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Abstract: AC/DC hybrid microgrids are becoming potentially more attractive due to the proliferation
of renewable energy sources, such as photovoltaic generation, battery energy storage systems, and
wind turbines. The collaboration of AC sub-microgrids and DC sub-microgrids improves operational
efficiency when multiple types of power generators and loads coexist at the power distribution level.
However, the voltage stability analysis and software validation of AC/DC hybrid microgrids is a
critical concern, especially with the increasing adoption of power electronic devices and various types
of power generation. In this manuscript, we investigate the modeling of AC/DC hybrid microgrids
with grid-forming and grid-following power converters. We propose a rapid simulation technique to
reduce the simulation runtime with acceptable errors. Moreover, we discuss the stability of hybrid
microgrids with different types of faults and power mismatches. In particular, we examine the
voltage nadir to evaluate the transient stability of the hybrid microgrid. We also design a droop
controller to regulate the power flow and alleviate voltage instability. During our study, we establish
a Simulink-based simulation platform for operational analysis of the microgrid.

Keywords: AC/DC hybrid microgrid; grid-forming power converter; simulation platform; transient
stability; voltage nadir

1. Introduction

The AC/DC hybrid microgrid is a promising technology for building smart grids with
enhanced operational efficiency and flexibility. It is formed by an AC sub-microgrid and a
DC sub-microgrid interconnected by one or more interfacing power inverters [1]. It shows
a few unique advantages compared with the traditional power grid, such as increased
efficiency of power conversion, less copper, and higher power density [2,3]. It shows
a few unique advantages compared with the traditional power grid, such as increased
efficiency of power conversion, less copper, and higher power density. The AC load and
AC generation can be connected to AC buses, while the DC load and DC generation can be
connected to DC buses, which can greatly reduce power loss. Integrated with one or more
interfacing power converters and various types of power generation, a hybrid microgrid
can deal with power generation and conversion with higher flexibility. A few of researchers
are exploring hybrid microgrid with more efficient and durable solutions, such as new
control techniques and energy management [4,5].

To take full use of this emerging architecture of microgrids, it is critical and urgent
to investigate the characteristics of AC/DC hybrid power grids. For example, we need to
figure out not only the control strategy of the AC and DC sub-microgrid but also the overall
control strategy; and how the control technique regulates the generic power flow and
impacts the stability of the microgrid. Paper [6] presents power flow modeling for AC/DC
hybrid islanded microgrids including droop-controlled distributed generation, which
provides an efficient tool for future power flow planning and operation studies. Paper [7]
introduces a power flow control and management framework enabling decentralized power
sharing with less communication in a hybrid microgrid. However, the operation control and
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stability of hybrid microgrids is still a challenging topic, especially when it involves high
penetration of power electronic devices and various types of power generation. The intricate
characteristics of modern power electronic devices and renewable energy sources lead to
new stability problems in hybrid microgrids since they can reshape the general dynamic
characteristics of the microgrid. The dynamic responses of renewable energy resources and
power electronic devices are quite different from the power generators and other power
devices in traditional power grids [8]. Several existing studies have worked on the stability
issues. Paper [9] proposes a novel coordination among distributed energy resources, where
the frequency regulation is considered in a multi-objective optimization problem. However,
the proposed approach focuses more on traditional synchronous generators, and it is
limited to frequency stability analysis. In paper [10], a novel structure of a hybrid microgrid
is proposed, where energy storage systems are coupled with the non-sensitive loads to
achieve the supply/demand balance. However, the proposed design mainly aims at the
construction of system reliability but does not consider transient stability. Additionally,
paper [11,12] investigates the voltage stability in microgrids with distributed controlled
converters and nonlinear loads, but the discussion is limited to DC microgrids only. The
small-signal stability analysis of AC/DC hybrid microgrids is presented in [13], but it does
not work well when large oscillation occurs. Paper [14] proposes a comprehensive inertial
control strategy for stability improvement in an AC/DC hybrid microgrid. The coupling
relationship between AC and DC sub-microgrids is discussed based on the power balance,
and the characteristics of distributed generation are analyzed. Nevertheless, the control of
power electronic components is not involved. In paper [15], a hybrid solar thermal system
based power grid is presented to investigate the control of static synchronous compensator
(STATCOM) and automatic voltage regulator (AVR). However, it does not consider the
effects of control technique of the solar system. In fact, different control techniques of solar
system may cause different transient behaviors of the power grid in a faster time scale,
such as P-Q control or V-F control. In paper [16], a fuzzy logic based control technique is
proposed to maintain the frequency and voltage stability for sudden changes in a hybrid
microgrid. Nowadays, the modeling of a complicated AC/DC hybrid microgrid system is
in discussion, and how to determine the effects of each component on the system stability
is still an open question. The various operation modes of hybrid microgrid also bring
challenges to addressing the issues. Moreover, the important objectives of control design
for both grid architecture and power devices also include stability enhancement while
realizing power management at the same time. These issues become more intractable when
a fault or disturbance is imposed on the microgrid.

