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Quantum friction in the presence of a perfectly conducting plate
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A neutral but polarizable particle at rest near a perfectly conducting plate feels a force normal to the surface
of the plate, which tends to pull the particle towards the plate. This is the well-known Casimir-Polder force,
which has long been theoretically proposed and experimentally observed. In this paper, we explore the transverse
frictional force on an atom moving uniformly parallel to a perfectly conducting plate. Although many theoretical
predictions can be found for the quantum friction on a particle moving above an imperfect surface, the extreme
situation with a perfectly conducting plate seems to have been largely unaddressed by the theoretical community.
We investigate this ideal case as a natural extension of our previous work on quantum vacuum friction, and
conclude that there does exist a quantum frictional force on an atom moving above a perfectly conducting plate,
which we will abbreviate by PCQF. Like quantum vacuum friction, PCQF arises from the interaction between the
particle and the surrounding blackbody radiation. But, the behavior of PCQF differs from the quantum vacuum
friction in that the vacuum fields are modified by the perfectly conducting plate. Very interestingly, the distance
dependence, the temperature dependence, and even the sign of the frictional force can depend on the polarization
state of the atom. For an isotropic atom with a static polarizability, the resultant frictional force is found to be
negative definite and therefore remains a true drag. Just above the surface of the plate, the magnitude of the
frictional force is twice that of the quantum vacuum friction in the absence of the plate.
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I. INTRODUCTION

It is well known that, when a neutral but polarizable par-
ticle sits near a perfectly conducting (PC) plate, it feels a
force normal to the surface, pulling it towards the plate.
This attractive force is often named after Casimir and Polder,
who predicted it back in 1948 [1]. The Casimir-Polder force
was first experimentally confirmed by measuring the deflec-
tion of a sodium atom beam passing through a gold cavity
in 1993 [2]. Ever since, there have been many more inge-
nious experiments, not only reconfirming the existence of the
Casimir-Polder force, but also detecting the force at differ-
ent (nonretarded, retarded, and thermal) regimes [3–6]. For
review of the Casimir-Polder forces or the broader context of
Casimir interactions, see, for example, Refs. [7–10].

Here, we ask the question: Will a force tangential to the
surface of the PC plate arise when the particle moves parallel
to the plate?

Even though the subject of quantum friction (QF) with
a dielectric surface has been much discussed in the litera-
ture, this more idealized case involving a PC plate seems to
have been largely unaddressed. The lack of discussion of this
case may be due to an “intuition” arising from the image
particle picture. One might think that the interaction between
the particle and the PC plate can be entirely mimicked by the

*guoxinmike@ou.edu
†kmilton@ou.edu
‡g.kennedy@soton.ac.uk
§nima.pourtolami@gmail.com

particle’s interaction with its image. As the particle moves
above the plate, the image moves below the plate. Because the
plate is perfectly conducting, the image keeps up with the par-
ticle and is always located at the mirror position of the particle.
Consequently, any interaction between the two would only
lie in the direction normal to the surface of the plate and no
force in the transverse directions could possibly arise. This
reasoning sounds convincing except that it ignores one impor-
tant aspect: the particle interacts with the blackbody radiation
surrounding it even when the plate is taken away. Taking
blackbody radiation into account does result in a frictional
force on the moving particle. The nonrelativistic discussion of
frictional force on particles moving in free space filled with
only blackbody radiation can be traced back to the works
of Mkrtchian et al. [11] or even Einstein and Hopf [12].
Ever since, there has been considerable interest in the sub-
ject of blackbody friction or quantum vacuum friction (QVF)
[13–16]. Recently, we have also investigated such quantum
vacuum frictional effects on a particle moving with relativistic
velocities, be it a nondissipative atom [17] or an intrinsically
dissipative nanoparticle [18]. Now, when a PC plate is added
into the configuration, the vacuum field in the vicinity of the
plate will be different from that of the free space considered
in Refs. [17,18]. We therefore expect the QVF to be modified
and become spatially varying in the normal direction. For
convenience of presentation, we will refer to this quantum
frictional force on a neutral particle passing above a PC plate
as PCQF.

In this paper, we focus on calculating the PCQF for
a nondissipative atom. This is somewhat simpler than the
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FIG. 1. Illustration of an atom moving parallel to a PC plate.

calculation of PCQF for a dissipative nanoparticle, where
the temperatures of the particle and of the environment enter
the problem independently. The discussion of PCQF for the
dissipative nanoparticle is postponed to a subsequent paper.

Throughout the paper, we set kB = c = h̄ = 1 in the an-
alytic expressions. SI units are reinstated in the numerical
evaluations.

II. GENERAL THEORY

The physical situation we consider is illustrated in Fig. 1.
A PC plate lies in the x-y plane. An atom is at a distance
a from the plate and moves in the x direction with constant
velocity v. The polarizability tensor of the atom is α(ω),
which could be dispersive in frequency and have different
components corresponding to different polarization states of
the atom. Since the atom we consider is intrinsically nondissi-
pative, α(ω) is a real quantity. The radiation background is at
finite temperature T . We assume the PC plate is in thermal
equilibrium with the radiation background. Because of its
motion, the atom is not in equilibrium with the radiation.
However, it is guaranteed, by the optical theorem [19], to be in
the nonequilibrium steady state (NESS) [20], and it does not
have an independent temperature [17].

There exist two special frames in the problem: the rest
frame of the atom, P , and the rest frame of radiation, R, in
which the background radiation is isotropic. It is more conve-
nient to work in frame P and we find the quantum frictional
force (tangential component of the force) on the atom to be1

F =
∫

dω

2π

d2k⊥

(2π )2

d2k̄⊥

(2π )2
(k̄x − kx )tr[α(ω) · � g′(ω, k⊥; a, a)

· α(ω) · � g′(ω, k̄⊥; a, a)] coth
βγ (ω + k̄xv)

2
, (2.1)

where γ = 1/
√

1 − v
2 is the relativistic dilation factor. Notice

that the frequency in the thermal factor is Doppler shifted.

1The friction on an atom moving above a general planar surface
has actually been calculated in Ref. [17] and tabulated for different
polarization states in Appendix D therein. These can be shown to
be equivalent to Eq. (2.1) using the transformations listed in Ap-
pendix A.

Both the atom’s polarizability tensor, α, and the Green’s
dyadic, g′, in Eq. (2.1) are defined in frame P . We put a prime
on g′ here, because we will also refer to the Green’s dyadic
defined in frame R, g, the explicit form of which is recorded
in Appendix B. In the actual calculation, each component
of g′ needs to be expressed in terms of a combination of
different components of g, using the Lorentz transformation
for the Green’s dyadic detailed in Appendix A. The inverse
temperature of the radiation, β = 1/T , is defined in the rest
frame of radiation, R. Finally, �g refers to the anti-Hermitian
part of the Green’s dyadic, of which the components are

(�g)i j (ω, k⊥; z, z̃) =
gi j (ω, k⊥; z, z̃) − g∗

ji(ω, k⊥; z̃, z)

2i

=
gi j (ω, k⊥; z, z̃) − g ji(−ω,−k⊥; z̃, z)

2i
.

