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ABSTRACT

We present an algorithm for strongly refuting smoothed instances of
all Boolean CSPs. The smoothed model is a hybrid between worst
and average-case input models, where the input is an arbitrary
instance of the CSP with only the negation patterns of the liter-
als re-randomized with some small probability. For an n-variable
smoothed instance of a k-arity CSP, our algorithm runs in n@(?)
time, and succeeds with high probability in bounding the optimum
fraction of satisfiable constraints away from 1, provided that the

number of constraints is at least ON(n)(%)g_l. This matches, up to
polylogarithmic factors in n, the trade-off between running time
and the number of constraints of the state-of-the-art algorithms for
refuting fully random instances of CSPs.

We also make a surprising connection between the analysis of
our refutation algorithm in the significantly “randomness starved”
setting of semi-random k-XOR and the existence of even covers in
worst-case hypergraphs. We use this connection to positively resolve
Feige’s 2008 conjecture — an extremal combinatorics conjecture on
the existence of even covers in sufficiently dense hypergraphs that
generalizes the well-known Moore bound for the girth of graphs. As
a corollary, we show that polynomial-size refutation witnesses exist
for arbitrary smoothed CSP instances with number of constraints a
polynomial factor below the “spectral threshold” of nk/2, extending
the celebrated result for random 3-SAT of Feige, Kim and Ofek.
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1 INTRODUCTION

Worst-case complexity theory paints a grim picture for solving Con-
straint Satisfaction Problems (CSPs). For a large class [10, 23] of Max
CSPs with k-ary Boolean predicates (k-CSPs), the Exponential Time
Hypothesis (ETH) [17] implies that for sparse instances, i.e., with
m = O(n) constraints in n variables, there is no sub-exponential
time approximation algorithm that beats simply returning a random
assignment. While fully-dense instances (i.e., m > 0(n*)) admit [7]
a polynomial time approximation scheme (PTAS), ETH implies that
lowering m to just ~ n*~! makes the problem APX-hard [16] even
for sub-exponential time algorithms. In fact, for instances with
m < O(n*1), we suspect that even efficiently verifiable certificates
of non-vacuous upper bounds on the value, i.e., max fraction of
constraints satisfiable, do not exist.

The study of random CSPs, on the other hand, offers a stark
contrast. Max k-CSPs with any strictly super-linear number of,
say, m > nll randomly generated constraints!' admit [3, 9, 25]
sub-exponential time tight refutation® algorithms. These are based
on spectral methods that exploit problem structure in non-trivial
ways. Further, when m ~ O(nk/ 2) < nk_l, such algorithms in fact
yield a PTAS for certifying the value of the input instance correctly.
In fact, a considerably more fine-grained, predicate-specific and
likely sharp picture [8, 20] of the trade-off between running time
and number of constraints has emerged in the last decade. Adding
to this rich theory is the fascinating work of [14] that shows that
random CSPs admit polynomial-time verifiable certificates of non-
trivial upper bounds on the value even when m ~ nk/2=0k _ je.
when number of constraints are polynomially smaller than the
threshold for efficient refutation.

How does the complexity landscape of CSPs - for both algo-
rithms and certificates — interpolate between these two extremes?
Is the worst-case understanding too pessimistic? Is the average-case
understanding too idealistic? And are the sophisticated algorithmic
tools and the structural properties that govern their success for
random CSPs relevant to more general instances?

Refutation algorithms in the smoothed model. To formally
study these questions, in 2007, Feige [12] introduced a natural
“hybrid” model in between worst-case and random instances (in
the spirit of the pioneering work of Spielman and Teng [28]). In
this smoothed model, an instance is generated by starting from
an arbitrary (i.e., worst-case) instance, and then negating each
literal in each clause independently with some small, constant
probability. In contrast to random CSPs where the clause structure

!i.e., uniformly random and independently chosen variables and “literal patterns” in

each constraint.
2Such algorithms correctly certify an upper bound on the value within an arbitrarily
small additive € w.h.p.
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(i.e., k-tuples describing the constraints) and the literal patterns (i.e.,
which variables are negated in a constraint) are chosen uniformly at
random and independently, the clause structure in smoothed CSPs
is completely arbitrary (i.e., worst-case) and only a small constant
fraction of the literal patterns are random. In [12], Feige combined
semidefinite programming with a new combinatorial certificate
based on a natural notion of cycles in hypergraphs, and proved that
polynomial algorithms succeed in weakly refuting (i.e., certifying
a1 —0p(1) upper bound on value, Definition 1.2) smoothed 3-SAT
formulas with m > O(n'"®) constraints.

Feige’s techniques, however, appear fundamentally limited to
weak refutation and specialized to 3-CSPs. As a result, there is no
known strong refutation algorithm (i.e., certifying a 1 — Q(1) upper
bound on value) for smoothed instances of 3-SAT and no known
(even weak) refutation algorithm for smoothed instances of any
nontrivial 4-CSP.

In this work, we develop new techniques that yield strong refu-
tation algorithms for all Boolean k-CSPs with (a possibly sharp)
trade-off between running time and number of constraints match-
ing that of random k-CSPs [25], up to polylogarithmic factors. In
particular, our results show that the algorithmic task of strong refu-
tation in the significantly “randomness starved” setting of smoothed
instances is no harder than in a fully random instance.

Refutation witnesses below spectral threshold: Feige’s con-
jecture. The work [14] (and extensions [30]), prove that there are
efficiently verifiable witnesses of unsatisfiability for fully random

k-CSPs with ng_‘s" constraints for some constant 6 > 0; when
k = 3, this threshold is n!%. These witnesses are based on certain
natural analogs of cycles in hypergraphs called even covers. In an ef-
fort to understand if such witnesses exist in more general instances,
Feige [13] conjectured a trade-off between number of constraints
and size of a smallest even cover. This conjecture formally general-
izes the Moore bound [5] on girth of graphs to hypergraphs.

In this work, we prove Feige’s conjecture by a new spectral double
counting argument that relates sub-exponential time smoothed refu-
tation algorithms and the existence of even covers in hypergraphs.
As a consequence, we derive that there are efficiently verifiable
witnesses of unsatisfiability for smoothed instances of all k-CSPs
with m ~ nk/2=% constraints, for some constant 8, which is poly-
nomially smaller than the threshold at which efficient refutation
algorithms exist even for random k-CSPs.

Summary. Taken together, our main results can be interpreted as
suggesting that the worst-case picture of complexity of CSPs arises
entirely because of islands of pathology: most instances “around”
the worst-case hard ones are in fact essentially as easy as random,
for both refutation algorithms as well as existence of refutation
witnesses. Further, in a precise sense, the difficulty of worst-case
instances can be attributed to the worst-case literal patterns, rather
than the clause structure.

Our contribution is shown visually in Figure 1. Figure 1 plots the
time vs. # constraints trade-off for refuting random and smoothed
3-SAT instances (along with the analogous trade-off for approxi-
mation schemes for worst case instances). Our contribution is the
smoothed case (blue line), which shows that smoothed 3-SAT in-
stances can be refuted with the same trade-off as random ones
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Figure 1: Time vs. # constraints trade-off for refuting ran-
dom and smoothed 3-SAT instances, and for approximation
schemes for worst-case instances. The smoothed case is our
contribution. We also prove that refutation witnesses exist
for smoothed instances at the purple line, i.e., n* constraints.

(green line). We also show that there exist efficiently verifiable refu-
tation witnesses for smoothed instances at n!4 constraints (purple
line), matching the result for random instances due to [14].

Our results. We now discuss our results on algorithms and certifi-
cates, as well as the interconnected techniques and insights that go
into them. Let us recall the standard notation to talk about CSPs.

