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Abstract

Dryland ecosystems occupy ~40% of the land surface and are thought to dominate the inter-annual variability (IAV) and long-
term trend of the global carbon (C) cycle. Therefore, it is imperative that global terrestrial biosphere models (TBMs), which
form the land component of IPCC earth system models, are able to accurately simulate dryland vegetation and biogeochemical
processes. However, compared to more mesic ecosystems, TBMs have not been widely tested or optimized against in situ
dryland ecosystem CO2 fluxes. Here, we address this gap using a Bayesian data assimilation system and 89 site-years of
daily net CO2 flux (net ecosystem exchange - NEE) data from 12 southwest US Ameriflux sites spanning forest, shrub and
grass dryland ecosystems to evaluate and optimize the C cycle related parameters of the ORCHIDEE TBM. We find that the
default (prior) model simulations drastically underestimate both the mean annual NEE and the NEE IAV. By testing different
assimilation scenarios, we showed that optimizing phenology parameters dramatically improves the model ability across all sites
to capture both the magnitude and sign of the NEE IAV. At high elevation forested sites, which are a mean C sink, optimizing
parameters related to C allocation, respiration and turnover reduces the underestimate in simulated mean annual NEE. Our
study demonstrates that all TBMs need to be calibrated specifically for dryland ecosystems before they are used to determine
dryland contributions to global C cycle variability and long-term carbon-climate feedbacks.
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Key Points:

e ORCHIDEE terrestrial biosphere model drastically underestimates dryland mean annual
net CO; fluxes and their inter-annual variability (IAV)

e Optimizing phenology, carbon allocation, and respiration parameters are crucial for
capturing net CO> flux mean and IAV

e Models need to be optimized against dryland CO» flux data to achieve accurate

predictions of dryland’s role in global C cycle variability



24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

43
44
45
46
47
48
49
50

51

52
53

manuscript submitted to AGU Advances

Abstract

Dryland ecosystems occupy ~40% of the land surface and are thought to dominate the inter-
annual variability (IAV) and long-term trend of the global carbon (C) cycle. Therefore, it is
imperative that global terrestrial biosphere models (TBMs), which form the land component of
IPCC earth system models, are able to accurately simulate dryland vegetation and
biogeochemical processes. However, compared to more mesic ecosystems, TBMs have not been
widely tested or optimized against in situ dryland ecosystem CO. fluxes. Here, we address this
gap using a Bayesian data assimilation system and 89 site-years of daily net CO. flux (net
ecosystem exchange - NEE) data from 12 southwest US Ameriflux sites spanning forest, shrub
and grass dryland ecosystems to evaluate and optimize the C cycle related parameters of the
ORCHIDEE TBM. We find that the default (prior) model simulations drastically underestimate
both the mean annual NEE and the NEE IAV. By testing different assimilation scenarios, we
showed that optimizing phenology parameters dramatically improves the model ability across all
sites to capture both the magnitude and sign of the NEE IAV. At high elevation forested sites,
which are a mean C sink, optimizing parameters related to C allocation, respiration and turnover
reduces the underestimate in simulated mean annual NEE. Our study demonstrates that all TBMs
need to be calibrated specifically for dryland ecosystems before they are used to determine

dryland contributions to global C cycle variability and long-term carbon-climate feedbacks.

1 Introduction

Terrestrial ecosystems currently take up ~30% of anthropogenic CO; emissions, thus
acting as a substantial global carbon (C) sink (Fu et al., 2017) and providing a critical reduction
in the rate of global warming. However, while we know the magnitude of the global C sink to a
good degree of certainty, our knowledge of other components of the global C cycle are more
uncertain. One such knowledge gap is which ecosystems, and/or which processes, are driving
inter-annual variability (IAV) in land net C uptake (Fu et al., 2017). Improving our
understanding of the IAV characteristics of the global terrestrial C cycle is key to being able to
forecast the future of the land C sink and long-term biosphere-climate feedback (Cox et al.,

2013).

Recent studies have pointed to drylands (arid and semi-arid ecosystems) as the dominant

driver of global terrestrial C cycle IAV (Ahlstrom et al., 2015; Cleverly et al., 2016; Haverd et
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al., 2017; Poulter et al., 2014). High annual variability in net CO, exchange in response to plant-
available moisture is observed in site-based flux studies in these regions (Biederman et al., 2017,
Cleverly et al., 2016; Haverd et al., 2017; Scott et al., 2015). However, the global terrestrial
biosphere models (TBMs) used in the recent C cycle IAV regional attribution studies have often
only been extensively evaluated against data in more mesic ecosystems (e.g. (Peng et al., 2015;
Piao et al., 2013; Raczka et al., 2013; Schaefer et al., 2012)), although studies have evaluated
models against eddy covariance flux data from Australian dryland sites (Haverd et al., 2013a;
Whitley et al., 2016a). TBM optimization (parameter calibration) has also only typically been
carried out using temperate and boreal site data (Haverd et al., 2013a; Kuppel et al., 2014).
Therefore, there remains a relative gap in model benchmarking and optimization using dryland C

cycle related data.

Model benchmarking and optimization studies that have been performed in dryland
regions indicate considerable model-data discrepancies in vegetation dynamics, C and water
fluxes (Haverd et al., 2013b; MacBean et al., 2015; Renwick et al., 2019; Trudinger et al., 2016;
Whitley et al., 2016b; Traore et al., 2014). A recent study by MacBean et al. (submitted) has
demonstrated that global TBMs participating in the TRENDY v7 model intercomparison project
dramatically underestimate both the mean annual net ecosystem exchange (NEE) and its IAV at
a suite of southwestern (SW) US dryland sites due to weak sensitivity of gross primary
productivity (GPP) to changing water availability. This analysis is corroborated by (Renwick et
al., 2019) who also showed that a semi-deciduous phenology scheme was necessary to accurately
predict the magnitude of GPP in dryland shrublands. SW US hydrology modeling studies have
also suggested that parameter calibration is needed to realistically represent semi-arid water
fluxes because the default parameters diminish model performance (Natasha MacBean et al.,
2020; Hogue et al., 2005; Unland et al., 1996). Given the lack of model parameter calibration
studies that have included dryland sites in their optimizations, it remains to be seen whether
model-data discrepancies in dryland ecosystem NEE simulations are due to inaccurate model
processes or uncertain parameters. Parameter uncertainty may be higher for dryland ecosystems
given parameter values were initially measured in the field and/or optimized for more mesic

temperate and boreal ecosystems.
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To address the gap in dryland site model parameter optimization, and to determine if
parameter optimization can account for dryland model-data discrepancies in NEE, we used a
Bayesian data assimilation (DA) framework to optimize the photosynthesis, phenology, C
allocation and turnover, and respiration parameters of the ORCHIDEE TBM using 89 site-years
of daily NEE observations of 12 Ameriflux sites spanning SW US semi-arid grass, shrub and
forest ecosystems. Following (Biederman et al., 2017, MacBean et al, submitted), we categorize
sites based on their mean annual NEE: US-Vem, US-Vep, US-Mpj, US-Fuf, US-Wjs and US-Ses
are mostly tree-dominated C sink sites; shrub and grass-dominated sites US-Wkg, US-SRG, US-
Seg, US-SRM, and US-Whs “pivot” between a mean annual C sink and source; and the US-Aud
grassland is a mean source of C. We used the well-established DA system designed for

ORCHIDEE (ORCHIDAS: https://orchidas.Isce.ipsl.fr) (Kuppel et al., 2014; MacBean et al.,

2018; Peylin et al., 2016), in which a cost function that represents the misfit between the model
and the data - taking into account uncertainty in both - is iteratively minimized using the genetic

algorithm (GA; see Methods and Data).

