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Tight Bounds for {; Oblivious Subspace Embeddings

RUOSONG WANG and DAVID P. WOODRUFF, Carnegie Mellon University

An {p oblivious subspace embedding is a distribution over r X n matrices II such that for any fixed n x d
matrix A,

Il’_lr[for all x, [|Ax|l, < [ITTAx|l, < x[lAx|l,] = 9/10,

where r is the dimension of the embedding, «x is the distortion of the embedding, and for an n-dimensional
vector y, llyll, = (X1, lyi [PY/P is the {p-norm. Another important property is the sparsity of II, that is, the
maximum number of non-zero entries per column, as this determines the running time of computing ITA.
While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the
important case of 1 < p < 2, much less was known. In this article, we obtain nearly optimal tradeoffs for {;
oblivious subspace embeddings, as well as new tradeoffs for 1 < p < 2. Our main results are as follows:

(1) We show for every 1 < p < 2, any oblivious subspace embedding with dimension r has distortion

1
(%)I/Plogz/pr+ (r)l/Pfl/Z

n

When r = poly(d) < n in applications, this gives a k = Q(d!/? log™2/? d) lower bound, and shows
the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to
poly(log(d)) factors.
(2) We give sparse oblivious subspace embeddings for every 1 < p < 2. Importantly, for p = 1, we achieve

r = O(dlogd), k = O(dlogd) and s = O(logd) non-zero entries per column. The best previous con-
struction with s < poly(log d) is due to Woodruff and Zhang (COLT, 2013), giving k = Q(d?poly(log d))
or k = Q(d*?\flogn - poly(logd)) and r > d - poly(logd); in contrast our r = O(dlogd) and
k = O(dlogd) are optimal up to poly(log(d)) factors even for dense matrices.

We also give (1) {, oblivious subspace embeddings with an expected 1 + ¢ number of non-zero entries per

column for arbitrarily small ¢ > 0, and (2) the first oblivious subspace embeddings for 1 < p < 2 with

O(1)-distortion and dimension independent of n. Oblivious subspace embeddings are crucial for distributed

and streaming environments, as well as entrywise £, low-rank approximation. Our results give improved

algorithms for these applications.
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1 INTRODUCTION

An €, oblivious subspace embedding with distortion x is a distribution over rXn matrices IT such that
for any given A € R™4 with constant probability, ||Ax||, < [[IIAx||, < x||Ax||, simultaneously
for all x € R?. The goal is to minimize r, k¥ and the time to calculate ITA.

Oblivious subspace embeddings have proven to be an essential ingredient for approximately
solving numerical linear algebra problems, such as regression and low-rank approximation. Sarlos
[29] first used ¢, oblivious subspace embeddings to solve ¢;-regression and Frobenius-norm low-
rank approximation. To see the connection, suppose one wishes to solve the £,-regression problem
argmin, [|Ax — bl|; in the overconstrained setting, i.e., A € R™4 and b € R™ where n > d. Sar-
los showed that to solve this problem approximately, it suffices to solve a much smaller instance
argmin, [|[TIAx —I1b||,, provided II is an £, oblivious subspace embedding for the matrix formed by
concatenating columns of A € R™@ and b € R". Sarlos further showed that using the Fast Johnson-
Lindenstrauss Transform in Reference [1] as the ¢, oblivious subspace embedding with x = 1 + ¢,
one can get a (1 + ¢)-approximate solution to the £;-regression problem in O(nd log d) + poly(d/¢)
time, which is a substantial improvement over the standard approach based on the normal equa-
tion, which runs in O(nd?) time. The advatange of the Fast Johnson-Lindenstrauss Transform is
that for any A € R™, for any matrix IT in the support of the distribution, IIA can be computed in
O(ndlogn) time.

Subsequent to the work of Sarlos, the “sketch and solve” approach became an important way to
solve numerical linear algebra problems. We refer interested readers to the monograph of Woodruff
[34] for recent developments.

The bottleneck of Sarlos’s approach is the step to calculate ITA, which requires Q(nd) time due to
the structure of the Fast Johnson-Lindenstrauss Transform. Although this is already nearly optimal
for dense matrices, when A is large and sparse, one may wish to solve the problem faster than
O(nd) time by exploiting the sparsity of A. Clarkson and Woodruff [10] showed that there exist
{, oblivious subspace embeddings with r = poly(d/e) rows, s = 1 non-zero entries per column,
and k = 1 + ¢. The property that s = 1 is significant, since it implies calculating IIA requires
only O(nnz(A)) time, where nnz(A) is the number of non-zero entries of A. In fact, the oblivious
subspace embedding they used is the CountSketch matrix from the data stream literature [6]. By
using the CountSketch embedding in Reference [10], one can reduce an {,-regression instance of
size n X d into a smaller instance of size poly(d/¢) X d in O(nnz(A)) time. The original proof in
Reference [10] used a technique based on splitting coordinates by leverage scores. The number of
rows can be further reduced to r = O((d/¢)?) using the same construction and a finer analysis
based on second moment method, shown independently in References [24, 25].

One may wonder if it is possible to further reduce the number of rows in the CountSketch em-
bedding, since this affects the size of the smaller instance to solve. In Reference [26], Nelson and
Nguyén showed that any ¢, oblivious subspace embedding with constant distortion and s = 1
non-zero entries per column requires Q(d?) rows. Although this rules out the possibility of fur-
ther reducing the number of rows in the CountSketch embedding, this lower bound can be cir-
cumvented by considering embeddings with s > 1 non-zero entries in each column. This idea
is implemented by the same authors in Reference [25], obtaining a result showing that for any
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B > 2, for r about B - dlog® d/¢* and s about log%3 d/e, one can achieve an {, oblivious subspace
embedding with k = 1 + ¢. The bound on r and s was further improved in Reference [11] (see also
Reference [4]), where Cohen showed that for any B > 2, it suffices to have r = O(B-dlog d/¢*) and
s = O(logg d/¢). Cohen’s result matches the lower bound in Reference [27] up to a multiplicative
log d factor in the number of rows.

Another line of research focused on the case when p # 2, as the corresponding regression
and low-rank approximation problems are often considered to be more robust, or less sensitive
to outliers. Moreover, the p = 1 error measure for regression yields the maximum likelihood es-
timator under Laplacian noise models. When p = 1, using Cauchy random variables, Sohler and
Woodruff [30] showed there exist ¢; oblivious subspace embeddings with r = O(dlogd) rows
and k = O(d log d). This approach was generalized by using p-stable random variables in work of
Meng and Mahoney [24] to £,-norms when 1 < p < 2, where they showed there exist £, obliv-
ious subspace embeddings with r = O(dlogd) rows and k = O(dlogd).! Unlike the case when
p = 2, due to the large distortion incurred in such upper bounds, one cannot directly get a (1 + ¢)-
approximate solution to the £,-regression problem by solving argmin, ||[IIAx — IIb||,. A natural
question then, is whether it is possible to obtain (1 + ¢)-distortion with £, oblivious subspace em-
beddings; prior to our work there were no lower bounds ruling out the existence of £, oblivious
subspace embeddings with r = poly(d/e) and k = 1 + e.

Although it was unknown if better oblivious subspace embeddings exist for p # 2 prior to
our work, £, oblivious subspace embeddings still played a crucial role in solving £,-regression
problems in earlier work, since they provide a way to precondition the matrix A, which enables
one to further apply non-oblivious (sampling-based) subspace embeddings. We refer interested
readers to Chapter 3 of Reference [34] and references therein for further details. Recent develop-
ments in entrywise £, low-rank approximation [31] also used ¢, oblivious subspace embeddings
as an important ingredient. Furthermore, such ¢; oblivious subspace embeddings are the only
known way to achieve single-pass streaming algorithms for ¢;-regression (see, e.g., Section 5 of
Reference [30], where it is shown how to implement the preconditioning and sampling in parallel
in a single pass), a model that has received considerable interest for linear algebra problems (see,
e.g., Reference [9]). We note that recent algorithms for £,-regression based on Lewis weights
sampling require at least Q(loglog n) passes in the streaming model.

Due to these applications, speeding up the computation of IIA for ¢, oblivious subspace
embeddings is an important goal. In Reference [8], Clarkson et al. combined the idea of Cauchy
random variables and Fast Johnson-Lindenstrauss Transforms to obtain a more structured family
of subspace embeddings, which enables one to calculate IIA in O(ndlogn) time. Meng and
Mahoney [24] showed that when 1 < p < 2, there exist £, oblivious subspace embeddings with
r= 5(d5) rows and s = 1 non-zero entries per column, where the distortion k = 0(d®).2 The
structure of the embedding by Meng and Mahoney is very similar to the CountSketch embedding
by Clarkson and Woodruff [10]. In fact, to prove the distortion bound, Meng and Mahoney also
used techniques of splitting coordinates based on leverage scores.

Inspired by the technique by Andoni [2], which used exponential random variables to estimate
the £,-norm of a data steam, Woodruff and Zhang [35] improved the embedding given in Refer-

ence [24]. They showed there exist ¢; oblivious subspace embeddings with r = 5(d) rows and
s = polylog(d) non-zero entries per column, where the distortion x = min{O(d?), O(d"->)+/log n}.
Note that to achieve such a small polylogarithmic sparsity, the distortion k given by the analysis

In Reference [24] the authors incorrectly claimed that the distortion of their subspace embedding is x = O((d log d Y1/py,
See Section 1.3 for more details.
2 Again, in Reference [24] the authors incorrectly claimed that the distortion is k = o(d3'r).
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Table 1. Summary of Previous and New Upper Bounds When p = 1

Reference r K s
Sohler and Woodruff [30] | O(dlogd) O(dlogd) Dense
ZEp:
Clarkson et al. [8] O(dlogd) O(d(d(?l-(clioglorgli) log d) Dense
Meng and Mahoney [24] | O(d”log’ d) O(d®log® d) 1
Woodruff and Zhang [35] Oo(d) min{O(d?), O(d')/log n} poly(log d)
Theorem 4.1 o(d?) o(d) 2
Theorem 4.2 O(B - dlogd) O(dlogg d) O(logy d)
Theorem 6.1 Oo(d?) o(d) 1 + ¢ in expectation
Theorem 6.6 o(d*) Oo(d) 1

Here, np > 0 is an arbitrarily small constant. B > 0 is required to be sufficiently large and provides a tradeoff between
r, k,and s.

in Reference [35] had to either increase to 5(d2) or to 5(d1'5)\/10g n, the latter also depending on
n. See Table 1 for a summary of previous and new upper bounds when p = 1.