Definition 1.1 (k-ary Boolean CSPs, random, semirandom, and
smoothed instances). A CSP instance ¢ on n variables with a k-
ary predicate P : {£1}* — {0,1} is a set of m constraints on
n variables of the form P(£(C)1xc,, £(C)2xc,, ..., E(C)rxc,) = 1.
Here, C = (C1,Cy,...,Cy) ranges over a collection H of scopes
(a.k.a. clause structure) of k-tuples of n variables such that C; # C;
forany i, j and £ : H — {%1}* are “literal negation patterns” one
for each C in H. The value of ¢, val(¢), is the maximum fraction
of constraints satisfied by any assignment to the n variables.

In a random (sometimes, fully random in order to disambiguate
from related models) instance, H is a collection of m uniformly ran-
dom and independently chosen k-tuples and the £(C)’s are chosen
uniformly at random and independently from {+1}* for each C.

In a semirandom instance, H is arbitrary (i.e., worst-case) and
EC) e {£1}* are uniformly at random and independent for each
C.

In a smoothed instance, H is arbitrary (i.e., worst-case) and
EC) e {£1}* are obtained by starting with arbitrary (i.e., worst-
case) £'(C) € {£1}* for each C and then for each C, i, setting
E(C); = &(C); with probability 0.99 and é(C); = —¢'(C); with
probability 0.01, independently.

We note that the semirandom model is more general than the
random model, and the smoothed model is more general than the
semirandom model.

Definition 1.2 (Weak, Strong and Tight refutation algorithms). A
refutation algorithm takes as input a CSP instance ¢ and outputs a
value alg-val(¢) € [0, 1] with alg-val(¢) > val(¢) for all ¢. For a
distribution D over ¢, we say that the refutation algorithm weakly
refutes instances drawn from 9 if with high probability over ¢ ~
D, alg-val(¢) < 1. We also define strong refutation (alg-val(¢) <
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1 — § for some absolute constant § > 0) and e-tight refutation
(alg-val(¢) < val(@) + ¢ for arbitrarily small ¢) analogously.

Algorithms for smoothed refutation. Our first main result gives
a (possibly sharp) trade-off between running time and number of
constraints for strongly refuting smoothed CSP instances.

Theorem 1 (Smoothed refutation, informal). For every ¢ = £(n),
there is a nO) -time strong refutation algorithm for smoothed CSPs
withm > mg = O(n) - (%)(%_1) constraints. That is, for any CSP
instance ¢ with m > mg constraints, with probability 0.99 over the
smoothing ¢s of ¢, the algorithm outputs alg-val(ds) < 1 -6 for
some absolute constant § > 0.

Here, t = t(P) < k is the “degree of uniformity” of P — the smallest
integer t < k such that there is no t-wise uniform distribution on
{x1}k supported entirely on the satisfying assignments P~1(1) C
{£1}k.

In order to understand the trade-off described by the theorem,
let us apply it to two examples.

Example 1.3. For k-SAT, P is the Boolean OR function. We thus
have t(P) = k, as the uniform distribution on odd-parity strings is
supported on P~1(1) and is (k — 1)-wise uniform. Our result gives
a polynomial time algorithm to strongly refute smoothed instances

of k-SAT whenever the number of constraints m > é(n§ ). More
generally, for any § > 0, in time 20(n°) the algorithm strong refutes

smoothed instances with > (j(n(l_‘s)%“s) constraints.

As a second example, consider the “Hadamard predicate” P on
k = 2271 bits where P(x) = 1 if and only if x is a codeword of the
truncated Hadamard code. Hadamard CSPs naturally appear in the
design of query efficient PCPs. Here, t(P) = 3 < k, so our theorem
gives a polynomial-time algorithm to strongly refute smoothed
instances of the Hadamard CSP with at least O(n!-?) constraints,
and a 2"’ -time algorithm for instances with at least O(n1-59/2)
constraints V6 € (0, 1].

Comparison with prior results. Theorem 1 can be directly com-
pared to works on refuting random, semirandom and smoothed (in
the order of increasing generality) CSPs.

Building on [3, 9], Raghavendra, Rao and Schramm [25] proved
the same trade-off (up to a polylog(n) factor in m) between running
time and number of constraints required as in Theorem 1 for the
significantly simpler special case of fully random CSPs — when the
clause structure and the literal patterns are chosen uniformly at
random from the respective domains. Our result shows that the
same trade-off holds for smoothed instances - i.e., with worst-case
clause structure and small random perturbations of worst-case
literal patterns. All known efficient refutation algorithms, including
ours and that of [25], can in hindsight be interpreted as an analysis
of the canonical sum-of-squares (SoS) relaxation for the max k-CSP
problem. For random CSPs (and thus also for the more general
smoothed instances we study) the trade-off we obtain is known to
be essentially tight [8, 20] for such “SoS-encapsulated” algorithms:
this fact is often taken as evidence of sharpness of this trade-off.

Much less is known about refuting CSPs in the more general
semirandom and smoothed models. Feige [12] gave a weak refutation
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algorithm for refuting smoothed and semirandom instances of 3-
SAT. His techniques apply to all 3-CSPs but do not seem to extend
to either strong refutation or 4-CSPs. More recently, in a direct
precursor to this work, Abascal, Guruswami and Kothari [1] gave a
polynomial time algorithm for refuting semirandom instances of
all CSPs - thus obtaining one of the extreme points (corresponding
to £ = O(1)) in the trade-off in Theorem 1 above. Theorem 1 relies
on a key idea from their work (row bucketing) along with several
new ideas discussed below.

Algorithms for refuting semirandom k-XOR. Our main tech-
nical result is an algorithm for tight refutation of semirandom in-
stances of k-XOR. Theorem 1 then follows by a simple blackbox
reduction that relies on a dual polynomial introduced in [3]. For
the special case of k-XOR, a semirandom instance / is completely
described by an arbitrary k-uniform instance hypergraph H and
a collection of “right-hand sides” b¢c € {£1}, one for each C € H.
One can associate to i a homogeneous degree k polynomial /(x)
on the hypercube {+1}" that computes the “advantage over 1/2”
of an assignment x; that is, the value of the associated instance is
% + maXye(+1)n Y(x). Tight refutation corresponds to certifying
that /(x) < ¢ for arbitrary ¢ > 0.

1
(x)=— be | |xi.
Theorem 1.4 (Strongly refuting semirandom k-XOR, informal).
Foreveryk € N andt = £(n) and every e > 0, there is a nOO time ¢-
tight refutation algorithm for homogeneous degree k polynomials that
succeeds with probability at least 0.99 over the draw of the coefficients

i.i.d. uniform on {1, 1}, whenever the associated hypergraph H has
logn
£

n

m>n(2)5 poly(

) hyperedges.

s
In particular, for every § > 0, we obtain a 20(n°) _time e-tight
refutation algorithm for semirandom k-XOR instances with m >

O(n) - n(lf‘s)(gfl) poly(%)-constraints.

Prior works and brief comparison of techniques. The trade-off
above (up to polylog(n) factors in m) matches the one obtained for
refuting fully random k-XOR [25]. Our techniques, however, neces-
sarily need to be significantly different, as the analysis in [25] (and
related works it built on [3, 9, 11]) crucially rely on the randomness
of the hypergraph H. In particular, the refutation in [25] uses the
spectral norm of a certain “symmetric tensor power” of the canon-
ical matrix obtained from the instance. They analyze this matrix
using a technical tour-de-force argument using the trace moment
method.? A couple of follow-up works have attempted to simplify
the analyses in [25]. Wein, Alaoui and Moore [29] succeeded in
giving a simpler proof (introducing the Kikuchi matrix, a variant
of which is central to this work) for the case of random k-XOR
for even k, and they also suggest that a natural generalization of
their Kikuchi matrix for random odd k will work (their suggestion
does not pan out, as we prove in Appendix A). In a recent work,
Ahn [2] simplified some aspects of the analysis of the “symmetric
tensor power” matrix in the analysis of [25]. To summarize, the
tools in prior works on random CSPs for analyzing the spectra of
relevant correlated random matrices seem to use the randomness
of the hypergraph both heavily and in a rather opaque manner.

