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Abstract

Dryland ecosystems occupy ˜40% of the land surface and are thought to dominate the inter-annual variability (IAV) and long-

term trend of the global carbon (C) cycle. Therefore, it is imperative that global terrestrial biosphere models (TBMs), which

form the land component of IPCC earth system models, are able to accurately simulate dryland vegetation and biogeochemical

processes. However, compared to more mesic ecosystems, TBMs have not been widely tested or optimized against in situ

dryland ecosystem CO2 fluxes. Here, we address this gap using a Bayesian data assimilation system and 89 site-years of

daily net CO2 flux (net ecosystem exchange - NEE) data from 12 southwest US Ameriflux sites spanning forest, shrub and

grass dryland ecosystems to evaluate and optimize the C cycle related parameters of the ORCHIDEE TBM. We find that the

default (prior) model simulations drastically underestimate both the mean annual NEE and the NEE IAV. By testing di↵erent

assimilation scenarios, we showed that optimizing phenology parameters dramatically improves the model ability across all sites

to capture both the magnitude and sign of the NEE IAV. At high elevation forested sites, which are a mean C sink, optimizing

parameters related to C allocation, respiration and turnover reduces the underestimate in simulated mean annual NEE. Our

study demonstrates that all TBMs need to be calibrated specifically for dryland ecosystems before they are used to determine

dryland contributions to global C cycle variability and long-term carbon-climate feedbacks.

1



manuscript submitted to AGU Advances 

 

Optimizing Phenology Parameters Drastically Improves Terrestrial Biosphere Model 1 

Underestimates of Dryland Net CO2 Flux Inter-Annual Variability 2 

 3 

K. Mahmud1, J. A. Biederman2, R. L. Scott2, M. E. Litvak3, T. Kolb4, T. P. Meyers5, P. 4 

Krishnan5,6, V. Bastrikov7,8, and N. MacBean1 5 

1Department of Geography, Indiana University, Bloomington, IN 47405, USA 6 

2Southwest Watershed Research Center, United States Department of Agriculture, Agricultural 7 

Research Service, Tucson, AZ 85719, USA 8 

3Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA 9 

4School of Forestry, Northern Arizona University, Flagstaff, AZ, 86011, USA 10 

5NOAA/ARL Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN, 37830, USA 11 

6Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA 12 

7Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, 13 

Université Paris-Saclay, Gif-sur-Yvette, F-91191, France 14 

8Now at: Science Partners, Paris, 75010, France 15 

Corresponding author: Kashif Mahmud (kmahmud@iu.edu)  16 

Key Points: 17 

• ORCHIDEE terrestrial biosphere model drastically underestimates dryland mean annual 18 

net CO2 fluxes and their inter-annual variability (IAV) 19 

• Optimizing phenology, carbon allocation, and respiration parameters are crucial for 20 

capturing net CO2 flux mean and IAV 21 

• Models need to be optimized against dryland CO2 flux data to achieve accurate 22 

predictions of dryland’s role in global C cycle variability   23 
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Abstract 24 

Dryland ecosystems occupy ~40% of the land surface and are thought to dominate the inter-25 

annual variability (IAV) and long-term trend of the global carbon (C) cycle. Therefore, it is 26 

imperative that global terrestrial biosphere models (TBMs), which form the land component of 27 

IPCC earth system models, are able to accurately simulate dryland vegetation and 28 

biogeochemical processes. However, compared to more mesic ecosystems, TBMs have not been 29 

widely tested or optimized against in situ dryland ecosystem CO2 fluxes. Here, we address this 30 

gap using a Bayesian data assimilation system and 89 site-years of daily net CO2 flux (net 31 

ecosystem exchange - NEE) data from 12 southwest US Ameriflux sites spanning forest, shrub 32 

and grass dryland ecosystems to evaluate and optimize the C cycle related parameters of the 33 

ORCHIDEE TBM. We find that the default (prior) model simulations drastically underestimate 34 

both the mean annual NEE and the NEE IAV. By testing different assimilation scenarios, we 35 

showed that optimizing phenology parameters dramatically improves the model ability across all 36 

sites to capture both the magnitude and sign of the NEE IAV. At high elevation forested sites, 37 

which are a mean C sink, optimizing parameters related to C allocation, respiration and turnover 38 

reduces the underestimate in simulated mean annual NEE. Our study demonstrates that all TBMs 39 

need to be calibrated specifically for dryland ecosystems before they are used to determine 40 

dryland contributions to global C cycle variability and long-term carbon-climate feedbacks. 41 

1 Introduction 42 

Terrestrial ecosystems currently take up ~30% of anthropogenic CO2 emissions, thus 43 

acting as a substantial global carbon (C) sink (Fu et al., 2017) and providing a critical reduction 44 

in the rate of global warming. However, while we know the magnitude of the global C sink to a 45 

good degree of certainty, our knowledge of other components of the global C cycle are more 46 

uncertain. One such knowledge gap is which ecosystems, and/or which processes, are driving 47 

inter-annual variability (IAV) in land net C uptake (Fu et al., 2017). Improving our 48 

understanding of the IAV characteristics of the global terrestrial C cycle is key to being able to 49 

forecast the future of the land C sink and long-term biosphere-climate feedback (Cox et al., 50 

2013).   51 

Recent studies have pointed to drylands (arid and semi-arid ecosystems) as the dominant 52 

driver of global terrestrial C cycle IAV (Ahlström et al., 2015; Cleverly et al., 2016; Haverd et 53 
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al., 2017; Poulter et al., 2014). High annual variability in net CO2 exchange in response to plant-54 

available moisture is observed in site-based flux studies in these regions (Biederman et al., 2017; 55 

Cleverly et al., 2016; Haverd et al., 2017; Scott et al., 2015). However, the global terrestrial 56 

biosphere models (TBMs) used in the recent C cycle IAV regional attribution studies have often 57 

only been extensively evaluated against data in more mesic ecosystems (e.g. (Peng et al., 2015; 58 