We performed multiple optimization tests with combinations of parameters related to
different model processes in order to identify which processes were most influential in
improving the model mean annual NEE and IAV. We focus in particular on which processes are
responsible for model failure to capture NEE IAV. We focus on improving NEE AV partly
because of the dominant role dryland ecosystems are thought to play in controlling global C
cycle IAV, and partly because we expect that, with the exception of sites that are a strong C sink,
eddy covariance estimates of mean annual NEE may be impacted by uncertainties in CO2 flux
partitioning. We identified three main groups of parameters: parameters related to 1) phenology;
2) parameters related to photosynthesis; and 3) parameters related to all process calculations that
occur after gross C uptake (i.e. C allocation, autotrophic and heterotrophic respiration and
biomass and soil C turnover; hereafter grouped as “post C uptake” parameters). We split the
parameters into these three groups because GPP has been shown to be the dominant control on
dryland NEE IAV (MacBean et al., submitted); therefore, we expect that optimizing parameters
related to one of both of these main two processes controlling GPP (i.e., phenology and
photosynthesis) will result in the strongest improvements in NEE IAV. However, optimizing all
parameters related to processes that occur after gross C uptake can also influence NEE;

therefore, we include these parameters as a third category. The parameters included in each
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assimilation scenario are: P1 - all parameters, including all three phenology, photosynthesis and
post C uptake parameter groups; P2 - phenology and photosynthesis parameters; P3 - phenology
and post C uptake; P4 - photosynthesis and post C uptake; P5 - phenology parameters only; P6 -
photosynthesis only; and P7 - post C uptake only. See Table 2 for a description of all parameters
and to which category they belong. We compared the prior simulation (before parameter
optimization) to the posterior simulations (after parameter optimization, with different parameter
groupings for the different assimilation scenarios) by evaluating the simulations against the site
data using standard goodness of fit metrics (root mean square error, RMSE and correlation
coefficient, r) at daily, monthly and inter-annual timescales. We further attributed what might be
causing model-data misfits by decomposing the daily mean squared deviation (MSD) into its
component phase, variance and bias contributions. The bias, variance and phase indicate the
mean difference in flux magnitude, the mismatch in terms of the magnitude of fluctuations, and

the seasonality in flux time series, respectively (Kobayashi & Salam, 2000).
2 Methods and Data

2.1 Study sites

Twelve semi-arid sites in the southwestern US (SW US) have been utilized in this study.
These sites have a range of different vegetation types, climates and have been described in detail
by (Biederman et al., 2017), so we only provide a brief description here. We summarized the
sites’ description, dominant vegetation species, mean climate and corresponding vegetation plant
functional types (PFTs), together with the observation period and disturbance history (Table 1).
The major regional IGBP vegetation classes represented include evergreen needleleaf forest,
woody savanna, open and closed shrubland, and grassland. These sites typically experience
monsoon rainfall during July to October, preceded by a hot, dry period in May and June. The SW
US is characterized by water limitation at the annual scale, i.e. potential ET is greater than
precipitation. The sites have large spatial gradients in mean annual precipitation (MAP 250724
mm) and temperature (MAT 2.9 to 17.7°C) due to interactions among topography, latitude, wind
patterns, and distance from oceans. For further site details, see references in Table 1 and

individual site pages on www.ameriflux.Ibl.gov.
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Table 1. Site descriptions, mean climate, observation years and corresponding vegetation plant
functional types (PFTs) used in ORCHIDEE optimization. Simulation period corresponds to the
period of available site data. PFT acronyms: BS = Bare soil (PFT=1); TeNE = Temperate
Needleleaved Evergreen forest (PFT=4); TeBE = Temperate Broadleaved Evergreen forest
(PFT=5); TeBD = Temperate Broadleaved Deciduous forest (PFT=6); C4G = C4 grass
(PFT=11). Sites are given in order from largest mean annual C sink (US-Vem) to mean annual C

source (US-Aud).

Site Descript | Dominant species | IGBP PFT Kopp | Elev | MA | MA | Period Disturbance Site
D ion class fractions en ation | P T of site History reference
climat | (m) (m (°C | data
e m) )
US- Valles Picea Evergree | 100% Dfb 3042 | 724 | 2.9 | 2007- Harvest 1960s (Anderso
Vem | Caldera | engelmannii, n TeNE 2012 n-
mixed Picea needlele Teixeira
conifer pugens,  Abies | af et al.,
forest lasiocarpa var. forest 2011)
lasiocarpa, Abies
concolor
US- Valles Pinus ponderosa, | Evergree | 100% Dfb 2501 | 547 | 5.7 | 2007— - (Anderso
Vep Caldera | Quercus n TeNE 2014 n-
pondero | gambeli needlele Teixeira
sa forest af et al.,
forest 2011)
US- Heritag | Pinus edulis, | Savanna | 20% BS; | Bsk 2200 | 423 | 9.6 | 2008— - (Anderso
Mpj e Land Juniperus 60% 2014 n-
Conserv | monosperma TeNE; Teixeira
ancy 20% C4G et al.,
pinyon- 2011)
juniper
US- Flagstaf | Pinus ponderosa Evergree | 100% Csb 2215 | 607 | 7.1 | 2006— Harvest 1910 (Dore et
Fuf f n TeNE 2010 al., 2012)
unmana needlele
ged af
pondero forest
sa
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US- Tablela | Juniperus Savanna | 15% Bsk 1931 | 349 | 10. | 2008— - (Anderso
Wijs nds monosperma, TeNE; 9 2014 n-
juniper Bouteloua 85% C4G Teixeira
savanna | gracilis et al.,
2011)
US- Sevillet | Larrea tridentata, | Open 20% BS; | Bsk 1610 | 252 | 12. | 2007— - (Petrie et
Ses a G. sarothrae shrublan | 55% 6 2014 al., 2015)
creosote d TeBE;
shrubla 25% C4G
nd
US- Walnut | Eragrostis Grasslan | 60% BS; | Bsk 1529 | 386 | 15. | 2004— Drought 2003- (Scott,
Wkg | Gulch lehmanniana, d 3% 8 2013 2005, non-native | 2010)
Kendall | Bouteloua spp. TeBE; grass replacement
grasslan | Calliandra 37% C4G 2007 onward, light
d eriophylla grazing ongoing
US- Santa Eragrostis Savanna | 45% BS; | Bsh 1292 | 494 | 16. | 2009— Mesquite removal | (Scott et
SRG | Rita lehmanniana 11% 7 2014 1957, ongoing al., 2009,
grasslan TeBD; light grazing 2015)
d 44% C4G
US- Sevillet | Bouteloua Grasslan | 40% BS; | Bsk 160 250 | 12. | 2007- Burned 2009 (Petrie et
Seg a eriopoda, d 60% C4G 6 2014 al., 2015)
grasslan | Gutierrezia
d: sarothrae,
burned Ceratoides lanata
2009
US- Santa Prosopis Woody 50% BS; | Bsk 1122 | 421 | 17. | 2004— Light grazing (Scott et
SRM | Rita velutina, savanna 35% 7 2014 al., 2009)
mesquit | Eragrostis TeBD;
e lehmanniana 15% C4G
savanna
US- Walnut | Larrea tridentata, | Open 57% BS; | Bsk 1376 | 352 | 16. | 2008— Drought 2005- (Scott,
Whs | Gulch Parthenium shrublan | 40% 8 2014 2006 2010)
Lucky incanum, Acacia | d TeBE; 3%
Hills constricta, C4G
shrubla | Rhus microphylla

nd
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US- Audubo | Boutelou Grasslan | 30% BS; | Bsk 1496 | 348 | 15. | 2004— Burned 2002 (Krishna
Aud | n agracilis, d 70% C4G 7 2009 n et al,
grasslan | B. curtipendula, 2012)
d Eragrostis spp.

2.1 ORCHIDEE terrestrial biosphere model

We use the ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms)
process-oriented land surface model version 2.2 that has been developed at the IPSL (Institut
Pierre Simon Laplace, France). The model is a state-of-the-art mechanistic terrestrial biosphere
model (Krinner et al., 2005) and is the land surface component of the IPSLCMS5 Earth System
Model (Dufresne et al., 2013). The model describes the exchanges of water, carbon, and energy
between biosphere and atmosphere at the smallest time scale (30 min), while the slow
components of the terrestrial carbon cycle (including carbon allocation, autotrophic respiration,
foliar onset and senescence, mortality and soil organic matter decomposition) are computed on a
daily to annual basis. Version 2.2 is virtually identical to version 2.0, which is being used in the
ongoing Coupled Modeling Intercomparison Project 6 (CMIP6) simulations, but includes few
recent bug corrections and code enhancements. It has been updated since the “ARS” version used
in CMIP5 (see (Krinner et al., 2005)) with the following developments: i) an 11-layer
mechanistic description of soil hydrology and associated modifications as described in
(MacBean et al., 2020); i1) addition of a coupled carbon-nitrogen scheme (Vuichard et al., 2019);
ii1) an analytical solution for the set of equations for photosynthesis, stomatal conductivity and
internal CO; concentration in the leaf (described in (Vuichard et al., 2019)), following (Yin and
Struik, 2009); iv) anupdate of the soil thermal properties and extension of the soil depth for heat
diffusion (Wang et al., 2016); v)a 3-layer snow scheme (Wang et al., 2013); vi)a spatially
explicit observation-derived estimate for background albedo and optimized vegetation and snow
albedo coefficients;; vii) a new reconstruction of global land cover history and wood harvest
accounting following LUH2v2h maps (Hurtt et al., 2020) and PFT maps based the European
Space Agency Climate Change Initiative Land Cover product (Poulter et al., 2015).

