe that for v < 1/2, no value ¢; = ¥(I;41) — ¥ (I;) is
greater than 1/2. Thus at any iteration, if L > K, then L —Bin(L,q;) > L/3 with
probability 1 — n~19¢ by Chernoff bounds (using that K = Q(log(n))). Thus for the
first iteration at which L drops below K, we will have L > K /3. So for each i € [n]
the top K/3 values (;; will be hashed into each row A, using stored random variables
he(i;), so K; > K/3 = Q(log(n)) for all ¢ € [n]. In particular, K; > 0 for all ¢ € [n].

Now the only difference between the output procedure of the original algorithm
and that of the efficient-update time algorithm is that in the latter we only compute
the values of a;; = |{t € [d] | |A¢p, ;)| = max,eqi0) |Aer|}| for the i; € [nf]

,t;lc/fi}, whereas
in the former all values of «;; are computed to find a potential maximizer. In other
words, count-max with Fast-Update only searches through the subset K C [n¢] for a
maxmizer instead of searching through all of [n¢] (here K is as defined earlier in this
section). Since count-max never outputs a index ¢; that is not a unique maximizer
with high probability, we know that the output of the original algorithm, if it does

not fail, must be ¢; such that j = arg maxj/{tij,}, and therefore i; € K. Note the n™¢

corresponding to the K; largest values t;l/p in the set {t;l/p, e

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

408 RAJESH JAYARAM AND DAVID WOODRUFF

failure probability can be safely absorbed into the additive n~¢ error of the perfect
L, sampler. Thus the new algorithm will also output ¢;. Since the new algorithm
with Fast-Update searches over the subset K C [n€] for a maximier, if the original
algorithm fails, then certainly so will Fast-Update. Thus the output of the algorithm
using Fast-Update is distributed identically (up to n~¢ additive error) as the output
of the original algorithm, which completes the proof.]

Runtime & Random Bits. For the last claim, first note that it suffices to generate
all continuous random varaibles used up to (nmM)~¢ = 1/poly(n) precision, which
is 1/poly(n) additive error after conditioning on the event that all random variables
are all at most poly(n) (which occurs with probability 1 — n~¢) and recalling that
the length of the stream m satisfies m < poly(n) for a suitably smaller poly(n)
then as in the additive error. More formally, we truncate the binary representation
of every continuous random variable (both the exponentials and Gaussians) after
O(log(n))-bits with a sufficiently large constant. This will result in at most an additive
1/poly(n) error for each bucket A; ; of A, which can be absorbed by the adversarial
error V; ; with |V; ;| = O(v(JA4:1] + |A4s2])) that we incur in each of these buckets
already in Lemma 3. Thus each random variable requires O(log(n)) bits to specify.
Similarly, a precision of at most (nmM)~° is needed in the computation of the g¢;’s
in Figure 5 by Lemma 5, since the routine to compute Bin(n, ¢;) will terminate with
probability 1 — n=1%%¢ after querying at most O(log(n)) bits of ¢;. Now there are
at most 2I1 = O(r~!log(n)) iterations of the loop in Fast-Update. Within each,
our call to sample a binomial random variable is carried out in O(1) time with high
probability by Lemma 5 (and thus use at most O(1) random bits), and there are
0(1) entries in A to update (which upper bounds the running time and randomness
requirements of Fast-Update-CS).

Note that since the stream has length m = poly(n), and there are at most O(v)
calls made to sample binomial random variables in each, we can union bound over
each call to guarantee that each returns in O(1) time with probability 1 — n~100¢,
Since K = O(1), we must store an additional O(1) random bits to store the indi-

vidual random variables hy(i;) for i; € {i1,...,ix,}. Similarly, we must store O(v)
independent Gaussians for the procedure Fast-Update-CS, which also terminates in
O(1) time, which completes the proof. d

5.2. Derandomizing the algorithm. We now show that our algorithm L,
Sampler with Fast-Update can be derandomized without affecting the space or
time complexity. Recall that our main L, sampling algorithm utilizes two main
sources of randomness. First, it uses randomness to generate the exponential ran-
dom scaling variables (t1,...,t,c) (the “exponential randomness”), and second, it
uses randomness to generate the Gaussian coefficients g;(j) and fully random hash
functions h;(j) needed for count-max (the “count-max randomness”). To deran-
domize both these sources of randomness, we will need to use a combination of
Nisan’s PRG [Nis92] and the PRG of Goplan, Kane, and Meka [GKM18]. Specif-
ically, we will derandomize the exponential randomness with the PRG of Goplan,
Kane, and Meka, and we will derandomize the count-max randomness with Nisan’s
PRG.

We begin by introducing Nisan’s PRG, which is a deterministic map G : {0, 1}* —
{0,1}7, where T >> / (for instance, one can think of 7' = poly(n) and £ = O(log?(n))).
Let o : {0,1}T — {0,1} be a tester (a function computable under some specified
restrictions). For the case of Nisan’s PRG, o must be a tester which reads its random
T-bit input in a stream, left to right, and outputs either 0 or 1 at the end. Nisan’s

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 409

PRG can be used to fool any such tester, which means

[Prio(Ur) = 1] Prio(G(U) = 1]| < 7=,
where U, indicates ¢ uniformly random bits for any ¢, and c is a sufficiently large
constant. Here the probability is taken over the choice of the random bits Ur and Uy.
In other words, the probability that ¢ outputs 1 is nearly the same when it is given
random input as opposed to input from Nisan’s generator. Note that since o(Ur)
is a 0,1 random variable, the left-hand side of the above equation can be rewritten
as |[E[o(Ur)] — E[c(G(Uy))]|. Nisan’s theorem states if o can be computed by an
algorithm with at most poly(7T') states and which uses a working memory tape of size
at most O(logT), then a seed length of £ = O(log® T") suffices for the above result
[Nis92]. More generally, if o can be computed by an algorithm with poly(T') states
and which uses a working memory of tape of size S = Q(logT), then a seed length of
¢ = O(SlogT) suffices for the above result. Thus Nisan’s PRG fools space bounded
testers o that read their randomness in a stream.

Why Nisan’s PRG alone is insufficient. We remark that it is possible to deran-
domize our entire algorithm with Nisan’s PRG, albeit with suboptimal seed length.
Since our algorithm is a linear sketch and is therefore independent of the ordering
of the stream, one can assume for the sake of the derandomization that the stream
is ordered so that all updates to a single coordinate occur consecutively (this is a
fairly standard argument, e.g., [Ind06]). Reading the exponential and count-max ran-
domness in a stream, one can then fully construct the state of the algorithm’s data
structure at the end of the stream, by adding the contribution of each coordinate to
the whole data structure one by one. The space required to do this is the size of the
data structure, which is O(log®n) bits. Then to derandomize with Nisan’s PRG, we
would require a seed length of O(log3 n)-bits, which does not match our desired space
complexity. Thus to improve the seed length to O(log? n(loglogn)?), we will need the
approach followed here.

We remark that the main difficulty in applying Nisan’s PRG alone is that, for a
given ¢, to test if ¢ is returned by count-max, one must check for each pair of buckets
in count-max whether i hashes to the larger bucket. Since each bucket depends on
the same exponential randomness, one would either need to make multiple passes over
the exponential randomness (which is not allowed by Nisan’s), once for each bucket,
or one would need to store all the buckets simultaneously. On the other hand, if the
exponential randomness was fized, and hard-coded into the tester o, then one could
construct the buckets one at a time, reading only the count-max randomness in a
stream, and thus only using O(logn) bits of space. We make use of this latter fact,
by generating the exponential randomness with a separate PRG from [GKM18], to
obtain our main result.

5.2.1. Road-map for the derandomization. We now briefly lay out the
structure of this section. First, in section 5.2.2, we introduce the PRG of Goplan,
Kane, and Meka [GKM18], along with the notion of a half-space tester, which will be
crucial for us. We then demonstrate in Lemma 7 how the PRG of [GKM18] can be
used to fool such half-space testers with a small seed length. Recall the PRG is just
a function G : {0,1}¢ — {—M, ..., M} for some M = poly(n). However, in order
to use this PRG for our streaming algorithm, we must show not only that the seed
length is small, but also that given a seed x, one can compute each coordinate of G(x)
in small space and small runtime, which we do in Proposition 3. We then use this fact

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

410 RAJESH JAYARAM AND DAVID WOODRUFF

that G can fool half-space testers to prove a set of general results about derandomizing
streaming algorithms, which is captured in Theorem 5. As a corollary, we obtain a
novel and improved derandomization of the count-sketch variant of [MP14]. Finally,
in section 5.2.4, we present our main theorem, Theorem 7, which uses a combination
of the PRG of Goplan, Kane, and Meka as well as Nisan’s PRG to derandomize our
streaming algorithm.

5.2.2. Half space fooling PRG’s. Our derandomization crucially uses the
PRG of Goplan, Kane, and Meka [GKM18], which fools a certain class of Fourier trans-
forms. Utilizing the results of [GKM18], we will design a PRG that can fool arbitrary
functions of A = O(log(n)) halfspaces, using a seed of length O(log?(n)(loglog(n))?).
We remark that in [GKM18] it is shown how to obtain such a PRG for a func-
tion of a single half-space. Using extensions of the techniques in that paper, we
demonstrate that the same PRG with a smaller precision ¢ can be used to fool
functions of more half-spaces. We now introduce the main result of [GKM18]. Let

Ci={ceC||d<1}.

DEFINITION 4 (Definition 1 [GKM18]). An (m,n)-Fourier shape f : [m]™ — C;
is a function of the form f(xy1,...,2,) = H?Zl fi(z;), where each f; : [m] — Cy.

THEOREM 4 (Theorem 1.1 [GKM18]). There is a PRG G : {0,1}* — [m]™ that
fools all (m,n)-Fourier shapes f with error € using a seed of length

¢ = O(log(mn/e)(log log(mn/e))?),

meaning

()] - E[rGw)]| <
where x is uniformly chosen from [m]™ and y from {0,1}*.

For any a',...,a* € Z" and 0y,...,0, € Z, let H; : R” — {0,1} be the function
given by H;(X1,...,X,) = 1[aiX; + a5 Xy + -+ + a}, X, > 6;], p where 1 is the
indicator function. We now define the notion of a A-halfspace tester and what it
means to fool one.

DEFINITION 5 (A-halfspace tester). A A-halfspace tester is any function oy :
R™ — {0,1} which, on input X = (X1,...,X,), outputs oy (H1(X),...,Hy(X)) €
{0,1}, where o’y is any fived function o'y : {0,1}* — {0,1}. In other words, the
Boolean valued function o (X) only depends on the values (Hy(X),..., Hy\(X)). A
A-halfspace tester is said to be M bounded if all the half-space coefficents a;'- and 0; are
integers of magnitude at most M, and each X; is drawn from a discrete distrubtion
D with support contained in {—M,..., M} C Z.

DEFINITION 6 (fooling a A-halfspace tester). A PRG G : {0,1}* — R" is said to
e-fools the class of A-halfspace testers under a distribution D over R™ if for every set
of \ halfspaces H = (Hy,...,Hy) and every \-halfspace tester oy : R™ — {0,1}, we
have

|EX~D [JH(X) = 1] - EyN{O,l}f [O’H(G(y)) = 1]| < €.

Here € is the seed length of G.

We will consider only product distributions D. In other words, we assume that
each coordiante X; is drawn i.i.d. from a fixed distribution D over {—M, ..., M} C Z.
We consider PRG’s G : {0,1}* — {—=M,..., M}" which take in a random seed of
length ¢ and output a X' € {—M,..., M}"™ such that any M-bounded A-halfspace

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 411

tester will be unable to distinguish X’ from X ~ D™ (where D" is the product
distribution of D, such that each X; ~ D independently). The following lemma
demonstrates that the PRG of [GKM18] can be used to fool M-bounded A-halfspace
testers. The authors would like to thank Raghu Meka for providing us with a proof
of Lemma 7.

LEMMA 7. Suppose X; ~ D is a distribution on {—M, ..., M} that can be sam-
pled from with log(M') = O(log(M)) random bits. Then, for any € > 0 and con-
stant ¢ > 1, there is a PRG G : {0,1}¢ — {=M, ..., M}" which e(nM)~*-fools the
class of all M-bounded A\-halfspace testers on input X ~ D™ with a seed of length
¢ = O(Nlog(nM/e)(loglog(nM/€))?) (assuming X < n). Moreover, if G(y) = X' €
{=M,...,M}" is the output of G on random seed y € {0,1}¢, then each coordinate
X! can be computed in O(f)-space and in O(1) time, where O hides poly(log(nM))
factors.

Proof. Let X = (X1,...,X,) be uniformly chosen from [M’']" for some M’ =
poly(M), and let Q : [M'] — {=M,..., M} be such that Q(X;) ~ D™ for each
i € [n]. Let al,...,a* € Z", 61,...,05 € Z be log(M)-bit integers, where H;(x) =
1[(a’,z) > 6;]. Let Y; = (Q(X),a’) — 0;. Note that Y; € [-2M?>n,2M?n]. So
fix any a; € [-2M?n,2M?n] for each i € [\, and let & = (ai,...,ay). Let
ho() =1(Y1 = a1) - 1(Ya = ag) - - - L(Y) =), where 1(+) is the indicator function.
Now define f(z) = 2?21(2M2n)j*1<a",x> for any z € Z". Note that f(Q(X)) €
{—(Mn)°N ... (Mn)°MN}. We define the Kolmogorov distance between two inte-
ger valued random variables Z, Z' by dx (Z, Z') = maxyecz(|Pr[Z < k] — Pr[Z" < K]|).
Let X' € [M']™ be generated via the (M’ ,n)-Fourier shape PRG of [GKMI§|
with error € (Theorem 1.1 [GKM18]). Observe E[h,(Q(X))] = Pr[f(Q(X)) =
S (Mn)tay], so

[E[ha(Q(X))] — E[ha(QX)]] < di (F(Q(X)), F(QIX))).