3Just the technical argument in [25] runs over 20 pages!
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For the more general setting of semirandom k-XOR refutation,
the best known result [1] obtained an extreme point in the trade-
off (i.e., the case of £ = O(1)). That work analyzes the co — 1-
norm of the canonical matrix associated with the CSP instance.
In this special case when ¢ = O(1), it turns out that handling 3-
XOR instances allows deriving all larger k as a corollary. For the
case of 3-XOR, their analysis relies on a new row bucketing step
according to the butterfly degree of a pair of vertices (a new notion
that they define), along with a certain pseudo-random vs structure
decomposition for arbitrary 3-uniform hypergraphs associated with
the 3-XOR instance.

To prove Theorem 1.4, we build on [1] and introduce a few new
tools. For even k, the Kikuchi matrix of [29] analyzed using the row
bucketing idea (with an appropriate generalization of the butterfly
degree) of [1] yields a correct trade-off (see Sections 2.1 and 2.2). The
case of odd k turns out to be significantly more challenging (as has
always been the case in CSP refutation) and needs new ideas. We
introduce a variant of the Kikuchi matrix for this purpose. Unlike
the case of even k (and the algorithm in [1]), the spectral norm of
this matrix is provably too large to yield a refutation — even for
random instances. Indeed, this is why the strategy suggested by [29]
does not pan out, as we show in Appendix A. Instead, we use the
spectral norm of a matrix obtained by pruning away appropriately
chosen rows. We then show that the number of pruned rows is not
too large, and so does not contribute too much to the co — 1-norm
of the full matrix.

The row pruning step motivates a definition of regularity, a
collection of natural pseudorandom properties that relate to well-
spreadness in the intersection structure of the hyperedges in the
instance hypergraph.* We then show that the hyperedges in every
k-uniform hypergraph can be decomposed, via a regularity decom-
position lemma, into k’-uniform hypergraphs for k” < k, along with
some “error” hyperedges, such that (i) each of the k’-uniform hy-
pergraphs satisfies regularity, and (ii) refuting all of these k’-XOR
instances provides a refutation for the original instance. We explain
our row pruning and the regularity decomposition steps in more
detail in Section 2.

Short refutations below spectral threshold: proving Feige’s
conjecture. In a one-of-a-kind result, Feige, Kim and Ofek [14]
(henceforth, FKO) proved that with high probability over the draw
of a fully random 3-SAT instance i, there is a polynomial size
witness that weakly refutes i if  has m ~ O(n'*) constraints.
Formally, there is a polynomial time non-deterministic refutation al-
gorithm that succeeds in finding a refutation with high probability
over the drawn of a fully random 3-SAT instance with m ~ O(n'%)
constraints. On the other hand, all known polynomial time deter-
ministic refutation algorithms require the input random instance
to have Q(n!-3) constraints - this bound is often called the spectral
threshold. The fastest known refutation algorithm [25] for instances
with ~ n!* constraints runs in time 2", matching the SoS lower
bound [20]. Thus, intriguingly, the FKO result shows the existence
of polynomial time verifiable refutation witnesses (i.e., certificates
of an upper bound of 1 — 0,(1) on the value) at a constraint den-

o(1
sity at which there are no known 2" “ _time refutation algorithms.

4This is closely related to the notion of spread encountered in recent work on the
sunflower conjecture [6, 26].
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Does such a “gap” between thresholds for existence vs efficient
computability of refutation witnesses persist for semirandom and
smoothed instances, i.e., instances with worst-case constraint hy-
pergraphs?

In 2008, Feige [13] made an elegant conjecture on the existence
of even covers in sufficiently dense hypergraphs. This conjecture
can be interpreted as generalizing to hypergraphs the classical
Moore bound on the girth of graphs with a given number of edges.
If true, Feige’s conjecture implies that the FKO result holds for all
semirandom and smoothed CSP instances — in particular, the FKO
result does not rely on the properties of the underlying hypergraph
at all. Let us explain this conjecture below.

Definition 1.5 (Even Cover and Girth). For a k-uniform hyper-
graph H on [n], an even cover of length t is a collection of t distinct
hyperedges Cy, Co, ..., Cs in H such that every vertex in [n] ap-
pears in an even number of C;’s. The girth of H is the length of the
smallest even cover in H.

Conjecture 1.6 (Feige’s conjecture, Conjecture 1.2 in [13]). Every

k
k-uniform hypergraph H on [n] withm > mg = O(n) (%)7_1
hyperedges has an even cover of length O({ log n).

A brief history of the conjecture. For k = 2, an even cover is a
2-regular subgraph (and thus a union of cycles) in a graph and thus,
the conjecture above reduces to the question of determining the
maximum girth (the length of the smallest cycle) in a graph with n
vertices and nd/2 edges for parameter d. The best known bound is
due to Alon, Hoory and Linial [5] who proved that for every graph
on n vertices with nd/2 edges for d > 2, there is a cycle of length
at most clogy_; n for ¢ < 2. The best known lower bound on the
girth is clog 4_) n for ¢ > 4/3 by Margulis [22] and Lubotzky,
Philips and Sarnak [21] via explicit constructions of Ramanujan
graphs. Obtaining a tight bound on ¢ has been an outstanding open
problem for the last 3 decades.

Much less is known for hypergraphs. When k even and ¢ = O(1),
Naor and Verstraete [24] proved the conjecture. They were mo-
tivated by a natural coding theory interpretation: viewing each
hyperedge as describing the non-zero coefficients of linear equa-
tions over IFy, an even cover is a sparse linear dependency and thus,
the conjecture gives the rate-distance trade-off for linear codes with
column-sparse parity check matrices. In the more challenging case
when k is odd, the bounds for £ = O(1) case in [24] were improved
to essentially optimal ones in [13]. For £ > 1, the best previous
bound for 3-uniform hypergraphs is due to a simple argument of
Alon and Feige [4] (Lemma 3.3), who proved that every 3-uniform
hypergraph with O(n?/£) hyperedges has an even cover of size ¢
(this is off by ~ /n factor in m). For 3-uniform hypergraphs with
m > n'->*¢ (and the case when m > nk/2 in general), [18] proved
that there are even covers of size O(1/¢). Finally, Feige and Wag-
ner [15] proved some variants (“generalized girth problems”) in
order to build tools to approach this conjecture.

To summarize, prior to this work, the conjecture was known to
be true only for £ = O(1). For larger ¢, the only approach was the
combinatorial strategy introduced in [15]. In this work, we prove
Feige’s conjecture (up to poly log n slack in m) via a new spectral
double counting argument.
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Theorem 2 (Feige’s conjecture is true, informal). For everyk € N
and ¢ = £(n), every k-uniform hypergraph H with m > my

O(n) - ) 51 hyperedges has an even cover of size O(¢logn).

Our spectral double counting argument”® is heavily derived from
our analysis for smoothed refutation using our Kikuchi matrices;
indeed, our proof of Theorem 2 mirrors our steps in the analysis of
our refutation algorithm. In fact, in a precise sense (as we explain
in Section 2.3), our approach gives a tight connection between even
covers in hypergraphs and simple cycles (and in turn, the spectral
norm of the corresponding adjacency matrix) in the “Kikuchi graph”
built from the hypergraph.

