

Article

Voltage Stability Assessment of AC/DC Hybrid Microgrid

Fangyuan Chang ¹, John O'Donnell, Jr. ^{1,2} and Wencong Su ^{1,*}

- Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA
- ² DTE Electric, Detroit, MI 48226, USA
- * Correspondence: wencong@umich.edu

Abstract: AC/DC hybrid microgrids are becoming potentially more attractive due to the proliferation of renewable energy sources, such as photovoltaic generation, battery energy storage systems, and wind turbines. The collaboration of AC sub-microgrids and DC sub-microgrids improves operational efficiency when multiple types of power generators and loads coexist at the power distribution level. However, the voltage stability analysis and software validation of AC/DC hybrid microgrids is a critical concern, especially with the increasing adoption of power electronic devices and various types of power generation. In this manuscript, we investigate the modeling of AC/DC hybrid microgrids with grid-forming and grid-following power converters. We propose a rapid simulation technique to reduce the simulation runtime with acceptable errors. Moreover, we discuss the stability of hybrid microgrids with different types of faults and power mismatches. In particular, we examine the voltage nadir to evaluate the transient stability of the hybrid microgrid. We also design a droop controller to regulate the power flow and alleviate voltage instability. During our study, we establish a Simulink-based simulation platform for operational analysis of the microgrid.

Keywords: AC/DC hybrid microgrid; grid-forming power converter; simulation platform; transient stability; voltage nadir

Citation: Chang, F.; O'Donnell, J., Jr.; Su, W. Voltage Stability Assessment of AC/DC Hybrid Microgrid. *Energies* **2023**, *16*, 399. https:// doi.org/10.3390/en16010399

Academic Editor: Ahmed Abu-Siada

Received: 25 November 2022 Revised: 19 December 2022 Accepted: 23 December 2022 Published: 29 December 2022

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The AC/DC hybrid microgrid is a promising technology for building smart grids with enhanced operational efficiency and flexibility. It is formed by an AC sub-microgrid and a DC sub-microgrid interconnected by one or more interfacing power inverters [1]. It shows a few unique advantages compared with the traditional power grid, such as increased efficiency of power conversion, less copper, and higher power density [2,3]. It shows a few unique advantages compared with the traditional power grid, such as increased efficiency of power conversion, less copper, and higher power density. The AC load and AC generation can be connected to AC buses, while the DC load and DC generation can be connected to DC buses, which can greatly reduce power loss. Integrated with one or more interfacing power converters and various types of power generation, a hybrid microgrid can deal with power generation and conversion with higher flexibility. A few of researchers are exploring hybrid microgrid with more efficient and durable solutions, such as new control techniques and energy management [4,5].

To take full use of this emerging architecture of microgrids, it is critical and urgent to investigate the characteristics of AC/DC hybrid power grids. For example, we need to figure out not only the control strategy of the AC and DC sub-microgrid but also the overall control strategy; and how the control technique regulates the generic power flow and impacts the stability of the microgrid. Paper [6] presents power flow modeling for AC/DC hybrid islanded microgrids including droop-controlled distributed generation, which provides an efficient tool for future power flow planning and operation studies. Paper [7] introduces a power flow control and management framework enabling decentralized power sharing with less communication in a hybrid microgrid. However, the operation control and

Energies **2023**, 16, 399 2 of 25

stability of hybrid microgrids is still a challenging topic, especially when it involves high penetration of power electronic devices and various types of power generation. The intricate characteristics of modern power electronic devices and renewable energy sources lead to new stability problems in hybrid microgrids since they can reshape the general dynamic characteristics of the microgrid. The dynamic responses of renewable energy resources and power electronic devices are quite different from the power generators and other power devices in traditional power grids [8]. Several existing studies have worked on the stability issues. Paper [9] proposes a novel coordination among distributed energy resources, where the frequency regulation is considered in a multi-objective optimization problem. However, the proposed approach focuses more on traditional synchronous generators, and it is limited to frequency stability analysis. In paper [10], a novel structure of a hybrid microgrid is proposed, where energy storage systems are coupled with the non-sensitive loads to achieve the supply/demand balance. However, the proposed design mainly aims at the construction of system reliability but does not consider transient stability. Additionally, paper [11,12] investigates the voltage stability in microgrids with distributed controlled converters and nonlinear loads, but the discussion is limited to DC microgrids only. The small-signal stability analysis of AC/DC hybrid microgrids is presented in [13], but it does not work well when large oscillation occurs. Paper [14] proposes a comprehensive inertial control strategy for stability improvement in an AC/DC hybrid microgrid. The coupling relationship between AC and DC sub-microgrids is discussed based on the power balance, and the characteristics of distributed generation are analyzed. Nevertheless, the control of power electronic components is not involved. In paper [15], a hybrid solar thermal system based power grid is presented to investigate the control of static synchronous compensator (STATCOM) and automatic voltage regulator (AVR). However, it does not consider the effects of control technique of the solar system. In fact, different control techniques of solar system may cause different transient behaviors of the power grid in a faster time scale, such as P-Q control or V-F control. In paper [16], a fuzzy logic based control technique is proposed to maintain the frequency and voltage stability for sudden changes in a hybrid microgrid. Nowadays, the modeling of a complicated AC/DC hybrid microgrid system is in discussion, and how to determine the effects of each component on the system stability is still an open question. The various operation modes of hybrid microgrid also bring challenges to addressing the issues. Moreover, the important objectives of control design for both grid architecture and power devices also include stability enhancement while realizing power management at the same time. These issues become more intractable when a fault or disturbance is imposed on the microgrid.

This manuscript develops an operational model of AC/DC hybrid microgrids and studies the stability issues based on the modeling. The contributions are as follows:

- (1) This manuscript investigates the modeling of AC/DC hybrid microgrids with different types of power electronic devices and power generation, including a traditional power generator, a battery energy storage system (BESS), and PV generation.
- (2) The power converters are modeled using the circuit averaging method, which greatly reduces the runtime of software simulation.
- (3) We discuss the stability of AC/DC hybrid microgrids when a fault or disturbance happens. The voltage nadir is examined to evaluate the transient stability of the microgrid.
- (4) Droop control is adopted to regulate the power flow and alleviate voltage instability. We formulate an equivalent control diagram to develop sensitivity analysis instead of using the original microgrid simulation.

The structure of this manuscript is organized as follows: In Section 2, a typical architecture of AC/DC hybrid microgrids is proposed. The modeling of main power devices is introduced, and the Simulink-based simulation platform is presented. Section 3 discusses the stability of hybrid microgrids when a fault or a disturbance happens. Besides, we present a voltage instability alleviation technique based on droop control. Section 4

Energies **2023**, 16, 399 3 of 25

the stability of hybrid microgrids when a fault or a disturbance happens. Besides, we present a voltage instability alleviation technique based on droop control. Section 4 concludes concludes our work and indicates our future work. The work flow of the proposed method our work and indicates our future work. The work flow of the proposed methodology is ology is described as below (Figure 1).

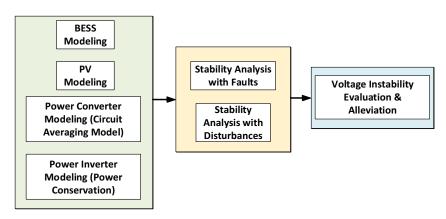
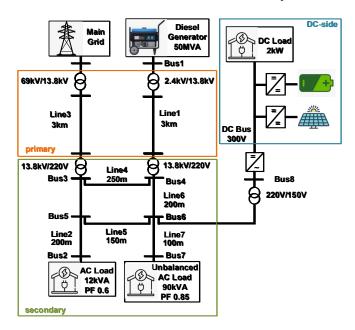



Figure 1. The Workflow of Methodology. Figure 1. The Workflow of Methodology.

