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Causal effects of biodiversity on ecosystem functions can be estimated using
experimental or observational designs— designs that pose a tradeoff between
drawing credible causal inferences from correlations and drawing general-
izable inferences. Here, we develop a design that reduces this tradeoff and
revisits the question of how plant species diversity affects productivity. Our
design leverages longitudinal data from 43 grasslands in 11 countries and
approaches borrowed from fields outside of ecology to draw causal infer-
ences from observational data. Contrary to many prior studies, we estimate
that increases in plot-level species richness caused productivity to decline: a
10% increase in richness decreased productivity by 2.4%, 95% CI [−4.1, −0.74].
This contradiction stems from two sources. First, prior observational studies
incompletely control for confounding factors. Second, most experiments
plant fewer rare and non-native species than exist in nature. Although
increases in native, dominant species increased productivity, increases in rare
and non-native species decreased productivity, making the average effect
negative in our study. By reducing the tradeoff between experimental and
observational designs, our study demonstrates how observational studies can
complement prior ecological experiments and inform future ones.

Motivated by global changes in biodiversity, ecologists have advanced
our understanding of the consequences of biodiversity change for
ecosystem functioning1–11. One particularly active area of this research
has focused on how plant species diversity affects ecosystem

productivity1–4,12. To shed light on this causal relationship, studies have
used both experimental and non-experimental designs, each of which
presents distinct advantages and disadvantages for elucidating causal
relationships in natural ecosystems.
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Experimentalists that manipulate plant species richness often
infer that increases in richness cause increases in biomass1,2,7,13.
Although experimental manipulations facilitate causal inferences,
most experiments that manipulate richness are designed to test
theory14,15 rather than to simulate how species richness changes in
natural ecosystems16–18. If the effect of richness on productivity
depends on the specific species gained and lost, and how they are
gained and lost, inferences from experiments may not generalize to
natural ecosystems (Fig. 1A)16,17,19. For example, many biodiversity
experiments simulate randomgains and losses of species (but see20–22),
whichmay notmimic changes in species richness in nature. Moreover,
most experiments plant common, native species (but see16,19–21,23).
However, in diverse natural ecosystems, most species are rare24 and
non-native species are increasingly prevalent25.

Observational studies can capture the consequences of changes
in species richness that occur in nature. However, determining the
causal effect of richness on productivity in observational studies
requires strong assumptions26,27. Confounding variables associated
with both richness and productivity15 can mask or mimic a causal
relationship between them (Fig. 1B). For example, unobserved differ-
ences in soil nitrogen across locations canmask a positive relationship
between richness and productivity if more nitrogen reduces richness
and increases productivity28. To eliminate confounding effects, com-
mon study designs in ecology require identifying, measuring, and
statistically controlling for all confounding variables29. This task is
daunting in natural ecosystems given myriad confounding variables
that could influence both richness and productivity (e.g., land-use
history, herbivory, disturbance). Yet, failure to control for all con-
founding variables can lead to inferences of the wrong sign or mag-
nitude (i.e., due to statistical bias)26,30. Consequently, the mixed
evidence on the effect of species richness on productivity in obser-
vational studies3,4,12,13,31,32 may reflect differences in the degree of con-
trol for confounding factors across studies.

To isolate and quantify causal relationships between biodiversity
and ecosystem function, the ideal study design would combine the
strength of experiments in enabling causal inferences from

correlations with the strength of observational designs in facilitating
generalizable inferences about natural ecological processes. Experi-
mental designs withmore realistic extinction processes are one step in
that direction (e.g.,16,20,21). Here, we develop a complementary
approach by leveraging a global grassland dataset33 and methods
designed for inferring causality from observational data26,27,34,35. This
suite of methods now comprises the dominant approach to causal
inference in fields outside of ecology, such as economics, medicine,
and public health. When combined with our global longitudinal data-
set, they allow us to account for the ecological complexity of grass-
landswithoutmaking strong assumptions about our ability tomeasure
all confounding variables36, and they allow us to isolate the effect of
biodiversity on productivity separate from the reverse relationship35,37.

Applying traditional methods to our data, we would conclude
that, on average, an increase in biodiversity increases productivity in
grasslands, a result found inmany prior studies. However, applying the
suite of methods that control for a broader set of confounding vari-
ables, we come to the opposite conclusion: an increase in biodiversity
reduces productivity in grasslands, on average.

Results and discussion
Study context and design
We use repeated observations between 2007-2017 from 151 unmani-
pulated plots in 43 grassland sites in 11 countries33 from the Nutrient
Network (https://nutnet.org), including mesic grasslands and prairies,
savanna, desert grasslands, montane meadows, old fields, and alpine
tundra (Table S1 in Supplementary Information (SI); SI Section 3).
Wedefine “productivity” as aboveground livebiomassper yearper 1m2

(following refs. 3,9,31). Each 1m2 plot has between 1 and 37 species in a
year, with an average of 11.3 (SD = 5.7) and median of 10. We use plots
with five or more years of data, in contrast to most observational
studies of biodiversity effects on productivity, which use a single
year3,9,12,31,38. Data from multiple years offer three advantages: (1) an
opportunity to study natural changes in richness; (2) enhanced gen-
eralizability; and (3) ways to control for a broad set of confounding
variables, including unobserved ones (see “Methods”).
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A. The Challenge of Generalizability
in Experimental Designs 