This manuscript develops an operational model of AC/DC hybrid microgrids and
studies the stability issues based on the modeling. The contributions are as follows:

(1) This manuscript investigates the modeling of AC/DC hybrid microgrids with different
types of power electronic devices and power generation, including a traditional power
generator, a battery energy storage system (BESS), and PV generation.

(2) The power converters are modeled using the circuit averaging method, which greatly
reduces the runtime of software simulation.

(8) We discuss the stability of AC/DC hybrid microgrids when a fault or disturbance hap-
pens. The voltage nadir is examined to evaluate the transient stability of
the microgrid.

(4) Droop control is adopted to regulate the power flow and alleviate voltage instability.
We formulate an equivalent control diagram to develop sensitivity analysis instead of
using the original microgrid simulation.

The structure of this manuscript is organized as follows: In Section 2, a typical archi-
tecture of AC/DC hybrid microgrids is proposed. The modeling of main power devices
is introduced, and the Simulink-based simulation platform is presented. Section 3 dis-
cusses the stability of hybrid microgrids when a fault or a disturbance happens. Besides,
we present a voltage instability alleviation technique based on droop control. Section 4
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2.3. The Modeling of BESS and PV

The BESS is installed at the main bus of the DC microgrid. We implement a typical
lithium-ion battery model in the BESS. The nominal voltage is 120 V and the rated capacity
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is 800 Ah. The initial state of charge (SoC) is supposed as 80%. Other key parameters are
described in Table 1.

Table 1. Main parameters of Lithium-ion battery.

Cut-off voltage (V) 920

Fully charged voltage (V) 139.6785
Nominal discharge current (A) 347.8261
Internal resistance (Ohms) 0.0015
Capacity (Ah) at nominal voltage 723.4783

Exponential zone [voltage (V), capacity (Ah)] 29.6463, 39.30435

The discharge and charge process of the lithium-ion battery is described by the follow-
ing equations.

EdiSChar:EO_Q*it.l*_Q—it-lt—i_Ae Blt,l >0 1
KQ o XQ it + Ae B i* <0 )

Eopar = Eo — it -
char = E0 T 010" T Q- it

where Ejjqcpqr and Ey,, are the nonlinear battery voltages (V), Ey is the constant voltage
(V), K is the polarization constant (V/Ah) or polarization resistance (Ohms), i* is the low-
frequency current dynamics (A), it is the extracted capacity (Ah), Q is the maximum battery
capacity (Ah), A is the exponential voltage (V), B is the exponential capacity (Ah_l).

The battery is connected to a grid-forming boost converter, which can support the out-
put voltage as the reference for the DC main bus. The boost converter allows bidirectional
power flow and can accommodate both the discharging status and the charging status of
the battery.

The PV generation system is also installed at the main bus of the DC microgrid. The
PV array consists of 7 parallel strings of PV modules, and each string has 6 series-connected
modules. The main parameters of the PV module are shown in Table 2.