22.MaterialsandMethods

221.1 AAT Typrical Acadelliteteture fof an ACDOC Hybrid Microsophid

The diagram of a typical AC/DC hybrid maiosgood is shown miniginers. The Ac Annex of the connected to a 69 kV transmission power system in which it can work under either gidd connected mode or islanding mode. At redding a little set generator supplies power of the Acmin of gidd. The Acmin of gidd included the pinnery distribution registem and the secondary distribution registem, which correspond to two different voltage revers, i.e., 133 sky and 220 V. The xix this includes pinnery and record any distribution registems also differs. In the secondary distribution registem, both blanced rods and who hanced rods and who hanced rods and who hanced rods are considered and modeled. As girld blowing power inverter works as the interface between the Acmin of girld and the Bomic rogidal, transferring power from the Boe is a to the Accident the reference of a tive power. In Bomic rogidal, renewable energy sources are installed to supply eco-friendly power. Here, we consider a Bess integrated with a spiral following power converter. A Bod rod is connected to the Bob us directly.

FFigure?The staucture of a typical hybrid microgrid.

A block of data acquisition is developed to simulate the functionality of the SCADA system inchower grad acquisition is developed to simulate the functionality of the Stablac symportan power erick legaremonitor voltages het critical buses and power losses es same in portant branches The interface is very user friend viruthatits and be assily accessed and explanded with more variables to monitors a needed.

2.2. The Operation of an AC/DC Microgrid
2.2.2. The Operation of an AC/DC Microgrid
1 is suggested to start up the renewable energy sources on the DC side before con1 is suggested to start up the renewable energy sources the DC side before con1 is suggested to start up the renewable energy sources the DC side before con1 in the Start up the DC side before con1 in the Start up the Star ingetien of the Dognitic orbital to the Acciding the start has been also bee (1) Start the BESS integrated with a grid-forming converter, which support the bus voltage (1) Start the BESS integrated with a grid-forming converter, which support the bus voltage at the BESS integrated with a grid-forming converter, which support the bus voltage at the main bus of the Microgram converter, which support the bus voltage at the main bus of the Microgram converter, which support the bus voltage at the main bus of the Microgram converter, which support the bus voltage at the main bus of the Microgram converter. It follows the bus the property of the Microgram of the Microgram converter in the support of the Microgram of the Micro

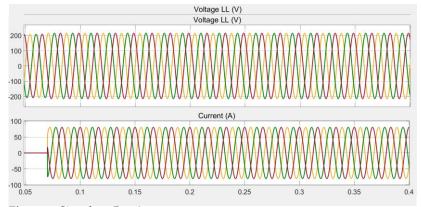


Figure 3. Signals at Bus 8.

As shown in Figure 4 it is observed the both the AC side and the DC side of the AS shown in 1920 to 1 to sobserved that both the AC side and the DC side of the addended the DC side of the addended the Control of the AC side and the DC side of the addended the AC side and the DC side of the addended to the AC side and the DC side of the addended to the AC side and the DC side of the AC side of the A

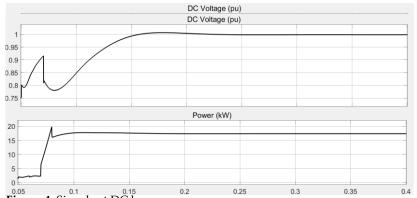


Figure 4. Signals at DC bus. Figure 4. Signals at DC bus.

2.3. The Modeling of BESS and PV

The BESS is installed at the main bus of the DC microgrid. We implement a typical lithium-ion battery model in the BESS. The nominal voltage is 120 V and the rated capacity Energies **2023**, 16, 399 5 of 25

is 800 Ah. The initial state of charge (SoC) is supposed as 80%. Other key parameters are described in Table 1.

Table 1. Main parameters of Lithium-ion batte
--

Cut-off voltage (V)	90
Fully charged voltage (V)	139.6785
Nominal discharge current (A)	347.8261
Internal resistance (Ohms)	0.0015
Capacity (Ah) at nominal voltage	723.4783
Exponential zone [voltage (V), capacity (Ah)]	29.6463, 39.30435

The discharge and charge process of the lithium-ion battery is described by the following equations.

$$E_{dischar} = E_0 - \frac{KQ}{Q - it} \cdot i^* - \frac{KQ}{Q - it} \cdot it + Ae^{-B \cdot it}, i^* > 0$$

$$\tag{1}$$

$$E_{char} = E_0 - \frac{KQ}{it + 0.1Q} \cdot i^* - \frac{KQ}{Q - it} \cdot it + Ae^{-B \cdot it}, i^* < 0$$
 (2)

where $E_{dischar}$ and E_{char} are the nonlinear battery voltages (V), E_0 is the constant voltage (V), E_0 is the polarization constant (V/Ah) or polarization resistance (Ohms), E_0 is the low-frequency current dynamics (E_0), it is the extracted capacity (Ah), E_0 is the maximum battery capacity (Ah), E_0 is the exponential voltage (V), E_0 is the exponential capacity (E_0).

The battery is connected to a grid-forming boost converter, which can support the output voltage as the reference for the DC main bus. The boost converter allows bidirectional power flow and can accommodate both the discharging status and the charging status of the battery.

The PV generation system is also installed at the main bus of the DC microgrid. The PV array consists of 7 parallel strings of PV modules, and each string has 6 series-connected modules. The main parameters of the PV module are shown in Table 2.

Table 2. Main parameters of PV module.

Maximum power (W)	250.205
Cells per module (Ncell)	96
Open circuit voltage Voc (V)	37.4
Short-circuit current Isc (A)	8.63
Voltage at maximum power point Vmp (V)	30.7
Current at maximum power point Imp (A)	8.15
Temperature coefficient of Voc (%/deg.C)	-0.34
Temperature coefficient of Isc (%/deg.C)	0.05

All PV cells operate under an irradiance of 1000 W/m^2 and a temperature of $25 \,^{\circ}\text{C}$. The PV array has 42 modules in total, and the nominal power output is around 10.5 kW. The I-V and P-V characteristics of the PV array are described in Figure 5.

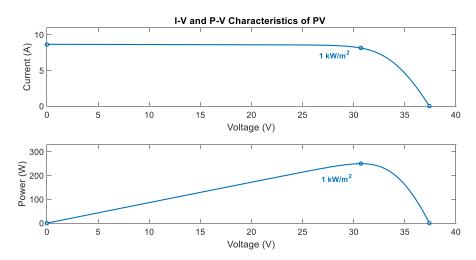


Figure 5. I-V and P-V characteristics of PV panel.

The PV array is connected to a grid-following boost converter. It steps up the voltage from 183 V to 300 V. The incremental conductance method is adopted to realize the tunetionality of MIPP's, which guarantees high utilization of the energy from sunlight. In the MPPT controller, we design the appropriate gain and add the necessary dead zone and integral to ensure operational stability.

2.4. Circuit Averaging Model of Power Converter
2.4. Circuit Averaging Model of Power Converter
To improve the simulation speed and develop a model with physical interpretation, To improve the simulation speed and develop a model with physical interpretation, we model the boost converter using the circuit averaging technique instead of state-space we model the boost converter using the circuit averaging technique instead of state-space averaging in both the BESS and the PV generation. This method performs all manipulation averaging in both the BESS and the PV generation. This method performs all manipulation and the circuit diagram directly to find an averaged switch model for the switch network. On the circuit diagram directly to find an averaged switch model for the switch network. The key step is to replace the converter switches with voltage and current sources to obtain the invariant circuit topology. As described in Figure 60, the equivalent modeling tain a time-invariant circuit topology. As described in Figure 60, the equivalent modeling tain a time-invariant circuit topology. tain a time-invariant circuit topology. As described in Figure 6b, the equivalent modeling of the boost converter using the circuit averaging technique is formulated by the solved equity peopst connvierted using species and averaging technique is to revulated by the selven rate tycle at control value of the soutce and controlled our gets source and the cycle lawers great vante be the clarp area and the current source, traspectively. Voltage source and the cycle-average values frevalue of the output fur on told the current in the current in the contest the cycle-average value. The derivation of the value of $\langle V_1 \rangle$ and $\langle i_2 \rangle$ is introduced as follows.

