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ABSTRACT

We present an algorithm for strongly refuting smoothed instances of

all Boolean CSPs. The smoothed model is a hybrid between worst

and average-case input models, where the input is an arbitrary

instance of the CSP with only the negation patterns of the liter-

als re-randomized with some small probability. For an 𝑛-variable

smoothed instance of a 𝑘-arity CSP, our algorithm runs in 𝑛𝑂 (ℓ)

time, and succeeds with high probability in bounding the optimum

fraction of satisfiable constraints away from 1, provided that the

number of constraints is at least 𝑂̃ (𝑛) ( 𝑛ℓ )
𝑘
2 −1. This matches, up to

polylogarithmic factors in 𝑛, the trade-off between running time

and the number of constraints of the state-of-the-art algorithms for

refuting fully random instances of CSPs.

We also make a surprising connection between the analysis of

our refutation algorithm in the significantly łrandomness starvedž

setting of semi-random 𝑘-XOR and the existence of even covers in

worst-case hypergraphs.We use this connection to positively resolve

Feige’s 2008 conjecture ś an extremal combinatorics conjecture on

the existence of even covers in sufficiently dense hypergraphs that

generalizes the well-knownMoore bound for the girth of graphs. As

a corollary, we show that polynomial-size refutation witnesses exist

for arbitrary smoothed CSP instances with number of constraints a

polynomial factor below the łspectral thresholdž of 𝑛𝑘/2, extending
the celebrated result for random 3-SAT of Feige, Kim and Ofek.
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1 INTRODUCTION

Worst-case complexity theory paints a grim picture for solving Con-

straint Satisfaction Problems (CSPs). For a large class [10, 23] of Max

CSPs with 𝑘-ary Boolean predicates (𝑘-CSPs), the Exponential Time

Hypothesis (ETH) [17] implies that for sparse instances, i.e., with

𝑚 = 𝑂 (𝑛) constraints in 𝑛 variables, there is no sub-exponential

time approximation algorithm that beats simply returning a random

assignment. While fully-dense instances (i.e.,𝑚 ⩾ 𝑂 (𝑛𝑘 )) admit [7]

a polynomial time approximation scheme (PTAS), ETH implies that

lowering𝑚 to just ∼ 𝑛𝑘−1 makes the problem APX-hard [16] even

for sub-exponential time algorithms. In fact, for instances with

𝑚 ⩽ 𝑂 (𝑛𝑘−1), we suspect that even efficiently verifiable certificates

of non-vacuous upper bounds on the value, i.e., max fraction of

constraints satisfiable, do not exist.

The study of random CSPs, on the other hand, offers a stark

contrast. Max 𝑘-CSPs with any strictly super-linear number of,

say, 𝑚 ⩾ 𝑛1.1 randomly generated constraints1 admit [3, 9, 25]

sub-exponential time tight refutation2 algorithms. These are based

on spectral methods that exploit problem structure in non-trivial

ways. Further, when𝑚 ∼ 𝑂̃ (𝑛𝑘/2) ≪ 𝑛𝑘−1, such algorithms in fact

yield a PTAS for certifying the value of the input instance correctly.

In fact, a considerably more fine-grained, predicate-specific and

likely sharp picture [8, 20] of the trade-off between running time

and number of constraints has emerged in the last decade. Adding

to this rich theory is the fascinating work of [14] that shows that

random CSPs admit polynomial-time verifiable certificates of non-

trivial upper bounds on the value even when𝑚 ∼ 𝑛𝑘/2−𝛿𝑘 ś i.e.,

when number of constraints are polynomially smaller than the

threshold for efficient refutation.

How does the complexity landscape of CSPs ś for both algo-

rithms and certificates ś interpolate between these two extremes?

Is the worst-case understanding too pessimistic? Is the average-case

understanding too idealistic? And are the sophisticated algorithmic

tools and the structural properties that govern their success for

random CSPs relevant to more general instances?

Refutation algorithms in the smoothed model. To formally

study these questions, in 2007, Feige [12] introduced a natural

łhybridž model in between worst-case and random instances (in

the spirit of the pioneering work of Spielman and Teng [28]). In

this smoothed model, an instance is generated by starting from

an arbitrary (i.e., worst-case) instance, and then negating each

literal in each clause independently with some small, constant

probability. In contrast to random CSPs where the clause structure

1i.e., uniformly random and independently chosen variables and łliteral patternsž in
each constraint.
2Such algorithms correctly certify an upper bound on the value within an arbitrarily
small additive 𝜀 w.h.p.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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(i.e., 𝑘-tuples describing the constraints) and the literal patterns (i.e.,

which variables are negated in a constraint) are chosen uniformly at

random and independently, the clause structure in smoothed CSPs

is completely arbitrary (i.e., worst-case) and only a small constant

fraction of the literal patterns are random. In [12], Feige combined

semidefinite programming with a new combinatorial certificate

based on a natural notion of cycles in hypergraphs, and proved that

polynomial algorithms succeed in weakly refuting (i.e., certifying

a 1 − 𝑜𝑛 (1) upper bound on value, Definition 1.2) smoothed 3-SAT

formulas with𝑚 ⩾ 𝑂̃ (𝑛1.5) constraints.
Feige’s techniques, however, appear fundamentally limited to

weak refutation and specialized to 3-CSPs. As a result, there is no

known strong refutation algorithm (i.e., certifying a 1−Ω(1) upper
bound on value) for smoothed instances of 3-SAT and no known

(even weak) refutation algorithm for smoothed instances of any

nontrivial 4-CSP.

In this work, we develop new techniques that yield strong refu-

tation algorithms for all Boolean 𝑘-CSPs with (a possibly sharp)

trade-off between running time and number of constraints match-

ing that of random 𝑘-CSPs [25], up to polylogarithmic factors. In

particular, our results show that the algorithmic task of strong refu-

tation in the significantly łrandomness starvedž setting of smoothed

instances is no harder than in a fully random instance.

Refutation witnesses below spectral threshold: Feige’s con-

jecture. The work [14] (and extensions [30]), prove that there are

efficiently verifiable witnesses of unsatisfiability for fully random

𝑘-CSPs with 𝑛
𝑘
2 −𝛿𝑘 constraints for some constant 𝛿𝑘 > 0; when

𝑘 = 3, this threshold is 𝑛1.4. These witnesses are based on certain

natural analogs of cycles in hypergraphs called even covers. In an ef-

fort to understand if such witnesses exist in more general instances,

Feige [13] conjectured a trade-off between number of constraints

and size of a smallest even cover. This conjecture formally general-

izes the Moore bound [5] on girth of graphs to hypergraphs.

In this work, we prove Feige’s conjecture by a new spectral double

counting argument that relates sub-exponential time smoothed refu-

tation algorithms and the existence of even covers in hypergraphs.

As a consequence, we derive that there are efficiently verifiable

witnesses of unsatisfiability for smoothed instances of all 𝑘-CSPs

with𝑚 ∼ 𝑛𝑘/2−𝛿𝑘 constraints, for some constant 𝛿𝑘 , which is poly-

nomially smaller than the threshold at which efficient refutation

algorithms exist even for random 𝑘-CSPs.

Summary. Taken together, our main results can be interpreted as

suggesting that the worst-case picture of complexity of CSPs arises

entirely because of islands of pathology: most instances łaroundž

the worst-case hard ones are in fact essentially as easy as random,

for both refutation algorithms as well as existence of refutation

witnesses. Further, in a precise sense, the difficulty of worst-case

instances can be attributed to the worst-case literal patterns, rather

than the clause structure.

Our contribution is shown visually in Figure 1. Figure 1 plots the

time vs. # constraints trade-off for refuting random and smoothed

3-SAT instances (along with the analogous trade-off for approxi-

mation schemes for worst case instances). Our contribution is the

smoothed case (blue line), which shows that smoothed 3-SAT in-

stances can be refuted with the same trade-off as random ones

Figure 1: Time vs. # constraints trade-off for refuting ran-

dom and smoothed 3-SAT instances, and for approximation

schemes for worst-case instances. The smoothed case is our

contribution. We also prove that refutation witnesses exist

for smoothed instances at the purple line, i.e.,𝑛1.4 constraints.

(green line). We also show that there exist efficiently verifiable refu-

tation witnesses for smoothed instances at 𝑛1.4 constraints (purple

line), matching the result for random instances due to [14].

Our results. We now discuss our results on algorithms and certifi-

cates, as well as the interconnected techniques and insights that go

into them. Let us recall the standard notation to talk about CSPs.

Definition 1.1 (𝑘-ary Boolean CSPs, random, semirandom, and

smoothed instances). A CSP instance 𝜙 on 𝑛 variables with a 𝑘-

ary predicate 𝑃 : {±1}𝑘 → {0, 1} is a set of 𝑚 constraints on

𝑛 variables of the form 𝑃 (𝜉 (𝐶)1𝑥𝐶1
, 𝜉 (𝐶)2𝑥𝐶2

, . . . , 𝜉 (𝐶)𝑘𝑥𝐶𝑘
) = 1.

Here, 𝐶 = (𝐶1,𝐶2, . . . ,𝐶𝑘 ) ranges over a collection H of scopes

(a.k.a. clause structure) of 𝑘-tuples of 𝑛 variables such that 𝐶𝑖 ≠ 𝐶 𝑗

for any 𝑖, 𝑗 and 𝜉 : H → {±1}𝑘 are łliteral negation patternsž one

for each 𝐶 inH . The value of 𝜙 , val(𝜙), is the maximum fraction

of constraints satisfied by any assignment to the 𝑛 variables.

In a random (sometimes, fully random in order to disambiguate

from related models) instance,H is a collection of𝑚 uniformly ran-

dom and independently chosen 𝑘-tuples and the 𝜉 (𝐶)’s are chosen
uniformly at random and independently from {±1}𝑘 for each 𝐶 .

In a semirandom instance, H is arbitrary (i.e., worst-case) and

𝜉 (𝐶) ∈ {±1}𝑘 are uniformly at random and independent for each

𝐶 .

In a smoothed instance, H is arbitrary (i.e., worst-case) and

𝜉 (𝐶) ∈ {±1}𝑘 are obtained by starting with arbitrary (i.e., worst-

case) 𝜉 ′(𝐶) ∈ {±1}𝑘 for each 𝐶 and then for each 𝐶, 𝑖 , setting

𝜉 (𝐶)𝑖 = 𝜉 ′(𝐶)𝑖 with probability 0.99 and 𝜉 (𝐶)𝑖 = −𝜉 ′(𝐶)𝑖 with
probability 0.01, independently.

We note that the semirandom model is more general than the

random model, and the smoothed model is more general than the

semirandom model.

