
8

Tight Bounds for ℓ1 Oblivious Subspace Embeddings

RUOSONG WANG and DAVID P. WOODRUFF, Carnegie Mellon University

An ℓp oblivious subspace embedding is a distribution over r × n matrices Π such that for any fixed n × d
matrix A,

Pr
Π
[for all x , ‖Ax ‖p ≤ ‖ΠAx ‖p ≤ κ‖Ax ‖p ] ≥ 9/10,

where r is the dimension of the embedding, κ is the distortion of the embedding, and for an n-dimensional

vector y, ‖y‖p = (
∑n
i=1 |yi |

p )1/p is the ℓp -norm. Another important property is the sparsity of Π, that is, the

maximum number of non-zero entries per column, as this determines the running time of computing ΠA.

While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the

important case of 1 ≤ p < 2, much less was known. In this article, we obtain nearly optimal tradeoffs for ℓ1
oblivious subspace embeddings, as well as new tradeoffs for 1 < p < 2. Our main results are as follows:

(1) We show for every 1 ≤ p < 2, any oblivious subspace embedding with dimension r has distortion

κ = Ω
����

1
(

1
d

)1/p
log2/p r +

(

r
n

)1/p−1/2
����
.

When r = poly(d ) ≪ n in applications, this gives a κ = Ω(d1/p log−2/p d ) lower bound, and shows

the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to

poly(log(d )) factors.

(2) We give sparse oblivious subspace embeddings for every 1 ≤ p < 2. Importantly, for p = 1, we achieve

r = O (d logd ), κ = O (d logd ) and s = O (logd ) non-zero entries per column. The best previous con-

structionwith s ≤ poly(logd ) is due toWoodruff and Zhang (COLT, 2013), givingκ = Ω(d2poly(logd ))

or κ = Ω(d3/2
√

logn · poly(logd )) and r ≥ d · poly(logd ); in contrast our r = O (d logd ) and

κ = O (d logd ) are optimal up to poly(log(d )) factors even for dense matrices.

We also give (1) ℓp oblivious subspace embeddings with an expected 1 + ε number of non-zero entries per

column for arbitrarily small ε > 0, and (2) the first oblivious subspace embeddings for 1 ≤ p < 2 with

O (1)-distortion and dimension independent of n. Oblivious subspace embeddings are crucial for distributed

and streaming environments, as well as entrywise ℓp low-rank approximation. Our results give improved

algorithms for these applications.
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1 INTRODUCTION

An ℓp oblivious subspace embeddingwith distortionκ is a distribution over r×nmatricesΠ such that

for any given A ∈ Rn×d , with constant probability, ‖Ax ‖p ≤ ‖ΠAx ‖p ≤ κ‖Ax ‖p simultaneously

for all x ∈ Rd . The goal is to minimize r , κ and the time to calculate ΠA.
Oblivious subspace embeddings have proven to be an essential ingredient for approximately

solving numerical linear algebra problems, such as regression and low-rank approximation. Sárlos
[29] first used ℓ2 oblivious subspace embeddings to solve ℓ2-regression and Frobenius-norm low-
rank approximation. To see the connection, suppose one wishes to solve the ℓ2-regression problem
argminx ‖Ax − b‖2 in the overconstrained setting, i.e., A ∈ Rn×d and b ∈ Rn where n ≫ d . Sár-
los showed that to solve this problem approximately, it suffices to solve a much smaller instance
argminx ‖ΠAx −Πb‖2, provided Π is an ℓ2 oblivious subspace embedding for the matrix formed by

concatenating columns ofA ∈ Rn×d andb ∈ Rn . Sárlos further showed that using the Fast Johnson-
Lindenstrauss Transform in Reference [1] as the ℓ2 oblivious subspace embedding with κ = 1 + ε ,
one can get a (1+ ε )-approximate solution to the ℓ2-regression problem inO (nd logd ) + poly(d/ε )
time, which is a substantial improvement over the standard approach based on the normal equa-
tion, which runs in O (nd2) time. The advatange of the Fast Johnson-Lindenstrauss Transform is
that for any A ∈ Rn×d , for any matrix Π in the support of the distribution, ΠA can be computed in
O (nd logn) time.

Subsequent to the work of Sárlos, the “sketch and solve” approach became an important way to
solve numerical linear algebra problems.We refer interested readers to themonograph ofWoodruff
[34] for recent developments.
The bottleneck of Sárlos’s approach is the step to calculateΠA, which requires Ω(nd ) time due to

the structure of the Fast Johnson-Lindenstrauss Transform. Although this is already nearly optimal
for dense matrices, when A is large and sparse, one may wish to solve the problem faster than
O (nd ) time by exploiting the sparsity of A. Clarkson and Woodruff [10] showed that there exist
ℓ2 oblivious subspace embeddings with r = poly(d/ε ) rows, s = 1 non-zero entries per column,
and κ = 1 + ε . The property that s = 1 is significant, since it implies calculating ΠA requires
only O (nnz(A)) time, where nnz(A) is the number of non-zero entries of A. In fact, the oblivious
subspace embedding they used is the CountSketch matrix from the data stream literature [6]. By
using the CountSketch embedding in Reference [10], one can reduce an ℓ2-regression instance of
size n × d into a smaller instance of size poly(d/ε ) × d in O (nnz(A)) time. The original proof in
Reference [10] used a technique based on splitting coordinates by leverage scores. The number of
rows can be further reduced to r = O ((d/ε )2) using the same construction and a finer analysis
based on second moment method, shown independently in References [24, 25].

One may wonder if it is possible to further reduce the number of rows in the CountSketch em-
bedding, since this affects the size of the smaller instance to solve. In Reference [26], Nelson and

Nguy˜̂en showed that any ℓ2 oblivious subspace embedding with constant distortion and s = 1
non-zero entries per column requires Ω(d2) rows. Although this rules out the possibility of fur-
ther reducing the number of rows in the CountSketch embedding, this lower bound can be cir-
cumvented by considering embeddings with s > 1 non-zero entries in each column. This idea
is implemented by the same authors in Reference [25], obtaining a result showing that for any
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B > 2, for r about B · d log8 d/ε2 and s about log3B d/ε , one can achieve an ℓ2 oblivious subspace
embedding with κ = 1 + ε . The bound on r and s was further improved in Reference [11] (see also
Reference [4]), where Cohen showed that for any B > 2, it suffices to have r = O (B ·d logd/ε2) and
s = O (logB d/ε ). Cohen’s result matches the lower bound in Reference [27] up to a multiplicative
logd factor in the number of rows.
Another line of research focused on the case when p � 2, as the corresponding regression

and low-rank approximation problems are often considered to be more robust, or less sensitive
to outliers. Moreover, the p = 1 error measure for regression yields the maximum likelihood es-
timator under Laplacian noise models. When p = 1, using Cauchy random variables, Sohler and
Woodruff [30] showed there exist ℓ1 oblivious subspace embeddings with r = O (d logd ) rows
and κ = O (d logd ). This approach was generalized by using p-stable random variables in work of
Meng and Mahoney [24] to ℓp -norms when 1 < p < 2, where they showed there exist ℓp obliv-

ious subspace embeddings with r = O (d logd ) rows and κ = O (d logd ).1 Unlike the case when
p = 2, due to the large distortion incurred in such upper bounds, one cannot directly get a (1 + ε )-
approximate solution to the ℓp -regression problem by solving argminx ‖ΠAx − Πb‖p . A natural
question then, is whether it is possible to obtain (1 + ε )-distortion with ℓp oblivious subspace em-
beddings; prior to our work there were no lower bounds ruling out the existence of ℓp oblivious
subspace embeddings with r = poly(d/ε ) and κ = 1 + ε .

Although it was unknown if better oblivious subspace embeddings exist for p � 2 prior to
our work, ℓp oblivious subspace embeddings still played a crucial role in solving ℓp -regression
problems in earlier work, since they provide a way to precondition the matrix A, which enables
one to further apply non-oblivious (sampling-based) subspace embeddings. We refer interested
readers to Chapter 3 of Reference [34] and references therein for further details. Recent develop-
ments in entrywise ℓp low-rank approximation [31] also used ℓp oblivious subspace embeddings
as an important ingredient. Furthermore, such ℓ1 oblivious subspace embeddings are the only
known way to achieve single-pass streaming algorithms for ℓ1-regression (see, e.g., Section 5 of
Reference [30], where it is shown how to implement the preconditioning and sampling in parallel
in a single pass), a model that has received considerable interest for linear algebra problems (see,
e.g., Reference [9]). We note that recent algorithms for ℓp -regression based on Lewis weights
sampling require at least Ω(log logn) passes in the streaming model.

Due to these applications, speeding up the computation of ΠA for ℓp oblivious subspace
embeddings is an important goal. In Reference [8], Clarkson et al. combined the idea of Cauchy
random variables and Fast Johnson-Lindenstrauss Transforms to obtain a more structured family
of subspace embeddings, which enables one to calculate ΠA in O (nd logn) time. Meng and
Mahoney [24] showed that when 1 ≤ p < 2, there exist ℓp oblivious subspace embeddings with

r = Õ (d5) rows and s = 1 non-zero entries per column, where the distortion κ = Õ (d3).2 The
structure of the embedding by Meng and Mahoney is very similar to the CountSketch embedding
by Clarkson and Woodruff [10]. In fact, to prove the distortion bound, Meng and Mahoney also
used techniques of splitting coordinates based on leverage scores.
Inspired by the technique by Andoni [2], which used exponential random variables to estimate

the ℓp -norm of a data steam, Woodruff and Zhang [35] improved the embedding given in Refer-

ence [24]. They showed there exist ℓ1 oblivious subspace embeddings with r = Õ (d ) rows and

s = polylog(d ) non-zero entries per column, where the distortion κ = min{Õ (d2), Õ (d1.5)
√

logn}.
Note that to achieve such a small polylogarithmic sparsity, the distortion κ given by the analysis

1In Reference [24] the authors incorrectly claimed that the distortion of their subspace embedding is κ = O ((d logd )1/p ).

See Section 1.3 for more details.
2Again, in Reference [24] the authors incorrectly claimed that the distortion is κ = Õ (d3/p ).
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Table 1. Summary of Previous and New Upper Bounds When p = 1

Reference r κ s

Sohler and Woodruff [30] O (d logd ) O (d logd ) Dense

Clarkson et al. [8] O (d logd )
O (d4 log4 d )

Dense
O (d (d + logn)1+η logd )

Meng and Mahoney [24] O (d5 log5 d ) O (d3 log3 d ) 1

Woodruff and Zhang [35] Õ (d ) min{Õ (d2), Õ (d1.5)
√

logn} poly(logd )

Theorem 4.1 O (d2) O (d ) 2

Theorem 4.2 O (B · d logd ) O (d logB d ) O (logB d )

Theorem 6.1 O (d2) O (d ) 1 + ε in expectation

Theorem 6.6 Õ (d4) Õ (d ) 1

Here, η > 0 is an arbitrarily small constant. B > 0 is required to be sufficiently large and provides a tradeoff between

r , κ , and s .

in Reference [35] had to either increase to Õ (d2) or to Õ (d1.5)
√

logn, the latter also depending on
n. See Table 1 for a summary of previous and new upper bounds when p = 1.

The above works leave many gaps in our understanding on the tradeoffs between dimension,
distortion, and sparsity for ℓp oblivious subspace embeddings. For instance, it is natural to ask
what the optimal distortion bound for ℓp oblivious subspace embeddings is when 1 ≤ p < 2,
provided that the number of rows r = poly(d ). Results in References [24, 30] showed that
κ = O (d logd ) is achievable. Is this optimal? Also, it is unknown whether there exist sparse ℓ1
oblivious subspace embeddings with dimension Õ (d ) and distortion κ = Õ (d ). In this article, we
resolve these questions.

1.1 Our Results

Distortion Lower Bound. We first show a distortion lower bound for ℓp oblivious subspace em-
beddings, when 1 ≤ p < 2.

Theorem 1.1. For 1 ≤ p < 2, if a distribution over r × n matrices Π is an ℓp oblivious subspace

embedding, then the distortion

κ = Ω
����

1
(

1
d

)1/p
· log2/p r +

(

r
n

)1/p−1/2
����
.

When 1 ≤ p < 2 and r = poly(d ), the denominator of the lower bound is dominated by the

( 1
d
)1/p · log2/p r term, provided n is large enough. In that case, our lower bound is Ω(d1/p log−2/p d ).