The above works leave many gaps in our understanding on the tradeoffs between dimension,
distortion, and sparsity for £, oblivious subspace embeddings. For instance, it is natural to ask
what the optimal distortion bound for £, oblivious subspace embeddings is when 1 < p < 2,
provided that the number of rows r = poly(d). Results in References [24, 30] showed that
k = O(dlogd) is achievable. Is this optimal? Also, it is unknown whether there exist sparse ¢
oblivious subspace embeddings with dimension O(d) and distortion x = O(d). In this article, we
resolve these questions.

1.1  Our Results

Distortion Lower Bound. We first show a distortion lower bound for £;, oblivious subspace em-
beddings, when 1 < p < 2.

THEOREM 1.1. For 1 < p < 2, if a distribution over r X n matrices Il is an ¢, oblivious subspace

embedding, then the distortion

1

(%)UP log*? r + (ﬁ)l/P—l/z

When 1 < p < 2 and r = poly(d), the denominator of the lower bound is dominated by the
(%)1/1’ -1og?? r term, provided n is large enough. In that case, our lower bound is Q(d'/? log™%/? d).
It was shown in Reference [30] that there exist £; oblivious subspace embeddings with r =
O(dlogd) rows and distortion k = O(dlogd). Our lower bound matches this result up to an
O(log® d) factor. Thus, our lower bound is nearly optimal for r = poly(d) when p = 1 (which
is the main regime of interest in the above applications).

The dependence on (r/n)'/?~1/2 reflects the fact that

e When the number of rows r = n, one can get a trivial £, oblivious subspace embedding with
K = 1, i.e., the identity matrix I;

e As p — 2, there exist ¢, oblivious subspace embeddings [4, 10, 11, 24, 25, 29] withk = 1 + ¢
and r = poly(d/¢), where ¢ can be an arbitrarily small constant.

It is possible that the log?/? r factor (in the (1/d)!/? -1og?’? r term) could be somewhat improved.
However, we show that some dependence on r is, in fact, necessary.
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THEOREM 1.2 (INFORMAL VERSION OF THEOREM 3.5). For1 < p < 2, there exists an , oblivious
subspace embedding over exp(exp(O(d))) X n matrices I1, where the distortion k is a constant.

Even though Theorem 1.2 has a doubly exponential dependence on d in the number of rows, it
is the first £, oblivious subspace embedding with constant distortion, when 1 < p < 2 and r does
not depend on n. This new embedding suggests that it is impossible to get a lower bound of

1
(é)l/P + (L)l/p—l/2
n

ie., the (%)1/ ? term should have some dependence on r.

k]

New €, oblivious subspace embeddings. We next show there exist sparse {1 oblivious subspace
embeddings with nearly optimal distortion, and sparse £, oblivious subspace embeddings with
O(dlogd) distortion when 1 < p < 2.

THEOREM 1.3 (SUMMARY OF THEOREM 4.1, 4.2, 5.1, AND 5.2.). For1 < p < 2, there exist {,, oblivious
subspace embeddings over r X n matrices I1 with s non-zero entries per column and distortion k, where

(1) Whenp =1,

(@) r = 0(d?),s =2 and x = O(d); or

(b) For sufficiently large B, r = O(B - dlogd), s = O(logg d) and k = O(dlogg d).
(2) When1 < p <2,k = O(dlogd),

(@) r = O(d?), s = 2; or

(b) For sufficiently large B,r = O(B - dlogd), s = O(logg d).

Notably, the distortion of our embeddings is never worse than the dense constructions in Refer-
ences [24, 30]. Also, when p = 1, if we set r = O(d?) (Case 1(a)) or r = O(d**") for any constant
n > 0 (Case 1(b)), then the distortion can be further improved to O(d). This is the first known ¢;
oblivious subspace embedding with r = poly(d) rows and distortion ¥ = o(d logd). We remark
that by using the dense construction in Reference [30], it is also possible to reduce the distortion
to O(d) by increasing the number of rows.

Similar to the OSNAP embedding in Reference [25], our results in Case 1(b) and Case 2(b) pro-
vide a tradeoff between the number of rows and the number of non-zero entries in each column.

Sparser £, oblivious subspace embeddings. Finally, we show that the sparsity of Case 1(a) and
Case 2(a) in Theorem 1.3 can be further reduced by using two different approaches.
The first approach is based on random sampling, which leads to the following theorem.

THEOREM 1.4 (SUMMARY OF THEOREM 6.1 AND 6.2). For1 < p < 2 and any constant 0 < ¢ < 1,
there exists an €, oblivious subspace embedding over O(d*) x n matrices II where each column of TI
has at most two non-zero entries and 1+ ¢ non-zero entries in expectation, and the distortion x = O(d)
(whenp = 1) ork = O(dlogd) (when1 < p < 2).

The second approach is based on the construction in Reference [24] and a truncation argument,
which leads to the following theorem.

THEOREM 1.5 (SUMMARY OF THEOREM 6.5 AND 6.6). For 1 < p < 2, there exists an {,, oblivious
subspace embedding over O(d*) x n matrices I1 where each column of I1 has a single non-zero entry
and distortion k = O(d).

It has been shown in Reference [26] that for any distribution over r X n matrices IT with s = 1
non-zero entries per column, if for any fixed matrix A € R, rank(ITA) = rank(A) with constant
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probability, then IT should have r = Q(d?) rows. Since oblivious subspace embeddings with finite
distortion always preserve the rank, this lower bound can also be applied. We show also that this
lower bound holds even if the columns of IT have 1+¢ non-zero entries in expectation for a constant
0 < ¢ < 1, thereby showing Theorem 1.4 is optimal.

1.2 Comparison with Previous Work

To compare our results with previous work, it is crucial to realize the difference between oblivious
embeddings and non-oblivious embeddings. An oblivious subspace embedding II is a universal dis-
tribution over R™", which does not depend the given matrix A € R™. A non-oblivious subspace
embedding, however, is a distribution that possibly depends on the given matrix A. Most known
non-oblivious subspace embeddings involve importance sampling according to the leverage scores
or Lewis weights of the rows, and so are inherently non-oblivious. We refer the interested reader
to Reference [20] for an excellent survey on leverage scores and References [12, 13, 17] for recent
developments on non-oblivious subspace embeddings.

Previous impossibility results for dimension reduction in ¢; [5, 7, 16] are established by creating
a set of O(n) points in R"” and showing that any (non-oblivious) embedding on them incurs a large
distortion. In this article, we focus on embedding a d-dimensional subspace of R into RP*Y(@) using
oblivious embeddings. We stress that O(n) points in a d-dimensional subspace have a very different
structure from O(n) arbitrary points in R". Previous results [13] showed that any d-dimensional
subspace in R” can be embedded into RO (¢(leg d)¢ ) with (1+¢) distortion in ¢; using non-oblivious
linear embeddings, where ¢ > 0 is an arbitrarily small constant. Here the subspace structure is
critically used, since Charikar and Sahai [7] showed that there exist O(n) points such that any
linear embedding R* — R4 must incur a distortion of Q(v/n/d), even for non-oblivious linear
embeddings.

Our hardness result in Theorem 1.1 establishes a separation between oblivious and non-
oblivious subspace embeddings in £, when 1 < p < 2. This result suggests that to con-
struct a subspace embedding with (1 + ¢) distortion, it is essential to use non-oblivious subspace
embeddings.

Although our main focus in this article is to understand oblivious subspace embeddings, we
remark that our technique for proving the hardness result in Theorem 1.1 can also be applied to
embed any d points in R” into RP°Y(@) in {, using oblivious linear embeddings, when 1 < p < 2.
In particular, it is possible to reproduce the result of Reference [7] using our techniques, although
in a weaker setting where the embeddings are oblivious.

1.3 Errors in Prior Work and the Conference Version

In the conference version of this article [32], we incorrectly claimed that the distortion of the
embeddings in Theorems 1.3 and 1.4 is x = O((dlogd)'/?), and k = O(d*'?) for the embedding
in Theorem 1.5. The source of the error is Lemma 2.22 (Lemma 2.16 in the conference version),
in which it was claimed that by the existence of an Auerbach basis, the existence of a certain
well-conditioned basis follows. However, it is unclear whether the existence of an Auerbach basis
implies the existence of such a well-conditioned basis. The claim that we made was actually
already made in previous work. It first appeared in the technical report version [23] of Reference
[24]. In the proof of Theorem 6 in Section A.7 of Reference [23], the authors claimed that the exis-
tence of an Auerbach basis implied the existence of a (d p 4, p)-conditioned basis. The authors of
Reference [24] confirmed that this is an error in their work in Reference [22]. Besides propagating
to our work, that error also propagates to Reference [35], in which a similar claim was made.
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After fixing this, the best existing £, oblivious subspace embeddings with r = poly(d) rows
have distortion k = O(dlogd) when 1 < p < 2. Thus, while we obtain tight bounds up to
polylog(d) factors for the important case of p = 1, when 1 < p < 2, our distortion lower bound in
Theorem 1.1 is not necessarily tight. We leave it as an open problem to resolve the case 1 < p < 2.

1.4 Applications of Our Subspace Embeddings

Using the sparse £, oblivious subspace embeddings in Theorem 1.3, we obtain improvements to
many related problems. We list a few examples in this section.

p-regression in the streaming model. Using dense Cauchy embeddings and a sampling data struc-
ture from Reference [3], a single-pass streaming algorithm for £;-regression argmin, ||Ax—b||; was
designed in Reference [30]. To get a (1 + ¢)-approximate solution to the regression problem, the
algorithm uses poly(de~" log n) bits of space, where A € R"™¢ and b € R". The total running time
of the algorithm, however, is O(nnz(A) - d + poly(de~! log n)).

By replacing the dense Cauchy embedding with our new oblivious subspace embeddings in
Theorem 1.3, the total running time can be further improved to o) (nnz(A)) +poly(de~! log n) while
the space complexity remains unchanged. We note that using earlier sparse Cauchy embeddings
[24] would also give such a running time, but with a significantly worse poly(de~! log n) factor.
The same approach can also be applied to design input-sparsity time algorithms for £,-regression
in the streaming model when 1 < p < 2.

Entrywise £, low-rank approximation. Given a matrix A € R™ and approximation factor &, the
goal of the ¢;-low-rank approximation problem is to output a matrix A for which

A=Al <a- min [JA-All;,
rank-k matrices A’
where || - ||; is the entrywise £;-norm.

In Reference [31], the authors devised an algorithm that runsin T = O(nnz(A) + (n+d)-poly(k))
time to solve this problem, with & = poly(k)-log d. The exact expression of the poly(k) factor in the
approximation factor « and the running time T, depends on the number of rows r and the distortion
Kk of the £; oblivious subspace embedding used. Both poly(k) factors can be directly improved by
replacing the sparse Cauchy embedding [24], which is originally used in Reference [31], with our
new oblivious subspace embeddings in Theorem 1.3. This improvement also propagates to other
problems considered in Reference [31] such as {,-low-rank approximation, entrywise £,-norm
CUR decomposition and £,-low-rank approximation in distributed and streaming models.