Combining with our smoothed refutation algorithms (Theorem 1)
we immediately obtain a generalization of the FKO result that
yields a polynomial time non-deterministic refutation algorithm for
smoothed instances of all k-ary CSPs with number of constraints
m polynomially below the spectral threshold of nk/2,

Theorem 3 (Non-deterministic refutation, informal). There is a
non-deterministic polynomial time algorithm that weakly refutes

« K_ k2
smoothed instances of any k-CSP with m > mg = O(n? 29 )-
constraints. For the special case of k = 3, mg = O(n'"%).

2 OVERVIEW OF OUR TECHNIQUES

In this section, we illustrate our key ideas by giving essentially
complete proofs of some special cases of our main results along
with expository comments.

This overview is structured as follows: we will first give an
essentially complete proof for refuting semirandom instances of
even-arity k-XOR. As has been the trend in all the refutation results,
the even-arity case happens to be significantly simpler but allows
us to showcase two key ideas:

(1) The power of the Kikuchi matrix. In fact, this work can be
thought of as a paean to the beautiful structure and the applica-
tions of the Kikuchi matrix and its variant that we introduce for
odd-arity k-XOR. Combined with the row bucketing idea from [1],
we can easily resolve the case of even arity k-XOR. The Kikuchi
matrix was introduced by [29] to give a simpler proof of the result
of [25] for refuting fully random instances of even-arity k-XOR.
They left open the question of finding an analogous proof for the
odd-arity case (again, for fully random CSPs) and even suggested
an approach. Their approach, however, does not pan out, as we
prove in Appendix A. Our Kikuchi matrix for the odd-arity case
along with our analysis technique (that does not directly work with
spectral norms) allows us to prove sharp trade-offs for refuting
random CSPs and with additional ideas, make them work even for
the significantly randomness starved semirandom and smoothed
settings.

(2) The connection between refutations obtained via an appro-
priate norm of the Kikuchi matrix in the randomness-starved semi-
random setting and the existence of even covers in worst-case hy-
pergraphs. In this overview, we will use this connection to give a

>Subsequent to our posting of this paper, Tim Hsieh and Sidhanth Mohanty were able
to use our spectral double counting technique with the non-backtracking walk matrix
of a graph to recover the sharpest known result (matching [5]) for the Moore bound
for irregular graphs. We believe a similar approach might also help achieve sharper
results for size of smallest even covers in hypergraphs.
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single page proof of Feige’s conjecture for k-hypergraphs for k even.
We note that this gives an interesting instance of the phenomenon
where the analysis of an algorithm in a reduced-randomness setting
can be used to infer a purely combinatorial property of worst-case
structures.

We will then discuss our ideas for odd-arity case at a high-level
by focusing on 3-XOR. As is usual in CSP refutation, even for the
special case of fully random instances, refuting odd-arity XOR is
significantly more challenging [3, 9, 11]. We introduce several new
ideas to tackle the semirandom (and thus also the smoothed) case:
(1) a new, suitable variant of the Kikuchi matrix, (2) the idea of
row pruning combined with row bucketing, and (3) a new regularity
decomposition for arbitrary hypergraphs.

Our proof of Feige’s conjecture for odd-k-uniform hypergraphs
is conceptually similar to the even case — in that it mimics the
refutation argument closely — but needs all the new machinery for
refutation introduced above for handling semirandom odd-arity
k-XOR and must use the trace moment method (instead of the
matrix Bernstein) in the step that upper bounds the spectral norm
of appropriate sequence of matrices produced in our analysis. The
combinatorial argument required in analyzing the trace method
turns out to be somewhat more intricate in the odd arity case. We
will not discuss it in this overview.

Our reduction from smoothed CSP refutation to semirandom
CSP refutation is short and elementary. We will not discuss this
argument in this overview.

2.1 Random 4-XOR Via the Kikuchi Matrix

of [29]
Let’s start by defining the Kikuchi matrix and showing how it gives
a simple refutation algorithm with the optimal trade-off for random
instances of even-arity k-XOR. We will focus on k = 4 here.

Definition 2.1 (Kikuchi Matrix). Let N = (';) For a 4-XOR instance
described by H and be’s for C € H, let Ac € RVN*N be the matrix
indexed by all possible subsets of [n] of size exactly ¢. The entry of
Ac atany (S,T) where §,T € (['}]) is defined by:

b ifSeT=C
Ac(s,T)=17¢ "oF

0 otherwise
Here, S @ T is the symmetric difference of the sets S, T. The level £
Kikuchi matrix of the instance is then simply A = }\ccqr Ac.

Quadratic forms of the Kikuchi matrix. The quadratic forms
of this matrix are closely related to the polynomial ¢(x) as-
sociated with the input 4-XOR instance: namely, @(x)
% Ycew be [liec xi- Notice that the non-zero entries of the ma-
trix A correspond to pairs of sets (S, T) such that the symmetric
difference of S, T is one of the clauses in the input 4-XOR instance.
Observe that if S® T = C, then [SNC| = 2, |[TNC| = 2, and
ISNT| = ¢ - 2. In particular, each bc appears in (3) - (75) different

entries of A. Now, let x®¢ be the (})-dimensional vector of degree
£ monomials in x. That is, the entries of x®! are indexed by subsets
of size £ of [n] and the S-th entry of x®¢ is given by [];es x;. Then,
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we must have:

4) (n—4 1 ot’)T oY
. == A
o) (2o b
This immediately provides a certificate of upper bound on the
value of the input instance as it must hold that

n—4\""(n n?
Ally < 0= ) - l1All
(2] (7)< o2z - e

(2.2)
where ||A||, is the spectral norm of the matrix A. If we can show
that ||A|l, < O(f) wh.p. over the draw of the hypergraph H and
the bc’s, then, whenever m > O(n) - %7, the spectral norm of A
provides a certificate that ¢(x) < 0.01 for every x € {+1}".

It is in the ease of establishing such an upper bound on the spec-
tral norm that the choice of Kikuchi matrix really shines! Observe
that Ac’s are a sequence of independent, random matrices and thus,
one can try to apply off-the-shelf matrix concentration inequali-
ties to bound the spectral norm of A. Instead of using the matrix
Chernoff inequality as in [29], we will use the matrix Bernstein
inequality below as it turns out to generalize better.

(2.1)

1
max ¢(x) < — -
xe{-1,1}" 6m

Fact 2.2 (Matrix Bernstein Inequality). Let My, My, ..., be indepen-
dent random N X N matrices with mean 0 such that |M;]l, < R
almost surely. Let o° = max{“]E[Zi MiMl.T]”2 , | E[Y; MiTMi]Hz}
be the variance term. Then, with probability at least 1 — 1/n'%°,

[

< O(Rlog N + o+/logN) .
2

Spectral norm of the Kikuchi matrix. Let’s analyze ||Al|5 using
this inequality. First, observe that any row of Ac has at most 1 non-
zero entry of magnitude 1. Since the spectral norm of a matrix is
upper bounded by the maximum #; norm of any of its rows, this im-
mediately yields that ||Ac||, < 1. Let’s now compute the “variance”
term. Here’s the key observation about the Kikuchi matrix that
makes this analysis so simple: the matrix AZC is diagonal for every
C. To see this, observe that the entry at any (S, T) of this matrix is
given by by >y EAc(S,U)Ac(U, T). A term in the summation is
non-zero only if S® U = U @ T = C which can happen if and only
ifT=8.

Let’s now compute the diagonals of E } )~ Azc. Notice that
A%(S, S) equals either 1 or 0 for every C. Thus, )¢ Aé(S, S) =
deg(S) where

deg(S) :=[{C | [SNC|=2}],

2

and so the variance term o is maxg deg(S).

How large can this be? Since each constraint contributes (g) .