Definition 1.2 (Weak, Strong and Tight refutation algorithms). A

refutation algorithm takes as input a CSP instance 𝜙 and outputs a

value alg-val(𝜙) ∈ [0, 1] with alg-val(𝜙) ⩾ val(𝜙) for all 𝜙 . For a
distribution D over 𝜙 , we say that the refutation algorithm weakly

refutes instances drawn from D if with high probability over 𝜙 ∼
D, alg-val(𝜙) < 1. We also define strong refutation (alg-val(𝜙) <
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1 − 𝛿 for some absolute constant 𝛿 > 0) and 𝜀-tight refutation

(alg-val(𝜙) < val(𝜙) + 𝜀 for arbitrarily small 𝜀) analogously.

Algorithms for smoothed refutation. Our first main result gives

a (possibly sharp) trade-off between running time and number of

constraints for strongly refuting smoothed CSP instances.

Theorem 1 (Smoothed refutation, informal). For every ℓ = ℓ (𝑛),
there is a 𝑛𝑂 (ℓ) -time strong refutation algorithm for smoothed CSPs

with𝑚 ⩾ 𝑚0 = 𝑂̃ (𝑛) ·
(𝑛
ℓ

) ( 𝑡2−1) constraints. That is, for any CSP

instance 𝜙 with𝑚 ⩾ 𝑚0 constraints, with probability 0.99 over the

smoothing 𝜙𝑠 of 𝜙 , the algorithm outputs alg-val(𝜙𝑠 ) ⩽ 1 − 𝛿 for

some absolute constant 𝛿 > 0.

Here, 𝑡 = 𝑡 (𝑃) ⩽ 𝑘 is the łdegree of uniformityž of 𝑃 ś the smallest

integer 𝑡 ⩽ 𝑘 such that there is no 𝑡-wise uniform distribution on

{±1}𝑘 supported entirely on the satisfying assignments 𝑃−1 (1) ⊆
{±1}𝑘 .

In order to understand the trade-off described by the theorem,

let us apply it to two examples.

Example 1.3. For 𝑘-SAT, 𝑃 is the Boolean OR function. We thus

have 𝑡 (𝑃) = 𝑘 , as the uniform distribution on odd-parity strings is

supported on 𝑃−1 (1) and is (𝑘 − 1)-wise uniform. Our result gives

a polynomial time algorithm to strongly refute smoothed instances

of 𝑘-SAT whenever the number of constraints𝑚 ⩾ 𝑂̃ (𝑛 𝑘
2 ). More

generally, for any 𝛿 > 0, in time 2𝑂 (𝑛𝛿 ) the algorithm strong refutes

smoothed instances with ⩾ 𝑂̃ (𝑛 (1−𝛿) 𝑘2 +𝛿 ) constraints.
As a second example, consider the łHadamard predicatež 𝑃 on

𝑘 = 22
𝑞−1 bits where 𝑃 (𝑥) = 1 if and only if 𝑥 is a codeword of the

truncated Hadamard code. Hadamard CSPs naturally appear in the

design of query efficient PCPs. Here, 𝑡 (𝑃) = 3 ≪ 𝑘 , so our theorem

gives a polynomial-time algorithm to strongly refute smoothed

instances of the Hadamard CSP with at least 𝑂̃ (𝑛1.5) constraints,
and a 2𝑛

𝛿
-time algorithm for instances with at least 𝑂̃ (𝑛1.5−𝛿/2)

constraints ∀𝛿 ∈ (0, 1].

Comparison with prior results. Theorem 1 can be directly com-

pared to works on refuting random, semirandom and smoothed (in

the order of increasing generality) CSPs.

Building on [3, 9], Raghavendra, Rao and Schramm [25] proved

the same trade-off (up to a polylog(𝑛) factor in𝑚) between running

time and number of constraints required as in Theorem 1 for the

significantly simpler special case of fully random CSPs ś when the

clause structure and the literal patterns are chosen uniformly at

random from the respective domains. Our result shows that the

same trade-off holds for smoothed instances ś i.e., with worst-case

clause structure and small random perturbations of worst-case

literal patterns. All known efficient refutation algorithms, including

ours and that of [25], can in hindsight be interpreted as an analysis

of the canonical sum-of-squares (SoS) relaxation for the max 𝑘-CSP

problem. For random CSPs (and thus also for the more general

smoothed instances we study) the trade-off we obtain is known to

be essentially tight [8, 20] for such łSoS-encapsulatedž algorithms:

this fact is often taken as evidence of sharpness of this trade-off.

Much less is known about refuting CSPs in the more general

semirandom and smoothed models. Feige [12] gave aweak refutation

algorithm for refuting smoothed and semirandom instances of 3-

SAT. His techniques apply to all 3-CSPs but do not seem to extend

to either strong refutation or 4-CSPs. More recently, in a direct

precursor to this work, Abascal, Guruswami and Kothari [1] gave a

polynomial time algorithm for refuting semirandom instances of

all CSPs ś thus obtaining one of the extreme points (corresponding

to ℓ = 𝑂 (1)) in the trade-off in Theorem 1 above. Theorem 1 relies

on a key idea from their work (row bucketing) along with several

new ideas discussed below.

Algorithms for refuting semirandom 𝑘-XOR. Our main tech-

nical result is an algorithm for tight refutation of semirandom in-

stances of 𝑘-XOR. Theorem 1 then follows by a simple blackbox

reduction that relies on a dual polynomial introduced in [3]. For

the special case of 𝑘-XOR, a semirandom instance𝜓 is completely

described by an arbitrary 𝑘-uniform instance hypergraphH and

a collection of łright-hand sidesž 𝑏𝐶 ∈ {±1}, one for each 𝐶 ∈ H .

One can associate to𝜓 a homogeneous degree 𝑘 polynomial𝜓 (𝑥)
on the hypercube {±1}𝑛 that computes the ładvantage over 1/2ž
of an assignment 𝑥 ; that is, the value of the associated instance is
1
2 + max𝑥 ∈{±1}𝑛 𝜓 (𝑥). Tight refutation corresponds to certifying

that𝜓 (𝑥) ⩽ 𝜀 for arbitrary 𝜀 > 0.

𝜓 (𝑥) = 1

𝑚

∑︁
𝐶∈H

𝑏𝐶

∏
𝑖∈𝐶

𝑥𝑖 .

Theorem 1.4 (Strongly refuting semirandom 𝑘-XOR, informal).

For every 𝑘 ∈ ℕ and ℓ = ℓ (𝑛) and every 𝜀 > 0, there is a 𝑛𝑂 (ℓ) time 𝜀-

tight refutation algorithm for homogeneous degree 𝑘 polynomials that

succeeds with probability at least 0.99 over the draw of the coefficients

i.i.d. uniform on {−1, 1}, whenever the associated hypergraph H has

𝑚 ⩾ 𝑛
(𝑛
ℓ

) 𝑘
2 −1 · poly( log𝑛𝜀 ) hyperedges.

In particular, for every 𝛿 > 0, we obtain a 2𝑂 (𝑛𝛿 ) -time 𝜀-tight

refutation algorithm for semirandom 𝑘-XOR instances with 𝑚 ≫
𝑂̃ (𝑛) · 𝑛 (1−𝛿) ( 𝑘2 −1) poly( 1𝜀 )-constraints.

Prior works and brief comparison of techniques. The trade-off

above (up to polylog(𝑛) factors in𝑚) matches the one obtained for

refuting fully random 𝑘-XOR [25]. Our techniques, however, neces-

sarily need to be significantly different, as the analysis in [25] (and

related works it built on [3, 9, 11]) crucially rely on the randomness

of the hypergraphH . In particular, the refutation in [25] uses the

spectral norm of a certain łsymmetric tensor powerž of the canon-

ical matrix obtained from the instance. They analyze this matrix

using a technical tour-de-force argument using the trace moment

method.3 A couple of follow-up works have attempted to simplify

the analyses in [25]. Wein, Alaoui and Moore [29] succeeded in

giving a simpler proof (introducing the Kikuchi matrix, a variant

of which is central to this work) for the case of random 𝑘-XOR

for even 𝑘 , and they also suggest that a natural generalization of

their Kikuchi matrix for random odd 𝑘 will work (their suggestion

does not pan out, as we prove in Appendix A). In a recent work,

Ahn [2] simplified some aspects of the analysis of the łsymmetric

tensor powerž matrix in the analysis of [25]. To summarize, the

tools in prior works on random CSPs for analyzing the spectra of

relevant correlated random matrices seem to use the randomness

of the hypergraph both heavily and in a rather opaque manner.

3Just the technical argument in [25] runs over 20 pages!
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For the more general setting of semirandom 𝑘-XOR refutation,

the best known result [1] obtained an extreme point in the trade-

off (i.e., the case of ℓ = 𝑂 (1)). That work analyzes the ∞ → 1-

norm of the canonical matrix associated with the CSP instance.

In this special case when ℓ = 𝑂 (1), it turns out that handling 3-

XOR instances allows deriving all larger 𝑘 as a corollary. For the

case of 3-XOR, their analysis relies on a new row bucketing step

according to the butterfly degree of a pair of vertices (a new notion

that they define), along with a certain pseudo-random vs structure

decomposition for arbitrary 3-uniform hypergraphs associated with

the 3-XOR instance.

To prove Theorem 1.4, we build on [1] and introduce a few new

tools. For even 𝑘 , the Kikuchi matrix of [29] analyzed using the row

bucketing idea (with an appropriate generalization of the butterfly

degree) of [1] yields a correct trade-off (see Sections 2.1 and 2.2). The

case of odd 𝑘 turns out to be significantly more challenging (as has

always been the case in CSP refutation) and needs new ideas. We

introduce a variant of the Kikuchi matrix for this purpose. Unlike

the case of even 𝑘 (and the algorithm in [1]), the spectral norm of

this matrix is provably too large to yield a refutation ś even for

random instances. Indeed, this is why the strategy suggested by [29]

does not pan out, as we show in Appendix A. Instead, we use the

spectral norm of a matrix obtained by pruning away appropriately

chosen rows. We then show that the number of pruned rows is not

too large, and so does not contribute too much to the∞ → 1-norm

of the full matrix.

The row pruning step motivates a definition of regularity, a

collection of natural pseudorandom properties that relate to well-

spreadness in the intersection structure of the hyperedges in the

instance hypergraph.4 We then show that the hyperedges in every

𝑘-uniform hypergraph can be decomposed, via a regularity decom-

position lemma, into 𝑘 ′-uniform hypergraphs for 𝑘 ′ ⩽ 𝑘 , along with

some łerrorž hyperedges, such that (i) each of the 𝑘 ′-uniform hy-

pergraphs satisfies regularity, and (ii) refuting all of these 𝑘 ′-XOR
instances provides a refutation for the original instance. We explain

our row pruning and the regularity decomposition steps in more

detail in Section 2.