Piao et al., 2013; Raczka et al., 2013; Schaefer et al., 2012)), although  studies have evaluated 59 

models against eddy covariance flux data from Australian dryland sites (Haverd et al., 2013a; 60 

Whitley et al., 2016a). TBM optimization (parameter calibration) has also only typically been 61 

carried out using temperate and boreal site data (Haverd et al., 2013a; Kuppel et al., 2014). 62 

Therefore, there remains a relative gap in model benchmarking and optimization using dryland C 63 

cycle related data. 64 

 65 

Model benchmarking and optimization studies that have been performed in dryland 66 

regions indicate considerable model-data discrepancies in vegetation dynamics, C and water 67 

fluxes (Haverd et al., 2013b; MacBean et al., 2015; Renwick et al., 2019; Trudinger et al., 2016; 68 

Whitley et al., 2016b; Traore et al., 2014). A recent study by MacBean et al. (submitted) has 69 

demonstrated that global TBMs participating in the TRENDY v7 model intercomparison project 70 

dramatically underestimate both the mean annual net ecosystem exchange (NEE) and its IAV at 71 

a suite of southwestern (SW) US dryland sites due to weak sensitivity of gross primary 72 

productivity (GPP) to changing water availability. This analysis is corroborated by (Renwick et 73 

al., 2019) who also showed that a semi-deciduous phenology scheme was necessary to accurately 74 

predict the magnitude of GPP in dryland shrublands. SW US hydrology modeling studies have 75 

also suggested that parameter calibration is needed to realistically represent semi-arid water 76 

fluxes because the default parameters diminish model performance (Natasha MacBean et al., 77 

2020; Hogue et al., 2005; Unland et al., 1996). Given the lack of model parameter calibration 78 

studies that have included dryland sites in their optimizations, it remains to be seen whether 79 

model-data discrepancies in dryland ecosystem NEE simulations are due to inaccurate model 80 

processes or uncertain parameters. Parameter uncertainty may be higher for dryland ecosystems 81 

given parameter values were initially measured in the field and/or optimized for more mesic 82 

temperate and boreal ecosystems.  83 
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To address the gap in dryland site model parameter optimization, and to determine if 84 

parameter optimization can account for dryland model-data discrepancies in NEE, we used a 85 

Bayesian data assimilation (DA) framework to optimize the photosynthesis, phenology, C 86 

allocation and turnover, and respiration parameters of the ORCHIDEE TBM using 89 site-years 87 

of daily NEE observations of 12 Ameriflux sites spanning SW US semi-arid grass, shrub and 88 

forest ecosystems. Following (Biederman et al., 2017, MacBean et al, submitted), we categorize 89 

sites based on their mean annual NEE: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses 90 

are mostly tree-dominated C sink sites; shrub and grass-dominated sites US-Wkg, US-SRG, US-91 

Seg, US-SRM, and US-Whs “pivot” between a mean annual C sink and source; and the US-Aud 92 

grassland is a mean source of C. We used the well-established DA system designed for 93 

ORCHIDEE (ORCHIDAS: https://orchidas.lsce.ipsl.fr) (Kuppel et al., 2014; MacBean et al., 94 

2018; Peylin et al., 2016), in which a cost function that represents the misfit between the model 95 

and the data - taking into account uncertainty in both - is iteratively minimized using the genetic 96 

algorithm (GA; see Methods and Data).  97 

We performed multiple optimization tests with combinations of parameters related to 98 

different model processes in order to identify which processes were most influential in 99 

improving the model mean annual NEE and IAV. We focus in particular on which processes are 100 

responsible for model failure to capture NEE IAV. We focus on improving NEE IAV partly 101 

because of the dominant role dryland ecosystems are thought to play in controlling global C 102 

cycle IAV, and partly because we expect that, with the exception of sites that are a strong C sink, 103 

eddy covariance estimates of mean annual NEE may be impacted by uncertainties in CO2 flux 104 

partitioning. We identified three main groups of parameters: parameters related to 1) phenology; 105 

2) parameters related to photosynthesis; and 3) parameters related to all process calculations that 106 

occur after gross C uptake (i.e. C allocation, autotrophic and heterotrophic respiration and 107 

biomass and soil C turnover; hereafter grouped as “post C uptake” parameters). We split the 108 

parameters into these three groups because GPP has been shown to be the dominant control on 109 

dryland NEE IAV (MacBean et al., submitted); therefore, we expect that optimizing parameters 110 

related to one of both of these main two processes controlling GPP (i.e., phenology and 111 

photosynthesis) will result in the strongest improvements in NEE IAV. However, optimizing all 112 

parameters related to processes that occur after gross C uptake can also influence NEE; 113 

therefore, we include these parameters as a third category. The parameters included in each 114 
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assimilation scenario are: P1 - all parameters, including all three phenology, photosynthesis and 115 

post C uptake parameter groups; P2 - phenology and photosynthesis parameters; P3 - phenology 116 

and post C uptake; P4 - photosynthesis and post C uptake; P5 - phenology parameters only; P6 - 117 

photosynthesis only; and P7 - post C uptake only. See Table 2 for a description of all parameters 118 

and to which category they belong. We compared the prior simulation (before parameter 119 

optimization) to the posterior simulations (after parameter optimization, with different parameter 120 

groupings for the different assimilation scenarios) by evaluating the simulations against the site 121 

data using standard goodness of fit metrics (root mean square error, RMSE and correlation 122 

coefficient, r) at daily, monthly and inter-annual timescales. We further attributed what might be 123 

causing model-data misfits by decomposing the daily mean squared deviation (MSD) into its 124 

component phase, variance and bias contributions. The bias, variance and phase indicate the 125 

mean difference in flux magnitude, the mismatch in terms of the magnitude of fluctuations, and 126 

the seasonality in flux time series, respectively (Kobayashi & Salam, 2000). 127 

2 Methods and Data 128 

2.1 Study sites 129 

Twelve semi-arid sites in the southwestern US (SW US) have been utilized in this study. 130 