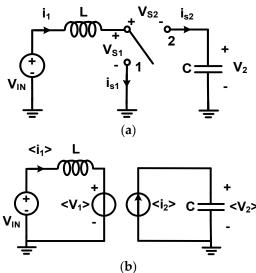


Figure 6. The equivalent modeling refer boost converter (a) Switch model of a boost converter; Averaged circuit model of a boost converter. (b) Averaged circuit model of a boost converter.

Regarding the switch model of a boost converter in Figure 6a, consider that switch is connected at position 1 and position 2, respectively. Suppose the duty ratio is D and the period is T_s in this converter; the switch is at position 1 for $nT_s \le t < (D+n)T_s$ and is at position 2 for $(D+n)T_c \le t \le (n+1)T_c$, where $n \in \mathbb{N}$. Then, the following equations

x FOR PEER REVIEW

Energies **2023**, 16, 399 7 of 25

Regarding the switch model of a boost converter in Figure 6a, consider that switch is connected at position 1 and position 2, respectively. Suppose the duty ratio is D and the period is T_s in this converter; the switch is at position 1 for $nT_s \le t < (D+n)T_s$ and is at position 2 for $(D+n)T_s \le t < (n+1)T_s$, where $n \in N$. Then, the following equations hold.

$$V_{S1}(t) = \begin{cases} 0, & nT_s \le t < (D+n)T_s \\ V_2(t), & (D+n)T_s \le t < (n+1)T_s \end{cases}$$
 (3)

$$V_{S2}(t) = \begin{cases} -V_2(t), & nT_s \le t < (D+n)T_s \\ 0, & (D+n)T_s \le t < (n+1)T_s \end{cases}$$
 (4)

$$i_{S1}(t) = \begin{cases} i_1(t), \ nT_s \le t < (D+n)T_s \\ 0, \ (D+n)T_s \le t < (n+1)T_s \end{cases}$$
 (5)

$$i_{S2}(t) = \begin{cases} 0, & nT_s \le t < (D+n)T_s \\ i_1(t), & (D+n)T_s \le t < (n+1)T_s \end{cases}$$
 (6)

Next, we calculate the cycle-averaged value of the voltage source $\langle V_1(t) \rangle$. By definition, it is known that

$$\langle V_1(t)\rangle \& = \frac{1}{T_s} \int_{t-T_s}^t V_{s1}(\tau) d\tau \tag{7}$$

(1) In the first case, we assume $V_{s1}(t) = 0$, $(n+1-D)T_s < t < (n+1)T_s$. Hence,

$$\langle V_1(t)\rangle \& = \frac{1}{T_s} \int_{t-T_s}^t V_{s1}(\tau) d\tau = \frac{1}{T_s} \int_{nT_s}^{(n+1-D)T_s} V_2(t) dt$$
 (8)

Since $V_2(t)$ has a very small ripple, we consider it a constant in the period $[t - T_s, t]$. Then, we have

$$\langle V_1(t) \rangle = \frac{\frac{1}{T_s} \frac{1}{1-D} \int_{t-T_s}^t V_2(t) dt}{\frac{1}{1-D} \langle V_2(t) \rangle}$$

$$(9)$$

(2) In the second case, we assume $V_{s1}(t) = V_2(t)$. Similarly, we also obtain

$$\langle V_1(t)\rangle \& = \frac{1}{1-D}\langle V_2(t)\rangle \tag{10}$$

Next, we calculate the cycle-averaged value of the current source $\langle i_2(t) \rangle$. By definition, it is known that

$$\langle i_2(t)\rangle \& = \frac{1}{T_s} \int_{t-T_s}^t i_2(t)dt \tag{11}$$

(1) In the first case, we assume $i_{s2}(t) = 0$, $(n+1-D)T_s < t < (n+1)T_s$. Hence,

$$\langle i_2(t)\rangle \& = \frac{1}{T_s} \int_{t-T_s}^t i_2(t)dt = \frac{1}{T_s} \int_{nT_s}^{(n+1-D)T_s} i_1(t)dt$$
 (12)

Since $i_1(t)$ has a very small ripple, we consider it a constant in the period $[t - T_s, t]$. Then, we have

$$\langle i_2(t) \rangle = \frac{1}{T_s} \frac{1}{1-D} \int_{nT_s}^{(n+1-D)T_s} i_1(t) dt$$

= $\frac{1}{1-D} \langle i_1(t) \rangle$ (13)

(2) In the second case, we assume $i_{s2}(t) = i_1(t)$. Similarly, we obtain

$$\langle i_2(t)\rangle \& = \frac{1}{1-D}\langle i_1(t)\rangle \tag{14}$$

$$=\frac{1}{1-D}\langle i_1(t)\rangle$$

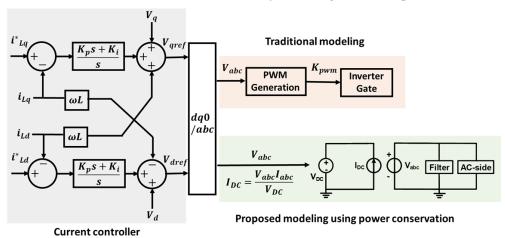
(2) In the second case, we assume $i_{s2}(t) = i_1(t)$. Similarly, we obtain

Energies 2023, 16, 399
$$\langle i_2(t)\rangle \& = \frac{1}{1-D} \langle i_1(t)\rangle$$
 8 of (254)

In conclusion, the equivalent voltage source and current source are solved as follows: In conclusion, the equivalent voltage source and current source are solved as follows:

$$\begin{cases} \langle V_1(t) \rangle = \frac{1}{1 - D} \langle V_2(t) \rangle \\ \langle V_1(t) \rangle = \frac{1}{1 - D} \langle V_2(t) \rangle \\ \langle i_2(i_2) t \rangle = \frac{1}{1 - D} \langle i_1(t) \rangle \end{cases}$$

$$\begin{cases} \langle V_1(t) \rangle = \frac{1}{1 - D} \langle V_2(t) \rangle \\ \langle i_2(i_2) t \rangle = \frac{1}{1 - D} \langle i_1(t) \rangle \end{cases}$$
(135)

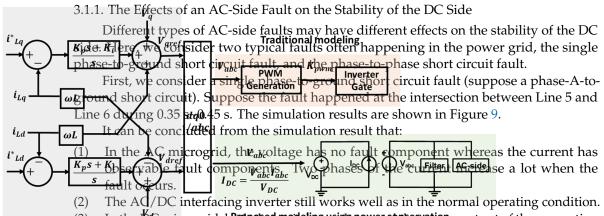

With this conducion now conformulated book convetees as in the model in Figure 66.

25.5.ACPS Interfacing Power Inverter

The Domicrogrid is connected to the Admicrogrid through a grid-following power inverter. The grid-following inverter follows the bus voltage of the grid and controls power inverter. The grid-following inverter follows the bus voltage of the grid and controls power inverter. The grid-following inverter follows the bus voltage of the grid and grid and so power inverter is plugged in the reference of power out is set as 15 kW and o'Var initially. The inverter is plugged in at t = 0.07 s. It can be observed is set as 15 kW and o'Var initially. The inverter is plugged in at t = 0.07 s. It can be observed from the simulation results in Figure 7 that the grid-following controller can successfully generate power as required.