Short refutations below spectral threshold: proving Feige’s

conjecture. In a one-of-a-kind result, Feige, Kim and Ofek [14]

(henceforth, FKO) proved that with high probability over the draw

of a fully random 3-SAT instance 𝜓 , there is a polynomial size

witness that weakly refutes 𝜓 if 𝜓 has 𝑚 ∼ 𝑂̃ (𝑛1.4) constraints.
Formally, there is a polynomial time non-deterministic refutation al-

gorithm that succeeds in finding a refutation with high probability

over the drawn of a fully random 3-SAT instance with𝑚 ∼ 𝑂̃ (𝑛1.4)
constraints. On the other hand, all known polynomial time deter-

ministic refutation algorithms require the input random instance

to have Ω(𝑛1.5) constraints ś this bound is often called the spectral

threshold. The fastest known refutation algorithm [25] for instances

with ∼ 𝑛1.4 constraints runs in time 2𝑛
0.2
, matching the SoS lower

bound [20]. Thus, intriguingly, the FKO result shows the existence

of polynomial time verifiable refutation witnesses (i.e., certificates

of an upper bound of 1 − 𝑜𝑛 (1) on the value) at a constraint den-

sity at which there are no known 2𝑛
𝑜 (1)

-time refutation algorithms.

4This is closely related to the notion of spread encountered in recent work on the
sunflower conjecture [6, 26].

Does such a łgapž between thresholds for existence vs efficient

computability of refutation witnesses persist for semirandom and

smoothed instances, i.e., instances with worst-case constraint hy-

pergraphs?

In 2008, Feige [13] made an elegant conjecture on the existence

of even covers in sufficiently dense hypergraphs. This conjecture

can be interpreted as generalizing to hypergraphs the classical

Moore bound on the girth of graphs with a given number of edges.

If true, Feige’s conjecture implies that the FKO result holds for all

semirandom and smoothed CSP instances ś in particular, the FKO

result does not rely on the properties of the underlying hypergraph

at all. Let us explain this conjecture below.

Definition 1.5 (Even Cover and Girth). For a 𝑘-uniform hyper-

graphH on [𝑛], an even cover of length 𝑡 is a collection of 𝑡 distinct

hyperedges 𝐶1,𝐶2, . . . ,𝐶𝑡 in H such that every vertex in [𝑛] ap-
pears in an even number of𝐶𝑖 ’s. The girth ofH is the length of the

smallest even cover inH .

Conjecture 1.6 (Feige’s conjecture, Conjecture 1.2 in [13]). Every

𝑘-uniform hypergraph H on [𝑛] with 𝑚 ⩾ 𝑚0 = 𝑂 (𝑛)
(𝑛
ℓ

) 𝑘
2 −1

hyperedges has an even cover of length 𝑂 (ℓ log𝑛).

A brief history of the conjecture. For 𝑘 = 2, an even cover is a

2-regular subgraph (and thus a union of cycles) in a graph and thus,

the conjecture above reduces to the question of determining the

maximum girth (the length of the smallest cycle) in a graph with 𝑛

vertices and 𝑛𝑑/2 edges for parameter 𝑑 . The best known bound is

due to Alon, Hoory and Linial [5] who proved that for every graph

on 𝑛 vertices with 𝑛𝑑/2 edges for 𝑑 > 2, there is a cycle of length

at most 𝑐 log𝑑−1 𝑛 for 𝑐 ⩽ 2. The best known lower bound on the

girth is 𝑐 log(𝑑−1) 𝑛 for 𝑐 ⩾ 4/3 by Margulis [22] and Lubotzky,

Philips and Sarnak [21] via explicit constructions of Ramanujan

graphs. Obtaining a tight bound on 𝑐 has been an outstanding open

problem for the last 3 decades.

Much less is known for hypergraphs. When 𝑘 even and ℓ = 𝑂 (1),
Naor and Verstraete [24] proved the conjecture. They were mo-

tivated by a natural coding theory interpretation: viewing each

hyperedge as describing the non-zero coefficients of linear equa-

tions over 𝔽2, an even cover is a sparse linear dependency and thus,

the conjecture gives the rate-distance trade-off for linear codes with

column-sparse parity check matrices. In the more challenging case

when 𝑘 is odd, the bounds for ℓ = 𝑂 (1) case in [24] were improved

to essentially optimal ones in [13]. For ℓ ≫ 1, the best previous

bound for 3-uniform hypergraphs is due to a simple argument of

Alon and Feige [4] (Lemma 3.3), who proved that every 3-uniform

hypergraph with 𝑂̃ (𝑛2/ℓ) hyperedges has an even cover of size ℓ

(this is off by ∼ √
𝑛 factor in𝑚). For 3-uniform hypergraphs with

𝑚 ≫ 𝑛1.5+𝜀 (and the case when𝑚 ≫ 𝑛𝑘/2 in general), [18] proved

that there are even covers of size 𝑂 (1/𝜀). Finally, Feige and Wag-

ner [15] proved some variants (łgeneralized girth problemsž) in

order to build tools to approach this conjecture.

To summarize, prior to this work, the conjecture was known to

be true only for ℓ = 𝑂 (1). For larger ℓ , the only approach was the

combinatorial strategy introduced in [15]. In this work, we prove

Feige’s conjecture (up to poly log𝑛 slack in𝑚) via a new spectral

double counting argument.
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Theorem 2 (Feige’s conjecture is true, informal). For every 𝑘 ∈ ℕ

and ℓ = ℓ (𝑛), every 𝑘-uniform hypergraph H with 𝑚 ⩾ 𝑚0 =

𝑂̃ (𝑛) · ( 𝑛ℓ )
𝑘
2 −1 hyperedges has an even cover of size 𝑂 (ℓ log𝑛).

Our spectral double counting argument5 is heavily derived from

our analysis for smoothed refutation using our Kikuchi matrices;

indeed, our proof of Theorem 2 mirrors our steps in the analysis of

our refutation algorithm. In fact, in a precise sense (as we explain

in Section 2.3), our approach gives a tight connection between even

covers in hypergraphs and simple cycles (and in turn, the spectral

norm of the corresponding adjacency matrix) in the łKikuchi graphž

built from the hypergraph.

Combiningwith our smoothed refutation algorithms (Theorem 1)

we immediately obtain a generalization of the FKO result that

yields a polynomial time non-deterministic refutation algorithm for

smoothed instances of all 𝑘-ary CSPs with number of constraints

𝑚 polynomially below the spectral threshold of 𝑛𝑘/2.

Theorem 3 (Non-deterministic refutation, informal). There is a

non-deterministic polynomial time algorithm that weakly refutes

smoothed instances of any 𝑘-CSP with 𝑚 ⩾ 𝑚0 = 𝑂̃ (𝑛
𝑘
2 − 𝑘−2

2(𝑘+8) )-
constraints. For the special case of 𝑘 = 3,𝑚0 = 𝑂̃ (𝑛1.4).

2 OVERVIEW OF OUR TECHNIQUES

In this section, we illustrate our key ideas by giving essentially

complete proofs of some special cases of our main results along

with expository comments.

This overview is structured as follows: we will first give an

essentially complete proof for refuting semirandom instances of

even-arity 𝑘-XOR. As has been the trend in all the refutation results,

the even-arity case happens to be significantly simpler but allows

us to showcase two key ideas:

(1) The power of the Kikuchi matrix. In fact, this work can be

thought of as a paean to the beautiful structure and the applica-

tions of the Kikuchi matrix and its variant that we introduce for

odd-arity 𝑘-XOR. Combined with the row bucketing idea from [1],

we can easily resolve the case of even arity 𝑘-XOR. The Kikuchi

matrix was introduced by [29] to give a simpler proof of the result

of [25] for refuting fully random instances of even-arity 𝑘-XOR.

They left open the question of finding an analogous proof for the

odd-arity case (again, for fully random CSPs) and even suggested

an approach. Their approach, however, does not pan out, as we

prove in Appendix A. Our Kikuchi matrix for the odd-arity case

along with our analysis technique (that does not directly work with

spectral norms) allows us to prove sharp trade-offs for refuting

random CSPs and with additional ideas, make them work even for

the significantly randomness starved semirandom and smoothed

settings.

(2) The connection between refutations obtained via an appro-

priate norm of the Kikuchi matrix in the randomness-starved semi-

random setting and the existence of even covers in worst-case hy-

pergraphs. In this overview, we will use this connection to give a

5Subsequent to our posting of this paper, Tim Hsieh and Sidhanth Mohanty were able
to use our spectral double counting technique with the non-backtracking walk matrix
of a graph to recover the sharpest known result (matching [5]) for the Moore bound
for irregular graphs. We believe a similar approach might also help achieve sharper
results for size of smallest even covers in hypergraphs.

single page proof of Feige’s conjecture for 𝑘-hypergraphs for 𝑘 even.

We note that this gives an interesting instance of the phenomenon

where the analysis of an algorithm in a reduced-randomness setting

can be used to infer a purely combinatorial property of worst-case

structures.

We will then discuss our ideas for odd-arity case at a high-level

by focusing on 3-XOR. As is usual in CSP refutation, even for the

special case of fully random instances, refuting odd-arity XOR is

significantly more challenging [3, 9, 11]. We introduce several new

ideas to tackle the semirandom (and thus also the smoothed) case:

(1) a new, suitable variant of the Kikuchi matrix, (2) the idea of

row pruning combined with row bucketing, and (3) a new regularity

decomposition for arbitrary hypergraphs.

Our proof of Feige’s conjecture for odd-𝑘-uniform hypergraphs

is conceptually similar to the even case ś in that it mimics the

refutation argument closely ś but needs all the new machinery for

refutation introduced above for handling semirandom odd-arity

𝑘-XOR and must use the trace moment method (instead of the

matrix Bernstein) in the step that upper bounds the spectral norm

of appropriate sequence of matrices produced in our analysis. The

combinatorial argument required in analyzing the trace method

turns out to be somewhat more intricate in the odd arity case. We

will not discuss it in this overview.

Our reduction from smoothed CSP refutation to semirandom

CSP refutation is short and elementary. We will not discuss this

argument in this overview.

2.1 Random 4-XOR Via the Kikuchi Matrix

of [29]

Let’s start by defining the Kikuchi matrix and showing how it gives

a simple refutation algorithm with the optimal trade-off for random

instances of even-arity 𝑘-XOR. We will focus on 𝑘 = 4 here.

Definition 2.1 (KikuchiMatrix). Let𝑁 =
(𝑛
ℓ

)
. For a 4-XOR instance

described by H and 𝑏𝐶 ’s for 𝐶 ∈ H , let 𝐴𝐶 ∈ ℝ
𝑁×𝑁 be the matrix

indexed by all possible subsets of [𝑛] of size exactly ℓ . The entry of

𝐴𝐶 at any (𝑆,𝑇 ) where 𝑆,𝑇 ∈
( [𝑛]
ℓ

)
is defined by:

𝐴𝐶 (𝑆,𝑇 ) =
{
𝑏𝐶 if 𝑆 ⊕ 𝑇 = 𝐶

0 otherwise

Here, 𝑆 ⊕ 𝑇 is the symmetric difference of the sets 𝑆,𝑇 . The level ℓ

Kikuchi matrix of the instance is then simply 𝐴 =
∑
𝐶∈H 𝐴𝐶 .