These sites have a range of different vegetation types, climates and have been described in detail 131 

by (Biederman et al., 2017), so we only provide a brief description here. We summarized the 132 

sites’ description, dominant vegetation species, mean climate and corresponding vegetation plant 133 

functional types (PFTs), together with the observation period and disturbance history (Table 1). 134 

The major regional IGBP vegetation classes represented include evergreen needleleaf forest, 135 

woody savanna, open and closed shrubland, and grassland. These sites typically experience 136 

monsoon rainfall during July to October, preceded by a hot, dry period in May and June. The SW 137 

US is characterized by water limitation at the annual scale, i.e. potential ET is greater than 138 

precipitation. The sites have large spatial gradients in mean annual precipitation (MAP 250–724 139 

mm) and temperature (MAT 2.9 to 17.7°C) due to interactions among topography, latitude, wind 140 

patterns, and distance from oceans. For further site details, see references in Table 1 and 141 

individual site pages on www.ameriflux.lbl.gov. 142 
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Table 1. Site descriptions, mean climate, observation years and corresponding vegetation plant 143 

functional types (PFTs) used in ORCHIDEE optimization. Simulation period corresponds to the 144 

period of available site data. PFT acronyms: BS = Bare soil (PFT=1); TeNE = Temperate 145 

Needleleaved Evergreen forest (PFT=4); TeBE = Temperate Broadleaved Evergreen forest 146 

(PFT=5); TeBD = Temperate Broadleaved Deciduous forest (PFT=6); C4G = C4 grass 147 

(PFT=11). Sites are given in order from largest mean annual C sink (US-Vcm) to mean annual C 148 

source (US-Aud). 149 

Site 

ID 

Descript

ion 

Dominant species IGBP 

class 

PFT 

fractions 

Kopp

en 

climat

e 

Elev

ation 

(m) 

MA

P 

(m

m) 

MA

T 

(°C

) 

Period 

of site 

data 

Disturbance 

History 

Site 

reference 

US-

Vcm 

Valles 

Caldera 

mixed 

conifer 

forest 

Picea 

engelmannii, 

Picea 

pugens, Abies 

lasiocarpa var. 

lasiocarpa, Abies 

concolor 

Evergree

n 

needlele

af 

forest 

100% 

TeNE 

Dfb 3042 724 2.9 2007–

2012 

Harvest 1960s (Anderso

n-

Teixeira 

et al., 

2011) 

US-

Vcp 

Valles 

Caldera 

pondero

sa forest 

Pinus ponderosa, 

Quercus 

gambeli 

Evergree

n 

needlele

af 

forest 

100% 

TeNE 
Dfb 2501 547 5.7 2007–

2014 

- (Anderso

n-

Teixeira 

et al., 

2011) 

US-

Mpj 

Heritag

e Land 

Conserv

ancy 

pinyon-

juniper 

Pinus edulis, 

Juniperus 

monosperma 

Savanna 20% BS; 

60% 

TeNE; 

20% C4G 

Bsk 2200 423 9.6 2008–

2014 

- (Anderso

n-

Teixeira 

et al., 

2011) 

US-

Fuf 

Flagstaf

f 

unmana

ged 

pondero

sa 

Pinus ponderosa Evergree

n 

needlele

af 

forest 

100% 

TeNE 
Csb 2215 607 7.1 2006–

2010 

Harvest 1910 (Dore et 

al., 2012) 
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US-

Wjs 

Tablela

nds 

juniper 

savanna 

Juniperus 

monosperma, 

Bouteloua 

gracilis 

Savanna 15% 

TeNE; 

85% C4G 

Bsk 1931 349 10.

9 

2008–

2014 

- (Anderso

n-

Teixeira 

et al., 

2011) 

US-

Ses 

Sevillet

a 

creosote 

shrubla

nd 

Larrea tridentata, 

G. sarothrae 

Open 

shrublan

d 

20% BS; 

55% 

TeBE; 

25% C4G 

Bsk 1610 252 12.

6 

2007–

2014 

- (Petrie et 

al., 2015) 

US-

Wkg 

Walnut 

Gulch 

Kendall 

grasslan

d 

Eragrostis 

lehmanniana, 

Bouteloua spp. 

Calliandra 

eriophylla 

Grasslan

d 

60% BS; 

3% 

TeBE; 

37% C4G 

Bsk 1529 386 15.

8 

2004–

2013 

Drought 2003-

2005, non-native 

grass replacement 

2007 onward, light 

grazing ongoing 

(Scott, 

2010) 

US-

SRG 

Santa 

Rita 

grasslan

d 

Eragrostis 

lehmanniana 

Savanna 45% BS; 

11% 

TeBD; 

44% C4G 

Bsh 1292 494 16.

7 

2009–

2014 

Mesquite removal 

1957, ongoing 

light grazing 

(Scott et 

al., 2009, 

2015) 

US-

Seg 

Sevillet

a 

grasslan

d: 

burned 

2009 

Bouteloua 

eriopoda, 

Gutierrezia 

sarothrae, 

Ceratoides lanata 

Grasslan

d 

40% BS; 

60% C4G 
Bsk 160 250 12.

6 

2007–

2014 

Burned 2009 (Petrie et 

al., 2015) 

US-

SRM 

Santa 

Rita 

mesquit

e 

savanna 

Prosopis 

velutina, 

Eragrostis 

lehmanniana 

Woody 

savanna 

50% BS; 

35% 

TeBD; 

15% C4G 

Bsk 1122 421 17.