(2.2)

The quantum friction in Eq. (2.1) is in fact the x component
of the Lorentz force on a moving dipole quantized using the
fluctuation-dissipation theorem (FDT). Because the atom is
intrinsically nondissipative, the frictional force is second order
in α like that discussed in Ref. [17]. There are two contribu-
tions to the force: the k̄x term comes from the field fluctuations
directly while the kx term comes from the induced dipole
fluctuations. Although entering the friction formula with dif-
ferent signs, the two contributions do not cancel each other
due to the Doppler shifting of the frequency in the coth factor.
We consider only a reciprocal point particle, that is, one for
which the polarizability tensor is symmetric, αi j = α ji. Then,
a relative velocity between the particle and the surrounding
blackbody background is necessary for any transverse force
to arise.2 Even at zero temperature, the quantum friction does
not vanish in general. But we have learned from our previous
investigations that if the background is just free space, the
resultant QVF does vanish at zero temperature [17,18].

The matrix structure under the trace in the integrand is in
general complicated. Even for an isotropic atom, there will
be contributions to the quantum friction that mix the different
diagonal polarization states of the atom and pick up the off-
diagonal components of g′.3 Moreover, each component of
g′ is still to be reexpressed as a combination of the differ-
ent components of g in the actual calculation. However, the
special background indicated in Fig. 1 has several features
which greatly help to simplify the calculation. In the presence
of the PC plate, g is found using the general expressions in

2For a nonreciprocal point particle which is not in thermal equi-
librium with the environment, self-propulsion can be induced even
if the particle is initially at rest. We explore the fluctuation-induced
effects for such a nonreciprocal particle in Ref. [21]. In addition,
self-propulsion is also possible for extended objects made up of
reciprocal but nonuniform materials. See, for example, Ref. [22].

3The effective polarizability, α̂ = α · � · α, as defined in Ref. [17],
can acquire off-diagonal components through the off-diagonal com-
ponents of the Green’s dyadic, even when the intrinsic polarizability
of the atom, α, is diagonal.
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Appendix B to be

gPC(ω, k⊥; a, a)

=

⎛

⎜

⎜

⎜

⎝

ω2−k2
x

2κ
(1 − e−2κa ) − kxky

2κ
(1 − e−2κa ) − i

2 kxe−2κa

− kxky

2κ
(1 − e−2κa )

ω2−k2
y

2κ
(1 − e−2κa ) − i

2 kye−2κa

+ i

2 kxe−2κa + i

2 kye−2κa k2

2κ
(1 + e−2κa )

⎞

⎟

⎟

⎟

⎠

(2.3)

with κ =
√

k2 − ω2. Similar to the vacuum background, the
permittivity of a PC plate, ε → ∞, is invariant under a
Lorentz transformation in the x direction. As a result, g′ is
found to be identical to g when applying the transformations
listed in Appendix A:

g′PC(ω, k⊥; a, a) = gPC(ω, k⊥; a, a). (2.4)

That is, for this special case, we can replace g′ in Eq. (2.1) with
g in Eq. (2.3). In addition, terms containing the product of gxy

and gyx or gyz and gzy do not contribute to the friction due to
their oddness in ky. For simplicity of analysis, we will assume
the polarizability tensor of the atom to be diagonal throughout
the paper. Then, the only contribution to the friction involving
the off-diagonal components of the Green’s dyadic, which mix
different components of the polarizability tensor, is

F XZ = 2
∫

dω

2π

d2k⊥

(2π )2

d2k̄⊥

(2π )2
(k̄x − kx )αxx(ω)

× (�g)PC
xz (ω, k⊥; a, a)αzz(ω)(�g)PC

zx (ω, k̄⊥; a, a)

× coth

[

β

2
γ (ω + k̄xv)

]

. (2.5)

Here and in the rest of the paper, we use a superscript on F to
specify contributions from different polarization states of the
atom. In fact, F XZ turns out to be the most interesting contri-
bution to the frictional force, because it actually corresponds
to a push instead of a drag.

Before presenting the results we obtain for PCQF, let us
stress that no PCQF arises at zero temperature. In Appendix C,
we prove that the zero-temperature QF is absent not only for
the vacuum case and the PC case, but also for the broader class
of diaphanous materials.4

III. EXACT RESULTS AND VARIOUS LIMITS

We see from the starting formula, Eq. (2.1), that each con-
tribution to the frictional force is proportional to the product
of two nonvanishing components of the polarizability tensor.
For an atom with a diagonal polarizability tensor, most of the
contributions that mix the components of the tensor can be
ruled out based on the symmetry of the integrand in Eq. (2.1).
There are actually only four nonvanishing contributions left.
They are proportional to α2

xx, α2
yy, α2

zz, and αxxαzz and are
denoted as F XX, F YY, F ZZ, and F XZ, respectively.

Crucial to the calculation is finding the anti-Hermitian
part of the relevant components of gPC. It can be seen from

4A material is diaphanous if its permittivity, ε, and permeability, μ,
satisfy εμ = 1.

Eq. (2.3) that � gPC = 0 unless the propagation wave number
κ develops an imaginary part. Since the integrand in Eq. (2.1)
involves the product of two Green’s dyadics evaluated at
(ω, k⊥) and (ω, k̄⊥), respectively, the integration is restricted
to regions where the propagation wave numbers associated
with both Green’s dyadics become imaginary:

κ → −i sgn(ω)
√

ω2 − k2, k2 < ω2,

κ̄ → −i sgn(ω)
√

ω2 − k̄2, k̄2 < ω2. (3.1)

The branches need to be chosen so that the Green’s dyadic
is retarded.5 The anti-Hermitian parts of the relevant compo-
nents of the Green’s dyadic therefore read

(�g)xx(ω, k⊥; a, a)

= Im gxx(ω, k⊥; a, a) = sgn(ω)
ω2 − k2

x

2
√

ω2 − k2

× [1 − cos(2
√

ω2 − k2a)], (3.2a)

(�g)yy(ω, k⊥; a, a)

= Im gyy(ω, k⊥; a, a) = sgn(ω)
ω2 − k2

y

2
√

ω2 − k2

× [1 − cos(2
√

ω2 − k2a)], (3.2b)

(�g)zz(ω, k⊥; a, a)

= Im gzz(ω, k⊥; a, a) = sgn(ω)
k2

2
√

ω2 − k2

× [1 + cos(2
√

ω2 − k2a)], (3.2c)

(�g)xz(ω, k⊥; a, a)

= −(Img)zx(ω, k⊥; a, a)

= −i sgn(ω)
kx

2
sin(2

√

ω2 − k2a). (3.2d)

The off-diagonal components of �g are different from the
diagonal components in several respects. First of all, they are
purely imaginary. Second, they are odd in kx. As a result, in
Eq. (2.1), F XZ contributes to the total friction through the
−kx term, while F XX, F YY, and F ZZ all contribute through
the k̄x term. It is precisely the minus sign in the −kx term
that renders F XZ positive, corresponding to a push instead of
a drag.6 Third, they do not contain terms independent of the

5Here, we are using the retarded Green’s dyadic as opposed to
the advanced Green’s dyadic. The word “retarded” can also refer to
the effect of retardation or a finite velocity of light, which we also
incorporate in our calculations.