As in most TBMs, the vegetation is grouped into several plant functional types (PFTs),
with 14 different types of vegetation plus bare soil in the case of ORCHIDEE v2.2. The original
13 PFTs are reported in (Krinner et al., 2005). Since ORCHIDEE v2.0 there are now two extra
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PFTs included: C3 grasses are now split into three groups - tropical, temperate and boreal. The
equations governing individual processes are generic with PFT specific parameters, except for
the phenology models (see Appendix A in (MacBean et al., 2015)). In this study, ORCHIDEE is
mainly used in a “grid-point mode” at each site location and forced with the corresponding local
30-minute gap-filled meteorological forcing data. Before performing the optimizations the
modelled C stocks are brought to equilibrium in the spin-up phase by cycling the available site
meteorological forcing over a long period (1300 years) with the default parameters of the model,

which ensures a net carbon flux close to zero over annual-to-decadal time scales.
2.2 ORCHIDEE data assimilation system

The ORCHIDEE Data Assimilation System (ORCHIDAS) has been described in detail in
previous studies (Bastrikov et al., 2018; Kuppel et al., 2014; MacBean et al., 2018; Peylin et al.,
2016), and hence we only briefly define the method here. ORCHIDAS uses a variational data
assimilation method to optimize the model parameters, accounting for uncertainties regarding the
observations, the model, and the prior parameters. It relies on a Bayesian framework with the
assumption of Gaussian errors, and the optimized parameters corresponds to the minimization of

the following cost function J(x) (Tarantola, 2005):
J(x) = %[(H(x) — YR (Hx) —y) + (x — x")T. B~ (x — xP)] (1)

where x represents the parameters and H(x) the model contingent on the parameters, and
y the observations. The cost function contains both the misfit between observations,and
corresponding model outputs (first term on the right hand side of Eq. 1), and the misfit between a
priori parameter values x, and optimized parameters x (second term on the right hand side of the
Eq. I R is the observation error covariance matrix (including measurement and model errors),
and B is the prior parameter error covariance matrix. Both matrices (B and R) are diagonal since
observation and model errors are assumed to be uncorrelated in space and time, and parameters
are assumed to be independent. The cost function is iteratively minimized using the genetic
algorithm (GA), which is a meta-heuristic optimization algorithm and follows the principles of
genetics and natural selection (Goldberg et al., 1989; Haupt et al., 2004). The GA algorithm has
been applied previously with ORCHIDAS tool and described in details by (Bastrikov et al.,
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2018). Briefly, the algorithm works iteratively and considers the vector of parameters as a
chromosome and each parameter as a gene on that chromosome. The method fills a set of n
chromosomes at every iteration, having the starting pool as a randomly perturbed parameter
pool. The chromosomes at each subsequent iteration are chosen from randomly selected
chromosomes of the previous iteration by either “crossover” or “mutation” process. (Santaren et
al., 2014) showed that the performance of the algorithm is highly sensitive to its specific
configuration and found the best configuration based on computational efficiency after testing
different options. Here, we used the same configuration (i.e. number of chromosomes in the pool
total number of parameters optimized; the number of iterations is 40; crossover/mutation ratio is
4:1; the number of gene blocks exchanged during crossover is 2 and the number of genes
perturbed during mutation is 1) applied by (Santaren et al., 2014) and (Bastrikov et al., 2018).
The algorithm does not assume prior knowledge of Gaussian PDFs for the observation and
parameter uncertainties. Given we do not fully know the model uncertainty, we set the prior
observation uncertainty as the RMSE between the model and the observations following (Kuppel

et al., 2014). The prior parameter uncertainty is listed in Table S1.
The posterior error covariance matrix of the parameters (4) can be estimated by:
A=[H"TR'H + B 11 ()

This computes error correlations between parameters with the assumption of Gaussian

prior errors and linearity of the model in the vicinity of the solution.
2.3 Flux measurements

We used twelve eddy covariance flux sites (measurement period ranging between 2003
and 2014) representing the various climate, elevation, and semi-arid ecosystems of SW US.
Study sites are listed consecutively based on their mean annual C balance (Table 1). Flux tower
instruments collect 30-minutes measurements of meteorological forcing data and eddy
covariance measurements of net surface energy and carbon exchanges, which are available from
the AmeriFlux data portal (http://ameriflux.lbl.gov). Meteorological forcing data included air
temperature and surface pressure, precipitation, incoming long and shortwave radiation, wind

speed, and specific humidity. To run the ORCHIDEE model, we partitioned the in-situ



232
233
234
235
236
237
238
239
240
241
242

243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

manuscript submitted to AGU Advances

precipitation into rain and snowfall using a temperature threshold of 0°C. The site-level
meteorological forcing data were gap filled utilizing downscaled and corrected ERA-Interim data
following the approach of (Vuichard & Papale, 2015). Gross primary productivity (GPP) and the
ecosystem respiration (Reco) were estimated from the net ecosystem exchange (NEE) via the flux
partitioning method described in (Biederman et al., 2016). We acknowledge that GPP and Reco
are not fully independent data with respect to NEE and are essentially model-derived estimates,
but these concerns have been largely discussed in previous studies e.g., (Desai et al., 2008). Note
that in this study, negative NEE refers to net CO> uptake into the ecosystem. In order to exclude
the influence of the short-term variations in the fluxes on the model optimization, the daily
averaged observations smoothed with a 15-day running mean have been used for the data

assimilation.
2.4 Parameters optimized

The optimized parameters are described in Table S1 with their prior values, uncertainty
and bounds for different plant functional types. Prior values are the default parameter values
used in all non-optimized ORCHIDEE simulations. In the most past ORCHIDAS studies with
previous versions of ORCHIDEE, only subsets of ORCHIDEE C cycle parameters have been
optimized (Bastrikov et al., 2018; Kuppel et al., 2012, 2014; MacBean et al., 2015; MacBean et
al., 2018; Santaren et al., 2007; Verbeeck et al., 2011). In this study, we considered all possible C
cycle related ORCHIDEE parameters and hence contribute towards the correct representation of
net and gross CO> fluxes. We selected all 102 parameters and divided them into four classes,
controlling the main C cycle and plant physiological processes i.e. photosynthesis, conductance,
phenology and post C uptake. This resulted in 31 parameters related to photosynthesis, 42 to
phenology, 16 to post C uptake (C allocation, respiration, biomass and soil turnover), and 13
related to conductance. In a preliminary study, we tested at several SW US sites (US-Vcp, US-
Mpj, US-Fuf, US-Wkg, US-Whs, US-Seg) the sensitivity of the ecosystem fluxes (NEE, GPP
and Reco) when optimizing all model parameters and when we just optimized subsets of the
parameters related to each of the main processes. This test showed no significant optimization
improvement by adding the conductance related parameters (results not shown here), and thus
we did not include those parameters for all final optimizations presented in this study, leaving a

total of 89 optimized parameters for each site. The parameter names, descriptions, bounds and
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262 prior uncertainties used in this study (Table S1) were derived from literature analysis, parameter
263 databases and expert knowledge of the model equations. Documentation on the parameters can
264  be accessed via ORCHIDEE webpage

265  (https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/OrchideeParameters, last access: 04
266  January 2021). The prior uncertainty is set to 40% of the range of variation for each parameter

267  following previous ORCHIDAS studies (Kuppel et al., 2012; MacBean et al., 2015).
268 2.5 Assimilation Scenarios

269 We conducted several different optimizations to identify which processes (and their

270  related parameters) are potentially causing model-data discrepancies (listed in Table 2). We

271 grouped the optimizations based on various parameters set to optimize; therefore, we tested 7

272 assimilation scenarios (P1 — P7): P1 included all 89 parameters, whereas each consecutive

273 scenario (P2 — P7) optimized different subsets of parameters related to each of the main C cycle
274 processes (Table 2). The parameters that were not optimized were set to their default (prior)

275 value. Comparing the P1 to P7 assimilation scenarios allows us to determine which sets of

276  parameters (i.e. specific processes) are contributing most to the improvement in fluxes as a result
277  of the parameter optimizations. See Table S1 for groupings of model parameters according to

278  specific processes.

279 Table 2. Description of the different assimilation scenarios conducted in this study. The included
280  parameter group(s) and numbers of parameters for each assimilation scenario are given.