Quantile Regression. Given a matrix A € R™? and b € R", the goal of quantile regression is to
solve

argmin,. p, (b — Ax),
where p, (b — Ax) = 31", p-((b — Ax);) and for any z € R,

(2) = TZ z>0
priz) = (r-1)z z<0

Here 7 is a parameter in (0, 1).

An efficient algorithm to calculate a (1 + ¢)-approximate solution to quantile regression was
proposed in Reference [36]. Using their approach, one can reduce a quantile regression instance of
size n X d to a smaller instance of size O(poly(d)e™2log(1/¢)) x d in O(nnz(A)) + poly(d) time. By
replacing the sparse Cauchy embedding, which is used in the conditioning step of their algorithm,
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with our new oblivious subspace embeddings in Theorem 1.3, the poly(d) term in the running time
can be directly improved.

1.5 Our Techniques

Distortion lower bound. We use the case when p = 1 to illustrate our main idea for proving our
distortion lower bounds. We start with Yao’s minimax principle, which enables us to deal only with
deterministic embeddings. Here our goal is to construct a distribution over matrices A € R such
that for any II € R"™", if

lAx|l; < [ITIAx |l < xllAx|ly (1)

holds simultaneously for all x € R? with constant probability, then k = Q(d).

Roughly speaking, our proof is based on the crucial observation that, the histogram of the ¢;-
norm of columns in the deterministic embedding II/x should look like that of a discretized stan-
dard Cauchy distribution. That is, there are at most 2/ columns in IT/x with ¢;-norm larger than
O((n/d)27"). This is because if we choose a matrix A € R™ such that each column contains
(n/d)27" non-zero entries at random positions and all these (n/d)2”" non-zero entries are i.i.d.
sampled from the standard Gaussian distribution N (0, 1), then for each column in A, the {;-norm
of that column is ©((n/d)2~") with constant probability. However, if the embedding I1/x contains
more than 2! columns with £;-norm larger than ©((n/d)2™"), then with constant probability, there
exists some i € [n] and j € [d] such that A;; ~ N(0,1) and the ith column of IT/x has £;-norm
larger than ©((n/d)27"). In that case, it can be shown that after projection by IT/x, the jth column
of A has £;-norm larger than ©((n/d)2"), which violates the condition in Equation (1).

To prove k = Q(d), let ¢ € R" be a vector whose entries are all i.i.d. sampled from N (0, 1). With
constant probability ||c||; = Q(n). However, we are able to show that the constraint we put on the
histogram of the £;-norm of columns in II/x implies that ||IIc/k||; = 5(n/d) and hence k = §~2(d).
The formal analysis in Section 3.1 shows that x = Q(d log™ r) when n > r.

To show that the dependence on r in the lower bound is necessary, we construct an ¢; oblivious
subspace embedding with exp(exp(O(d))) rows and constant distortion. The construction itself is
the same as the dense construction in Reference [30]. Unlike previous approaches [24, 30, 35], we
do not use the existence of an Auerbach basis to prove the dilation bound. Our analysis is based on
tighter tail bounds for sums of absolute values of independent standard Cauchy (and also p-stable)
random variables in Lemmas 2.12 and 2.14. Let {X;} be R = exp(exp(O(d))) independent standard
Cauchy random variables. Based on the tighter tail bounds, it can be shown that with probability
1 - exp(-Q(d)),

R
D 1Xil = ©(RlogR),
i=1

which enables us to now apply a standard net argument to prove the constant distortion bound.
The formal analysis is given in Section 3.2.

New {,, oblivious subspace embeddings. For ease of notation, here we focus on p = 1. Before
getting into our results, we first review the construction in Reference [24] and its analysis. The
sparse Cauchy embedding in Reference [24] has O(d°) rows. In each column, there is a single non-
zero entry that is sampled from the standard Cauchy distribution. The 0(d) dilation bound follows
the standard approach [30] of using the existence of an Auerbach basis and upper tail bounds for
dependent standard Cauchy random variables. The contraction bound is based on the technique
of splitting coordinates, which was first proposed in Reference [10] to analyze the CountSketch
embedding. A coordinate is heavy if its ¢; leverage score is larger than 1/d and light otherwise.
For any vector y = Ax, if light coordinates contribute more to the ¢;-norm of y, then standard
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concentration bounds and Cauchy lower tail bounds imply a constant distortion. If heavy coordi-
nates contribute more to the £;-norm, since there will be at most O(d?) heavy coordinates and the
embedding has Q(d*) rows, then all the heavy coordinates will be perfectly hashed. An Q(d~?)
contraction bound follows by setting up a global event saying that the absolute values of all of
the O(d?) standard Cauchy random variables associated with the heavy coordinates are at least
Q(d™?), which holds with constant probability.

Although the dilation bound seems to be tight, the contraction bound can be improved. Indeed,
the ¢;-norm of columns in the embedding of Reference [24] almost follows the histogram predicted
by our lower bound argument, except for the lower tail part. As predicted by our lower bound
argument, for an embedding II, which has the optimal k = 5(d) distortion, the ¢;-norm of each
column in IT should be larger than a constant. However, the standard Cauchy distribution is heavy-
tailed in both directions.® This leads to the idea of truncation, which is formalized in Section 6.2.
The rough idea is that we make sure the absolute values of the standard Cauchy random variables
are never smaller than a constant and thus the contraction bound can be improved to be a constant.
It is shown in Corollary 6.4 that standard Cauchy random variables are still “approximately 1-
stable” after truncation, which enables one to use Cauchy tail inequalities to analyze the dilation
bound. However, even though the distortion bound of this new embedding is nearly optimal, the
number of rows is 5(d4), which seems difficult to improve.

Our alternate approach is still based on the technique of splitting coordinates. Unlike the ap-
proach in Reference [24], which is based on splitting coordinates according to the ¢; leverage
scores, in this new approach, for any vector y = Ax, a coordinate i is heavy if |y;| > # llyll; and
light otherwise. When light coordinates contribute more to the ¢;-norm of y, we show that the
sparse Cauchy embedding in Reference [24] with only O(d log d) rows is already sufficient to deal
with such vectors. This is due to a tighter analysis based on negative association theory [15], which
also greatly simplifies the proof. When heavy coordinates contribute more to the £;-norm of y, the
idea is to use known ¢ oblivious subspace embeddings. The key observation is that when heavy
coordinates contribute more to the ¢;-norm, we have ||yl > Q(%)IIyIIl and thus any ¢, oblivi-
ous subspace embedding with constant distortion will also be an ¢; oblivious subspace embedding
with O(d) distortion. See Section 5 for a formal analysis and Section 5 for how to generalize this
idea to {,-norms when 1 < p < 2.

Our final embedding consists of two parts. The ¢, oblivious subspace embedding part could be
the CountSketch embedding or the OSNAP embedding, which also provides a tradeoff between
the number of non-zero entries per column and number of rows. For the sparse Cauchy part,
although it would be sufficient to prove the O(d logd) distortion bound as long as this part has
O(dlogd) rows, an analysis based on a tighter Cauchy lower tail bound in Lemma 2.14 shows that
it is possible to further reduce the dilation to O(d) by increasing the number of rows in this part.

Using this approach, the sparsest embedding we can construct has O(d®) rows and two non-
zero entries per column. We further show how to construct even sparser embeddings using random
sampling. Since we only use the sparse Cauchy part to deal with vectors in which light coordinates
contribute most of the £;-norm, even if we zero out each coordinate with probability 1 — ¢ for
a small constant ¢, the resulting vector will still have a sufficiently ¢;-norm, with large enough
probability. Thus, if we zero out each standard Cauchy random variable in the sparse Cauchy part
with probability 1 — ¢, then the resulting embedding will still have the same distortion bound, up
to a constant factor. By doing so, there will be 1+ ¢ non-zero entries in expectation in each column
of the new embedding. This idea is formalized in Section 6.1.

3This is also observed in Reference [35], but the authors use exponential random variables there to remedy this issue
instead of the idea of truncation that we use here.
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1.6 Followup Work

Building upon our Theorem 1.2, followup work in Reference [18] improved our ¢; oblivious sus-
pace embedding from r = exp(exp(O(d))) to r = exp(poly(d)), and generalized it from a constant
distortion to a 1 + ¢ distortion, obtaining overall dimension r = exp(poly(d/¢)). Our Theorem 1.2
is still useful though, as a suitably generalized version of it in terms of ¢ (see Reference [18] for
details) is composed with another oblivious subspace embedding in the work of Reference [18],
which is important for making their subspace embedding have a dimension r independent of n.

Additional followup work includes Reference [19], which uses our framework for proving
Theorem 1.3, and obtains a more general reduction in terms of any embedding for the £,-norm;
we refer the reader to Reference [19] for further details.

2 PRELIMINARIES

Throughout this article, we use [n] to denote the set {1,2,...,n}. We use || - ||, to denote the £,-
norm of a vector or the entry-wise {,-norm of a matrix. The following lemma is a direct application
of Holder’s inequality.

LEMMA 2.1. Foranyx € R" and1 < p < q < 2, we have
llxllg < llxll, < n*/P79||x]|q.

Foru e R"and 1 < a < b < n, let uy,;, denote the vector with ith coordinate equal to u; when
a < i < b, and zero otherwise. For a matrix S € R™™, we use S; . to denote the ith row of S, and
S.,j to denote the jth column of S.

For two vectors u, v € R", we use (u, v) to denote the inner product of u and v.

Definition 2.2. For p € [1,2], a distribution over r X n matrices II is an ¢, oblivious subspace
embedding, if for any fixed A € R™d

Pr [llAx]l, < ITAx]l, < Kl Ax]l,, Vx € R?] = 0.99.
Here « is the distortion of II.

Throughout the article, we use X =~ Y to mean that X and Y have the same distribution. We use
X > Y to denote stochastic dominance, i.e., X > Y iff for any t € R, Pr[X > t] > Pr[Y > ¢].

2.1 Stable Distribution

Definition 2.3 (p-stable Distribution). A distribution D is p-stable if for any n real numbers

a,as, ...,a,, we have
n

n 1/p
ZaiXiz(Zlailp) X.
i=1

i=1

Here X; are i.i.d. drawn from D and X ~ D.

p-stable distributions exist for any 0 < p < 2 (see, e.g., Reference [28]). We let D, denote the
p-stable distribution. It is also well known that the standard Cauchy distribution is 1-stable and
the standard Gaussian distribution N (0, 1) is 2-stable.