Table 2. Main parameters of PV module.

Maximum power (W) 250.205
Cells per module (Ncell) 96
Open circuit voltage Voc (V) 374
Short-circuit current Isc (A) 8.63
Voltage at maximum power point Vmp (V) 30.7
Current at maximum power point Imp (A) 8.15
Temperature coefficient of Voc (%/deg.C) —0.34
Temperature coefficient of Isc (%/deg.C) 0.05

Al PV cells operate under an irradiance of 1000 W/m? and a temperature of 25 °C.
The PV array has 42 modules in total, and the nominal power output is around 10.5 kW.
The I-V and P-V characteristics of the PV array are described in Figure 5.
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cycle-average value. The derivation of the value of (V;) and (i) is introduced as follows.

(b)

Figure 6. The equivalenippaqdelingefea elqtm%mvmfeﬁﬁgs&fi%&9@8&8@&?&95&5%{&%%’8&:1 of a boost converter;

Averaged circuit model a; a boost ¢

verage Tt model of a boost converter.

Regarding the switch model of a boost converter in Figure 6a, consider that switch is

connected at position 1 and position 2, respectively. Suppose the duty ratio is D and the
period is Ty in this converter; the switch is at position 1 for nT; <t < (D +n)T; and is at
position 2 for (D +)T. <t < (n+ 1DT. where n € N. Then, the followinge equations
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Regarding the switch model of a boost converter in Figure 6a, consider that switch
is connected at position 1 and position 2, respectively. Suppose the duty ratio is D and
the period is Ts in this converter; the switch is at position 1 for nT; < t < (D +n)Ts
and is at position 2 for (D +n)T; < t < (n+1)T;, where n € N. Then, the following
equations hold.

Vailt) = {Vz(t)f)l(lgTj— iff g( s Z,? i T ®)
Ver(t) = {o, Y%(ti’ Z)];f Sg e ((IZ . 111))11";5 @)
- L

isa(t) = {il(t),()’(gzs— ;f);s<<(?<+ (Z?fgn ©)

Next, we calculate the cycle-averaged value of the voltage source (V;(t)). By definition,
it is known that

o= 1 [ Valwr 7)

Ts Ji—T,

(1) In the first case, we assume Vg1 (t) =0, (n+1—D)T; <t < (n+1)T;. Hence,

1 7t p 1 ((n+1-D)Ts P

V)&= [ Va@ar = | Vo(#)dt 8

(Vi(t)) T Jin «1(7) T o 2(t) ®)

Since V;(t) has a very small ripple, we consider it a constant in the period [t — Ts, t].
Then, we have

t
i) = t2p g Valt)at o
= = (Va(h)

(2) Inthe second case, we assume V() = V,(t). Similarly, we also obtain

1

(Vi(t)& = ﬁ<

Va(t)) (10

Next, we calculate the cycle-averaged value of the current source (i»(t)). By definition,
it is known that

s =1 [ iatoy (1)
(1) Inthe first case, we assume i (t) =0, (n+1—D)Ts <t < (n+1)Ts. Hence,
1 rt 1 rm+1-D)Ts
(& =g [ (=g [ T @) 12)

Since i1(t) has a very small ripple, we consider it a constant in the period [t — T, t].
Then, we have

(1) =iy [Tt (13)
= 15 (i (t))

(2) Inthe second case, we assume ig(t) = i1 (). Similarly, we obtain

(i6))& = 5 (i2(1)) (1)
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(2) Inthe second case, we assume ig,(t) = i;(t). Similarly, we obtain
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3. Discussion
3.1. Stability Analysis with Faults
In this section, we discuss the stability of the AC/DC hybrid microgrid with faults.
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ground short circpigruRposenitiadaptharpanedrahthpinigisesting kerugenddine 5 and

Line 6 during 0.35 s~0.45 s. The simulation results are shown in Figure 9.