281  Parameters of each subgroup are listed in Table S1.

Optimization Parameters included Number of parameters
Pl All parameters (Phenology, Photosynthesis and Post C uptake) ~85
P2 Phenology and Photosynthesis ~70
P3 Phenology and Post C uptake ~50
P4 Photosynthesis and Post C uptake ~60
P5 Phenology only ~30
P6 Photosynthesis only ~45
P7 Post C uptake only ~15
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2.6 Post-optimization analysis

We assessed the goodness of fit of the different assimilation scenarios by the mean square
deviation (MSD) (in addition root mean squared error, RMSE or correlation coefficients, R or
slope of linear least-square regression). Model evaluation metrics are presented in one of three
ways: 1) for each site; ii) grouped across all sites; and iii) sites grouped according to their mean
net annual CO; flux characteristics across the time period identified in (Biederman et al., 2017).
For the latter, the net CO; “sink” sites are US-Vem, US-Vep, US-Mpj, US-Fuf and US-Wjs; the
“pivot” sites are US-Ses, US-Wkg, US-SRG, US-SRM, US-Whs, US-Seg; and the “source” site
is US-Aud. We follow the approach of (Kobayashi & Salam, 2000) to quantify the differences
between the simulations and observation in terms of bias, variance and phasing. We calculate the
MSD between daily observation and each of the simulations and decompose it following the

below equation:

MSD = %Z(xi ~y)? = @9 + (6= 0y + 20,0,1-R) (3

where x is the model and y is the observations, ¢ is the standard deviation and R is the

correlation coefficient.

The first term specifies the bias between model simulation and observation (squared).
The second term “variance” measures their differences in terms of variability (i.e., the difference
between the magnitude of the modeled and observed fluctuations). And the third term generally
demonstrates the lack of correlation between them weighted by their standard deviations, which
can be deemed as a measure of their disagreement in terms of phase (Bacour et al., 2019; Gauch

et al., 2003). However, the second and third terms are partially dependent on each other (Bacour
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et al., 2019; Gauch et al., 2003). We further calculated the contribution of each component (bias,

variance and phase) to the overall MSD by dividing each component by the total MSD.
3 Results

3.1 Impact of optimization of all parameters on model net and gross CO; fluxes

Across all sites, the prior ORCHIDEE simulations (i.e. before parameter optimization)
fail to capture both the mean annual NEE and its AV (Figure 1a) - as also seen for all
TRENDY TBMs in MacBean et al (submitted). Across all sites, optimizing all C cycle-related
parameters (phenology, photosynthesis and post C uptake - assimilation scenario P1) with NEE
data dramatically increases the ability of the model to capture both the mean C source/sink
behavior and the IAV (Figure 1b). C sink and source sites show significant improvement in
terms of both mean annual NEE and IAV. There is not a strong bias in the model simulations at
pivot sites whose mean annual NEE is close to zero; therefore, the optimization results in an
improvement mainly in IAV (as represented by the correlation and slope values shown in inset
figures in Figures 1 a and b). Improvement of the model-data fit resulting from the assimilation
of NEE and optimizing all parameters (P1) is evident across all sites, with a reduction of daily
NEE RMSE between 0.05 to 0.65 gCmd! (Figure S1), with a similar reductions in daily GPP
and Reco RMSE (Table S2).Moreover, the temporal dynamics are well captured for all the sites:
when optimizing all parameters, the median pearson correlation coefficients (R) increase by
0.45, 0.45, and 0.25 for daily, monthly and annual modeled NEE, respectively and posterior
median slope values >0.5 (Figure S2a and d). GPP temporal dynamics are also much improved
by the P1 assimilation with a higher and tighter range in posterior R and slope values than NEE
(Figure S2b and e). In contrast, there is less improvement in Reco temporal dynamics although

the median R and slope values are higher after the optimization (Figure S2¢ and f).
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Figure 1. Comparison between modeled and observed annual NEE when assimilating NEE data
and optimizing all phenology, photosynthesis and post C uptake parameters (P1) in the same
assimilation. (a) Prior annual NEE simulation before parameter optimization, and (b) Posterior
annual NEE after optimization. The trendline and slope value for the linear regression between
the model and observations (bottom right inset figures) is shown for each site, together with their
Pearson correlation coefficient, r (top left inset figures). The middle of the trend line should sit
on the 1:1 line if the accurate mean annual source/sink behavior for a site is well captured by the
model. A slope value close to or equal to 1 demonstrates the model is better at capturing the
IAV. Colored points and trend lines represent all twelve sites, ordered from the largest mean sink
(US-Vem) to the largest mean source (US-Aud). The sink sites are: US-Vem, US-Vep, US-Mpj,
US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-
Whs; and the only source site is: US-Aud.

Across the majority of SW US dryland sites, the prior model simulates a depressed
seasonal NEE amplitude and/or is unable to capture the observed bi-modal seasonality (Figure
2). The NEE amplitude and bi-modal seasonality generally improve when optimizing all
parameters (P1 - blue curves in Figure 2), although the posterior simulations struggles to reach
the exact magnitude of the spring and monsoon NEE troughs (net CO; uptake) for several sites

(e.g. US-Mpj, US-Wjs, US-Ses, US-Seg, US-Wkg and US-Whs). Accurately capturing the
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seasonal peaks and troughs is important for NEE IAV because summer monsoon season fluxes
are the dominant driver of NEE IAV (MacBean et al., submitted). While posterior seasonal NEE
peaks and troughs are generally well captured, the assimilation of NEE alone often fails to
capture the correct peaks in gross CO> fluxes (Figure S3), likely due to compensating errors in
both GPP and Reco. At the C source site (US-Aud) the model also fails to simulate the accurate
peaks in springtime net carbon release (Figure 2). As also identified in MacBean et al
(submitted), this is due to the fact that at US-Aud, TBMs tend to overestimate spring GPP and
underestimate the earlier rise in spring Reco (Figure S3). The optimization only partially corrects
these model biases, suggesting that other missing processes may ultimately be responsible for the
model-data misfit (such as disturbance following a fire that occurred at the site in 2002, which is

not implemented in the current version of ORCHIDEE).

—— Obs — Prior —— Posterior

US-Mpj US-Fuf

US-Wjs US-Ses US-Wkg US-SRG

US-Seg US-SRM US-Whs US-Aud

2 4 6 8 10 12

Figure 2. Mean monthly NEE seasonal cycles for each site comparing prior (red curve) and

posterior (blue curve) ORCHIDEE simulations with observations (black curve). Posterior
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simulation after assimilation of NEE data and optimization of all parameters: phenology,
photosynthesis and post C uptake (P1). The sites are listed in order from largest mean annual C

sink (US-Vcm) to mean annual C source (US-Aud).

Decomposing the daily NEE mean square deviations (MSD) between model and
observations into bias, variance and phase components shows that across all sites, bias, variance
and phase all contribute to prior NEE model-data discrepancies (Figure 3a left of vertical dashed
line). The prior daily NEE MSD at the C sink sites are dominated by both phase and bias
components (Figure 3a top panel). The fact that sink site MSD is also dominated by bias is
unsurprising given that at those sites the prior model does not capture the mean annual C sink
(Figure 1a). Note that, if we decompose the annual NEE MSD into the constituent bias, phase
and variance components then bias overwhelmingly dominates the MSD at sink (and source)
sites given their large underestimate of mean annual NEE (Figure S4 top and bottom rows). In
contrast, at the C pivot and source sites, the highest contribution to the prior daily NEE MSD is
from the phase component (Figure 3a middle and bottom panel), indicating the default model
does a poor job of representing the timing of dryland C cycle related processes. Across all sites,
optimizing all parameters (P1) dramatically reduces the bias, variance and phase components of
the daily NEE MSD, with phase remaining the strongest contributor to daily NEE MSD (Figure
3a right of dashed line).
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Figure 3. Daily NEE, GPP and Reco mean square deviation (MSD) decomposition into bias,
variance, and phase between simulations and observations for assimilating NEE observations and
optimizing all phenology, photosynthesis and post C uptake parameters (P1). Blue, orange and
green boxplots for bias, variance and phase components, respectively. Different rows separate
the sites as sink (a-c), pivot (d-f) and source (g-i) based on total annual C flux. The sink sites are:
US-Vem, US-Vep, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-
SRG, US-Seg, US-SRM and US-Whs; and the source site ia: US-Aud. The x axes display the
optimization scenarios (Prior and P1). The box whiskers show the spread of bias, variance and
phase for all 12 sites considered in this study. The bias, variance and phase indicate the mean
difference in flux magnitude, the mismatch in terms of flux fluctuation magnitude scales with the
mean seasonal amplitude, and the seasonality in flux time series, respectively. Note that the y

axis limits for both gross fluxes (GPP and Reco) are the same.