It was shown in Reference [30] that there exist ℓ1 oblivious subspace embeddings with r =

O (d logd ) rows and distortion κ = O (d logd ). Our lower bound matches this result up to an
O (log3 d ) factor. Thus, our lower bound is nearly optimal for r = poly(d ) when p = 1 (which
is the main regime of interest in the above applications).
The dependence on (r/n)1/p−1/2 reflects the fact that

• When the number of rows r = n, one can get a trivial ℓp oblivious subspace embedding with
κ = 1, i.e., the identity matrix I ;
• As p → 2, there exist ℓ2 oblivious subspace embeddings [4, 10, 11, 24, 25, 29] with κ = 1 + ε
and r = poly(d/ε ), where ε can be an arbitrarily small constant.

It is possible that the log2/p r factor (in the (1/d )1/p · log2/p r term) could be somewhat improved.
However, we show that some dependence on r is, in fact, necessary.
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Theorem 1.2 (Informal version of Theorem 3.5). For 1 ≤ p < 2, there exists an ℓp oblivious

subspace embedding over exp(exp(O (d ))) × n matrices Π, where the distortion κ is a constant.

Even though Theorem 1.2 has a doubly exponential dependence on d in the number of rows, it
is the first ℓp oblivious subspace embedding with constant distortion, when 1 ≤ p < 2 and r does
not depend on n. This new embedding suggests that it is impossible to get a lower bound of

κ = Ω
����

1
(

1
d

)1/p
+

(

r
n

)1/p−1/2
����
,

i.e., the ( 1
d
)1/p term should have some dependence on r .

New ℓp oblivious subspace embeddings. We next show there exist sparse ℓ1 oblivious subspace
embeddings with nearly optimal distortion, and sparse ℓp oblivious subspace embeddings with
O (d logd ) distortion when 1 < p < 2.

Theorem 1.3 (Summary of Theorem 4.1, 4.2, 5.1, and 5.2.). For 1 ≤ p < 2, there exist ℓp oblivious
subspace embeddings over r ×n matrices Π with s non-zero entries per column and distortion κ, where

(1) When p = 1,
(a) r = O (d2), s = 2 and κ = O (d ); or

(b) For sufficiently large B, r = O (B · d logd ), s = O (logB d ) and κ = O (d logB d ).
(2) When 1 < p < 2, κ = O (d logd ),
(a) r = O (d2), s = 2; or
(b) For sufficiently large B, r = O (B · d logd ), s = O (logB d ).

Notably, the distortion of our embeddings is never worse than the dense constructions in Refer-
ences [24, 30]. Also, when p = 1, if we set r = O (d2) (Case 1(a)) or r = O (d1+η ) for any constant
η > 0 (Case 1(b)), then the distortion can be further improved to O (d ). This is the first known ℓ1
oblivious subspace embedding with r = poly(d ) rows and distortion κ = o(d logd ). We remark
that by using the dense construction in Reference [30], it is also possible to reduce the distortion
to O (d ) by increasing the number of rows.
Similar to the OSNAP embedding in Reference [25], our results in Case 1(b) and Case 2(b) pro-

vide a tradeoff between the number of rows and the number of non-zero entries in each column.

Sparser ℓp oblivious subspace embeddings. Finally, we show that the sparsity of Case 1(a) and
Case 2(a) in Theorem 1.3 can be further reduced by using two different approaches.
The first approach is based on random sampling, which leads to the following theorem.

Theorem 1.4 (Summary of Theorem 6.1 and 6.2). For 1 ≤ p < 2 and any constant 0 < ε < 1,
there exists an ℓp oblivious subspace embedding over O (d2) × n matrices Π where each column of Π

has at most two non-zero entries and 1+ε non-zero entries in expectation, and the distortion κ = O (d )

(when p = 1) or κ = O (d logd ) (when 1 < p < 2).

The second approach is based on the construction in Reference [24] and a truncation argument,
which leads to the following theorem.

Theorem 1.5 (Summary of Theorem 6.5 and 6.6). For 1 ≤ p < 2, there exists an ℓp oblivious

subspace embedding over Õ (d4) × n matrices Π where each column of Π has a single non-zero entry

and distortion κ = Õ (d ).

It has been shown in Reference [26] that for any distribution over r × n matrices Π with s = 1
non-zero entries per column, if for any fixed matrixA ∈ Rn×d , rank(ΠA) = rank(A) with constant
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probability, then Π should have r = Ω(d2) rows. Since oblivious subspace embeddings with finite
distortion always preserve the rank, this lower bound can also be applied. We show also that this
lower bound holds even if the columns ofΠ have 1+ε non-zero entries in expectation for a constant
0 < ε < 1, thereby showing Theorem 1.4 is optimal.

1.2 Comparison with Previous Work

To compare our results with previous work, it is crucial to realize the difference between oblivious

embeddings and non-oblivious embeddings. An oblivious subspace embedding Π is a universal dis-
tribution over Rr×n , which does not depend the given matrixA ∈ Rn×d . A non-oblivious subspace
embedding, however, is a distribution that possibly depends on the given matrix A. Most known
non-oblivious subspace embeddings involve importance sampling according to the leverage scores
or Lewis weights of the rows, and so are inherently non-oblivious. We refer the interested reader
to Reference [20] for an excellent survey on leverage scores and References [12, 13, 17] for recent
developments on non-oblivious subspace embeddings.
Previous impossibility results for dimension reduction in ℓ1 [5, 7, 16] are established by creating

a set ofO (n) points in Rn and showing that any (non-oblivious) embedding on them incurs a large

distortion. In this article, we focus on embedding ad-dimensional subspace ofRn intoRpoly(d ) using
oblivious embeddings.We stress thatO (n) points in ad-dimensional subspace have a very different
structure from O (n) arbitrary points in Rn . Previous results [13] showed that any d-dimensional

subspace inRn can be embedded intoRO (d (logd )ε−2 ) with (1+ε ) distortion in ℓ1 using non-oblivious
linear embeddings, where ε > 0 is an arbitrarily small constant. Here the subspace structure is
critically used, since Charikar and Sahai [7] showed that there exist O (n) points such that any

linear embedding Rn → Rd must incur a distortion of Ω(
√
n/d ), even for non-oblivious linear

embeddings.
Our hardness result in Theorem 1.1 establishes a separation between oblivious and non-

oblivious subspace embeddings in ℓp when 1 ≤ p < 2. This result suggests that to con-
struct a subspace embedding with (1 + ε) distortion, it is essential to use non-oblivious subspace
embeddings.
Although our main focus in this article is to understand oblivious subspace embeddings, we

remark that our technique for proving the hardness result in Theorem 1.1 can also be applied to

embed any d points in Rn into Rpoly(d ) in ℓp using oblivious linear embeddings, when 1 ≤ p < 2.
In particular, it is possible to reproduce the result of Reference [7] using our techniques, although
in a weaker setting where the embeddings are oblivious.

1.3 Errors in Prior Work and the Conference Version

In the conference version of this article [32], we incorrectly claimed that the distortion of the

embeddings in Theorems 1.3 and 1.4 is κ = O ((d logd )1/p ), and κ = Õ (d1/p ) for the embedding
in Theorem 1.5. The source of the error is Lemma 2.22 (Lemma 2.16 in the conference version),
in which it was claimed that by the existence of an Auerbach basis, the existence of a certain
well-conditioned basis follows. However, it is unclear whether the existence of an Auerbach basis
implies the existence of such a well-conditioned basis. The claim that we made was actually
already made in previous work. It first appeared in the technical report version [23] of Reference
[24]. In the proof of Theorem 6 in Section A.7 of Reference [23], the authors claimed that the exis-
tence of an Auerbach basis implied the existence of a (d1/p , 1,p)-conditioned basis. The authors of
Reference [24] confirmed that this is an error in their work in Reference [22]. Besides propagating
to our work, that error also propagates to Reference [35], in which a similar claim was made.
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After fixing this, the best existing ℓp oblivious subspace embeddings with r = poly(d ) rows
have distortion κ = O (d logd ) when 1 < p < 2. Thus, while we obtain tight bounds up to
polylog(d ) factors for the important case of p = 1, when 1 < p < 2, our distortion lower bound in
Theorem 1.1 is not necessarily tight. We leave it as an open problem to resolve the case 1 < p < 2.

1.4 Applications of Our Subspace Embeddings

Using the sparse ℓp oblivious subspace embeddings in Theorem 1.3, we obtain improvements to
many related problems. We list a few examples in this section.

ℓp -regression in the streamingmodel. Using dense Cauchy embeddings and a sampling data struc-
ture from Reference [3], a single-pass streaming algorithm for ℓ1-regression argminx ‖Ax−b‖1 was
designed in Reference [30]. To get a (1 + ε )-approximate solution to the regression problem, the
algorithm uses poly(dε−1 logn) bits of space, where A ∈ Rn×d and b ∈ Rn . The total running time
of the algorithm, however, is O (nnz(A) · d + poly(dε−1 logn)).

By replacing the dense Cauchy embedding with our new oblivious subspace embeddings in

Theorem 1.3, the total running time can be further improved to Õ (nnz(A))+poly(dε−1 logn) while
the space complexity remains unchanged. We note that using earlier sparse Cauchy embeddings
[24] would also give such a running time, but with a significantly worse poly(dε−1 logn) factor.
The same approach can also be applied to design input-sparsity time algorithms for ℓp -regression
in the streaming model when 1 < p < 2.

Entrywise ℓp low-rank approximation. Given a matrixA ∈ Rn×d and approximation factor α , the

goal of the ℓ1-low-rank approximation problem is to output a matrix Â for which

‖A − Â‖1 ≤ α · min
rank-k matrices A′

‖A −A′‖1,

where ‖ · ‖1 is the entrywise ℓ1-norm.
In Reference [31], the authors devised an algorithm that runs inT = O (nnz(A) + (n+d ) ·poly(k ))

time to solve this problem, with α = poly(k ) ·logd . The exact expression of the poly(k ) factor in the
approximation factorα and the running timeT , depends on the number of rows r and the distortion
κ of the ℓ1 oblivious subspace embedding used. Both poly(k ) factors can be directly improved by
replacing the sparse Cauchy embedding [24], which is originally used in Reference [31], with our
new oblivious subspace embeddings in Theorem 1.3. This improvement also propagates to other
problems considered in Reference [31] such as ℓp -low-rank approximation, entrywise ℓp -norm
CUR decomposition and ℓp -low-rank approximation in distributed and streaming models.

Quantile Regression. Given a matrix A ∈ Rn×d and b ∈ Rn , the goal of quantile regression is to
solve

argminx ρτ (b −Ax ),
where ρτ (b −Ax ) =

∑n
i=1 ρτ ((b −Ax )i ) and for any z ∈ R,

ρτ (z) =
⎧⎪⎨⎪⎩
τz z ≥ 0

(τ − 1)z z < 0
.

Here τ is a parameter in (0, 1).
An efficient algorithm to calculate a (1 + ε )-approximate solution to quantile regression was

proposed in Reference [36]. Using their approach, one can reduce a quantile regression instance of
size n × d to a smaller instance of sizeO (poly(d )ε−2 log(1/ε )) × d inO (nnz(A)) + poly(d ) time. By
replacing the sparse Cauchy embedding, which is used in the conditioning step of their algorithm,
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with our new oblivious subspace embeddings in Theorem 1.3, the poly(d ) term in the running time
can be directly improved.

1.5 Our Techniques

Distortion lower bound. We use the case when p = 1 to illustrate our main idea for proving our
distortion lower bounds.We start with Yao’s minimax principle, which enables us to deal only with
deterministic embeddings. Here our goal is to construct a distribution over matricesA ∈ Rn×d such
that for any Π ∈ Rr×n , if

‖Ax ‖1 ≤ ‖ΠAx ‖1 ≤ κ‖Ax ‖1 (1)

holds simultaneously for all x ∈ Rd with constant probability, then κ = Ω̃(d ).
Roughly speaking, our proof is based on the crucial observation that, the histogram of the ℓ1-

norm of columns in the deterministic embedding Π/κ should look like that of a discretized stan-
dard Cauchy distribution. That is, there are at most 2i columns in Π/κ with ℓ1-norm larger than
Θ((n/d )2−i ). This is because if we choose a matrix A ∈ Rn×d such that each column contains
(n/d )2−i non-zero entries at random positions and all these (n/d )2−i non-zero entries are i.i.d.
sampled from the standard Gaussian distributionN (0, 1), then for each column in A, the ℓ1-norm
of that column is Θ((n/d )2−i ) with constant probability. However, if the embedding Π/κ contains
more than 2i columns with ℓ1-norm larger than Θ((n/d )2−i ), then with constant probability, there
exists some i ∈ [n] and j ∈ [d] such that Ai, j ∼ N (0, 1) and the ith column of Π/κ has ℓ1-norm
larger than Θ((n/d )2−i ). In that case, it can be shown that after projection by Π/κ, the jth column
of A has ℓ1-norm larger than Θ((n/d )2−i ), which violates the condition in Equation (1).