Voltage LL (V)

200

Voltage (V)

Current (A)

Current (A)
g g
& o 2

03 0.35 04 045 05 0.55
Time (s)

(a)

Figure 9. Cont.



Energies 2023, 16, 399

10 of 25
nergies 2023165 FORPEERREVIEW

Voltage LL (V)

<
T
£
=
(5]

045
$ Timé (s)
| fault ends|
7 DC Voltage (pu)
104 I |
=102
2
5 L
8
5
= oga |
0.96 i -1
Power (kW)
T
19
E1af
g 17— -
TS

1 - T 1

0.45 05 0.55
Time (s)

(c)

Power Output of BESS

(=
w
o
@
&
o
=

Power (kW)

0.3 0.35 0.4 0.45 0.5 0.55 0.6
Time (s)

(d)

Power Output of PV

Power (kW)

0.3 0.35 04 0.45 0.5 0.55
Time (s)

(e)

Figure . lierf% PR %g%v%gﬁlaass i 1%”%““‘ fal g RIPSAGES (LIt P signas o
1

P égg)'lnfter acE1 f[?él mte ac1 % 1gnals at %V&eﬁggtp&jtl’ower output o% the BESS;
ower ou pu o’f
) Power output of the PV generatlon

It can be concluded from the simulation result that:

(1) In the AC microgrid, the voltage has no fault component whereas the current has

observable fault components. Two phases of the current increase a lot when the fault
occurs.
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(3) Inthe DC microgrid, bot

11 0f 25

he power output of the genera-

tion systems hgve very smal oscillattio%s. C[':)onsiiilerin that the é)scilllation of the main
In.a d%ﬁoni,’(;wet etf, 0 ou ]teup ase-to-groun faf.1 tare similar to g phase-to-

bus Vokage }s 1thin 5%, the 03 S ,cla stilFwork 1n the Iilorlﬁla co% ition in ﬁqosh
phasSe fault, so we skip the detailed simulation results here. Besides, the three-phase

cases; . . Sy . . . .
fault is destructive to the whole hybrid microgrid; the software simulation terminates less

Secoryl, g (9Rs i arRhanerF SRRSO HECEit BIY (RERROM tPPateet dhtput of the

h the main bus voltage and

phase-B short gigaibnerprese the fault happened at the intersection between Line 5 and
Line 6 during t = 0.35~0.45 s. The simulation results are shown in Figure 10.
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Figure 10ﬁ§aéwmlssr%!%ﬁﬁaw@a§ﬁéww£sé@k& SISO ATsSided® Riepliat Brgi@HB at Bus 6;
Slgtnalts aff g,? %%ﬁteaf{awﬁasi%é% Sgnelsat BC g M Ronyen et Qs RESS Rt ¥ the BESS;
outputo ?e eI;lZ)wglg rcl)%l:cégllﬁ%f the PV generation.

It canbe. corelpfectS i the Sulpdian sasté Hability of the AC Side

(1) In the AGmMqsagrishdeethdfieevaliage and the aidrentiava ehsestethlirfavt thierDside. The
nentsidewaveiuliplike the prsewtishiasiDglaplhesertiot greludeains Hedonheetianind short
doeginatisfatany increase. Therefore, some devices on the AC side possibly still
work as #Fildtewernpposaditaon lfrthe facdhdeasorofdakt hapgebutl itonhy bringlthabn the DC
lengssléadfariliglete@tBins~0.6 s. The simulation results are shown in Figure 11.