B. The Challenge of Causal Inference
in Observational Designs 

Fig. 1 | Challenges in estimating the causal effect of species richness on pro-
ductivity. A Experimental designs permit credible causal inferences with few
modeling assumptions. Yet experiments often manipulate richness in random
permutations, plant limited sets of species, and weed out colonizing species. Such
designs can yield ecological processes that differ from processes in natural sys-
tems. InA, whencommon species aremore likely to be planted in experiments than
rare species, the proportion of common species is higher than the proportion of
rare species regardless of the planted richness level. In contrast, in natural com-
munities, higher species richness is associatedwith greater numbers of rare species
than common species. B Observational designs include natural processes but
causal inferences are challenged by confounding variables (U) associatedwith both

richness (R) and productivity (P); e.g., precipitation can increase both R and
P, thereby inducing a positive correlation between the two, even if the true causal
relationship were zero or negative. Some of these confounding variables, like
topography, may be time-invariant (or slow-changing) over the study period at the
level of the plot (Up) or site (Us). Othersmaybe time-varying at the site (Ust), such as
weather, or the plot (Upt), such as micro-climate. To estimate the effect of R on
P without bias does not require data on variables I that only affect P, or Z that only
affect R, nor on mechanisms (M), such as selection or complementarity. However,
data on Z and M can help address unobserved confounders and differentiate the
effect of R on P from the effect of P on R.
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Our study differs from prior ecology publications by combining
three features: (1) causal diagrams to inform the design and transpar-
ently communicate the assumptions required for inferring a causal
relationship from a correlation3,39; (2) regression models that leverage
repeated observations on the same plots and sites to control for
confounding variables (see Fig. 1B), both observable and
unobservable26,30,36,40; and (3) rigorous assessments of the robustness
of our inferences to violations of the assumptions required for infer-
ring causal relationships from the data (these assumptions are
described inmoredetail in Figs. 2 and3, “Results”, and “Methods”). The
SI offers a primer on these ideas and compares them to approaches
widely used in ecology (SI Sections S2, S4, S7 and S9).

In prior observational studies of how richness affects productiv-
ity, controlling for thewide range of potential confounding variables in
multilevel or structural equation models has posed challenges
(e.g.,3,8,9,31,41). In those studies, researchers who wanted to interpret an
estimated effect as a causal effect had to assume that no confounding
variables were left out of the models30,36. In complex ecological sys-
tems, however, it is unlikely that one can measure all possible con-
founding variables. Moreover, when these confounding variables are
measured with error, statistically controlling for them can introduce
other biases36. In other words, prior studies require a strong assump-
tion for interpreting the correlation between richness and productivity
as causal: any site or plot attributes not included in the statistical
estimation model are assumed to be uncorrelated with species rich-
ness and therefore not a source of statistical bias. Our design relaxes
this strong assumption.

We improve upon prior observational studies by controlling for a
broader suite of confounding variables without needing to directly
measure them as covariates (see “Methods” and refs. 36,40). To
understand the intuition for how this control is possible, recall that, in
contrast tomost prior observational studies on this topic (e.g.,3,8,9,31,36),
our multi-site data is longitudinal (‘panel data’) and thus includes
variation in species richness in both time and space. Confounding
variables that affect both richness and productivity could arise from
conditions at the plot or the site. The values of these variables may be
essentially invariant during the study period (e.g., soil texture,

topography, land-use history) or they may vary through time (e.g.,
surrounding land-use change, drought conditions that differ by both
site and year). With our multi-site panel data, we can directly control
for time-varying, site-level conditions, whether they are observable or
not, via a regression estimator that includes a simple interaction of
binary variables for each site and year (see “Methods”, Eq. 2). Further,
we can eliminate the confounding effects of time-invariant plot and
site conditions by taking deviations frommean conditions, after which
variables that do not change over time no longer have any explanatory
role and thus are eliminated as a source of bias (“Methods”). Using
alternative designs, we can also quantify the potential threat of addi-
tional sources of bias from unobserved, time-varying plot-level con-
founders and from reverse causality (by bias from reverse causality, we
mean bias that could arise when a causal effect also runs from pro-
ductivity to richness; see “Methods”). In contrast to our approach,
virtually all observational analyses reviewed in4 omit important con-
founding variables (e.g., from human activities and landmanagement)
and ignore the potential for reverse causality (reviewed in ref. 42).

To demonstrate how our study design builds on and advances
prior research, we first apply two study designs that have been used in
prior studies and then contrast them to our design. Specifically, we
estimate a simple bivariate correlation of richness and productivity
(like ref. 31) and then we estimate the relationship between richness
and productivity using a multivariate design that mirrors advanced
statistical designs that aim to control for confounding variables by
directly measuring and including them as covariates in regression
models (a “conditioning on observables” analysis, like ref. 6). The
multivariate design, which we label “Common Design in Ecology,”
controls for over 60 variables (far more than prior studies), including
attributes of the soil, habitat, historical management, and weather
(Table S10). More details are provided in “Methods” section.

Main results
We first report the bivariate correlation between-plot richness and
productivity. Consistent with prior studies31, we find a statistically
weak, positive relationship between richness and productivity when
we do not control for any confounding variables: a 10% increase in

Fig. 2 | The effect of biodiversity on productivity, estimated as the mean %
change in productivity froma 1% increase in richness.The top panel summarizes
the assumptions needed for drawing causal inferences in each design. A redXon an
arrow implies that the design blocks the confounding pathways described in the
box with dotted lines. The Common Design, a multivariate mixed model that is
common in ecological analyses of observational data, requires much stronger
assumptions to interpret estimates as a causal effect than our Main Design,
assumptions that are unlikely to be met in these data. The bottom panel shows the
estimateswith 95% confidence intervals for twodesigns:AOurMainDesign, a panel

data design (see SI Section S4) with n = 1231 observations; and B The Common
Design, a multivariate mixed model (see SI Section S7) with n = 675. The positive
estimated effect from the CommonDesign is not driven by having to drop sites that
did not measure all the covariates (the sites in France, Portugal, and South Africa
did not collect the soil data). If weuse only the 675observations from themultilevel
modeling in ourMain Design, we still obtain a negative estimated effect of richness
on productivity, albeit less precisely estimated because of the smaller sample size
(see SI Section S7).
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richness is associatedwith a 1.4% increase in productivity, 95%CI [−0.6,
3.4]. To give that estimated correlation a causal interpretation requires
an implausible assumption that there are no confounding variables in
the system (or that they perfectly cancel each other out).

Consistent with prior multivariate studies3, the Common Design in
Ecology yields a statistically significant, positive relationship: a 10%
increase in plot richness increased productivity by 3.8% on average,
95% CI [0.01, 7.5] (Fig. 2B). To give that estimated effect a causal
interpretation, however, requires a strong assumption: all possible
confounding variables are measured accurately and are included in
the model.