We use the following lemma due to Nolan [28].

LEMMA 2.4 (THEOREM 1.2 IN REFERENCE [28]). For1 < p <2, let X, ~ D,,.
. -p_
[lggo Pr[X, > t]/t Cps

where ¢, > 0 is a constant that depends only on p.
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The following lemma is established in Reference [24] by using Lemma 2.4.

LEMMA 2.5 (LEMMA 8 IN REFERENCE [24]). For1 < p < 2, let X,, ~ D,,. There exists a constant o,
such that
Olp|C| z |Xp|p,

where C is a standard Cauchy random variable and ay, is a constant that depends only on p.

2.2 Tail Inequalities

We use the following standard form of the Chernoff bound and Bernstein’s inequality.

LEmMMA 2.6 (CHERNOFF BoUND). Suppose X1, Xa, . . ., X, are independent random variables taking
values in [0,1]. Let X = )1 | X;.
For any § > 0, we have
Pr[X > (1 +8)E[X]] < exp(=6®E[X]/3),

Pr[X < (1-8)E[X]] < exp(-§?E[X]/2).
Fort > 2e E[X], we have
Pr(X >t] <27%

LEMMA 2.7 (BERNSTEIN’S INEQUALITY). Suppose X1, Xs, . .., X, are independent random variables
taking values in [0,b]. Let X = Y! | X; and Var[X] = Y, Var[X;] be the variance of X. For any
t > 0, we have

2

The following Bernstein-type lower tail inequality is due to Maurer [21].
LEmMa 2.8 ([21]). Suppose X1, Xs, ..., X, are independent positive random variables that satisfy
E[X?] < oo. Let X = 3}, X;. For anyt > 0, we have
12
Pr[X <E[X] —1t] < exp (—n—) )
237, B0

We use the following tail inequality of a Gaussian random vector, whose proof can be found in
Appendix A.

LEMMA 2.9. Let (a1, az,...,a,) be a fixed vector. For i € [n], let {X;} be n possibly dependent
standard Gaussian random variables. For any 1 < p < 2, we have

n 1/p
Pr (Z Ial-Xl-Ip) e [, llallp. Cpllallp] | = 0.99.
i=1

Here C;, > 1 is an absolute constant that depends only on p.

The following upper tail inequality for dependent standard Cauchy random variables is estab-
lished in Reference [24].

LEmMMA 2.10 (LEMMA 3 IN REFERENCE [8]). Fori € [n], let {X;} be n possibly dependent standard
Cauchy random variables and y; > 0 withy = };crn vi- Foranyt > 1 andn > 3,

2log(nt
Pr Zyl|Xl|>yt S#

i€[n]

The following corollary is a direct implication of Lemmas 2.10 and 2.5.
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COROLLARY 2.11. Fori € [n], let{X;} ben possibly dependent p-stable random variables andy; > 0
withy = Yie[n Vi- Foranyt > 1 andn > 3,

21 t
Pr Z YilXil? > apyt| < M,

i€[n] t
where @y, is the constant in Lemma 2.5.
For the sum of absolute values of independent standard Cauchy random variables, it is possible

to prove an upper tail inequality stronger than that in Lemma 2.10. The proof of the lemma can be
found in Appendix A.

LEMMA 2.12. Fori € [n], let {X;} ben independent standard Cauchy random variables. There exists
a constant Uy, such that for anyn > 3,

z logl
Z 1X;| < Ulnlogn} >1- M.

Pr 1
i=1 ogn

The following corollary is a direct implication of Lemma 2.12 and Lemma 2.5.

COROLLARY 2.13. Suppose 1 < p < 2. Fori € [n], let {X;} be n independent p-stable random
variables. There exists a constant Uy, that depends only on p, such that for anyn > 3,

" log1
ZIX,-IP < Upnlogn] > Bo8M

Pr 1
— ogn

We use the following lower tail inequality for the sum of absolute values of independent p-stable
random variables, whose proof can be found in Appendix A.

LEMMA 2.14. Suppose 1 < p < 2. Fori € [n], let {X;} be n independent p-stable random variables.
There exists a constant L, that depends only on p, such that for sufficiently large n and T,

- n
Pr |:ZI |Xl'|p > Lpnlog (@)

T

2.3 ¢-nets
We use the following standard ¢-net construction in the analysis of our subspace embeddings.

Definition 2.15. For any 1 < p < 2, for a given A € R™ let B = {Ax | x € RY, lAx]|, = 1}. We
say N' C Bis an e-net of B if for any y € B, there exists a § € N such that ||y — 7|, < e.

LEMMA 2.16 (SEE, E.G., REFERENCE [33, p. 74]). For a given A € R™ 4 there exists an e-net
N € B={Ax | x € R%, ||Ax||, = 1} with size [N| < (1 + 1/e)".
2.4 Known {; Oblivious Subspace Embeddings

In References [4, 10, 11, 24, 25], a series of results on sparse ¢, oblivious subspace embedding are
obtained.

LEMMA 2.17 (COUNTSKETCH [10, 24, 25]). There exists an €, oblivious subspace embedding over
O(d?) x n matrices I1, where each column of I has a single non-zero entry and the distortion x = 2.

LEMMA 2.18 (OSNAP [11, 25]). For any B > 2, there exists an {; oblivious subspace embedding
over O(B - dlogd) x n matrices I1, where each column of II has at most O(log d) non-zero entries
and the distortion k = 2.
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For completeness, we include the construction for CountSketch and OSNAP here. In the CountS-
ketch embedding, each column is chosen to have s = 1 non-zero entries chosen in a uniformly
random location and the non-zero value is uniformly chosen in {—1, 1}. In the OSNAP embedding,
each column is chosen to have s = O(logy d) non-zero entries in random locations, each equal to
+571/2 uniformly at random. All other entries in both embeddings are set to zero.

We need a few additional properties of the CountSketch embedding and the OSNAP embedding.
The following lemma is a direct calculation of the operator ¢;-norm of the matrices stated above.

LEMMA 2.19. Foranyy € R",

o ||Tly|l; < llylly if T is sampled from the CountSketch embedding;

o |IIyll; < O(logg2 d)lylly if T is sampled from the OSNAP embedding.

The following lemma deals with the £,-norm of a vector and its £,-norm after projection using
CountSketch or OSNAP. Its proof can be found in Appendix A.

LEMMA 2.20. For anyy € R" and sufficiently large w, with probability 1 — exp(Q(wd logd)),

o [M(yp.q2)llp < (wdlogd)'P|lyll, ifII is sampled from the CountSketch embedding;
o [M(yp.qa2)ll, < (O(logy d)/P~1%(wdlog d)'"1/P|lyll, if II is sampled from the OSNAP embed-
ding.
We remark that since one can permute entries of y arbitrarily, Lemma 2.20 gives a bound for
any subset of d” entries of y.

2.5 Well-conditioned Bases
We recall the definition and some existential results on well-coditioned matrices with respect to

{p-norms.

Definition 2.21 (e, B, p)-well-conditioning [14]). For a given matrix U € R™? and p € [1, 2], let
I - llg be the dual norm of || - ||, i.e, 1/p + 1/q = 1. We say U is (a, B, p)-well-conditioned if (i)
IUll, £ aand (i) [lx|ly < BlIUx||, for any x € R4,

LemMA 2.22. For any full rank matrix A € R™? and p € [1,2], there exists a basis matrix
U e R4 of A such that U is (d, 1, p)-well-conditioned.

PrROOF. By Auerbach’s Lemma (see, e.g., Reference [33, p. 75]), there exists a set of basis vectors

Uy, Uy, . . ., ug of the column space of A, and a set of basis vectors vy, v, . . ., vy, such that
o |luill, = 1;
e lvilly = 1;
1 i=j
L4 <ui,Uj> = . .-
0 i#]J
Here, || - |l4 is the dual norm of || - |l,.
We let U be the matrix whose first column is u; - d'/9, second column is u, - d'/9,. . ., and the

last column is u - d'a, Clearly,

d
U5 = > lusllh - a#'9 = a,

i=1
which implies ¢ = d.
For any x € R, since the ith column of U is u; - d*/9, by Holder’s inequality,

lxi| = (v, uixi)| < 1Uxllplloillg - d79 = ||Ux]l,d~"/9.
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Thus, by Lemma 2.1,
lxllg < dV? - |Ixllee < d"9 - |Uxllp,d ™49 = [Ux]|p,
which implies § = 1. ]
3 HARDNESS RESULT
3.1 The Lower Bound

The goal of this section is to prove Theorem 1.1. We restate it here for convenience.
THEOREMS 1.1 (RESTATED). For 1 < p < 2, if a distribution over r X n matricesII is an {,, oblivious
subspace embedding, then the distortion

1

(%)1/1) ) logz/P - (ﬁ)l/p—l/z

By Yao’s minimax principle [37], it suffices to show that there exists a hard distribution A over
R™4 such that for any IT € R™" if

P [I1Ax]l, < IITAx], < Kl Ax|l,, Vx € RY] = 0.99, )
then

1
(%)1/17 ) 10g2/P - (%)1/1)_1/2

The columns in our construction of A consist of three parts:

e The first column is a vector where all the n entries are i.i.d. standard Gaussian random vari-
ables. We call this column the D-column.

e For the next d/4 columns, each column has 4n/d non-zero entries, where all these non-zero
entries are i.i.d. standard Gaussian random variables. The indices of the 4n/d non-zero entries
of the ith column are (4n/d) - (i—1) +1,(4n/d) - (i—1) +2,...,(4n/d) - i. We call each such
column an M-column.

o We divide the next d/2 columns into log(n/d) blocks, where each block contains m
columns. For 0 < i < log(n/d), columns in the ith block contain 2/*! non-zero entries and
all of these non-zero entries are i.i.d. standard Gaussian random variables. For the m

columns in the ith block, the indices of the de/d) S = log(+/d)2i non-zero entries are

sampled from {1, 2,...,n} without replacement (which implies the sets of indices of non-
zero entries are disjoint for two different columns in the same block). We call each such
column an S-column.

All entries in other columns are zero. This finishes our construction of ‘A.
The following lemma is a direct implication of Lemma 2.9 and our construction.

LEmMMA 3.1. For each column c in A, with probability at least 0.99, the following holds:

(1) Ifc is an S-column in the ith block, then ||c||, < CPZ(”I)/P.
(2) If ¢ is an M-column, then ||c||, < Cp(4n/d)1/f’.
(3) Ifc is a D-column, then ||c||, > Cljlnl/f’.