Figure 7 rewise at the signal following inverted of the inverter using the signals from an equivalent controlled voltage source and current source instead of a PWM. The comparison of the inverted first metalion between the conventional equivalent controlled 8.0 that rewise and current source instead of a PWM. The comparison of the inverter is metalised 8.0 that rewise and current source instead of a PWM. The comparison of this implied 8.0 that seem the process instead of a PWM. The comparison of this implied 8.0 that seem the process instead of a PWM. The comparison of the inverter is metalised by the process of the inverter is first, the output voltage of the controlled voltage source is regulated to yair more furtient to output voltage of the controlled voltage source is regulated to the inverter. The output voltage of the controlled voltage is once in the other controlled by the process of the controlled voltage is once in the process of the inverter. The current value is determined by following the rule of power conservation.

Ffigur 88 Control bigganno 6 giddfollowing invester controller.


3. Discussion

3.1. Stability Analysis with Faults

In this section, we discuss the stability of the AC/DC hybrid microgrid with faults.

Energies 2023, 16, 399

To reduce the simulation runtime, we model the inverter using the signals from an 9 of 25 equivalent controlled voltage source and current source instead of a PWM. The comparison of the modeling method between the conventional method and the proposed method is shown in Figure 8. The PWM is a very time-consuming block in the electromagnetic transient (ENTI) sintisfied on, so we replace it with a controlled voltage source on the AC side of the inverter. First, And with worth of the controlled voltage source is regulated by an inner current chist selftion There, discurso them stability not follow declarate by the description of side of the inspectifically, we improve a fail determined by fifth lowing the imagnifipond the or investigate its effects on the stability of the other side.

In the DC microgrid, both the demand but with a generation Current controller systems have very small oscillations. Considering that the oscillation of the main bus

voltage is within 5%, the DC loads can still work in the normal condition in most cases. Figure 8. Control diagram of grid-following inverter controller.

Second, we consider a phase-to-phase short circuit fault (suppose a phase-A-to-phase-3. Discussion short circuit). Suppose the fault happened at the intersection between Line 5 and Line 6

3.1. Stability Analysis with Faults

It can be concluded from the simulation result that:

In this section, we discuss the stability of the AC/DC hybrid microgrid with faults.

Specifically, we impose a fault on one side of the hybrid microgrid and then investigate ponents. However, unlike the case with a single phase-to-ground fault, the fault current does not show any increase. Therefore, some devices on the AC side possibly

3.1.1. The Effects of an AC-Side Fault on the Stability of the DC Side challenges to fault detection.

Different types of the voile goalds may have different offere on the stability of the DC me distorted. side. Here, we consider the otypical faults often happening in the power grid, the single

phase-to-ground shortediscuitifully and the measure below the phase to be straightfully below to output of the generation First, we consider a single phase to a sound show he received the desuppose who is provided and fault ground short circuit) to uppose the fault happened at the intersection between Laine 5 and Line 6 during $0.3\overline{5}$ s~0.45 s. The simulation results are shown in Figure 9.

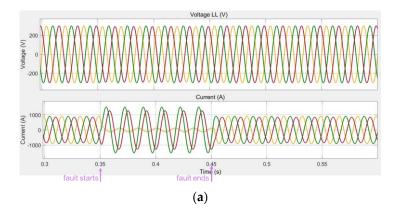
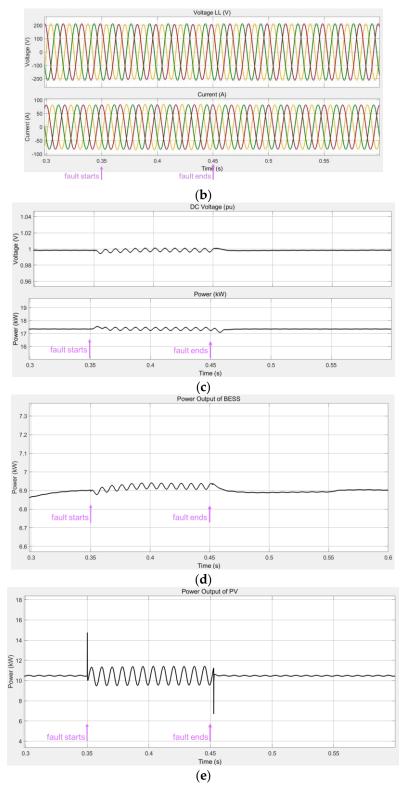



Figure 9. Cont.

10 of 25

Figure 9. Performance when a single phase-to-ground fault occurs on the AC side. (a) Signals at Bus Signals at 6; (b) Signals at AC/DC interfacing Bus 8; (c) Signals at DC bus; (d) Power output of the BESS; (e) Bus 6; (b) Signals at AC/DC interfacing Bus 8; (c) Signals at DC bus; (d) Power output of the BESS; (e) Power output of the PV generation.

(e) Power output of the PV generation.

It can be concluded from the simulation result that:

(1) In the AC microgrid, the voltage has no fault component whereas the current has observable fault components. Two phases of the current increase a lot when the fault occurs.

11 of 25

Energies **2023**, 16, 399

(2) The AC/DC interfacing inverter still works well as in the normal operating condition.

(3) In the DC microgrid, both the main bus voltage and the power output of the generation systems have very small oscillations. Considering that the oscillation of the main bus voltage is within 5%, the DC loads can still work in the normal condition in most phase fault, so we skip the detailed simulation results here. Besides, the three-phase fault is destructive to the whole hybrid microgrid; the software simulation terminates less Secondary 6.00 Is after the fault occurs dile to the risk following the power offtput of the phase-B short circuit suppose the fault happened at the intersection between Line 5 and Line 6 during t = 0.35~0.45 s. The simulation results are shown in Figure 10.

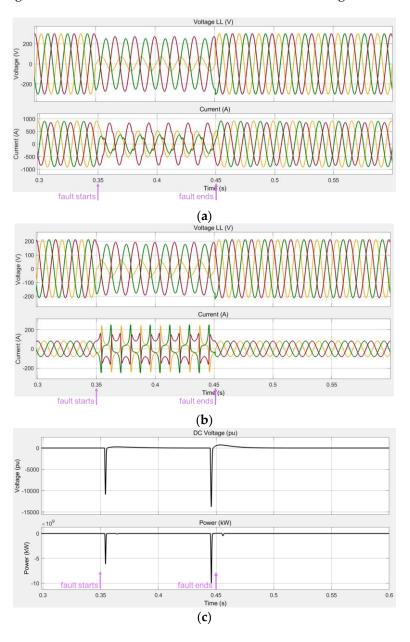


Figure 10. Cont.

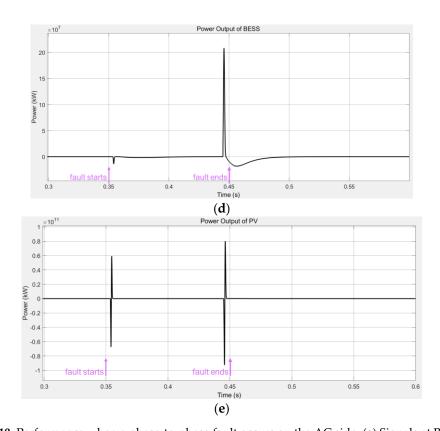


Figure 10. Performance when a phase-to-phase fault occurs on the AC side (a) Signals at Bus 6; (b) Signals at AC/DC interfacing Bus 8; (c) Signals at DC bus; (d) Power output of the BESS; (e) Power output of the PV generation.

(e) Power output of the PV generation.