6Physically, the −kx term comes from the induced dipole fluctua-
tions, while the k̄x term comes from the direct field fluctuations. In
the QVF case, these two different contributions also occur and they
are called F ′

II and F ′
I , respectively, in Ref. [17]. There, F ′

II vanishes,
which reflects the fact that the dipole radiation emitted by the atom
is isotropic. Here, the fact that F XZ exists through the −kx term
indicates that the dipole radiation in the x direction is no longer
isotropic when the PC plate is present. Furthermore, the positive sign
of this contribution reflects that the corresponding dipole radiation
emitted backward must exceed that emitted forward.
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atom-plate separation, a, as those in the diagonal components.
These terms reflect the vacuum contributions. So, the off-
diagonal components do not contribute to the QVF discussed
in Ref. [17].

Without any further assumptions, we insert Eq. (3.2) into
Eq. (2.1) and integrate kx, ky, and k̄y analytically. With a
further change of variable, k̄x = ωu, we find the contribution

to the PCQF from the PQ polarization states can be written as

F PQ =
1

32π3

∫ ∞

0
dω αpp(ω)αqq(ω) ω7

F
PQ(x, v, b), (3.3)

and for each contribution, FPQ reads

F
XX(x, v, z) =

{

4

3
−

2

x3
[x cos x + (x2 − 1) sin x]

}∫ 1

−1
du u(1 − u2)[1 − J0(x

√

1 − u2)]
1

exγ (1+uv)b − 1
, (3.4a)

F
YY(x, v, z) =

{

4

3
−

2

x3
[x cos x + (x2 − 1) sin x]

}∫ 1

−1
du u

[

1

2
(1 + u2) − J0(x

√

1 − u2) +
√

1 − u2

x
J1(x

√

1 − u2)

]

×
1

exγ (1+uv)b − 1
, (3.4b)

F
ZZ(x, v, z) =

{

4

3
−

4

x3
[x cos x − sin x]

}∫ 1

−1
du u

[

1

2
(1 + u2) + u2J0(x

√

1 − u2) +
√

1 − u2

x
J1(x

√

1 − u2)

]

×
1

exγ (1+uv)b − 1
, (3.4c)

F
XZ = −2

{

2

x4
[−3x cos x − (x2 − 3) sin x]

}∫ 1

−1
du u

√

1 − u2J1(x
√

1 − u2)
1

exγ (1+uv)b − 1
. (3.4d)

Here, we have introduced a dimensionless frequency scaled
by the distance a,

x = 2ωa, (3.5)

as well as a dimensionless inverse temperature also scaled by
a,

b =
β

2a
=

1

2aT
. (3.6)

So far, the expressions we have for PCQF in Eqs. (3.4) are
exact and involve the dynamical polarizability of the atom.
For frequencies smaller than the lowest excitation energy of
the atom, the dynamical polarizability, α(ω), can be replaced
by the static polarizability [23], α(0). Due to the common
exponential factors in Eqs. (3.4a)–(3.4d), the high-frequency
modes with βω = xb 	 1 will be cut off and do not sig-
nificantly contribute to the ω integral. Therefore, so long as
the temperature is not high enough to excite the atom to its
higher energy states, we can work in the static limit, where we
substitute the polarizability with its static value. This allows us
to take the product of the polarizabilities out of the ω integral

in Eq. (3.3):

F PQ =
αpp(0)αqq(0)

32π3(2a)8
f PQ(v, b),

f PQ(v, b) =
∫ ∞

0
dx x7

F
PQ(x, v, b), (3.7)

where the dimensionless functions f PQ now characterize con-
tributions to PCQF from different polarization states.

Note the magnitude of b determines the dominating modes
of the x integral in Eq. (3.7). For b 
 1, it is dominated by
the large x modes, where the complicated x dependencies
in the integrands become subdominant and drop out, except
for the common factor of x7

exγ (1+uv)b−1 . As a result, the diagonal
contributions F XX, F YY, and F ZZ become distance indepen-
dent and proportional to T 8. Indeed, for b 
 1, the diagonal
contributions of PCQF precisely reduce to the corresponding
contributions of QVF in Ref. [17]. On the other hand, F XZ,
which is proportional to T 4/a4, becomes completely negligi-
ble in comparison to the diagonal contributions. To sum up,
the contributions to PCQF in the small-b limit read

F
PQ

b
1 =
α2

pp(0)

32π3(2a)8
f

PQ
b
1(v, b), f

PQ
b
1(v, b) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 4	(8)ζ (8)
3b8

32
105γ 4

v(7 + 3v
2), PQ = XX

− 4	(8)ζ (8)
3b8

32
105γ 6

v(14 + 37v
2 + 9v

4), PQ = YY, ZZ
16	(4)ζ (4)

b4
v

γ 4 , PQ = XZ.

(3.8)

As is shown in Eqs. (3.8), unlike the diagonal contributions
which monotonically increase with velocity, we find F XZ

vanishes when the velocity approaches the speed of light.
Since the small-b limit of F XZ has not been worked out
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in Ref. [17], we show how to obtain it analytically in Ap-
pendix E.

It is not so surprising that the small-b limit of PCQF coin-
cides with QVF. Small b values correspond to large distances
or high temperatures. When the atom is far away from the
PC plate, it is obvious that PCQF should reduce to QVF. In
the case of high temperatures (but not so high to ionize the
atom), the atom interacts with photons of very high frequency.
It therefore mainly probes the very short distances around it
and, effectively, does not feel the PC plate. That is, in the high-
temperature limit, the distribution of energy eigenvalues of
photons interacting with the atom is insensitive to the presence
of the plate.

Since quantum vacuum friction has been explored for a
nondissipative atom in Ref. [17], the new physics really lies
in the large-b limit, the short-distance or low-temperature
behavior of PCQF. For b 	 1, the small-x modes dominate the
integrals. We can therefore expand the integrands in powers
of x before carrying out the integrals. Quite interestingly,
the integrands for various polarization states exhibit different
leading power behaviors in x, which determine the distance
and temperature dependencies of their contributions to PCQF.
After expansion in x, both the x and u integrals can be done
exactly if we keep only the terms of leading order in b.
(Appendix E contains an approach to derive the asymptotic
expression for F XZ in the large-b limit as well.) For b 	 1,
the resultant PCQF is found to be

F
PQ

b	1 =
αpp(0)αqq(0)

32π3(2a)8
f

PQ
b	1(v, b), f

PQ
b	1(v, b) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−	(12)ζ (12)
15b12

64
3465γ 6

v(99 + 110v
2 + 15v

4), PQ = XX

−	(12)ζ (12)
15b12

32
3465γ 8

v(297 + 1034v
2 + 625v

4 + 60v
6), PQ = YY

− 8	(8)ζ (8)
3b8

64
105γ 6

v(14 + 37v
2 + 9v

4), PQ = ZZ

2 	(10)ζ (10)
15b10

8
63γ 6

v(21 + 30v
2 + 5v

4), PQ = XZ.