393
394
395
396
397
398
399
400
401

402

403

404
405
406
407

408
409
410
411
412
413
414
415
416
417
418

manuscript submitted to AGU Advances

As for the NEE, bias and phase are the dominant contributors to prior daily GPP MSD for
the sink sites (left of vertical dashed line in Figure 3b), and phase only for the pivot and source
sites (Figures 3e and h) For Reco, a different MSD component is dominant depending on the
mean C behavior of a site: bias dominates the prior daily Reco MSD at the sink sites, variance at
the pivot sites, and phase at the source sites (Figures 3¢, f and i). Overall, assimilating NEE data
in the P1 scenario reduces all gross CO; flux MSD components (right of dashed line in Figure 3
middle and left columns), with phase remaining the strongest contributor to daily gross CO, flux
MSD. However, unlike for the NEE, at the C sink sites phase and bias remain strong contributors

to posterior GPP MSD (Figure 3b).

3.2 Impact of different processes (assimilation scenarios) on optimization results

Across all sites, modeled annual and seasonal NEE are improved the most in the P1
assimilation scenario compared to the other assimilation scenarios (P2 to P7), although all
scenarios result in some improvement (Figures S5, S6a and d, and seasonal cycles in Figure

S7). In general, there is less improvement in Reco compared to NEE and GPP (Figure S6).

Comparing the MSD decomposition results for the various assimilation scenarios (P1-
P7) can help to identify which processes may be causing the prior model-discrepancies in mean
annual NEE and NEE TAV. At the source and sink sites, the bias component (blue bars in Figure
4a and c) is reduced dramatically by all optimization tests that include the post C uptake
parameters related to C allocation, respiration, and biomass and soil C turnover (P1, P3, P4 and
P7). For the sink sites, assimilation scenarios that also include photosynthesis parameters (P2 and
P6) also result in a strong reduction in bias. This decrease in mean bias is also shown by the fact
that the midpoints of the linear regression trendline between model and observations at forested
sink sites (US-Vem, US-Vep, US-Mpj, and US-Fuf) and low-elevation source site (US-Aud)
with optimization scenarios P1 to P4, P6 and P7 parameters all lie much closer to the 1:1 (grey

dashed) line compared to P5 (Figure S5).
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Figure 4. Daily NEE MSD decomposition into bias, variance, and phase components when
assimilating NEE observations for different assimilation scenarios (P1-P7). Different panels
separate the sites as sink (a), pivot (b) and source (c) based on total annual C flux. The C sink
sites are: US-Vem, US-Vep, US-Mpj, US-Fuf, US-Wjs and US-Ses; the C pivot sites are: US-
Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the C source site is: US-Aud. The grey
dashed boxes highlight results repeated from Figure 3(a,d,g) to have better comparison of
different process parameters side-by-side. The parameters included in each optimization are: P1:
all parameters; P2: phenology and photosynthesis; P3: phenology and post C uptake; P4:
photosynthesis and post C uptake; P5: phenology; P6: photosynthesis and P7: post C uptake. The
boxplots show the median and interquartile range of the bias, variance and phase across all 12
sites considered in this study. US-Aud is the only C source site; therefore, the barplots in (c)
show the bias, phase, and variance components of the MSD for that one site. The bias, variance
and phase indicate the mean difference in flux magnitude, the difference in the magnitude of flux
variations, and the difference in the correlations weighted by the standard deviations,

respectively (see Methods).

Across all sites the difference in phase between the model and observations (green bars in
Figure 4), which, as already noted, is the largest contribution to the prior NEE MSD across all
sites, is mostly reduced by assimilation scenarios that include phenology parameters (i.e. P1, P2,
P3 and P5). However, the phase component is not reduced as much as the bias in any of the
assimilation scenarios; thus, for all sites and all assimilation scenarios the phase remains the

largest component of the posterior daily NEE MSD (Figure 4). Including parameters related to
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photosynthesis or post C uptake with the phenology parameters (i.e. assimilation scenarios P2
and P3) helps to slightly reduce the phase discrepancy at sink sites compared with phenology
parameters alone (P5) (as seen above for the improvement in slope values at the sink sites).
Examining the spread in slope and R values across all sites, we see that the annual variability
(median slope and R values) is improved the most for assimilation scenarios with at least two
parameter sets (P1 to P4 - Figure S6a and d). The persistence of phase as the dominant
component of the posterior daily NEE suggests further model improvement in dryland phenology

models is needed before TBMs can correctly reproduce NEE seasonality and IAV.

The variance component of the daily NEE MSD (orange bars in Figure 4), which also
shows a modest contribution to daily NEE MSD at the sink and source sites, is mostly reduced at
the sink sites with assimilation scenarios that include photosynthesis parameters (i.e. P1, P2, P4
and P6). At US-Aud the variance component was reduced most by assimilation scenarios that

included two or more sets of parameters (i.e. P1 - P4) (Figure 4c).

While the post C uptake parameters are key for reducing bias in forested sink site NEE,
biases in GPP and R, at these sites are reduced by optimizing photosynthesis parameters (P1,
P2, P4, and P6 - blue boxes Figure S8b and c). The GPP and Rec, bias components at the sink
sites are not reduced as strongly as NEE biases for any assimilation scenario; thus, bias remains a
key contributor to posterior gross CO> flux MSD. Similarly to NEE, parameter subsets that
include phenology parameters (P1, P2, P3 and P5) are key for reducing the daily GPP MSD
phase component at pivot sites (green boxes in Figure S8e; however, in contrast with the NEE
results, at sink sites the GPP phase component tends to be reduced by all assimilation scenarios
except P7 (see also median GPP slope and R values in Figures S6b and e). With the exception
of P1 and P2 for GPP, the GPP and R, variance components are not reduced much by any of
the assimilation scenarios and remain a considerable component of the MSD for both GPP and
Reco at the pivot sites, and for Reco at the sink sites (Figures S8b,c,e,f). We note that the GPP and
Reco reductions in MSD components tend to be similar, suggesting model-deficiencies in Reco are
mainly influenced by those in GPP. Addressing GPP model-data deficiencies is therefore a high
priority.

3.3 Constraint on parameters
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471 For all assimilation scenarios, we found significant parameter deviations from prior

472 values for numerous phenology, photosynthesis and post C uptake related parameters (Figure 5),
473 which is consistent with the fact that we find all parameter subsets are needed to improve model
474  mean annual NEE and IAV. We do not find that parameters deviate more, or the uncertainty

475  reduction much different, when only one subset or two parameter subsets are included in the

476  optimization instead of all three (e.g. cf. P2 with P1), although posterior values are different for
477  each assimilation scenario (Figure 5). In particular, most of the post C uptake parameters deviate
478  strongly from the prior median deviations (>20% of total parameter bound). There are also

479  significant uncertainty reductions (>50%) for most of the parameters which show strong

480  deviations from their prior value: 10 for phenology (out of 42), 7 for photosynthesis (out of 31)
481  and 7 for post C uptake (out of 16) (Figure 5). The error correlations between the estimated

482  parameters are usually minimal except between post C uptake parameters (see example for one

483  site in Figure S9).
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484
485  Figure 5. Optimized median parameter deviations [(posterior - prior) / (max - min)] (blue bars)

486  and associated median parameter uncertainty reductions (grey bars) for all parameters controlling
487  phenology, photosynthesis and post C uptake assimilating NEE data (P1-P7). Bars represent the
488  median across all 12 sites. The asterisks above blue bars indicate the parameters that have larger
489  than 50% uncertainty reduction. Each line corresponds to a specific optimization test (shown on

490  the right axis). The parameters are given on the bottom axis. The vertical dashed lines separate
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the different parameter subsets (phenology, photosynthesis and post C uptake). Table S1 details
the prior and posterior parameter values and their uncertainty for all parameters together with the

maximum and minimum bounds used in the optimizations.