7 

2004–

2014 

Light grazing (Scott et 

al., 2009) 

US-

Whs 

Walnut 

Gulch 

Lucky 

Hills 

shrubla

nd 

Larrea tridentata, 

Parthenium 

incanum, Acacia 

constricta, 

Rhus microphylla 

Open 

shrublan

d 

57% BS; 

40% 

TeBE; 3% 

C4G 

Bsk 1376 352 16.

8 

2008–

2014 

Drought 2005-

2006 

(Scott, 

2010) 
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US-

Aud 

Audubo

n 

grasslan

d 

Boutelou 

agracilis, 

B. curtipendula, 

Eragrostis spp. 

Grasslan

d 

30% BS; 

70% C4G 
Bsk 1496 348 15.

7 

2004–

2009 

Burned 2002 (Krishna

n et al., 

2012) 

2.1 ORCHIDEE terrestrial biosphere model 150 

We use the ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) 151 

process-oriented land surface model version 2.2 that has been developed at the IPSL (Institut 152 

Pierre Simon Laplace, France). The model is a state-of-the-art mechanistic terrestrial biosphere 153 

model (Krinner et al., 2005) and is the land surface component of the IPSLCM5 Earth System 154 

Model (Dufresne et al., 2013). The model describes the exchanges of water, carbon, and energy 155 

between biosphere and atmosphere at the smallest time scale (30 min), while the slow 156 

components of the terrestrial carbon cycle (including carbon allocation, autotrophic respiration, 157 

foliar onset and senescence, mortality and soil organic matter decomposition) are computed on a 158 

daily to annual basis. Version 2.2 is virtually identical to version 2.0, which is being used in the 159 

ongoing Coupled Modeling Intercomparison Project 6 (CMIP6) simulations, but includes few 160 

recent bug corrections and code enhancements. It has been updated since the “AR5” version used 161 

in CMIP5 (see (Krinner et al., 2005)) with the following developments: i) an 11-layer 162 

mechanistic description of soil hydrology and associated modifications as described in 163 

(MacBean et al., 2020); ii) addition of a coupled carbon-nitrogen scheme (Vuichard et al., 2019); 164 

iii) an analytical solution for the set of equations for photosynthesis, stomatal conductivity and 165 

internal CO2 concentration in the leaf (described in (Vuichard et al., 2019)), following (Yin and 166 

Struik, 2009); iv) anupdate of the soil thermal properties and extension of the soil depth for heat 167 

diffusion (Wang et al., 2016); v)a 3-layer snow scheme (Wang et al., 2013); vi)a spatially 168 

explicit observation-derived estimate for background albedo and optimized vegetation and snow 169 

albedo coefficients;; vii) a new reconstruction of global land cover history and wood harvest 170 

accounting following LUH2v2h maps (Hurtt et al., 2020) and PFT maps based the European 171 

Space Agency Climate Change Initiative Land Cover product (Poulter et al., 2015). 172 

As in most TBMs, the vegetation is grouped into several plant functional types (PFTs), 173 

with 14 different types of vegetation plus bare soil in the case of ORCHIDEE v2.2. The original 174 

13 PFTs are reported in (Krinner et al., 2005). Since ORCHIDEE v2.0 there are now two extra 175 
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PFTs included: C3 grasses are now split into three groups - tropical, temperate and boreal. The 176 

equations governing individual processes are generic with PFT specific parameters, except for 177 

the phenology models (see Appendix A in (MacBean et al., 2015)). In this study, ORCHIDEE is 178 

mainly used in a “grid-point mode” at each site location and forced with the corresponding local 179 

30-minute gap-filled meteorological forcing data. Before performing the optimizations the 180 

modelled C stocks are brought to equilibrium in the spin-up phase by cycling the available site 181 

meteorological forcing over a long period (1300 years) with the default parameters of the model, 182 

which ensures a net carbon flux close to zero over annual-to-decadal time scales. 183 

2.2 ORCHIDEE data assimilation system 184 

The ORCHIDEE Data Assimilation System (ORCHIDAS) has been described in detail in 185 

previous studies (Bastrikov et al., 2018; Kuppel et al., 2014; MacBean et al., 2018; Peylin et al., 186 

2016), and hence we only briefly define the method here. ORCHIDAS uses a variational data 187 

assimilation method to optimize the model parameters, accounting for uncertainties regarding the 188 

observations, the model, and the prior parameters. It relies on a Bayesian framework with the 189 

assumption of Gaussian errors, and the optimized parameters corresponds to the minimization of 190 

the following cost function J(x) (Tarantola, 2005): 191 

!(#) = !
" [('(#) − ))

#. +$!. ('(#) − )) + (# − #%)#. -$!(# − #%)]  (1) 192 

where x represents the parameters and H(x) the model contingent on the parameters, and 193 

y the observations. The cost function contains both the misfit between observations,and 194 

corresponding model outputs (first term on the right hand side of Eq. 1), and the misfit between a 195 

priori parameter values xb and optimized parameters x (second term on the right hand side of the 196 

Eq. 1 R is the observation error covariance matrix (including measurement and model errors), 197 

and B is the prior parameter error covariance matrix. Both matrices (B and R) are diagonal since 198 

observation and model errors are assumed to be uncorrelated in space and time, and parameters 199 

are assumed to be independent. The cost function is iteratively minimized using the genetic 200 

algorithm (GA), which is a meta-heuristic optimization algorithm and follows the principles of 201 

genetics and natural selection (Goldberg et al., 1989; Haupt et al., 2004). The GA algorithm has 202 

been applied previously with ORCHIDAS tool and described in details by (Bastrikov et al., 203 
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2018). Briefly, the algorithm works iteratively and considers the vector of parameters as a 204 

chromosome and each parameter as a gene on that chromosome. The method fills a set of n 205 

chromosomes at every iteration, having the starting pool as a randomly perturbed parameter 206 

pool. The chromosomes at each subsequent iteration are chosen from randomly selected 207 

chromosomes of the previous iteration by either “crossover” or “mutation” process. (Santaren et 208 

al., 2014) showed that the performance of the algorithm is highly sensitive to its specific 209 

configuration and found the best configuration based on computational efficiency after testing 210 

different options. Here, we used the same configuration (i.e. number of chromosomes in the pool  211 

total number of parameters optimized; the number of iterations is 40; crossover/mutation ratio is 212 