Quadratic forms of the Kikuchi matrix. The quadratic forms

of this matrix are closely related to the polynomial 𝜙 (𝑥) as-

sociated with the input 4-XOR instance: namely, 𝜙 (𝑥) :=
1
𝑚

∑
𝐶∈H 𝑏𝐶

∏
𝑖∈𝐶 𝑥𝑖 . Notice that the non-zero entries of the ma-

trix 𝐴 correspond to pairs of sets (𝑆,𝑇 ) such that the symmetric

difference of 𝑆,𝑇 is one of the clauses in the input 4-XOR instance.

Observe that if 𝑆 ⊕ 𝑇 = 𝐶 , then |𝑆 ∩ 𝐶 | = 2, |𝑇 ∩ 𝐶 | = 2, and

|𝑆 ∩𝑇 | = ℓ − 2. In particular, each 𝑏𝐶 appears in
(4
2

)
·
(𝑛−4
ℓ−2

)
different

entries of 𝐴. Now, let 𝑥⊙ℓ be the
(𝑛
ℓ

)
-dimensional vector of degree

ℓ monomials in 𝑥 . That is, the entries of 𝑥⊙ℓ are indexed by subsets

of size ℓ of [𝑛] and the 𝑆-th entry of 𝑥⊙ℓ is given by
∏

𝑖∈𝑆 𝑥𝑖 . Then,

682



STOC ’22, June 20ś24, 2022, Rome, Italy Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar

we must have: (
4

2

)
·
(
𝑛 − 4

ℓ − 2

)
𝜙 (𝑥) = 1

𝑚

(
𝑥⊙ℓ

)⊤
𝐴𝑥⊙ℓ (2.1)

This immediately provides a certificate of upper bound on the

value of the input instance as it must hold that

max
𝑥 ∈{−1,1}𝑛

𝜙 (𝑥) ⩽ 1

6𝑚
·
(
𝑛 − 4

ℓ − 2

)−1 (
𝑛

ℓ

)
∥𝐴∥2 ⩽ 𝑂

( 𝑛2

𝑚ℓ2

)
· ∥𝐴∥2 ,

(2.2)

where ∥𝐴∥2 is the spectral norm of the matrix 𝐴. If we can show

that ∥𝐴∥2 ⩽ 𝑂̃ (ℓ) w.h.p. over the draw of the hypergraph H and

the 𝑏𝐶 ’s, then, whenever 𝑚 ≫ 𝑂̃ (𝑛) · 𝑛ℓ , the spectral norm of 𝐴

provides a certificate that 𝜙 (𝑥) ⩽ 0.01 for every 𝑥 ∈ {±1}𝑛 .
It is in the ease of establishing such an upper bound on the spec-

tral norm that the choice of Kikuchi matrix really shines! Observe

that 𝐴𝐶 ’s are a sequence of independent, random matrices and thus,

one can try to apply off-the-shelf matrix concentration inequali-

ties to bound the spectral norm of 𝐴. Instead of using the matrix

Chernoff inequality as in [29], we will use the matrix Bernstein

inequality below as it turns out to generalize better.

Fact 2.2 (Matrix Bernstein Inequality). Let𝑀1, 𝑀2, . . . , be indepen-

dent random 𝑁 × 𝑁 matrices with mean 0 such that ∥𝑀𝑖 ∥2 ⩽ 𝑅

almost surely. Let 𝜎2 = max{


𝔼[∑𝑖 𝑀𝑖𝑀

⊤
𝑖 ]




2
,


𝔼[∑𝑖 𝑀

⊤
𝑖 𝑀𝑖 ]




2
}

be the variance term. Then, with probability at least 1 − 1/𝑛100,





∑︁
𝑖

𝑀𝑖







2

⩽ 𝑂 (𝑅 log𝑁 + 𝜎
√︁
log𝑁 ) .

Spectral norm of the Kikuchi matrix. Let’s analyze ∥𝐴∥2 using
this inequality. First, observe that any row of 𝐴𝐶 has at most 1 non-

zero entry of magnitude 1. Since the spectral norm of a matrix is

upper bounded by the maximum ℓ1 norm of any of its rows, this im-

mediately yields that ∥𝐴𝐶 ∥2 ⩽ 1. Let’s now compute the łvariancež

term. Here’s the key observation about the Kikuchi matrix that

makes this analysis so simple: the matrix 𝐴2
𝐶
is diagonal for every

𝐶 . To see this, observe that the entry at any (𝑆,𝑇 ) of this matrix is

given by by
∑
𝑈 𝔼𝐴𝐶 (𝑆,𝑈 )𝐴𝐶 (𝑈 ,𝑇 ). A term in the summation is

non-zero only if 𝑆 ⊕ 𝑈 = 𝑈 ⊕ 𝑇 = 𝐶 which can happen if and only

if 𝑇 = 𝑆 .

Let’s now compute the diagonals of 𝔼
∑
𝐶 𝐴2

𝐶
. Notice that

𝐴2
𝐶
(𝑆, 𝑆) equals either 1 or 0 for every 𝐶 . Thus,

∑
𝐶 𝐴2

𝐶
(𝑆, 𝑆) =

deg(𝑆) where

deg(𝑆) := |{𝐶 | |𝑆 ∩𝐶 | = 2}| ,

and so the variance term 𝜎2 is max𝑆 deg(𝑆).
How large can this be? Since each constraint contributes

(4
2

)
·(𝑛−4

ℓ−2
)
non-zero entries to 𝐴,

∑
𝑆 ∈(𝑛ℓ ) deg(𝑆) =

(4
2

)
·
(𝑛−4
ℓ−2

)
𝑚. Thus,

on an average deg(𝑆) is ≈𝑚ℓ2/𝑛2. When𝑚 ∼ 𝑛2/ℓ , this is ∼ ℓ .

When H is a random hypergraph with ∼ 𝑛2/ℓ hyperedges, we
expect deg(𝑆) to not deviate too much from its expectation. In

fact, using the Chernoff bound yields deg(𝑆) ⩽ 𝑂 (ℓ log𝑛) for

all 𝑆 whp. Since 𝑁 =
(𝑛
ℓ

)
, this yields that ∥𝐴∥2 ⩽ 𝑂 (log𝑁 ) +

𝑂 (
√︁
ℓ log𝑛 · log𝑁 ) = 𝑂̃ (ℓ) on as desired.

2.2 Semirandom Instances of 4-XOR Via Row

Bucketing from [1]

Let us now conduct a post-mortem of the above proof to see where

we used the randomness of the hypergraph H . Even after fixing

H , the 𝐴𝐶 ’s are independent random matrices, with all the ran-

domness coming from the 𝑏𝐶 ’s. Thus, we can still apply the ma-

trix Bernstein inequality. The only point in the proof where we

used the randomness of the hypergraph H was to establish that

deg(𝑆) = 𝑂 (ℓ log𝑛) for every 𝑆 . So, our proof immediately extends

to semirandom instances where the instance hypergraphH is such

that deg(𝑆) = 𝑂 (ℓ log𝑛) for every 𝑆 .
This bound is delicate: when deg(𝑆) = Ω(ℓ2), we obtain no non-

trivial refutation guarantee and even deg(𝑆) ∼ ℓ1.1 results in a

suboptimal trade-off. On the other hand, in arbitraryH , deg(𝑆) can
be as large as𝑚 (but no larger). Further, this is a łrealž issue (and

not an artefact of the use of Matrix Bernstein inequality): when

deg(𝑆) is large, so is the spectral norm of 𝐴.

Key observation: only sparse vectors cause large quadratic

forms. Our way forward builds on that of [1] who recently gave

a polynomial time algorithm for (strongly) refuting semirandom

instances of 𝑘-XOR with ⩾ 𝑂̃ (𝑛𝑘/2) constraints. The key observa-

tion is when deg(𝑆) is large, the spectral norm of 𝐴 is high but

intuitively, the łoffendingž large quadratic forms are induced only

by łsparsež vectors, i.e., vectors where the ℓ2 norm is contributed

by a small fraction of the coordinates. On the other hand, we only

care about upper bounding quadratic forms of 𝐴 on vectors where

all coordinates are ±1 and are thus are maximally łnon-sparsež or

łflatž.

Row bucketing. We can formalize this observation via row buck-

eting. Let 𝑑0 ∼ 𝑚 · ℓ2/𝑛2 be the average value of deg(𝑆). Let’s
partition the row indices in

(𝑛
ℓ

)
into multiplicatively close buckets

F0, F1, · · · , F𝑡 so that for each 𝑖 ⩾ 1,

F𝑖 =
{
𝑆 | 2𝑖−1𝑑0 < deg(𝑆) ⩽ 2𝑖𝑑0

}
.

and F0 = {𝑆 | deg(𝑆) ⩽ 𝑑0}. Then, since deg(𝑆) ⩽ 𝑚 and 𝑑0 ⩾ 1 (as

𝑚 ∼ 𝑛2/ℓ), we can take 𝑡 ⩽ log2𝑚. Further, by Markov’s inequality,

|F𝑖 | ⩽ 2−𝑖
(𝑛
ℓ

)
= 2−𝑖𝑁 . For each 𝑖, 𝑗 ⩽ 𝑡 , let 𝐴𝑖, 𝑗 be the matrix

obtained by zeroing out all rows not in F𝑖 and all columns not in

F𝑗 from the Kikuchi matrix 𝐴. Then, 𝐴 =
∑
𝑖, 𝑗⩽𝑡 𝐴𝑖, 𝑗 .

The key observation is the following: while 𝐴𝑖, 𝑗 has non-zero

rows and columns where deg(𝑆) is larger by a 2𝑖 (2𝑗 , respectively)

factor than the average, we are compensated for this by a reduction

in the number of non-zero rows and columns.

Let 𝑦 ∈ ℝ
𝑁 be any vector with entries in {±1}𝑁 , and let 𝑦F𝑖 be

the vector obtained by zeroing out all coordinates of 𝑦 that are not

indexed by elements of F𝑖 . Then, we must have:

max
𝑦∈{±1}𝑁

𝑦⊤𝐴𝑖, 𝑗𝑦 = max
𝑦∈{±1}𝑁

(𝑦F𝑖 )⊤𝐴𝑖, 𝑗 (𝑦F𝑗
) ⩽

√︃
|F𝑖 | |F𝑗 |·



𝐴𝑖, 𝑗




2
.