Now by Lemma 9.2 of [GKM18],

dx (F(Q(X)), f(Q(X"))) = O(Mog(Mn)dpr (f(Q(X)), F(Q(X)))),

where for integer valued Z, Z’, we define

dpr(Z,7Z") = max_|Elexp(2miB3Z)] — Elexp(2miSZ")]|.
Bel0,1]

Now exp(2miBf(Q(X))) = [Ii_y ((X)_;(2M?n)7~1al)Q(X;)), which is a (M',n)-
Fourier shape as in Definition 4. Thus by Theorem 4 (Theorem 1.1 of [GKM18]),
we have dpr(f(Q(X)), f(Q(X"))) < €. Thus

[E[ha(Q(X))] - E[ha(Q(X)]| = O(Alog(Mn)e").

Now let oy (x) = oy (H1(z), ..., Ha(z)) be any M-bounded A-halfspace tester on x ~
D™. Since the inputs to the halfspaces H; of o are all integers in {—2M?n,2M?n},
let A C {—2M?n,2M?n} be the set of @ € A such that Y = (V1,...,Y)) = «
implies that oy (Q(X)) = 1, where Q(X) ~ D™ as above. Recall here that Y; =
(Q(X),a’y — 6;. Then we can think of a oy (X) = o%(Y1,...,Y)) for some func-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

412 RAJESH JAYARAM AND DAVID WOODRUFF

tion o, : {—2M?n,...,2M?n}* — {0,1}, and in this case we have A = {a €
{—2M?*n,2M?n} | o' (a) = 1}. Then

[Elos (Q(X))] = Elom(QX))] < Y [E[ha(Q(X)] — Elha(Q(X")]]

acA

<) O(Mog(Mn)e').

acA

Now note that |A| = (nM)°W), so setting ¢ = e(nM)~N) with a suitably large con-
stant, we obtain [E[og (Q(X))] — E[eg(Q(X"))]| < e(nM)~* as needed. By Theorem
4, the seed required is £ = O(Alog(nM/e)(loglog(nM/e))?) as needed. The space and
time required to compute each coordinate follows from Proposition 3 below. 0

PROPOSITION 3. In the setting of Lemma 7, if G(y) = X' € {-M,...,M}"™ is
the output of G on random seed y € {0, 1~}£, then each coordinate X! can be computed
in O(f)-space and in O(1) time, where O hides poly(log(nM)) factors.

Proof. In order to analyze the space complexity and runtime needed to compute
a coordinate X/, we must describe the PRG of Theorem 4. The Goplan-Kane-Meka
PRG has three main components, which themselves use other PRGs such as Nisan’s
PRG as subroutines. Recall that the PRG generates a pseudouniform element from
X ~ [M]" that fools a class of Fourier shapes f : [M]™ — C on truly uniform input
in [M]™. Note that because of the definition of a Fourier shape, if we wish to sample
from a distribution X ~ D over {—M, ..., M}™ that is not uniform, but such that X;
can be sampled with log(M’)-bits, we can first fool Fourier shapes f’ : [M']" — C,
and then use a function @ : [M'] — {—=M,..., M} which samples X; ~ D given
log(M’) uniformly random bits. We then fool Fourier shapes ' = []7_, fi(z) =
H?Zl f;(Q(y)), where z,y are uniform, and thus Q(y) ~ D. Thus it will suffice to
fool (M’,n)-Fourier shapes on uniform distributions. For simplicity, for the most part
we will omit the parameter € in this discussion.

The three components of the PRG appear in sections 5, 6, and 7 of [GKM18],
respectively. In this proof, when we write section x we are referring to the corre-
sponding section of [GKM18]. They consider two main cases: one where the function
f has high variance (for some notion of variance), and one where it has low variance.
The PRGs use two main pseudorandom primitives, §-biased and k-wise independent
hash function families. Formally, a family H = {h : [n] — [M]} is said to be d-biased
if for all » < n distinct indices i1, ...,4, € [n] and j1,...,Jj, € [M] we have

1

= 0.

Pryp [h(ir) = ji Ao+ A h(in) = jr]

The function is said to be k-wise independent if it holds with 6 = 0 for all r < k.
It is standard that k-wise independent families can be generated by taking a poly-
nomial of degree k over a suitably large finite field (requiring space O(klog(Mn))).
Furthermore, a value h(i) from a §-biased family can be generated by taking products
of two O(log(n/d))-bit integers over a suitable finite field [Kopl3] (requiring space
O(log(n/6))). So in both cases, computing a value k(i) can be done in space and time
that is linear in the space required to store the hash functions (or O(log(n/d))-bit
integers). Thus, any nested sequence of such hash functions used to compute a given
coordinate X/ can be carried out in space linear in the size required to store all the
hash functions.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 413

Now the first PRG (section 5 [GKM18]) handles the high variance case. The PRG
first subsamples the n coordinates at log(n) levels using a pairwise hash function (note
that a 2-wise permutation is used in [GKM18], which reduces to computation of a
2-wise hash function). In each level S; of subsampling, it uses O(1)-wise independent
hash functions to generate the coordinates X; € S;. So if we want to compute a value
X;, we can carry out one hash function computation h(:) to determine j such that
X, € S; and then carry out another hash function computation h;(i) = X;. Instead
of using log(n) independent hash functions h;, each of size O(log(nM)), for each of
the buckets S, they derandomize this with the PRG of Nisan and Zuckerman [NZ96]
to use a single seed of length O(logn). Now the PRG of Nisan and Zuckerman can
be evaluated online, in the sense that it reads its random bits in a stream and writes
its pseudorandom output on a one-way tape, and runs in space linear in the seed
required to store the generator itself (see Definition 4 of [NZ96]). Such generators are
composed to yield the final PRG of Theorem 2 [NZ96], but by Lemma 4 of the paper,
such online generators are composable. Thus the entire generator of [NZ96] is online,
and so any substring of the pseudorandom output can be computed in space linear
in the seed of the generator by a single pass over the random input. Moreover, by
Theorem 1 of [NZ96] in the setting of [GKM18], such a substring can be computed in
O(1) time, since it is only generating O(1) random bits to begin with.

On top of this, the PRG of section 5 [GKM18] first splits the coordinates [n]
via a limited independence hash function into poly(log(1/e€)) buckets and applies the
algorithm described above on each. To do this second layer of bucketing and not
need fresh randomness for each bucket, they use Nisan’s PRG [Nis92] with a seed of
length log(n)loglog(n). Now any bit of Nisan’s PRG can be computed by several
nested hash function computations, carried out in space linear in the seed required to
store the PRG. Thus any substring of Nisan’s can be computed in space linear in the
seed and time O(1). Thus to compute X/, we first determine which bucket it hashes
to, which involves computing random bits from Nisan’s PRG. Then we determine a
second partitioning, which is done via a 2-wise hash fucntion, and finally we compute
the value of X/ via an O(1)-wise hash function, where the randomness for this hash
function is stored in a substring output by the PRG of [NZ96]. Altogether, we con-
clude that the PRG of section 5 [GKM18] is such that value X! can be computed in
space linear in the seed length and O(1) time.

Next, in section 6 of [GKM18], another PRG is introduced which reduces the
problem to the case of M < poly(n). Assuming a PRG G; is given which fools
(M, n)-Fourier shapes, they design a PRG Go using Gy which fools (M?,n)-Fourier
shapes. Applying this O(loglog(M)) times reduces to the case of m < n*. The
PRG is as follows. Let Gy,...,G; be the iteratively composed generators, where
t = O(loglog(M)). To compute the value of (G;); € [M], where (G;); is the jth coor-
dinate of G; € [M]™, the algorithm first implicitly generates a matrix Z € [M]VM*M
An entry Z, , is generated as follows. First one applies a k-wise hash function h(g)
(for some k) and uses the O(log M)-bit value of h(g) as a seed for a second 2-wise
indepedent hash function h;L(o Then Z,, = h;L(q)(p). Thus within a column ¢ of
Z, the entries are 2-wise independent, and separate columns of Z are k-wise indepen-
dent. This requires O(klog M)-space to store, and the nested hash functions can be
computed in O(klog M)-space. Thus computing Z; ; is done in O(1) time and space
linear in the seed length. Then we set (Gi); = Z(g,_,),,; for each j € [n]. Thus (G;);
only depends on (G;_1);, and the random seeds stored for two hash functions to eval-
uate entries of Z. So altogether, the final output coordinate (G); can be computed

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

414 RAJESH JAYARAM AND DAVID WOODRUFF

in space linear in the seed length required to store all required hash functions, and in
time 0(1) Note importantly that the recursion is linear, in the sense that computing
(G;); involves only one query to compute (G;);s for some j’.

Next, in section 7 of [GKM18], another PRG is introduced for the low-variance
case, which reduces the size of n to v/n, but blows up m polynomially in the process.
Formally, it shows given a PRG G that fools (poly(n),/n) Fourier shapes, one can
design a PRG GY% that fools O(M, n)-Fourier shapes with M < n* (here the poly(n)
can be much larger than n*). To do so, the PRG first hashes the n coordinates into
/n buckets k-wise independently and then in each bucket uses k-wise independence
to generate the value of the coordinate. A priori, this requires v/n independent seeds
for the hash function in each of the buckets. To remove this requirement, it uses G
to generate the y/n seeds required from a smaller seed. Thus to compute a coordinate
i of GY, simply evaluate a k-wise independent hash function on 4 to determine which
bucket j € [v/n] the item 4 is hashed into. Then evaluate G (j) to obtain the seed
required for the k-wise hash function hj, and the final result is given by h;(i). Note
that this procedure only requires one query to the prior generator Gj. The space
required to do so is linear in the space required to store the hash functions, and the
space required to evaluate a coordinate of the output of G, which will be linear in
the size used to store G by induction.

Finally, the overall PRG composes the PRG from sections 6 and 7 to fool larger
n, M in the case of low variance. Suppose we are given a PRG Gy which fools
(M",v/n’)-Fourier shapes for some M"” < (n’)%2. We show how to construct a PRG
G which fools (M’,n')-Fourier shapes for any M’ < (n’)*. Let G°7 be the PRG
obtained by first applying the PRG from section 6 on Gy as an initial point, which
gives a PRG that fools (poly(n’), v/n')-Fourier shapes, and then applying the PRG
from section 7 on top, which now fools (M’,n’)-Fourier shapes (with low variance).
Let G® be the generator from section 5 which fools (M’, n’)-Fourier shapes with high
variance. The final algorithm for fooling the class of all (M’, n')-Fourier shapes given
Go computes a generator G such that the ith coordinate is (G1); = (G5*7); @ (G®);,
where @ is addition mod M’. This allows one to simultaneously fool high and low
variance Fourier shapes of the desired M’ ,n’. If M > (n’)%, one can apply the PRG
for section 6 one last time on top of G to fool arbitrary M. Thus if for any i, the
1th coordinate of Gg17 and G5 can be composed in O(1) time and space linear in the
size required to store the random seed, then so can G;. Thus going from Gy to G
takes a generator that fools (M",+/n’) to (M’,n’)-Fourier shapes, and similarly we
can compose this to design a Go that fools (M’, (n’)?)-Fourier shapes. Composing
this t = O(loglog n)-times, we obtain G; which fools O(M,n) Fourier shapes for any
M,n. As a base case (to define the PRG Gy), the PRG of [NZ96] is used, which we
have already discussed can be evaluated on-line in space linear in the seed required
to store it and time polynomial in the length of the seed.

Now we observe an important property of this recursion. At every step of the
recursion, one is tasked with computing the jth coordinate output by some PRG for
some 7, and the result will depend only on a query for the j'th coordinate of another
PRG for some j' (as well as some additional values which are computed using the
portion of the random seed dedicated to this step in the recursion). Thus at every
step of the recursion, only one query is made for a coordinate to a PRG at a lower
level of the recursion. Thus the recursion is linear, in the sense that the computation
path has only L nodes instead of 2 (which would occur if two queries to coordinate
j', 43" were made to a PRG in a lower level). Since at each level of recursion, comput-
ing G itself uses O(loglog(nM)) levels of recursion, and also has the property that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 415

each level queries the lower level at only one point, it follows that the total depth of
the recursion is O((loglog(nM))?). At each point, to store the information required
for this recursion on the stack requires only O(log(nl))-bits of space to store the
relevant information identifying the instance of the PRG in the recursion, along with
its associated portion of the random seed. Thus the total space required to compute a
coordinate via these O(loglog(nM))?) recursions is O(log(nM)(loglognM)?), which
is linear in the seed length. Moreover, the total runtime is O(l), since each step of
the recursion requires at most O(1) time. ad

We use the prior technique to derandomize a wide class of linear sketches A - f
such that the entries of A are independent and can be sampled using O(log(n))-bit,
and such that the behavior of the algorithm only depends on the sketch Af. It is
well known that there are strong connections between turnstile streaming algorithms
and linear sketches, insofar as practically all turnstile streaming algorithms are in
fact linear sketches. The equivalence of turnstile algorithms and linear sketches has
even been formalized [LNW14], with some restrictions. Our results show that all such
sketches that use independent, efficiently sampled entries in their sketching matrix A
can be derandomized with our techniques. As an application, we derandomize the
count-sketch variant of Minton and Price [MP14], a problem which to the best of the
authors’ knowledge was hitherto open.

LEMMA 8. Let ALG be any streaming algorithm which, on stream wvector f &
{—=M,...,M}" for some M = poly(n), stores only a linear sketch A - f such that
the entries of the random matriz A € R**™ are i.i.d., and can be sampled using
O(log(n))-bits. Fiz any constant ¢ > 1. Then ALG can be implemented using a ran-
dom matriz A" using O(klog(n)(loglogn)?) bits of space, such that for every vector
y € RF with entrywise bit-complexity of O(log(n)),

’Pr[Af :y} —Pr[A’f :y” <n~°k,

Proof. We can first scale all entries of the algorithm by the bit complexity so
that each entry in A is a O(log(n))-bit integer. Then by Lemma 7, we can store the
randomness needed to compute each entry of A’ with O(klog(n)(loglogn)?)-bits of
space, such that A’ n=*-fools the class of all O(k)-halfspace testers, in particular
the one which checks, for each coordinate ¢ € [k], whether both (A4'f); < y+ 1 and
(A’f)i > y; — 1, and accepts only if both hold for all < € [k]. By Proposition 3, the
entries of A’ can be computed in space linear in the size of the random seed required
to store A’. Since we have scaled all values to be integers, n~°* fooling this tester is
equivalent to the theorem statement. Note that the test (A'f); < y + 1 can be made

into a half-space test as follows. Let X* € R™ be the vector such that X;—i—(i—l)n =f;

for all j € [n] and X} = 0 otherwise. Let vec(A) € R™ be the vectorization of A.