(3.9)

Since the results shown in Eqs. (3.9) are for the large-z limit,
it is apparent that F ZZ dominates over the contributions from
the other polarizations. In this limit, F ZZ is independent of
distance a and proportional to T 8, just as is the case for
QVF. In fact, we find F ZZ is precisely four times the cor-
responding QVF contribution shown in Eqs. (3.8). The next
leading contribution, F XZ, is proportional to a2T 10 with an
overall positive sign, suggesting that this particular contribu-
tion corresponds to a push instead of a drag. The smallest
contributions, F XX and F YY, are both proportional to a4T 12.
On closer examination of Eqs. (3.9), we also observe that f YY

is always greater than f XX, for arbitrary velocities.
Interestingly, these behaviors of PCQF may be easily un-

derstood from the image particle picture criticized in the
Introduction. In fact, there is nothing wrong with replacing
the PC plate by an image particle moving synchronously with
the actual particle. We only need to keep in mind that both
particles would interact with the surrounding photon bath, so
that a frictional force does indeed arise. Following this line
of reasoning, the image particle would double the normal
component of the fluctuation-induced field, Ez, but eliminate
the tangential components, Ex and Ey, at the surface of the
PC plate. Since these fluctuation-induced frictional forces
are proportional to the product of the relevant fields, F ZZ

is therefore quadrupled while the other contributions are all
suppressed when the distance between the particle and the PC
plate approaches zero.

We have been advised by Krüger that the physics here
is analogous to a classical situation in hydrodynamics. For
example, the authors of Ref. [24] studied colloidal particles
driven through a suspension of mutually noninteracting Brow-
nian particles and the corresponding frictional force induced
by the nonequilibrium fluid structure. (The flow field comov-
ing with the colloidal particles is not in equilibrium with the
Brownian particles.) They found that the frictional force on

a single colloidal particle traveling along a wall (analogous
to the PC plate in our case) is precisely the same as that
on two colloidal particles driven side by side. The authors
also found an enhancement of the friction due to the wall or
image colloidal particle in comparison to the friction on an
isolated colloidal particle. From the density plot of the solute
Brownian particles, they interpret this increase in friction as
the result of more Brownian particles aggregating in front
of the colloidal particles when the wall or image particle is
present. An analogous interpretation applies to what we see
here in this paper. That is, the electromagnetic energy density
is stronger near the PC plate.

So far, both the small-b results in Eqs. (3.8) and the large-b
results in Eqs. (3.9) are exact in velocity. Another question
is whether we can obtain the nonrelativistic (NR) limit ana-
lytically without assuming anything about b. This is possible
as long as the dynamical polarizability is still replaced by its
static value. We illustrate the procedure of obtaining the NR
limit for F XZ, valid for all b values in Appendix D. It turns out
that all contributions to PCQF start with a term linear in v in
the NR limit.

IV. NUMERICAL RESULTS

As one of the contributions, F XZ, is positive (a push),
while the others are all negative (a drag), a natural ques-
tion arises: Could the overall “frictional” force on an atom
ever flip sign and therefore become a push? Of course, from
Eqs. (3.8) and (3.9), we can already conclude that the overall
PCQF is negative definite in both the small-b (vacuum or
high-temperature) limit and large-b (short-distance or low-
temperature) limit. But, there is no convincing argument just
from the analytic results suggesting that PCQF cannot switch
sign in the intermediate-b regime. Therefore, we resort to
numerical methods to ascertain the sign of PCQF.
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FIG. 2. The absolute values of the dimensionless functions f PQ

in Eqs. (4.1) are shown as functions of b for fixed velocity (v = 0.5).
The numerical results are computed directly using Eqs. (3.4) and
(3.7). Their small-b and large-b approximations are obtained from
Eqs. (3.8) and (3.9), respectively. Since the small-b approximation
for f ZZ and f YY is identical, the dashed purple line overlaps with
the dashed red line. As is seen, the small-b approximation of F XZ

cannot give a good description of the numerical data beyond b = 1. A
further detailed plot is provided in Appendix E, where the agreement
between the analytic approximation and the numerical data for F XZ

is more clearly demonstrated for smaller b values.

We will here mainly consider atoms in their ground states,
the polarizability of which is normally quite isotropic7 and
can be well approximated by its static value, α(ω) = α(0)1.
For such isotropic atoms, the sign of the PCQF is deter-
mined by the sum of the dimensionless functions introduced
in Eq. (3.7):

F ISO =
α2(0)

32π3(2a)8
f ISO(v, b),

f ISO(v, b) = f XX(v, b) + f YY(v, b) + f ZZ(v, b) + f XZ(v, b).
(4.1)

We show the absolute value of these dimensionless func-
tions across their transition region in Fig. 2. Starting from
small-b values, the total frictional force on the isotropic par-
ticle is dominated almost evenly between the ZZ and YY
contributions. But as b grows larger, the weight of the YY con-
tribution decays so that the ZZ contribution solely dominates
the entire frictional force. As for the unique positive contri-
bution from the XZ polarization, it is completely negligible
when b is small but it eventually surpasses the contributions
from the XX and YY polarizations for large b. Nonetheless,
it never dominates the ZZ polarization. The asymptotic (in b)
expressions in Eqs. (3.8) and (3.9) are consistent with these
behaviors and the agreement with the numerical data in their
supposedly valid regimes are also clearly illustrated in the

7Closed-shell atoms are almost exactly isotropic [25]. Even for
open-shell atoms, the anisotropy is typically small compared to the
isotropic part of the polarizability. Among the elements in a certain
period, the anisotropy is largest when the first p electron is added
[23].

FIG. 3. The magnitude of the total frictional force on a Cs atom
moving at v = 0.5c and at a distance a = 10 nm from the PC plate is
plotted as a function of temperature. The friction at the first excited
temperature is indicated by the red triangle, with a magnitude of
1.30 × 10−25 N.

figure. So, we can conclude that the total PCQF on an isotropic
atom is always a drag, since it cannot change sign even in the
intermediate-b regime.

Another interesting aspect of the force is, of course, its
magnitude. Fluctuation-induced forces are typically small.
But, is the PCQF possibly accessible to experiment? Here,
we estimate PCQF on a cesium (Cs) atom, which has the
largest static polarizability,8 according to Ref. [25], αCs(0) =
59.3 Å3. Because the expression (3.7) we use for numerical
calculation is obtained in the static limit, the corresponding
numerical results are only expected to be appropriate when
the atom is in its ground state, that is, up to the temperature
that corresponds to the first excitation energy of the Cs atom,
T1 = 16 100 K,9 beyond which a model for its dynamical po-
larizability is needed. In Fig. 3, we show the magnitude of the
total frictional force on a Cs atom up to T1, fixing velocity
and distance. The friction clearly exhibits a power-law depen-
dence on temperature. This is no surprise because we already
know that the frictional force should behave as T 8 in both the
large-b (low-T ) and small-b (high-T ) regimes.