To prove κ = Ω̃(d ), let c ∈ Rn be a vector whose entries are all i.i.d. sampled fromN (0, 1). With
constant probability ‖c ‖1 = Ω(n). However, we are able to show that the constraint we put on the

histogram of the ℓ1-norm of columns in Π/κ implies that ‖Πc/κ‖1 = Õ (n/d ) and hence κ = Ω̃(d ).
The formal analysis in Section 3.1 shows that κ = Ω(d log−2 r ) when n ≫ r .

To show that the dependence on r in the lower bound is necessary, we construct an ℓ1 oblivious
subspace embedding with exp(exp(O (d ))) rows and constant distortion. The construction itself is
the same as the dense construction in Reference [30]. Unlike previous approaches [24, 30, 35], we
do not use the existence of an Auerbach basis to prove the dilation bound. Our analysis is based on
tighter tail bounds for sums of absolute values of independent standard Cauchy (and also p-stable)
random variables in Lemmas 2.12 and 2.14. Let {Xi } be R = exp(exp(O (d ))) independent standard
Cauchy random variables. Based on the tighter tail bounds, it can be shown that with probability
1 − exp(−Ω(d )),

R
∑

i=1

|Xi | = Θ(R logR),

which enables us to now apply a standard net argument to prove the constant distortion bound.
The formal analysis is given in Section 3.2.

New ℓp oblivious subspace embeddings. For ease of notation, here we focus on p = 1. Before
getting into our results, we first review the construction in Reference [24] and its analysis. The

sparse Cauchy embedding in Reference [24] has Õ (d5) rows. In each column, there is a single non-

zero entry that is sampled from the standard Cauchy distribution. The Õ (d ) dilation bound follows
the standard approach [30] of using the existence of an Auerbach basis and upper tail bounds for
dependent standard Cauchy random variables. The contraction bound is based on the technique
of splitting coordinates, which was first proposed in Reference [10] to analyze the CountSketch
embedding. A coordinate is heavy if its ℓ1 leverage score is larger than 1/d and light otherwise.
For any vector y = Ax , if light coordinates contribute more to the ℓ1-norm of y, then standard
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concentration bounds and Cauchy lower tail bounds imply a constant distortion. If heavy coordi-
nates contribute more to the ℓ1-norm, since there will be at mostO (d2) heavy coordinates and the
embedding has Ω(d4) rows, then all the heavy coordinates will be perfectly hashed. An Ω(d−2)
contraction bound follows by setting up a global event saying that the absolute values of all of
the O (d2) standard Cauchy random variables associated with the heavy coordinates are at least
Ω(d−2), which holds with constant probability.
Although the dilation bound seems to be tight, the contraction bound can be improved. Indeed,

the ℓ1-norm of columns in the embedding of Reference [24] almost follows the histogram predicted
by our lower bound argument, except for the lower tail part. As predicted by our lower bound

argument, for an embedding Π, which has the optimal κ = Õ (d ) distortion, the ℓ1-norm of each
column in Π should be larger than a constant. However, the standard Cauchy distribution is heavy-
tailed in both directions.3 This leads to the idea of truncation, which is formalized in Section 6.2.
The rough idea is that we make sure the absolute values of the standard Cauchy random variables
are never smaller than a constant and thus the contraction bound can be improved to be a constant.
It is shown in Corollary 6.4 that standard Cauchy random variables are still “approximately 1-
stable” after truncation, which enables one to use Cauchy tail inequalities to analyze the dilation
bound. However, even though the distortion bound of this new embedding is nearly optimal, the

number of rows is Õ (d4), which seems difficult to improve.
Our alternate approach is still based on the technique of splitting coordinates. Unlike the ap-

proach in Reference [24], which is based on splitting coordinates according to the ℓ1 leverage
scores, in this new approach, for any vector y = Ax , a coordinate i is heavy if |yi | ≥ 1

d2 ‖y‖1 and
light otherwise. When light coordinates contribute more to the ℓ1-norm of y, we show that the
sparse Cauchy embedding in Reference [24] with onlyO (d logd ) rows is already sufficient to deal
with such vectors. This is due to a tighter analysis based on negative association theory [15], which
also greatly simplifies the proof. When heavy coordinates contribute more to the ℓ1-norm ofy, the
idea is to use known ℓ2 oblivious subspace embeddings. The key observation is that when heavy
coordinates contribute more to the ℓ1-norm, we have ‖y‖2 ≥ Ω( 1

d
)‖y‖1 and thus any ℓ2 oblivi-

ous subspace embedding with constant distortion will also be an ℓ1 oblivious subspace embedding
with O (d ) distortion. See Section 5 for a formal analysis and Section 5 for how to generalize this
idea to ℓp -norms when 1 < p < 2.
Our final embedding consists of two parts. The ℓ2 oblivious subspace embedding part could be

the CountSketch embedding or the OSNAP embedding, which also provides a tradeoff between
the number of non-zero entries per column and number of rows. For the sparse Cauchy part,
although it would be sufficient to prove the O (d logd ) distortion bound as long as this part has
O (d logd ) rows, an analysis based on a tighter Cauchy lower tail bound in Lemma 2.14 shows that
it is possible to further reduce the dilation to O (d ) by increasing the number of rows in this part.

Using this approach, the sparsest embedding we can construct has O (d2) rows and two non-
zero entries per column.We further show how to construct even sparser embeddings using random
sampling. Since we only use the sparse Cauchy part to deal with vectors in which light coordinates
contribute most of the ℓ1-norm, even if we zero out each coordinate with probability 1 − ε for
a small constant ε , the resulting vector will still have a sufficiently ℓ1-norm, with large enough
probability. Thus, if we zero out each standard Cauchy random variable in the sparse Cauchy part
with probability 1 − ε , then the resulting embedding will still have the same distortion bound, up
to a constant factor. By doing so, there will be 1+ε non-zero entries in expectation in each column
of the new embedding. This idea is formalized in Section 6.1.

3This is also observed in Reference [35], but the authors use exponential random variables there to remedy this issue

instead of the idea of truncation that we use here.
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1.6 Followup Work

Building upon our Theorem 1.2, followup work in Reference [18] improved our ℓ1 oblivious sus-
pace embedding from r = exp(exp(O (d ))) to r = exp(poly(d )), and generalized it from a constant
distortion to a 1 + ε distortion, obtaining overall dimension r = exp(poly(d/ε )). Our Theorem 1.2
is still useful though, as a suitably generalized version of it in terms of ε (see Reference [18] for
details) is composed with another oblivious subspace embedding in the work of Reference [18],
which is important for making their subspace embedding have a dimension r independent of n.

Additional followup work includes Reference [19], which uses our framework for proving
Theorem 1.3, and obtains a more general reduction in terms of any embedding for the ℓ2-norm;
we refer the reader to Reference [19] for further details.

2 PRELIMINARIES

Throughout this article, we use [n] to denote the set {1, 2, . . . ,n}. We use ‖ · ‖p to denote the ℓp -
norm of a vector or the entry-wise ℓp -norm of amatrix. The following lemma is a direct application
of Hölder’s inequality.

Lemma 2.1. For any x ∈ Rn and 1 ≤ p ≤ q ≤ 2, we have

‖x ‖q ≤ ‖x ‖p ≤ n1/p−1/q ‖x ‖q .

For u ∈ Rn and 1 ≤ a ≤ b ≤ n, let ua:b denote the vector with ith coordinate equal to ui when
a ≤ i ≤ b, and zero otherwise. For a matrix S ∈ Rn×m , we use Si,∗ to denote the ith row of S , and
S∗, j to denote the jth column of S .

For two vectors u,v ∈ Rn , we use 〈u,v〉 to denote the inner product of u and v .

Definition 2.2. For p ∈ [1, 2], a distribution over r × n matrices Π is an ℓp oblivious subspace

embedding, if for any fixed A ∈ Rn×d ,

Pr
Π

[
‖Ax ‖p ≤ ‖ΠAx ‖p ≤ κ‖Ax ‖p ,∀x ∈ Rd

]
≥ 0.99.

Here κ is the distortion of Π.

Throughout the article, we use X ≃ Y to mean that X and Y have the same distribution. We use
X � Y to denote stochastic dominance, i.e., X � Y iff for any t ∈ R, Pr[X ≥ t] ≥ Pr[Y ≥ t].

2.1 Stable Distribution

Definition 2.3 (p-stable Distribution). A distribution D is p-stable if for any n real numbers
a1,a2, . . . ,an , we have

n
∑

i=1

aiXi ≃ ��
n
∑

i=1

|ai |p��
1/p

X .

Here Xi are i.i.d. drawn from D and X ∼ D.

p-stable distributions exist for any 0 < p ≤ 2 (see, e.g., Reference [28]). We let Dp denote the
p-stable distribution. It is also well known that the standard Cauchy distribution is 1-stable and
the standard Gaussian distribution N (0, 1) is 2-stable.
We use the following lemma due to Nolan [28].

Lemma 2.4 (Theorem 1.2 in Reference [28]). For 1 ≤ p < 2, let Xp ∼ Dp .

lim
t→∞

Pr[Xp > t]/t−p = cp ,

where cp > 0 is a constant that depends only on p.
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The following lemma is established in Reference [24] by using Lemma 2.4.

Lemma 2.5 (Lemma 8 in Reference [24]). For 1 ≤ p < 2, let Xp ∼ Dp . There exists a constant αp
such that

αp |C | � |Xp |p ,
where C is a standard Cauchy random variable and αp is a constant that depends only on p.

2.2 Tail Inequalities

We use the following standard form of the Chernoff bound and Bernstein’s inequality.

Lemma 2.6 (Chernoff Bound). SupposeX1,X2, . . . ,Xn are independent random variables taking

values in [0, 1]. Let X =
∑n

i=1Xi .

For any δ > 0, we have

Pr [X > (1 + δ ) E[X ]] ≤ exp(−δ 2 E[X ]/3),

Pr [X < (1 − δ ) E[X ]] ≤ exp(−δ 2 E[X ]/2).

For t > 2e E[X ], we have

Pr [X > t] ≤ 2−t .

Lemma 2.7 (Bernstein’s Ineqality). SupposeX1,X2, . . . ,Xn are independent random variables

taking values in [0,b]. Let X =
∑n

i=1Xi and Var[X ] =
∑n

i=1 Var[Xi ] be the variance of X . For any

t > 0, we have

Pr[X > E[X ] + t] ≤ exp

(

− t2

2Var[X ] + 2bt/3

)

.

The following Bernstein-type lower tail inequality is due to Maurer [21].

Lemma 2.8 ([21]). Suppose X1,X2, . . . ,Xn are independent positive random variables that satisfy

E[X 2
i ] < ∞. Let X =

∑n
i=1Xi . For any t > 0, we have

Pr[X ≤ E[X ] − t] ≤ exp

(

− t2

2
∑n

i=1 E[X
2
i ]

)

.

We use the following tail inequality of a Gaussian random vector, whose proof can be found in
Appendix A.

Lemma 2.9. Let (a1,a2, . . . ,an ) be a fixed vector. For i ∈ [n], let {Xi } be n possibly dependent

standard Gaussian random variables. For any 1 ≤ p ≤ 2, we have

Pr

⎡⎢⎢⎢⎢⎢⎣
��

n
∑

i=1

|aiXi |p��
1/p

∈
[
C−1p ‖a‖p ,Cp ‖a‖p

]⎤⎥⎥⎥⎥⎥⎦ ≥ 0.99.

Here Cp > 1 is an absolute constant that depends only on p.

The following upper tail inequality for dependent standard Cauchy random variables is estab-
lished in Reference [24].