In contrast to prior analyses, ourMain Design controls for a much
broader set of potential confounders and comes to the opposite
conclusion (Fig. 2A; Tables S2–S3; SI sections S4, S7 and S9). We find a
10% increase in plot richness decreased plot productivity by 2.4% on
average, 95% CI [−4.1, −0.74]. The estimate is similar if we measure
biodiversity using Simpson’s Diversity (Table S2), control for con-
comitant changes in species evenness (Fig. 2A), or measure species
richness and productivity as untransformed variables in linear or non-
linear specifications (Table S3). In extended analyses (Tables S4–S6),
we find no evidence that the effect of species richness on productivity
is moderated by the site’s productivity or total number of species
(as in38).

Switching from the Common Design to our Main Design flips the
estimated effect of richness on productivity from positive to negative
(Fig. 2). This sign-switching likely occurs for two reasons. First, on
average, many of the observed site and plot variables at these 43 sites
are negatively associated with richness and positively associated with
productivity (or vice-versa). Controlling for them in the Common
Design moves the estimated effect in the positive direction from the
bivariate correlation. Second, unobserved site and plot variables (Us,
Up, Ust in Fig. 1B) are, on average, positively associated with both
richness and productivity. We can infer the sign of these associations
by observing how the estimated effect changes with and without the
controls for unobserved time-varying, site-level conditions and time-
invariant plot and site conditions (Fig. 2A versus Fig. 2B; see “Meth-
ods”). Failing to control for the time-varying confounders is a parti-
cular problem in the Common Design. In other words, the Nutrient
Network sites experience site-specific “shocks” that vary each year
(e.g., weather shocks, like a particularly dry April, or herbivory shocks,

like higher herbivore pressure than the prior year) and failing to con-
trol for them creates statistical biases in the positive direction. We
cannot observe the exact components of these shocks, but because
we observe the same sites over many years, we can control for them.
The Main Design, with its greater set of controls, is thus less biased36.
More details are available in SI Sections S7 and S9. Future research
could elucidate what shocks are most relevant, thereby providing a
way for researcherswithout longitudinal data to potentially control for
the confounding effects of these shocks.

Results are robust to alternative assumptions for inferring
causality
A hallmark of modern approaches to causal inference is to probe the
robustness of results to potential violations in the assumptions used to
infer causality fromcorrelation35. Using four additional approaches,we
use assumptions different from those made in our Main Design
(Fig. 2A) and assess howour conclusions change (see “Methods”). In all
four approaches, the estimated effect of richness on productivity is
negative (Fig. 3; Tables S7–S8).

Based on the first two approaches, we conclude that we are not
mistaking the effect of productivity on richness3,15 for the effect of
richness on productivity (“reverse causality”). The first approach
employs an instrumental variable design, which uses an observable
source of variation in richness (Z in Fig. 1B) that is assumed to have no
connection to productivity after conditioning on the site and plot
variables addressed in the Main Design (see “Methods”). When this
assumption is valid, the design addresses both reverse causality and all
forms of confounding in Fig. 1B, at the cost of drawing inferences from
only a subset of the data, which can dramatically decrease the preci-
sion of the estimate. Our second approach assumes, based on3, that a
negative effect of productivity on richness would be mediated (M in
Fig. 1B), at least in part, by shading or factors for which shading is a
proxy (e.g., overcrowding). To block the effect of this mechanism, we
add a shading variable to the Main Design (see “Methods”). If the
estimated effect changes, reverse causality may be a source of bias. In
both approaches, the estimated effect remains negative, suggesting
that, if either of the approaches’ assumptions are valid, reverse caus-
ality is not driving our results. This conclusion does not mean pro-
ductivity cannot affect richness, only that such a relationship is not a
likely source of bias in our Main Design.

Fig. 3 | The effect of species richness on productivity (robustness checks),
estimated as themean % change in productivity froma 1% increase in richness.
The bottom left panel shows the estimates of mean effect with 95% confidence
intervals, except for the sensitivity test estimate, from (1) our main study design
(n = 1231), (2) a dynamic panel design (n = 1063), (3) a sensitivity test (n = 1231), (4) a
mechanism-blocking design (n = 1063), and (5) an instrumental variable design

(n = 1212). The diagrams summarize the assumptions needed for drawing causal
inferences in each design, where a red X on an arrow implies that the confounding
pathway is blocked by the design. Using four approaches that make assumptions
that differ from the assumptions in ourMain Design (Fig. 2A), we find no evidence
for a positive effect of species richness on productivity.
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Based on the final two approaches, we conclude that the esti-
mated negative effect in theMain Design is robust to potential biases
from unobserved confounding variables at the plot level that vary
over time (Upt in Fig. 1B). First, in a dynamic panel design, we address
bias that would arise if the prior year’s productivity affects richness
and productivity in the current year (e.g., via soil fertility43). The
estimated effect is similar to the estimate from the Main Design.
Second, in a sensitivity analysis34, we assess how the Main Design
estimate would change if there were a strong, unobserved con-
founding variable that is negatively associated with species richness
and positively associated with productivity (e.g., measurement error
or plot-level drivers of disturbance). If such a confounding variable
were to exist, it could create a spurious negative correlation between
richness and productivity. The analysis implies that, even in the
presence of a such an unobserved confounder, we would still infer
that there is a negative relationship between richness and
productivity.

The role of rare species and non-native species
In contrast to our study, many experimental studies report positive
effects of richness on productivity1,2,7,13. One difference between
experimental and natural systems is that most species in natural eco-
systems are rare, whereasmost species planted in experiments are not
rare (Figs. S11 and S12). Rare and dominant species can affect pro-
ductivity differently44. Thus, the effect on productivity from an
increase in richness (e.g., from 4 to 8 species) could differ when the
additional species are rare versus not rare. In the jargon of the causal
inference literature, richness is a compound treatment with multiple

versions, or a “heterogenous treatment”45. (Fig. 4A). Another differ-
ence between experimental and natural systems is the number of non-
native species, which are absent in many experiments but increasingly
prevalent in real ecosystems25. If non-native are more competitive but
less productive, as in ref. 46, this could also explain the divergence
between our results and those of experimental studies.