Then (Af); = (vec(A), X?), and all the entries of vec(A) are i.i.d., which allows us
to make the stated constraints into the desired half-space constraints. 0

Observe that the above lemma derandomized the linear sketch A f by writing each
coordinate (Af); as a linear combination of the random entries of vec(A). Note, how-
ever, that the above proof would hold if we added the values of any O(k) additional
linear combinations (X;,vec(A) to the lemma, where each X; € {—M,..., M}*".
This will be useful, since the behavior of some algorithms, for instance, count-sketch,
may depend not only on the sketch Af but also on certain values or linear combina-
tions of values within the sketch A. This is formalized in the following corollary.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

416 RAJESH JAYARAM AND DAVID WOODRUFF

COROLLARY 3. Let the entries of A € R¥*™ be drawn i.i.d. from a distribution
which can be sampled using O(logn)-bits, and let vec(A) € R™ be the vectorization
of A. Let X € R™"™ be any fived matriz with entries contained within {—M, ..., M},
where M = poly(n). Then there is a distribution over random matrices A’ € RFX"
which can be generated and stored using O(tlog(n)(loglogn)?) bits of space, such that
for every vector y € Rt with entrywise bit-complexity of O(log(n)),

‘Pr[X -vec(A) = y} — Pr[X -vec(4’) = y} ‘ <n~ .

Proof. The proof is nearly identical to Lemma 8, where we first scale entries to
be O(log(n))-bit integers, and then apply two half-space tests to each coordinate of
X -vec(A). O

THEOREM 5. Let ALG be any streaming algorithm which, on stream wvector f €
{—M,...,M}" and fived matriz X € R*>"F with entries contained within {—M, ..., M},
for some M = poly(n), outputs a value that only depends on the sketches A - f and
X - vec(A). Assume that the entries of the random matriz A € RF*™ are i.i.d. and
can be sampled using O(log(n))-bits. Let o : R¥ x R — {0,1} be any tester which
measures the success of ALG, namely, o(Af, X - vec(A)) = 1 whenever ALG succeeds.
Fiz any constant ¢ > 1. Then ALG can be implemented using a random matriz A’
using a random seed of length O((k + t) log(n)(loglogn)?), such that

’Pr [a(Af,X -vec(A)) = 1} — Pr [U(A/f,X -vec(A')) = 1} ‘ < pclktt)

and such that each entry of A’ can be computed in time 0(1) and using working space
linear in the seed length.

Proof. As in Lemma 8, we first scale all entries of the algorithm by the bit com-
plexity so that each entry in A is a O(log(n))-bit integer. Then there is a M’ = poly(n)
such that each entry of A- f and X - vec(A) will be a integer of magnitude at most
M’. First note that the sketch A- f and X -vec(A) can be written as one linear sketch
X - vec(A), where Xy € RFF**n Then ¢ can be written as a function o : R¥+t —
{0,1} evaluated on o(Xy - vec(A)). Let S = {y € {-M',...,M'}*t | o(y) = 1}.
Then by Corollary 3, we have

|Pr[X, - vec(A) = y] — Pr[X, - vec(A') = y]| < n~o+?)

for all y € S. Taking c sufficiently large, and noting |S| = n=2*+) we have Pr[o(Xo-
vec(A)) =1] = Zyes Pr[Xy-vec(A) =y] = ZyeS(Pr[Xo-vec(A’) = y]:l:n’c(kﬂ)) =
Pro(Xo-vec(A’)) = 1]4+n~9F+1) a5 desired. The final claim follows from Proposition
3. 0

5.2.3. Derandomizing the count-sketch of Minton and Price. We now
show how this general derandomization procedure can be used to derandomize the
count-sketch variant of Minton and Price [MP14]. Our discussion will utilize the nota-
tion for count-sketch as defined in section 2.1. Minton and Price’s analysis shows im-
proved concentration bounds for count-sketch when the random signs g;(k) € {1, -1}
are fully independent. They demonstrate that in this setting, if y € R™ is the count-
sketch estimate of a stream vector f, where the count-sketch table A has k columns
and d rows, then for any ¢ < d and index ¢ € [n] we have

2
M} < 96200,

t
P) s 2
r (f’l yl) > d k

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 417

Notice that by setting ¢t = d = O(log1/d), one recovers the standard count-sketch
result of Theorem 1. However, in order to apply this algorithm in o(n) space, one
must first derandomize it from using fully independent random signs, which are not
required for the original count-sketch of [CCFC02a]. To the best of the authors’
knowledge, the best known derandomization procedure was a black-box application
of Nisan’s PRG which results in O(e~2log®(n))-bits of space when k = O(1/€2) and
d = O(logn). Due to this logn blow-up in the space, the guarantees of this count-
sketch variant, if derandomized with Nisan’s PRG, are strictly worse than using the
original count sketch of [CCFCO02a]. Our derandomization, in contrast, demonstrates
a strong improvement on this, obtaining the same bounds with an (loglogn)? instead
of an logn factor blow-up. For the purpose of the theorem, we replace the notation
1/€% with k (the number of columns of count-sketch up to a constant).

THEOREM 6. The count-sketch variant of [MP14] can be implemented so that if
A € R js a count-sketch table, then for any t < d and index i € [n] we have

ot frangen I3 -Q(t)
Pr{(fz i) > d k } =2

and such that the total space required is O(kdlog(n)(loglogn)?).

Proof. We first remark that the following modifcation to the count-sketch proce-
dure does not affect the analysis of [MP14]. Let A € R%** be a d x k count-sketch
matrix. The modification is as follows: instead of each variable h;(¢) being uni-
formly distributed in {1,2,...,k}, we replace them with variables h; ;, € {0,1} for
(¢,7,€) € [d] x [k] x [n], such that h; ;, are all i.i.d. and equal to 1 with probability
1/k. We also let ¢; ¢ € {1,—1} be i.i.d. Rademacher variables (1 with probability
1/2). Then A;; = >y, fegij.ehije. and the estimate y, of fy for £ € [n] is given by

ye = median{g; j ¢ A; j | hije =1}

Thus the element f, can be hashed into multiple buckets in the same row of A,
or even be hashed into none of the buckets in a given row. By Chernoff bounds,
{9i,j,0Ai; | hije =1} = O(d) with high probability for all £ € [n]. Observe that the
marginal distribution of each bucket is the same as the count-sketch used in [MP14],
and moreover seperate buckets are fully independent. The key property used in the
analysis of [MP14] is that the final estimator is a median over estimators whose error
is independent and symmetric, and therefore the bounds stated in the theorem still
hold after this modification [Pril8].
Given this, the entire sketch stored by the streaming algorithm is B - f, where

1 with prob i,
B; = -1 with prob i,
0 otherwise.

Thus the entries of B are i.i.d. and can be sampled with O(log(k)) < O(log(n)) bits,
and vec(A) = B - f, where vec(A) is the vectorization of the count-sketch table A.
Here B € Rékxn, ,
Now note that for a fixed 4, to test the statement that (f; — y;)? > gw,
one needs to know both the value of the sketch Bf, in addition to the value of the
ith column of B, since the estimate can be written as y; = median;crq), B, 201 Bj.i -
(Bf);}. Note that the ith column of B (which has kd entries) can simply be written

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

418 RAJESH JAYARAM AND DAVID WOODRUFF

as a sketch of the form X - vec(B), where X € RFI*Xdkn g g fixed matrix such
that X - vec(B) = B;, so we also need to store X - vec(B). Thus by Theorem 5,
the algorithm can be derandomized to use O(kdlog(n)(loglogn)?) bits of space, and

] 2
such that for any ¢t < d and any i € [n] we have Pr[(f; — v:)? > %M] <

2679(1&) + nfﬂ(dk)' O

5.2.4. Derandomizing the L, sampling algorithm. We now introduce the
notation which will be used in our derandomization. Our L, sampler uses two sources
of randomness which we must construct PRGs for. The first, r., is the randomness
needed to construct the exponential random variables ¢;, and the second, r., is the
randomness needed for the fully random hash functions and signs used in count-max.
Note that r., . both require poly(n) bits by Lemma 6. From here on, we will fix any
index i € [n]. Our L, sampler can then be thought of as a tester A(r.,r.) € {0, 1},
which tests on inputs 7., ., whether the algorithm will output i € [n]. Let G1(x) be
Nisan’s PRG, and let G2(y) be the half-space PRG. For two values b, ¢ € R, we write
a ~ b to denote |a — b| < e. Our goal is to show that

Prre,rc [‘A(re, rc)} ~p-—c Prm,y [A(G2(y)7 G1 ((E))} s

where ,y are seeds of length at most O(log? n(loglogn)?), and ¢ is an arbitrarily
large constant.

THEOREM 7. A single instance of the algorithm L, Sampler using Fast-Update
as its update procedure can be derandomized using a random seed of length O(log2 (n)
(loglogn)?), and thus can be implemented in this space. Moreover, this does not affect
the time complexity as stated in Lemma 6.

Proof. First note that by Lemma 6, we require O(V‘l) random bits for each
i € [n], and thus we require a total of O(nv~1) = poly(n) random bits to be generated.
Since Nisan’s PRG requires the tester to read its random input in a stream, we can
use a standard reordering trick of the elements of the stream, so that all the updates
to a given coordinate i € [n] occur at the same time (see [Ind06]). This does not
affect the output distribution of our algorithm, since linear sketches do not depend
on the ordering of the stream. Now let ¢’ be the constant such that the algorithm
L, Sampler duplicates coordinates n¢ times. In other words, the count-max is run

on the stream vector F' € R"C/, and let N = n. Now, as above, we fix any index
i € [N] and attempt to fool the tester which checks if, on a given random string,
our algorithm would output 7. For any fixed randomness 7. for the exponentials, let
A, (r.) be the tester which tests if our L, sampler would output the index ¢, where
now the bits r, are hard-coded into the tester, and the random bits r. are taken as
input and read in a stream. We first claim that this tester can be implemented in
O(log(n))-space.

To see this, note that A, (r.) must simply count the number of rows of count-max
such that item 7 is hashed into the largest bucket (in absolute value) of that row, and
output 1 if this number is at least %, where d is the number of rows in count-max.
To do this, A,_(r.) can break 7. into d blocks of randomness, where the jth block is
used only for the jth row of count-max. It can then fully construct the values of the
counters in a row, one row at a time, reading the bits of . in a stream. To build a
bucket, it looks at the first element of the stream, uses r. to find the bucket it hashes
to and the Gaussian scaling it gets, then adds this value to that bucket, and then
continues with the next element. Note that since 7. is hardcoded into the tester, we

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 419

can assume the entire stream vector ¢ is hardcoded into the tester. Once it constructs
a row of count-max, it checks if 7 is in the largest bucket by absolute value, and
increments a O(log(d))-bit counter if so. Note that it can determine which bucket i
hashes to in this row while reading off the block of randomness corresponding to that
row. Then, it throws out the values of this row and the index of the bucket i hashed
to in this row and builds the next row. Since each row has O(1) buckets, A,_(r.) only
uses O(log(n))-bits of space at a time. Then using G;(x) as Nisan’s generator with a
random seed z of length O(log?(n))-bits, we have Pr[A,, (rc)] ~n-co Pr[A, (G1(z))],
where the constant ¢y is chosen to be sufficiently larger than the constant ¢; in the
n~° additive error of our perfect sampler, as well as the constant ¢’. Moreover,

rldtro] = SPr[4. o] el
=§:(P4Am«hum]inwﬂprp4
—ZPI‘{ v (Ga(z } [Te]:th COPr[}

~nmco P [A(re, Gr(2))].

Now fix any Nisan seed x and consider the tester Ag, (4)(re), which on fixed
count-max randomness G1(x) tests if the algorithm will output ¢ € [n] on the random
input r. for the exponential variables. We first observe that it seems unlikely that
Ag, (2)(re) can be implemented in log(n) space while reading its random bits r. in
a stream. This is because each row of count-max depends on the same random bits
in 7. used to construct the exponentials ¢;, and thus it seems Ag, (2)(re) would need
to store all log?(n) bits of count-max at once. However, we will now demonstrate
that Ag, (z)(re) is in fact a poly(n) bounded O(d)-halfspace tester (as defined earlier
in this section) where d is the number of rows of count-max, and therefore can be
derandomized with the PRG of [GKM18]. By the Runtime & Random Bits analysis
in Lemma 6, it suffices to take all random variables in the algorithm to be O(log(n))-
bit rational numbers. Scaling by a sufficiently large poly(n), we can assume that
1/t;/p is a discrete distribution supported on {—T,...,T}, where T < poly(n) for a
sufficiently large poly(n). We can then remove all values in the support which occur
with probability less than poly(n), which only adds an n~% additive error to our
sampler. After this, the distribution can be sampled from with poly(T") = poly(n)
random bits, which is as needed for the setting of Lemma 7. Note that we can also
apply this scaling to the Gaussians in count-max, so that they too are integers of
magnitude at most poly(n).