Looking at the individual parameter plots for the P1 assimilation scenario (Figure S10),
we find that at some sites several posterior parameters are “edge-hitting” (e.g. soil Q10). Given
we chose weak prior constraints (wide bounds) in all optimizations, the fact that some posterior
parameters are hitting their bounds suggests that the optimization may be aliasing model
structural error onto the parameters (MacBean et al., 2016) and/or that the model cannot improve
further via parameter optimization. Instead, further model developments are likely needed to
address structural uncertainties and missing processes. Hypotheses as to what (missing)
processes might be responsible for these remaining model errors have been discussed in
MacBean et al (submitted). For example, it is possible that model inability to capture peak GPP
fluxes for some sites (see Section 3.1) is due to too weak a response of model vegetation growth
to pulses of moisture availability, an issue which is not fully alleviated by using only NEE to

optimize model parameters.

4 Conclusions

While improvement in modeled NEE is best when all parameters are optimized, our
assimilation scenario experiments have shown that post C uptake and phenology parameters are
key for correcting model underestimates in dryland mean annual NEE and [AV, respectively.
Remaining model-data discrepancies indicate that additional model developments are needed. .
The specific DA configuration (e.g. the number of parameters, and the processes with which they
are related) can lead to different posterior values and degree of improvement in model-data fit.
Therefore, further tests of different DA configurations and optimizations at other locations are
needed to explore the potential of Bayesian DA systems for quantifying and reducing error in
dryland ecosystem C fluxes. However, our study demonstrates that dryland C cycle parameters
and processes in TBMs need optimizing and/or further development before we can reliably use
these models to accurately simulate dryland ecosystem contributions to global C cycle

variability.
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Parameter Description (Unit) Plant functional type

Name TeNE TeBE TeBD GC4
Photosynthesis parameters
ARJV a coefficient of the linear regression (a+bT) | 2.59+0.4 2.59+04 2.59+04 1.715 +
defining the Jmax25/Vemax25 ratio (mu mol = 2, 3 2,3 2,3 0.48
e- (mu mol CO»)-1) 1,22
aSJ a coefficient of the linear regression (a+bT) | 659.7 +264 659.7+264 @ 659.7+264 | 630+ 252
defining the Entropy term for Jmax (J K-1 = 330, 990 330, 990 330, 990 315, 945
mol-1)
aSV a coefficient of the linear regression (a+bT) = 668.39 668.39 668.39 641.64
defining the Entropy term for Vemax (J K-1 | £267.6 +267.6 +267.6 +256.4
mol-1) 334, 1003 334, 1003 334, 1003 321,962
BRIV b coefficient of the linear regression (at+bT) & -0.035 -0.035 -0.035 -0.01
defining the Jmax25/Vcemax25 ratio (mu mol | +0.028 +0.028 +0.028 +0.028
e- (mu mol CO2)-1) -0.07,0 -0.07,0 -0.07,0 -0.035,
0.035
bSJ b coefficient of the linear regression (a+bT) -0.75+£0.6  -0.75+£0.6 | -0.75+0.6 | 0.01£0.6
defining the Entropy term for Jmax (J K-1 | -1.5,0 -15,0 -15,0 -0.75,0.75
mol-1 C-1)
bSV b coefficient of the linear regression (a+bT) -1.07+0.8  -1.07+£0.8 | -1.07+0.8 | 0.1 £0.856
defining the Entropy term for Vemax (J K-1 | -2,0 -2,0 -2,0 -1.07,1.07
mol-1 C-1)
CN C/N ratio 40 £ 32 40 £ 32 40 £ 32 -
20, 100 20, 100 20, 100
D_Jmax Energy of deactivation for Jmax (J/mol) 200000 200000 200000 192000
+ 16000 + 16000 + 16000 + 15200
180000, 180000, 180000, 173000,
220000 220000 220000 211000
D_Vcmax Energy of deactivation for Vemax (J/mol) 200000 200000 200000 192000
+ 16000 + 16000 + 16000 + 15200
180000, 180000, 180000, 173000,
220000 220000 220000 211000
E_gamma_sta Energy of activation for gamma_star (J mol- | 37830 37830 37830 37830
r 1) + 8000 + 8000 + 8000 + 8000
27830, 27830, 27830, 27830,
47830 47830 47830 47830
E_Jmax Energy of activation for Jmax (J mol-1) 49884 49884 49884 77900
+ 8000 + 8000 + 8000 + 8000
39884, 39884, 39884, 67900,
59884 59884 59884 87900
E KmC Energy of activation for KmC (J mol-1) 79430 79430 79430 79430
+ 8000 + 8000 + 8000 + 8000
69430, 69430, 69430, 69430,
89430 89430 89430 89430
E KmO Energy of activation for KmO (J mol-1) 36380 36380 36380 36380
+ 8000 + 8000 + 8000 + 8000
26380, 26380, 26380, 26380,
46380 46380 46380 46380
fpseudo Fraction of electrons at PSI that follow | - - - 0.1 £0.032
pseudocyclic transport 0.06, 0.14
fpsir Fraction of PSII e—transport rate partitioned to = - - - 0.4+0.16
the C4 cycle 0.4,0.6
FRAC_GRO Fraction of GPP which is lost as growth 0.28 + 028 + 028 + 028 +
WTHRESP respiration 0.064 0.064 0.064 0.064

0.2,0.36 0.2,0.36 0.2,0.36 0.2,0.36



fQ Fraction of electrons at reduced plastoquinone | - - - 1+£0.24
that follow the Q-cycle 0.7,1.3
gamma_star2 Ci-based CO: compensation point in the 42.75+8 4275+ 8 4275+ 8 4275+ 8
5 absence of Rd at 25C (ubar) 22.75, 22.75, 22.75, 22.75,
62.75 62.75 62.75 62.75
gbs Bundle-sheath conductance (mol m-2 s-1 bar- = - - - 0.003 +
1) 0.0008
0.001,
0.005
HYDROL H Root profile (m) in empirical plant water = 1+1.5 0.8+1.12 0.8+1.12 1+1.5
UMCSTE stress function calculation 0.25,4 0.2,3 0.2,3 0.25,4
KmC25 Michaelis-Menten constant of Rubisco for | 404.9+ 160 404.9+ 160 @ 404.9+160 | 650+ 160
COz at 25C (ubar) 204.9, 204.9, 204.9, 450, 850
604.9 604.9 604.9
KmO25 Michaelis-Menten constant of Rubisco for O2 | 278400 + 278400 <+ 278400 + | 450000 =+
at 25C (ubar) 80000 80000 80000 80000
178400, 178400, 178400, 350000,
378400 378400 378400 550000
kp Initial carboxylation efficiency of the PEP | - - - 0.7+0.24
carboxylase (mol m-2 s-1 bar-1) 04,1
LAI MAX Maximum LAI (m2/m2) 5+2 5+2 5+2 25+0.8
3,8 3,8 3,8 4,10
Sco25 Relative CO2 /O2 specificity factor for = 2800+ 800 = 2800+ 800 | 2800+ 800 | 2590 + 800
Rubisco at 25C (bar bar™) 1800, 3800 | 1800, 3800 @ 1800,3800 @ 1590, 3590
SLA Specific leaf area (m2/gC) 0.00926 0.02 0.026 + | 0.026
+0.005 +0.012 0.0148 +0.0148
0.004,0.02 | 0.01, 0.04 0.013,0.05 | 0.013,0.05
theta Convexity factor for response of J to | 0.7+0.18 0.7+0.18 0.7+0.18 0.7+0.18
irradiance 0.5,0.95 0.5,0.95 0.5,0.95 0.5,0.95
TPHOTO M Maximum photosynthesis temperature (deg 55+4 55+4 55+4 55+4
AX C) 50, 60 50, 60 50, 60 50, 60
TPHOTO_MI Minimum photosynthesis temperature (degC) -4+4 4+4 -4+4 “4+4
N 9,1 9,1 9,1 9,1
VCMAX25 Maximum rate of Rubisco activity-limited @35+ 10 45+ 16 55+20 70 £ 25.6
carboxylation at 25C (micromol/m2/s) 19, 51 25, 65 30, 80 38, 102
VMAX OFF Offset (minimum relative vemax) 0.3+0.048
SET 0.24, 36

Post C uptake parameters - autotrophic and heterotrophic respiration, C allocation, biomass and soil C turnover