It can be concluded from the sinulation casult that ility of the AC Side

- In the ACI migragrish sethethreveltage and the succentilia va chaestability and the naposide. The nents. Howaverulus likatha ease with the inglesplease tiet groundefant the toutecurrented short doesinotishoutsny increase. Therefore, some devices on the AC side possibly still work as Firthe we supposed the interfacility decision delet the permitted from the DC lengeste of ariltedete of Bons ~ 0.6 s. The simulation results are shown in Figure 11.
- (2) Both the Italian at in the Italian of the Chine of the Conference of the Conference of the Italian of the I The traulthur the tAsionic sharifus spikes. DC microgrid. In fact, the effects of a line disconnection
- In the Dicapience high by that the docart lons whet region and the properties of the estingered further tionisys tenbridamitregried doushiphtise Whichideolad aleatræyctne phlaate optoperleggid. A fault professional schemenside in his professional fault professional schemenside in his profe

In addition, the 35 feed 45 a The simulation results are shown in Figure 12 phase-tophase fault, so we skip the detailed simulation results here rivial effects on the Alamicroprid such is destructive its till worke as jorthe morphal condition and that the ACC Deninterfacing inverter still 0.001 s after the whole hypothe inicrogrid, the software simulation terminates less than 0.001 s after the works well however, the fault has a highly detrimental impact on the DG microgrid, where both the bus voltage and the power generation show a sharp spike and large oscillation.

The following table (Table 3) shows the effects of different faults on each side of the 3.1.2. The Effects of a pictogrid In this table we simplify the effects of faults on the microgrid into three levels: normal, faulty, and severe faults. "Normal" means that the related This part presents the effects of a DC side fault on the stability of the AC side faulty and severe faults. common faults that happen to the DC microgrid include line disconnection and short circomponent of the related voltage or current, and severe means that there is a tremendous cuit faults scillation or severe instability. Detailed descriptions of the effects of faults can be obtained First we suppose that a line disconnection fault happened to the main bus on the DC

side during $t = 0.35 \text{ s} \sim 0.6 \text{ s}$. The simulation results are shown in Figure 11.

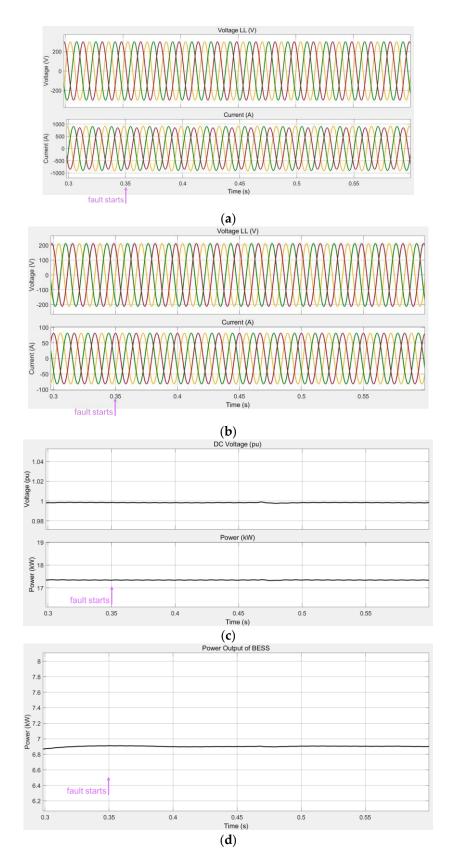


Figure 11. Cont.

Energies 2023, 16, 399 Energies 2023, 16, x FOR PEER REVIEW

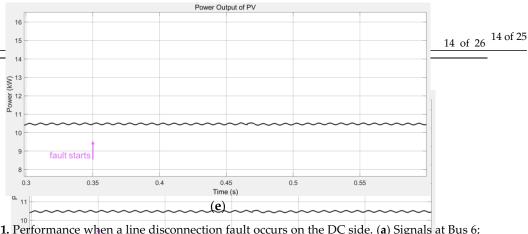
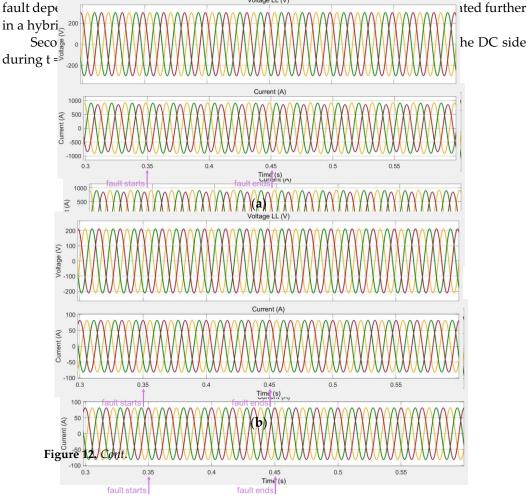



Figure 11. Performance when a line disconnection fault occurs on the DC side. (a) Signals at Bus 6; (b) Signals at AC/DC interfacing Bus 8; (c) Signals at DC bus; (d) Power output of the BESS; (e) Power output of the PV generation.

It is noticed that the line disconnection(a) ult does not result in observable damages to either the AC microgrid or the DC microgrid. In fact, the effects of a line disconnection figure 1. Ferformance when a line disconnection fault occurs on the DC side. (a) signals at Bus (b) signals at ACDC meeting bits 8. (c) signals at DC bus; (d) Fower output of the BESS. (e) in Avy bit bit of the BESS. (e) signals at ACDC meeting bits 8. (c) signals at DC bus; (d) Fower output of the BESS. (e) in Avy bit bit of the BESS.

Second, we extisted the Poisse Fatter that happened to the main bus on the DC side during to hate the the time that in action action to either the AC microgrid or the DC microgrid. In fact, the effects of a line disconnection

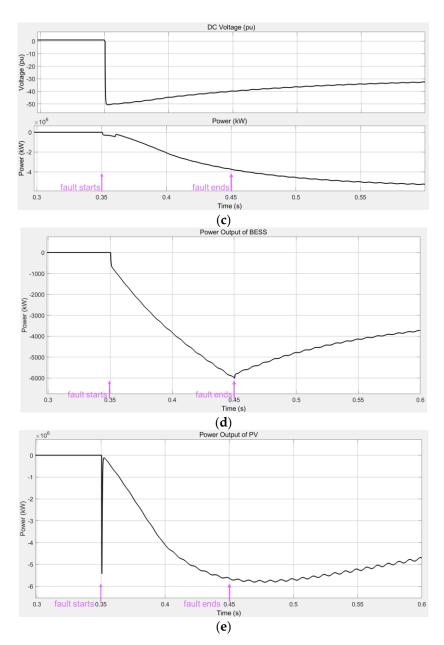


Figure 12. Performance when a ground fault occurs on the DC side (a) Signals at Bus 6; (b) Signals at AC/DC interfacting Bus 8; (c) Signals at DC bus; (d) Power output of the BESS; (e) Power output of the PV generation.

The PV generation.

It can be observed that the ground fault has trivial effects on the AC microgrid such that it stribe content in the stribe content i

The following table (Table 3) shows the effects of different faults on the microgrid AC/DC hybrid Griderogrid. In this table, we simplify the effects of faults on the microgrid into three levels: normal, faulty, and severe faults. "Normal" means that the related devices could still work in normal repetation, "faulty" means that there is a limited faulty component of the related voltage concertent, and "severed means that there is a tremenal dous oscillation of severe instability and etailed descriptions of the effects of faults can hormal obtained in previous paragraphs.

s **2023**, 16, 灰硬硬中**2023**, NÉXIEW 16 of 25 16 of 25

3.2. Stability Analystability Disturbances

This section presented in the state of the section present the section present the section present the section present the section of the sec

First, we take first were take axially stative examines at the disturbance capsed by a jaurplus load in the DC microgrid. Supposed the Dangas of the IRA land installed at the major that of the DC microgrid increases from the results of the way at the total station. The simulation of the regular of the AC side of hybrid microgrid. Which was a large to the busy of the busy of the busy of the busy of the major DC busy has a large voltage dip of 5%, which may result in which power quality and threaten the invarial operation to electric devices.