Given this, the distribution of the variables 1/ t;/ P satisfy the conditions of Lemma
7, in particular being poly(n)-bounded; thus we must now show that Ag, (z)(re) is
indeed a O(d)-halfspace tester, with integer valued half-spaces bounded by poly(n).
First consider a given row of count-max, and let the buckets be By, Bo. WLOG 1
hashes into Bj, and we must check if [B1| > |Bs|. Let g; be the random count-max
signs (as specified by G1(z)), and let S1, S2 be the set of indices which hash to By and
By, respectively. We can run the following six half-space tests to test if |By| > | Bal:

@) }j%@(lﬁ) 0

JESI

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

420 RAJESH JAYARAM AND DAVID WOODRUFF

(3) > g]fj(1/,,)

JES2

(4) alzggfg(l/p>+a2293fg< 1/p)>0

JESL JES,

where a1, az range over all values in {1, —1}2. The tester can decide whether |By| >
| B2| by letting a1 be the truth value (where —1 is taken as fail) of the first test 2 and
as the truth value of 3. It then lets b € {0, 1} be the truth value of 4 on the resulting
a1, as values, and it can correctly declare |By| > | Ba] iff b, = 1. Thus for each pair of
buckets, the tester uses six halfspace testers to determine if |By| > | Bz, and so can
determine if i is hashed to the max bucket with O(1) halfspace tests. So Ag, (z)(7e)
can test if the algorithm will output ¢ by testing if ¢ is hashed to the max bucket in
a 4/5 fraction of the d rows of count-max, using O(d) = O(log(n)) halfspace tests.
Note that by the scaling performed in the prior paragraphs, all coefficents of these
half-spaces are integers of magnitude at most poly(n). So by Lemma 7, the PRG
Ga(y) of [GKM18] fools Ag, (4)(re) with a seed y of O(log?(n)(loglog n)?)-bits. So
Pr(Ag, (2)(re)] ~n—co Pr[Ag,(2)(G2(y))], and so by the same averaging argument as
used for the Nisan PRG above, we have Pr[A(r, G1(2))] ~p-co PrlA(G2(y), G1(x))],
and so Pr[A(re,r.)] ~,-co PrlA(G2(y),G1(z))] as desired. Now fixing any i € [n],
let A’(re,7c) be the event that the overall algorithm outputs the index i. In other
words, Aj(re,re) = 1 if Aj; (re,7c) = 1 for some j € [nc/_l], where A;; (re,7c) = 1 is
the event that count-max declares that i; is the maximum in Algorithm L, Sampler.
Thus, the probability that the algorithm outputs a nonduplicated coordinate ¢ € [n]
is given by

Pr[(re,7e } ZPI‘[re,rc)}

o

—~
Ut

=
3

Pr|A;, (Ga(y), Ga(w))| =0~

1

= Pr[A(Ga(y), Gr (2)] £ 077,

<.
I

where in the last line we set cg > ¢’ + c1, where recall ¢; is the desired additive
error in our main sampler. In conclusion, replacing the count-max randomness with
Nisan’s PRG and the exponential random variable randomness with the half-space
PRG Ga(y), we can fool the algorithm which tests the output of our algorithm with
a total seed length of O(log?(n)(loglogn)?).

To show that the stated update time of Lemma 6 is not affected, we first remark
that Nisan’s PRG simply involves performing O(log(n)) nested hash computations on
a string of length O(log(n)) in order to obtain any arbitrary substring of O(log(n))
bits. Thus the runtime of such a procedure is O(1) to obtain the randomness needed
in each update of a coordinate ¢ € [n°]. By Lemma 7, the PRG of [GKM18] requires
O(1) time to sample the O(log(n))-bit string needed to generate an exponential, and
moreover can be computed with working space linear in the size of the random seed.
(Note that this is also true of Nisan’s PRG, which just involves O(log(n))-nested hash
function computations.) Thus the update time is only blown up by a O(1) factor,
which completes the proof. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 421

COROLLARY 4. For p = 2, the entire algorithm can be derandomized to run using
O(log®(n) log(1/6))-bits of space with failure probability of 8. Forp < 2, the algorithm
can be derandomized to run using O(log®(n))-bits of space with § = 1/poly(n).

Proof. We can simply derandomize a single instance of our sampling algorithm
using Nisan’s PRG as in Theorem 7, except that we derandomize all the randomness in
the algorithm at once. Since such an instance requires O(log2 (n))-bits of space, using
Nisan’s blows up the complexity to O(log®(n)). (The tester can simply simulate our
entire algorithm in O(log?(n))-bits of space, reading the randomness in a stream by
the reordering trick of [Ind06].) Since the randomness for separate parallel instances
of the main sampling algorithm is disjoint and independent, this same O (log?(n))-bit
tester can test the entire output of the algorithm by testing each parallel instance
one by one, and terminating on the first instance that returns an index i € [n].
Thus the same O(log®(n))-bit random seed can be used to randomize all parallel
instances of our algorithm. For p < 2, we can run O(log(n)) parallel instances to
get 1/poly(n) failure probability in O(log®(n))-bits of space as stated. For p = 2,
we can run O(log(n)log(1/6)) parallel repetitions needed to get ¢ failure probability
using the same random string, for a total space of O(log®(n)log(1/8) + log®(n)) =
O(log®(n)log(1/9)) as stated. As noted in the proof of Theorem 7, computing a
substring of O(log(n))-bits from Nisan’s PRG can be done in O(1) time and using
space linear in the seed length, which completes the proof. 0

5.3. Query time. We will now show the modifications to our algorithm neces-
sary to obtain O(l) query time. Recall that our algorithm maintains a count-max
matrix A. Our algorithm then searches over all indices i € IC to check if i is hashed
into the maximum bucket in a row of A at least a 4/5 fraction of the time. Since
K| = O(n), running this procedure requires O(n) time to produce an output on a
given query. To avoid this and obtain O(1) running time, we will utilize the heavy
hitters algorithm of [LNNT16], which has a O(1) update and query time, and which

does not increase the complexity of our algorithm.

THEOREM 8 ([LNNT16]). For any precision parameter 0 < e < 1/2, given a
general turnstile stream x € R™ there is an algorithm, ExpanderSketch, which with
probability 1 —n=¢ for any constant c returns a set S C [n] of size S = O(e~2) which
contains all indices i such that |x;| > €||x||2. The update time is O(log(n)), the query
time is O(e=2), and the space required is O(e=21og?(n))-bits.

Using EzpanderSketch to speed up query time. The modifications to our main
algorithm L, Sampler with Fast-Update are as follows. We run our main algorithm
as before, maintaining the same count-max data structures A. Upon initialization of
our algorithm, we also initialize an instance ExSk of ExpanderSketch as in Theorem
8, with the precision parameter ¢ = 1/100.

Now recall in our Fast-Update procedure, for each i € [n] we hash the top K; =
O(log(n)) largest duplicates (;, corresponding to f; individually and store the random
variables hy(i;) that determine which buckets in A they hash to. While processing
updates to our algorithm at this point, we make the modification of additionally
sending these top K; items to ExSk to be sketched. More formally, we run ExSk on
the stream (i, where (i is the vector ¢ projected onto the coordinates of K. Since
K; = O(1), this requires making O(1) calls to update ExSk on different coordinates,
which only increases our update time by an O(l) additive term.

On termination, we obtain the set S containing all items (; such that i € K
and ¢; > (1/100)|/¢k||2- Instead of searching through all coordinates of K to find a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

422 RAJESH JAYARAM AND DAVID WOODRUFF

maximizer, we simply search through the coordinates in S, which takes O(|S|) = O(1)
time. We now argue that the output of our algorithm does not change with these new
modifications. We refer collectively to the new algorithm with these modifications as
L, Sampler with Fast-Update and ExSk, and the algorithm of section 5.1 as simply
L, Sampler with Fast-Update.

LEMMA 9. For any constant ¢ > 0, with probability 1 — n=10¢ the algorithm L,
Sampler with Fast-Update and ExSk as described in this section returns the same
output (an index i € [n] or FAIL) as L, Sampler using Fast-Update but without
EzSk. The space and update time are not increased by using ExSk, and the query time
is now O(1).

Proof. We condition on the event that S contains all items i such that i € K and
|¢;| > 1/100]|¢xc||2, which occurs with probability 1 — n=19%¢ by Theorem 8. Since L,
Sampler already uses at least O(log®(n)) bits of space, the additional O(log?(n)) bits
of overhead required to run an instance ExSk of ExpanderSketch with sensitivity pa-
rameter ¢ = 1/100 does not increase the space complexity. Furthermore, as mentioned
above, the update time is blown up by a factor of O(1), since we make K; = O(1) calls
to update ExSk, which has an update time of O(l) by Theorem 8. Furthermore, our
algorithm does not require any more random bits, as it only uses ExpanderSketch as
a subroutine, and thus no further derandomization is required. Thus the complexity
guarantees of Lemma 6 are unchanged. For the query time, we note that obtaining S
requires O(1) time (again by Theorem 8), and querying each of the |S| = O(1) items
in our count-max A requires O(l) time. To complete the proof, we now consider the
output of our algorithm. Since we are searching through a strict subset S C [n¢], it
suffices to show that if the original algorithm outputted an i; € [n¢], then so will we.
As argued in Lemma 6, such a coordinate must be contained in K. By Corollary 1,
we must have |(;,| > 145/I¢ll2 > 1551/¢cl2 with probability 1 — n =199 (scaling ¢ by
100 here), and thus i; € S, which completes the proof.]

6. Estimating the frequency of the sampled coordinate. In this section,
we will show how, conditioned on our algorithm L, Sampler returning a sampled in-
dex i € [n], we can obtain an estimate f; = (1 =€) f; with probability 1 —d,. We now
describe how to do this. Our algorithm, in addition to the count-max matrix A used
by L, Sampler, stores a count-sketch matrix A" with d' = O(log(1/d2)) rows and
O(v) = O(min {e™2, e Plog (é)}}) columns. Recall in our Fast-Update procedure,
for each i € [n] we hash the top K; = O(log(n)) largest duplicates ¢;; correspond-
ing to f; individually into A, and store the random variables hy(i;) that determine
which buckets in A they hash to. Thus if count-max outputs an i; € [n°] we know
that i; € K, where K = Ujey Uf:il {i;} as in section 5 (since our algorithm only
searches through K to find a maximizer). Thus it suffices to run the count-sketch
instance A’ on the stream (i, where (i is the vector ¢ with the coordinates not in
K set to 0. Since K; = O(1), we perform at most O(1) updates to count-sketch at
every step in the stream. This requires making O(l) calls to update count-sketch
on each stream update, which only increases our update time by an 0(1) additive
term.

Now if L, Sampler returns i; € [n°] (corresponding to some duplicate i; of
i), then we must have i; € K. Thus we can query A’ for a value §;, such that
19, — Ci;| < v/1/7|Caii(y)|l2 with probability 1 — 2 by Theorem 1. Furthermore,
since i; € K, we can compute the value [, such that I = (rnd,(1/t;,)) by simulating
the Fast-Update procedure on an update to i. We will argue that the estimate

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 423

f= Ui, (rndl,(l/t}j/p))*1 satisfies f = (14 €)f;. Putting this together with Theorem
2, we will obtain the following result.

THEOREM 9. There is an algorithm A which, on a general turnstile stream f, out-
puts i € [n] with probability | f;|P /|| fII5(1+v)+O(n~°) and outputs FAIL with probabil-
ity at most §1. Conditioned on outputting some i € [n], A will then output f such that
f = (1£efi with probability 1 — 5. The space required is O((log?(n)(loglogn)? +
Blog(n)log(1/82))log(1/61)) for p € (0,2) and O((log®(n) + e 2log*(n) log(1/02))
log(1/61)) for p = 2, where 3 = min{e 2, e ? log(é)}}. The update time is O(v=1)
and the query time is O(1).

Proof. We first consider the complexity. The first term in each of the upper
bounds follows from Theorem 2, as well as the log(1/d;) term which comes from
repeating the entire algorithm log(1/4;) times for p < 2 and log(n)log(1/d1) times for
p = 2. The second term in the space bound results from storing the d’ x -y count-sketch
table A’, which is O(vylog(n)log(1/d2)) as stated. Moreover, the update time for the
new data structure is at most O(l), since the only additional work we do on each
update is to hash K; = O(log(n)) items into d’ = O(log(n)) rows of A’. Furthermore,
the query time just requires computing a median of O(log(n)) entries of A’. Each of
these actions is O(1) time in the unit cost RAM model, so the additional update and
query time is O(1). The remaining O(r) update time follows from Lemma, 6.

For correctness, note that if L, Sampler does not fail and instead outputs i; €
[n¢], we know that |(;,| > 1/100||C||2. Furthermore, we have |§;, —Ci;| < v/1/7|Ctaii(y) ll2
< +/1/7|/¢||2 with probability 1—dz, so setting v = ©(1/¢?) sufficiently large, it follows
that i, = (14 O(e))C;,. Then §;, (rnd, (1/t;/"))™" = (1% €)f; follows immediately
from the fact that f; = ¢;; (rnd,,(l/t;j/p))—l (and a rescaling of € by a constant). This

shows that O(e=2) bits is always an upper bound for the value of v = ©() needed
for p € (0,2].

To show the other upper bound in the definition of 8 (for cases when p < 2), first
define T, C [n°] as the set of n® — ~ smallest coordinates (in absolute value) of z. In
other words 27, = 2tail(y), Where for any set S C [n€] z5 denotes z projected onto the
coordinates of S. Note that if S is any set of size n¢ — s and v € R™ any vector, we
have ||vgaii(s) |2 < [|vs|l2. Then by Proposition 1, using the fact that ¢; = (1+0(v))z;
for all i € [n°], we have [|Caii(y)ll2 < <7, ll2 < 2)|2taii(p) l2 = O(||F||p ()~ 1/P+1/2)
for p < 2 with probability 1 — O(e™™) > 1 — 3, where now we are setting v =
O(max{e"?,log(1/d2)}). Condition on this now. Then we obtain error |f;, — (| <
V1Y Gair(ll2 = O(||F|l,7~?) = O(e(log(1/52))~Y/P||F||,,) from our second count-
sketch A’. Now zp(1) = \|F||,,/E11/p, which is at least Q(||F||,/(log(1/82))'/?) with
probability greater than 1 — §; using the pdf of an exponential. Conditioned on
this, the error from our second count-sketch A’ gives, in fact, a (1 £ O(e)) relative
error approximation of (;;, which is the desired result. Note that we conditioned
only on our count-sketch giving the desired |;;, — (i;| < /1/7[[Caii(y)|l2 error, on
Izeaiipllz = O(IFlp(v)~/7+1/2), and on By = O(log(1/82)), each of which holds
with probability at least 1 — O(d2), so the Theorem follows after a union bound. 0O

7. Lower bounds. In this section, we obtain a lower bound for providing rel-
ative error approximations of the frequency of a sampled item. Our lower bound is
derived from one-way two-party communication complexity. Let X,) be input do-
mains to a two party communication complexity problem. Alice is given z € X and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

424 RAJESH JAYARAM AND DAVID WOODRUFF

Bob is given y € Y. Their goal is to solve some relational problem @ C X x Y x O,
where for each (z,y) € X x Y the set Qg = {2|(x,y,2) € Q} represents the set of
correct solutions to the communication problem.