Of course, PCQF also depends on the distance between the
atom and the plate, distinguishing it from QVF. Considering
the size of the Cs atom,10 we should keep the distance greater
than 1 nm to avoid additional surface effects. We therefore
show the magnitude of PCQF for a Cs atom as a function of
distance in Fig. 4, from 1 nm to 1 µm, fixing the velocity
at v = 0.5 and temperature at T = T1. It is seen that the
total friction is only doubled when the distance is reduced

8Within a period, the alkali-metal atoms generally have the biggest
polarizabilities. They are also supposed to have very tiny anisotropy
because their valence electrons are in s states [23]. Cs has the largest
polarizability among the alkali-metal atoms.

9This temperature and the ionization temperature used later are
obtained from the first excitation energy of Cs listed in Ref. [26].

10Cesium also has the largest covalent radius (244 pm) among the
nonradioactive atoms according to Ref. [27].
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FIG. 4. The magnitude of the total frictional force, along with its
contributions from different polarizations, on a Cs atom moving at
v = 0.5c and at its first excited temperature T = 16 100 K is plotted
as a function of distance. The largest magnitude of the total friction
shown by the black dots is for a = 1 nm, being 1.57 × 10−25 N.

from 1 µm to 1 nm. This can be well understood from the
asymptotic behavior of the dominant contributions: the ZZ
contribution quadruples, yet the YY contribution vanishes at
small distances, which is also clearly illustrated in the figure.

Finally, PCQF depends on the velocity of the atom. As
is shown in Fig. 5(a), the magnitude of the frictional force
is linear in v for very small velocities; however, the velocity
dependence becomes more prominent for larger velocities. In
Fig. 5(b), we not only plot the total frictional force at the
first excitation temperature, T1 = 16 100 K, but also extrap-
olate our numerical results to the ionization temperature of
the cesium atom, Ti = 45 100 K [26]. Above Ti, the outermost
electron will be stripped off the atom so that the cesium atom
cannot stay neutral. It is therefore not feasible experimentally

to detect the quantum friction on an atom above its ionization
temperature. In between T1 and Ti, the atom can be excited,
though not ionized. Now, the frequencies corresponding to
the transition of the atom’s internal energy levels become
important in evaluating PCQF. At these frequencies, the polar-
izability of the atom develops an imaginary part [28], which
results in a PCQF that is first order in the polarizability. This
effect is not included in the results we show for T = Ti. In
addition, by employing the static value for the polarizability,
we underestimate the magnitude of the second-order PCQF,
because atoms in excited states, e.g., Rydberg atoms,11 tend
to have much larger polarizabilities.

V. CONCLUSIONS AND OUTLOOK

In this paper, we calculate the frictional force induced by
fluctuations of the electromagnetic field on a neutral, nondis-
sipative atom moving parallel to a perfectly conducting (PC)
plate, which we term PCQF for brevity. This friction exists
in second order in the polarizability of the atom and reduces
to the quantum vacuum friction previously explored [17] in
the limit of large distance from the plate or high temperature.
At short distances or low temperatures, however, the PC plate
modifies the behavior of the frictional force. For an isotropic
atom, the frictional force is found to be negative definite (a

11Even though Rydberg atoms possess much larger polarizabilities,
which presumably will enhance the resulting frictional effect, we are
unsure whether they could be appropriate candidates for experimen-
tal consideration, because blackbody radiation induces transitions to
lower n states and reduces the lifetime of the Rydberg states. Even
at room temperature, transitions induced by blackbody radiation can
contribute more to the decay rate than the spontaneous transitions
[29]. At higher temperatures, the transition rate induced by black-
body radiation is even larger.

(a) (b)

FIG. 5. The velocity dependence of the magnitude of the total frictional force on a cesium atom at a distance of a = 10 nm away from the
PC plate. (a) At the first excitation temperature, T1 = 16 100 K, the frictional force is plotted as a function of velocity, for v/c ∈ [0.005, 0.100].
The red dots show the exact numerical results based on Eqs. (3.7) and (3.4). The solid blue line shows the term linear in v obtained using
the nonrelativistic approximation detailed in Appendix D. (b) In the more relativistic regime, v/c ∈ [0.100, 0.995], the red dots show the total
frictional force at the first excitation temperature, T1 = 16 100 K, while the purple dots show the numerical results extrapolated to the ionization
temperature, Ti = 45 100 K. For the maximum velocity shown in the figure, v = 0.995, the magnitude of the total friction is 1.66 × 10−19 N at
T1 and 6.30 × 10−16 N at Ti.
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drag) and twice the magnitude of the quantum vacuum friction
felt by the same atom moving through blackbody radiation
without a PC plate. Interestingly, the contribution to PCQF
from a particular polarization state of the atom is positive
(a push). However, this contribution turns out to be always
subdominant to the negative contributions from the other po-
larization states. As a result, the total transverse force on the
moving atom remains a drag. The magnitude of the friction
seems to be too tiny to be observed unless the atom is made
to move in a very hot background, at very high velocities. It
is then fitting to make some comments about the experimental
conditions on temperature and velocity.

First, the temperature is absolutely bounded by the ioniza-
tion temperature of the atom, Ti, because the atom will no
longer stay neutral above Ti. In this paper, we have used a
static polarizability for the atom in the numerical calculations,
which can only be justified if the atom remains in its ground
state. The temperature is therefore further bounded by the
temperature, T1, corresponding to the first excitation energy
of the atom. In principle, however, one can calculate PCQF
on the atom up to its ionization temperature if its dynamical
polarizability is known for a sufficiently wide frequency spec-
trum.

Of course, for experiments, the material which approxi-
mates a PC plate is very likely to give a more restrictive bound
on the temperature. For example, the standard candidate, gold,
will melt at 1337 K. Even if one could imagine using liquid
metals to mimic the perfectly conducting plate, the tempera-
ture is still bounded by the boiling point of the metal. Tungsten
has the highest boiling point among metals, 6203 K, which
is still much lower than the typical ionization temperature,
Ti, of an atom. (For the cesium atom discussed in the paper,
Ti = 45 100 K.) This reality might motivate us to study PCQF
for situations when the plate is not in thermal equilibrium with
the radiation background. For the Casimir-Polder force (the
force normal to the plate), such a scenario has been studied
both theoretically [30] and experimentally [4].

Another apparent challenge to any feasible experiment is
accelerating neutral atoms to relativistic velocities. But, in
fact, it is possible nowadays to manipulate the conventional
ion accelerators so that fast ions can be converted to neu-
tral atoms with little change in momentum. For example, in
Ref. [31], the maximum kinetic energy obtained for a copper
atom is 1 MeV, which is equivalent to a velocity of 0.0058, af-
ter conversion using the relativistic formula for kinetic energy,
K = (γ − 1)m.