Here Cp is the constant in Lemma 2.9.
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LEMMA 3.2. For any matrixII € R™" that satisfies the inequality in Equation (2), the {,-norm of
each column of I1 is at most C§K(4n/d)1/1’, where C,, is the constant in Lemma 2.9.

Proor. Suppose for contradiction that there exists an i € [n] for which the ith column of IT has
{p-norm larger than C§K(4n/d)1/1’. Consider the vector M;, which is the jth M-column, whose ith
entry is a standard Gaussian random variable, i.e., (4n/d) - (j— 1) + 1 < i < (4n/d) - j. We first
show that with probability at least 0.99, [[TIM;]|, > CpK(4n/d)1/ P. According to the 2-stability of
the standard Gaussian distribution, for any k € [r],

(4n/d)-j 172

(TIM, )i ~ > m, | NGO,
I=(4n/d)-(j-1)+1

Since
1/2

Hi’[ 2 Hk,i’
I=(4n/d)-(j-1)+1

(4n/d)-j

according to Lemma 2.9, with probability at least 0.99,
ITIM;ll, > C, ML ill, > Cpr(4n/d)'/?.
According to Lemma 3.1, with probability at least 0.99,
IMjllp < Cp(an/d)''2,

which implies the condition in Equation (2) is violated. O

LEMMA 3.3. For any matrix II € R™" that satisfies the condition in Equation (2), for any 0 < i <

log(n/d), the number of columns in II with {,-norm larger than Cf,KZ(i“)/P is at most Mz—&

where Cp is the constant in Lemma 2.9.

Proor. Suppose for contradiction that for some 0 < i < log(n/d), the number of columns in IT
with £,-norm larger than CE,KZ(”I)/P is larger than MT". Let !, 72, ..., g@log  (/d)/2 he the

dlog™'(n/d)/2 S-column in the ith block. With probability at least 1 — (1 — MZ_i)WZI >
1 — 1/e, there exists a j € [dlog™'(n/d)/2] and [ € [n] such that (i) ||IIL. |, > Cf)xz(”l)/l’ and
(ii) n; is a standard Gaussian random variable. According to Lemma 3.1, with probability at least
0.99, ||/ ||, < C,20*)/P Now, we show that with probability at least 0.99, [Tz ||, > C,"|[TL.;Il, >
Cpr2*D/P_Suppose P C [n] is the set of indices at which 7/ contains a standard Gaussian random
variable. We know that [ € P. Thus, due to the 2-stability of the standard Gaussian distribution,
for any k € [r],

1/2
([ ~ <Z Hi’m) N(0,1).

meP

Since

1/2
(Z Hi,m) > Ty,

meP

according to Lemma 2.9, with probability at least 0.99, ||H7'[j||P > C;1||H*7l||p > CPKZ(HI)/P >
k||’ I, which implies the condition in Equation (2) is violated. |
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LEMMA 3.4. For any matrix II1 € R™" that satisfies the condition in Equation (2), we have

r 1/p
(Z ||ni,*||§) =0 (x(n/d)”P log?? (n/d) + xr%‘%ﬁ) :
i=1

PrOOF. We partition the columns of IT into two parts. We let IT* be the submatrix of IT formed by
columns with £,-norm at most 2!/# CIZ,K and IT¥ be the submatrix formed by columns with ¢,-norm

larger than 21/PC12JK. For 17, by Lemmas 3.2 and 3.3, we have

(Z} ||H5j’*||§’)1/p < (Z I, ||p)1/ = |, —(Z ity ||p>

(log(n/d) 1 1/p

1/p

<

ST o D cogp anjay2og(nsd)
i=0

=O(k(n/d)"? log®’? (n/d)).

For IT%, since all the columns have {p-norm at most ZI/PCf,K, we have

1/p
(Z T, ||P)
1/2
1_1 1_1 1_1
re 2(2 [t ||2) = re 2|t = 7 z(Z ||H{:,,.||§)
i

/2

H(Zun ||p) =0 (rs tVm),

where the first inequality follows from Lemma 2.1 and the last equality follows from the fact that
I1L has at most n columns.
Notice that for any 1 < i < r, [II;..|l; < [T, ||, + ITIE, ||, which implies

r /p
(Z ||Hi,*||§’) (Z i, ||”) (Z i ||”) = O (x(n/d) 7 log?/" (n/d) + xr#~* Vi) .
i=1

O

1/2

Now consider the vector D, which is the D-column in A. According to Lemma 3.1, with proba-
bility at least 0.99, ||D]|, = Q(n'/?). Due to the 2-stability of the standard Gaussian distribution,

(IID); ~ [ITT; + 112N (0, 1).

According to Lemma 2.9, with probability at least 0.99,

r 1/p
ITIDI|, = O(Z ||H,~,*||§) =0 (x(n/d)”f’ log?’? (n/d) + m-wz) :
i=1

According to the condition in Equation (2), we have

Q(n'’?) = |IDIl < ITID|l, = O (K<n/d>”f’ log®? (n/d) + KFH‘/E)’
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which implies
1
1/p 1/p-1/2
(3) 7 -log*?(n/d) + (%)

Now, we show that the lower bound can be further improved to

1
K=o (%)l/p.lOgZ/Pr+(r)1/p_1/2 ' (3)

n

We first note that r should be at least d; otherwise, if we take a full-rank matrix A € R™4_ then
rank(ITA) < d = rank(A), which means we can find a non-zero vector y = Ax in the column space
of A and Iy = 0, which implies the distortion « is not finite.

When n < rd?/?p), logz/P(n/d) = O(logz/P r), which means the lower bound in Equation (3)
holds. When n > rd?*?=?), we repeat the argument above but only consider the first rd? ?=»)
columns of II. By doing so, we get a lower bound of

k=0 ! = Q(d"? [ log?'?(r)),

1/p ) 1/p-1/2
(%) -log?/P (rd2/=p)-1) 4+ (m)

which is always stronger than the lower bound of

1
(%)1/17 og?? r + (r)l/p—l/z

n

k=Q

3.2 Necessity of Dependence on r
The goal of this section is to prove Theorem 3.5.
THEOREM 3.5. Let r = exp(4 - 10* - (24(UPL;1)1/p)2d), where U, and L, are the constants in

Corollary 2.13 and Lemma 2.14, respectively. For 1 < p < 2, there exists an {;, oblivious subspace
embedding over r X n matrices II, where the distortion Kk is a constant that depends only on p.

Our construction for the embedding in Theorem 3.5 is actually the same as the dense p-stable
embedding in Reference [30] (for p = 1) and Theorem 6 in Reference [24] (for 1 < p < 2), whose
entries are i.i.d. sampled from the scaled p-stable distribution (r log r)~'/? D,.

For any given matrix A € R and any x € R?, we show that

1/p _ _1\1/p -d
P [(Lp/z) 1Ax]l, < [TAx]}, < U;/P||Ax||p] >1-1072 (24 (UpL;") ) .
According to the definition of the p-stable distribution in Definition 2.3, for any i € [r],

(ITAx); ~ (rlogr) ™7 || Ax||, D,.

Since the entries in IT are independent, the entries in the vector IIAx are also independent. Thus,
according to Corollary 2.13, with probability at least 1 — lolgol% >1- 200_1(24(UPL;1)1/P)_‘1, we
have

ITAx|[5 < U, (rlogr) M|Ax|l} - rlog r = Upl|Axllb,
which implies

ITAx(l, < U,/ || Ax]l,.
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However, according to Lemma 2.14, by setting T = 200(24(UPL;,1)1/ )4 with probability at least
1-1/T =1-200"(24(UpL,")"/#) ™4, we have

_ r
ITAx||f > Ly (rlogr) ™ ||Ax]ly - rlog ogT > Ly/2- || Ax|]},

which implies
1/p
A, > (Lp/2) " IAxlly.

It follows by a union bound that for any x € R,
—d
Pr [(Lp/z)l/P||Ax||p < |IMAx]|, < U;/P||Ax||p] >1-1072 (24 (UPL;)I/”) )

We build an e-net N C B = {Ax | x € R?, ||Ax]||, = 1} by setting 1/¢ = 8(UPL;,1)1/”. According
to Lemma 2.16, IN| < (1 + 1/e)? < (3/¢)¢ = (24(UPL;1)1/p)d. Again by a union bound, with
probability at least 0.99, we have for any y € N,

(Lp/2)"llylly < ITyll, < U, P llyll,.

Condition on the event stated above. Now, we show that for any x € R,
1
(Lp/4)"Pl|Ax||, < |ITIAx]|, < 20, /pllellp

For any x € R?, let y = Ax. By homogeneity, we can assume llyll, = 1. We claim that y can be
written as

y=y"+yt+f+.. .,
where for any i > 0, we have (i) ﬁ € N and (ii) ||y’4||}7 < €l
According to the definition of an e-net, there exists a vector y° € N for which lly - yollp <e¢

and ||y°ll, = 1. If y = ¢°, then we stop Otherwise, we consider the vector . Again, we can

Hy y°||
find a vector ' € N such that || ——%— ”y y°|| ”p < eand ||§)} ll, = 1. Here, we sety! = ||ly—vy ||p 7!

and continue this process inductively.
It follows that

ITIyll, > Ty°ll = > Iy’

i>0

> (L, /2)'P - Z u/Pel

i>0

> (Lp/2)VP - 2U)Pe > (Ly/4)'/?

and

Imyll, < > Iyl < > U,/ < 20,

i20 i>0

A

Thus, IT is a valid £, oblivious subspace embedding with x
that depends only on p.

2(4UpL1‘,1)1/p, which is a constant
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4 NEW SUBSPACE EMBEDDINGS FOR ¢;

In this section, we present new sparse {; oblivious subspace embeddings with nearly optimal
distortion.

THEOREM 4.1. For any given A € R™4, let U be a (d, 1, 1)-well-conditioned basis of A. There exists
an ¢y oblivious subspace embedding over O(d®) x n matrices II where each column of T has two
non-zero entries and with probability 0.99, for any x € R,

Q(log d)|IUxlly < [MUx|l; < O(dlogd)[Ux]ls.

THEOREM 4.2. For any given A € R™ and sufficiently large B, let U be a (d, 1, 1)-well-conditioned
basis of A. There exists an {1 oblivious subspace embedding over O(B - dlog d) X n matrices I1 where
each column of I1 has O(logy d) non-zero entries and with probability 0.99, for any x € R¢,

Q(log B)|IUx|ly < [[TIUx[l; < O(dlogd)||Uxll;.