4:1; the number of gene blocks exchanged during crossover is 2 and the number of genes 213 

perturbed during mutation is 1) applied by (Santaren et al., 2014) and (Bastrikov et al., 2018). 214 

The algorithm does not assume prior knowledge of Gaussian PDFs for the observation and 215 

parameter uncertainties. Given we do not fully know the model uncertainty, we set the prior 216 

observation uncertainty as the RMSE between the model and the observations following (Kuppel 217 

et al., 2014). The prior parameter uncertainty is listed in Table S1. 218 

The posterior error covariance matrix of the parameters (A) can be estimated by: 219 

/ = ['#+$!'+-$!]$!     (2) 220 

This computes error correlations between parameters with the assumption of Gaussian 221 

prior errors and linearity of the model in the vicinity of the solution. 222 

2.3 Flux measurements 223 

We used twelve eddy covariance flux sites (measurement period  ranging between 2003 224 

and 2014) representing the various climate, elevation, and semi-arid ecosystems of SW US. 225 

Study sites are listed consecutively based on their mean annual C balance (Table 1). Flux tower 226 

instruments collect 30-minutes measurements of meteorological forcing data and eddy 227 

covariance measurements of net surface energy and carbon exchanges, which are available from 228 

the AmeriFlux data portal (http://ameriflux.lbl.gov). Meteorological forcing data included air 229 

temperature and surface pressure, precipitation, incoming long and shortwave radiation, wind 230 

speed, and specific humidity. To run the ORCHIDEE model, we partitioned the in-situ 231 
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precipitation into rain and snowfall using a temperature threshold of 0°C. The site-level 232 

meteorological forcing data were gap filled utilizing downscaled and corrected ERA-Interim data 233 

following the approach of (Vuichard & Papale, 2015). Gross primary productivity (GPP) and the 234 

ecosystem respiration (Reco) were estimated from the net ecosystem exchange (NEE) via the flux 235 

partitioning method described in (Biederman et al., 2016). We acknowledge that GPP and Reco 236 

are not fully independent data with respect to NEE and are essentially model-derived estimates, 237 

but these concerns have been largely discussed in previous studies e.g., (Desai et al., 2008). Note 238 

that in this study, negative NEE refers to net CO2 uptake into the ecosystem. In order to exclude 239 

the influence of the short-term variations in the fluxes on the model optimization, the daily 240 

averaged observations smoothed with a 15-day running mean have been used for the data 241 

assimilation. 242 

2.4 Parameters optimized 243 

The optimized parameters are described in Table S1 with their prior values, uncertainty 244 

and bounds for different plant functional types. Prior values are the default parameter values 245 

used in all non-optimized ORCHIDEE simulations. In the most past ORCHIDAS studies with 246 

previous versions of ORCHIDEE, only subsets of ORCHIDEE C cycle parameters have been 247 

optimized (Bastrikov et al., 2018; Kuppel et al., 2012, 2014; MacBean et al., 2015; MacBean et 248 

al., 2018; Santaren et al., 2007; Verbeeck et al., 2011). In this study, we considered all possible C 249 

cycle related ORCHIDEE parameters and hence contribute towards the correct representation of 250 

net and gross CO2 fluxes. We selected all 102 parameters and divided them into four classes, 251 

controlling the main C cycle and plant physiological processes i.e. photosynthesis, conductance, 252 

phenology and post C uptake. This resulted in 31 parameters related to photosynthesis, 42 to 253 

phenology, 16 to post C uptake (C allocation, respiration, biomass and soil turnover), and 13 254 

related to conductance. In a preliminary study, we tested at several SW US sites (US-Vcp, US-255 

Mpj, US-Fuf, US-Wkg, US-Whs, US-Seg) the sensitivity of the ecosystem fluxes (NEE, GPP 256 

and Reco) when optimizing all model parameters and when we just optimized subsets of the 257 

parameters related to each of the main processes. This test showed no significant optimization 258 

improvement by adding the conductance related parameters (results not shown here), and thus 259 

we did not include those parameters for all final optimizations presented in this study, leaving a 260 

total of 89 optimized parameters for each site. The parameter names, descriptions, bounds and 261 
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prior uncertainties used in this study (Table S1) were derived from literature analysis, parameter 262 

databases and expert knowledge of the model equations. Documentation on the parameters can 263 

be accessed via ORCHIDEE webpage 264 

(https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/OrchideeParameters, last access: 04 265 

January 2021). The prior uncertainty is set to 40% of the range of variation for each parameter 266 

following previous ORCHIDAS studies (Kuppel et al., 2012; MacBean et al., 2015). 267 

2.5 Assimilation Scenarios 268 

We conducted several different optimizations to identify which processes (and their 269 

related parameters) are potentially causing model-data discrepancies (listed in Table 2). We 270 

grouped the optimizations based on various parameters set to optimize; therefore, we tested 7 271 

assimilation scenarios (P1 – P7): P1 included all 89 parameters, whereas each consecutive 272 

scenario (P2 – P7) optimized different subsets of parameters related to each of the main C cycle 273 

processes (Table 2). The parameters that were not optimized were set to their default (prior) 274 

value. Comparing the P1 to P7 assimilation scenarios allows us to determine which sets of 275 

parameters (i.e. specific processes) are contributing most to the improvement in fluxes as a result 276 

of the parameter optimizations. See Table S1 for groupings of model parameters according to 277 

specific processes. 278 

Table 2. Description of the different assimilation scenarios conducted in this study. The included 279 

parameter group(s) and numbers of parameters for each assimilation scenario are given. 280 