Lemma 2.10 (Lemma 3 in Reference [8]). For i ∈ [n], let {Xi } be n possibly dependent standard

Cauchy random variables and γi > 0 with γ =
∑

i ∈[n] γi . For any t ≥ 1 and n ≥ 3,

Pr

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n]
γi |Xi | > γt

⎤⎥⎥⎥⎥⎥⎦ ≤
2 log(nt )

t
.

The following corollary is a direct implication of Lemmas 2.10 and 2.5.
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Corollary 2.11. For i ∈ [n], let {Xi } ben possibly dependentp-stable random variables andγi > 0
with γ =

∑

i ∈[n] γi . For any t ≥ 1 and n ≥ 3,

Pr

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n]
γi |Xi |p > αpγt

⎤⎥⎥⎥⎥⎥⎦ ≤
2 log(nt )

t
,

where αp is the constant in Lemma 2.5.

For the sum of absolute values of independent standard Cauchy random variables, it is possible
to prove an upper tail inequality stronger than that in Lemma 2.10. The proof of the lemma can be
found in Appendix A.

Lemma 2.12. For i ∈ [n], let {Xi } be n independent standard Cauchy random variables. There exists

a constant U1, such that for any n ≥ 3,

Pr

⎡⎢⎢⎢⎢⎣
n
∑

i=1

|Xi | ≤ U1n logn

⎤⎥⎥⎥⎥⎦ ≥ 1 −
log logn

logn
.

The following corollary is a direct implication of Lemma 2.12 and Lemma 2.5.

Corollary 2.13. Suppose 1 ≤ p < 2. For i ∈ [n], let {Xi } be n independent p-stable random

variables. There exists a constant Up that depends only on p, such that for any n ≥ 3,

Pr

⎡⎢⎢⎢⎢⎣
n
∑

i=1

|Xi |p ≤ Upn logn

⎤⎥⎥⎥⎥⎦ ≥ 1 −
log logn

logn
.

We use the following lower tail inequality for the sum of absolute values of independentp-stable
random variables, whose proof can be found in Appendix A.

Lemma 2.14. Suppose 1 ≤ p < 2. For i ∈ [n], let {Xi } be n independent p-stable random variables.

There exists a constant Lp that depends only on p, such that for sufficiently large n and T ,

Pr

⎡⎢⎢⎢⎢⎣
n
∑

i=1

|Xi |p ≥ Lpn log

(

n

logT

)⎤⎥⎥⎥⎥⎦ ≥ 1 − 1

T
.

2.3 ε-nets

We use the following standard ε-net construction in the analysis of our subspace embeddings.

Definition 2.15. For any 1 ≤ p ≤ 2, for a given A ∈ Rn×d , let B = {Ax | x ∈ Rd , ‖Ax ‖p = 1}. We
say N ⊆ B is an ε-net of B if for any y ∈ B, there exists a ŷ ∈ N such that ‖y − ŷ‖p ≤ ε .

Lemma 2.16 (see, e.g., Reference [33, p. 74]). For a given A ∈ Rn×d , there exists an ε-net

N ⊆ B = {Ax | x ∈ Rd , ‖Ax ‖p = 1} with size |N | ≤ (1 + 1/ε )d .

2.4 Known ℓ2 Oblivious Subspace Embeddings

In References [4, 10, 11, 24, 25], a series of results on sparse ℓ2 oblivious subspace embedding are
obtained.

Lemma 2.17 (CountSketch [10, 24, 25]). There exists an ℓ2 oblivious subspace embedding over

O (d2) × n matrices Π, where each column of Π has a single non-zero entry and the distortion κ = 2.

Lemma 2.18 (OSNAP [11, 25]). For any B > 2, there exists an ℓ2 oblivious subspace embedding

over O (B · d logd ) × n matrices Π, where each column of Π has at most O (logB d ) non-zero entries
and the distortion κ = 2.
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For completeness, we include the construction forCountSketch andOSNAP here. In theCountS-
ketch embedding, each column is chosen to have s = 1 non-zero entries chosen in a uniformly
random location and the non-zero value is uniformly chosen in {−1, 1}. In the OSNAP embedding,
each column is chosen to have s = O (logB d ) non-zero entries in random locations, each equal to

±s−1/2 uniformly at random. All other entries in both embeddings are set to zero.
We need a few additional properties of theCountSketch embedding and theOSNAP embedding.

The following lemma is a direct calculation of the operator ℓ1-norm of the matrices stated above.

Lemma 2.19. For any y ∈ Rn ,
• ‖Πy‖1 ≤ ‖y‖1 if Π is sampled from the CountSketch embedding;

• ‖Πy‖1 ≤ O (log1/2
B

d )‖y‖1 if Π is sampled from the OSNAP embedding.

The following lemma deals with the ℓp -norm of a vector and its ℓp -norm after projection using
CountSketch or OSNAP. Its proof can be found in Appendix A.

Lemma 2.20. For any y ∈ Rn and sufficiently large ω, with probability 1 − exp(Ω(ωd logd )),

• ‖Π(y1:d2 )‖p ≤ (ωd logd )1−1/p ‖y‖p if Π is sampled from the CountSketch embedding;

• ‖Π(y1:d2 )‖p ≤ (O (logB d ))
1/p−1/2 (ωd logd )1−1/p ‖y‖p if Π is sampled from the OSNAP embed-

ding.

We remark that since one can permute entries of y arbitrarily, Lemma 2.20 gives a bound for
any subset of d2 entries of y.

2.5 Well-conditioned Bases

We recall the definition and some existential results on well-coditioned matrices with respect to
ℓp -norms.

Definition 2.21 ((α , β,p)-well-conditioning [14]). For a given matrix U ∈ Rn×d and p ∈ [1, 2], let
‖ · ‖q be the dual norm of ‖ · ‖p , i.e., 1/p + 1/q = 1. We say U is (α , β,p)-well-conditioned if (i)

‖U ‖p ≤ α and (ii) ‖x ‖q ≤ β ‖Ux ‖p for any x ∈ Rd .

Lemma 2.22. For any full rank matrix A ∈ Rn×d and p ∈ [1, 2], there exists a basis matrix

U ∈ Rn×d of A such thatU is (d, 1,p)-well-conditioned.

Proof. By Auerbach’s Lemma (see, e.g., Reference [33, p. 75]), there exists a set of basis vectors
u1,u2, . . . ,ud of the column space of A, and a set of basis vectors v1,v2, . . . ,vd , such that

• ‖ui ‖p = 1;
• ‖vi ‖q = 1;

• 〈ui ,vj 〉 =
⎧⎪⎨⎪⎩
1 i = j

0 i � j
.

Here, ‖ · ‖q is the dual norm of ‖ · ‖p .
We let U be the matrix whose first column is u1 · d1/q , second column is u2 · d1/q , . . . , and the

last column is ud · d1/q . Clearly,

‖U ‖pp =
d
∑

i=1

‖ui ‖pp · dp/q = dp ,

which implies α = d .
For any x ∈ Rd , since the ith column of U is ui · d1/q , by Hölder’s inequality,

|xi | = |〈vi ,uixi 〉| ≤ ‖Ux ‖p ‖vi ‖q · d−1/q = ‖Ux ‖pd−1/q .
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Thus, by Lemma 2.1,

‖x ‖q ≤ d1/q · ‖x ‖∞ ≤ d1/q · ‖Ux ‖pd−1/q = ‖Ux ‖p ,

which implies β = 1. �

3 HARDNESS RESULT

3.1 The Lower Bound

The goal of this section is to prove Theorem 1.1. We restate it here for convenience.

Theorems 1.1 (Restated). For 1 ≤ p < 2, if a distribution over r ×n matrices Π is an ℓp oblivious

subspace embedding, then the distortion

κ = Ω
����

1
(

1
d

)1/p
· log2/p r +

(

r
n

)1/p−1/2
����
.

By Yao’s minimax principle [37], it suffices to show that there exists a hard distributionA over
R
n×d such that for any Π ∈ Rr×n , if

Pr
A∼A

[
‖Ax ‖p ≤ ‖ΠAx ‖p ≤ κ‖Ax ‖p ,∀x ∈ Rd

]
≥ 0.99, (2)

then

κ = Ω
����

1
(

1
d

)1/p
· log2/p r +

(

r
n

)1/p−1/2
����
.

The columns in our construction of A consist of three parts:

• The first column is a vector where all the n entries are i.i.d. standard Gaussian random vari-
ables. We call this column the D-column.
• For the next d/4 columns, each column has 4n/d non-zero entries, where all these non-zero
entries are i.i.d. standardGaussian randomvariables. The indices of the 4n/d non-zero entries
of the ith column are (4n/d ) · (i − 1) + 1, (4n/d ) · (i − 1) + 2, . . . , (4n/d ) · i . We call each such
column anM-column.
• We divide the next d/2 columns into log(n/d ) blocks, where each block contains d

2 log(n/d )

columns. For 0 ≤ i < log(n/d ), columns in the ith block contain 2i+1 non-zero entries and

all of these non-zero entries are i.i.d. standard Gaussian random variables. For the d
2 log(n/d )

columns in the ith block, the indices of the d
2 log(n/d ) · 2

i+1
=

d
log(n/d ) 2

i non-zero entries are

sampled from {1, 2, . . . ,n} without replacement (which implies the sets of indices of non-
zero entries are disjoint for two different columns in the same block). We call each such
column an S-column.

All entries in other columns are zero. This finishes our construction of A.
The following lemma is a direct implication of Lemma 2.9 and our construction.

Lemma 3.1. For each column c in A, with probability at least 0.99, the following holds:

(1) If c is an S-column in the ith block, then ‖c ‖p ≤ Cp2
(i+1)/p .

(2) If c is an M-column, then ‖c ‖p ≤ Cp (4n/d )
1/p .

(3) If c is a D-column, then ‖c ‖p ≥ C−1p n1/p .

Here Cp is the constant in Lemma 2.9.
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Lemma 3.2. For any matrix Π ∈ Rr×n that satisfies the inequality in Equation (2), the ℓp -norm of

each column of Π is at most C2
pκ (4n/d )

1/p , where Cp is the constant in Lemma 2.9.

Proof. Suppose for contradiction that there exists an i ∈ [n] for which the ith column of Π has
ℓp -norm larger thanC2

pκ (4n/d )
1/p . Consider the vectorMj , which is the jthM-column, whose ith

entry is a standard Gaussian random variable, i.e., (4n/d ) · (j − 1) + 1 ≤ i ≤ (4n/d ) · j. We first
show that with probability at least 0.99, ‖ΠMj ‖p > Cpκ (4n/d )

1/p . According to the 2-stability of
the standard Gaussian distribution, for any k ∈ [r ],

(ΠMj )k ∼ ���
(4n/d ) ·j
∑

l=(4n/d ) ·(j−1)+1
Π2
k,l

���
1/2

N (0, 1).

Since

���
(4n/d ) ·j
∑

l=(4n/d ) ·(j−1)+1
Π2
k,l

���
1/2

≥ Πk,i ,

according to Lemma 2.9, with probability at least 0.99,

‖ΠMj ‖p ≥ C−1p ‖Π∗,i ‖p > Cpκ (4n/d )
1/p .

According to Lemma 3.1, with probability at least 0.99,

‖Mj ‖p ≤ Cp (4n/d )
1/p ,

which implies the condition in Equation (2) is violated. �

Lemma 3.3. For any matrix Π ∈ Rr×n that satisfies the condition in Equation (2), for any 0 ≤ i <

log(n/d ), the number of columns in Π with ℓp -norm larger than C2
pκ2

(i+1)/p is at most
n log(n/d )

d
2−i ,

where Cp is the constant in Lemma 2.9.

Proof. Suppose for contradiction that for some 0 ≤ i < log(n/d ), the number of columns in Π

with ℓp -norm larger thanC2
pκ2

(i+1)/p is larger than
n log(n/d )

d
2−i . Let π 1,π 2, . . . ,πd log−1 (n/d )/2 be the

d log−1 (n/d )/2 S-column in the ith block. With probability at least 1 − (1 − log(n/d )
d

2−i )
d

log(n/d ) 2
i

≥
1 − 1/e , there exists a j ∈ [d log−1 (n/d )/2] and l ∈ [n] such that (i) ‖Π∗,l ‖p ≥ C2

pκ2
(i+1)/p and

(ii) π
j

l
is a standard Gaussian random variable. According to Lemma 3.1, with probability at least

0.99, ‖π j ‖p ≤ Cp2
(i+1)/p . Now, we show that with probability at least 0.99, ‖Ππ j ‖p ≥ C−1p ‖Π∗,l ‖p >

Cpκ2
(i+1)/p . Suppose P ⊆ [n] is the set of indices at which π j contains a standard Gaussian random

variable. We know that l ∈ P . Thus, due to the 2-stability of the standard Gaussian distribution,
for any k ∈ [r ],

(Ππ j )k ∼ ��
∑

m∈P
Π2
k,m

��
1/2

N (0, 1).