(2.3)

We apply the Matrix Bernstein inequality in a similar manner

to the previous analysis. The łvariancež term grows by a factor of

max{2𝑖 , 2𝑗 } over the bound obtained for the random case. As a re-

sult, the spectral norm of𝐴𝑖, 𝑗 is higher by a factor ofmax{2𝑖/2, 2𝑗/2}.
On the other hand, the effective ℓ2 norm of the vector drops by at

2−(𝑖+𝑗)/2. The trade-off łbreaks in our favorž and the dominating
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term in the bound is 𝐴0,0 ś the spectral norm of which is at most of

the same order as that of the𝐴 in the case of the previous random 4-

XOR analysis! We thus obtain thatmax𝑦∈{±1}𝑁 𝑦𝑇𝐴𝑦 is 𝑂̃ ( 𝑛2

𝑚ℓ2
· ℓ),

and so we certify that 𝜙 (𝑥) ⩽ 0.01 for every 𝑥 ∈ {±1}𝑛 .

2.3 Proving Feige’s Conjecture for 4-Uniform

Hypergraphs

We now discuss how the analyses of the Kikuchi matrix from the

previous section relates to Feige’s conjecture on even covers in 4-

uniform (and in general, any even-uniform) hypergraphs. A priori,

such a connection may appear rather surprising that the analysis

of a super-polynomial size matrix introduced for refuting 𝑘-XOR

can shed light on a purely combinatorial combinatorial fact. But we

will soon see that this is yet another instance of the Kikuchi matrix

doing its magic.

Recall that Feige’s conjecture suggests a trade-off between the

number of hyperedges and an appropriate notion of girth (i.e.,

length of the smallest cycle, or even cover) in hypergraphs that

generalizes the classical Moore bound [5], which asserts that ev-

ery graph on 𝑛 vertices with 𝑛𝑑/2 edges has a cycle of length

⩽ 2 log𝑑−1 (𝑛). To explain our spectral double counting argument to

prove this conjecture, it is helpful to first use it to prove a (signifi-

cantly weaker) version of the Moore bound and then generalize to

hypergraphs 𝐻 via the łKikuchi graphž derived from 𝐻 .

Proposition 2.3 (Weak Moore bound in irregular graphs). Every

graph𝐺 on 𝑛 vertices and 𝑛𝑑/2 edges for 𝑑 ⩾ 𝑂 (log32 (𝑛)) has a cycle
of length ⩽ ⌈2 log2 𝑛⌉.

Our spectral double counting argument counts the number of

edges of 𝐺 in two different ways: let 𝐴 be the 0-1 adjacency matrix

of 𝐺 . Then, the quadratic form 1
⊤𝐴1 = 𝑛𝑑 . We will show that if 𝐺

does not have a cycle of size ⩽ 2⌈log2 𝑛⌉, then, all ±1-coordinate
quadratic forms of 𝐴 are at most 𝑛 · 𝑂̃ (

√
𝑑). Together, these two

bounds yields the desired contradiction.

Claim 2.4 (Trace Method in the absence of even covers). Let 𝐴

be the 0-1 adjacency matrix of a graph 𝐺 on 𝑛 vertices with 𝑛𝑑/2
edges with no cycle of length ⩽ 2𝑟 for 𝑟 = ⌈log2 𝑛⌉. Then, for every
𝑦 ∈ {±1}𝑛 ,

𝑦⊤𝐴𝑦 ⩽ 𝑛
√
𝑑 ·𝑂 (log1.52 (𝑛)) .

Notice that this claim immediately yields a contradiction if 𝑛𝑑 >

𝑛
√
𝑑 · 𝑂 (log1.52 (𝑛)), which holds if 𝑑 ⩾ 𝑂 (log32 𝑛), thus proving

Proposition 2.3. Let’s now see how to prove this claim.

Proof. The average degree of vertices in 𝐺 is 𝑑 . Let F𝑖 = {𝑣 |
2𝑖𝑑 ⩽ deg(𝑣) ⩽ 2𝑖+1𝑑} for each 1 ⩽ 𝑖 ⩽ log2 𝑛. Let 𝐴𝑖, 𝑗 be obtained

by zeroing out all rows not in F𝑖 and all columns not in F𝑗 from 𝐴.

Then, 𝐴 =
∑
𝑖, 𝑗 𝐴𝑖, 𝑗 .

By a similar observation as in the previous subsection, we have:

𝑦⊤𝐴𝑦 ⩽
∑︁
𝑖, 𝑗

√︃
|F𝑖 | |F𝑗 |



𝐴𝑖, 𝑗




2
. (2.4)

Let’s now bound


𝐴𝑖, 𝑗




2
. The idea is to use the trace moment

method on the matrix 𝐴𝑖, 𝑗 : for every 𝑟 , tr((𝐴𝑖, 𝑗𝐴
⊤
𝑖, 𝑗 )𝑟 ) ⩾



𝐴𝑖, 𝑗



2𝑟
2
.

This method is typically employed in analyzing the spectral norm

of random matrices. But notice that 𝐴𝑖, 𝑗 is a fixed matrix ś nothing

random in it. Nevertheless, our key observation is if𝐺 has no cycle

of length ⩽ 2𝑟 , then one can derive the same exact upper bound on

tr(𝐴2𝑟
𝑖, 𝑗 ) as if it was a random łsigningž of the adjacency matrix of

𝐺 .

We have:

tr((𝐴𝑖, 𝑗𝐴
⊤
𝑖, 𝑗 )𝑟 )

=

∑︁
𝑣1,𝑣2,...,𝑣2𝑟

𝐴𝑖, 𝑗 (𝑣1, 𝑣2)𝐴𝑖, 𝑗 (𝑣3, 𝑣2) · · ·𝐴𝑖, 𝑗 (𝑣2𝑟−1, 𝑣2𝑟 )𝐴𝑖, 𝑗 (𝑣1, 𝑣2𝑟 ) .

The term corresponding to (𝑣1, 𝑣2, . . . , 𝑣2𝑟 ) contributes a non-zero
value (of at most 1) to the right hand side above if and only if the

sequence {𝑣𝑖 , 𝑣𝑖+1} is an edge, say 𝑒𝑖 in 𝐺 for each 𝑖 ⩽ 2𝑟 . Consider

now the multiset of edges 𝐸 ′ = {𝑒1, 𝑒2, . . . , 𝑒𝑟 }. Since these are

edges on a walk, viewing the 𝑒𝑖 ’s as subsets of [𝑛] of size exactly
2, we must have that ⊕2𝑟

𝑖=1𝑒𝑖 = 0. Let’s now prune 𝐸 ′ by removing

any 𝑒𝑖 , 𝑒 𝑗 that are equal. We must be able to remove all edges in

this procedure, as otherwise we are left with a 2-regular induced

subgraph inside𝐺 , and so𝐺 must have a cycle of length ⩽ 2𝑟 . Thus,

each edge of 𝐺 occurs an even number of times in the multiset 𝐸 ′.
Let’s now use this observation to count the number of returning

walks beginning with a fixed vertex 𝑣1. For each edge, we łmatchž

its first occurrence along the walk with the last occurrence. There

are 2𝑟 !
𝑟 !2𝑟 different ways to select this matching. Given a matching,

there are at most 𝑟 distinct choices of edges to be made. We make

these choices inductively along the path from 𝑣1 to 𝑣2𝑟 . At each step

we can make a new choice (i.e., we are not traversing an edge that

is already matched to a previously chosen edge) given our previous

choices, there are at most Δ = max{2𝑖 , 2𝑗 }𝑑 choices for the edge.

Summing up over all choices for 𝑣1, we obtain that the number of

non-zero contributing 2𝑟 length walks is at most 𝑛 · Δ𝑟 2𝑟 𝑟 !. Thus,

𝐴𝑖, 𝑗




2
⩽ max{2𝑖/2, 2𝑗/2} · 𝑛1/2𝑟𝑑1/221/2

√
𝑟

⩽ 2𝑑1/2max{2𝑖/2, 2𝑗/2}
√︁
2 log2 𝑛 ,

for 𝑟 = 2⌈log2 𝑛⌉ and large enough 𝑛.

Plugging back in (2.4) yields that

𝑦⊤𝐴𝑦 ⩽ 2
∑︁
𝑖⩽ 𝑗

2−(𝑖+𝑗)/2𝑛2𝑗/2 ·
√︃
2𝑑 log2 𝑛 ⩽ 𝑛𝑑1/2𝑂 (log1.52 𝑛) . □

Let’s summarize the idea of the proof: analyzing the quadratic

forms on the hypercube of adjacency matrix with row bucketing

yields a (significantly weaker but still non-trivial) bound on the

girth of a graph with a given number of edges. This argument can

possibly be sharpened (to only an absolute constant factor loss) by

switching to the non-backtracking walk matrix of𝐺 (instead of the

adjacency matrix) and dropping the row bucketing step. The above

loose argument, however, generalizes to hypergraphs as we show

below.

Lemma2.5 (Feige’s Conjecture for 4-UniformHypergraphs). Every

4-uniform hypergraphH on [𝑛] with𝑚 ⩾ 𝑂 ( 𝑛2

ℓ log32 𝑛) hyperedges
has an even cover of length 𝑂 (ℓ log2 𝑛).

For every 𝐶 ∈ H , let 𝑏𝐶 = 1 and consider the Kikuchi matrix 𝐴

of the 4-XOR instance specified byH and 𝑏𝐶 ’s. Equivalently, 𝐴 is

simply the adjacency matrix of the łKikuchi graphž on vertex set( [𝑛]
ℓ

)
where edges correspond to pairs (𝑆,𝑇 ) such that 𝑆 ⊕𝑇 = 𝐶 for

some 𝐶 ∈ H . The idea is to repeat the argument for the adjacency
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matrix above but this time on the Kikuchi graph. The łwinž in this

scheme is a reduction of the problem on hypergraphs to a related

problem on the associated Kikuchi graph that is significantly easier

to reason about.

As in the previous section, each𝐶 ∈ H corresponds to
(4
2

)
·
(𝑛−4
ℓ−2

)
different non-zero entries in𝐴 and in particular, we have for 𝑥 = 1𝑛 ,

(𝑥⊙ℓ )⊤𝐴𝑥⊙ℓ = 6

(
𝑛 − 4

ℓ − 2

)
|H | .

Our proof exactly mirrors the proof of the above weak Moore

bound for graphs. We will show that if H has no even cover of

length 2𝑟 for 𝑟 = 0.5 log2 𝑁 , then, 𝑦⊤𝐴𝑦 ⩽
(𝑛
ℓ

)
𝑂̃ (ℓ) for any 𝑦 ∈

{−1, 1}𝑁 .