(2) Both the Itdkageiaed the cthedieotibeohidoioim ferfitaingsmist tes biconubdéstartdel damages
The ttaeitherrikat/sbanissbguid spikes. DC microgrid. In fact, the effects of a line disconnection

(3) In tHed(dapencghighbp tintthe dvamat lonswhétegh artdiltid pppersolitpart bé the estigated further
tionisya eyl idhnrd dregrid diosshsipikse Whiddehdd &l estieyctitapliveleptoped @gid. A
fault profectio sehecenspdeiadi grd dodtfeliGhatdrogrdneddqguirednain bus on the DC side
In adtiiRe! TO-2Prec 4% dBaBiplpensssHifareshaviReitikiaHf % phase-to-

phase fault, sote¥sREpReaees et araondaamt hesdrvdel aifedn on he phadnigrerid such

is destrul bt Wwintshas s RorBat Gongitionaadethiah thedoh (2 inieslachainyerter still

0001 s N EERTRENS IS (A5 WENAL e ipmptal st GhiG Pl s pgric, where

side gen 9tk the bus voltage and the power generation show a sharp spike and large oscillation.

The following table (Table 3) shows the effects of different faults on each side of the

3.1.2. ThéEefddts BYRTSIBIGO LG hhie SRy stilGgeffects of faults on the microgrid

_into three levels: normal, faulty, and severe faults. “Normal” means that the related
This part RresendssHit SRl R 808 R ot dbe prability b herdte side1iflifed faulty
common falts that heprereigitedfrBu g gtidencinde 1ag diseonnseion ead s $emendous

cuit fa}ﬂtéscﬂlation or severe instability. Detailed descriptions of the effects of faults can be obtained
Flrs§n%‘fé%889i§a‘i}5%trg > disconnection fault happened to the main bus on the DC

side during t = 0.35 s~0.6 s. The simulation results are shown in Figure 11.
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It can be observed that the ground fault has trivial effects on the AC microgrid such

that it stﬂb}@@:lﬁf@&@&h@@@m&l@ﬂﬁﬁti@mgﬂd that the AC/DC interfacing inverter still

works w

where bommage dF i % genratio’}l(é'ﬁ a arp sBEéSSH 1

lation.

arge oshperter

Single p-g faulty normal

normal

The following table (Table 3) ghows the effects g giifferent faults gu,gach side of the,ry
AC/DC hybriéniigeogrid. T tlf')soﬁ;lfge e simpliry”tg% 1%t]reclt,s of tauitse(‘)llélréhe microgr%'éi

into three levels: normal,

vices could still work in normAf
component of the related vblteedissprneeénn, and “seoerel means thahthiend is a tremaéwprmal

dous oscillat%g_%ifl Severe instabgiyuddetailed descriptigns of the effegts;effaults canhgmal
obtained in previous paragraphs.

g ls: ulty
r(‘fﬁ&l&?ﬁgn, “faulty” means that ther®Y§'§ limited faulty
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3.2. Stability AddiyStatilityBsalysiaiish Disturbances

This section pld¥isnt§eHERtREAEN in dgs ity Awglysihpbildendi&r RiGd hyleridigicrogrid with
turbances, suchH3EDRPIES pBcReRs G sROBIhgeRsTation Il dhedanewiaRieseoetgFsRYY ces or surplus
load consump®8fl. consumption.

First, we take A StsE- ke diustealivine dgirle al dhediskarByneesamiadiBypigurplus load in
the DC microfifdPSuppereetid npasetbed loachingalledad dremacbrs ghhegPC microgrid
increases fron{REAPES RV AIVL s VMRE bindhdatsord hestimudptiondisstiis s s in Figure 13.
The disturbante €4t HPAI RSP loaidts R At dpadhas gialelierds, ppthe AC side of
hybrid microgh8 B TRICIsH I I VSBe R By URBE.ARA BRYIEE BRGTaHon on the DC
oscillate. SpecHRSIRCHABUSRAHISABE the Bt PIEBe o heaTaBRG1Ris p blgsevoltage dip of
5%, which ma§ ekl ISP PoWer Uil RegHRRNeh HHaiY-ANY Sprsattontbedigrmal operation of

. electric devices.
devices.
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_" " reaser from 25 'C to 20 °C beginning at t= 0.35 8. The simulation
results are shown in Figure 14. & '
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~ When an AGgide,lgadashedding ippeasntherdispeheenssainssinsiatedaintitstited in the AC
microgrid Cm@ ShReBEh R PR ditdhe upda rciRowsafleapswallrisatiantscillations of
of bus volta ReYEL S IR cAP-Ra sletentask et m&qge%mggbfa{ BEf they are not
not severe er%%bet@ﬂﬁ Bothe slablepsrasien pELRE IS the grid.
Table 4 conclnggs streefiddtiarents tyPatRirdhttnrban e Bt GAERRIES i Bagh side of the
AC/DC hybr;bé@}m&%nd microgrid.