("~3) non-zero entries to A, Zse(n) deg(S) = (3) - (3=3)m. Thus,

on an average deg(S) is ~ m¢? /n?. When m ~ n?/¢, this is ~ £.
When H is a random hypergraph with ~ n? /£ hyperedges, we
expect deg(S) to not deviate too much from its expectation. In
fact, using the Chernoff bound yields deg(S) < O(flogn) for
all S whp. Since N = (?) this yields that ||Al|; < O(logN) +

O(+/tlogn -log N) = O(#) on as desired.
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2.2 Semirandom Instances of 4-XOR Via Row
Bucketing from [1]

Let us now conduct a post-mortem of the above proof to see where
we used the randomness of the hypergraph . Even after fixing
H, the Ac’s are independent random matrices, with all the ran-
domness coming from the b¢’s. Thus, we can still apply the ma-
trix Bernstein inequality. The only point in the proof where we
used the randomness of the hypergraph H was to establish that
deg(S) = O(¢logn) for every S. So, our proof immediately extends
to semirandom instances where the instance hypergraph H is such
that deg(S) = O(¢logn) for every S.

This bound is delicate: when deg(S) = Q(¢2), we obtain no non-
trivial refutation guarantee and even deg(S) ~ ¢! results in a
suboptimal trade-off. On the other hand, in arbitrary H, deg(S) can
be as large as m (but no larger). Further, this is a “real” issue (and
not an artefact of the use of Matrix Bernstein inequality): when
deg(S) is large, so is the spectral norm of A.

Key observation: only sparse vectors cause large quadratic
forms. Our way forward builds on that of [1] who recently gave
a polynomial time algorithm for (strongly) refuting semirandom
instances of k-XOR with > é(nk/ 2) constraints. The key observa-
tion is when deg(S) is large, the spectral norm of A is high but
intuitively, the “offending” large quadratic forms are induced only
by “sparse” vectors, i.e., vectors where the £» norm is contributed
by a small fraction of the coordinates. On the other hand, we only
care about upper bounding quadratic forms of A on vectors where
all coordinates are +1 and are thus are maximally “non-sparse” or
“flat”.

Row bucketing. We can formalize this observation via row buck-
eting. Let dy ~ m - £2/n? be the average value of deg(S). Let’s
partition the row indices in (’;) into multiplicatively close buckets
Fo, F1, - - - » ¥ so that for each i > 1,

Fi = {S |27 dy < deg(S) < 2'dp} .

and Fy = {S | deg(S) < do}. Then, since deg(S) < manddp > 1 (as
m ~ n? /), we can take t < log, m. Further, by Markov’s inequality,
|Fil < 27(}) = 27IN. For each i,j < t, let A;; be the matrix
obtained by zeroing out all rows not in #; and all columns not in
Fj from the Kikuchi matrix A. Then, A = }}; i<; Aj j.

The key observation is the following: while A; ; has non-zero
rows and columns where deg(S) is larger by a 2 (2/, respectively)
factor than the average, we are compensated for this by a reduction
in the number of non-zero rows and columns.

Let y € RN be any vector with entries in {+1}", and let yg; be
the vector obtained by zeroing out all coordinates of y that are not
indexed by elements of ;. Then, we must have:

y Ay = max (yg) Aii(yg) < IFIF AL, -
ye{£1}N

(2.3)

We apply the Matrix Bernstein inequality in a similar manner

to the previous analysis. The “variance” term grows by a factor of
max{2{,2/} over the bound obtained for the random case. As a re-
sult, the spectral norm of A; j is higher by a factor of max{2/2,2//2}.
On the other hand, the effective 2 norm of the vector drops by at
27(1+7)/2 The trade-off “breaks in our favor” and the dominating

max
ye{s1}N
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term in the bound is Ag o - the spectral norm of which is at most of
the same order as that of the A in the case of the previous random 4-
XOR analysis! We thus obtain that max ¢ ;138 yT Ay is O( r::—; -f),
and so we certify that ¢(x) < 0.01 for every x € {+1}".

2.3 Proving Feige’s Conjecture for 4-Uniform
Hypergraphs

We now discuss how the analyses of the Kikuchi matrix from the
previous section relates to Feige’s conjecture on even covers in 4-
uniform (and in general, any even-uniform) hypergraphs. A priori,
such a connection may appear rather surprising that the analysis
of a super-polynomial size matrix introduced for refuting k-XOR
can shed light on a purely combinatorial combinatorial fact. But we
will soon see that this is yet another instance of the Kikuchi matrix
doing its magic.

Recall that Feige’s conjecture suggests a trade-off between the
number of hyperedges and an appropriate notion of girth (i.e.,
length of the smallest cycle, or even cover) in hypergraphs that
generalizes the classical Moore bound [5], which asserts that ev-
ery graph on n vertices with nd/2 edges has a cycle of length
< 2log,_;(n). To explain our spectral double counting argument to
prove this conjecture, it is helpful to first use it to prove a (signifi-
cantly weaker) version of the Moore bound and then generalize to
hypergraphs H via the “Kikuchi graph” derived from H.

Proposition 2.3 (Weak Moore bound in irregular graphs). Every
graph G on n vertices and nd /2 edges ford > O(logg(n)) has a cycle
of length < [2log, n].

Our spectral double counting argument counts the number of
edges of G in two different ways: let A be the 0-1 adjacency matrix
of G. Then, the quadratic form 1T A1 = nd. We will show that if G
does not have a cycle of size < 2[log, n], then, all +1-coordinate
quadratic forms of A are at most n - O(Vd). Together, these two
bounds yields the desired contradiction.

Claim 2.4 (Trace Method in the absence of even covers). Let A
be the 0-1 adjacency matrix of a graph G on n vertices with nd/2
edges with no cycle of length < 2r for r = [log, n]. Then, for every
y € {=1}",

yT Ay < nVd - O(log}(n)) .

Notice that this claim immediately yields a contradiction if nd >
nVd - O(log%'s(n)), which holds if d > O(logg n), thus proving
Proposition 2.3. Let’s now see how to prove this claim.

Proor. The average degree of vertices inGisd. Let ; = {v |
id < deg(v) < 27*1d} for each 1 < i < log, n. Let 4; _j be obtained
by zeroing out all rows not in F; and all columns not in ¥; from A.
Then, A = Zi,j Ajj.
By a similar observation as in the previous subsection, we have:

y Ay < Y 174, -
LJj

Let’s now bound ||Ai j||2 The idea is to use the trace moment

method on the matrix A; j: for every r, tr((AIJAT )y = HA,]” .
This method is typically employed in analyzing the spectral norm
of random matrices. But notice that A; j is a fixed matrix - nothing

(2.4)
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random in it. Nevertheless, our key observation is if G has no cycle

of length < 2r, then one can derive the same exact upper bound on
2 irs €. s . .

tr(Al.J) as if it was a random “signing” of the adjacency matrix of

We have:
tr((A,]A ) )

Z Ajj(v1,02)A4j(v3,02) - Ay j(v2r-1,027) Ay j (01, 02r) -

01,02,...,02r

The term corresponding to (v1, 92, ..., v2,) contributes a non-zero
value (of at most 1) to the right hand side above if and only if the
sequence {v;,v;4+1} is an edge, say e; in G for each i < 2r. Consider
now the multiset of edges E’ = {ey,ey,...,e}. Since these are
edges on a walk, viewing the e;’s as subsets of [n] of size exactly
2, we must have that ®' e; = 0. Let’s now prune E’ by removing
any e;, ej that are equal. We must be able to remove all edges in
this procedure, as otherwise we are left with a 2-regular induced
subgraph inside G, and so G must have a cycle of length < 2r. Thus,
each edge of G occurs an even number of times in the multiset E’.