Let deg(𝑆) = |{𝐶 | |𝑆 ∩ 𝐶 | = 2}|. Write 𝐴 =
∑
𝑖, 𝑗 𝐴𝑖, 𝑗 where

𝐴𝑖, 𝑗 has all rows not in F𝑖 = {𝑆 | 2𝑖−1𝑑0 < deg(𝑆) ⩽ 2𝑖𝑑0} (F0 =

{𝑆 | deg(𝑆) ⩽ 𝑑0}) and all columns not in F𝑗 zeroed out, where

𝑑0 ∼𝑚ℓ2/𝑛2. Note that deg(𝑆) ⩽ 𝑚 so the number of buckets is at

most ⌈log2𝑚⌉. We can now argue:

(𝑦⊤𝐴𝑦) ⩽
∑︁
𝑖, 𝑗



𝐴𝑖, 𝑗




2
·
√︃
|F𝑖 | |F𝑗 | .

In the previous section, when 𝑏𝐶 ’s were independent, random

bits, we used the matrix Bernstein inequality to bound


𝐴𝑖, 𝑗




2
. Here,

𝑏𝐶 ’s are fixed (and equal to 1) so, of course, that strategy cannot

work. Instead, our proof uses the trace moment method as in the

proof of the weak Moore bound.

Proposition 2.6. Suppose H has no even cover of length 2𝑟 for

𝑟 ⩽ log2 𝑁 . Then,


𝐴𝑖, 𝑗




2
⩽ 𝑂 (ℓ log2 𝑛).

Proof of Proposition. As before, we use


𝐴𝑖, 𝑗



2𝑟
2

⩽

tr((𝐴𝑖, 𝑗𝐴
⊤
𝑖, 𝑗 )𝑟 )) for any 𝑟 ∈ ℕ. We then have:

tr((𝐴𝑖, 𝑗𝐴
⊤
𝑖, 𝑗 )𝑟 ))

=

∑︁
𝑆1,𝑆2,...,𝑆2𝑟

𝐴𝑖, 𝑗 (𝑆1, 𝑆2) · 𝐴𝑖, 𝑗 (𝑆3, 𝑆2) · · ·𝐴𝑖, 𝑗 (𝑆2𝑟−1, 𝑆2𝑟 )𝐴𝑖, 𝑗 (𝑆2𝑟+1, 𝑆2𝑟 ) ,

where we adopt the convention that 𝑆2𝑟+1 = 𝑆1. Let us now an-

alyze the right hand side of this equality. Each term in the RHS

corresponds to a 2𝑟 -tuple (𝑆1, 𝑆2, . . . , 𝑆2𝑟 ) of sets from
( [𝑛]
ℓ

)
can

contributes either 0 or 1.

If a term corresponding to (𝑆1, 𝑆2, . . . , 𝑆2𝑟 ) contributes a +1, then,
for each 𝑖 ⩽ 2𝑟 , there must be a 𝐶𝑖 ∈ H such that 𝑆𝑖 ⊕ 𝑆𝑖+1 = 𝐶𝑖 .

Thus, each non-zero term is in bijection with (𝑆1,𝐶1,𝐶2, . . . ,𝐶2𝑟 ).
On the other hand, wemust have that ∅ = ⊕2𝑟

𝑖=1𝑆𝑖⊕𝑆𝑖+1 = ⊕2𝑟
𝑖=1𝐶𝑖 , as

each 𝑆𝑖 appears twice in ⊕2𝑟
𝑖=1𝑆𝑖 ⊕𝑆𝑖+1, and thus the total symmetric

difference is ∅. Hence, a non-zero term (𝑆1,𝐶1,𝐶2, . . . ,𝐶2𝑟 ) must

satisfy ⊕2𝑟
𝑖=1𝐶𝑖 = ∅.

Let us analyze such a 2𝑟 -tuple of hyperedges. By removing equal

pairs repeatedly as in the previous proof, we can conclude that

since H has no even cover of length ⩽ 2𝑟 , each hyperedge in H
occurs an even number of times in the (multi)set {𝐶1,𝐶2, . . . ,𝐶2𝑟 }.

We now count the number of (𝑆1,𝐶1, . . . ,𝐶2𝑟 ) such that each

𝐶𝑖 occurs an even number of times. Since 𝐶𝑖 ’s occur in pairs, we

can match the first occurrence of the hyperedge in the ordered

set (𝐶1,𝐶2, . . . ,𝐶2𝑟 ) to the last. There are ⩽ 2𝑟 𝑟 ! different ways of

selecting this matching. Given 𝑆1 and the matching, there are at

most 𝑟 unique𝐶𝑖 ’s to choose.Whenmaking a choice of𝐶𝑖 (say), 𝑆𝑖 is

already determined by the previous choices. Thus, we have at most

deg(𝑆𝑖 ) ⩽ Δ ⩽ max{2𝑖 , 2𝑗 }𝑑0 unique choices for the hyperedge 𝐶 .
In total, there are ⩽ 𝑁 · 2𝑟 𝑟 !Δ𝑟 non-zero terms, and so

𝐴𝑖, 𝑗




2
⩽ 𝑁 1/2𝑟 21/2

√
𝑟 max{2𝑖/2, 2𝑗/2}

√︁
𝑑0

⩽ max{2𝑖/2, 2𝑗/2}2
√︁
log2 𝑁

√︁
𝑑0 ,

for 𝑟 = 0.5 log2 𝑁 and large enough 𝑛. The remaining calculation

nowmimics the one for Proposition 2.3 (recalling that𝑑0 ∼𝑚ℓ2/𝑛2),
and finishes the proof of Lemma 2.5 □

2.4 Refuting Semirandom 3-XOR Via Row

Pruning

The case of odd arity XOR refutation is lot more challenging. Even

in the well-studied special case of random CSP refutation and the

special case of ℓ = 𝑂 (1) (i.e., polynomial time refutation), the case

of odd arity CSPs turns out to be significantly more challenging

than the even case. So let us start by focusing on the case of random

3-XOR first.

As in the case of 4-XOR, we would like to begin by finding a

simpler argument (compared to [25]) for the special case of random

3-XOR using some appropriate variant of the Kikuchi matrix. In

fact, [29] attempted this by introducing a variant of the Kikuchi

matrix, and suggested an explicit approach (see Section F.1 of [29])

to prove that the spectral norm of that matrix yields a refutation,

but this does not work (see Appendix A). Indeed, we do not know of

any reasonable variant of the Kikuchi matrix whose spectral norm

yields a refutation for even fully random 3-XOR instances with the

expected trade-off.

Instead, we will introduce a variant of the Kikuchi matrix and

use it to give a refutation algorithm for random 3-XOR instances by

relying not on the spectral norm (which is too large) but, instead,

the spectral norm of a łprunedž version of the matrix. We will

then discuss the remaining key ideas of regularity decomposition

combined with row bucketing to refute semirandom odd-arity XOR.

Bipartite 3-XOR. The Kikuchi matrix we introduce relates di-

rectly to a polynomial obtained by applying the standard łCauchy-

Schwarz trickž to the input polynomial. Consider the polynomial

𝜓 (𝑥) =
1
𝑚

∑
𝐶∈H 𝑏𝐶

∏
𝑖∈𝐶 𝑥𝑖 associated with a 3-XOR instance

described by a 3-uniform hypergraph H with𝑚 hyperedges and

łright-hand sidesž 𝑏𝐶 ’s. For each 𝐶 ∈ H , let 𝐶min be the minimum

indexed element in 𝐶 (using the natural ordering on [𝑛]). Then,

max
𝑥 ∈{±1}𝑛

𝜓 (𝑥) ⩽ max
𝑥,𝑦∈{±1}𝑛

1

𝑚

∑︁
𝐶∈H

𝑏𝐶𝑦𝐶min
𝑥𝐶\𝐶min

,

where each 𝑦𝑢 is formally a new variable, but we think of 𝑦𝑢 as

equal to 𝑥𝑢 . Let us reformulate this expression a bit: let H𝑢 = {𝐶 |
𝐶 ′

= (𝐶,𝑢) ∈ H ,𝐶 ′
min

= 𝑢}. Then,

max
𝑥 ∈{±1}𝑛

𝜓 (𝑥) ⩽ max
𝑥,𝑦∈{±1}𝑛

1

𝑚

∑︁
𝑢∈[𝑛]

𝑦𝑢

∑︁
𝐶∈H𝑢

𝑏𝑢,𝐶𝑥𝐶 .

One can think of the RHS as the polynomial associated with a

bipartite instance of the 3-XOR problem on 2𝑛 variables, since every

constraint uses one 𝑦 variable and two 𝑥 variables. Our refutation

algorithm works for such bipartite instances more generally.
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For such a bipartite instance, using the Cauchy-Schwarz inequal-

ity, we can derive:

max
𝑥,𝑦∈{±1}𝑛

©­
«
1

𝑚

∑︁
𝑢∈[𝑛]

𝑦𝑢

∑︁
𝐶∈H𝑢

𝑏𝑢,𝐶𝑥𝐶
ª®
¬
2

⩽
©­«
𝑛

𝑚2

∑︁
𝑢

∑︁
𝐶,𝐶′∈H𝑢

𝑏𝑢,𝐶𝑏𝑢,𝐶′𝑥𝐶𝑥𝐶′
ª®¬

⩽
𝑛𝑚

𝑚2
+ 𝑛

𝑚2

©­
«
∑︁
𝑢

∑︁
𝐶≠𝐶′∈H𝑢

𝑏𝑢,𝐶𝑏𝑢,𝐶′𝑥𝐶𝑥𝐶′
ª®
¬
:=

𝑛

𝑚
+ 𝑓 (𝑥) (2.5)

The first term on the RHS is ⩽ 𝜀2/2 if𝑚 ⩾ 2𝑛/𝜀2. The second term

produces a ⩽ 4-XOR instance.

We thus end up with a 4-XOR instance ś an even arity instance

ś albeit with significantly less randomness than required in the

argument from previous section. So, we need some different tools

to refute such instances. The first of this is the following variant of

the Kikuchi matrix that is designed specifically for łplaying wellž

with the symmetries produced by the squaring step above.

Our Kikuchi matrix. Our Kikuchi matrix is indexed by subsets

of size ℓ on a universe of size 2𝑛 ś corresponding to two labeled

copies of each of the original 𝑛 𝑥 variables. For each 𝐶 ∈ H , let

𝐶 (1) be the subset of [𝑛] × [2] where every variable is labeled with

ł1ž, and similarly for 𝐶 (2) . This trick is done to ensure that the

clauses 𝑥𝐶 (1)𝑥𝐶′(2) form a 4-XOR instance, as now 𝐶 (1) and 𝐶 ′(2)

by definition cannot intersect.

For even 𝑘 , the łindependentž pieces in the Kikuchi matrix were

the matrices 𝐴𝐶 , one for each 𝐶 ∈ H . For odd 𝑘 , the indepen-

dence pieces will be 𝐴𝑢 ś one for each 𝑦𝑢 because of the loss of

independence due to the Cauchy-Schwarz step above.