Table 4. Effects of disturbance on hybrid microgrid.
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Table 4. Effects of disturbance on hybrid microgrid.

Bisturbance <
%Eﬁgﬁnce DlBtlg{Br a%ece':r pee D%%lglde A%-g-léllﬁe
DC-Side ﬂ bl,lli lL,lb lUdbl V Ol LS _Llll.) l\l Ul 1T a1

DC-side Eratonse RZE e P d
. Uperat nalenviromment cnanges oltage dip Norma

AC-side Load shedding Normal Power regulation
3.3. Voltage Instability Alleviation with Droop Control

3.3. VollegsrBpbelitatHbpiebrtsIiatbacmetid@dlogy to alleviate the voltage instability
(voltegse phipiy dheectol distordsariced-based methodology to alleviate the voltage instability
(voltage dip) due to disturbances.

3.3.1. Power Flow Management Using Droop Control

331 X%Wmer ﬂ'l 1\/{)31‘2% enEiESlrﬁnDirsoglEogv?{f{n igure 16. In the operation of power

gridé} m@&ﬁé&%%&ﬁ&%@@w&é the'DrRibBPEwE: é@:{é}%ﬁBﬁréﬁ‘ﬁgl%ﬁ%V%ﬁE
%@%ﬂ?ﬂ?&%ﬁ@&ﬂ?ﬂé&?&?a&aﬂgﬁﬁbﬁﬁ%ﬁ SEs\erROY HeSpBWaH pOgTHRBUAT S8 s At
HafARE Mgy aiild S BRAEE HREBMBICFhdAHHIRS HierRspictiig At Andate tHIRAIA
HRRvEANES YHings nuAT ahhe reiatr g1 RssBvR oW RYAA LS vellaBe SRR

wibHe G5 NAS 8RS HIPIRYESHA fe@@ﬁgeem{ﬁ{lﬂ P¥hd oBeeialdhe G it daasient PR
Qb BsHygStigated by examining the voltage hadir, as intr roduced in the next subsection.
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Figre 17 Brogp comirahlers in dhe s micesid.
M@MWMMM@M@&MI@WMf&M:
p o o s 9
where Py, Piny rer is the actual power output and the refer nce value of the power out-

put of the inverter, respectively, Ki,, is droop gain of the inverter, Vg, Vgc res is the ac-
tual voltage and the reference value of the voltage at the DC-side main bus, respectively,
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Voltage and the reference value of the Voltage at the DC-side main bus, respectively,

Vae Ve Vaiagerkr Ko KBCPo Py Bugr)) an
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0k ekE g@éﬂssgy?%yq 3d>P0AR erimoBiBE
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where By, Ppy rer is the actual power output and the reference value of the power output
wdidre BV, Rspeetisehe aktyaispinoep gatpuifahe Hié. reference value of the power output
of the W¥jhrebpmutivelyirkjlers drotaflgrdiat thehiaf@¥acing power inverter, the BESS, and the