This paper only considers a very idealized background
with the PC plate. For a surface with a real finite index of
refraction, n, there will be induced Cherenkov friction [32]
on the moving particle if it moves at a velocity above the

Cherenkov threshold, v > 1/n. If one further allows the sur-
face to have dissipation, which is unavoidable in reality and
perhaps induces an even greater frictional effect, the problem
becomes complicated by the presence of several different
mechanisms that give rise to friction. Reference [33] provides
a recent overview of this complicated subject with many
useful references; however, it mainly focuses on only zero-
temperature effects. Other works, like Ref. [34], do include
finite-temperature effects but the discussion is restricted to
only the nonrelativistic regime. In the future, we intend to
calculate the quantum friction associated with a dispersive
and dissipative surface fully for arbitrary temperatures and
relativistic velocities. Alternatively, one could still assume a
perfectly conducting boundary but allow the moving particle
itself to be intrinsically dissipative. The resulting PCQF will
then be a modification of the quantum vacuum friction studied
in Ref. [18], where an independent temperature of the particle
comes into play. We will discuss such PCQF in a subsequent
paper.
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APPENDIX A: THE TRANSFORMATION OF THE

REDUCED GREEN’S DYADIC

In this Appendix, we provide the connection between the
reduced Green’s dyadic in frame P , g′, and that in frame R,
g. It is straightforwardly obtained by considering the Lorentz
transformation of the electromagnetic field and applying the
FDT in both frames consistently. Note that the transformation
of the material properties like ε or μ is never invoked because
we eventually express the quantum friction in terms of g

instead of g′.
In writing down the connection between g and g′, we will

use (ω′, k′
⊥) for the frequency and momentum in the atom’s

rest frame (P), and (ω, k⊥) for those transformed into the rest
frame of the radiation (R),

ω = γ (ω′ + k′
xv), kx = γ (k′

x + ω′
v), ky = k′

y. (A1)

Below, all components of g′ are expressed in terms of
components of g:

g′
xx(ω′, k′

⊥; z, z̃) = gxx(ω, k⊥; z, z̃),

g′
yy(ω′, k′

⊥; z, z̃) =
1

(ω′ + k′
xv)2

(

ω′2

γ 2
gyy + k′

y

2
v

2gxx +
ω′

γ
k′

yvgxy +
ω′

γ
k′

yvgyx

)

(ω, k⊥; z, z̃),

g′
zz(ω′, k′

⊥; z, z̃) =
1

(ω′ + k′
xv)2

(

ω′2

γ 2
gzz + v

2∂z∂z̃gxx + i
ω′

γ
v∂z̃gzx − i

ω′

γ
v∂zgxz

)

(ω, k⊥; z, z̃),
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g′
xy(ω′, k′

⊥; z, z̃) =
1

ω′ + k′
xv

(

ω′

γ
gxy + k′

yvgxx

)

(ω, k⊥; z, z̃),

g′
yx(ω′, k′

⊥; z, z̃) =
1

ω′ + k′
xv

(

ω′

γ
gyx + k′

yvgxx

)

(ω, k⊥; z, z̃),

g′
zx (ω′, k′

⊥; z, z̃) =
1

ω′ + k′
xv

(

ω′

γ
gzx + iv∂zgxx

)

(ω, k⊥; z, z̃),

g′
xz(ω′, k′

⊥; z, z̃) =
1

ω′ + k′
xv

(

ω′

γ
gxz − iv∂z̃gxx

)

(ω, k⊥; z, z̃),

g′
yz(ω′, k′

⊥; z, z̃) =
1

(ω′ + k′
xv)2

(

ω′2

γ 2
gyz − ik′

yv
2∂z̃gxx + i

ω′

γ
v∂z̃gyx −

ω′

γ
k′

yvgxz

)

(ω, k⊥; z, z̃),

g′
zy(ω′, k′

⊥; z, z̃) =
1

(ω′ + k′
xv)2

(

ω′2

γ 2
gzy + ik′

yv
2∂zgxx − i

ω′

γ
v∂zgxy −

ω′

γ
k′

yvgzx

)

(ω, k⊥; z, z̃). (A2)

APPENDIX B: THE FORM OF THE REDUCED GREEN’S

DYADIC

In this Appendix, we give the explicit form of the reduced
Green’s dyadic used in the paper.

The Green’s dyadic �(r, r̃; ω) in frequency space satisfies
the following differential equation:
[

−ε(r; ω) +
1

ω2
∇×μ−1(r; ω) · ∇×

]

�(r, r̃; ω) = 1δ(r − r̃).

(B1)
where ε(r; ω) and μ(r; ω) are the permittivity and permeabil-
ity at the field point r. In deriving Eq. (B1), we have ignored

the spatial dispersion effects so that these susceptibilities are
local in space. The geometry of the problem we consider pos-
sesses translational symmetry in the x-y plane, which permits
us to Fourier-transform the Green’s dyadic in these spatial
directions:

�(r, r̃; ω) =
∫

d2k⊥

(2π )2
eik⊥·(r⊥−r̃⊥ )g(z, z̃; ω, k⊥). (B2)

In this paper, we always evaluate the Green’s dyadic at the
position of the particle, where the permittivity and the perme-
ability become scalars and take the vacuum value, ε = μ = 1.
The reduced Green’s dyadic g then takes the special form

g(z, z̃; ω, k⊥) =

⎛

⎜

⎜

⎝

k2
x

k2 ∂z∂z̃g
H + k2

y

k2 ω
2gE kxky

k2 ∂z∂z̃g
H − kxky

k2 ω2gE ikx∂zg
H

kxky

k2 ∂z∂z̃g
H − kxky

k2 ω2gE k2
y

k2 ∂z∂z̃g
H + k2

x

k2 ω
2gE iky∂zg

H

−ikx∂z̃g
H −iky∂z̃g

H k2gH

⎞

⎟

⎟

⎠

. (B3)

The scalar Green’s functions that construct the Green’s dyadic
consist of a bulk part and a scattering part,

gE ,H (z, z̃; ω, k) =
1

2κ
e−κ|z−z̃| +

rE ,H

2κ
e−κ (z+z̃), (B4)

with the reflection coefficients

rE =
κ − κ ′/μ

κ + κ ′/μ
, rH =

κ − κ ′/ε

κ + κ ′/ε
. (B5)

Here, ε and μ are the permittivity and permeability of the
reflecting surface, which is assumed to be homogeneous and
isotropic for simplicity, and κ and κ ′ are the propagation
wave numbers associated with the vacuum and the surface,
respectively, given by

κ2 = k2 − ω2, κ ′2 = k2 − ω2εμ. (B6)

In certain regions for ω and k⊥, these wave numbers could
develop an imaginary part, which is crucial for discussions
of dissipative forces like quantum friction. In those regions,

the branch is so chosen that the retarded requirement of the
Green’s dyadic is guaranteed,

κ → −i sgn(ω)
√

ω2 − k2, ω2 > k2,

κ ′ → −i sgn(ω)
√

ω2εμ − k2, ω2εμ > k2. (B7)

Note that κ becomes odd in ω in the region where it develops
an imaginary part.