Our embedding for Theorems 4.1 and 4.2 can be written as IT = (IIy, HZ)T. For Theorem 4.1,
I1; is sampled from the CountSketch embedding in Lemma 2.17, scaled by a dlogd factor. For
Theorem 4.2, I1; is sampled from the OSNAP embedding in Lemma 2.18 with O(B - dlog d) rows,
O(logg d) non-zero entries per column, and scaled by a dlog B factor. Suppose II; has R; rows.
Let R, = min{R;,d"'}. II, can be written as ®D : R"” — R as follows:

e h:[n] — [R;] is arandom map so that for each i € [n] and t € [R;], h(i) = t with probability
1/R2

e ®isan Ry X n binary matrix with ®j;) ; = 1 and all remaining entries 0.

e Dis an n X n random diagonal matrix where the diagonal entries are i.i.d. sampled from the
standard Cauchy distribution.

It is immediate to see that the number of rows in Il is at most that in II;. Furthermore, IT, has
a single non-zero entry per column.

In the remainder of this section, we prove the dilation bound in Section 4.1, and the contraction
bound in Section 4.2. In the analysis, we will define three events &;, &, and &s, which we will
condition on later in the analysis. We will prove that each of these events holds with probability at
least 0.999. By a union bound, all of these events hold with probability at least 0.997. Thus, these
conditions will not affect our overall failure probability by more than 0.003.

4.1 No Overestimation

Let &; be the event that [[IL,U]| < O(dlogd). We first prove that &; holds with probability at least
0.999.

LEmMA 4.3. &1 holds with probability at least 0.999.

Proor.
Ry, d Ry, d y d
LU = ) > LU= > 38 D Dkl = > D01 D0 10l 1%l
i=1 j=1 i=1 j=1 |k|h(k)=i i=1 j=1 \k|h(k)=i

Here {X;;} are dependent standard Cauchy random variables. Since U is a (d,1,1)-well-
conditioned basis of A, we have

ACM Transactions on Algorithms, Vol. 18, No. 1, Article 8. Publication date: January 2022.



8:20 R. Wang and D. P. Woodruff

By Lemma 2.10, we have
Pr[||III,Ully > td] < M.
Taking t = wlogd where w is a sufficiently large constant, we have
Pr [||IL,U||; < td] > 0.999. O
LEMMA 4.4. Conditioned on &, for any x € RY, we have

IT,Ux|l; < O(dlogd)||Uxll;.

PROOF.
M Ux|ly < ITU|I1lIxlleo < MU IUx|l; < O(dlogd)||Ux||;.

The first inequality follows from Holder’s inequality, and the second inequality follows from the
definition of a (d, 1, 1)-well-conditioned basis. O

Since II; is the CountSketch embedding scaled by a d logd factor, or the OSNAP embedding
scaled by a dlog B factor, the following lemma is a direct implication of Lemma 2.19.

LEMMA 4.5. Foranyx € RY, we have
ITLUx|l; < O(dlogd)||Ux|l;.
Combining Lemma 4.4 and Lemma 4.5, we can bound the overall dilation of our embedding.
LEMMA 4.6. Conditioned on &, for any x € R4, we have
MUl < O(dlogd)||Ux]l;.
Proor.
IMUx|ly = ITLUx|ly + [[Ux|l; = O(dlog d)|Uxl;. 0

4.2 No Underestimation
We let &; be the event that for any x € RY,

dlogd||Ux|l; < I1Ux|l; < 2dlogd||Ux]|l, (for Theorem 4.1)

or
dlog B||Ux||; < |III;Ux||, < 2dlog B||Ux||, (for Theorem 4.2).

Since I1; is sampled from an ¢, oblivious subspace embedding with k = 2 and scaled by a factor
of dlog d (for Theorem 4.1) or d log B (for Theorem 4.2), &; holds with probability at least 0.999.*

Without loss of generality, we assume |x;| > |x3]| > [x3] > -+ > |x,]|. Of course, this order is
unknown and is not used by our embedding.

We first show that for any y = Ux, if we can find a “heavy” part inside y, then the scaled ¢,
oblivious subspace embedding I1; also works well for ¢;. Formally, we have the following lemma.

LeEmMA 4.7. Conditioned on &,, for any x € RY, if [(Ux)1.q21l1 = 0.5]|Ux||1, then
e ||III,Ux|l; > Q(logd)||Ux]||; for Theorem 4.1;
e ||III,Ux|l; = Q(log B)||Ux||; for Theorem 4.2.

“Notice that by Definition 2.2, &; only holds with probability 0.99. However, for the CountSketch embedding in
Lemma 2.17 and the OSNAP embedding in Lemma 2.18, we can boost the failure probability to an arbitrarily small constant,
by increasing the dimension by a constant factor. By doing so, we can now assume &; holds with probability 0.999.
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ProoOF. Notice that
1
IUxlz = 1(Ux)1.q2llz 2 —II(UX)1d2||1 > —IIUXI|1,

where the second inequality follows from Lemma 2.1. Thus, for Theorem 4.1, ||[II;Ux|l; >
T, Ux|l, > Q(logd)||Ux||;, since II; is sampled from an ¢, oblivious subspace embedding and
scaled by a factor of dlogd. For Theorem 4.2, ||II;Ux||; > |[II;Uxll; > Q(log B)||Ux|l;, since II; is
sampled from an ¢, oblivious subspace embedding and scaled by a factor of d log B. O

Now, we analyze those vectors Ux that do not contain a “heavy” part. We show that they can
be handled by the II, part of our embedding.

LEmMA 4.8. For any x € RY, if |(Ux)gz41:nll1 = 0.5||Ux||;, then with probability at least 1 —
exp(—32dlogd), we have

o |[ILUx|l; > Qogd)||Ux||; for Theorem 4.1;
e ||I,Ux|l; > Q(log B)||Ux|l; for Theorem 4.2.

Proor. Let y = Ux. By homogeneity, we assume [lyll; = 1. According to the given condition,
we have ||yg4241.,]l1 > 0.5. Notice that [|yzz,1.lle0 < 1/d?, since, otherwise, ||y;.q2|l; > d*-1/d? = 1.
For i € [Ry], let B; = ¥ 42 <, Bi j, where

5 [l ithG) =i
ij = .-
0 otherwise

It follows that ijl Bi = lygz41:nlli = 0.5.
Since ||yg211:nllo < 1/d% and 1/2 < |lyge41nlli < 1, for any i € [Ry] and j > d?, we have

1
B;; < zZ
and
1
— < E[B;]] £ —.
2R, R,
Furthermore, by Holder’s inequality, we have
1
Var[B ZVar il S — Z y] < 2||y{12+1;n||oo NYyagzsrnlh < @
] d’+1
Thus, by Bernstein’s inequality in Lemma 2.7, we have
£2
Pr[B; > 1/Ry + t] < exp|————— |- (4)
RF + 3

Let t = d*2/R,. Since R, < d'-!, by Equation (4), we have
Pr[B; > (d°% + 1)/R;] < exp(—3d*?/4R,) < exp(—3d'-'/4).
By a union bound, with probability at least
1—exp(=3d"'/4) - Ry > 1 —exp(—32dlogd)/4,

simultaneously for all i € [R;], we have B; < (d°2 + 1)/R..
Let t = 1/R,. Since R, < d'*1, by Equation (4), we have

Pr[B; > 2/R;] < exp(—3d*/8R;) < exp(—3d°?/8).
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According to Reference [15], B; are negatively associated, which implies for any I C [R,], we
have
Pr[B; > ti,i € I < [ | Pr[B; > 1;].
il

Thus, the probability that the number of B; which satisfy B; > 2/R; is larger than d°2, is at most
R
( d(fz) exp((=3d°?/8) - d"?) < exp(—32dlogd)/4.

It follows that with probability at least 1 — exp(—32dlogd)/2, for any i € [R;], we have
B; < (d°?% + 1)/R,, and the number of B; which satisfy B; > 2/R; is at most d°-2. In the rest of the
proof, we condition on this event.

Since R, > dlogd,

B; >0.5—-d%%-(d**+1)/R, > 1/4.
i€[Ry]|B;<2/R;

Thus, the number of B; which satisfy B; > 8sz is at least Ry/16, since, otherwise,

1
B; < Ry/16 - 2/Ry + Ry - ? =1/4.
i€[R]1B; <2/R, 8R;

Now consider IIy. According to the 1-stability of the standard Cauchy distribution,

|(TLay)i| = ( > |yj|)~ 1Xil,

Jjeln]lh(j)=i

where {X;} are independent standard Cauchy random variables. Notice that conditioned on the
event stated above, the number of B; which satisfy B; > ﬁ is at least R,/16. Furthermore, for

any i € [Re], Yjefn)ing)=i Uil = Xaz<j<nin(=i [y;| = Bi. Thus,

Ry Ry/16 1
,y);| = — Xl
;K Zy)ll Z 8R2| l|

where {X;} are independent standard Cauchy random variables.
According to Lemma 2.14, by setting T = 2 exp(32d log d), with probability at least 1 — 1/T, we
have

R,
ey > Ly - 3% - log(Re/ (1610 T)) - - = log(Re/ log )
i=1
Thus, for Theorem 4.1, we have ||TLy|; > Q(logd), since R, = d'-! and logT = O(dlogd). For
Theorem 4.2, when R; < d'!, we have ||II,y|l; > Q(logB), since R, = R; = O(B - dlogd) and
logT = O(dlogd). When R; > d'!, we have ||II,yll; > Q(logd) = Q(log B), since R; = d'*! and
log T = O(d log d). o
Set ¢ = 1/d? and create an e-net N C B = {Ux | x € R and ||Ux||; = 1}. According to Lemma
2.16, IN| < (1 +d*)? < (3d%)?. Let &; be the event that for all y € N, if ||ygz1.nlli > 0.5, then
IMzyll; = Q(logd)|lyll; (for Theorem 4.1) or [[TIoyll; > Q(log B)||lyll; (for Theorem 4.2).
Now, we show that &; holds with constant probability.

LEMMA 4.9. Es holds with probability at least 0.999.
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ProoF. According to Lemma 4.8, by using a union bound, we have
Pr[&; holds] > 1 — |N|exp(—32dlogd) > 0.999. O
We are now ready to prove the contraction bound.
LEmMMA 4.10. Conditioned on &y, E, and &, for all x € RY, we have

o |ILUx]|l; > Q(ogd)||Ux||; for Theorem 4.1;
e |[ILUx|l; > Q(log B)||Ux]||; for Theorem 4.2.