PV Witbrdrdepmowtobeksicstdiedeh thevirtegtavingjpovadipueréer: shelhipiamnchthbe
P siyatanedhevpile ehbalohagbetvthen TOwitegerdration ane polvridcoviskin ptiwasandbie
maidhdéesirddwinlecthetheltageeatithe. Dhegidepvedd busvisrrgulatedhagidhiont reashodien
anfedsicedolenge atdthbitpeatianesdilia oapspecpaitieatiovmidrpgepentanetiedion
aligulirsadeliagainstfilibanied lespibatioBbsi deord iBativgimubipleray e gaherRN0s 3R
loadstvebRnadintixibange pepranpoliesised, ilsisaprifomentioning tha hihsdve s alsae coint
tigct Ehe ReAETAEH RONPEP A RbaB S FEY Wik iB, NI HEY RAYRIROEeaPiE PRV Efe
shedlingdnathersaddimnesessaryt fosexamrle wyhradhe e dinnre polatgsorgdhs mpvey

gepsiation is in excess, it is suggested to shed a part of the power output of the PV system.
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(Figted 99).

This control diagram can be utilized to investigate the voltage nadir analytically and
to implement sensitivity analysis with reduced runtime. Before that, however, we first need
to validate the correctness and accuracy of this control diagram by the following case study.

As shown in Figure 20, suppose the PV generation system is allowed to shed power
beginning at t = 0.3 s and that an extra DC-side 2 kW load (around 45 Ohm resistive load) is
plugged into the DC-side main bus beginning at t = 0.5 s. When the PV generation system
is allowed to shed power at t = 0.3 s, there is instantly about 1.5 kW of power shedding
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at the voltage nadir is 0.9822 (p.u.) at t = 0.511 s. The steady-

state voltage before the plug-in of the surplus load is 0.9996 (p.u.) during t =0.37 s~0.5 s,
and the steady-state voltage after the plug-in of the surplus load is 0.9904 (p.u.) beginning
at t = 0.63 s. The difference in the voltage dip between the microgrid simulation and the
control diaeram can be meacstired bv the root mean satiare error (RMSE) In this case the
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Figure 20. Voltage nadir measured in the Simulink simulation. (a) Power output of the PV genera-
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diagram is ignorable when we investigate voltage stability. Therefore, we can conclude
that the stability-related performance of the control diagram is very close to that of the
microgrid EMT simulation, which validates the equivalency and correctness of the proposed
control diagram.

Table 5. The comparison of dynamics between simulation and control diagram.

Load Disturbance 2.0 kW 4.0 kW 1.5 kW 0.5 kW
Steady-state voltage

Microgrid before disturbance 0.9989 0.9989 0.9989 0.9989

simulation v ta0e nadir 09845  0.9691 0.9879 0.9953
Steady-state voltage 0.9898 0.9731 0.9920 0.9966
after disturbance
Steady-state voltage

Control before disturbance 0.9996 0.9996 0.9996 0.9996

diagram Voltage nadir 09822  0.9657 0.9865 0.9952
Steady-state voltage 09904 09816 0.9927 0.9973
after disturbance

RMSE (%) 0.0333 0.1933 3.7007 x 10~ 15 0.0433

Next, we formulate a sensitivity analysis of the droop control to the voltage nadir. The
equivalent control diagram is leveraged to reduce the runtime of the sensitivity analysis.
From the sensitivity analysis results in Figure 22, it is noticed that the parameters of the
droop controllers of different power devices have different impacts on the voltage nadir.
Based on the sensitivity analysis of the voltage nadir, a stability-aware operation constraint
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4. Conclusions

In this manuscript, we propose the modeling of a typical AC/DC hybrid microgrid
with renewable energy sources, including a BESS and a PV generation system. The involved
power converters are modeled using the circuit-averaging technique, which has a higher
simulation efficiency and further assists in the analytical study. Based on the proposed
microgrid modeling, we also discuss the stability of a hybrid microgrid when a fault or
disturbance occurs. In addition, we present a framework of voltage instability alleviation
based on droop control, which can improve the voltage nadir and regulate power flow
during grid operation. An equivalent control diagram is proposed to simulate and study
the voltage dynamics of hybrid microgrid model. The equivalency is validated in our
case study due to the error of voltage nadir less than 0.2%. Our future work will discuss
the symmetrical component and harmonic analysis during faults or disturbances and
investigate more impact factors of the voltage nadir.
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