Rare and non-native species could reduce productivity through
multiple channels (Fig. 4B, left). For example, these species may
compete with more productive species (e.g., via allelopathy of rare
invaders47). Further, they may produce less aboveground biomass
than common, native species44 and so when they enter a plot, they
may take space formerly occupied by more productive species.
These productivity-reducing effects would be strengthened if, as
richness increases in a plot, rare and non-native species are more
likely to be the incrementally added species (Fig. 4B, right). In
experimental systems, species enter plots with equal probability. In
contrast, as richness increases in our 43 grassland sites, the prob-
ability that the incremental species is a rare or non-native species
also increases (Figs. S11 and S12).

Given differences in the species pools studied in our natural
systems versus many experimental systems, we explore whether
changes in rare species and non-native species richness affect
productivity differently from changes in native, non-rare species
richness. We classify species into four categories: (1) rare, native
species; (2) non-rare, native species; (3) non-rare, non-native spe-
cies; and (4) rare, non-native species (see “Methods”). We then
estimate the effect of each category’s richness on productivity using
our Main Design.

Fig. 4 | Composition and its role in the effect of species richness on pro-
ductivity. This figure illustrates why results from observational and experimental
studies may differ. Composition, the identities of species that could potentially
grow at a site at a given level of richness, makes species richness a heterogeneous
treatment in both experimental and non- experimental systems (A). The way
richness changes in nature can thus influence how changes in richness affect pro-
ductivity (B). InB (left), Richness has changed from 2 to 3 species in case (i), a case
where rare species take space formerly occupied by more productive dominant
species. In case (ii), where Richness also has changed from 2 to 3 species, rare

species have negative effects on dominant species productivity (e.g., via below-
ground competition or allelopathy). B (right) A species rank abundance curve that
illustrates that most species in high diversity grasslands are rare. Thus, as diversity
changes from low values to higher values, the way in which rare species affect
productivity will become more influential in affecting productivity levels. For
simplicity, figure focuses on a contrast between rare and dominant species, but the
ideas can also apply to differences between native and non- native species. Plant
species images in Panel B are from Tracy Saxby, IAN Image Library (https://ian.
umces.edu/imagelibrary).
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Our results imply that the negative average effect of richness on
productivity in Fig. 2 is drivenbychanges in thenumbersof rare, native
species and non-native, non-rare species (Fig. 5). Consistent with
results from experimental studies, an increase in species richness that
came from a non-rare, native species increased productivity. But
increases in richness decreased productivity when these increases
came from non-rare, non-native species or rare, native species (infer-
ences are similar using different definitions for rarity; Tables S11–S15).
We acknowledge that there could also be positive and negative inter-
actions across these species’ types, but we do not have sufficient sta-
tistical power to explore these potential interactions.

We conjecture that the proposed mechanisms through which
richness positively affects productivity in archetypical experiments—
i.e., niche complementarity and positive selection2,14,15—may operate
primarily among non-rare, native species. Testing this conjecture
would require experiments that successfully grow representative
proportions of rare species (in experiments that planted rare species,
these species failed to consistently emerge, see SI Section S9 – Box 2).

Implications for experimental and observational biodiversity
research
Leveraging methodological advances for causal inference in obser-
vational designs, our study uncovers ecological relationships in
grasslands that deserve closer attention. In the 43 grassland sites in
our study, an increase in species richness decreases productivity on
average (Fig. 2). This effect appears to arise because an increase in
rare species and non-rare, non-native species decreases productivity
on average (Fig. 5) and these species comprise most species in an
ecosystem (Fig. 4). These effects will be missed in observational
designs that do not adequately control for a wide range of con-
founding factors and in experiments that do not plant a repre-
sentative mix of species in diversity patterns that occur in natural
systems. Our results also highlight the challenge of determining the
representativeness of experimental systems. For example, a recent
comparison of natural and experimental systems identified many
similarities in attributes but did not assess whether the patterns of
rare or non-native species in experimental systems match the pat-
terns in natural systems48.

Our results point to promising areas for future research, including
studies that experimentally manipulate rare species and non-native
species and seek to identify traits of these species that drive their
effects on productivity. For example, in a recent study22, researchers

experimentally removed non-dominant species from randomly
assembled communities and reported an increase in biomass one year
after the removal; a result consistent with our results. Extensions of
their study can help elucidate the traits of these species that drive their
effects onproductivity. Our results also imply that any estimated effect
of changes in species richness on productivity may not generalize to
different spatial or temporal scales, or to other ecosystems, forms of
biodiversity, or ecosystem functions. Multiple ecological mechanisms
underlie a relationship between richness and productivity (e.g., below-
ground competition, niche complementarity), and their strength may
vary across places and time depending on which types of species are
changing andhow (Fig. 4).When the operativemechanismsdependon
the version of richness that is changing, ecologists face what has been
called “treatment-variation relevance”45 or “consequential variation of
the treatment”49. In such cases, interpreting and generalizing causal
effects is challenging, whether ecologists use experimental or obser-
vational designs.The challenge is bestmetbyusing largeobservational
datasets that capture the types of species changes that occur in nature
and then, using methods like the ones in our study, determine which
changes – in terms of which species are changing and how (Fig. 5) – are
consequential for the effect of richness on ecosystem function. The
results of these observational studies could then guide experi-
mentalists in selecting experimental designs that can help confirm the
results from observational studies and elucidate the underlying
mechanistic processes.

Most importantly, our study extends prior research3 that highlights
the importance of study design in credibly isolating causal relationships
in natural ecosystems. Other fields have made important advances in
observational analyses — advances that have not yet permeated into
ecology and other natural sciences. By demonstrating how to apply
these advances to an ecological question and data, our study aims to
spur broader adoption of these advances in ecology. Given the chal-
lengesof randomizingall the important elementsof ecosystemsat larger
spatial and temporal scales, observational designs like ours that leverage
these advancesoffer important complements toexperimental designs in
research to elucidate how natural ecosystems function.