In the one-way communication protocol P, Alice must send a single message M
to Bob (depending on her input X), from which Bob must output an answer in o € O
depending on his input Y and the message M. The maximum possible length (in
bits) of M over all inputs (z,y) € X x) is the communication cost of the protocol P.
Communication protocols are allowed to be randomized, where each player has private
access to an unlimited supply of random bits. The protocol P is said to solve the
communication problem () if Bob’s output o belongs to Q., with failure probability
at most § < 1/2. The one-way communication complexity of @, denoted R;’(Q),
is the minimum communication cost of a protocol which solves the protocol) with
failure probability d.

Now a similar measure of complexity is the distributional complezity Dzé(Q),
where y is a distribution over X x), which denotes the minimum communication
cost of the best deterministic protocol of @ with failure probability at most § when
the inputs (z,y) ~ p. By Yao’s lemma, we have that R;’(Q) = max, D ’5(Q). We
first review some basic facts about entropy and mutual information (see Chapter
2 of [CT12] for proofs of these facts). Recall that for a discrete random variable
X supported on a finite domain 2, the entropy H(X) of X is given by H(X) =
— > aco Pr[X = a]log(Pr[X = a]).

PROPOSITION 4.

. Entropy span: If X takes on at most s values, then 0 < H(X) < logs.

LI(X:Y):=H(X)-H(X|Y) >0, that is, H(X|Y) < H(X).

. Chain rule: I(Xl, XQ, cee 7Xn : Y‘Z) = Z?:l I(XZ : Y|X1, . ,Xi_l, Z)

. Subadditivity: H(X,Y|Z) < H(X|Z)+H(Y|Z) and equality holds if and only

if X andY are independent conditioned on Z.

5. Fano’s inequality: Let M be a predictor of X. In other words, there exists a
function g such that Prlg(M) = X] > 1—4, where § < 1/2. Let U denote the
support of X, where U > 2. Then H(X|M) < dlog(JU| — 1) + h2(6), where
ha(8) := 6log(671) + (1 — &) log(125) is the binary entropy function.

[ENEOCR N

We now define the information cost of a protocol P.

DEFINITION 7. Let p be a distribution of the input domain X x Y to a commu-
nication problem Q). Suppose the inputs (X,Y) are chosen according to u, and let M
be Alice’s message to Bob, interpreted as a random variable which is a function of X
and Alice’s private coins. Then the information cost of a protocol P for Q is defined
as I(X : M).

The one-way information complexity of Q) with respect to p and 5, denoted by
IC:(; (Q), is the minimum information cost of a one-way protocol under p that solves
Q with failure probability at most 6.

Note that by Proposition 4, we have
I(X : M) = H(M) - H(M|X) < H(M) < |M|,

where |M] is the length of the message M in bits. This results in the following
proposition.

PROPOSITION 5. For every probability distribution p on inputs,

Ry (Q) =2 1C,75(Q).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 425

7.1. Augmented indexing on large domains. We now introduce the follow-
ing communication problem, known as augmented index problem on large domains.
Our communication problem is derived from the communication problem (of the same
name) introduced in [JW13], but we modify the guarantee of the output required so
that constant probability of error is allowed. The problem is as follows.

DEFINITION 8. Let U be an alphabet with [U| = k > 2. Alice is given a string
x € UL, and Bob is given i € [d] along with the values x;y1,Zit2,...,xq. Alice must
send a message M to Bob, and then Bob must output the value x; € U with probability
3/4. We refer to this problem as the augmented index problem on large domains, and
denote it by INDY,.

Note that in [JW13], a correct protocol is only required to determine whether
x; = a for some fixed input a € U given only to Bob, but such a protocol must
succeed with probability 1 — §. For the purposes of both problems, it is taken that
U] = ©(1/6). In this scenario, we note that the guarantee of our communication
problem is strictly weaker, since if one had a protocol that determined whether z; = a
for a given a € U with probability 1 — §, one could run it on all a« € U and union
bound over all || trails, from which the exact value of x; could be determined with
probability 3/4, thereby solving the form of the communication problem we have
described. We show, nevertheless, that the same lower bound on the communication
cost of our protocol holds as the lower bound in [JW13].

Let X be the set of all z € U?, let Y = [d], and define ; to be the uniform
distribution over X x).

LEMMA 10. Suppose [U| > ¢ for some sufficiently large constant c. We have
1C:7,,, (50l > dlog([U]) /2.

Proof. Fix any protocol P for INDg, which fails with probability at most 1/4. Let
X = (X1, Xo9,...,X4) denote Alice’s input as chosen via p, and let M be Alice’s

message to Bob given X. By Proposition 4

d
I(X:M)=> I(X;: M|X,...,X;)
i=1

d
= Z (H(Xi|X17~~7Xi71) _H(Xi‘MlewuaXifl))'
i—1

First note that since X is independent of X; for all j # ¢, we have H(X;|Xq1,...,X;_1)
= H(X;) = log(|U4]). Now since the protocol P is correct on IND{,, then the variables
M, X1,...,X;—1 must be a predictor for X; with failure probability 1/4 (since Bob
outputs X; with probability 3/4 given only M, X, ..., X;_; and his private, indepen-
dent randomness). So by Fano’s inequality (Proposition 4), we have

H(Xi‘MaXlw'in—l)

IN

1 1
=1 — 1)+ ha |-
Flos(uul - 1)+ ha ()
1
which holds when || is sufficiently large. Putting this together, we obtain

dlog(|U
I(X : M) > #. q

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

426 RAJESH JAYARAM AND DAVID WOODRUFF

COROLLARY 5. We have R?74(IND$) = Q(dlog(|U])).

We now use this lower bound on INDg{ to show that, even when the index output
is from a distribution with constant additive error from the true L, distribution,
returning an estimate with probability 1 — s still requires Q(e P log(n) log(1/d2)) bits
of space.

THEOREM 10. Fiz any p > 0 constant bounded away from 0, and let € < 1/3 with
€ ? =o(n). Then any L, sampling algorithm that outputs FAIL with probability at
most 1/100, and otherwise returns an item £ € [n] such that Pr[l =1] = |fi|?/| f||h £
1/50 for all | € [n], along with an estimate f; such that fy = (14 €) fo with probability
1 — &, requires Q(e P log(n)log(1/d2)) bits of space.

Proof. We reduce via IND,. Suppose we have a streaming algorithm A which

satisfies all the properties stated in the theorem. Set || = 1/(104;), and let X € U
be Alice’s input, where d = rs, where r = ﬁ and s = log(n). Alice conceptually
divides X into s blocks X1, ..., X*, each containing r items X = X? X4, ... X! € U.
Fix some labeling U = {oy,...,0}, and let W(X;) € [k] be such that X} = On(xi):
Then each X ; can be thought of naturally as a binary vector in R"** with support 1,
where (Xj); =1 when t = (i — 1)r + (j — 1)k + 7(X}), and (X}); = 0 otherwise. Set
n' = rsk < n for e ? = o(n). Using this interpretation of X} € R™* we define the
vector f € R™F by

=Yy

i=1 j=1

where B = 10Y/?. Alice can construct a stream with the frequency vector f by
making the necessary insertions, and then send the state of the streaming algorithm
A to Bob. Now Bob has some index i* € [d] = [rs]|, and his goal is to output the
value of X;: = X~ such that i* = (¢ —1)r+j’. Since Bob knows X7 for all (i, j) with
¢ > ', he can delete off the corresponding values of BiX; from the stream, leaving
the vector f with the value

F=>Y> B'X;
i=1 j=1

For j € [k], let 49 € R"** be the binary vector with ’ygi/—l)r-i-(j’—l)k-&-j = B"/(10¢)
and v} = 0 at all other coordinates t # (i' — 1)r + (j* — 1)k + j. Bob then constructs
the streams f/ = f ++7 for j = 1,...,k sequentially. After he constructs f7, he
runs A on f7 to obtain an output (¢;, f;j) € ([n'] x R) U ({FAIL} x {FAIL}) from the
streaming algorithm, where if the algorithm did not fail we have that ¢; € [n'] is the
index output and ng is the estimate of fgj. By union bounding over the guarantee
of A we have that if ¢; # FAIL, then f,, = (1 + e)fg'j for all j = 1,2,...,k with
probability 1 — kds > 9/10. Call this event £;. Conditioned on &, it follows that if
for each ¢; with ¢; = (' — 1)r + (j' — 1)k + j, if X;i =0, then

B" 9 :

ZB" —eB".
10¢ T 10 ¢

~.) 1
J B [1+—) (1-
Ao (1) 0-0>

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 427

On the other hand, if XJ’: # 0, then we will have

-/ v

o » B? B?
i < (B /(10€))(1 + ¢€) =
fi, < (BY/(106)(1 +€) = 75—+ 75
B 9 _, y
2B B
<70 T 10 €

using that e < 1/3. Thus if £; = (¢/ —1)r+ (5’ — 1)k + j, Bob can correctly determine
whether or not X]Z; = ;. Now suppose that, in actuality, Alice’s item was X]’: =
0. € U for some 7 € [k]. Set A = (' — 1)r+ (j' — 1)k + 7. To complete the proof, it
suffices to lower bound the probability that £, # A.

Thus we consider only the event of running A on f7. We know that with proba-
bility 99/100, ¢, # FAIL. We write & to denote the event that ¢, # FAIL. Let f_,
be equal to f everywhere except with the coordinate A set equal to 0. Then

IFZally < D2 > By

i=1 j=1
i 1 107 +1
< W0<(—)2 =
—T; = (10p+1ep) 9
SO
T i’ 1 1
P10
A = (b o = (b =

Since A has 1/50-additive error, we conclude Pr[l, = A] > 9/10 — 1/50 = 22/25, and
call the event that this occurs £3. Then conditioned on £ = £;NENE3 Bob sucsessfully
recovers the value of X;i = X+, and thus solves the communication problem. Note
that the probability of success is Pr[] > 1 — (1/10 + 1/100 + 3/25) > 3/4, and
thus this protocol solves INDg,. So by Corollary 5, it follows that any such streaming
algorithm A requires Q(rslog(|U|)) = Q(e P log(n)log(1/d2)) bits of space. Note that
the stream f in question had length n’ < n for p constant bounded from 0, and no
coordinate in the stream ever had a value greater than poly(n), and thus the stream
in question is valid in the given streaming model.]

8. Conclusion. This work demonstrates the existence of perfect L, samplers for
p € (0,2) using O(log?(n)log(1/4)) bits of space in the random oracle model. This
bound is tight in terms of both n and §. However, to derandomize our algorithm for
p < 2, our space increases by a O((loglogn)?)-factor, which is perhaps unnecessary.
There are also several other open problems for L, samplers which this work does not
close. Notably, there is still a log(n) factor gap between the upper and lower bounds
for L, samplers, as the best known lower bound for any p > 0 is Q(log2 n), compared to
our upper bound of O(log3 n). While perfect Ly samplers using polylogarithmic space
were not known before this work, our upper bound matches the best upper bounds
of prior approximate Lo samplers with constant v = Q(1). It is therefore an open
question whether this additional factor of logn is required in the space complexity of
an Lo sampler, perfect or otherwise.

Second, one notable shortcoming of the perfect sampler presented in this paper is
the large update time. To obtain a perfect sampler as defined in the introduction, the
algorithm in this paper takes polynomial (in n) time to update its data structures after
each entry in the stream. This is clearly nonideal, since most streaming applications

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

428 RAJESH JAYARAM AND DAVID WOODRUFF

demand constant or polylogarithmic update time. Using our rounding procedure, we
can obtain a (1 £ 1/poly(logn)) relative error sampler with polylogarithmic update
time (and the same space as the perfect sampler), but it is still an open problem to
design a perfect L, sampler with optimal space dependency as well as polylogarithmic
update time.

Finally, there are several gaps in the dependency on €, d5 in our procedure which,
in addition to outputting an index i € [n], also outputs a (1 £ €) estimate of the
frequency f;. Taking Theorem 10 along with the known lower bounds for L, sampling,
our best lower bound for the problem is Q(log?(n)log(1/6;) + € P log(n)log(1/d5)),
where 97 is the probability that the sampler fails to output an index i. On the other
hand, our best upper bound is O((log2 (n)(loglogn)? + Blog(n)log(1/d2)) log(1/61))
for p € (0,2), and O((log?’(n) + € 2log?(n) log(1/62)) log(1/61)) for p = 2, where
B = min {2, e P log (é)} Notably, the log(1/d1) multiplies the log(1/d2) term in
the upper bound but not in the lower bound. We leave it as an open problem to
determine precisely the right dependencies of such an algorithm on ¢, d1, ds.

Appendix A. Original L, sampling via count-sketch. In a previous
version of this work, we used a slightly different testing algorithm for the L, sampler.
Namely, we used the classic count-sketch estimation procedure of Theorem 1 to obtain
a y such that ||y—(]|e is small. We then take the largest coordinate of y as our guess of
the maximizer in (. The algorithm presented in the current version has the advantage
of being slightly simpler and does not incur the (loglogn)? blow-up in space for p = 2
from the derandomization. In this section, we show how the algorithm in the original
version can be derandomized using the general derandomization results for linear
sketches of Theorem 5. First, we introduce a few preliminary tools that we will need.

A.1. Preliminaries. We first introduce the Ly estimation algorithm of [Ind06].

To estimate || f||2 for f € R™, we generate i.i.d. Gaussians ¢; ; ~ N(0,1) for i € [n]

and j € [r], where r = ©(log(n)). We will later derandomize this assumption. We

then store the vector B € R", where B; = > """ fig;; for j = 1,...,r, which can

be computed ‘upldate by update throughout the stream. We return the estimate
5B;

R = median; —3=.

LEMMA 11. For any constant ¢ > 0, the value of R as computed in the above
algorithm satisfies || f|l2 < R < 2||f|l2 with probability 1 — n~°.