Definition 2.7 (Kikuchi Matrix, 3-XOR). Let 𝑁 =
( [2𝑛]

ℓ

)
. For each

𝑢 ∈ [𝑛], let 𝐴𝑢 ∈ ℝ
𝑁×𝑁 be defined as follows: for each 𝑆,𝑇 ⊆

[𝑛] × [2] of size ℓ , we will set 𝐴𝑢 (𝑆,𝑇 ) to be non-zero if there are

𝐶,𝐶 ′ ∈ H𝑢 such that 𝑆 ⊕ 𝑇 = 𝐶 (1) ⊕ 𝐶 ′ (2) and 1 = |𝑆 ∩ 𝐶 (1) | =
|𝑆∩𝐶 ′ (2) | = |𝑇 ∩𝐶 (1) | = |𝑇 ∩𝐶 ′ (2) |. That is,𝐴𝑢 (𝑆,𝑇 ) is non-zero if
each of 𝑆,𝑇 contain one variable each from 𝐶 (1) and 𝐶 ′ (2) each. In
that case, we will set 𝐴𝑢 (𝑆,𝑇 ) = 𝑏𝑢,𝐶 ·𝑏𝑢,𝐶′ . Finally, set𝐴 =

∑
𝑢 𝐴𝑢 .

Equivalently, 𝐴𝑢 (𝑆,𝑇 ) is non-zero if there are 𝐶,𝐶 ′ ∈ H𝑢 such

that if the 1-labeled (respectively, 2-labeled) elements in 𝑆,𝑇 have

symmetric difference 𝐶 (𝐶 ′, respectively). This construction is im-

portant for the success of our row pruning step (which we will soon

discuss) and at the same time ensures that every pair (𝐶,𝐶 ′) of
constraints in H𝑢 contributes an equal number of non-zero entries

in the Kikuchi matrix 𝐴. We note that if we do not introduce the 2

copies of each variable, the number of times a pair (𝐶,𝐶 ′) appears
in the matrix would depend on |𝐶 ∩𝐶 ′ |.

The quadratic forms of 𝐴 relate to the value of the underlying

4-XOR instance: for 𝐷 = 4
(2𝑛−4
ℓ−2

)
,

val(𝜙)2 ⩽ 𝜀2/4 + val(𝑓 ) ⩽ 𝜀2/4 + 𝑛

𝑚2𝐷
( max
𝑧∈{±1}𝑁

𝑧⊤𝐴𝑧) .

Bounding 𝑧⊤𝐴𝑧. In the even arity case, we were able to obtain

a refutation at this point by simply using the spectral norm of 𝐴

to bound the right hand side above. However, this turns out to

provably fail here. To see why, let us define the relevant notion of

degree ś the count of the number of non-zero entries in each row

of 𝐴𝑢 :

deg(𝑆) = |{𝐶,𝐶 ′ ∈ H𝑢 | |𝑆 ∩𝐶 (1) | = |𝑆 ∩𝐶 ′(2) | = 1}|

If wewere to apply thematrix Bernstein inequality, the łalmost surež

upper bound on 𝐴𝑢 for all 𝑢 is at least as large as ∼ max𝑆
√︁
deg(𝑆)

and it’s not too hard to show that there are 𝑆 for which this bound

is at least ℓ . As a result, the best possible spectral norm upper bound

that we can hope to obtain on 𝐴 is Ω(ℓ log2 𝑁 ) = Ω̃(ℓ2) ś a bound

that gives us no non-trivial refutation algorithm.

Row pruning. The key observation that łrescuesž this bad bound is

that deg(𝑆) cannot be large for too many rows. To see why, consider

the random variable that selects a uniformly random 𝑆 ∈
( [2𝑛]

ℓ

)
and

outputs deg(𝑆). This can be well approximated (for our purposes)

by random set where every element is included independently with

probability ∼ ℓ/2𝑛. The expectation of deg(𝑆) on this distribution

is 𝑂 (1). By relying on the fact that |𝐶 ∩𝐶 ′ | = ∅ in H𝑢 for almost

all pairs with high probability, Var[deg(𝑆)] = 𝑂 (1). A Chernoff

bound yields that the fraction of 𝑆 for which |{𝐶 ∈ H𝑢 | |𝑆 ∩𝐶 | >
𝑂 (log𝑛)}| is inverse polynomially small in 𝑛. A union bound on

all 𝑢 then shows the fraction of rows that are łbadž for any 𝑢 is at

most an inverse polynomial.

It turns out we can ignore such łbadž rows with impunity. This is

because we are interested in certifying upper bounds on quadratic

forms of𝐴 over łflatž vectors again and we can argue that removing

łbadž rows cannot appreciably affect them. For the łresidual matrixž,

we can now apply the matrix Bernstein inequality and finish off the

proof! The execution here requires row bucketing with respect to a

combinatorial parameter called the butterfly degree (generalizing a

similar notion in [1]) that controls the variance term in the analysis.

Extending to semirandom instances. Looking back, the previous

analysis uses that the graphs H𝑢 ’s obtained from the random 3-

uniform hypergraph H satisfy a łspreadž condition: there are few

to none distinct pairs𝐶,𝐶 ′ ∈ H𝑢 such that𝐶 ∩𝐶 ′
≠ ∅. This notion

of regularity is the precise pseudo-random property of H that is

enough for our argument (i.e. the row pruning step) above to go

through.

For the case of 3-XOR, such a regularity property is relatively

easy to ensure by a certain ad hoc argument: if too many pairs

𝐶,𝐶 ′ ∈ H𝑢 happen to share a variable, then, łresolvingž them

yields a system of 2-XOR constraints. Refutation in the special

case of 2-XOR is easy using the Grothendieck inequality; this has

been observed in several works, including [1, 12]. Indeed, this was

roughly the strategy employed in the recent work [1] for the case of

ℓ = 𝑂 (1) for semirandom 𝑘-XOR. In fact, in the ℓ = 𝑂 (1) regime, it

turns out that one can reduce 𝑘-XOR for all 𝑘 to the case of 3-XOR

and get the right trade-off; thus, such a decomposition for 3-XOR

is enough for the argument of [1] to go through for all 𝑘 .

2.5 Handling 𝑘-XOR for 𝑘 > 3: Hypergraph

Regularity

When ℓ ≫ 𝑂 (1), the case of higher arity 𝑘 does not reduce to

𝑘 = 3. Once again, working through the case of random 𝑘-XOR
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inspires our more general argument. We work with a generalization

of the Kikuchi matrix introduced in the previous section for the

case of 𝑘 = 3. When analyzing the row pruning step, we need to

rely on certain tail inequalities for low-degree polynomials that

depends on the łspreadž of the hypergraph defined by the indices

of the non-zero coefficients in the polynomial. We use the result of

Schudy and Sviridenko [27] that builds on an influential line of work

on concentration inequalities for polynomials with combinatorial

structure in the monomials begun by [19]. Our application of this

inequality is rather delicate and as a result, we need a significantly

stricter notion of regularity ś we call this (𝜀, ℓ)-regularity ś for our

row pruning argument to go through.

Hypergraph regularity decomposition. Roughly speaking the

notion of (𝜀, ℓ)-regularity (indexed by the parameter ℓ and an accu-

racy bound 𝜀) we need demands that each for each subset 𝑄 ⊆ [𝑛],
the number of hyperedges 𝐶 ∈ H𝑢 such that 𝑄 ⊆ 𝐶 is bounded

above by an appropriate function of 𝑚,𝑛 and ℓ . Random hyper-

graphsH satisfy such a regularity property naturally.

In order to handle arbitrary hypergraphs, we introduce a new

regularity decomposition for hypergraphs. Our regularity decom-

position is based on a certain bipartite contraction operation that

takes a bipartite hyperedge (𝑢,𝐶) ∈ H and a subset 𝑄 ⊆ 𝐶 and

replaces it with ((𝑢,𝑄),𝐶 \𝑄). This operation should be thought

of as łmergingž all the elements in 𝑄 and 𝑢 into a new single ele-

ment (𝑢,𝑄) and obtaining a smaller arity hyperedge in a variable

extended space.

We give a greedy (and efficient) algorithm that starts from a

𝑘-uniform hypergraph and repeatedly applies bipartite contraction

operations to obtain a sequence of 𝑘 ′-uniform hypergraphs for 𝑘 ′ ⩽
𝑘 along with some łerrorž hyperedges, with the property that each

of the 𝑘 ′-uniform hypergraphs produced are (𝜀, ℓ)-regular. Each of

the 𝑘 ′-uniform hypergraphs produced is naturally associated with

a 𝑘 ′-XOR instance related to the input 𝑘-XOR instance. We show

that refuting each of these output instances yields a refutation for

the original 𝑘-XOR instance.

Cauchy-Schwarz even in the even-arity setting. Unlike in the

case of 3-XOR where the resulting bipartite 3-XOR instance had

an equal number of 𝑦 and 𝑥 variables above, the bipartite 𝑘 ′-XOR
instances produced via our regularity decomposition are lopsided

ś the number of 𝑦 variables can be polynomially larger in 𝑛 than

the number 𝑛 of the 𝑥 variables. A naive bound on the number of

constraints required to refute such instances is too large to yield

the required trade-off, even in the case for even 𝑘 .

Instead (and in contrast to all previous works on CSP refutation),

we show that an appropriate application of the łCauchy-Schwarzž

trick above to even-arity 𝑘-XOR instances allows us to łkillž the

𝑦𝑢 ’s appearing in the polynomial, leaving us with only a polynomial

in the 𝑥𝑖 ’s. This is a rather different usage of the technique ś in

prior works (and as in the case of 3-XOR highlighted above), it

was instead used to build the right łsquarež matrices for obtaining

spectral refutations of the associated CSP instances when 𝑘 is odd.
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A ANALYZING THE [29] APPROACH FOR

RANDOM 3-XOR

In this section, we will prove the approach suggested by [29] (in

their Appendix F.1, F.2) for strongly refuting random 𝑘-XOR with

𝑘 odd does not yield the right trade-off for𝑚 as a function of 𝑛, ℓ .

Our proof reduces to showing that a certain matrix defined in [29]

does not have small spectral norm. For simplicity, we present the

argument for 𝑘 = 3.

First, we give a brief overview of their approach. Let 𝜓 be a

random 3-XOR instance in 𝑛 variables and𝑚 clauses, with hyper-

graph H and coefficients {𝑏𝐶 }𝐶∈H . We will assume that each pair

𝐶1 ≠ 𝐶2 ∈ H has |𝐶1 ∩𝐶2 | ⩽ 1, as this holds with high probability

provided that𝑚 ≪ 𝑛2 (and recall that we are working in the regime

of𝑚 ∼ 𝑛1.5 or smaller, as for𝑚 ≫ 𝑛1.5 there is a polynomial-time

refutation [1]).