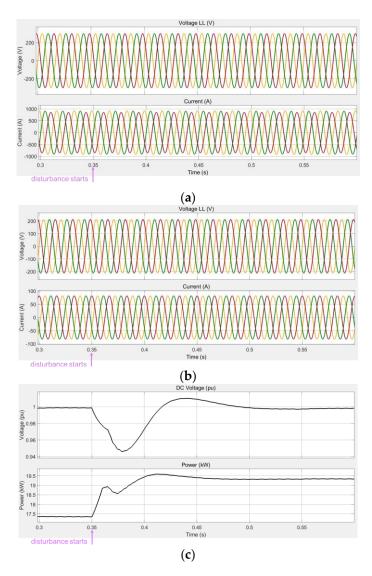


Figure 13. Cont.

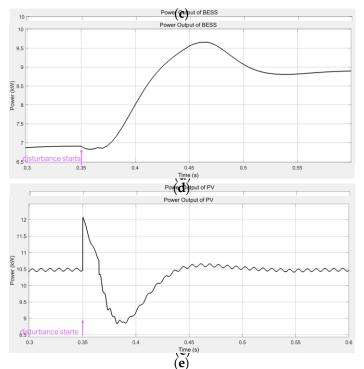


Figure 13. Performances when a DC-side nurplus condular pens (a) Signals at Sus Signals at Signals at Figure 13. Performance swhen a DC-side nurplus charles the pens of the p

Second, we consider the scenarior in which the aperational environment of the PV generation dely account of the PV generation dely account of the PV generation dely account of the properties o

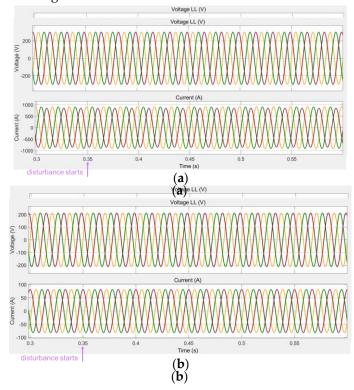


Figure 14. Cont.

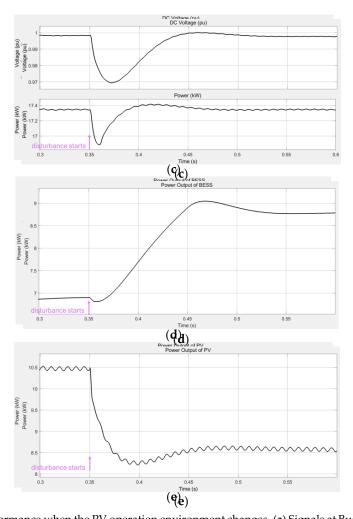


Figure 14 Performance when the Physical invention open changes of Sisterland Buses (1) Sister

The change in The decident the inventional the Two green in the System difference not lead to an exident distribution decident the Aristophila of the Aristophila of

Less two consisters a instrumental consisters and an in the AC crossides uppose the manager of the consisters and an interest and an interest

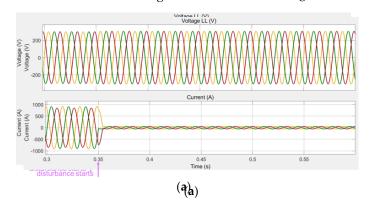


Figure 15. Cont.

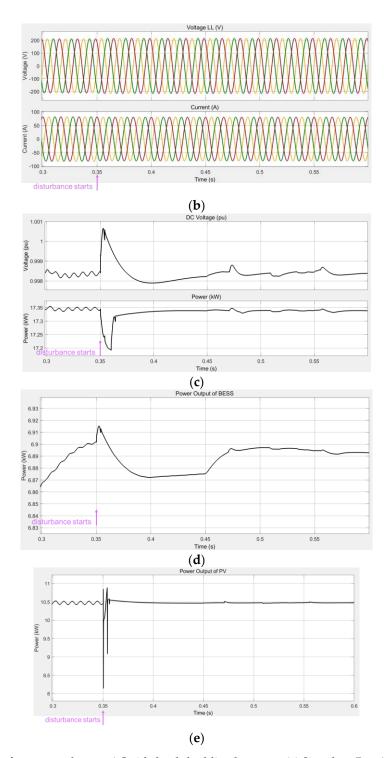


Figure 15. Performance when an AC-side load shedding happens (a) Signals at Bus 6; (b) Signals at AC/DC interfacing Bus 8; (c) Signals at DC bus; (d) Power output of the BESS; (e) Power output of the PV generation.

The PV generation.

When an ACwide land shedding happens the diesel generator installed in the AC microgrid can regulate its prevention to will the up to the up at the up at the up to the up at the up to the up to the up at the up to th

Table 4 concludes the ofference training the ofference types of the high side of the AC/DC hybrid microgrid.

Table 4. Effects of disturbance on hybrid microgrid.

Table 4. Effects of disturbance on hybrid mici	crogrid.
--	----------

Disturbance Disturbance Location Location	Disturbance Type Disturbance Type	DC-Side DC-Side	AC-Side AC-Side
DC-side DC-side	A surplus load A surplus load Operational environment changes	Voltage dip Voltage dip Voltage dip	Normal Normal Normal
AC-side	Operational environment changes	Normal dip	Power regulation
AC-side	Load shedding	Normal	Power regulation

- 3.3. Voltage Instability Alleviation with Droop Control
- 3.3. Whte Bribbs be at a followick introllibase of methodology to alleviate the voltage instability (voltage relipp) cheer of distortion to alleviate the voltage instability (voltage dip) due to disturbances.
- 3.3.1. Power Flow Management Using Droop Control
- 3.3.1. Power Flow Management Using Droop Control A simplified power flow diagram is shown in Figure 16. In the operation of power grids, the object of a first released a stance the DC-side prover genter approximation of the proverse of the provense of the exicles it he and rate ratestice of twelvelons of the first of the side and rate rates and rate rates are provided in the side of the side sideaned they Actisid vontage consumption. Detring the power result to an evalue time voltage maxability willingar instability tithe regulating the power flow! Expete the , rule ocupate that while at the same time resulating the power flow Expecially, the DS side transient we tage can be investigated by examining the voltage nadir, as introduced in the next subsection.

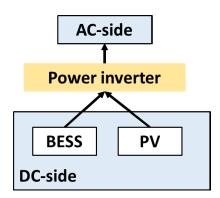


Figure 16. The simplified framework of power flow in the hybrid microgrid.

Therefore, as shown in Figure 17, we design drop porantials to fend hat interfacing iveretentle BESS, and the PV system respectively.

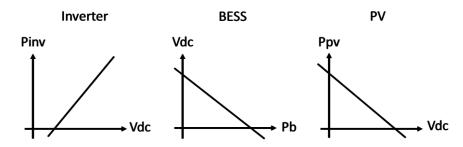


Figure 17. Droop controllers in the hybrid microgrid.