Methods
To ensure reproducible results, we implemented all analyses in two
software programs (R using the ‘fixest’ package v 0.8.2 and Stata v.16)
and multiple researchers confirmed the results. The code for repro-
ducing all analyses, figures, and tables in this study are available
through Zenodo (https://doi.org/10.5281/zenodo.7675340). A
RMarkdown tutorial on the main methods can also be found on our
Zenodo release (https://doi.org/10.5281/zenodo.7675340) and as
Supplementary Data.

Target causal effect
To formalize the causal relationship we seek to estimate, we use the
potential outcomes framework30,50,51. The causal effect of a change in
richness fromR′toR″onproductivity P in plot i is defined as [(R″) − (R′)],
where Pi(R″) is the potential productivity outcomewhen R =R″ and P(R′)
is the potential productivity outcome when R = R′ (R′ ≠ R″). The differ-
ence in these two potential productivity outcomes (i.e., productivity
under two potential richness conditions) is the causal effect of a change
in richness in a plot. For a specific location and time, only one of these
potential outcomes will be directly observable; the counterfactual
values for the other potential outcomes must be estimated from data.
The average causal effect of a change inbiodiversity fromR′ toR″ across
all plots is [(R″) − P(R′)], where E[·] is the expectation operator. We seek
to estimate the average causal response of an incremental change in R
across all plots (i.e., the average effect across all possible one-unit
changes). When used for causal inference, non-experimental studies
aim to replicate, conceptually, the idealized experimental design in
which the factor or factors that affect variation inRonly affectP via their
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Fig. 5 | Estimates of themean effect of species richness on biomass production
conditional on species type. All estimated mean effects are on a log-inverse-
hyperbolic-sine scale and shown with 95% confidence intervals and with n = 1175
within 42 sites. Given the inverse hyperbolic-sine transformation of the richness
variable, the estimated effects cannot be interpreted as elasticities without further
manipulation, but their signs and relative magnitudes can be compared. We can
reject the null hypothesis that the estimated effects of these four types of species
are equal (ChiSq = 9.82, Pr(ChiSq = 0.02)). Dropping observations from one
site without data to define the species types does not change our estimates in
Figs. 2 and 3.
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effects onR. In other words, to permit credible causal inferences, a non-
experimental design seeks, via design and statistical methods, to elim-
inate the confounding effects of Up, Us, Ust, and Upt in Fig. 1, as well as
the effects of reverse causality in Fig. 3.

Data description
Study sites include mesic grasslands and prairies, savanna, desert
grasslands, montane meadows, old fields, and alpine tundra from 11
countries. To measure productivity, we use plant above- ground live
mass (biomass) (see Fig. S1). Biomass production supports many
ecosystemprocesses and services and thismeasureof productivity has
been widely used in studying the relationship between diversity and
productivity with both observational (e.g.,3,9,31) and experimental data
(reviewed in ref. 4,52,53). For herbaceous vegetation, aboveground live
biomass provides a reasonable estimate of primary productivity54.
Biodiversity measures are determined from species cover data from
the Nutrient Network (SI Section 3a).

Common design estimator
To show how our Main Design differs from more common designs in
ecology, we constructed what we call a “Common Design in Ecology”: a
multivariate design that controls for over 60 variables (far more than
prior studies), including attributes of the soil, habitat, historical man-
agement, and weather (Table S10). This design captures the strong
assumption that is inherent in prior observational ecological studies
that aim to estimate the causal effect of richness on productivity: there
are no variables omitted from the statistical model that are correlated
with both richness and productivity. When this assumption is not met,
the design suffers from bias. We compare this Common Design to our
Main Design, which relaxes that strong assumption.

For the Common Design in Ecology, we estimate the effect of
richness on productivity using the following regression equation:

ln LiveMasspst = β lnRichnesspst +Xp +X s +X st + εpst: ð1Þ

We use a ln-ln model specification (for rationale, see SI Section
S3b). Recall that observations in our data come from a plot p located
within a site s in a year t. Thus, Xp is a vector of plot-specific attributes
that do not vary over the study period (e.g., soil type), Xs is a vector of
site attributes that do not vary over the study period (e.g., habitat,
historical management, elevation), and Xst is a vector of site attributes
that vary by year (e.g., temperature seasonality, maximum and mean
temperatures of the warmest month). Together, these vectors include
over 60 variables, which are directly controlled for in the regression
(see Table S10). In this equation, we can see that the effects of any
omitted variables on productivity (i.e., variables not controlled for in
the X vectors in themodel) reside in the error term εpst. We can rewrite
this error term as a combination of a random error, σpst, which only
affects productivity, and unobserved confounding variables, U, which
affect both richness and productivity at either the plot or site level and
either in all years or only some years. Thus the error term can be
rewritten as εpst =Up +Us +Ust +Upt + σpst, whereUp andUs are vectors
of plot and site-level variables that do not change over the study per-
iod, and Ust are vectors of time-varying site-level variables, and Upt are
vectors of time-varying plot-level variables. If a study design has any of
theseomittedU variables, the estimator (β)wouldbebiased—knownas
omitted variables bias. In other words, to interpret the estimate of β as
an estimate of our target causal effect would require one to assume
that the observed covariates in the model capture all relevant Up, Us,
and Ust and Upt does not exist (because no time-varying covariates are
measured at the plot level).

Main design estimator
Each observation in our study comes from a plot p locatedwithin a site
s in a year t. With this longitudinal data structure, i.e. with repeated

observations of the same plots, one can control for all dimensions of
confounding variables that do not vary over the study period and all
dimensions of time-varying site-level confounding variables without
having to observe all of these dimensions. To achieve this control, we
estimate an equation of the following form:

lnLiveMasspst =β lnRichnesspst + δp +μst + εpst ð2Þ

As noted above, we use a ln-ln model specification (for rationale,
see SI Section S3b). Given that we have a ln-ln specification, β can be
interpreted as an elasticity: the expected percent change in pro-
ductivity given a one percent change in richness. We also tested the
robustness of results to this modeling decision (see SI Section S5).