In the perfectly (electrically) conducting limit for the sur-
face considered in this paper, the permittivity and permeability
take the extreme values [35]

ε → ∞, μ → 0, (B8)

so that the reflection coefficients simplify to be

rE ,H = ∓1. (B9)
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APPENDIX C: THE ABSENCE OF ZERO-TEMPERATURE

QUANTUM FRICTION IN THE PRESENCE OF A

DIAPHANOUS MEDIUM

In this Appendix, we supply a proof for why no zero-
temperature QF should arise for the vacuum case and the
PC case. Furthermore, we extend the claim to include
any diaphanous, nondissipative medium with the property
εμ = 1.

The general QF for an atom, Eq. (2.1), can be rewritten as
the following when the temperature is set to be zero:

F = 2
∫ ∞

0

dω

2π

∫

d2k⊥

(2π )2

d2k̄⊥

(2π )2
k̄x tr[α(ω) · � g′(ω, k⊥; a, a)

· α(ω) · � g′(ω, k̄⊥; a, a)][sgn(ω + k̄xv) − sgn(ω + kxv)].

(C1)

To obtain Eq. (C1), we have exchanged kx and k̄x for the sec-
ond term in Eq. (2.1) and used the evenness of the integrand

under the total reflection of its frequency and wave-vector
arguments (ω, k⊥, k̄⊥) → (−ω,−k⊥,−k̄⊥). In order to make
the argument clearer, let us change the k⊥ and k̄⊥ into dimen-
sionless variables using ω as a positive scale:

kx = ωx, ky = ωy, k̄x = ωx̄, k̄y = ωȳ. (C2)

The frictional force now reads

F =
1

16π5

∫ ∞

0
dω ω5

∫

dxdydx̄dȳ x̄

× tr[α(ω) · � g′(ω,ωx, ωy) · α(ω) · � g′(ω,ωx̄, ωȳ)]

× [sgn(1 + x̄v) − sgn(1 + xv)], (C3)

where we have suppressed the spatial z coordinates of the
Green’s dyadics. The difference in the sgn functions can be
translated into limits for the x and x̄ integrals, leading to

F =
1

8π5

∫ ∞

0
dω ω5

∫

dydȳ

[

∫ − 1
v

−∞
dx

∫ ∞

− 1
v

dx̄ −
∫ ∞

− 1
v

dx

∫ − 1
v

−∞
dx̄

]

x̄ tr[α(ω) · � g′(ω,ωx, ωy) · α(ω) · � g′(ω,ωx̄, ωȳ)].

(C4)

By exchanging x and x̄ again for the second term inside the
bracket of Eq. (C4), we find the frictional force becomes

F =
1

8π5

∫ ∞

0
dω ω5

∫

dydȳ

∫ − 1
v

−∞
dx

∫ ∞

− 1
v

dx̄ (x̄ − x)

× tr[α(ω) · � g′(ω,ωx, ωy) · α(ω) · � g′(ω,ωx̄, ωȳ)].

(C5)

Now, the limit on x prevents the vacuum propagation wave
number of the first reduced Green’s dyadic, κ , from develop-
ing an imaginary part, because of

κ2 = k2 − ω2 = ω2(x2 + y2 − 1) > 0, x < −
1

v

. (C6)

For the simplest vacuum situation where only the diagonal
components of the Green’s dyadic contribute to the integral
(see Appendix A of Ref. [17] for a detailed discussion), the
anti-Hermitian part reduces to the ordinary imaginary part.
But the only possible source of an imaginary part for the first
Green’s dyadic in Eq. (C5), κ , is now real definite. As a result,
the zero-temperature QVF vanishes.

For backgrounds other than vacuum, zero-temperature
quantum friction exists in general because the propaga-
tion wave number associated with the medium can become
imaginary since

κ ′2 = k2 − ω2εμ = ω2(x2 + y2 − εμ) (C7)

does not have a definite sign. A diaphanous medium with the
special property

εμ = 1, (C8)

however, is an exception, for which the propagation wave
number coincides with the vacuum one, κ ′ = κ . This nice co-
incidence renders the reflection coefficients to be real definite
as long as ε and μ are real:

rE =
μ − 1

μ + 1
=

1 − ε

1 + ε
, rH =

ε − 1

ε + 1
. (C9)

Therefore, the only source of the imaginary part in the scalar
Green’s functions (B4) is still the κ as in the vacuum case.
It can be further checked that the anti-Hermitian part of g′

vanishes unless κ develops an imaginary part even though the
off-diagonal components of the Green’s dyadic and the trans-
formation between g′ and g needs to be taken into account.
Again, recalling Eq. (C6), the zero-temperature QF must be
absent even if such a diaphanous medium is present in the
background.

Now, apparently, both the perfect conductor defined by
Eqs. (B8) and (B9) and the vacuum background can be
deemed as members of the family of diaphanous materials,
for which the total reflection coefficient rE + rH = 0.

APPENDIX D: THE NONRELATIVISTIC LIMIT OF PCQF

In this Appendix, we obtain the nonrelativistic (NR) limit
of PCQF directly from the expressions in Eqs. (3.4) and (3.7),
where we have already replaced the dynamical polarizability
with the static polarizability. We will use F XZ in particular as

062812-10



QUANTUM FRICTION IN THE PRESENCE OF A … PHYSICAL REVIEW A 107, 062812 (2023)

an example to illustrate the procedure:

F XZ =
αxx(0)αzz(0)

8π3(2a)8

∫ ∞

0
dx x3[3x cos x + (x2 − 3) sin x]

∫ 1

−1
du u

√

1 − u2 J1(x
√

1 − u2)
1

exbγ (1+uv) − 1
. (D1)

In the NR limit, the exponential factor can be expanded in v. Keeping only up to the term linear in v, we obtain

F XZ =
αxx(0)αzz(0)

8π3(2a)8

∫ ∞

0
dx x3[3x cos x + (x2 − 3) sin x]

∫ 1

−1
du u

√

1 − u2 J1(x
√

1 − u2)

[

1

exb − 1
− uv

xbexb

(exb − 1)2

]

. (D2)

Note the term constant in v vanishes because of its oddness in u, as there should be no spontaneous quantum propulsion for a
reciprocal point particle. See Ref. [21]. We are left with the term linear in v as expected. The u integral can then be easily carried
out and we obtain

F XZ =
αxx(0)αzz(0)

16π3(2a)8
vI (b), I (b) = b

∫ ∞

0
dx

[3x cos x + (x2 − 3) sin x]2

sinh2(xb/2)
. (D3)

Now we focus on I (b), which carries all the b dependence of F XZ, and rewrite it as

I (b) = −4
∫ ∞

0
dx [3x cos x + (x2 − 3) sin x]2 d

dx

(

1

exb − 1

)

. (D4)

Using integration by parts, this becomes

I (b) = 4
∫ ∞

0
dx [x(2x2 + 3) + x2(x2 − 6) sin(2x) + x(4x2 − 3) cos(2x)]

1

exb − 1

= 4

{∫ ∞

0
dx

(2x3 + 3x)

exb − 1
+
[

d4

dη4
− 4

d3

dη3
+ 6

d2

dη2
− 3

d

dη

] ∫ ∞

0
dx

sin(ηx)

exb − 1

}
∣

∣

∣

∣

η=2

= 4

{∫ ∞

0
dx

(2x3 + 3x)

exb − 1
+
[

d4

dη4
− 4

d3

dη3
+ 6

d2

dη2
− 3

d

dη

][

π

2b
coth

(ηπ

b

)

−
1

2η

]}
∣

∣

∣

∣

η=2

=
8π4

15b4
+

2π2

b2
− 9 +

{

16π5

b5

[

3 coth2

(

2π

b

)

− 2

]

coth

(

2π

b

)

+
16π4

b4

[

3 coth2

(

2π

b

)

− 1

]

+
24π3

b3
coth

(

2π

b

)

+
6π2

b2

}

csch2

(

2π

b

)

.