Parameters of each subgroup are listed in Table S1. 281 

Optimization Parameters included Number of parameters 

P1 All parameters (Phenology, Photosynthesis and Post C uptake) ~85 

P2 Phenology and Photosynthesis ~70 

P3 Phenology and Post C uptake ~50 

P4 Photosynthesis and Post C uptake ~60 

P5 Phenology only ~30 

P6 Photosynthesis only ~45 

P7 Post C uptake only ~15 
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2.6 Post-optimization analysis 282 

We assessed the goodness of fit of the different assimilation scenarios by the mean square 283 

deviation (MSD) (in addition root mean squared error, RMSE or correlation coefficients, R or 284 

slope of linear least-square regression). Model evaluation metrics are presented in one of three 285 

ways: i) for each site; ii) grouped across all sites; and iii) sites grouped according to their mean 286 

net annual CO2 flux characteristics across the time period identified in (Biederman et al., 2017). 287 

For the latter, the net CO2 “sink” sites are US-Vcm, US-Vcp, US-Mpj, US-Fuf and US-Wjs; the 288 

“pivot” sites are US-Ses, US-Wkg, US-SRG, US-SRM, US-Whs, US-Seg; and the “source” site 289 

is US-Aud. We follow the approach of (Kobayashi & Salam, 2000) to quantify the differences 290 

between the simulations and observation in terms of bias, variance and phasing. We calculate the 291 

MSD between daily observation and each of the simulations and decompose it following the 292 

below equation: 293 

012	 = 4
56(#& − )&)" 	= 	 (# − ))" 	+ 	(7' − 7()" 	+ 	87'7((4 − +)

)

&*!
												(9) 294 

where x is the model and y is the observations, σ is the standard deviation and R is the 295 

correlation coefficient.  296 

The first term specifies the bias between model simulation and observation (squared). 297 

The second term “variance” measures their differences in terms of variability (i.e., the difference 298 

between the magnitude of the modeled and observed fluctuations). And the third term generally 299 

demonstrates the lack of correlation between them weighted by their standard deviations, which 300 

can be deemed as a measure of their disagreement in terms of phase (Bacour et al., 2019; Gauch 301 

et al., 2003). However, the second and third terms are partially dependent on each other (Bacour 302 
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et al., 2019; Gauch et al., 2003). We further calculated the contribution of each component (bias, 303 

variance and phase) to the overall MSD by dividing each component by the total MSD. 304 

3 Results 305 

3.1 Impact of optimization of all parameters on model net and gross CO2 fluxes 306 

Across all sites, the prior ORCHIDEE simulations (i.e. before parameter optimization) 307 

fail to capture both the mean annual NEE and its IAV (Figure 1a) - as also seen for all 308 

TRENDY TBMs in MacBean et al (submitted). Across all sites, optimizing all C cycle-related 309 

parameters (phenology, photosynthesis and post C uptake - assimilation scenario P1) with NEE 310 

data dramatically increases the ability of the model to capture both the mean C source/sink 311 

behavior and the IAV (Figure 1b). C sink and source sites show significant improvement in 312 

terms of both mean annual NEE and IAV. There is not a strong bias in the model simulations at 313 

pivot sites whose mean annual NEE is close to zero; therefore, the optimization results in an 314 

improvement mainly in IAV (as represented by the correlation and slope values shown in inset 315 

figures in Figures 1 a and b). Improvement of the model-data fit resulting from the assimilation 316 

of NEE and optimizing all parameters (P1) is evident across all sites, with a reduction of daily 317 

NEE RMSE between 0.05 to 0.65 gCm-2d-1 (Figure S1), with a similar reductions in daily GPP 318 

and Reco RMSE (Table S2).Moreover, the temporal dynamics are well captured for all the sites: 319 

when optimizing all parameters, the median pearson correlation coefficients (R) increase by 320 

0.45, 0.45, and 0.25 for daily, monthly and annual modeled NEE, respectively and posterior 321 

median slope values ≥0.5 (Figure S2a and d). GPP temporal dynamics are also much improved 322 

by the P1 assimilation with a higher and tighter range in posterior R and slope values than NEE 323 

(Figure S2b and e). In contrast, there is less improvement in Reco temporal dynamics although 324 

the median R and slope values are higher after the optimization (Figure S2c and f).  325 



manuscript submitted to AGU Advances 

 

 326 

Figure 1. Comparison between modeled and observed annual NEE when assimilating NEE data 327 

and optimizing all phenology, photosynthesis and post C uptake parameters (P1) in the same 328 

assimilation. (a) Prior annual NEE simulation before parameter optimization, and (b) Posterior 329 

annual NEE after optimization. The trendline and slope value for the linear regression between 330 

the model and observations (bottom right inset figures) is shown for each site, together with their 331 

Pearson correlation coefficient, r (top left inset figures). The middle of the trend line should sit 332 

on the 1:1 line if the accurate mean annual source/sink behavior for a site is well captured by the 333 

model. A slope value close to or equal to 1 demonstrates the model is better at capturing the 334 

IAV. Colored points and trend lines represent all twelve sites, ordered from the largest mean sink 335 

(US-Vcm) to the largest mean source (US-Aud). The sink sites are: US-Vcm, US-Vcp, US-Mpj, 336 

US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-337 

Whs; and the only source site is: US-Aud.  338 

 339 

Across the majority of SW US dryland sites, the prior model simulates a depressed 340 

seasonal NEE amplitude and/or is unable to capture the observed bi-modal seasonality (Figure 341 

2). The NEE amplitude and bi-modal seasonality generally improve when optimizing all 342 

parameters  (P1 - blue curves in Figure 2), although the posterior simulations struggles to reach 343 

the exact magnitude of the spring and monsoon NEE troughs (net CO2 uptake) for several sites 344 