Let’s now use this observation to count the number of returning
walks beginning with a fixed vertex v1. For each edge, we “match”
its ﬁrst occurrence along the walk with the last occurrence. There
r'2’ different ways to select this matching. Given a matching,
there are at most r distinct choices of edges to be made. We make
these choices inductively along the path from v1 to vp,. At each step
we can make a new choice (i.e., we are not traversing an edge that
is already matched to a previously chosen edge) given our previous
choices, there are at most A = max{2’, 2/ }d choices for the edge.
Summing up over all choices for v1, we obtain that the number of
non-zero contributing 2r length walks is at most n - A"2"r!. Thus,

”AUHZ < max{2i/2, 212} . pl2rgt/2p1/2
< 2d'/? max{Z’/z, 21/2}\/210{:{2 n,

for r = 2[log, n] and large enough n.
Plugging back in (2.4) yields that

y Ay < ZZ 2=+ /2p00/2. \2dlogyn < ndl/zO(log%'5 n). O

i<j

are

Let’s summarize the idea of the proof: analyzing the quadratic
forms on the hypercube of adjacency matrix with row bucketing
yields a (significantly weaker but still non-trivial) bound on the
girth of a graph with a given number of edges. This argument can
possibly be sharpened (to only an absolute constant factor loss) by
switching to the non-backtracking walk matrix of G (instead of the
adjacency matrix) and dropping the row bucketing step. The above
loose argument, however, generalizes to hypergraphs as we show
below.

Lemma 2.5 (Feige’s Conjecture for 4-Uniform Hypergraphs) Every
4-uniform hypergraph H on [n] withm > O(" log2 n) hyperedges
has an even cover of length O(¢log, n).

For every C € H, let bc = 1 and consider the Kikuchi matrix A
of the 4-XOR instance specified by H and b¢’s. Equivalently, A is
simply the adjacency matrix of the “Kikuchi graph” on vertex set
([';]) where edges correspond to pairs (S, T) such that S® T = C for
some C € H. The idea is to repeat the argument for the adjacency
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matrix above but this time on the Kikuchi graph. The “win” in this
scheme is a reduction of the problem on hypergraphs to a related
problem on the associated Kikuchi graph that is significantly easier
to reason about.

As in the previous section, each C € H corresponds to (3) - (75)
different non-zero entries in A and in particular, we have for x = 1",

(x®0)T AxOC = 6(” B 4) ).
=2

Our proof exactly mirrors the proof of the above weak Moore
bound for graphs. We will show that if  has no even cover of
length 2r for r = 0.5log, N, then, yT Ay < (’;)é(f) for any y €
{-1, 1}V,

Let deg(S) = [{C | ISN C| = 2}|. Write A = }; ; A; j where
Aj j has all rows not in 7; = {S | 2i71dy < deg(S) < 2ido} (Fo =
{S | deg(S) < do}) and all columns not in ¥; zeroed out, where
do ~ me? /n®. Note that deg(S) < m so the number of buckets is at
most [log, m]. We can now argue:

(" Ay) < D [lasll, - 1Tl
iLj

In the previous section, when b¢’s were independent, random
bits, we used the matrix Bernstein inequality to bound ||A,-, j“z‘ Here,
bc’s are fixed (and equal to 1) so, of course, that strategy cannot
work. Instead, our proof uses the trace moment method as in the
proof of the weak Moore bound.

Proposition 2.6. Suppose H has no even cover of length 2r for
r < log, N. Then, |Ai,j||2 < O(tlog, n).

2r
PRrROOF OF PROPOSITION. As before, we use ||A,~,j||2 <

tr((Ai,jA;':j)r)) for any r € IN. We then have:

tr(AjAT))

51,52,-:52r

where we adopt the convention that Sz,+1 = S1. Let us now an-
alyze the right hand side of this equality. Each term in the RHS
corresponds to a 2r-tuple (Si, Sy, ..., Sa,) of sets from ([?]) can
contributes either 0 or 1.

If a term corresponding to (S1, Sa, . . ., S2r) contributes a +1, then,
for each i < 2r, there must be a C; € H such that S; & Si41 = Ci.
Thus, each non-zero term is in bijection with (S1,C1,Ca, ..., Car).
On the other hand, we must have that () = @l.zzrlSi ®Sit1 = GBIZIC,', as
each S; appears twice in @lzzr 1Si ®Si+1, and thus the total symmetric
difference is 0. Hence, a non-zero term (S, Cy, Ca, ..., Cyr) must
satisfy GBI.ZLICL- =0.

Let us analyze such a 2r-tuple of hyperedges. By removing equal
pairs repeatedly as in the previous proof, we can conclude that
since H has no even cover of length < 2r, each hyperedge in H
occurs an even number of times in the (multi)set {C1, Ca, ..., Car}.

We now count the number of (S1,Cy,...,Cyr) such that each
C; occurs an even number of times. Since C;’s occur in pairs, we
can match the first occurrence of the hyperedge in the ordered
set (C1,Cy, ..., Cyr) to the last. There are < 2"r! different ways of
selecting this matching. Given S; and the matching, there are at
most r unique C;’s to choose. When making a choice of C; (say), S; is

Z A j(81,82) - Ai,j(S3,82) - - - A, j(S2r—1, Sor) Ai j (S2r+1, S2r) »
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already determined by the previous choices. Thus, we have at most
deg(Si) < A < max{2', 2/ }dy unique choices for the hyperedge C.
In total, there are < N - 2"r!A” non-zero terms, and so

HALJ'HZ < N1/2r21/2\/7max{2i/2, 2j/2}\/d_0
< max{zi/z, 2j/2}2\/log2 N\/d_,

for r = 0.5log, N and large enough n. The remaining calculation
now mimics the one for Proposition 2.3 (recalling that dy ~ m¢?/n?),
and finishes the proof of Lemma 2.5 O

2.4 Refuting Semirandom 3-XOR Via Row
Pruning

The case of odd arity XOR refutation is lot more challenging. Even
in the well-studied special case of random CSP refutation and the
special case of £ = O(1) (i.e., polynomial time refutation), the case
of odd arity CSPs turns out to be significantly more challenging
than the even case. So let us start by focusing on the case of random
3-XOR first.

As in the case of 4-XOR, we would like to begin by finding a
simpler argument (compared to [25]) for the special case of random
3-XOR using some appropriate variant of the Kikuchi matrix. In
fact, [29] attempted this by introducing a variant of the Kikuchi
matrix, and suggested an explicit approach (see Section F.1 of [29])
to prove that the spectral norm of that matrix yields a refutation,
but this does not work (see Appendix A). Indeed, we do not know of
any reasonable variant of the Kikuchi matrix whose spectral norm
yields a refutation for even fully random 3-XOR instances with the
expected trade-off.

Instead, we will introduce a variant of the Kikuchi matrix and
use it to give a refutation algorithm for random 3-XOR instances by
relying not on the spectral norm (which is too large) but, instead,
the spectral norm of a “pruned” version of the matrix. We will
then discuss the remaining key ideas of regularity decomposition
combined with row bucketing to refute semirandom odd-arity XOR.