(D5)

For b 
 1, the leading term of I (b) is 8π4/15b4. In Ap-
pendix E, we will show both analytically and numerically that
F XZ behaves as 1/b4 in the small-b limit, even for relativistic
velocities. When I (b) is expanded for b 	 1, on the other
hand, multiple cancellation occurs and the leading term of I (b)
is found to be 1024π10/1485b10. This agrees with the large-b
limit for arbitrary velocities already obtained in Eqs. (3.9).

We have also found the other contributions to the PCQF all
have a nonvanishing term linear in v. The procedure outlined
in this Appendix works to extract the correct NR limits of
these other contributions to PCQF as well.

APPENDIX E: SMALL- AND LARGE-b LIMITS OF PCQF

In this Appendix, we show how to obtain the small- and
large-b limits of PCQF for all v. We will, again, focus on the
XZ polarization contribution.

Rewriting Eq. (3.4d) as

F
XZ(x, v, b) = −

√
π 2

3
2 x− 3

2 J 5
2
(x)

×
∫ 1

−1
du u

√

1 − u2 J1(x
√

1 − u2)

×
1

exγ b(1+uv) − 1
(E1)

and explicitly expanding the thermal occupation factor as a
Maclaurin series in the v variable, but retaining the implicit

FIG. 6. At fixed velocity v = 0.5, the numerical results for
f XZ (dots) and its small-b approximation (dashed line) obtained in
Eq. (E7) are shown for b ∈ [0, 1].
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dependence of γ on v,

1

exγ b(1+uv) − 1
=

∞
∑

n=0

v
n

n!

[

∂n

∂v
n

1

exγ b(1+uv) − 1

]
∣

∣

∣

∣

v=0

=
∞
∑

n=0

v
nun

n!
(xγ b)n ∂n

∂ (xγ b)n

1

exγ b − 1
, (E2)

we obtain

F
XZ(x, v, b) = −

√
π 2

3
2 x− 3

2 J 5
2
(x)

∞
∑

n=0

v
n

n!

∫ 1

−1
du un+1

√

1 − u2 J1(x
√

1 − u2)bn ∂n

∂bn

1

exγ b − 1

= −πJ 5
2
(x)

∞
∑

m=0

v
2m+1

m!
22−mx−(m+3)Jm+ 5

2
(x) b2m+1 ∂2m+1

∂b2m+1

1

exγ b − 1
,

(E3)

where we have noticed that the even n terms vanish because of the symmetry of the integrand for the u integral.
It follows from Eqs. (3.7) and (E3) that

f XZ (v, b) = −π

∞
∑

m=0

v
2m+1

m!
22−mb2m+1 ∂2m+1

∂b2m+1

∫ ∞

0
dx x4−mJ 5

2
(x) Jm+ 5

2
(x)

1

exγ b − 1
, (E4)

which may be cast in forms suitable for small or large b by employing representations of the integrand (other than the thermal
occupation factor) that are appropriate for large or small x, respectively.

Thus, the finite series representation

Jn+ 1
2
(x) =

√

2

πx

⎡

⎣sin
(

x −
π

2
n
)


 n
2 �
∑

k=0

(−1)k (n + 2k)!

(2k)!(n − 2k)!
(2x)−2k + cos

(

x −
π

2
n
)


 n−1
2 �
∑

k=0

(−1)k (n + 2k + 1)!

(2k + 1)!(n − 2k − 1)!
(2x)−(2k+1)

⎤

⎦,

(E5)
appropriate for large x, may be used to generate an expansion for f XZ(v, b) that is suitable for small b. We will be content to
establish the leading-order term for small b, which derives from the leading-order term in the above representation for large x:

Jn+ 1
2
(x) ∼

√

2

πx
sin
(

x −
π

2
n
)

, x → ∞. (E6)

Using Eq. (E6) in Eq. (E4) and keeping only the m = 0 term, corresponding to the leading x power in the integrand, we readily
obtain

f XZ(v, b) ∼ −8v b
∂

∂b

∫ ∞

0
dx x3 sin2 x

1

exγ b − 1
∼ −4v b

∂

∂b
	(4)ζ (4)(γ b)−4 =

16π4
v

15γ 4b4
, b → 0. (E7)

It is interesting to note the appearance of the Planck-Einstein transformed temperature, Tγ ≡ T
γ

, in this (high-temperature) limit.

Note that Eq. (E7) captures not only the correct b dependence but also the velocity dependence of f XZ in the small-b limit. The
agreement of Eq. (E7) with the numerical data for v = 0.5 is illustrated in Fig. 6.

Likewise, the infinite series representation

Jμ(x)Jν (x) =
∞
∑

n=0

(−1)n(μ + ν + n + 1)n

n!	(μ + n + 1)	(ν + n + 1)

(

x

2

)μ+ν+2n

, (E8)

appropriate for small x, may be used to generate an expansion for f XZ(v, b) that is suitable for large b. In this case, the leading
x power in the integrand in Eq. (E4) is independent of m, so all terms must be included, resulting in

f XZ(v, b) ∼ −π

∞
∑

m=0

v
2m+1

m!

2−(3+2m)

	
(

7
2

)

	
(

m + 7
2

)b2m+1 ∂2m+1

∂b2m+1

∫ ∞

0
dx x9 1

exγ b − 1

= −π

∞
∑

m=0

v
2m+1

m!

2−(3+2m)

	
(

7
2

)

	
(

m + 7
2

)b2m+1 ∂2m+1

∂b2m+1
	(10)ζ (10)(γ b)−10

= π

∞
∑

m=0

v
2m+1

m!

2−(3+2m) (2m + 10)! ζ (10)

	
(

7
2

)

	
(

m + 7
2

)

1

(γ b)10

=
28ζ (10) v

15 γ 10b10

∞
∑

m=0

v
2m(m + 1)(m + 2)(m + 3)(m + 4)(m + 5)(2m + 7)(2m + 9)

=
2113 ζ (10)

b10
γ 6

v (21 + 30v
2 + 5v

4), b → ∞, (E9)
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where we have used the identity

γ 2n =
1

(n − 1)!

dn−1

d (v2)n−1

1

1 − v
2

=
1

(n − 1)!

∞
∑

m=0

v
2m(m + 1)(m + 2) · · · (m + n − 1). (E10)

The result obtained in Eq. (E9) is precisely that found in Eqs. (3.9).
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