(e.g. US-Mpj, US-Wjs, US-Ses, US-Seg, US-Wkg and US-Whs). Accurately capturing the 345 
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seasonal peaks and troughs is important for NEE IAV because summer monsoon season fluxes 346 

are the dominant driver of NEE IAV (MacBean et al., submitted). While posterior seasonal NEE 347 

peaks and troughs are generally well captured, the assimilation of NEE alone often fails to 348 

capture the correct peaks in gross CO2 fluxes (Figure S3), likely due to compensating errors in 349 

both GPP and Reco. At the C source site (US-Aud) the model also fails to simulate the accurate 350 

peaks in springtime net carbon release (Figure 2). As also identified in MacBean et al 351 

(submitted), this is due to the fact that at US-Aud, TBMs tend to overestimate spring GPP and 352 

underestimate the earlier rise in spring Reco (Figure S3). The optimization only partially corrects 353 

these model biases, suggesting that other missing processes may ultimately be responsible for the 354 

model-data misfit (such as disturbance following a fire that occurred at the site in 2002, which is 355 

not implemented in the current version of ORCHIDEE).  356 

 357 

Figure 2. Mean monthly NEE seasonal cycles for each site comparing prior (red curve) and 358 

posterior (blue curve) ORCHIDEE simulations with observations (black curve). Posterior 359 
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simulation after assimilation of NEE data and optimization of all parameters: phenology, 360 

photosynthesis and post C uptake (P1). The sites are listed in order from largest mean annual C 361 

sink (US-Vcm) to mean annual C source (US-Aud).  362 

 363 

Decomposing the daily NEE mean square deviations (MSD) between model and 364 

observations into bias, variance and phase components shows that across all sites, bias, variance 365 

and phase all contribute to prior NEE model-data discrepancies (Figure 3a left of vertical dashed 366 

line). The prior daily NEE MSD at the C sink sites are dominated by both phase and bias 367 

components (Figure 3a top panel). The fact that sink site MSD is also dominated by bias is 368 

unsurprising given that at those sites the prior model does not capture the mean annual C sink 369 

(Figure 1a). Note that, if we decompose the annual NEE MSD into the constituent bias, phase 370 

and variance components then bias overwhelmingly dominates the MSD at sink (and source) 371 

sites given their large underestimate of mean annual NEE (Figure S4 top and bottom rows). In 372 

contrast, at the C pivot and source sites, the highest contribution to the prior daily NEE MSD is 373 

from the  phase component (Figure 3a middle and bottom panel), indicating the default model 374 

does a poor job of representing the timing of dryland C cycle related processes. Across all sites, 375 

optimizing all parameters (P1) dramatically reduces the bias, variance and phase components of 376 

the daily NEE MSD, with phase remaining the strongest contributor to daily NEE MSD (Figure 377 

3a right of dashed line).  378 
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 379 

Figure 3. Daily NEE, GPP and Reco mean square deviation (MSD) decomposition into bias, 380 

variance, and phase between simulations and observations for assimilating NEE observations and 381 

optimizing all phenology, photosynthesis and post C uptake parameters (P1). Blue, orange and 382 

green boxplots for bias, variance and phase components, respectively. Different rows separate 383 

the sites as sink (a-c), pivot (d-f) and source (g-i) based on total annual C flux. The sink sites are: 384 

US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-385 

SRG, US-Seg, US-SRM and US-Whs; and the source site ia: US-Aud. The x axes display the 386 

optimization scenarios (Prior and P1). The box whiskers show the spread of bias, variance and 387 

phase for all 12 sites considered in this study. The bias, variance and phase indicate the mean 388 

difference in flux magnitude, the mismatch in terms of flux fluctuation magnitude scales with the 389 

mean seasonal amplitude, and the seasonality in flux time series, respectively. Note that the y 390 

axis limits for both gross fluxes (GPP and Reco) are the same.  391 

 392 
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As for the NEE, bias and phase are the dominant contributors to prior daily GPP MSD for 393 

the sink sites (left of vertical dashed line in Figure 3b), and phase only for the pivot and source 394 

sites (Figures 3e and h) For Reco, a different MSD component is dominant depending on the 395 

mean C behavior of a site: bias dominates the prior daily Reco MSD at the sink sites, variance at 396 

the pivot sites, and phase at the source sites (Figures 3c, f and i). Overall, assimilating NEE data 397 

in the P1 scenario reduces all gross CO2 flux MSD components (right of dashed line in Figure 3 398 

middle and left columns), with phase remaining the strongest contributor to daily gross CO2 flux 399 

MSD. However, unlike for the NEE, at the C sink sites phase and bias remain strong contributors 400 

to posterior GPP MSD (Figure 3b).  401 

 402 

3.2 Impact of different processes (assimilation scenarios) on optimization results 403 

Across all sites, modeled annual and seasonal NEE are improved the most in the P1 404 

assimilation scenario compared to the other assimilation scenarios (P2 to P7), although all 405 

scenarios result in some improvement (Figures S5, S6a and d, and seasonal cycles in Figure 406 

S7). In general, there is less improvement in Reco compared to NEE and GPP (Figure S6).  407 

Comparing the MSD decomposition results for the various assimilation scenarios  (P1-408 

P7) can help to identify which processes may be causing the prior model-discrepancies in mean 409 

annual NEE and NEE IAV. At the source and sink sites, the bias component (blue bars in Figure 410 

4a and c) is reduced dramatically by all optimization tests that include the post C uptake 411 

parameters related to C allocation, respiration, and biomass and soil C turnover (P1, P3, P4 and 412 

P7). For the sink sites, assimilation scenarios that also include photosynthesis parameters (P2 and 413 

P6) also result in a strong reduction in bias. This decrease in mean bias is also shown by the fact 414 

that the midpoints of the linear regression trendline between model and observations at forested 415 

sink sites (US-Vcm, US-Vcp, US-Mpj, and US-Fuf) and low-elevation source site (US-Aud) 416 

with optimization scenarios P1 to P4, P6 and P7 parameters all lie much closer to the 1:1 (grey 417 

dashed) line compared to P5 (Figure S5).  418 
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 419 