The time-invariant plot attributes (δp) aremodeled in a fully flexible
way that allows each plot to have its own effect on productivity (details
on estimation procedure below). In the Economics literature, δp would
be called “plot-level fixed effects.” Note that the phrase “fixed effects”
has a different meaning in economics than in ecology (see S1 Glossary).
In economics, including δp is said to control for “unobserved hetero-
geneity”acrossplots that canbeapotential sourceofbias.Note thatδp is
not part of the error term, as it would be in mixed (multilevel) models55

or in a Common Design as in Eq. 1 (i.e., Up and Us). Rather, it is a para-
meter to be estimated, just like β. In other words, β and δp are assumed
to be fixed and estimable, rather than assumed to follow a distribution.
Time-invariant site attributes are not explicitly included in the equation
because they are subsumed into the time-invariant plot attributes (i.e.,
plots are nestedwithin sites and sofixed site attributes are controlled via
fixed plot attributes). In other words, this variable captures all attributes
of a plot at a given site that vary little over the study period. Thus, δp
captures bothUp andUs in thedecompositionof the error term from the
previous section (i.e., εpst = Up + Us + Ust + Upt + σpst, where σpst is a
random error that only affects productivity and U are unobserved con-
founding variables that affect both richness and productivity).

To show how the estimator in Equation 2 can efficiently control
for time-invariant confounders, we subtract the productivity obser-
vation within a plot in one year (t − 1) from the productivity observa-
tion within the same plot in the next year (t), yielding an equation for
the change (Δ) in productivity from one year to the next:

Δ ln LiveMasspst =βΔ lnRichnesspst +Δμst +Δεpst ð3Þ

The variable δp, which captures the effects of time-invariant plot
attributes, has been differenced away, allowing for efficient estimation
of β; in other words, we control for time-invariant plot attributes
without having to estimate themand useupmany degrees of freedom.
In this differenced version of Equation 2, one can see that we are
estimating the effect of richness on biomass from changes in richness
within plots, where the confounding effects of between-plot differ-
ences are absent. Rather than first-differencing the equations to
eliminate δp, one can instead take deviations from plot-level means,
which is the approach we take to estimating Equation 2 because it can
bemoreefficient. Thus, we canalsodescribeour estimation strategy as
estimating a correlation between deviations of productivity around its
mean and the corresponding deviations in richness around its mean.

The time-varying site attributes (μst) are also modeled in a fully
flexible way that allows a year- specific effect for each site (in the
estimation, an indicator for each year is interactedwith an indicator for
each site). Explicitly estimating μst flexibly controls for confounding
variation due to conditions at a site that change through time, such as
weather (e.g., time-varying patterns of temperature and precipitation),
herbivory, and surrounding land management conditions. In other
words, this variable captures all year-specific conditions experienced
by every plot at a given site. Thus μst capturesUst in the decomposition
of the error term from the previous section (εpst = Up + Us + Ust + Upt +
σpst). The estimator in Eq. (2) is often called a “two-way fixed effects
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estimator” because, by taking deviations from themeans, one controls
for time- invariant confounding and, by including the site-by-year
effects, one controls for time-varying confounding.

Thus, in contrast to the Common Design in Ecology, we control for
a broad suite of plot-level and site-level confounders without having to
measure them directly. The Main Design also controls for non-linear
relationships between the confounding variables and productivity or
richness, as well as linear and non-linear interactions among those
variables. Not having tomeasure the confounding variables also yields
another benefit: if the observable confounders were measured with
error and that error were correlated with the measure of richness, the
CommonDesignwouldhave another sourceof bias.Moreover, because
the model specification comprises only the richness variable and a set
of binary indicator variables and their interactions, the risk of mis-
specification bias from how confounders are modeled is lower. To
better understand howour design differs frommore common designs
in Ecology such as mixed-effect modeling approaches and convergent
cross-mapping approaches56, see SI Sections S4c and S7.

The term εpst in Eq. (2) is a time-varying random error term at the
plot level, assumed to have mean zero and no correlation with ln
Richness, i.e., it corresponds to Ipst in Fig. 1B. These plot-level errors
may be serially correlated (i.e., temporally dependent even after con-
ditioning on richness and site-by-year effects), and thus we cluster the
standard errors at the plot level57. Our clustered estimation of the
variance allows for arbitrary serial correlation within each plot, as well
as heteroskedasticity across plots36,58. Errors at a given sitemay also be
correlated (even after conditioning on site-by-year effects) and thus, as
a robustness check, we also estimate standard errors clustered at the
site level (Table S2).

OurMain Design has weaker assumptions than the Common Design
in Ecology, but both have one assumption in common: there are no
unobserved time-varying plot-level confounders in the error term (no
Upt). In other words, we assume that, after controlling for time-invariant
plot and site attributes that are correlated with richness and pro-
ductivity, and time-varying site attributes that are correlated with rich-
ness and productivity, the remaining temporal variation in richness in a
plot is “as if randomly assigned,” independently across time. This
assumption is equivalent to assuming that the remaining variation in
richness is driven by variables that have no link to productivity other
than through their effect on richness (i.e., Zpst in Fig. 1) and thus there is
no correlation between Δln Richnesspst and Δεpst in Eq. (3). If our
assumption is correct,we cangive a causal interpretation to the estimate
of β. Unlike prior ecology studies, however, we assess the sensitivity of
our results to violations of this assumption (seeRobustness Checksnext).

Robustness checks: modifying the main design
Robustness checks: model specifications. In the SI (Table S3), we
present the results from variations in the specification of Eq. (2): (1) we
include a control for species evenness; (2) we change the measure of
diversity from species richness to Simpson’s Diversity index; (3) we
include the lagged effect of species richness in the prior year
(ln SpeciesRichnesst-1); and (4) we vary the functional form by (i) taking
the natural logarithm of productivity but using the untransformed
richness values, (ii) using both untransformed richness and untrans-
formedproductivity values, and (iii) using untransformed richness and
untransformed productivity values in a non-linear, quadratic specifi-
cation (i.e., we include ln SpeciesRichnesst and ln SpeciesRichness2t).