Proof. Each coordinate B; is distributed as |B;| = |g;|||f|l2, where g; are i.i.d.
Gaussian random variables. A simple computation shows that Pr[|g;| € [2/5,8/5]] >
.55, and thus Pr[(5/4)|B;| € [1/2/f|l2,2]|f]l2]] > .55. Then by Chernoff-Hoeffding
bounds, the median of O(log(n)) repetitions satisfies this bound with probability
1 —n~° as stated. O

Finally, we remark that making a simple modification to the classic count-sketch
algorithm (see Theorem 1) still results in the same error guarantee. Let A € R?* be a
dx k count-sketch matrix. The modification is as follows: instead of each variable h;(¢)
being uniformly distributed in {1,2,...,k}, we replace them with variables h; ;o €
{0,1} for (i,7,¢) € [d] x [k] x [n], such that h;;, are all i.i.d. and equal to 1 with
probability 1/k. We also let g; ¢ € {1,—1} be i.i.d. Rademacher variables (1 with
probability 1/2). Then A; j = Y, figi j¢hi je, and the estimate y, of fo is given by

ye = median{g; ;1A ; | hije = 1}.

Thus the element f; can be hashed into multiple buckets in the same row of A,
or even be hashed into none of the buckets in a given row. By Chernoff bounds,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 429

L, Sampler
1. For 0 < p < 2, set ¢ = O(1), and for p = 2, set € = O(1/1/log(n)). Let
d = O(log(n)), and instantiate a d x 6/€? count-sketch table A, and set
v ~ Uniform[3, 3].
2. Duplicate updates to f to obtain the vector F' € R™ so that f; = F;; for
alli € [n] and j = 1,2,...,n°"! for some fixed constant c.
3. Choose i.i.d. exponential random variables ¢ = (t1,ts,...,t,c), and con-
struct the stream ¢; = F; - rnd, (1/t}/7).
4. Run A on (to obtain an estimate y with ||y — |[(][|cc < €||Caii(1/e2)]]2 as in
Theorem 11.
5. Run Ly estimator on ¢ to obtain R € [3]|¢||2,2]|¢]|2] with high probability.
6. If y1y — ye2) < 100ueR or if y(g) < 50ep R, report FAIL, else return i € [n]
such that y;, = y(1y for some j € [n“1].

FI1G. 6. Our main Lyp sampling algorithm.

{gi,j.eAi; | hije =1} = O(d) with high probability for all £ € [n|. Observe that
the marginal distribution of each bucket is the same as before, and thus the original
analysis of count-sketch ([CCFCO02a]) is unchanged, as it only relies on taking the
median of ©(d) buckets, each of which independently succeed in giving a good estimate
with probability at least 2/3, as is the case here. Thus the bounds of Theorem 1 apply
as usual.

THEOREM 11. Let A € R¥F be the modified count-sketch as described above. If
d = O(log(n)), k = 6/€2, and ¢ > 1 is any constant, then we have ||y — flloo <

C

|| frait1e2) |2 with probability 1 —n=°.

A.2. The L, sampler. We begin by describing the original sampling algorithm,
as shown in Figure 6. The algorithm duplicates coordinates just as the sampler of
Figure 3 and scales it by inverse 1/pth powers of i.i.d. exponentials 1/ tg/ P We also
perform the same rounding procedure, turning z into (. Having constructed the
transformed stream ¢, we then run a ©(log(n)) x 6/e? instance A of count-sketch on
¢ to obtain an estimate vector y with ||y — [(|[|cc < €[|Ctail(1/e2)ll2 With probability
1 —n~° (as in Theorem 11). Here, for a vector v € R", |v| € R™ is the vector such
that (Jv]); = |v;| for all ¢ € [n]. Thus y; is an estimate of the absolute value (; and
is always positive. This is simply accomplished by taking the absolute value of the
usual estimate y obtained from count-sketch.

Then for 0 < p < 2, we set € = O(1), and for p = 2, we set € = O(1//log(n)).
Next, we obtain estimates R € [1[[([|2,2[/¢||2] via the algorithm of Lemma 11 with
high probability. The algorithm then finds y(1y,y2) (the two largest coordinates of
y) and samples p ~ Uniform[1/2,3/2]. It then checks if y1) — y2) < 100ueR or
if y2) < 50epR and reports FAIL if either occur; otherwise it returns i € [n] with
Yi, = y(1) for some j € [n°71].

Let i* € [n°] be the index of the maximizer in y, so y;+ = y(1). By checking that
Y1) —¥Y(2) > 100peR and noting that 100ueR > 25|y — |¢|| s and zp = (14v)¢} for all
k € [n°], for v < e sufficiently small we ensure that |z;| is also the maximum element
in z. The necessity for the test y(2) > 50euR is less straightforward (see Remark 2 for
justification). To prove correctness, we need to analyze the conditional probability of
failure given D(1) = i. Let N = |{i € [n°]| F; # 0}| (N is the support size of F'). We

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

430 RAJESH JAYARAM AND DAVID WOODRUFF

can assume that N # 0 (to check this, one could run, for instance, the O(log?(n))-bit
support sampler of [JST11]). Note that n°~1 < N < n°. We now will prove the
propositions and lemmas needed to demosntrate correctness of this sampler. Lemmas
12 and 13 are the analogous results to Lemmas 3 and 4 in section 4 and will follow
nearly the same proofs.

PROPOSITION 6. Let X,Y € R4 be random variables where Z = X +Y . Suppose
X is independent of some event E, and let M > 0 be such that for every i € [d] and
every a < b we have Prla < X; < b] < M(b— a). Suppose further that |Y]s < €.
Then if I =1 x Iy x --- x Ig C R"™, where each I; = [a;,b;] CR, —o0 < a; < b; < o0
is a (possibly unbounded) interval, then

Pr[Z € I|E] = Pr[Z € I| + O(edM).

Proof. For j € [d], let T; = [a; — €,b; + €],1; = [a; + €,b; — €], and let T =

Iy x-+-xTg,and I =1, x --- x I,. If one of the endpoints is unbounded we simply

use the convention co £ ¢ = 00, —00 + ¢ = —oo for any real c¢. Then

Pr|Z € I|E] < Pr[X € I|E] = Pr[X €]

d
SPY[XEI}+PY|:UXZEIJ\I]:|
i=1

By the union bound, this is at most Pr[X € I|4+4deM < Pr[Z € I|+4deM. Similarly,

Pr(Z € I|E] > Pr[X € I] > Pr[X € I| — 4deM > Pr[Z € I] — 4deM. O

LEMMA 12. For p € (0,2] a constant bounded away from 0 and any v > n™°c,
Pr[—FAIL | D(1)] = Pr[-FAIL] £+ O(log(n)v) for every possible D(1) € [N].

Proof. By Lemma 2, conditioned on &1, for every k < N —n%/10 we have |zp@)| =

Upe (14 O(n=c/10) Ve = UYP (14 O(Ln=¢/1%)) (using the identity (1 +z) < e®
E

. . B k 7
and the Taylor expansion of e”), where Up) = (3°;_; TS [Fog, 7]
dent of the antirank vector D (in fact, it is totally determined by &k and the hidden
exponentials F;). Then for ¢ sufficiently large, we have |(px)| = Ullj/(z)(l + O(v)),

and so for all p € (0,2] and k < N — n?¢/10

)~1 is indepen-

1 1
Coml = Upy + UBE Vo),

where Vp (i) is some random variable that satisfies |[Vp)| = O(v). Now consider a
bucket A; ; for (i,7) € [d]x[6/€?]. Let o, = sign(zx) = sign((x) for k € [n°]. Then we
write A j = 3 iep, o0 [CDk)19i,5,D(k) T Xres,, ODk)CDW) [9i,5,D(k), Where Bij =
{k <N —n%/10h; i pgy =1} and Sj; = {n® >k > N —n%/10 |h, ; pgy = 1} (see
the notation above Theorem 11). Here we define {D(N +1),..., D(n°)} to be the set
of indices ¢ with F; = 0 (in any ordering, as they contribute nothing to the sum). So

1 1
A= Z gi,j7D(k)0D(k)UD/(i)+ Z gi,j,D(k)UD(k)UD/(};)VD(k)+ Z 9i,5,D(k)SD (k)
kEBqﬁj k‘GBij kESij

Importantly, observe that since the variables h; ; p) are fully independent, the sets
B; j, Si;j are independent of the antirank vector D. In other words, the values h; ; p(x)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 431

are independent of the values D(k) (and of the entire antirank vector). Note that this
would not necessarily be the case if these were only ¢-wise independent for some
¢ = o(n®). So we can condition on a fixed set of values {h; j p(1),---,hi j D(ne)} NOW,
which fixes the sets B; j, S; ;

CLAIM 2. For alli, j, andp € (0,2], we have | 3. gl-’j’D(k)UD(k)U}j/(Z)VD(k)|+
|Zkesm 9i.5. 0 Cn | = O(y/1og(n)v||z||2) with probability 1 — O(log®(n)n=°).

Proof. By Khintchines’s inequality (Fact 1), we have |Zkesij 9i,j,p(k)CDM) | =
O(log(n))(zkesi (22p(x))?)*/? with probability 1 — n=¢. This is a sum over a

9¢/10 gmallest items |z;], and thus Zkes zD(k) < 9;/10”2”2’ giv-

subset of the n
ing | yes,, 9,000 = O(y/log(n)n =</39)12|l). Furthermore, using the fact
that for k& < N — n%/1% we have [(p)| < QU;)/(’,';) and |Vp)| = O(v), we have
| > kB, gi’ij(k)UD(k)Ué/(};)VD(k)| = O(/log(n)v| z||2) with probability 1 —n~¢ again
by Khintchine’s inequality, as needed. Note that there are only O(e~2log(n)) =
O(log®(n)) (for p < 2 this is O(log(n))) terms

Z 9i,5,D(k)CD(k)

kESi;

1
> g0k Up Vo | +
kE€B;;

which ever occur in all of the A;;’s, since the count-sketch has size O(e~2log(n)).
Union bounding over these buckets, and taking c sufficiently large, the claim follows. O

Call the event where Claim 2 holds &. Conditioned on &, we can decompose
|A; ;| for all 7,5 into |ZkeBij giyj,D(k)UD(k)U;,/(’;)\ + V;;, where V;; is some random

. e 1/p . .
variable satisfying |V;;| = O(y/log(n)v| z||2) and ZkeBij gi’j,D(k)JD(k)UD/(};) is inde-
pendent of the antirank vector D (it depends only on the hidden exponentials Ej and
the uniformly random signs g; j p(k)op(r))- Let Ujj = |Zk€BM gi7j7D(k)0D(k)U;)/(i)|.
Let I'(k) = {(4,5) € [d] x [k] | hijpx) = 1}. Then our estimate for [(p(x)| is
Yo = mediang jyera {U;; +Vi;} = mediang jyerm {U7;}+ V), where \VD(k)| =
O(y/log(n)v||z||2) for all k € [n€].

We now consider our Ly estimate, which is given by R = 2median;{]| > kene) PriCkl},
where the ¢;’s are i.i.d. normal Gaussians. We can write this as

R= medlan]{ Z ©D(k aD(k)Ug(’;)
keB
1/p
(> epw)iopm Uiy Vom + @Dw)JCD(k)) ‘}
keB keS

where B = U;;B;; and S = [n°] \ B. Now the ¢p(x);’s are not £1 random variables,
so we cannot apply Khintchine’s inequality. However, by the 2-stability of Gaussians
(Definition 2), if @1, ..., ¢, are i.i.d. Gaussian, then Pr[|)", p;a;| > O(y/log(n))|al|2]
= Pr[|¢l||lal]lz2 > O(y/1log(n))|lal|2], where ¢ is again Gaussian. This latter probabil-
ity can be bounded by n~¢ via the pdf of a Gaussian, which is the same bound
as Khintchine’s inequality. So applylng the same argument as in Claim 2, we have
R = 2median;{(| ZkeB ©D(k);j O'D(k)U |} + Vg with probability 1 — O(n™¢), where

[Vr| = O(y/log(n)v||z||2). Call this event &s. By the symmetry of Gaussians, the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

432 RAJESH JAYARAM AND DAVID WOODRUFF
value ppk);0pk) is just another i.i.d. Gaussian, so |}, p @D(k)jUD(k)Ull)/(iﬂ is in-

dependent of the antirank vector.
Let Ujg(k) = median(i,j)ep(k){Ui’jhi(D(k))} for k € [n¢], and

)

Then both U},), U, are independent of the antiranks D(k) (the former does, however,

1/
Z QPD(k)jUD(k)UD(i)

Up = gmedianj (
keB

depend on k), and yp) = Ul*)(k) + Vg(k). Now to analyze our failure condition, we
define a deterministic function A(z,v) € R2. For vector z and a scalar v, set A(z,v); =
r(1) — x(2) — 100ev and A(x,v)2 = 2(2) — 50ev. Note A(y, uR) > 0 (coordinatewise) if
and only if —FAIL.

CrAaM 3. Conditioned on & N & N Es, we have the decomposition Ay, pR) =
A(U*, uU3)+V, where the former term is independent of the maz index and ||V || =
O(y/log(n)v| z[12)-

Proof. We have shown that [Vr| and |V, are_'both_'O(\/log(nly||z||2) for all
k € [n°] conditioned on & N & N E. We have y = U* + V*, where Up, ;) = Up,
and Vg(k) = Vg(k), so V* can change the value of the two largest coordinates in y by
at most [|[V*[|oo = O(y/log(n)v| z||2). Similarly [Vz| can change the value of R by at
most O(y/log(n)v||z||2), which completes the proof of the decomposition. To see the
claim of independence, note that A((j*, pU}) is a deterministic function of the hidden
exponentials Fy, ..., Ex, the random signs g, and the uniform random variable pu, the

joint distribution of all of which is marginally independent of the antirank vector D,
which completes the claim.]