HCRIT_LITT Scaling depth for litter humidity (m) 0.08 £0.192
ER 0.02,0.5
KSOILC Scalar on the active soil C pool content (to 1+£0.6
account for uncertainty in spin-up) 05,2
MAINT_RES Coefficient to calculate maintenance | 1.4+ 0.84
P_COEFF respiration as a fraction of biomass 0.7,2.4
MAINT_ RES Slope of maintenance respiration coefficient = 0.16 0.16 0.16 0.12 £ 0.06
P_SLOPE C (1/K), constant ¢ of aT”2+bT++c, tabulated +0.064 +0.064 + 0.064 0.04, 0.2
0.08, 0.24 0.08, 0.24 0.08, 0.24
MAX LTOL Extrema of leaf allocation fraction 0.5+0.08
SR 0.4,0.6
MIN_LTOLS Extrema of leaf allocation fraction 0.2 +0.08
R 0.1,0.3
MOIST _COE Coefficient to calculate moisture control for | 1.1 +0.24
FF 1 litter and soil C decomposition 08,14
MOIST_COE Coefficient to calculate moisture control for = 2.4+ 0.24
FF_ 2 litter and soil C decomposition 2.1,2.7
MOIST_COE Coefficient to calculate moisture control for | 0.29 + 0.232
FF_3 litter and soil C decomposition 0.01, 0.59
MOISTCON Minimum soil wetness to limit the 0.25+0.2
T MIN heterotrophic respiration 0.1, 0.6



RESIDENCE Residence time of trees (years) 40+ 24 40 £ 24 40 £24 0+0
_TIME 30, 90 30, 90 30, 90 0,0
SOIL_Q10 Temperature  dependency  factor  for = 0.69 + 0.44
heterotrophic respiration (Note: actual Q10 = 0, 1.1
expSOILQI0,
TAU_FRUIT Fruit lifetime (days) 90 + 24 90 +24 90 +24 -
60, 120 60, 120 60, 120
TAU META A coefficient to calculate residence times in = 0.066 +0.0112
BOLIC metabolic litter pools (days) 0.052, 0.08
TAU_SAP Sapwood heartwood conversion time (days) 730 £ 144 730 £ 144 730 £ 144 -
550,910 550, 910 550, 910
TAU_STRUC A coefficient to calculate residence times in | 0.245 + 0.04
T structural litter pools (days) 0.2,0.3
Phenology parameters
GDD_THRE Temperature threshold used in the calculation | 5+ 0.8
SHOLD of number of growing degree day, GDD | 4,6
(days)
GDDNCD_C Constant in the computation of critical GDD = 0.0091 + 0.00112
URVE 0.0072, 0.01
GDDNCD_O Constant in the computation of critical GDD = 64 + 11.2
FFSET (days) 50, 78
GDDNCD_R Reference value used in the computation of = 603 + 96.8
EF critical GDD (days) 482, 724
HUM_FRAC Critical humidity (relative to min/max) for - - - 0.5+0.2
phenology (%) 0.25,0.75
HUM_MIN Minimum time elapsed since moisture @ - - - 35+12
TIME minimum (days) 20, 50
LAl MAX T Threshold of LAI below which plant uses 0.5+ 0.14 0.5+0.14 0.5+0.14 0.5+0.14
O HAPPY carbohydrate reserves 0.35,0.7 0.35,0.7 0.35,0.7 0.35,0.7
LEAF AGE A coefficient to calculate critical leaf age 1.5+0.24
CRIT_COEF (days) 1.2,1.8
1
LEAF _AGE A coefficient to calculate critical leaf age 0.75+0.12
CRIT_COEF (days) 0.6,0.9
2
LEAF AGE A coefficient to calculate critical leaf age 10+1.6
CRIT_COEF (days) 12,8
3
LEAF_AGE Reference temperature used to calculate of | 20+ 4
CRIT_TREF critical leaf age (days) 15,25
LEAFAGE F Leaf age at which vmax attains vemax_opt (in | 0.03 = 0.0048
IRSTMAX fraction of critical leaf age) 0.024, 0.036
LEAFAGE L Leaf age at which vmax falls below | 0.5+ 0.08
ASTMAX vemax_opt (in fraction of critical leaf age) 0.4,0.6
LEAFAGEC Critical leaf age, tabulated (days) 910 +200 730 £ 192 180 + 60 120 + 60
RIT 610, 1210 490, 970 120, 240 30, 180
LEAFFALL Length of death of leaves, tabulated (days) - - 10+4 10+4
5,15 5,15
LEAFLIFE T Leaf longevity (years) 0.33+0.1 1+0.668 2+09 2+09
AB 0.2,0.75 0.33,2 0.75, 3 0.75,3
MAX TURN Maximum turnover time for grass (days) - - - 80+4
OVER _TIME 75, 85
MIN_GROW Minimum time since last beginning of a 300+ 24
THINIT_TIM growing season (days) 270, 330
E
MIN_LEAF minimum leaf age to allow senescence (days) = - - 90 + 8 30+4
AGE_FOR_S 80, 100 25,35
ENESCENCE
MIN_TURN Minimum turnover time for grass (days) - - - 10+4
OVER _TIME 5,15




NCD MAX A coefficient to calculate maximum possible = 3 +0.8
YEAR number of chilling days (NCD) 2,4
NCDGDD_T Critical temperature for the ncd vs. gdd @ - - 5+4 -
EMP function in phenology (C) 0, 10
NOSENESCE Relative moisture availability above which @ - - - 0.3+0.12
NCE _HUM there is no humidity-related senescence 0.15, 0.45
PHENO _GD Critical gdd tabulated constant a - - - 0+0
D CRIT A 0,0
PHENO_GD Critical gdd constant b - - - 0£0
D CRIT B 0,0
PHENO _GD Critical gdd constant ¢ - - - 400 + 64
D CRIT C 320, 480
PHENO MOI Average temperature threshold for C4 grass = - - - 22+£8
GDD T CRI used (C) 12,32
T
SENESCENC Critical relative moisture availability for & - - - 0.2 +0.08
E HUM senescence 0.1,0.3
SENESCENC Critical temperature for senescence (C), - - 0+£0 0£0
E TEMP A constant a of aT”*2+bT+c, tabulated 0,0 0,0
SENESCENC Critical temperature for senescence (C), @ - - 0+0 0+0
E TEMP B constant b of aT"2+bT+c, tabulated 0,0 0,0
SENESCENC Critical temperature for senescence (C), @ - - 12+8 5+48
E TEMP C constant ¢ of aT"2+bT+c, tabulated 2,22 -1, 11
TAU_CLIMA tau for climatologic variables (days) 20+ 8
TOLOGY 10, 30
TAU GDD Time scales for phenology and other | 40+ 16
processes (days) 20, 60
TAU_GPP_ Time scales for phenology and other 6+1
WEEK processes (days) 5,7
TAU HUM Time scales for phenology and other 20+8
MONTH processes (days) 10, 30
TAU_HUM _ Time scales for phenology and other 6+1
WEEK processes (days) 5,7
TAU _LEAFI Time to attain the initial foliage using the | 10+ 10 10+ 10 10+ 10 10+ 10
NIT carbohydrate reserve (days) 5, 30 5,30 5,30 5,30
TAU _NGD Time scales for phenology and other 50+ 20
processes (days) 25,75
TAU_SOILH Time scales for phenology and other 20+8
UM MONTH processes (days) 10, 30
TAU_T2M Time constant for the “monthly” 2-meter 20+ 8
MONTH temperature (days) 10, 30
TAU T2M Time constant for the “weekly” 2-meter 6=+ 1
WEEK temperature (days) 5,7
TAU _TSOIL Time constant for the “monthly” soil 20+8
~MONTH temperature (days) 10, 30
Conductance parameters - included in initial optimization sensitivity test but not in final optimizations
Al empirical factor involved in the calculation of = 0.85+0.04 = 0.85+0.04 | 0.85+0.04 | 0.85+0.04
fvpd 0.8,0.9 0.8,0.9 0.8,0.9 0.8,0.9
B1 empirical factor involved in the calculation of = 0.14 + 0.14 + 0.14 +  0.2+0.032
fvpd 0.032 0.032 0.032 0.15,0.25
0.1,0.18 0.1,0.18 0.1,0.18
CHOISNEL Constant in the computation of resistance for = 3.3E4 + 19400
RSOL _CSTE bare soil evaporation (s/m2) 1.75E4, 6.6E4
CONDVEG _ Surface roughness (m) 0.15£0.12
Z0 0,0.3
DEFC_MUL Constant in the computation of surface | 1.5+0.9
T resistance (KW-") 0.75,3
DEFC PLUS Constant in the computation of surface = 0.023 +0.016
resistance (KW-1) 0.003, 0.043



20 Residual  stomatal conductance when | 0.00625 0.00625 0.00625 0.01875
irradiance approaches zero (mol m-2 s-1 bar- | + 0.00048 +0.00048 +0.00048 +0.0016

1) 0.00565, 0.00565, 0.00565, 0.01675,
0.00685 0.00685 0.00685 0.02075
GB_REF Leaf bulk boundary layer resistance (s m-1) 0.04 £ 0.032
0, 0.08
KZERO A vegetation dependent constant used in the = 0.00012 0.00012 0.00025 0.0003
calculation of the surface resistance =+ 0.000016 | +0.000016 | =+ 0.00004 + 0.00004
(kg/m"2/s) 0.0001, 0.0001, 0.0002, 0.00025,
0.00014 0.00014 0.0003 0.00035
RATIO_Z0OM Ratio between z0m and zOh 1+£04 1+04 1+04 1+04
_Z0H 0.5,1.5 0.5,1.5 0.5,1.5 0.5,1.5
Z DECOMP Scaling depth for soil activity 02+0.6
0,1.5
70 BARE Bare soil roughness length (m) 0.01 £0.0016
0.008, 0.012
Z0 OVER_H To get z0 from height 0.0625 + 0.032
EIGHT 0.02, 0.1

Table S1. Prior information for all ORCHIDEE parameters optimized in this study: prior
value, uncertainty and maximum and minimum bounds for the different plant functional
types (temperate needleleaf/broadleaf evergreen (TeNE, TeBE) forests, temperate
broadleaf deciduous (TeBD) forest, C4 grassland (GC4)).