Since

��
∑

m∈P
Π2
k,m

��
1/2

≥ Πk,l ,

according to Lemma 2.9, with probability at least 0.99, ‖Ππ j ‖p ≥ C−1p ‖Π∗,l ‖p > Cpκ2
(i+1)/p ≥

κ‖π j ‖p , which implies the condition in Equation (2) is violated. �
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Lemma 3.4. For any matrix Π ∈ Rr×n that satisfies the condition in Equation (2), we have

��
r
∑

i=1

‖Πi,∗‖p2 ��
1/p

= O

(

κ (n/d )1/p log2/p (n/d ) + κr
1
p −

1
2
√
n

)

.

Proof. We partition the columns ofΠ into two parts.We letΠL be the submatrix ofΠ formed by
columns with ℓp -norm at most 21/pC2

pκ and ΠH be the submatrix formed by columns with ℓp -norm

larger than 21/pC2
pκ. For Π

H , by Lemmas 3.2 and 3.3, we have

��
r
∑

i=1

‖ΠH
i,∗‖

p
2
��
1/p

≤ ��
r
∑

i=1

‖ΠH
i,∗‖

p
p
��
1/p

= ‖ΠH ‖p = ��
∑

i

‖ΠH
∗,i ‖

p
p
��
1/p

≤ ���
log(n/d )−1
∑

i=0

(C2
pκ)

p2i+2
n log(n/d )

2id
+ (C2

pκ)
p (4n/d )2 log(n/d )

���
1/p

=O (κ (n/d )1/p log2/p (n/d )).

For ΠL , since all the columns have ℓp -norm at most 21/pC2
pκ, we have

��
r
∑

i=1

‖ΠL
i,∗‖

p
2
��
1/p

≤ r
1
p −

1
2 ��

r
∑

i=1

‖ΠL
i,∗‖22��

1/2

= r
1
p −

1
2 ‖ΠL ‖2 = r

1
p −

1
2 ��
∑

i

‖ΠL
∗,i ‖22��

1/2

≤ r
1
p −

1
2 ��
∑

i

‖ΠL
∗,i ‖2p��

1/2

= O
(

κr
1
p −

1
2
√
n
)

,

where the first inequality follows from Lemma 2.1 and the last equality follows from the fact that
ΠL has at most n columns.
Notice that for any 1 ≤ i ≤ r , ‖Πi,∗‖2 ≤ ‖ΠH

i,∗‖2 + ‖ΠL
i,∗‖2, which implies

��
r
∑

i=1

‖Πi,∗‖p2 ��
1/p

≤ ��
r
∑

i=1

‖ΠH
i,∗‖

p
2
��
1/p

+
��

r
∑

i=1

‖ΠL
i,∗‖

p
2
��
1/p

= O

(

κ (n/d )1/p log2/p (n/d ) + κr
1
p −

1
2
√
n

)

.

�

Now consider the vector D, which is the D-column in A. According to Lemma 3.1, with proba-
bility at least 0.99, ‖D‖p = Ω(n1/p ). Due to the 2-stability of the standard Gaussian distribution,

(ΠD)i ∼ ‖Πi,∗‖2N (0, 1).

According to Lemma 2.9, with probability at least 0.99,

‖ΠD‖p = O ��
r
∑

i=1

‖Πi,∗‖p2 ��
1/p

= O

(

κ (n/d )1/p log2/p (n/d ) + κr
1
p −

1
2
√
n

)

.

According to the condition in Equation (2), we have

Ω(n1/p ) = ‖D‖p ≤ ‖ΠD‖p = O
(

κ (n/d )1/p log2/p (n/d ) + κr
1
p −

1
2
√
n

)

,
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which implies

κ = Ω
����

1
(

1
d

)1/p
· log2/p (n/d ) +

(

r
n

)1/p−1/2
����
.

Now, we show that the lower bound can be further improved to

κ = Ω
����

1
(

1
d

)1/p
· log2/p r +

(

r
n

)1/p−1/2
����
. (3)

We first note that r should be at least d ; otherwise, if we take a full-rank matrix A ∈ Rn×d , then
rank(ΠA) < d = rank(A), which means we can find a non-zero vector y = Ax in the column space
of A and Πy = 0, which implies the distortion κ is not finite.

When n ≤ rd2/(2−p ) , log2/p (n/d ) = O (log2/p r ), which means the lower bound in Equation (3)

holds. When n > rd2/(2−p ) , we repeat the argument above but only consider the first rd2/(2−p )

columns of Π. By doing so, we get a lower bound of

κ = Ω
����

1
(

1
d

)1/p
· log2/p (rd2/(2−p )−1) +

(

1
d2/(2−p )

)1/p−1/2
����
= Ω(d1/p/ log2/p (r )),

which is always stronger than the lower bound of

κ = Ω
����

1
(

1
d

)1/p
· log2/p r +

(

r
n

)1/p−1/2
����
.

3.2 Necessity of Dependence on r

The goal of this section is to prove Theorem 3.5.

Theorem 3.5. Let r = exp(4 · 104 · (24(UpL
−1
p )1/p )2d ), where Up and Lp are the constants in

Corollary 2.13 and Lemma 2.14, respectively. For 1 ≤ p < 2, there exists an ℓp oblivious subspace

embedding over r × n matrices Π, where the distortion κ is a constant that depends only on p.

Our construction for the embedding in Theorem 3.5 is actually the same as the dense p-stable
embedding in Reference [30] (for p = 1) and Theorem 6 in Reference [24] (for 1 < p < 2), whose
entries are i.i.d. sampled from the scaled p-stable distribution (r log r )−1/pDp .

For any given matrix A ∈ Rn×d and any x ∈ Rd , we show that

Pr
Π

[
(

Lp/2
)1/p
‖Ax ‖p ≤ ‖ΠAx ‖p ≤ U

1/p
p ‖Ax ‖p

]
≥ 1 − 10−2

(

24
(

UpL
−1
p

)1/p
)−d
.

According to the definition of the p-stable distribution in Definition 2.3, for any i ∈ [r ],

(ΠAx )i ∼ (r log r )−1/p ‖Ax ‖pDp .

Since the entries in Π are independent, the entries in the vector ΠAx are also independent. Thus,

according to Corollary 2.13, with probability at least 1 − log log r
log r ≥ 1 − 200−1 (24(UpL

−1
p )1/p )−d , we

have

‖ΠAx ‖pp ≤ Up (r log r )
−1‖Ax ‖pp · r log r = Up ‖Ax ‖pp ,

which implies

‖ΠAx ‖p ≤ U
1/p
p ‖Ax ‖p .
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However, according to Lemma 2.14, by setting T = 200(24(UpL
−1
p )1/p )d , with probability at least

1 − 1/T = 1 − 200−1 (24(UpL
−1
p )1/p )−d , we have

‖ΠAx ‖pp ≥ Lp (r log r )
−1‖Ax ‖pp · r log

r

logT
≥ Lp/2 · ‖Ax ‖pp ,

which implies

‖ΠAx ‖p ≥
(

Lp/2
)1/p
‖Ax ‖p .

It follows by a union bound that for any x ∈ Rd ,

Pr
Π

[
(Lp/2)

1/p ‖Ax ‖p ≤ ‖ΠAx ‖p ≤ U
1/p
p ‖Ax ‖p

]
≥ 1 − 10−2

(

24
(

UpL
−1
p

)1/p
)−d
.

We build an ε-net N ⊆ B = {Ax | x ∈ Rd , ‖Ax ‖p = 1} by setting 1/ε = 8(UpL
−1
p )1/p . According

to Lemma 2.16, |N | ≤ (1 + 1/ε )d ≤ (3/ε )d = (24(UpL
−1
p )1/p )d . Again by a union bound, with

probability at least 0.99, we have for any y ∈ N ,

(Lp/2)
1/p ‖y‖p ≤ ‖Πy‖p ≤ U

1/p
p ‖y‖p .

Condition on the event stated above. Now, we show that for any x ∈ Rd ,

(Lp/4)
1/p ‖Ax ‖p ≤ ‖ΠAx ‖p ≤ 2U

1/p
p ‖Ax ‖p .

For any x ∈ Rd , let y = Ax . By homogeneity, we can assume ‖y‖p = 1. We claim that y can be
written as

y = y0 + y1 + y2 + . . . ,

where for any i ≥ 0, we have (i)
yi

‖yi ‖p ∈ N and (ii) ‖yi ‖p ≤ εi .

According to the definition of an ε-net, there exists a vector y0 ∈ N for which ‖y − y0‖p ≤ ε

and ‖y0‖p = 1. If y = y0, then we stop. Otherwise, we consider the vector
y−y0

‖y−y0 ‖p . Again, we can

find a vector ŷ1 ∈ N such that ‖ y−y0

‖y−y0 ‖p − ŷ
1‖p ≤ ε and ‖ŷ1‖p = 1. Here, we set y1 = ‖y −y0‖p · ŷ1

and continue this process inductively.
It follows that

‖Πy‖p ≥ ‖Πy0‖ −
∑

i>0

‖Πyi ‖

≥ (Lp/2)
1/p −

∑

i>0

U
1/p
p εi

≥ (Lp/2)
1/p − 2U 1/p

p ε ≥ (Lp/4)
1/p

and

‖Πy‖p ≤
∑

i≥0
‖Πyi ‖ ≤

∑

i≥0
U

1/p
p εi ≤ 2U

1/p
p .

Thus, Π is a valid ℓp oblivious subspace embedding with κ ≤ 2(4UpL
−1
p )1/p , which is a constant

that depends only on p.
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4 NEW SUBSPACE EMBEDDINGS FOR ℓ1

In this section, we present new sparse ℓ1 oblivious subspace embeddings with nearly optimal
distortion.

Theorem 4.1. For any givenA ∈ Rn×d , letU be a (d, 1, 1)-well-conditioned basis ofA. There exists
an ℓ1 oblivious subspace embedding over O (d2) × n matrices Π where each column of Π has two

non-zero entries and with probability 0.99, for any x ∈ Rd ,

Ω(logd )‖Ux ‖1 ≤ ‖ΠUx ‖1 ≤ O (d logd )‖Ux ‖1.

Theorem 4.2. For any givenA ∈ Rn×d and sufficiently large B, letU be a (d, 1, 1)-well-conditioned
basis of A. There exists an ℓ1 oblivious subspace embedding over O (B · d logd ) × n matrices Π where

each column of Π has O (logB d ) non-zero entries and with probability 0.99, for any x ∈ Rd ,

Ω(logB)‖Ux ‖1 ≤ ‖ΠUx ‖1 ≤ O (d logd )‖Ux ‖1.

Our embedding for Theorems 4.1 and 4.2 can be written as Π = (Π1,Π2)
T . For Theorem 4.1,

Π1 is sampled from the CountSketch embedding in Lemma 2.17, scaled by a d logd factor. For
Theorem 4.2, Π1 is sampled from the OSNAP embedding in Lemma 2.18 with O (B · d logd ) rows,
O (logB d ) non-zero entries per column, and scaled by a d logB factor. Suppose Π1 has R1 rows.
Let R2 = min{R1,d

1.1}. Π2 can be written as ΦD : Rn → RR2 as follows:

• h : [n]→ [R2] is a randommap so that for each i ∈ [n] and t ∈ [R2], h(i ) = t with probability
1/R2.
• Φ is an R2 × n binary matrix with Φh (i ),i = 1 and all remaining entries 0.
• D is an n × n random diagonal matrix where the diagonal entries are i.i.d. sampled from the
standard Cauchy distribution.

It is immediate to see that the number of rows in Π2 is at most that in Π1. Furthermore, Π2 has
a single non-zero entry per column.
In the remainder of this section, we prove the dilation bound in Section 4.1, and the contraction

bound in Section 4.2. In the analysis, we will define three events E1, E2 and E3, which we will
condition on later in the analysis. We will prove that each of these events holds with probability at
least 0.999. By a union bound, all of these events hold with probability at least 0.997. Thus, these
conditions will not affect our overall failure probability by more than 0.003.