To complete the proof of the lemma, it suffices to show the anticoncentration of
A(U*, uU}). Now for any interval I

PrA(U*, uUf)1 € I] = Prlp € I' /(100eU%)]
= O(|1|/(eUR))

and

Pr[A(U*, uU})s € I) = Prlp € I" /(50eU%)]
= O(|1]/(eUg)),

where I’ and I" are the result of shifting the interval I by a term which is independent
of p. Here |I| € [0, 0] denotes the size of the interval I. Thus it suffices to lower bound
Uj,.. We have 2U}, > R > 1||z||2 after conditioning on the success of our L estimator,
an event we call &4, which holds with probability 1 —n~¢ by Lemma 11. Thus
Pr(A(U*, pUg)1 € 1] = O(e7M|I|/||z]]2) and Pr[A(U*, uUk)z € I] = O(e~|I]/][2]|2)
for any interval I. So by Proposition 6, conditioned on & N & N E3 N E, we have

(6) Pr [A(y,uR) >0 eR? | D(l)} =Pr [A(y,uR) > 0| 4 O(log(n)v).
Note that & N & N E3 N &, holds with probability 1 — O(n~¢*1), so choosing ¢ such

that n=¢ < log(n)v, equation (6) holds without conditioning on & N & N E3 N &y,
which completes the proof of the lemma. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 433

LEMMA 13. If y is the vector obtained via count-sketch as in the algorithm L,
Sampler, and 0 < p < 2 a constant, then we have Prlyay — yw) > 100epuR, y2) >

50epR] > 1/2, where e = ©(1) when p < 2, and € = O(1/+/log(n)) when p = 2.
Proof. By Proposition 1, with probability 1 — 3e™* > .9 we have ||zi,(16)ll2 =
O(|F||p) for p < 2, and ||zt4i1016)]| = O(\/1og(n)||F||,) when p = 2. Observe that for

t € [16] we have |z2p(y| < [|F|p(s 2 ET)l/P, and with probability 99/100 we have

E; > 1/100, which implies that |zDT(_t§| = O(||F||) for all ¢ € [16]. Conditioned on
this, we have ||z||2 < ¢||F||p, where ¢ is a constant when p < 2, and ¢ = ©(/log(n))
when p = 2. In either case, we know that the estimate y from count sketch satisfies
ly = [¢llloo < €ll¢ll2 < 2€||z]|2 = O(]| F|lp)- Thus conditioning on the high probability
event that R = O(]|(]|2), we have that 100euR = O(||F||,), where we can rescale the
quantity down by any constant by a suitable rescaling of e.

Now note that |2p(y| = | F|l,/Er/” and |2pay| = ||F|lp/(Er + Ex(1+n=¢t1))/e,
where Ej, F5 are independent exponentials. So with probability 7/8, we have all
of lzpy)| = OUIFI,): [zne| = O(IF],). and |zpw)| — |zpe)| = O(IF|l,) with
sufficiently scaled constants, so scaling v by a sufficiently small constant we have
o) = OUF): nm| = [€oe)| = O(IF]l,) and [Cp)| = O(|F],). Conditioned
on the event in the prior paragraph and on the high probability of success of our Lo
estimation algorithm and our count-sketch error, our estimates of |CD(1)‘7 ‘CD(2)| via
y are O(1)-relative error estimates, so for e small enough the maximum indices in
y and ¢ will coincide, and we will have both y1) — y2) > 100euR = O(||F'||,) and
Ye2) > 50ep R = O(||F||). By a union bound, it follows that this condition holds with
probability at least 1 — (1/10 +99/100 + 1/8 + O(n~°)) > 1/2 as desired. O

Putting together the results of this section, we obtain the correctness of our
algorithm as stated in Theorem 12.

THEOREM 12. Given any constant ¢ > 2, v > n~¢, and 0 < p < 2, there is a

one-pass L, sampler which returns an index i € [n] such that Pr[i = j] = "I{gl“’; (1+
p

v)+n~¢ for all j € [n], and which fails with probability § > 0. The space required is
O(log?(n) log(1/6)(loglog n)?) bits for p < 2, and O(log®(n)log(1/6)(loglogn)?) bits
forp=2.

Proof. We claim that conditioned on not failing, we have that i* = arg max;{y;} =
arg max;{|z;|}. First, condition on the success of our count-sketch estimator, and on
the guarantees of our estimate R, which occur with probability 1—n"¢ together. Since
the gap between the two largest coordinates in y is at least 100euR > 20¢|/(|l2 >
20|ly — I¢]|loo (20 times the additive error in estimating |(|), it cannot be the case
that the index of the maximum coordinate in y is different from the index of the
maximum coordinate (in absolute value) in ¢, and moreover both y and ¢ must have
a unique maximizer. Then we have [(;+| — |C2)| = [{1)| — [C(2)] > 18¢€[|C]|2, and since
zi = (1 £ O(v))¢; for all 4, we have |||¢| — |z]|lcc < O@)]||¢||2- Scaling v down by a
factor of € = Q(+/1/log(n)) (which is absorbed into the O(v~') update time), the gap
between the top two items in ¢ is 18 times large than the additive error in estimating
z via (. Thus we must have i* = argmax;{|(;||} = argmax;{|z;|}, which completes
the proof of the claim.

Now Lemma 12 states for any i; € [n°] that Pr[-FAIL|i; = arg maxif,j/{|zi;, I} =
Pr[—FAIL] + O(log(n)v) = ¢ £ O(log(n)v), where ¢ = Pr[-FAIL] = Q(1) is a fixed
constant, by Lemma 13, which does not depend on any of the randomness in the
algorithm. Since conditioned on not failing we have argmax;{y;} = argmax;{|z|},

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

434 RAJESH JAYARAM AND DAVID WOODRUFF
the probability we output i; € [n°] is Pr[-FAIL Ny;; is the max in y] = Pr[-FAIL N

|| is the max in |2]] (conditioned on the high probability events in the prior para-
graph), so the probability our final algorithm outputs i € [n] is

S Pr[-FAIL |i; = argmax{|z; [}Prli; = argmax{|z, |}]
i, j il j! j

JEne1]
= >

j€[ne1]

|fil?
28

_ AP
HH

(q £ O(log(n)v))

(g £ O(log(n)v)).

The potential of the failure of the various high probability events that we conditioned
on only adds another additive O(n~°¢) term to the error. Thus, conditioned on an

index 7 being returned, we have Pr[i = j] = hiﬁll‘z (1+0(log(n)v))£n=¢ for all j € [n],

which is the desired result after rescaling v down by a factor of Q(1/log(n)). (We
need only scale down by Q(1/4/log(n)) after already rescaling by € = ©(1/4/log(n)
when p = 2.) Running the algorithm O(log(6~!)) times in parallel, it follows that at
least one index will be returned with probability 1 — 4.

Theorem 13 shows that the entire algorithm can be derandomized to use a random
seed with O(log?(n)(loglog n)?)-bits for p < 2 and O(log*(n)(log log n)?)-bits for p =
2, which dominates the space required to store the sketches of the sampling algorithm
themselves. Repeating O(log(1/4)) times to obtain § failure probability gives the
stated space bounds.]

Remark 2. Using roughly the same update procedures and a similar analysis as in
section 5, one can implement the above L, sampling algorithm to have O(v) update
time and O(l) report time, just as in Theorem 2. The only difference is the use
of Rademacher {1, —1} variables in the count-sketch instead of Gaussians and the
change to make the variables g; ; independent. These Rademacher variables are
easier to handle, as one can just compute, for a given bucket A;; of count-sketch,
the number of items which hash into this bucket with a 1 and —1 sign and add the
corresponding value to that bucket. This is simply another computation of a binomial
random variable. The variables g; ; » can be handled in Fast-Update by modifying
the procedure to draw a binomial to determine how many items hash to each bucket
A, ; independently for each j € [k]. This is as opposed to the Fast-Update of Figure
4, which only allows an item to be hashed into a single bucket in each row of A. In
other words, we change Figure 4 to deal with the modified variables g; ;i by simply
removing step 1(d), which decrements the value of Wy, which is the counter of items
left to be hashed in a row k of A.

To show that the output of this algorithm is the same when only searching
through a subset K of the coordinates (where IC is as in section 5) for the maxi-
mizers y(1), Y(2), observe that the test y2) > 50eu R enforces that, conditioned on not
failing, both y(;) and y(2) will be large enough to be contained in the set K. Thus we
can safely implement the Fast-Update procedure to give improved update time and
the ExpanderSketch of Theorem 8 to obtain the improved query time.

Appendix B. Derandomizing the original algorithm. We now show how
our original algorithm can be derandomized using the same techniques as in section
5. For this section, we let B € RO(02(") he the sketch stored for the high probability
Ly estimation used in the L, sampler as in Lemma 11. Note that B = G - (, where G
is a matrix of i.i.d. Gaussian variables.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERFECT f SAMPLING IN A DATA STREAM 435

THEOREM 13. The algorithm of section A.2 can be derandomized to run in
O(log?(n) log(1/6)(loglog(n))?) space for p < 2 and O(log®(n)log(1/8)(loglog(n))?)
space for p = 2.

Proof. We use the same notation A(r.,7.) as in Theorem 7. Recall here that r,
is the randomness required for the exponentials, and r. is the randomness required
for count-sketch (and now 7, must also include the randomness required for the Lo
estimation sketch B). For any fixed randomness r., let A, (r.) be the tester which
tests if our L, sampler would output the index %, where now the bits 7, are hard-coded
into the tester, and the random bits r. for the exponentials are taken as input.

Now note that the entire sketch stored by our algorithm can be written as Z - (,
where Z € ROUee(M)/€*)xn ig o fixed matrix defined by the count-sketch randomness
re, and (is the scaled (by inverse exponentials) and rounded stream vector of the
algorithm. Here Z - (= [vec(A);vec(B)], where vec(A) denotes the vectorization of
the count-sketch matrix A (and, respectively, B), and [z;y] is vector which stacks z
on top of y. Note that we can pull the scalings by F' into the matrix Z (making it
into a new fixed matrix Z’), so our sketch can be written as Z’ - t, where for j € [n¢]
we have t; = rndy(l/t}/p) and t;’s are the i.i.d. exponentials.

Since we are rounding the exponentials to powers of (14v) anyway, we can restrict
the support of the coordinates in ¢ to a discrete support of size O(poly(n)) such that
each value occurs with probability at least 1/poly(n) for a suitably larger poly(n).
This allows us to sample the variables rnd, (1 /t}/ Py using O(log(n))-bits of space as
needed for Lemma 7. Thus our entire algorithm requires poly(n) random bits to be
generated for the exponentials. Similarly, for the random Gaussians used to estimate
the Lo in the sketch B, one can truncate to O(log(n))-bits, incurring only an additive
n~¢ error in these buckets, which can be absorbed into the adversarial error which
is already handled in Lemma 12. Restricting the support of the Gaussians so that
each value occurs with probability at least 1/poly(n), it follows that these Gaussians
can also be sampled using O(log(n))-bits each. The only remaining randomness is
the random signs and h; ;i in count sketch, each of which have a support of size 2
and can be sampled with O(log(n))-bits. So using Lemma 7, we can fool the tester
which tests if Z/ -t = y for any y with O(log(n)) bounded bit-complexity, using a
seed of O(log?(n)(loglogn)?) bits (and O(log®(n)(loglogn)?) for p = 2). Then as
in Theorem 5, since we can fool Pr[Z’ -t = y|, we can also fool any tester which
takes as input y = Z’ - t and outputs whether or not on input y our algorithm would
output ¢ € [n]. Thus if G(z) is one instance of the PRG from Lemma 7, we have
Pr[A, (re)] ~,-oacsmy Pr[A. (G(x))], and similarly, as in Theorem 7

Pr [A(Te, TC)} = Z Pr [.Arc (Te):| Pr [TC]
= Y (Pr[A, (G(a))] £ 0Ot)Pr 1,

= S P[4, (G| Prfr] £ 3 nmC0Epr [y,

Te

"~ p—O(log(n)) Pr [A(G(I), TC)]
Now fix any seed G(z), and consider Ag)(r) which on fixed exponential ran-

domness G(z) and fresh count-sketch randomness r., tests whether our algorithm
would output ¢ € [n]. Note that this algorithm simply maintains the same sketch

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

436 RAJESH JAYARAM AND DAVID WOODRUFF

Z - (= [vec(A),vec(B)] as above. Note that the entries of Z are of two forms:
the i.i.d. count-sketch randomness and the i.i.d. Gaussians needed for the sketch B.
By Theorem 5, we can derandomize both of these separately by two more instances
G(x2), G(x3) of the PRG of Lemma 7, each using seeds z, 23 of O(log?(n)(loglogn)?)
bits of space for p < 2 and O(log®(n)(loglogn)?) bits of space for p = 2. So if Z; is the
first set of rows of Z which correspond to the count-sketch randomness, and Zs is the
rest of the rows which contain i.i.d. Gaussians, we have that for all y, v/’ with O(log(n))-
entrywise bounded bit complexity, Pr[Z; - { = y] ~,-oweem) Pr[G(zs2) - { = y] and
Pr(Zs - (= y'] ~,-00esnyy Pr[G(zs) - ¢ = y']. Here we are abusing notation and
thinking of the PRG randomness G(z2) as being formed into the matrix which it
defines.

Since G(x2) is independent of G(z3), for any y of O(log(n))-entrywise
bounded bit complexity, we have Pr[Z - (= y] ~, ooy Pr[[G(z2);G(x3)] - ¢ =
y]. Thus we fool the entire tester Ag(y)(re) with Ag(y)(G(z2) U G(23)), meaning
Pr[Ac) (re)] ~p-otostn) PrlAge)(G(z2) UG(x3))], and by a similar averaging ar-
guement as above, we have Pr[A(G(z),r.)] ~,-oweztn) PrlA(G(x),G(z2) U G(x3))],
and thus Pr[A(r.,r.)] ~,-00esm) PrlA(G(z), G(z2) U G(x3))], which completes the
proof. We note that any coordinate output by the PRG of Lemma 7 (and thus Theo-
rem 5) can be computed in space linear in the seed length required by Proposition 3,
and thus the space required to evaluate the generator is linear in the seed length. 0

Acknowledgments. The authors would like to thank Raghu Meka for a helpful
explanation of the [GKM18] PRG, and for pointing out how the arguments could be
extended to fooling functions of multiple half-spaces (Lemma 7). The authors would
also like to thank Ryan O’Donnell for a useful discussion on pseudorandom generators
in general.

REFERENCES
[AKO10] A. ANDONI, R. KRAUTHGAMER, AND K. ONAK, Streaming Algorithms from Precision
Sampling, preprint, arXiv:1011.1263, 2010.
[BBD+02] B. BABCOCK, S. BABU, M. DATAR, R. MOTWANI, AND J. WIDOM, Models and issues

in data stream systems, in Proceedings of the 21st ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, ACM, 2002, pp. 1-16.