The construction of [29] is as follows. First, partition the hy-

peredgesH arbitrarily intoH1, . . . ,H𝑛 , such that if 𝐶 ∈ H𝑢 then

𝑢 ∈ 𝐶 . From now on, we shall think ofH as ∪𝑛𝑢=1H𝑢 . We note that

our lower bound will hold regardless of the choice of the partition

here.

Next, let 𝜓 be the polynomial 𝜓 (𝑥) := 1
𝑚

∑
𝐶∈H 𝑏𝐶𝑥𝐶 , where

𝑥𝐶 :=
∏

𝑖∈𝐶 𝑥𝑖 . Applying the Cauchy-Schwarz inequality, we have

that

𝜓 (𝑥)2 ⩽ 1

𝑚

𝑛∑︁
𝑢=1

𝑥2𝑢 + 𝑛

𝑚2

𝑛∑︁
𝑢=1

∑︁
𝐶≠𝐶′∈H𝑢

𝑏𝐶𝑏𝐶′𝑥𝐶\{𝑢 }𝑥𝐶′\{𝑢 }

=
𝑛

𝑚
+ 𝑓 (𝑥) ,

where 𝑓 (𝑥) := 𝑛
𝑚2

∑𝑛
𝑢=1

∑
𝐶≠𝐶′∈H𝑢

𝑏𝐶𝑏𝐶′𝑥𝐶𝑥𝐶′ .

We now recall the following definition from [29].

Definition A.1. Let ℓ ∈ ℕ, and let H = ∪𝑛𝑢=1H𝑢 be a 3-uniform

hypergraph. For ®𝑆, ®𝑇 ∈ [𝑛]ℓ and𝐶1 = {𝑢, 𝑣1,𝑤1},𝐶2 = {𝑢, 𝑣2,𝑤2} ∈
H𝑢 with {𝑣1,𝑤1} ∩ {𝑣2,𝑤2} = ∅, we write ®𝑆 𝐶1,𝐶2↔ ®𝑇 if there exist

𝑖 ≠ 𝑗 ∈ [ℓ] such that (1) ®𝑆𝑡 = ®𝑇𝑡 for all 𝑡 ≠ 𝑖, 𝑗 , and (2) { ®𝑆𝑖 , ®𝑆 𝑗 }
contains exactly one element from each of {𝑣1,𝑤1} and {𝑣2,𝑤2},
and { ®𝑇𝑖 , ®𝑇𝑗 } contains the other two remaining elements. We note

that if ®𝑆 𝐶1,𝐶2↔ ®𝑇 for some 𝐶1,𝐶2, then we cannot have ®𝑆
𝐶′
1,𝐶

′
2↔ ®𝑇 for

any other pair 𝐶 ′
1,𝐶

′
2.

Let 𝐴𝑢 ∈ ℝ
𝑛ℓ×𝑛ℓ

be the matrix where 𝐴𝑢 ( ®𝑆, ®𝑇 ) = 𝑏𝐶1
𝑏𝐶2

if

®𝑆 𝐶1,𝐶2↔ ®𝑇 for some 𝐶1 ≠ 𝐶2 ∈ H𝑢 , and 0 otherwise, and let 𝐴 :=∑𝑛
𝑢=1𝐴𝑢 .

It is simple to observe thatmax𝑥 ∈{±1}𝑛 𝑓 (𝑥) ⩽ 𝑛
𝑚2 ·𝑂 ( 𝑛2

ℓ2
) ∥𝐴∥2,

as 𝑚2

𝑛 𝑓 (𝑥) =
1

4(ℓ2) (𝑛−4)ℓ−2
(𝑥⊗ℓ )⊤𝐴𝑥⊗ℓ for all 𝑥 ∈ {±1}𝑛 because

each pair 𝐶1 ≠ 𝐶2 ∈ H𝑢 łappearsž exactly 4
(ℓ
2

)
(𝑛 − 4)ℓ−2 times in
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the matrix𝐴. Thus, in order to get the correct𝑚 = 𝑛1.5/
√
ℓ trade-off,

we need to show that ∥𝐴∥2 ⩽ 𝑂 (ℓ), with high probability overH
and the 𝑏𝐶 ’s.

We prove that ∥𝐴∥2 is in fact large with high probability, and

so the above approach of [29] fails. Formally, we prove that with

high probability, the matrix 𝐴 has a spectral norm Ω(min(ℓ2, 𝑚2

𝑛2 )),
which has the following implications. If the minimum is 𝑚2

𝑛2 , then

the upper bound certified on 𝑓 isΩ(𝑛/ℓ2), and thus the upper bound
certified on𝜓 is Ω(√𝑛/ℓ). This is not useful, as it is greater than 1

when ℓ ≪ 𝑛. If the minimum is ℓ2, then we certify a good upper

bound on 𝑓 (and therefore also𝜓 ) only if𝑚 ⩾ 𝑛1.5, which is higher

than the desired threshold of 𝑛1.5/
√
ℓ .

PropositionA.2. Let𝜓 be a random 3-XOR instance with𝑛 variables

and𝑚 constraints, with constraint hypergraph H = ∪𝑛𝑢=1H𝑢 and

coefficients {𝑏𝐶 }𝐶∈H . Suppose that 2𝑛 ⩽ 𝑚 ≪ 𝑛2. Let ℓ ⩽ 𝑛. Then,

∥𝐴∥2 ⩾
(ℓ′
2

)
, where ℓ ′ := min(

⌈
𝑚
2𝑛

⌉
, ℓ).

We note that the Proposition A.2 holds regardless of the choice

of the partitioning ofH into theH𝑢 ’s, and also for any choice of

the 𝑏𝐶 ’s (and so, in particular, for random 𝑏𝐶 ’s). We also note that

Proposition A.2 holds for arbitrary H , provided that |𝐶1 ∩𝐶2 | ⩽ 1

for all 𝐶1 ≠ 𝐶2 ∈ H ; this holds with high probability for a random

H , provided that𝑚 ≪ 𝑛2.

Proof. With high probability over H , we may assume that

|𝐶1 ∩𝐶2 | ⩽ 1 for all 𝐶1 ≠ 𝐶2 ∈ H for all 𝐶1 ≠ 𝐶2 ∈ H . We

proceed, assuming that this holds.

As𝑚 ⩾ 2𝑛, there must exist some variable 𝑢 ∈ [𝑛] that appears
in at least 𝑚

𝑛 constraints. Hence, there must exist at least
⌈
𝑚
2𝑛

⌉
constraints that include 𝑢 and all have the same sign 𝑏 ∈ {±1}.

Let ℓ ′ := min(
⌈
𝑚
2𝑛

⌉
, ℓ). By the above, we have ℓ ′ constraints

{𝐶𝑖 }𝑖∈[ℓ′ ] = {{𝑢, 𝑣𝑖 ,𝑤𝑖 }}𝑖∈[ℓ′ ] such that 𝑏𝐶𝑖
= 𝑏 for all 𝑖 . Fur-

thermore, by assumption on H , we have
��𝐶𝑖 ∩𝐶 𝑗

�� ⩽ 1 for all

𝑖 ≠ 𝑗 ∈ [ℓ ′]. As 𝑢 ∈ 𝐶𝑖 ∩ 𝐶 𝑗 , it thus follows that {𝑣𝑖 ,𝑤𝑖 } ∩
{𝑣 𝑗 ,𝑤 𝑗 } = ∅. Let 𝑧 ∈ [𝑛] be arbitrary. Let R denote the set of

tuples (𝑟1, . . . , 𝑟ℓ′, 𝑧, . . . , 𝑧) ∈ [𝑛]ℓ such that 𝑟𝑖 ∈ {𝑣𝑖 ,𝑤𝑖 } for all

𝑖 ∈ [ℓ ′]. We note that the element 𝑧 merely pads each tuple in R to

have length exactly ℓ when ℓ ′ < ℓ .

Let 𝑀 be the submatrix of 𝐴 indexed by the tuples in R. Note
that𝑀 is a 2ℓ

′ × 2ℓ
′
matrix, as |𝑅 | = 2ℓ

′
. Let ®𝑆 = (𝑟1, . . . , 𝑟ℓ′, 𝑧, . . . , 𝑧)

be a row in 𝑀 . We will show that each row of 𝑀 has exactly
(ℓ′
2

)
nonzero entries, each of which is 1.

First, let us consider the contribution to 𝑀 from 𝐴𝑢 . Fix a row
®𝑆 ∈ R. For each pair of indices 𝑖 ≠ 𝑗 ∈ [ℓ ′], we can replace the 𝑖-th

and 𝑗-th elements of ®𝑆 with the elements of {𝑣𝑖 ,𝑤𝑖 } and {𝑣 𝑗 ,𝑤 𝑗 } not

used in ®𝑆 , and this will yield some ®𝑇 ∈ R with ®𝑆
{𝑢,𝑣𝑖 ,𝑤𝑖 },{𝑢,𝑣𝑗 ,𝑤𝑗 }↔ ®𝑇 .

Hence, 𝐴𝑢 ( ®𝑆, ®𝑇 ) = 𝑏2 = 1. Any other ®𝑇 ∈ R will differ from ®𝑆 by at

least 2 elements, and thus we must have 𝐴𝑢 ( ®𝑆, ®𝑇 ) = 0 for such ®𝑇 .
Next, let us consider the contribution to𝑀 from 𝐴𝑢′ for 𝑢 ′ ≠ 𝑢.

Fix a row ®𝑆 ∈ R. It suffices to only consider ®𝑇 obtained by swapping

the 𝑖-th and 𝑗-th entries of ®𝑆 , for some 𝑖 ≠ 𝑗 ∈ [ℓ ′], as above. If
𝐴𝑢′ ( ®𝑆, ®𝑇 ) is nonzero, then we must have ®𝑆

{𝑢′,𝑣𝑖 ,𝑤𝑖 },{𝑢′,𝑣𝑗 ,𝑤𝑗 }↔ ®𝑇 , and
thus that {𝑢 ′, 𝑣𝑖 ,𝑤𝑖 }, {𝑢 ′, 𝑣 𝑗 ,𝑤 𝑗 } ∈ H𝑢′ . However, this implies that

|{𝑢, 𝑣𝑖 ,𝑤𝑖 }, {𝑢 ′, 𝑣𝑖 ,𝑤𝑖 }| = 2 > 1, which contradicts our assumption

on H .

We have thus shown that the matrix𝑀 is 2ℓ
′ ×2ℓ

′
, with each row

having exactly
(ℓ′
2

)
nonzero entries, all of which are 1. It thus follows

that ∥𝐴∥2 ⩾ ∥𝑀 ∥2 ⩾ (12ℓ
′
)⊤𝑀12

ℓ′ /2ℓ′ =
(ℓ′
2

)
, which finishes the

proof. □
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