Robustness checks: causal assumptions. As noted above, the key,
untestable assumption for drawing a causal inference from the esti-
mator in our Main Design is the following: after controlling for time-
invariant plot confounders and time-varying site confounders,
the remaining factors that drive changes in richness only affect
productivity via their effects on richness. We consider potential viola-
tions of this assumption and the implications for our inferences -- i.e.,

whether our conclusions could change -- by conducting a series of
analyses that rely on alternative assumptions for causal infer-
ence (Fig. 3).

Instrumental variable design for unobservable confounders and
reverse causality. First, we explore the potential violation of our
assumption that the effect we are estimating goes from richness to
productivity, and not the other way around. Richness and biomass
measures in our data are taken simultaneously each year, as they are in
most ecological datasets. Thus, we cannot rely on temporal sequen-
cing of the data to rule out reverse causality.

To assess the potential threat of reverse causality, we adopt a
statistical approach that is common in economics and public health,
but rare in ecology: an instrumental variable design59–63. When its
underlying causal assumptions are valid, this design allows
researchers to eliminate not only the influence of reverse causality
but also the influence of unobservable confounders, both static and
dynamic.

To implement this design, we need to measure an attribute of the
system that has a relationship with richness, but, after conditioning on
theother plot and site attributes in Equation 2, has no relationshipwith
productivity other than through its relationship with richness. Such an
attribute is conceptually illustrated by the variable Z in Figs. 1, S4 and
S5. In economics and biostatistics, Z is called an instrumental variable
(IV) or a surrogate variable. An example of a potential IV is randomi-
zation of planted richness by an experimenter. In field experiments,
randomization of richness helps isolate the causal effect of richness on
productivity, but only when the randomization affects productivity in
a plot solely through its effect on richness, an assumption called
excludability or the exclusion restriction64. In other words, one must
assume there is no arrow going from Z directly to P in Fig. 1.

In the absence of randomization, one must use theory and
experience to identify a naturally occurring IV (reviewed in ref. 62).
Each of the plots in our sample are unmanipulated plots that are
embedded in blocks of manipulated plots in the Nutrient Network. In
other words, each unmanipulated plot in our sample is surrounded by
a set of plots with experimental nutrient additions (see ref. 65). These
manipulated experimental plots received randomized amounts of
nutrient additions, which subsequently affected the experimental
plots’ richness66. We assume that the experimentally manipulated
richness in these plots can also affect the richness in unmanipulated
plots in the sameblock through ecological dispersal channels but does
not affect the productivity of these unmanipulated plots except
through the effect on the plots’ richness (an assumption made more
plausible by the randomization of nutrients in the neighboring plots).
If that assumption is correct (called an “excludability assumption”), we
can use the average richness of an unmanipulated plot’s neighboring
manipulated plots in the same block as an IV for richness in the
unmanipulated plot. The SI Section 6bii provides justification and
further discussion of this IV.

The cost of using the IV design is that we can only estimate the
average effect on productivity for the subset of the changes in richness
that are affected by the IV. This subset is comprised of what are called
“compliers” – plot-year observations for which the richness value
would have been different had the average richness in surrounding
plots been different. Thus, the IV design has much lower statistical
power than our Main Design62,67.

To implement the IV design, we use a two-stage, least squares
estimator26:

First Stage : lnRichnesspst = γIV + δp +μst + Ppst ð4Þ

Second Stage : lnLiveMasspst =β lnRibchnesspst + δp +μst + εpst ð5Þ
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In the first stage (Eq. 4), we predict richness, and, in the second
stage, we use the predicted values of richness to estimate the effect of
richness on productivity (see Table S8 for the results from both
stages). We can reject the null hypothesis of a weak instrument using
the Montiel-Pflueger effective F-statistic, which is a test that is robust
to heteroscedasticity, serial correlation, and clustering68;. For further
discussions of the IV design and its assumptions, see SI Section 6b.ii.

Blocking a mechanism for reverse causality. As an alternative
approach to address the potential threat of reverse causality in our
design, we posit a mechanism through which productivity affects
richness: shading (based on3,69). Although productivity could affect
species richness through non-light pathways, such as soil resource use,
the effect of productivity on richness is expected to be, at least in part,
mediated by reductions in light from increased biomass that, in turn,
reduces richness in a plot69. As an estimate of shading, wemeasure the
fraction of photosynthetically active radiation (e.g., light used by
plants) that reaches the soil. See SI Section S7b for details.

If the estimated negative relationship between richness and pro-
ductivity in Fig. 2 were an artifact of reverse causality, then putting our
shading variable in Equation 2 as a covariate would block the effect of
productivity on richness that arises via shading. The sign of the coef-
ficient on richness (β) would then become positive (or small and sta-
tistically insignificant if the true relationship between richness and
productivity were zero). Yet the estimated effect remains unchanged
(Fig. 3). If shading were not an important mechanism through which
productivity would affect richness in our sample, or if our measure of
shading is a poormeasure of the shadingmechanism, ourmechanism-
blocking design would fail to quantify the potential threat of reverse
causality. For this reason, we also implement an instrumental variables
design, described above, that makes different assumptions to account
for reverse causality.

Bracketing the “True Causal Effect”: accounting for potential bias
fromdynamics. The IV design not only addresses reverse causality but
it also addresses all forms of dynamic, plot-level confounding variables
(e.g., past productivity). However, it relies on untestable assumptions
that may not be satisfied (e.g., excludability assumption). To supple-
ment that analysis, we also explored a range of potential sources of
bias from dynamic confounders. Here, we report on themethods used
for one of these analyses, with results shown in Fig. 3. The other ana-
lyses and methods are reported in the SI Section S6.