[BCIW16] V. BrRAVERMAN, S. R. CHESTNUT, N. IVKIN, AND D. P. WOODRUFF, Beating counts-
ketch for heavy hitters in insertion streams, in Proceedings of the 48th Annual
ACM Symposium on Theory of Computing, ACM, 2016, pp. 740-753.

. BABcoCK, M. DATAR, AND R. MOTWANI, Sampling from a moving window over
streaming data, in Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, Philadelphia, 2002, pp. 633-634.

[BKP+14] K. BRINGMANN, F. KunN, K. PanacioTOU, U. PETER, AND H. THOMAS, Internal
DLA: Efficient simulation of a physical growth model, in Proceedings of the In-
ternational Colloquium on Automata, Languages, and Programming, Springer,
New York, 2014, pp. 247-258.

[BOZ12] V. BRAVERMAN, R. OSTROVSKY, AND C. ZANIOLO, Optimal sampling from sliding

windows, J. Comput. System Sci., 78 (2012), pp. 260-272.

. CoHEN, G. CORMODE, AND N. G. DUFFIELD, Structure-aware sampling: Flexible
and accurate summarization, PVLDB, 4 (2011), pp. 819-830.

[CCD12] E. CoHEN, G. CORMODE, AND N. DUFFIELD, Don’t let the negatives bring you down:

Sampling from streams of signed updates, ACM SIGMETRICS Performance Eval.
Rev., 40 (2012), pp. 343-354.

[CCFC02a] M. CHARIKAR, K. CHEN, AND M. FARACH-COLTON, Finding frequent items in data
streams, in Proceedings of the 29th International Colloquium on Automata, Lan-
guages and Programming, ICALP ’02, London, Springer, 2002, pp. 693-703.

[CDK+09] E. CoHEN, N. DUFFIELD, H. KapLAN, C. LUND, AND M. THORUP, Stream sampling for
variance-optimal estimation of subset sums, in Proceedings of the 20th Annual

[BDMO02]

os}

[CCD11]

=

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[CDK+14]

[CMRO5)

[CMYZ10]

[CMYZ12]

[Cohl5]

[CT12]
[Dufo4]

[DV06]

[EV03]

[FCT15]

[FIM~+01]

[FIS08]
[FKV04]
[GKM18]
[GKMSO01]

[GKMS02]

[GLHO6]

[GLHO8]

[GM98a]

[GMP]
[Haa81]

[Haal6)

[HNG+07]

PERFECT f SAMPLING IN A DATA STREAM 437

ACM-SIAM Symposium on Discrete Algorithms, STAM, Philadelphia, 2009, pp.
1255-1264.

E. CoHeN, N. G. DUFFIELD, H. KAPLAN, C. LUND, AND M. THORUP, Algorithms and
estimators for summarization of unaggregated data streams, J. Comput. System
Sci., 80 (2014), pp. 1214-1244.

G. CORMODE, S. MUTHUKRISHNAN, AND I. ROZENBAUM, Summarizing and mining in-
verse distributions on data streams via dynamic inverse sampling, in Proceedings
of the 31st International Conference on Very Large Data Bases, VLDB Endow-
ment, 2005, pp. 25-36.

G. CORMODE, S. MUTHUKRISHNAN, K. YI, AND Q. ZHANG, Optimal sampling from
distributed streams, in Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, ACM, 2010, pp. 77-86.

G. CORMODE, S. MUTHUKRISHNAN, K. Y1, AND Q. ZHANG, Continuous sampling from
distributed streams, J. ACM, 59 (2012), 10.

E. CoHEN, Stream sampling for frequency cap statistics, in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, ACM, New York, 2015, pp. 159-168.

T. M. CoVER AND J. A. THOMAS, Elements of Information Theory, John Wiley &
Sons, New York, 2012.

N. DUFFIELD, Sampling for passive internet measurement: A review, Statist. Sci.,
2004, pp. 472-498.

A. DESHPANDE AND S. VEMPALA, Adaptive sampling and fast low-rank matriz approxi-
mation, in Approximation, Randomization, and Combinatorial Optimization, Al-
gorithms and Techniques, Springer, New York, 2006, pp. 292-303.

C. ESTAN AND G. VARGHESE, New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice, ACM Trans. Comput. Syst., 21
(2003), pp. 270-313.

M. FARACH-COLTON AND M.-T. TsAl, Ezact sublinear binomial sampling, Algorith-
mica, 73 (2015), pp. 637-651.

J. FEIGENBAUM, Y. IsHAI, T. MALKIN, K. NissiM, M. J. STRAUSS, AND R. N. WRIGHT,
Secure multiparty computation of approximations,in Proceedings of the Interna-
tional Colloquium on Automata, Languages, and Programming, Springer, New
York, 2001, pp. 927-938.

G. FRAHLING, P. INDYK, AND C. SOHLER, Sampling in dynamic data streams and
applications, Internat. J. Comput. Geom. Appl., 18 (2008), pp. 3—28.

A. FrIEZE, R. KANNAN, AND S. VEMPALA, Fast Monte-Carlo algorithms for finding
low-rank approximations, J. ACM, 51 (2004), pp. 1025-1041.

P. GopraLAN, D. M. KANE, AND R. MEKA, Pseudorandomness via the discrete Fourier
transform, SIAM J. Comput., 47 (2018), pp. 2451-2487.

A. C. GILBERT, Y. KOTIDIS, S. MUTHUKRISHNAN, AND M. STRAUSS, Quicksand: Quick
Summary and Analysis of Network Data, Technical report, 2001.

A. C. GILBERT, Y. KOTIDIS, S. MUTHUKRISHNAN, AND M. J. STRAUSS, How to summa-
rize the universe: Dynamic maintenance of quantiles, in VLDB’02: Proceedings
of the 28th International Conference on Very Large Databases, Elsevier, New
York, 2002, pp. 454-465.

R. GEMuULLA, W. LEHNER, AND P. J. HAaAs, A dip in the reservoir: Maintaining
sample synopses of evolving datasets, in Proceedings of the 32nd International
Conference on Very Large Data Bases, Seoul, Korea, 2006, pp. 595-606.

R. GEMULLA, W. LEHNER, AND P. J. HAAS, Maintaining bounded-size sample synopses
of evolving datasets, VLDB J., 17 (2008), pp. 173-202.

P. B. GIBBONS AND Y. MATIAS, New sampling-based summary statistics for improving
approzimate query answers, in Proceedings of the ACM SIGMOD International
Conference on Management of Data, Seattle, WA, 1998, pp. 331-342.

P. B. GiBBONS, Y. MATIAS, AND V. POOSALA, Fast incremental maintenance of ap-
prozimate histograms, NCM Trans Database Syst., 27 (2002).

U. HAAGERUP, The best constants in the Khintchine inequality, Studia Math., 70
(1981), pp. 231-283.

P. J. Haas, Data-stream sampling: Basic techniques and results, in Data Stream
Management—Processing High-Speed Data Streams, Springer, New York, 2016,
pp. 13-44.

L. HuaNng, X. L. NGUYEN, M. GAROFALAKIS, J. M. HELLERSTEIN, M. I. JORDAN, A. D.
JOSEPH, AND N. TAFT, Communication-efficient online detection of network-wide

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

438

[HNSS96]

[HS92]

(Indo6]

[JST11]

[TW13]

[KNP+17]

[Knu9g]

[KNW10]

[Kop13]
[LNO5]

[LNNT16]

[LNS90]

[LNW14]

[M+05]

[McD89)

[MCS+-06]

[MM12]

[MP14]

[MW10]

[Nag06]

[Nis92]

[NZ96]

RAJESH JAYARAM AND DAVID WOODRUFF

anomalies, in Proceedings of the 26th IEEE International Conference on Com-
puter Communications (INFOCOM 2007), IEEE, 2007, pp. 134-142.

P. J. Haas, J. F. NAUGHTON, S. SESHADRI, AND A. N. SwaMI, Selectivity and cost es-
timation for joins based on random sampling, J. Comput. System Sci., 52 (1996),
pp. 550-569.

P. J. Haas AND A. N. SwaMI, Sequential sampling procedures for query size estima-
tion, SIGMOD Record, 21 (1992), pp. 341-350.

P. INDYK, Stable distributions, pseudorandom generators, embeddings, and data
stream computation, J. ACM, 53 (2006), pp. 307-323.

H. JowHARI, M. SAGLAM, AND G. TARDOS, Tight bounds for lp samplers, find-
ing duplicates in streams, and related problems, in Proceedings of the 30th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS ’11, ACM, New York, 2011, pp. 49-58.

T. S. JAYRAM AND D. P. WOODRUFF, Optimal bounds for Johnson-Lindenstrauss
transforms and streaming problems with subconstant error, ACM Trans. Algo-
rithms, 9 (2013), 26.

M. KapPrALOV, J. NELSON, J. PACHOCKI, Z. WANG, D. P. WOODRUFF, AND M.
YAHYAZADEH, Optimal lower bounds for universal relation, and for samplers and
finding duplicates in streams, 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), Berkeley, CA, 2017, pp. 475-486.

D. E. KNUTH, The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms, 3rd ed., Addison-Wesley, Reading, MA, 1998.

D. M. KANE, J. NELSON, AND D. P. WOODRUFF, On the exact space complexity of
sketching and streaming small norms, in Proceedings of the 21st Annual ACM-
STAM Symposium on Discrete Algorithms, STAM, Philadelphia, 2010, pp. 1161—
1178.

S. KOPPARTY, Lecture 7: e-biased and Almost k-wise Independent Spaces, http://sites.
math.rutgers.edu/~sk1233/courses/topics-S13/lec7.pdf, 2013.

R. J. LiprToN AND J. F. NAUGHTON, Query size estimation by adaptive sampling, J,
Comput. System Sci., 51 (1995), pp. 18-25.

K. G. LARSEN, J. NELSON, H. L. NGUYEN, AND M.THORUP, Heavy hitters via cluster-
preserving clustering, in Proceedings of the IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), IEEE, 2016, pp. 61-70.

R. J. LirTON, J. F. NAUGHTON, AND D. A. SCHNEIDER, Practical selectivity estimation
through adaptive sampling, in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1990.

Y. L1, H. L. NGUYEN, AND D. P. WOODRUFF, Turnstile streaming algorithms might
as well be linear sketches, in Proceedings of the 46th Annual ACM Symposium
on Theory of Computing, ACM, New York, 2014, pp. 174-183.

S. MUTHUKRISHNAN, Data streams: Algorithms and applications, Found. Trends
Theor. Comput. Sci., 1 (2005), pp. 117-236.

C. McDIARMID, On the method of bounded differences, in Surveys in Combinatorics,
London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge,
1989, pp. 148-188.

J. Ma1, C.-N. CHUAH, A. SRIDHARAN, T. YE, AND H. ZANG, Is sampled data sufficient
for anomaly detection?, in Proceedings of the 6th ACM SIGCOMM Conference
on Internet Measurement, ACM, New York, 2006, pp. 165-176.

G. S. MANKU AND R. MOTWANI, Approzimate frequency counts over data streams,
PVLDB, 5 (2012), 1699.

G. T. MINTON AND E. PRICE, Improved concentration bounds for count-sketch, in
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, 2014, pp. 669-686.

M. MONEMIZADEH AND D. P. WOODRUFF, 1-pass relative-error LP-sampling with ap-
plications, in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, STAM, Philadelphia, 2010, pp. 1143—-1160.

H. N. NAGARAJA, Order statistics from independent exponential random wvariables
and the sum of the top order statistics, Advances in Distribution Theory, Order
Statistics, and Inference, Springer, New York, 2006, pp. 173-185.

N. NisaAN, Pseudorandom generators for space-bounded computation, Combinatorica,
12 (1992), pp. 449-461.

N. NISAN AND D. ZUCKERMAN, Randomness is linear in space, J. Comput. System
Sci., 52 (1996), pp. 43-52.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/17/23 to 73.222.54.66 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[O1k93]
[Pri1g]
[TLJ10]

[TW11]

[Vit85a]

[Wooll]

[WZ13]

[WZ16]

PERFECT f SAMPLING IN A DATA STREAM 439

F. OLKEN, Random Sampling from Databases, Ph.D. thesis, University of California,
Berkeley, 1993.

E. PRICE, private communication, 2018.

M. THOTTAN, G. Liu, AND C. J1, Anomaly detection approaches for communication
networks, in Algorithms for Next Generation Networks, Springer, New York, 2010,
pp. 239-261.

S. TIRTHAPURA AND D. P. WOODRUFF, Optimal random sampling from distributed
streams revisited, in Proceedings of the International Symposium on Distributed
Computing, Springer, New York, 2011, pp. 283—-297.

J. S. VITTER, Random sampling with a reservoir, ACM Trans. Math. Software, 11
(1985), pp. 37-57.

D. P. WOODRUFF, Near-optimal private approximation protocols via a black box trans-
formation, in Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, 2011, pp. 735-744.

D. P. WOODRUFF AND Q. ZHANG, Subspace Embeddings and LP-Regression using
Ezponential Random Variables, CoRR, abs/1305.5580, 2013.

D. P. WOODRUFF AND P. ZHONG, Distributed low rank approximation of implicit
functions of a matriz, in Proceedings of the 32nd IEEE International Conference
on Data Engineering (ICDE), 2016, pp. 847-858.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

	Introduction
	Our contributions
	Applications
	Our techniques

	Preliminaries
	Count-sketch and count-max

	Exponential order statistics
	The sampling algorithm
	Time and space complexity
	Optimizing the update time
	Derandomizing the algorithm
	Road-map for the derandomization
	Half space fooling PRG's
	Derandomizing the count-sketch of Minton and Price
	Derandomizing the Lp sampling algorithm

	Query time

	Estimating the frequency of the sampled coordinate
	Lower bounds
	Augmented indexing on large domains

	Conclusion
	Appendix A. Original Lp sampling via count-sketch
	Preliminaries
	The Lp sampler

	Appendix B. Derandomizing the original algorithm
	Acknowledgments
	References