The droop characteristics of the droop controllers are described as follows:

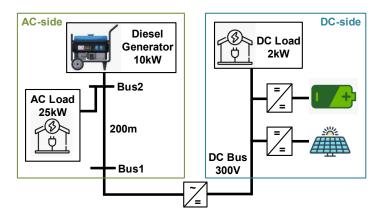
$$\begin{aligned}
P_{inv} &= P_{inv_ref} + K_{inv}(V_{dc} - V_{dc_ref}) \\
P_{inv} &= P_{inv_ref} + K_{inv}(V_{dc} - V_{dc_ref})
\end{aligned} (16$$

 $P_{inv} = P_{inv_ref} + K_{inv}(V_{dc} - V_{dc_ref})$ $P_{inv} = P_{inv_ref} + K_{inv}(V_{dc} - V_{dc_ref})$ where P_{inv} , P_{inv_ref} is the actual power output and the reference value of the power output and the power output and th put of the inverter, respectively, K_{inv} is droop gain of the inverter, V_{dc} , V_{dc_ref} is the actual voltage and the reference value of the voltage at the DC-side main bus, respectively,

Energies **2023**, 16, 399 21 of 25

Energies 2023, 16, x FOR PEER REVINATION P_{inv_ref} is the actual power output and the reference value of the power output 6 of the inverter, respectively, K_{inv} is droop gain of the inverter, V_{dc} , V_{dc_ref} is the actual voltage and the reference value of the voltage at the DC-side main bus, respectively,

$$V_{dc}V_{\overline{dc}} \bigvee_{dc} V_{\overline{dc}} r_{\underline{bc}} r_{\underline{cf}} + K_{\overline{b}} \left(Q_{\overline{b}} (P_{\overline{b}} P_{\underline{b}} P_{\underline{b}} p_{\underline{b}} r_{\underline{b}}) \right) \tag{177}$$


where $\mathcal{P}_{h}^{P_{h}}\mathcal{P}_{$

$$\begin{array}{c} P_{pv} = P_{pv_ref} + K_{pv}(V_{dc} - V_{dc_ref}) & (18) \\ P_{pv} = P_{pv_ref} + K_{pv}(V_{dc} - V_{dc_ref}) & (18) \end{array}$$
 where P_{pv} , P_{pv_ref} is the actual power output and the reference value of the power output

where P_{pv} , P_{pv_ref} is the actual power output and the reference value of the power output whicher P_pv , P_{pv_ref} is the actual power output whicher P_pv , P_{pv_ref} is the actual power output of the Pv, P_{pv_ref} is the actual power output of the Pv, P_{pv_ref} is the actual power output of the Pv, P_{pv_ref} is the actual power output of the Pv system. The actual power output of the Pv system of the power output of the Pv system of the Pv system.

3.3.2. The Evaluation of Stability Using Voltage Nadir. 3.3.2. The Evaluation of Stability Using Voltage Nadir

In this section, we evaluate the stability of the hybrid microgrid installed with droop in this section, we evaluate the stability of the hybrid microgrid installed with droop controllers. The voltage nadir during a dynamic process caused by a disturbance is measured to reflect system stability. A small-scale AC/DC hybrid microgrid as shown in ured to reflect system stability. A small-scale AC/DC hybrid microgrid as shown in Figure 18 is taken as an illustrative example. A droop controller is installed at the power 18 is taken as an illustrative example. A droop controller is installed at the power inverter, the BESS, and the PV generation system.

FFigure 38. The framework of a small-scale hybrid microgrid.

Considering the papered models of power in neventarian popular conventer to Sa Sientian the translating and the sensitistical an integrity of the translating of the sensitistic conventer to the sensitistic conventer to

This control diagram can be utilized to investigate the voltage nadir analytically and to implement sensitivity analysis with reduced runtime. Before that, however, we first need to validate the correctness and accuracy of this control diagram by the following case study.

As shown in Figure 20, suppose the PV generation system is allowed to shed power beginning at t = 0.3 s and that an extra DC-side 2 kW load (around 45 Ohm resistive load) is plugged into the DC-side main bus beginning at t = 0.5 s. When the PV generation system is allowed to shed power at t = 0.3 s, there is instantly about 1.5 kW of power shedding

Energies **2023**, *16*, 399 22 of 25

considering the total power consumption in the microgrid. When an extra AC-side load is plugged in at t = 0.5 s, less power shedding (around 0.25 kW) is needed because of the increased power load consumption. In addition, it is observed that the voltage nadir caused by the plug-in surplus load is 0.9845 (p.u.) at t = 0.514 s. The steady-state voltage before Energies 2023, 16, x FOR PEER REVIDE plug-in of the surplus load is 0.9989 (p.u.) during t = 0.37 s~0.5 s, and the steady-state voltage after the plug in of the surplus load is 0.9898 (p.u.) at t = 0.63 s.

ies **2023**, 16, x FOR PEER REVIEW

Figure 19. The control diagram of a small-scale hybrid microgrid. Figure 19. The control diagram of a small-scale hybrid microgrid.

This control diagram can be utilized to investigate the voltage nadir analytically and efore that, however, we first t liagram by the following case r S em is allowed to shed power t round 45 Ohm resistive load) i When the PV generation sysut 1.5 kW of power shedding t When an extra AC-side load C \mathbf{i} [™]⟨W) is needed because of the increased power load consumption. In addition, it is observed that the voltage nadir 4 s. The steady-state voltage ł = $0.37 \text{ s} \sim 0.5 \text{ s}$, and the steady-.u.) at t = 0.63 s. (b)

23 of 26

Figure 20. Voltage nadir measured in the Simulink simulation. (a) Power output of the PV generation; tion; (b) Signals at DC bus.

(b) Signals at DC bus.

Comparably the dynamics obtained from the proposed control diagram of this flow in Figure 21. Figure 52: The same surplus load (figure 50.5 s. It is observed that the voltage nadir is 0.9822 (p.u.) at t=0.511 s. The steady-state voltage before the plug-in of the surplus load is 0.9996 (p.u.) during t=0.37 s~0.5 s, and the steady-state voltage after the plug-in of the surplus load is 0.9904 (p.u.) beginning at t=0.63 s. The difference in the voltage dip between the microgrid simulation and the control diagram can be measured by the root mean square error (RMSE). In this case, the

Energies **2023**, 16, 399

Figure 20. Voltage nadir measured in the Simulink simulation. (a) Power output of the PV generation; (b) Signals at DC bus.

Comparably, the dynamics obtained from the proposed control diagram are shown in Figure 21. Suppose the same surplus load (an extra DC-side 2 kW load) is plugged in t=0.5 s. It is observed that the voltage nadir is 0.9822 (p.u.) at t=0.511 s. The steady-state at t=0.5 s. It is observed that the voltage nadir is 0.9822 (p.u.) at t=0.511 s. The steady-state voltage before the plug-in of the surplus load is 0.9996 (p.u.) during t=0.37 s~0.5 s, and state voltage before the plug-in of the surplus load is 0.9996 (p.u.) during t=0.37 s~0.5 s, the steady-state voltage after the plug-in of the surplus load is 0.9944 (p.u.) beginning at and the steady-state voltage after the plug-in of the surplus load is 0.9944 (p.u.) beginning at t=0.63 s. The difference in the voltage dip between the microgrid simulation and the at t=0.63 s. The difference in the voltage dip between the microgrid simulation and the control diagram can be measured by the root mean square error (RMSE). In this case, the RMSE is 0.0333%, which means the difference is ignorable.

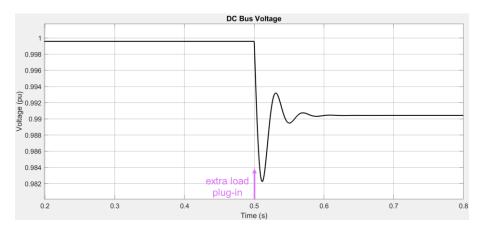


Figure 21. Voltage nadir measured in the equivalent control diagram. Figure 21. Voltage nadir measured in the equivalent control diagram.

Whippelement multiples as susted in with differ pot the world and disturbences to take the appropriate the properties of the proposed control diagram.

Table 5. The comparison of dynamics between simulation and control diagram.