Proor. By homogeneity, we can assume ||Ux||; = 1. According to Lemma 4.7, conditioned on &,
and &s, for all y = Ux € N, we have ||[II;Ux||; > Q(logd)||Ux||; (for Theorem 4.1) or |[II,Ux||; >
Q(log B)||Ux||; (for Theorem 4.2). For any given y = Ux where ||y||; = 1, there exists some §j € N
for which ||y — Jll; < ¢ = 1/d*. Thus, conditioned on &;, notice that both  and y — § are in the
column space of U, so according to Lemma 4.6, we have

ITyll, > T131l; — [T(y - 9l > Q(logd) - (1/d%) - O(dlogd) = Q(logd)  (for Theorem 4.1)
or
ITyll, > T3l — ITI(y - §)l; > Q(log B) - (1/d?) - O(dlogd) = QlogB)  (for Theorem 4.2).

O

5 NEW SUBSPACE EMBEDDINGS FOR ¢,

In this section, we show how to generalize the constructions in Section 4 to {,-norms, when
1<p<2

THEOREM 5.1. Suppose 1 < p < 2. For any given A € R™%, let U be a (d, 1, p)-well-conditioned
basis of A. There exists an €, oblivious subspace embedding over O(d?) x n matrices I1 where each
column of a matrix drawn from 1 has two non-zero entries and with probability 0.99, for any x € R¢,

QM)|IUx|l, < ITUx]|, < O (dlogd) [|Ux||p.

THEOREM 5.2. Suppose 1 < p < 2. For any given A € R™ and sufficiently large B, let U
be a (d, 1, p)-well-conditioned basis of A. There exists an {,, oblivious subspace embedding over
O(B - dlogd) x n matrices II where each column of a matrix drawn from II has O(logy d) non-zero
entries and with probability 0.99, for any x € R¢,

QMUx|l, < MUx||, < O (dlogd) |Ux]lp.

Our embeddings for Theorems 5.1 and 5.2 can be written as II = (II;,11,)7. Similar to the
constructions in Section 4, for Theorem 5.1, IT; is sampled from the CountSketch embedding in
Lemma 2.17, scaled by a d?/P=1 factor. For Theorem 5.2, I1; is sampled from the OSNAP embedding
in Lemma 2.18 with O(B - dlogd) rows and O(logg d) non-zero entries per column and also
scaled by a d%/?~! factor. The construction for II, is almost the same as that for Theorems 4.1
and 4.2, except for replacing the standard Cauchy random variables in the diagonal entries of D
with p-stable random variables. Most parts of the proof for the distortion bound resemble that for
Theorems 4.1 and 4.2. We will omit similar proofs.

The following lemma can be proved in the same way as Lemmas 4.3 and 4.4, except for re-
placing the upper tail inequality for standard Cauchy random variables in Lemma 2.10 with that
for p-stable random variables in Corollary 2.11, and replacing the properties of a (d, 1, 1)-well-
conditioned basis with those of a (d, 1, p)-well-conditioned basis.
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LEMMA 5.3. Let &; be the event that ||[TI,U]||, < O(dlogd). &E; holds with probability at least 0.999.
Furthermore, conditioned on &y, for any x € R?, we have

I Ux]l, < O (dlogd) [[Ux|l,.
Let &; be the event that for any x € R4,
d*P N Ux|l; < I Ux|lp < 2d*P7H|Ux]l,.

Since II; is sampled from an ¢, oblivious subspace embedding with x = 2, and scaled by a factor
of d?/P=1, &, holds with probability at least 0.999.%

Without loss of generality, we assume |x1| > |x2| > |x3] > -+ > |x,]|. Of course, this order is
unknown and is not used by our embeddings.

LEMMA 5.4. Conditioned on &,, for any x € RY, we have
T3 (Ux)gz41:mllp < O (dlogd) [[Uxllp.

Proo¥. By homogeneity, we can assume ||[Ux||, = 1. Notice that ||(Ux)g241.4lle < d=2/P since
otherwise ||Ux||, > [|(Ux).42ll, > 1. By Holder’s inequality,

n 1/2 n 1/2
2 2— 1-2
HUD @l =| D W0 <| D) 1UxlP - max |Uxi*P| < d P,
. . d*+1<i<n
i=d%+1 i=d%+1

Thus,
I (Ux)asrnllp < RPN (U241l
< O0@d*P71) 2% P7H|(UX) g2y 1mllz = Od¥P7Y) = O (dlog d).
Here the first inequality follows from Lemma 2.1 and the fact that II;Ux has Ry rows, the second
inequality holds, since R; < O(d?) and &, holds. ]
LeEmMA 5.5. Conditioned on &, for any x € R4, if 1(Ux)1.q2ll, = 0.5||Ux|lp, then |TT1Ux]||, >
QM)IUx]lp-
Proor. Notice that
1Uxlly > 1(Ux)1a2ll = d" 22U 02 llp > d 7P )2 - U],

where the second inequality follows from Lemma 2.1 and the third inequality follows from the
condition that [|(Ux)y.421l, = 0.5[|Ux|l,. Thus, [[ILUx, > [[II,Ux|l, > Q(1)||Ux]l,, since II; is
sampled from an £, oblivious subspace embedding and scaled by a factor of d2/P~!. ]

The proof of the following lemma is almost identical to that of Lemma 4.8. We omit the proof
here.

LEMMA 5.6. For any x € R4, if 1(Ux)g211:nllp = 0.5||Ux||,, then with probability at least 1 —
exp(—32dlogd), we have ||[II,Ux|l, > Q(1)I|Ux]lp.

Set ¢ = 1/d? and create an e-net N C B = {Ux | x € R? and [lUx]|, = 1}. According to Lemma
2.16, IN| < (1 +d*)? < (3d?*)?. Let &; be the event that for all y € N,

(1) if lygzs1nllp = 0.5lyllp, then |[Toyll, > QD)lylly;
(2) Iy (y1.q2)llp < O(dlog d)llyllp-

5 Again, we can assume &, holds with probability 0.999, by increasing the dimension of the CountSketch embedding and
the OSNAP embedding by a constant factor.
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LEmMMA 5.7. Es holds with probability at least 0.999.

ProoOF. Notice that IT; is sampled from the CountSketch embedding or the OSNAP embedding
and scaled by a d?/P~! factor. According to Lemma 2.20, by setting w sufficiently large, with prob-
ability 1 — exp(—32d log d) we have ||II; (y;.42) ll, < d?/P=1(O(logg d))/P~1/2(wd log d)l‘l/l’||y||p =
O(dlogd)llyll,. Combining this with Lemma 5.6 and a union bound, we have

Pr[&; holds] > 1-2|N|exp(—32dlogd) > 0.999. O

LEMMA 5.8. Conditioned on &1, E,, and Es, for all x € R?, we have

Q) IUx]l, < IMIUx|l, < O (dlogd) [|Ux]lp.

ProoF. For any x € RY, let y = Ux. By homogeneity, we can assume llyll, = 1. As in the proof

of Theorem 3.5, y can be written as
y=y"+y' +f+.. .,
yi

where for any i > 0 we have (i) T, € N and (ii) ||y"||1{J < ¢l

It follows by Lemmas 5.3, 5.4, and 5.5 that
ITTylly = ITy°ll, = ) IMy'll, = @(1) = Y0 (dlogd) ¢’ = Q(1) = O (dlogd) - 2¢ > Q(1)

i>0 i>0
and
ITyll, < > ITy'll, < >0 (dlogd) ¢’ < O (dlogd). O
i>0 i>0

6 SUBSPACE EMBEDDINGS WITH IMPROVED SPARSITY

In this section, we present two approaches to constructing sparser £, oblivious subspace embed-
dings for 1 < p < 2.In Section 6.1, we present our first approach based on random sampling, which
yields an £, oblivious subspace embedding where each column of the embedding has at most two
non-zero entries and 1 + £ non-zero entries in expectation, where the number of rows r = O(d?).
In Section 6.2, we present another approach based on the construction in Reference [24] and a
truncation argument, which yields an £, oblivious subspace embedding where each column of the

embedding has a single non-zero entry, at the cost of increasing the number of rows r to O(d*).

6.1 Improved Sparsity Based on Random Sampling

In this section, we show how to further improve the sparsity in the constructions of Theorems 4.1
and 5.1.

THEOREM 6.1. For any given A € R™9, let U be a (d, 1, 1)-well-conditioned basis of A. For any
constant 0 < ¢ < 1, there exists an {1 oblivious subspace embedding over O(d?) x n matrices IT where
each column of T1 has at most two non-zero entries and 1+ ¢ non-zero entries in expectation, such that
with probability 0.99, for any x € R,

Q(logd)[|Uxlly < |IIUx|l; < O(dlogd)||Ux]|;.

Our embedding for Theorem 6.1 is almost identical to that for Theorem 4.1 except for the I, part.
Recall that the IT, part of the construction for Theorem 4.1 can be written as ®D, where ®p(;); = 1
and all remaining entries are 0. In the new construction for II,, ®y(;) ; are i.i.d. samples from the
Bernoulli distribution Ber(e). Le., ®p(;),; = 1 with probability ¢ and 0 otherwise. All other parts of
the construction are the same as in Theorem 4.1.

We note that the proof for Theorem 4.1 can still go through for the new construction. The

only difference occurs when proving Lemma 4.8. In fact, the II, part of the new construction for
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Theorem 6.1 can be viewed as the following equivalent two-step procedure. For any given vector
y = Ux, we first zero out each coordinate of y with probability 1 — ¢, which results in a new vector
y, and then apply the II, part of the embedding in Theorem 4.1 on the new vector .

Now, we show that with probability at least 1 — exp(—Q(d%¢)), we have

”ydz+1:n”1 2 Q(g)”yd2+1:n”1‘
Notice that E[|7;]] = ¢ly;| and E[y5] = ey?, which implies

EllYgzs1nlli] = € lyazeanlly

and

DR = D evt < ellyaaral - Ihainallo

i>d? i>d?

= ed ||y g1}
Thus, by Maurer’s inequality in Lemma 2.8, with probability at least 1 — exp(—Q(d?¢)), we have

”yd2+1:n > Q(S) ”yd2+1:n Il

The rest of the proof'is identical to the original proof for Lemma 4.8. Similarly, the same argument
can also be applied to Theorem 5.1.

THEOREM 6.2. Suppose 1 < p < 2. For any given A € R™?, let U be a (d, 1, p)-well-conditioned
basis for A. For any constant 0 < ¢ < 1, there exists an {,, oblivious subspace embedding over O(d*) xn
matrices I1 where each column of Il has at most two non-zero entries and 1 + ¢ non-zero entries in
expectation, such that with probability 0.99, for any x € R?,

Q(1)|IUx]l, < ITIUx]l, < O (dlogd) [|Ux]|p.