Bipartite 3-XOR. The Kikuchi matrix we introduce relates di-
rectly to a polynomial obtained by applying the standard “Cauchy-
Schwarz trick” to the input polynomial. Consider the polynomial
Y(x) = % Yice be Iliec xi associated with a 3-XOR instance
described by a 3-uniform hypergraph H with m hyperedges and
“right-hand sides” b¢’s. For each C € H, let Cpjy be the minimum
indexed element in C (using the natural ordering on [n]). Then,

1
max —
x,ye{zxl}" m

max
xe{x1}"

(x) <

Z bCYCunin XC\Copin >
CeH

where each y,, is formally a new variable, but we think of y,, as
equal to xy,. Let us reformulate this expression a bit: let H;, = {C |
C'=(Cu) € H,C,, = u}. Then,

max ¥(x) < —

xe{x1}"

max
x,ye{x1}" m

Z Yu Z bycxc.

ueln] CeHy,

One can think of the RHS as the polynomial associated with a
bipartite instance of the 3-XOR problem on 2n variables, since every
constraint uses one y variable and two x variables. Our refutation
algorithm works for such bipartite instances more generally.
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For such a bipartite instance, using the Cauchy-Schwarz inequal-
ity, we can derive:

2
1
max — Z Yu Z by cxc
xyel=l}"\ M Th Cen,
n
< WZ Z by cby,crxcxer
u C,CeHy,
nm n n
S—+t— Z bu,Cbu,C’xCxC’ :=—+f(x) (2.5)
m m m

u C#C'eH,

The first term on the RHS is < €2/2 if m > 2n/¢%. The second term
produces a < 4-XOR instance.

We thus end up with a 4-XOR instance — an even arity instance
— albeit with significantly less randomness than required in the
argument from previous section. So, we need some different tools
to refute such instances. The first of this is the following variant of
the Kikuchi matrix that is designed specifically for “playing well”
with the symmetries produced by the squaring step above.

Our Kikuchi matrix. Our Kikuchi matrix is indexed by subsets
of size £ on a universe of size 2n — corresponding to two labeled
copies of each of the original n x variables. For each C € H, let
C™ be the subset of [n] x [2] where every variable is labeled with
“1”, and similarly for C (2) | This trick is done to ensure that the
clauses x(1) X2 form a 4-XOR instance, as now C () and ¢’
by definition cannot intersect.

For even k, the “independent” pieces in the Kikuchi matrix were
the matrices Ac, one for each C € H. For odd k, the indepen-
dence pieces will be A, — one for each y,, because of the loss of
independence due to the Cauchy-Schwarz step above.

Definition 2.7 (Kikuchi Matrix, 3-XOR). Let N = ([2[" ]). For each
u € [n], let A, € RVXN be defined as follows: for each S,T C
[n] x [2] of size ¢, we will set A, (S, T) to be non-zero if there are
C,C" e Hysuchthat S@ T =CD @ '@ and1=|SncV| =
|SﬂC’(2)| =|TncW| = |TﬂC’(2) |. That is, A, (S, T) is non-zero if
each of S, T contain one variable each from C(!) and ¢’? each. In
that case, we will set A, (S, T) = by, c - by, . Finally, set A = 3}, Ay,.

Equivalently, A, (S, T) is non-zero if there are C,C’ € H,, such
that if the 1-labeled (respectively, 2-labeled) elements in S, T have
symmetric difference C (C’, respectively). This construction is im-
portant for the success of our row pruning step (which we will soon
discuss) and at the same time ensures that every pair (C,C’) of
constraints in H;, contributes an equal number of non-zero entries
in the Kikuchi matrix A. We note that if we do not introduce the 2
copies of each variable, the number of times a pair (C, C”) appears
in the matrix would depend on |C N C’|.

The quadratic forms of A relate to the value of the underlying
4-XOR instance: for D = 4(2;’__24),

val(¢)? < 2 /4 +val(f) < €2/4 + max z' Az).

ze{+1}N

n
sz(

Bounding 2T Az. In the even arity case, we were able to obtain
a refutation at this point by simply using the spectral norm of A
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to bound the right hand side above. However, this turns out to
provably fail here. To see why, let us define the relevant notion of
degree — the count of the number of non-zero entries in each row
of Ay:

deg(S) = [{C.C" e Hy | ISNCV | =sn '@ | =1}

If we were to apply the matrix Bernstein inequality, the “almost sure”
upper bound on Ay, for all u is at least as large as ~ maxg +/deg(S)
and it’s not too hard to show that there are S for which this bound
is at least £. As a result, the best possible spectral norm upper bound
that we can hope to obtain on A is Q(¢log, N) = Q(£?) - abound
that gives us no non-trivial refutation algorithm.

Row pruning. The key observation that “rescues” this bad bound is
that deg(S) cannot be large for too many rows. To see why, consider
the random variable that selects a uniformly random S € ([2; ]) and
outputs deg(S). This can be well approximated (for our purposes)
by random set where every element is included independently with
probability ~ £/2n. The expectation of deg(S) on this distribution
is O(1). By relying on the fact that |C N C’| = 0 in H,, for almost
all pairs with high probability, Var[deg(S)] = O(1). A Chernoff
bound yields that the fraction of S for which [{C € H, | [SNC| >
O(logn)}| is inverse polynomially small in n. A union bound on
all u then shows the fraction of rows that are “bad” for any u is at
most an inverse polynomial.

It turns out we can ignore such “bad” rows with impunity. This is
because we are interested in certifying upper bounds on quadratic
forms of A over “flat” vectors again and we can argue that removing
“bad” rows cannot appreciably affect them. For the “residual matrix”,
we can now apply the matrix Bernstein inequality and finish off the
proof! The execution here requires row bucketing with respect to a
combinatorial parameter called the butterfly degree (generalizing a
similar notion in [1]) that controls the variance term in the analysis.

Extending to semirandom instances. Looking back, the previous
analysis uses that the graphs H,,’s obtained from the random 3-
uniform hypergraph H satisfy a “spread” condition: there are few
to none distinct pairs C,C’ € Hy, such that C N C’ # 0. This notion
of regularity is the precise pseudo-random property of H that is
enough for our argument (i.e. the row pruning step) above to go
through.

For the case of 3-XOR, such a regularity property is relatively
easy to ensure by a certain ad hoc argument: if too many pairs
C,C’ € H, happen to share a variable, then, “resolving” them
yields a system of 2-XOR constraints. Refutation in the special
case of 2-XOR is easy using the Grothendieck inequality; this has
been observed in several works, including [1, 12]. Indeed, this was
roughly the strategy employed in the recent work [1] for the case of
¢ = O(1) for semirandom k-XOR. In fact, in the £ = O(1) regime, it
turns out that one can reduce k-XOR for all k to the case of 3-XOR
and get the right trade-off; thus, such a decomposition for 3-XOR
is enough for the argument of [1] to go through for all k.

2.5 Handling k-XOR for k > 3: Hypergraph
Regularity

When ¢ > O(1), the case of higher arity k does not reduce to
k = 3. Once again, working through the case of random k-XOR
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inspires our more general argument. We work with a generalization
of the Kikuchi matrix introduced in the previous section for the
case of k = 3. When analyzing the row pruning step, we need to
rely on certain tail inequalities for low-degree polynomials that
depends on the “spread” of the hypergraph defined by the indices
of the non-zero coefficients in the polynomial. We use the result of
Schudy and Sviridenko [27] that builds on an influential line of work
on concentration inequalities for polynomials with combinatorial
structure in the monomials begun by [19]. Our application of this
inequality is rather delicate and as a result, we need a significantly
stricter notion of regularity — we call this (¢, £)-regularity - for our
row pruning argument to go through.

Hypergraph regularity decomposition. Roughly speaking the
notion of (¢, £)-regularity (indexed by the parameter ¢ and an accu-
racy bound ¢) we need demands that each for each subset Q C [n],
the number of hyperedges C € H,, such that Q C C is bounded
above by an appropriate function of m,n and ¢. Random hyper-
graphs H satisfy such a regularity property naturally.

In order to handle arbitrary hypergraphs, we introduce a new
regularity decomposition for hypergraphs. Our regularity decom-
position is based on a certain bipartite contraction operation that
takes a bipartite hyperedge (u,C) € H and a subset Q C C and
replaces it with ((u, Q), C \ Q). This operation should be thought
of as “merging” all the elements in Q and u into a new single ele-
ment (u, Q) and obtaining a smaller arity hyperedge in a variable
extended space.