In this analysis, we consider the possibility that prior pro-
ductivity affects both current richness and productivity. We re-
estimate the effect of richness on productivity using a lagged-
dependent variable (LDV) design70, which relies on different causal
assumptions for identifying a causal effect. The Main Design
assumes that the relevant confounders are time-invariant over the
study period, or they vary over time at the site level rather than the
plot level (e.g., site and plot-level differences in evolutionary his-
tory, age in community assembly, grazing intensity at a site, and
history of disturbances and recovery stage in each plot). Instead,
the LDV design considers: “What if current species richness and
productivity were determined by last year’s productivity, in addi-
tion to, or instead of, site-level conditions varying through time
(e.g., precipitation)?” The LDV design, in contrast to the Main
Design, assumes that the relevant confounders vary over time at the
site level and, at the plot level, their static and dynamic effects can
be controlled by controlling for past productivity (in other words,
the effects of confounders are mediated directly and indirectly
through prior productivity at the plot level). To achieve this control,
we estimate an equation of the following form:

ln LiveMasspst =β lnRichnesspst +θ ln LiveMasspsðt#1Þ +μst + εpst ð6Þ

Under certain conditions, the estimated effects of richness in our
Main Design and in the LDV design “bracket” the true causal effect26,71.
If the assumptions of theMain Design are valid, but the LDV design are
invalid, the estimate from the LDV design provides an upper bound
estimate. If the assumptions of the LDV are valid, but the Main Design
are invalid, the estimate from theMain Design provides a lower bound
estimate. As observed in Fig. 3B, this bracketing exercise implies the
true effect is negative.

Sensitivity test: would unobserved confounding variables change
our conclusions?. To further explore the potential effect of violations
in our assumption that there are no time- varying plot attributes that
are systematically correlated with richness and productivity, we
explore how our estimated effect would change if there were an
unobserved confounder that was negatively correlated with richness
and positively correlated with productivity (i.e., a source of bias that
would yield a spurious negative causal relationship between richness
andproductivity in our design). Said anotherway, this analysis answers
thequestion, “Howmuchcorrelation between the unobserved variable
and the richness and productivity variables would be sufficient to
change our conclusions?”

We applied a sensitivity test following the method introduced by
Altonji et al.72 and further developed by Oster34. More details on the
method are in SI Section S7a and Table S7. We set π = −0.10 and
Rmax = 1, which would mimic a powerful potential unobserved con-
founder in our design: a confounder that is so strongly correlated with
productivity and richness that, were we able to observe it (along with
the other variables in the equation), we could predict with near cer-
tainty which of two plots would have higher productivity and which
would have higher richness. Estimating the effect of richness on pro-
ductivity with those implausible parameter values yields an upper
bound on the impact of this confounder on the estimated effect of
richness on productivity in our Main Design.

The estimated upper bound is still negative: a 10% increase in
richness implies a 2% decrease in productivity, on average. In other
words, in the presence of an unobserved confounder that is negatively
associated with richness and positively associated with productivity
relationship (thus creating some spurious negative correlation
between richness and productivity), we would still infer that there is a
negative relationship between richness and productivity. To infer a
positive relationship between the two variables would require an
infeasible value for π: it requires π > 1, which implies the confounder
would have to be more influential in explaining variation of pro-
ductivity than the plot-level, time-invariant attributes and the site-
level, time-varying attributes that are in Equation 2.

For completeness, we also considered an unobservable con-
founder that was positively associated with both richness and pro-
ductivity and thus could be masking some of the negative effect of
richness on productivity (i.e., positive selection bias). In other words,
we also calculate a lower bound on the estimated effect by setting π =
0.10 (see SI Section S6b.ii).

Testing hypotheses about moderators of the causal effect
In the SI (Tables S4–S6), we present results from hypothesis tests
aboutmoderators of the plot-level richness effect on productivity. The
potential moderators are: (1) the average level of productivity at a site
(i.e., does the effect of richness on productivity differ between high versus
low productivity sites, as reported by38?); and (2) the average level of
richness at a site (i.e., does the effect of richness on productivity differ
between high versus low richness sites, as hypothesized by73?).

To conduct these tests, we expanded Equation 2 by adding an
interaction term between ln Richnesspst and the moderator variables.
We measured site-level productivity in four ways, which vary by the
discreteness of the measure and by the way time is incorporated into
the measure. In terms of discreteness of the measure, we measured
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productivity both as a continuous variable and, using classifications
from Wang et al.38, as categorical variables for high, medium, and low
productivity. Wang et al.38 used cross-sectional analyses to study this
moderator. Because we have longitudinal data, we can measure the
continuous and categorical measures of site-level productivity in two
ways: average productivity per site over the entire time series and site-
level productivity per year. More details on the motivations for
selecting thesemoderating variables for analysis can be found in the SI
(Section S5).

Exploring effect of species richness on biomass conditional on
species type
We assign the labels “rare” and “non-rare” based on relative abundance
at each site, and species’ origin was origin was determined by the site
coordinators in the Nutrient Network (SI: Section S8). We define rela-
tive abundance based on relative aboveground cover. We use relative
cover as our metric for abundance because we believe it better cap-
tures the range of mechanisms through which rare species may
decrease productivity, including taking space formerly occupied by
more productive species. However, we test the sensitivity of our
results to this decision by also using a relative frequency metric to
define rarity (see SI Section S8c.ii). In Section S8c.iii, we also test the
sensitivity of our conclusions to different cutoff values for assigning a
species to the “rare” and “non-rare” categories. Wemodify and use the
Main Design for each way of defining the four species groups. Finally,
using Chi Squared tests, we tested the null hypothesis that the species
richness of the groups had the same effects on live biomass.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed data used in this study have been deposited on Zenodo
under https://doi.org/10.5281/zenodo.7675340. The raw data for
unmanipulated plots that were not included in the analyses, because
they did not meet the inclusion criteria, are available under restricted
access for which permission can be obtained by contacting the
Nutrient Network at https://nutnet.org.

Code availability
All analysis code and output are available through our GitHub project
site https://github.com/LauraDee/NutNetCausalinf andare releasedon
Zenodo (https://doi.org/10.5281/zenodo.7675340). All code for data
processing, includingof the rawdata,main analyses, and supplemental
analyses is available.
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