Daily root mean square error (RMSE)
Site
GPP Reco
Prior Posterior Prior Posterior
US-Vcem 1.392 1.366 2.009 1.315
US-Vep 1.822 1.116 0.979 0.927
US-Mpj 1.312 0.903 1.051 0.867
US-Fuf 1.074 0.828 0.534 0.629
US-Wjs 0.995 0.73 0.778 0.672
US-Ses 0.259 0.229 0.233 0.255
US-Wkg 1.177 0.809 0.617 0.49
US-SRG 1.345 0.982 0.95 0.825
US-Seg 0.699 0.449 0.441 0.324
US-SRM 1.158 0.617 0.8 0.572
US-Whs 0.698 0.531 0.507 0.437
US-Aud 1.028 0.707 0.561 0.602




Table S2. Daily GPP and ecosystem respiration (Reco) model-data fit when assimilating
NEE observations with all parameters (P1) in terms of prior and posterior root mean
square error (RMSE) for all twelve sites. The reduction in daily GPP RMSE varies between
0.03 to 0.7 gCm™2d™", and the reduction in daily Reco RMSE varies between 0 to 0.7 gCm’
2d". The sites are listed in order from largest mean annual C sink (US-Vcm) to mean
annual C source (US-Aud).
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Figure S1. Comparison of NEE observations (grey) with corresponding ORCHIDEE model
simulations before (green line) and after assimilation (red line) for assimilating NEE
observations with all parameters (P1). The vegetation types are listed within brackets for
each site. The RMSE measures the fit of the model prior and posterior simulations with
the corresponding observations. Across all sites, the prior and posterior NEE RMSEs vary
between 0.291-1.377 and 0.196-0.788, respectively. The sites are listed in order from
largest mean annual C sink (US-Vcm) to mean annual C source (US-Aud).
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Figure S2. Daily, monthly and annual NEE (a, d), GPP (b, e) and Rew (c, f) prior and
posterior Pearson correlation coefficients (R) and slope values for the linear regression
between model and observed fluxes for assimilating NEE observations and optimizing all
phenology, photosynthesis and post C uptake parameters (P1). The R between observed
and modeled NEE at daily, monthly and annual timescales for optimizing all parameters
(P1) increase by up to 0.50, 0.55, 0.65 respectively. Note that the y axis limits for both R
and slope are the same and therefore 3 sites fall outside the y-axis upper limit for the
Reco slope.
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Figure S3. Seasonal cycle with mean monthly total fluxes. Comparison of flux
observations with corresponding ORCHIDEE model simulations (prior and posterior) for
assimilating NEE observations and optimizing all phenology, photosynthesis and post C
uptake parameters (P1). The sites are listed from left to right according to C sink to
source.
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Figure S4. Annual NEE, GPP and Reco mean square deviation (MSD) decomposition into
bias, variance, and phase between simulations and observations for assimilating NEE
observations and optimizing all phenology, photosynthesis and post C uptake
parameters (P1). Different rows separate the sites as sink (a-c), pivot (d-f) and source (g-i)



based on total annual C flux. The sink sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs
and US-Ses; the pivot sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the
source site ia: US-Aud. The x axes display the optimization scenarios (Prior and P1). The
box whiskers show the spread of bias, variance and phase for all 12 sites considered in
this study. The bias, variance and phase indicate the mean difference in flux magnitude,
the mismatch in terms of flux fluctuation magnitude scales with the mean seasonal
amplitude, and the seasonality in flux time series, respectively. Note that the y axis limits
are different for all fluxes and site types.
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Figure S5. Annual NEE scatter plots for prior and all posterior simulations for
assimilating NEE observations with various parameter sets (P1-P7). Different colour
legends represent various sites, ordered from the largest mean sink (US-Vcm) to the
largest mean source (US-Aud). The middle of the trend line should sit on the 1:1 line if
the accurate mean annual source/sink behavior for a site is well captured by the model.
A slope value close to or equal to 1 demonstrates the model is better at capturing the
IAV. The sink sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot
sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the source site is: US-Aud.



08

GPP
06

0.

0.

0.

o

*
=0

06

=

&

[

o

o

-

e

Correlation coefficient (R)

Optimization

ty

BN Prior W Posterior 075
(a) o8| ,
-1.00 -1.00
g T & 2 § & & & E T & 2 & B & & E T & &8 § 22 8 &
g '® . 15 B B
2 1.00 050
)
2 ors 10 025
o
8 os0 0.00
o
2 05
g025 025
2 ‘
= 000
2 00 050 | o
£ 025
5 075
2 050 +
= -05
[=]
D _yge| ¢ (d) + ¢ () -0 . ()
g & & B ¥ & & & g g B B § & & & E g & B § &€ B &

Figure S6. NEE (a, d), GPP (b, e) and Rec (¢, f) annual anomaly prior and posterior
Pearson correlation coefficients (R) and slope values for the linear regression between
model and observed fluxes across all assimilation scenarios with different parameter
combinations (P1-P7). The legend represents various assimilation scenarios (Prior - blue
bars, and posterior P1-P7 - orange bars).
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Figure S7. Mean monthly seasonal cycles comparing observations (black curve), prior
(red curve), and posterior simulations for assimilation scenarios (P1 to P7 - blue to
magenta curves) for NEE (left column), GPP (middle column), and Rec (right column)
averaged across site C balance types (sink - top row; pivot - middle row; and the source
site, US-Aud, on the bottom row).
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Figure S8. Daily NEE, GPP and Reco mean square deviation (MSD) decomposition into
bias, variance, and phase between simulations and observations for assimilating NEE
observations with various parameter sets (P1-P7). Different rows separate the sites as
sink (a-c), pivot (d-f) and source (g-i) based on total annual C flux. The sink sites are: US-
Vcm, US-Vep, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-SRG,
US-Seg, US-SRM and US-Whs; and the only source site is: US-Aud. The x axes display
various optimization scenarios (Prior, P1-P7). The parameters included in each
optimization are: P1: all parameters; P2: phenology and photosynthesis; P3: phenology
and post C uptake; P4: photosynthesis and post C uptake; P5: phenology; P6:
photosynthesis and P7: post C uptake. The box whiskers show the spread of bias,
variance and phase for all 12 sites considered in this study. The bias, variance and phase
indicate the mean difference in flux magnitude, the mismatch in terms of flux fluctuation
magnitude scales with the mean seasonal amplitude, and the seasonality in flux time
series, respectively. Note that the y axis limits for both gross fluxes are the same.
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Figure S9. Parameter posterior error covariance matrix for US-Vcm for various
assimilation scenarios (P1-P7).
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Figure S10. Values of all optimized parameters related to phenology, photosynthesis
and post C uptake when assimilating NEE and optimizing all parameters (P1) for all 12
sites. For each parameter, the range of variation (corresponding to yellow arrows), the



prior and the posterior values are provided for all sites. For the mixed-PFT sites, only the
parameters for the majority PFT fraction are presented, although the other PFT
parameters are also optimized. For example, this figure shows the parameters associated
with PFT=4 (TeNE) for site US-Mpj, however the optimization is performed with all the
parameters of both PFT=4 (TeNE) and 11 (C4G). Note that the soil Q10 parameter is the
exponent of the actual Q10 value used to calculate heterotrophic respiration
temperature sensitivity (see Table S1 for more information).
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