We give a greedy (and efficient) algorithm that starts from a
k-uniform hypergraph and repeatedly applies bipartite contraction
operations to obtain a sequence of k’-uniform hypergraphs for k” <
k along with some “error” hyperedges, with the property that each
of the k’-uniform hypergraphs produced are (¢, £)-regular. Each of
the k’-uniform hypergraphs produced is naturally associated with
a k’-XOR instance related to the input k-XOR instance. We show
that refuting each of these output instances yields a refutation for
the original k-XOR instance.

Cauchy-Schwarz even in the even-arity setting. Unlike in the
case of 3-XOR where the resulting bipartite 3-XOR instance had
an equal number of y and x variables above, the bipartite k’-XOR
instances produced via our regularity decomposition are lopsided
- the number of y variables can be polynomially larger in n than
the number n of the x variables. A naive bound on the number of
constraints required to refute such instances is too large to yield
the required trade-off, even in the case for even k.

Instead (and in contrast to all previous works on CSP refutation),
we show that an appropriate application of the “Cauchy-Schwarz”
trick above to even-arity k-XOR instances allows us to “kill” the
yy,’s appearing in the polynomial, leaving us with only a polynomial
in the x;’s. This is a rather different usage of the technique - in
prior works (and as in the case of 3-XOR highlighted above), it
was instead used to build the right “square” matrices for obtaining
spectral refutations of the associated CSP instances when k is odd.
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A ANALYZING THE [29] APPROACH FOR
RANDOM 3-XOR

In this section, we will prove the approach suggested by [29] (in
their Appendix F.1, F.2) for strongly refuting random k-XOR with
k odd does not yield the right trade-off for m as a function of n, ¢.
Our proof reduces to showing that a certain matrix defined in [29]
does not have small spectral norm. For simplicity, we present the
argument for k = 3.

First, we give a brief overview of their approach. Let i be a
random 3-XOR instance in n variables and m clauses, with hyper-
graph H and coefficients {bc}ccqy. We will assume that each pair
C1 # Cy € H has |C; N Cz| < 1, as this holds with high probability
provided that m < n? (and recall that we are working in the regime
of m ~ n'> or smaller, as for m > n'-> there is a polynomial-time
refutation [1]).

The construction of [29] is as follows. First, partition the hy-
peredges H arbitrarily into Hj, . .., Hy, such that if C € H,, then
u € C. From now on, we shall think of # as U}_; Hy,. We note that
our lower bound will hold regardless of the choice of the partition
here.

Next, let i be the polynomial ¥(x) = X ¥ccq bexc, where
xc = [1;ec xi. Applying the Cauchy-Schwarz inequality, we have
that

1< n s
VTS o s g Dy ) bebero s )
=1 u=1C#C’ eHy

= f0),

where f(x) == %> YI_; Yicxcren, beborxexer.
We now recall the following definition from [29].

Definition A.1. Let £ € N, and let H = Uzzl‘Hu be a 3-uniform
hypergraph. For §, Te [n]f and C; = {u, v1, w1}, Ca2 = {u, 02, wo} €
H, with {v1, w1} N {v2, we} = 0, we write S C<1’—(>:2 T if there exist
i # j € [¢] such that (1) S; = T, for all ¢ # i, j, and (2) {S;,S;}
contains exactly one element from each of {v1, w1} and {vz, wa},
and {i-, 7_:]} contains the other two remaining elements. We note

'

- C1,Cy = S CLCL o
that if S <5° T for some Cq, Co, then we cannot have S &SP T for
any other pair Cj,C;.

Let A, € R" X" be the matrix where Au(g, T“) = bc,bc, if

- C,Cy =
S &7 T for some C1 # Cy € Hy, and 0 otherwise, and let A :=

n 1Ay
It is simple to observe that max,e (41} f(x) < # -O(’;—;) IAll5,
m? o1 ®OT A® n

as 2= f(x) = O d) (x®) " Ax®* for all x € {£1}" because

each pair C; # Cz € H,, “appears” exactly 4(5)(n — 4)'2 times in
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the matrix A. Thus, in order to get the correct m = n'> /v trade-off,
we need to show that ||Al|, < O(¢), with high probability over H
and the b¢’s.

We prove that ||A||, is in fact large with high probability, and
so the above approach of [29] fails. Formally, we prove that with

high probability, the matrix A has a spectral norm Q(min(¢?, ':—22))

':—22, then
the upper bound certified on f is Q(n/¢?), and thus the upper bound
certified on i is Q(+/n/¢). This is not useful, as it is greater than 1
when ¢ < n. If the minimum is ¢2, then we certify a good upper
bound on f (and therefore also /) only if m > n!-3, which is higher

than the desired threshold of n!-3 /.

which has the following implications. If the minimum is

Proposition A.2. Lety be a random 3-XOR instance with n variables

and m constraints, with constraint hypergraph H = U”_ H,, and

coefficients {bc}ceqr. Suppose that 2n < m < n?. Let £ < n. Then,
v .

IAll; > (), where ¢’ := min([ 21, ¢).

We note that the Proposition A.2 holds regardless of the choice
of the partitioning of H into the H,,’s, and also for any choice of
the bc’s (and so, in particular, for random b¢’s). We also note that
Proposition A.2 holds for arbitrary 4, provided that |C; N Ca| < 1
for all C; # C2 € H; this holds with high probability for a random

H, provided that m < n?.

Proor. With high probability over H, we may assume that
[C1NCy| < 1forallC; # C; € HforallC; # Cy € H. We
proceed, assuming that this holds.

As m > 2n, there must exist some variable u € [n] that appears
in at least % constraints. Hence, there must exist at least [%]
constraints that include u and all have the same sign b € {+1}.

Let ¢/ := min({%] ,?). By the above, we have ¢’ constraints
{Citierr) = {{wvi, wil}ie[e) such that b, = b for all i. Fur-
thermore, by assumption on , we have |Ci ncC j| < 1 for all
i # j € [t']. Asu € C;n Cj, it thus follows that {v;, w;} N
{vj,wj} = 0. Let z € [n] be arbitrary. Let R denote the set of
tuples (r1,...,7¢.2,...,z) € [n]’ such that r; € {v;, w;} for all
i € [¢’]. We note that the element z merely pads each tuple in R to
have length exactly £ when ¢’ < ¢.

Let M be the submatrix of A indexed by the tuples in R. Note
that M is a 2¢ x 2¢ matrix, as |R| = 20 Let§ = (e res 2,002, 2)
be a row in M. We will show that each row of M has exactly (g)
nonzero entries, each of which is 1.

First, let us consider the contribution to M from A,,. Fix a row
S € R. For each pair of indices i # j € [¢’], we can replace the i-th
and j-th elements of S with the elements of {v;, w;} and {0}, w;} not

- > - {w,05,w; 1 {w,05,w; } >
used in S, and this will yield some T € R with S o T.

Hence, Ay (S, T") = b? = 1. Any other T € R will differ from S by at
least 2 elements, and thus we must have A, (§, f‘) = 0 for such T.
Next, let us consider the contribution to M from A, for u’ # u.
Fixarow S € R. It suffices to only consider T obtained by swapping
the i-th and j-th entries of S, for some i # j € [£’], as above. If

. S v, wi b A{u 0wy} S
Ay (S, T) is nonzero, then we must have S o ,and

thus that {u’,0;, w;}, {u,vj, wj} € H,. However, this implies that
[{u,vi, wi}, {u/,vi,wi}| = 2 > 1, which contradicts our assumption

on H.
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We have thus shown that the matrix M is 2 x 2¢, with each row
having exactly () nonzero entries, all of which are 1. It thus follows

that ||All, = [[M]], > (lzi )TMlzl 2l = (g) which finishes the
proof. O
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