4.1 No Overestimation

Let E1 be the event that ‖Π2U ‖ ≤ O (d logd ). We first prove that E1 holds with probability at least
0.999.

Lemma 4.3. E1 holds with probability at least 0.999.

Proof.

‖Π2U ‖1 =
R2
∑

i=1

d
∑

j=1

|(Π2U )i, j | =
R2
∑

i=1

d
∑

j=1

�������
∑

k |h (k )=i
Dk,kUk, j

������� ≃
R2
∑

i=1

d
∑

j=1

���
∑

k |h (k )=i
|Uk, j |��� |X̂i, j |.

Here {X̂i, j } are dependent standard Cauchy random variables. Since U is a (d, 1, 1)-well-
conditioned basis of A, we have

R2
∑

i=1

d
∑

j=1

���
∑

k |h (k )=i
|Uk, j |��� ≤ d .
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8:20 R. Wang and D. P. Woodruff

By Lemma 2.10, we have

Pr [‖Π2U ‖1 > td] ≤
2 log(R2td )

t
.

Taking t = ω logd where ω is a sufficiently large constant, we have

Pr [‖Π2U ‖1 ≤ td] ≥ 0.999. �

Lemma 4.4. Conditioned on E1, for any x ∈ Rd , we have

‖Π2Ux ‖1 ≤ O (d logd )‖Ux ‖1.

Proof.

‖Π2Ux ‖1 ≤ ‖Π2U ‖1‖x ‖∞ ≤ ‖Π2U ‖1‖Ux ‖1 ≤ O (d logd )‖Ux ‖1.

The first inequality follows from Hölder’s inequality, and the second inequality follows from the
definition of a (d, 1, 1)-well-conditioned basis. �

Since Π1 is the CountSketch embedding scaled by a d logd factor, or the OSNAP embedding
scaled by a d logB factor, the following lemma is a direct implication of Lemma 2.19.

Lemma 4.5. For any x ∈ Rd , we have

‖Π1Ux ‖1 ≤ O (d logd )‖Ux ‖1.

Combining Lemma 4.4 and Lemma 4.5, we can bound the overall dilation of our embedding.

Lemma 4.6. Conditioned on E1, for any x ∈ Rd , we have

‖ΠUx ‖1 ≤ O (d logd )‖Ux ‖1.

Proof.

‖ΠUx ‖1 = ‖Π1Ux ‖1 + ‖Π2Ux ‖1 = O (d logd )‖Ux ‖1. �

4.2 No Underestimation

We let E2 be the event that for any x ∈ Rd ,

d logd ‖Ux ‖2 ≤ ‖Π1Ux ‖2 ≤ 2d logd ‖Ux ‖2 (for Theorem 4.1)

or

d logB‖Ux ‖2 ≤ ‖Π1Ux ‖2 ≤ 2d logB‖Ux ‖2 (for Theorem 4.2).

Since Π1 is sampled from an ℓ2 oblivious subspace embedding with κ = 2 and scaled by a factor
of d logd (for Theorem 4.1) or d logB (for Theorem 4.2), E2 holds with probability at least 0.999.4

Without loss of generality, we assume |x1 | ≥ |x2 | ≥ |x3 | ≥ · · · ≥ |xn |. Of course, this order is
unknown and is not used by our embedding.
We first show that for any y = Ux , if we can find a “heavy” part inside y, then the scaled ℓ2

oblivious subspace embedding Π1 also works well for ℓ1. Formally, we have the following lemma.

Lemma 4.7. Conditioned on E2, for any x ∈ Rd , if ‖ (Ux )1:d2 ‖1 ≥ 0.5‖Ux ‖1, then
• ‖Π1Ux ‖1 ≥ Ω(logd )‖Ux ‖1 for Theorem 4.1;

• ‖Π1Ux ‖1 ≥ Ω(logB)‖Ux ‖1 for Theorem 4.2.

4Notice that by Definition 2.2, E2 only holds with probability 0.99. However, for the CountSketch embedding in

Lemma 2.17 and theOSNAP embedding in Lemma 2.18, we can boost the failure probability to an arbitrarily small constant,

by increasing the dimension by a constant factor. By doing so, we can now assume E2 holds with probability 0.999.
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Proof. Notice that

‖Ux ‖2 ≥ ‖ (Ux )1:d2 ‖2 ≥
1

d
‖ (Ux )1:d2 ‖1 ≥

1

2d
‖Ux ‖1,

where the second inequality follows from Lemma 2.1. Thus, for Theorem 4.1, ‖Π1Ux ‖1 ≥
‖Π1Ux ‖2 ≥ Ω(logd )‖Ux ‖1, since Π1 is sampled from an ℓ2 oblivious subspace embedding and
scaled by a factor of d logd . For Theorem 4.2, ‖Π1Ux ‖1 ≥ ‖Π1Ux ‖2 ≥ Ω(logB)‖Ux ‖1, since Π1 is
sampled from an ℓ2 oblivious subspace embedding and scaled by a factor of d logB. �

Now, we analyze those vectors Ux that do not contain a “heavy” part. We show that they can
be handled by the Π2 part of our embedding.

Lemma 4.8. For any x ∈ Rd , if ‖ (Ux )d2
+1:n ‖1 ≥ 0.5‖Ux ‖1, then with probability at least 1 −

exp(−32d logd ), we have
• ‖Π2Ux ‖1 ≥ Ω(logd )‖Ux ‖1 for Theorem 4.1;

• ‖Π2Ux ‖1 ≥ Ω(logB)‖Ux ‖1 for Theorem 4.2.

Proof. Let y = Ux . By homogeneity, we assume ‖y‖1 = 1. According to the given condition,
we have ‖yd2

+1:n ‖1 ≥ 0.5. Notice that ‖yd2
+1:n ‖∞ ≤ 1/d2, since, otherwise, ‖y1:d2 ‖1 > d2 · 1/d2 = 1.

For i ∈ [R2], let Bi =
∑

d2<j≤n Bi, j , where

Bi, j =
⎧⎪⎨⎪⎩
|yj | if h(j ) = i

0 otherwise
.

It follows that
∑R2

i=1 Bi = ‖yd2
+1:n ‖1 ≥ 0.5.

Since ‖yd2
+1:n ‖∞ ≤ 1/d2 and 1/2 ≤ ‖yd2

+1:n ‖1 ≤ 1, for any i ∈ [R2] and j > d2, we have

Bi, j ≤
1

d2

and
1

2R2
≤ E[Bi ] ≤

1

R2
.

Furthermore, by Hölder’s inequality, we have

Var[Bi ] =

n
∑

j=1

Var[Bi, j ] ≤
1

R2

n
∑

j=d2
+1

y2j ≤
1

R2
‖yd2

+1:n ‖∞ · ‖yd2
+1:n ‖1 ≤

1

R2d2
.

Thus, by Bernstein’s inequality in Lemma 2.7, we have

Pr[Bi ≥ 1/R2 + t] ≤ exp ��−
t2

2
R2d2 +

2t
3d2

�� . (4)

Let t = d0.2/R2. Since R2 ≤ d1.1, by Equation (4), we have

Pr[Bi > (d0.2 + 1)/R2] ≤ exp(−3d2.2/4R2) ≤ exp(−3d1.1/4).

By a union bound, with probability at least

1 − exp(−3d1.1/4) · R2 ≥ 1 − exp(−32d logd )/4,

simultaneously for all i ∈ [R2], we have Bi ≤ (d0.2 + 1)/R2.
Let t = 1/R2. Since R2 ≤ d1.1, by Equation (4), we have

Pr[Bi > 2/R2] ≤ exp(−3d2/8R2) ≤ exp(−3d0.9/8).
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According to Reference [15], Bi are negatively associated, which implies for any I ⊆ [R2], we
have

Pr[Bi ≥ ti , i ∈ I ] ≤
∏

i ∈I
Pr[Bi ≥ ti ].

Thus, the probability that the number of Bi which satisfy Bi > 2/R2 is larger than d
0.2, is at most

(

R2

d0.2

)

exp((−3d0.9/8) · d0.2) < exp(−32d logd )/4.

It follows that with probability at least 1 − exp(−32d logd )/2, for any i ∈ [R2], we have
Bi ≤ (d0.2 + 1)/R2, and the number of Bi which satisfy Bi > 2/R2 is at most d0.2. In the rest of the
proof, we condition on this event.
Since R2 ≥ d logd ,

∑

i ∈[R2] |Bi ≤2/R2

Bi ≥ 0.5 − d0.2 · (d0.2 + 1)/R2 ≥ 1/4.

Thus, the number of Bi which satisfy Bi ≥ 1
8R2

is at least R2/16, since, otherwise,

∑

i ∈[R2] |Bi ≤2/R2

Bi < R2/16 · 2/R2 + R2 ·
1

8R2
= 1/4.

Now consider Π2y. According to the 1-stability of the standard Cauchy distribution,

��(Π2y)i �� ≃ ���
∑

j ∈[n] |h (j )=i
|yj |��� · |Xi |,

where {Xi } are independent standard Cauchy random variables. Notice that conditioned on the
event stated above, the number of Bi which satisfy Bi ≥ 1

8R2
is at least R2/16. Furthermore, for

any i ∈ [R2],
∑

j ∈[n] |h (j )=i |yj | ≥
∑

d2<j≤n |h (j )=i |yj | = Bi . Thus,

R2
∑

i=1

��(Π2y)i �� �
R2/16
∑

i=1

1

8R2
|X i |,

where {X i } are independent standard Cauchy random variables.
According to Lemma 2.14, by setting T = 2 exp(32d logd ), with probability at least 1 − 1/T , we

have

R2
∑

i=1

��(Π2y)i �� ≥ L1 ·
R2

16
· log(R2/(16 logT )) ·

1

8R2
= Ω(log(R2/ logT )).

Thus, for Theorem 4.1, we have ‖Π2y‖1 ≥ Ω(logd ), since R2 = d1.1 and logT = O (d logd ). For
Theorem 4.2, when R1 ≤ d1.1, we have ‖Π2y‖1 ≥ Ω(logB), since R2 = R1 = O (B · d logd ) and
logT = O (d logd ). When R1 > d1.1, we have ‖Π2y‖1 ≥ Ω(logd ) = Ω(logB), since R2 = d1.1 and
logT = O (d logd ). �

Set ε = 1/d2 and create an ε-net N ⊆ B = {Ux | x ∈ Rd and ‖Ux ‖1 = 1}. According to Lemma
2.16, |N | ≤ (1 + d2)d ≤ (3d2)d . Let E3 be the event that for all y ∈ N , if ‖yd2

+1:n ‖1 ≥ 0.5, then
‖Π2y‖1 ≥ Ω(logd )‖y‖1 (for Theorem 4.1) or ‖Π2y‖1 ≥ Ω(logB)‖y‖1 (for Theorem 4.2).
Now, we show that E3 holds with constant probability.

Lemma 4.9. E3 holds with probability at least 0.999.
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Proof. According to Lemma 4.8, by using a union bound, we have

Pr[E3 holds] ≥ 1 − |N | exp(−32d logd ) > 0.999. �

We are now ready to prove the contraction bound.

Lemma 4.10. Conditioned on E1, E2 and E3, for all x ∈ Rd , we have
• ‖Π2Ux ‖1 ≥ Ω(logd )‖Ux ‖1 for Theorem 4.1;

• ‖Π2Ux ‖1 ≥ Ω(logB)‖Ux ‖1 for Theorem 4.2.

Proof. By homogeneity, we can assume ‖Ux ‖1 = 1. According to Lemma 4.7, conditioned on E2
and E3, for all y = Ux ∈ N , we have ‖Π2Ux ‖1 ≥ Ω(logd )‖Ux ‖1 (for Theorem 4.1) or ‖Π2Ux ‖1 ≥
Ω(logB)‖Ux ‖1 (for Theorem 4.2). For any given y = Ux where ‖y‖1 = 1, there exists some ŷ ∈ N
for which ‖y − ŷ‖1 ≤ ε = 1/d2. Thus, conditioned on E1, notice that both ŷ and y − ŷ are in the
column space ofU , so according to Lemma 4.6, we have

‖Πy‖1 ≥ ‖Πŷ‖1 − ‖Π(y − ŷ)‖1 ≥ Ω(logd ) − (1/d2) ·O (d logd ) = Ω(logd ) (for Theorem 4.1)

or

‖Πy‖1 ≥ ‖Πŷ‖1 − ‖Π(y − ŷ)‖1 ≥ Ω(logB) − (1/d2) ·O (d logd ) = Ω(logB) (for Theorem 4.2).