The number of rows in Theorems 6.1 and 6.2 cannot be further reduced. It is shown in Reference
[26] (Theorem 16) that for any distribution over r X n matrices IT such that any matrix in its support
has at most one non-zero entry per column, if rank(ITA) = rank(A) holds with constant probability,
then r = Q(d?). Now, we sketch how to generalize this lower bound to distributions over r x n
matrices for which each column has at most 1+ ¢ non-zero entries in expectation, for any constant
0 < ¢ < 1. Notice that such a lower bound already implies the number of rows of Theorems 6.1
and 6.2 are optimal up to constant factors, since any oblivious subspace embedding preserves the
rank with constant probability.

For each column in the matrix IT, by Markov’s inequality, with probability at least 1 — ”Tg there
will be at most one non-zero entry in that column. By the Chernoff bound in Lemma 2.6, with
probability 1 — exp(—Q(n)), the number of columns in IT with at most one non-zero entry is Q(n).
Furthermore, the balls and bins analysis in the proof of Theorem 16 in Reference [26] can be applied
to distributions over r X n matrices such that for any matrix in the support of the distribution, the
number of columns with at most one non-zero entry is Q(n). Indeed, with constant probability the
rank will drop if the embedding matrix has 0(d?) rows. This establishes the desired lower bound
of r = Q(d?).

6.2 Improving Sparsity Based on Truncation

In this section, we show how to use a truncation argument to improve the construction in
Reference [24].
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Before formally stating the construction, we first define the truncation operation. For a given
parameter « > 0, for any x € R, define
a ifxe€[0,a]
truncy(x) ={—a ifx € [-a,0).
x  otherwise
Here, we note some elementary properties of the truncation operation.
LEMMA 6.3. For a given parameter a > 0, for any x € R, we have
e |trunc,(x)] > a.
e truncy(x) — a < x < truncy(x) + a.

When applying the truncation operation to standard Cauchy random variables, the following
properties are direct implications of Lemma 6.3 and the 1-stability of standard Cauchy random
variables.

COROLLARY 6.4. Fori € [n], let {X;} be n independent standard Cauchy random variables. The
following holds.

e |trunc, (X;)| = a.
e Foranya = (aj,ap,...,a,) € R",

llally - X = llall - «

n
<> ai - trunce (X)) < llall - X + llall; - @,
i=1

where X is a standard Cauchy random variable.
Now, we are ready to state the main result of this section.

THEOREM 6.5. There exists an {; oblivious subspace embedding over O(d*) x n matrices T1 where
each column of T has a single non-zero entry. The distortion k = o(d).

Our embedding for Theorem 6.5 is almost identical to the embedding for Theorem 2 in Refer-
ence [24] and the IT; part of the embedding for Theorems 4.1 and 4.2, except for replacing standard
Cauchy random variables with truncated standard Cauchy random variables. Let R = O(d*) be
the number of rows of I1. Here IT can be written as ®D : R" — RE, defined as follows:

e h:[n] — [R] is a random map so that for each i € [n] and t € [R], h(i) = t with probability

1/R.
e ®isan R X n binary matrix with ®(;) ; = 1 and all remaining entries 0.
e D is an n X n random diagonal matrix where D; ; = trunc,(X;). Here {X;} are ii.d. samples

from the standard Cauchy distribution and & < 1/4 is a positive constant.

Now, we sketch how to modify the proof of Theorem 2 in Reference [24] to prove the distortion
bound of our new embedding.

In the proof of Theorem 2 in Reference [24], the authors define five events: 8y, &, g, Ec and
&; . Notice that for our new embedding, the event Ec is no longer needed, since by Corollary 6.4,
the absolute values of standard Cauchy random variables are never smaller than « after truncation,
where « is a small constant. We also change the number of rows of II to O(d*log® d), and the
definition of the event &; is changed to [TIUL|l; < O(1/(dlog® d)) correspondingly.

Lemma 16 and Lemma 22 in the proof for Theorem 2 in Reference [24] show that Ey and &;
hold with constant probability. The proofs for these two lemmas almost remain unchanged, except
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for replacing the 1-stability of standard Cauchy random variables with the upper bound part of
the “approximate 1-stability” of truncated standard Cauchy random variables in Corollary 6.4.
Lemma 13 is changed to the following: Given &}, for any fixed y € Y, we have

Pe[limylh < (3 - a) Iyl | < exp(-Q(dloga)).

The proof of the new version of Lemma 13 is also similar to the original proof, except for replacing
the 1-stability of standard Cauchy random variables with the lower bound part of the “approximate
1-stability” of truncated standard Cauchy random variables in Corollary 6.4. This also explains why
we need « to be a constant smaller than 1/4. Similarly, the constant 1/8 in Lemma 14 also needs
to be modified to reflect the changes in Lemma 13.

Finally, since the absolute values of standard Cauchy random variables are never smaller than «
after truncation, Lemma 15 is changed to the following: Given &g and &;, for any y € Y, we have
IMyll; = Q(a)llyll;. This finishes our modification to the proof of Theorem 2 in Reference [24].

By applying the truncation argument to p-stable random variables, a similar result can be ob-
tained for ¢, oblivious subspace embeddings.

THEOREM 6.6. For 1 < p < 2, there exists an {;, oblivious subspace embedding over O(d*) x n
matrices I where each column of I1 has a single non-zero entry. The distortion k = O(d).

APPENDIX
A  MISSING PROOFS IN SECTION 2
A.1 Proof of Lemma 2.9

ProoF.
n n n
Z |aiXi|p] = Z la;|P E [IX;IP] = A, Z |a; |,
i=1 i=1 iz

where A, = E[|X;|”] is a constant that depends only on p.
Thus, by Markov’s inequality, with probability at least 0.995,

n 1/p
(Z |al~x,~|f’) < (2004,)"/?lall,-
i=1

There exists a constant B, that depends only p, such that

E

1
Pr[|X;|? < B,] < —.
| X;] p] 00
We let Y; be an indicator variable such that
. {1 if 1Xil? < B,

" lo otherwise

We know that E[Y;] < ﬁ, which also implies E[}}7; |a;|P - Y;|] < F%Ollallﬁ. Thus, by Markov’s
inequality, with probability at least 0.995, we have

< 1
D lail? Y < Sllaly.
i=1
Notice that
n n
Z la;X;|? > B, Z la; [P (1= Y;).
i=1 i=1
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Thus, with probability at least 0.995,

n 1/p Bp 1/p
(Z |aixi|f’) > (7) lall-
i=1

Thus, the lemma holds by taking C,, = max{(2004,)'/?, (é)”f’} and using a union bound. m]

A.2 Proof of Lemma 2.12
nlogn

Proor. Let &; be the event that |X;| < Toglogn*
the standard Cauchy distribution, we have

According to the cumulative density function of

2 2logl
Pr[&;] = 1 — —arctan (nlogn/loglogn) > 1 - oglogn
4 mnlogn
Let& = ([, &;. By a union bound, & holds with probability at least 1 : 1;) ilgi-" .Next, we calculate

E[|X;| | &]. Since the X; are independent, by using the probability density function of the standard
Cauchy distribution,

1 1
E[1X;| | &] = E[IX;| | &] = BET log (1 + (nlogn/loglogn)®) = O(log ).
Notice that conditioned on &, |X;| are still independent. Furthermore, conditioned on &, for any
i € [n], 1X;| € [0,nlogn/loglogn]. Thus, for sufficiently large Uy, by applying the Chernoff bound
in Lemma 2.6 on |X;| loglog n(nlogn)™,

< 2—#% — 2—U1 loglogn.

i=1

n
Pr [Z |Xi| > Uinlogn | &

Thus, for sufficiently large Uy,

n n
Pr Z IX;| < Ulnlogn} > Pr Z |X;] < Upnlogn | &| - Pr[&]
i=1 i=1
2(1_2—U1log10gn>_(1_ Zloglogn) > 1_10g10gn. O
mlogn logn

A.3 Proof of Lemma 2.14

Proor. According to Lemma 2.4, there exists a constant t, > 1 that depends only on p, such
that for any t > t,,

Pr[X; > t] > %’t*ﬁ.
Thus, for t > tg,
Pr{|X;|P > t] = Pr[|X;| > t'/P] = 2Pr[X; > /7] > ¢, t 7.
Fori > 0andj € [n], we let N} denote the indicator variable such that

; 1 if |X;P > 2iP
i _ J P
Nj —{

0 otherwise

and N’ = ]'.':1 N]’ We have that E[N]’] > 2_icpt;p and thus E[N'] > n - 2_icpt;p. According to
the Chernoff bound in Lemma 2.6, we have Pr[N* > n2‘i‘lcpt1;p] >1—exp(-n- 2_"‘3cpt1;P). Let

ACM Transactions on Algorithms, Vol. 18, No. 1, Article 8. Publication date: January 2022.



8:30 R. Wang and D. P. Woodruff

Imax be the largest i such that

: _ 1
exp (—nz_’_3cptpp) < T (5)

By a union bound, with probability at least

lmax
. -p
1- Z exp (—n2“‘3%tﬁ ) >1-1T,
i=0
simultaneously for all 0 < i < L4y, N' > n2_i_1cpt;p, which implies

lmax

n
DXl = Y 2D N2 > ¢p/4 gy - .
i=1 i=0

Solving Equality (5) and substituting the value of I,,,4, for sufficiently large T and n, with proba-

bility at least 1 — 1/T,
z n
1P -
E 1X;| sznlog(logT),

i=1
where L, is a constant that depends only on p. ]

A.4 Proof of Lemma 2.20

Proor. Suppose IT has R rows and s non-zero entries per column. For the CountSketch embedding,
we have R = O(d?) and s = 1, while for the OSNAP embedding, we have R = O(B - dlogd) and
s = O(log d). In either case, we have R < O(d?).

Fori € [R],define B; = {j | j < d* and I1; ; # 0}. According to the Chernoff bound in Lemma 2.6,
with probability at least 1 — exp(—Q(wd logd)), |Bi| < wdlogd. It follows by a union bound that
with probability at least 1 — exp(—Q(wdlogd)) - R = 1 — exp(—Q(wd log d)), simultaneously for
all i € [R], we have |B;| < wdlogd. We condition on this event in the rest of the proof.

Notice that

P
(T (a2l < (s‘l“ > |yj|)

JjEB;
1/p\P
<| s 2 (wdlog d)-1/P (Z ijlp) = sP/%(wdlogd)P™! (Z |yj|p)-
jeB; JEB;

Here the second inequality follows from Lemma 2.1 and |B;| < wdlogd. For each j € [d?], the
number of i € [R] for which j € B; is exactly s, which implies

R R d?
DI el < 5772 (wdlogd)?™ > 3" |ysif = 5P X (wdlogd) ™t Y lylP.
i=1 i=1 jeB; j=1

Thus,
I (y1.q2) Iy < Y272 (0dlog d) P llypaellp < 57772 (wd log d) =12 |yl O
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