Load Disturb	ance	2.0 kW	4.0 kW	1.5 kW	0.5 kW
Microgrid simulation	Steady-state voltage before disturbance	0.9989	0.9989	0.9989	0.9989
	Voltage nadir	0.9845	0.9691	0.9879	0.9953
	Steady-state voltage after disturbance	0.9898	0.9731	0.9920	0.9966
Control diagram	Steady-state voltage before disturbance	0.9996	0.9996	0.9996	0.9996
	Voltage nadir	0.9822	0.9657	0.9865	0.9952
	Steady-state voltage after disturbance	0.9904	0.9816	0.9927	0.9973
RMSE (%)		0.0333	0.1933	3.7007×10^{-15}	0.0433

Next, we formulate a sensitivity analysis of the droop control to the voltage nadir. The equivalent control diagram is leveraged to reduce the runtime of the sensitivity analysis. From the sensitivity analysis results in Figure 22, it is noticed that the parameters of the droop controllers of different power devices have different impacts on the voltage nadir. Based on the sensitivity analysis of the voltage nadir, a stability-aware operation constraint

RMSE (%) 0.0333 0.1933 3.7007e-15 0.0433

Energies 2023, 16, 399

Next, we formulate a sensitivity analysis of the droop control to the voltage nadir. The equivalent control diagram is leveraged to reduce the runtime of the sensitivity analysis. From the sensitivity analysis results in Figure 22, it is noticed that the parameters of ²⁴ of ²⁵ the droop controllers of different power devices have different impacts on the voltage nadir. Based on the sensitivity analysis of the voltage nadir, a stability-aware operation constrainthfooptimizationizationleprofleprose floweral against game at proposed will be whick considered in demendation work.

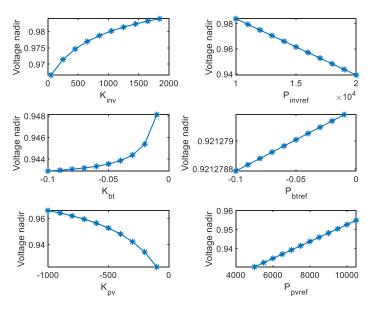


Figure 22 usersitisity in alysin alyside to the contain (p.u.).

FurthErnthur, nitorepitop proposatrobultagiralia granticals libels ever aged to end proposatrobultagiralia granticals libels ever aged to end of an analytical stitute of the end of the en

4. Conclusions

In this manuscript, we propose the modeling of a typical AC/DC hybrid microgrid with renewable energy sources, including a BESS and a PV generation system. The involved power converters are modeled using the circuit-averaging technique, which has a higher simulation efficiency and further assists in the analytical study. Based on the proposed microgrid modeling, we also discuss the stability of a hybrid microgrid when a fault or disturbance occurs. In addition, we present a framework of voltage instability alleviation based on droop control, which can improve the voltage nadir and regulate power flow during grid operation. An equivalent control diagram is proposed to simulate and study the voltage dynamics of hybrid microgrid model. The equivalency is validated in our case study due to the error of voltage nadir less than 0.2%. Our future work will discuss the symmetrical component and harmonic analysis during faults or disturbances and investigate more impact factors of the voltage nadir.

Author Contributions: Conceptualization, F.C.; methodology, F.C.; software, F.C.; formal analysis, F.C.; writing—original draft preparation, F.C. and J.O.J.; writing—review and editing, J.O.J. and W.S.; supervision, W.S.; project administration, W.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the U.S. National Science Foundation (NSF) under Award 2034938. Any opinions, findings, and conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. National Science Foundation.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Energies **2023**, 16, 399 25 of 25

References

1. Gupta, A.; Doolla, S.; Chatterjee, K. Hybrid AC–DC Microgrid: Systematic Evaluation of Control Strategies. *IEEE Trans. Smart Grid* 2018, 9, 3830–3843. [CrossRef]

- Fotopoulou, M.; Dimitrios, R.; Fotis, S.; Spyros, V. A Review on the Driving Forces, Challenges, and Applications of AC/DC Hybrid Smart Microgrids. Smart Grids Technol. Appl. 2022. Available online: https://www.intechopen.com/chapters/80118 (accessed on 23 November 2022).
- 3. Aljafari, B.; Subramanian, V.; Vairavasundaram, I.; Rhanganath, V. Optimization of DC, AC, and Hybrid AC/DC Microgrid-Based IoT Systems: A Review. *Energies* **2022**, *15*, 6813. [CrossRef]
- 4. Shafiullah, M.; Refat, A.; Haque, M.; Chowdhury, D.; Hossain, M.; Alharbi, A.; Alam, M.; Ali, A.; Hossain, S. Review of Recent Developments in Microgrid Energy Management Strategies. *Sustainability* **2022**, *14*, 14794. [CrossRef]
- 5. Prasad, T.; Devakirubakaran, S.; Muthubalaji, S.; Srinivasan, S.; Karthikeyan, B.; Palanisamy, R.; Bajaj, M.; Zawbaa, H.; Kamel, S. Power management in hybrid ANFIS PID based AC–DC microgrids with EHO based cost optimized droop control strategy. *Energy Rep.* **2022**, *8*, 15081–15094. [CrossRef]
- 6. Tinajero, G.; Nasir, M.; Vasquez, J.; Guerrero, J. Comprehensive power flow modelling of hierarchically controlled AC/DC hybrid islanded microgrids. *Int. J. Electr. Power Energy Syst.* **2021**, 127, 106629. [CrossRef]
- 7. Eghtedarpour, N.; Farjah, E. Power Control and Management in a Hybrid AC/DC Microgrid. *IEEE Trans. Smart Grid* **2014**, *5*, 1494–1505. [CrossRef]
- 8. Shair, J.; Li, H.; Hu, J.; Xie, X. Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics. *Renew. Sustain. Energy Rev.* **2021**, *145*, 111111. [CrossRef]
- 9. Arzani, M.; Abazari, A.; Oshnoei, A.; Ghafouri, M.; Muyeen, S. Optimal distribution coefficients of energy resources in frequency stability of hybrid microgrids connected to the power system. *Electronics* **2021**, *10*, 1591. [CrossRef]
- 10. Zhang, G.; Yuan, J.; Li, Z.; Yu, S.S.; Chen, S.-Z.; Trinh, H.; Zhang, Y. Forming a Reliable Hybrid Microgrid Using Electric Spring Coupled with Non-Sensitive Loads and ESS. *IEEE Trans. Smart Grid* **2020**, *11*, 2867–2879. [CrossRef]
- 11. Chang, F.; Cui, X.; Wang, M.; Su, W.; Huang, A.Q. Large-Signal Stability Criteria in DC Power Grids with Distributed-Controlled Converters and Constant Power Loads. *IEEE Trans. Smart Grid* 2020, 11, 5273–5287. [CrossRef]
- 12. Chang, F.; Cui, X.; Wang, M.; Su, W. Potential-Based Large-Signal Stability Analysis in DC Power Grids With Multiple Constant Power Loads. *IEEE Open Access J. Power Energy* **2021**, *9*, 16–28. [CrossRef]
- 13. Li, Z.; Shahidehpour, M. Small-Signal Modeling and Stability Analysis of Hybrid AC/DC Microgrids. *IEEE Trans. Smart Grid* **2019**, *10*, 2080–2095. [CrossRef]
- 14. He, L.; Li, Y.; Guerrero, J.M.; Cao, Y. A Comprehensive Inertial Control Strategy for Hybrid AC/DC Microgrid With Distributed Generations. *IEEE Trans. Smart Grid* **2020**, *11*, 1737–1747. [CrossRef]
- 15. Ranjan, S.; Das, D.; Sinha, N.; Latif, A.; Hussain, S.; Ustun, T. Voltage stability assessment of isolated hybrid dish-stirling solar thermal-diesel microgrid with STATCOM using mine blast algorithm. *Electr. Power Syst. Res.* **2021**, *196*, 107239. [CrossRef]
- 16. Asghar, F.; Talha, M.; Kim, S. Robust frequency and voltage stability control strategy for standalone AC/DC hybrid microgrid. Energies 2017, 10, 760. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.