�

5 NEW SUBSPACE EMBEDDINGS FOR ℓp

In this section, we show how to generalize the constructions in Section 4 to ℓp -norms, when
1 < p < 2.

Theorem 5.1. Suppose 1 ≤ p < 2. For any given A ∈ Rn×d , let U be a (d, 1,p)-well-conditioned
basis of A. There exists an ℓp oblivious subspace embedding over O (d2) × n matrices Π where each

column of a matrix drawn from Π has two non-zero entries and with probability 0.99, for any x ∈ Rd ,

Ω(1)‖Ux ‖p ≤ ‖ΠUx ‖p ≤ O (d logd ) ‖Ux ‖p .

Theorem 5.2. Suppose 1 ≤ p < 2. For any given A ∈ Rn×d and sufficiently large B, let U

be a (d, 1,p)-well-conditioned basis of A. There exists an ℓp oblivious subspace embedding over

O (B · d logd ) × n matrices Π where each column of a matrix drawn from Π has O (logB d ) non-zero

entries and with probability 0.99, for any x ∈ Rd ,

Ω(1)‖Ux ‖p ≤ ‖ΠUx ‖p ≤ O (d logd ) ‖Ux ‖p .

Our embeddings for Theorems 5.1 and 5.2 can be written as Π = (Π1,Π2)
T . Similar to the

constructions in Section 4, for Theorem 5.1, Π1 is sampled from the CountSketch embedding in
Lemma 2.17, scaled by a d2/p−1 factor. For Theorem 5.2, Π1 is sampled from theOSNAP embedding
in Lemma 2.18 with O (B · d logd ) rows and O (logB d ) non-zero entries per column and also

scaled by a d2/p−1 factor. The construction for Π2 is almost the same as that for Theorems 4.1
and 4.2, except for replacing the standard Cauchy random variables in the diagonal entries of D
with p-stable random variables. Most parts of the proof for the distortion bound resemble that for
Theorems 4.1 and 4.2. We will omit similar proofs.

The following lemma can be proved in the same way as Lemmas 4.3 and 4.4, except for re-
placing the upper tail inequality for standard Cauchy random variables in Lemma 2.10 with that
for p-stable random variables in Corollary 2.11, and replacing the properties of a (d, 1, 1)-well-
conditioned basis with those of a (d, 1,p)-well-conditioned basis.
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Lemma 5.3. Let E1 be the event that ‖Π2U ‖p ≤ O (d logd ). E1 holds with probability at least 0.999.
Furthermore, conditioned on E1, for any x ∈ Rd , we have

‖Π2Ux ‖p ≤ O (d logd ) ‖Ux ‖p .

Let E2 be the event that for any x ∈ Rd ,

d2/p−1‖Ux ‖2 ≤ ‖Π1Ux ‖2 ≤ 2d2/p−1‖Ux ‖2.
Since Π1 is sampled from an ℓ2 oblivious subspace embedding with κ = 2, and scaled by a factor
of d2/p−1, E2 holds with probability at least 0.999.5

Without loss of generality, we assume |x1 | ≥ |x2 | ≥ |x3 | ≥ · · · ≥ |xn |. Of course, this order is
unknown and is not used by our embeddings.

Lemma 5.4. Conditioned on E2, for any x ∈ Rd , we have
‖Π1 (Ux )d2

+1:n ‖p ≤ O (d logd ) ‖Ux ‖p .

Proof. By homogeneity, we can assume ‖Ux ‖p = 1. Notice that ‖ (Ux )d2
+1:n ‖∞ ≤ d−2/p , since

otherwise ‖Ux ‖p ≥ ‖ (Ux )1:d2 ‖p > 1. By Hölder’s inequality,

‖ (Ux )d2
+1:n ‖2 =

���
n
∑

i=d2
+1

(Ux )2i
���
1/2

≤ ���
n
∑

i=d2
+1

|(Ux )i |p · max
d2
+1≤i≤n

|Uxi |2−p���
1/2

≤ d1−2/p .

Thus,

‖Π1 (Ux )d2
+1:n ‖p ≤ R

1/p−1/2
1 ‖Π1 (Ux )d2

+1:n ‖2
≤ O (d2/p−1) · 2d2/p−1‖ (Ux )d2

+1:n ‖2 = O (d2/p−1) = O (d logd ).

Here the first inequality follows from Lemma 2.1 and the fact that Π1Ux has R1 rows, the second
inequality holds, since R1 ≤ O (d2) and E2 holds. �

Lemma 5.5. Conditioned on E2, for any x ∈ Rd , if ‖ (Ux )1:d2 ‖p ≥ 0.5‖Ux ‖p , then ‖Π1Ux ‖p ≥
Ω(1)‖Ux ‖p .

Proof. Notice that

‖Ux ‖2 ≥ ‖ (Ux )1:d2 ‖2 ≥ d1−2/p ‖ (Ux )1:d2 ‖p ≥ d1−2/p/2 · ‖Ux ‖p ,
where the second inequality follows from Lemma 2.1 and the third inequality follows from the
condition that ‖ (Ux )1:d2 ‖p ≥ 0.5‖Ux ‖p . Thus, ‖Π1Ux ‖p ≥ ‖Π1Ux ‖2 ≥ Ω(1)‖Ux ‖p , since Π1 is

sampled from an ℓ2 oblivious subspace embedding and scaled by a factor of d2/p−1. �

The proof of the following lemma is almost identical to that of Lemma 4.8. We omit the proof
here.

Lemma 5.6. For any x ∈ Rd , if ‖ (Ux )d2
+1:n ‖p ≥ 0.5‖Ux ‖p , then with probability at least 1 −

exp(−32d logd ), we have ‖Π2Ux ‖p ≥ Ω(1)‖Ux ‖p .

Set ε = 1/d2 and create an ε-net N ⊆ B = {Ux | x ∈ Rd and ‖Ux ‖p = 1}. According to Lemma

2.16, |N | ≤ (1 + d2)d ≤ (3d2)d . Let E3 be the event that for all y ∈ N ,

(1) if ‖yd2
+1:n ‖p ≥ 0.5‖y‖p , then ‖Π2y‖p ≥ Ω(1)‖y‖p ;

(2) ‖Π1 (y1:d2 )‖p ≤ O (d logd )‖y‖p .

5Again, we can assume E2 holds with probability 0.999, by increasing the dimension of the CountSketch embedding and

the OSNAP embedding by a constant factor.
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Lemma 5.7. E3 holds with probability at least 0.999.

Proof. Notice that Π1 is sampled from the CountSketch embedding or the OSNAP embedding
and scaled by a d2/p−1 factor. According to Lemma 2.20, by setting ω sufficiently large, with prob-
ability 1 − exp(−32d logd ) we have ‖Π1 (y1:d2 )‖p ≤ d2/p−1 (O (logB d ))

1/p−1/2 (ωd logd )1−1/p ‖y‖p =
O (d logd )‖y‖p . Combining this with Lemma 5.6 and a union bound, we have

Pr[E3 holds] ≥ 1− 2|N | exp(−32d logd ) > 0.999. �

Lemma 5.8. Conditioned on E1, E2, and E3, for all x ∈ Rd , we have
Ω(1)‖Ux ‖p ≤ ‖ΠUx ‖p ≤ O (d logd ) ‖Ux ‖p .

Proof. For any x ∈ Rd , let y = Ux . By homogeneity, we can assume ‖y‖p = 1. As in the proof
of Theorem 3.5, y can be written as

y = y0 + y1 + y2 + . . . ,

where for any i ≥ 0 we have (i)
yi

‖yi ‖p ∈ N and (ii) ‖yi ‖p ≤ εi .

It follows by Lemmas 5.3, 5.4, and 5.5 that

‖Πy‖p ≥ ‖Πy0‖p −
∑

i>0

‖Πyi ‖p ≥ Ω(1) −
∑

i>0

O (d logd ) εi ≥ Ω(1) −O (d logd ) · 2ε ≥ Ω(1)

and

‖Πy‖p ≤
∑

i≥0
‖Πyi ‖p ≤

∑

i≥0
O (d logd ) εi ≤ O (d logd ) . �

6 SUBSPACE EMBEDDINGS WITH IMPROVED SPARSITY

In this section, we present two approaches to constructing sparser ℓp oblivious subspace embed-
dings for 1 ≤ p < 2. In Section 6.1, we present our first approach based on random sampling, which
yields an ℓp oblivious subspace embedding where each column of the embedding has at most two

non-zero entries and 1 + ε non-zero entries in expectation, where the number of rows r = O (d2).
In Section 6.2, we present another approach based on the construction in Reference [24] and a
truncation argument, which yields an ℓp oblivious subspace embedding where each column of the

embedding has a single non-zero entry, at the cost of increasing the number of rows r to Õ (d4).

6.1 Improved Sparsity Based on Random Sampling

In this section, we show how to further improve the sparsity in the constructions of Theorems 4.1
and 5.1.

Theorem 6.1. For any given A ∈ Rn×d , let U be a (d, 1, 1)-well-conditioned basis of A. For any

constant 0 < ε < 1, there exists an ℓ1 oblivious subspace embedding overO (d2) ×n matrices Π where

each column of Π has at most two non-zero entries and 1+ε non-zero entries in expectation, such that
with probability 0.99, for any x ∈ Rd ,

Ω(logd )‖Ux ‖1 ≤ ‖ΠUx ‖1 ≤ O (d logd )‖Ux ‖1.
Our embedding for Theorem 6.1 is almost identical to that for Theorem 4.1 except for theΠ2 part.

Recall that the Π2 part of the construction for Theorem 4.1 can be written as ΦD, where Φh (i ),i = 1
and all remaining entries are 0. In the new construction for Π2, Φh (i ),i are i.i.d. samples from the
Bernoulli distribution Ber(ε ). I.e., Φh (i ),i = 1 with probability ε and 0 otherwise. All other parts of
the construction are the same as in Theorem 4.1.
We note that the proof for Theorem 4.1 can still go through for the new construction. The

only difference occurs when proving Lemma 4.8. In fact, the Π2 part of the new construction for
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Theorem 6.1 can be viewed as the following equivalent two-step procedure. For any given vector
y = Ux , we first zero out each coordinate of y with probability 1− ε , which results in a new vector
y, and then apply the Π2 part of the embedding in Theorem 4.1 on the new vector y.

Now, we show that with probability at least 1 − exp(−Ω(d2ε )), we have

‖yd2
+1:n ‖1 ≥ Ω(ε )‖yd2

+1:n ‖1.

Notice that E[|yi |] = ε |yi | and E[y2i ] = εy2i , which implies

E[‖yd2
+1:n ‖1] = ε · ‖yd2

+1:n ‖1

and
∑

i>d2

E[y2i ] =
∑

i>d2

εy2i ≤ ε ‖yd2
+1:n ‖1 · ‖yd2

+1:n ‖∞

= εd−2‖yd2
+1:n ‖21 .

Thus, by Maurer’s inequality in Lemma 2.8, with probability at least 1 − exp(−Ω(d2ε )), we have

‖yd2
+1:n ‖1 ≥ Ω(ε )‖yd2

+1:n ‖1.

The rest of the proof is identical to the original proof for Lemma 4.8. Similarly, the same argument
can also be applied to Theorem 5.1.

Theorem 6.2. Suppose 1 ≤ p < 2. For any given A ∈ Rn×d , let U be a (d, 1,p)-well-conditioned
basis forA. For any constant 0 < ε < 1, there exists an ℓp oblivious subspace embedding overO (d2)×n
matrices Π where each column of Π has at most two non-zero entries and 1 + ε non-zero entries in
expectation, such that with probability 0.99, for any x ∈ Rd ,

Ω(1)‖Ux ‖p ≤ ‖ΠUx ‖p ≤ O (d logd ) ‖Ux ‖p .

The number of rows in Theorems 6.1 and 6.2 cannot be further reduced. It is shown in Reference
[26] (Theorem 16) that for any distribution over r×nmatrices Π such that anymatrix in its support
has at most one non-zero entry per column, if rank(ΠA) = rank(A) holds with constant probability,
then r = Ω(d2). Now, we sketch how to generalize this lower bound to distributions over r × n
matrices for which each column has at most 1+ε non-zero entries in expectation, for any constant
0 < ε < 1. Notice that such a lower bound already implies the number of rows of Theorems 6.1
and 6.2 are optimal up to constant factors, since any oblivious subspace embedding preserves the
rank with constant probability.
For each column in the matrix Π, by Markov’s inequality, with probability at least 1− 1+ε

2 , there
will be at most one non-zero entry in that column. By the Chernoff bound in Lemma 2.6, with
probability 1 − exp(−Ω(n)), the number of columns in Π with at most one non-zero entry is Ω(n).
Furthermore, the balls and bins analysis in the proof of Theorem 16 in Reference [26] can be applied
to distributions over r ×n matrices such that for any matrix in the support of the distribution, the
number of columns with at most one non-zero entry is Ω(n). Indeed, with constant probability the
rank will drop if the embedding matrix has o(d2) rows. This establishes the desired lower bound
of r = Ω(d2).

6.2 Improving Sparsity Based on Truncation

In this section, we show how to use a truncation argument to improve the construction in
Reference [24].
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Before formally stating the construction, we first define the truncation operation. For a given
parameter α > 0, for any x ∈ R, define

truncα (x ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α if x ∈ [0,α]
−α if x ∈ [−α , 0)
x otherwise

.

Here, we note some elementary properties of the truncation operation.

Lemma 6.3. For a given parameter α > 0, for any x ∈ R, we have
• |truncα (x ) | ≥ α .

• truncα (x ) − α ≤ x ≤ truncα (x ) + α .

When applying the truncation operation to standard Cauchy random variables, the following
properties are direct implications of Lemma 6.3 and the 1-stability of standard Cauchy random
variables.

Corollary 6.4. For i ∈ [n], let {Xi } be n independent standard Cauchy random variables. The

following holds.

• |truncα (Xi ) | ≥ α .

• For any a = (a1,a2, . . . ,an ) ∈ Rn ,
‖a‖1 · X̂ − ‖a‖1 · α

�
n
∑

i=1

ai · truncα (Xi ) � ‖a‖1 · X̂ + ‖a‖1 · α ,

where X̂ is a standard Cauchy random variable.

Now, we are ready to state the main result of this section.

Theorem 6.5. There exists an ℓ1 oblivious subspace embedding over Õ (d4) × n matrices Π where

each column of Π has a single non-zero entry. The distortion κ = Õ (d ).

Our embedding for Theorem 6.5 is almost identical to the embedding for Theorem 2 in Refer-
ence [24] and the Π2 part of the embedding for Theorems 4.1 and 4.2, except for replacing standard

Cauchy random variables with truncated standard Cauchy random variables. Let R = Õ (d4) be
the number of rows of Π. Here Π can be written as ΦD : Rn → RR , defined as follows:

• h : [n]→ [R] is a random map so that for each i ∈ [n] and t ∈ [R], h(i ) = t with probability
1/R.
• Φ is an R × n binary matrix with Φh (i ),i = 1 and all remaining entries 0.
• D is an n × n random diagonal matrix where Di,i = truncα (Xi ). Here {Xi } are i.i.d. samples
from the standard Cauchy distribution and α < 1/4 is a positive constant.

Now, we sketch how to modify the proof of Theorem 2 in Reference [24] to prove the distortion
bound of our new embedding.
In the proof of Theorem 2 in Reference [24], the authors define five events: EU , EL , EH , EC and
EL̂ . Notice that for our new embedding, the event EC is no longer needed, since by Corollary 6.4,
the absolute values of standard Cauchy random variables are never smaller than α after truncation,
where α is a small constant. We also change the number of rows of Π to O (d4 log5 d ), and the

definition of the event EL̂ is changed to ‖ΠU L̂ ‖1 ≤ O (1/(d log2 d )) correspondingly.
Lemma 16 and Lemma 22 in the proof for Theorem 2 in Reference [24] show that EU and EL̂

hold with constant probability. The proofs for these two lemmas almost remain unchanged, except
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for replacing the 1-stability of standard Cauchy random variables with the upper bound part of
the “approximate 1-stability” of truncated standard Cauchy random variables in Corollary 6.4.

Lemma 13 is changed to the following: Given EL , for any fixed y ∈ Y L , we have

Pr
[
‖Πy‖1 ≤

(

1

4
− α
)

‖y‖1
]
≤ exp(−Ω(d logd )).

The proof of the new version of Lemma 13 is also similar to the original proof, except for replacing
the 1-stability of standard Cauchy random variables with the lower bound part of the “approximate
1-stability” of truncated standard Cauchy random variables in Corollary 6.4. This also explains why
we need α to be a constant smaller than 1/4. Similarly, the constant 1/8 in Lemma 14 also needs
to be modified to reflect the changes in Lemma 13.
Finally, since the absolute values of standard Cauchy random variables are never smaller than α

after truncation, Lemma 15 is changed to the following: Given EH and EL̂ , for anyy ∈ YH , we have
‖Πy‖1 ≥ Ω(α )‖y‖1. This finishes our modification to the proof of Theorem 2 in Reference [24].
By applying the truncation argument to p-stable random variables, a similar result can be ob-

tained for ℓp oblivious subspace embeddings.

Theorem 6.6. For 1 ≤ p < 2, there exists an ℓp oblivious subspace embedding over Õ (d4) × n

matrices Π where each column of Π has a single non-zero entry. The distortion κ = Õ (d ).

APPENDIX

A MISSING PROOFS IN SECTION 2

A.1 Proof of Lemma 2.9

Proof.

E

⎡⎢⎢⎢⎢⎣
n
∑

i=1

|aiXi |p
⎤⎥⎥⎥⎥⎦ =

n
∑

i=1

|ai |p E
[

|Xi |p
]

= Ap

n
∑

i=1

|ai |p ,

where Ap = E[|Xi |p] is a constant that depends only on p.
Thus, by Markov’s inequality, with probability at least 0.995,

��
n
∑

i=1

|aiXi |p��
1/p

≤ (200Ap )
1/p ‖a‖p .

There exists a constant Bp that depends only p, such that

Pr[|Xi |p < Bp] ≤
1

400
.

We let Yi be an indicator variable such that

Yi =
⎧⎪⎨⎪⎩
1 if |Xi |p < Bp

0 otherwise
.

We know that E[Yi ] ≤ 1
400 , which also implies E[

∑n
i=1 |ai |p · Yi |] ≤ 1

400 ‖a‖
p
p . Thus, by Markov’s

inequality, with probability at least 0.995, we have

n
∑

i=1

|ai |p · Yi ≤
1

2
‖a‖pp .

Notice that
n
∑

i=1

|aiXi |p ≥ Bp

n
∑

i=1

|ai |p (1 − Yi ).

ACM Transactions on Algorithms, Vol. 18, No. 1, Article 8. Publication date: January 2022.



Tight Bounds for ℓ1 Oblivious Subspace Embeddings 8:29

Thus, with probability at least 0.995,

��
n
∑

i=1

|aiXi |p��
1/p

≥
(

Bp

2

)1/p

‖a‖p .

Thus, the lemma holds by taking Cp = max{(200Ap )
1/p , ( 2

Bp
)1/p } and using a union bound. �

A.2 Proof of Lemma 2.12

Proof. Let Ei be the event that |Xi | ≤ n logn
log logn . According to the cumulative density function of

the standard Cauchy distribution, we have

Pr[Ei ] = 1 − 2

π
arctan (n logn/ log logn) ≥ 1 −

2 log logn

πn logn
.

Let E = ⋂n
1≤i Ei . By a union bound, E holds with probability at least 1−

2 log logn
π logn . Next, we calculate

E[|Xi | | E]. Since theXi are independent, by using the probability density function of the standard
Cauchy distribution,

E[|Xi | | E] = E[|Xi | | Ei ] =
1

Pr[Ei ]
1

π
log
(

1 + (n logn/ log logn)2
)

= O (logn).

Notice that conditioned on E, |Xi | are still independent. Furthermore, conditioned on E, for any
i ∈ [n], |Xi | ∈ [0,n logn/ log logn]. Thus, for sufficiently largeU1, by applying the Chernoff bound
in Lemma 2.6 on |Xi | log logn(n logn)−1,

Pr

⎡⎢⎢⎢⎢⎣
n
∑

i=1

|Xi | > U1n logn | E
⎤⎥⎥⎥⎥⎦ ≤ 2

− U1n logn
n logn/ log logn = 2−U1 log logn .

Thus, for sufficiently large U1,

Pr

⎡⎢⎢⎢⎢⎣
n
∑

i=1

|Xi | ≤ U1n logn

⎤⎥⎥⎥⎥⎦ ≥ Pr

⎡⎢⎢⎢⎢⎣
n
∑

i=1

|Xi | ≤ U1n logn | E
⎤⎥⎥⎥⎥⎦ · Pr[E]

≥
(

1 − 2−U1 log logn
)

·
(

1 −
2 log logn

π logn

)

≥ 1 −
log logn

logn
. �

A.3 Proof of Lemma 2.14

Proof. According to Lemma 2.4, there exists a constant tp ≥ 1 that depends only on p, such
that for any t ≥ tp ,

Pr[Xi > t] ≥
cp

2
t−p .

Thus, for t ≥ t
p
p ,

Pr[|Xi |p > t] = Pr[|Xi | > t1/p] = 2 Pr[Xi > t1/p] ≥ cpt
−1.

For i ≥ 0 and j ∈ [n], we let N i
j denote the indicator variable such that

N i
j =

⎧⎪⎨⎪⎩
1 if |X j |p > 2it

p
p

0 otherwise
,

and N i
=

∑n
j=1 N

i
j . We have that E[N i

j ] ≥ 2−icpt
−p
p and thus E[N i ] ≥ n · 2−icpt−pp . According to

the Chernoff bound in Lemma 2.6, we have Pr[N i ≥ n2−i−1cpt
−p
p ] ≥ 1 − exp(−n · 2−i−3cpt−pp ). Let
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lmax be the largest i such that

exp
(

−n2−i−3cpt−pp
)

≤ 1

2T
. (5)

By a union bound, with probability at least

1 −
lmax
∑

i=0

exp
(

−n2−i−3cp t
−p
p

)

≥ 1 − 1/T ,

simultaneously for all 0 ≤ i ≤ lmax , N
i ≥ n2−i−1cpt

−p
p , which implies

n
∑

i=1

|Xi |p ≥
lmax
∑

i=0

2it
p
p · N i/2 ≥ cp/4 · lmax · n.

Solving Equality (5) and substituting the value of lmax , for sufficiently large T and n, with proba-
bility at least 1 − 1/T ,

n
∑

i=1

|Xi |p ≥ Lpn log

(

n

logT

)

,

where Lp is a constant that depends only on p. �

A.4 Proof of Lemma 2.20

Proof. Suppose Π has R rows and s non-zero entries per column. For theCountSketch embedding,
we have R = O (d2) and s = 1, while for the OSNAP embedding, we have R = O (B · d logd ) and
s = O (logB d ). In either case, we have R ≤ O (d2).

For i ∈ [R], define Bi = {j | j ≤ d2 and Πi, j � 0}. According to the Chernoff bound in Lemma 2.6,
with probability at least 1 − exp(−Ω(ωd logd )), |Bi | ≤ ωd logd . It follows by a union bound that
with probability at least 1 − exp(−Ω(ωd logd )) · R = 1 − exp(−Ω(ωd logd )), simultaneously for
all i ∈ [R], we have |Bi | ≤ ωd logd . We condition on this event in the rest of the proof.

Notice that

��(Π (y1:d2 ))i ��p ≤ ���s
−1/2
∑

j ∈Bi

|yj |���
p

≤
����
s−1/2 (ωd logd )1−1/p

���
∑

j ∈Bi

|yj |p���
1/p����

p

= s−p/2 (ωd logd )p−1
���
∑

j ∈Bi

|yj |p��� .
Here the second inequality follows from Lemma 2.1 and |Bi | ≤ ωd logd . For each j ∈ [d2], the
number of i ∈ [R] for which j ∈ Bi is exactly s , which implies

R
∑

i=1

��(Π (y1:d2 ))i ��p ≤ s−p/2 (ωd logd )p−1
R
∑

i=1

∑

j ∈Bi

|yj |p = s1−p/2 (ωd logd )p−1
d2
∑

j=1

|yj |p .

Thus,

‖Π (y1:d2 ) ‖p ≤ s1/p−1/2 (ωd logd )1−1/p ‖y1:d2 ‖p ≤ s1/p−1/2 (ωd logd )1−1/p ‖y‖p . �
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