Figure 4. Daily NEE MSD decomposition into bias, variance, and phase components when 420 

assimilating NEE observations for different assimilation scenarios (P1-P7). Different panels 421 

separate the sites as sink (a), pivot (b) and source (c) based on total annual C flux. The C sink 422 

sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the C pivot sites are: US-423 

Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the C source site is: US-Aud. The grey 424 

dashed boxes highlight results repeated from Figure 3(a,d,g) to have better comparison of 425 

different process parameters side-by-side. The parameters included in each optimization are: P1: 426 

all parameters; P2: phenology and photosynthesis; P3: phenology and post C uptake; P4: 427 

photosynthesis and post C uptake; P5: phenology; P6: photosynthesis and P7: post C uptake. The 428 

boxplots show the median and interquartile range of the bias, variance and phase across all 12 429 

sites considered in this study. US-Aud is the only C source site; therefore, the barplots in (c) 430 

show the bias, phase, and variance components of the MSD for that one site. The bias, variance 431 

and phase indicate the mean difference in flux magnitude, the difference in the magnitude of flux 432 

variations, and the difference in the correlations weighted by the standard deviations, 433 

respectively (see Methods).  434 

 435 

Across all sites the difference in phase between the model and observations (green bars in 436 

Figure 4), which, as already noted, is the largest contribution to the prior NEE MSD across all 437 

sites, is mostly reduced by assimilation scenarios that include phenology parameters (i.e. P1, P2, 438 

P3 and P5). However, the phase component is not reduced as much as the bias in any of the 439 

assimilation scenarios; thus, for all sites and all assimilation scenarios the phase remains the 440 

largest component of the posterior daily NEE MSD (Figure 4). Including parameters related to 441 
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photosynthesis or post C uptake with the phenology parameters (i.e. assimilation scenarios P2 442 

and P3) helps to slightly reduce the phase discrepancy at sink sites compared with phenology 443 

parameters alone (P5) (as seen above for the improvement in slope values at the sink sites). 444 

Examining the spread in slope and R values across all sites, we see that the annual variability 445 

(median slope and R values) is improved the most for assimilation scenarios with at least two 446 

parameter sets (P1 to P4 - Figure S6a and d). The persistence of phase as the dominant 447 

component of the posterior daily NEE suggests further model improvement in dryland phenology 448 

models is needed before TBMs can correctly reproduce NEE seasonality and IAV.   449 

The variance component of the daily NEE MSD (orange bars in Figure 4), which also 450 

shows a modest contribution to daily NEE MSD at the sink and source sites, is mostly reduced at 451 

the sink sites with assimilation scenarios that include photosynthesis parameters (i.e. P1, P2, P4 452 

and P6). At US-Aud the variance component was reduced most by assimilation scenarios that 453 

included two or more sets of parameters (i.e. P1 - P4) (Figure 4c).  454 

While the post C uptake parameters are key for reducing bias in forested sink site NEE, 455 

biases in GPP and Reco at these sites are reduced by optimizing photosynthesis parameters (P1, 456 

P2, P4, and P6 - blue boxes Figure S8b and c). The GPP and Reco bias components at the sink 457 

sites are not reduced as strongly as NEE biases for any assimilation scenario; thus, bias remains a 458 

key contributor to posterior gross CO2 flux MSD. Similarly to NEE, parameter subsets that 459 

include phenology parameters (P1, P2, P3 and P5) are key for reducing the daily GPP MSD 460 

phase component at pivot sites (green boxes in Figure S8e; however, in contrast with the NEE 461 

results, at sink sites the GPP phase component tends to be reduced by all assimilation scenarios 462 

except P7 (see also median GPP slope and R values in Figures S6b and e). With the exception 463 

of P1 and P2 for GPP, the GPP and Reco variance components are not reduced much by any of 464 

the assimilation scenarios and remain a considerable component of the MSD for both GPP and 465 

Reco at the pivot sites, and for Reco at the sink sites (Figures S8b,c,e,f). We note that the GPP and 466 

Reco reductions in MSD components tend to be similar, suggesting model-deficiencies in Reco are 467 

mainly influenced by those in GPP. Addressing GPP model-data deficiencies is therefore a high 468 

priority.  469 

3.3 Constraint on parameters 470 
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For all assimilation scenarios, we found significant parameter deviations from prior 471 

values for numerous phenology, photosynthesis and post C uptake related parameters (Figure 5), 472 

which is consistent with the fact that we find all parameter subsets are needed to improve model 473 

mean annual NEE and IAV. We do not find that parameters deviate more, or the uncertainty 474 

reduction much different, when only one subset or two parameter subsets are included in the 475 

optimization instead of all three (e.g. cf. P2 with P1), although posterior values are different for 476 

each assimilation scenario (Figure 5). In particular, most of the post C uptake parameters deviate 477 

strongly from the prior median deviations (>20% of total parameter bound). There are also 478 

significant uncertainty reductions (>50%) for most of the parameters which show strong 479 

deviations from their prior value: 10 for phenology (out of 42), 7 for photosynthesis (out of 31) 480 

and 7 for post C uptake (out of 16) (Figure 5). The error correlations between the estimated 481 

parameters are usually minimal except between post C uptake parameters (see example for one 482 

site in Figure S9). 483 

 484 

Figure 5. Optimized median parameter deviations [(posterior - prior) / (max - min)] (blue bars) 485 

and associated median parameter uncertainty reductions (grey bars) for all parameters controlling 486 

phenology, photosynthesis and post C uptake assimilating NEE data (P1-P7). Bars represent the 487 

median across all 12 sites. The asterisks above blue bars indicate the parameters that have larger 488 

than 50% uncertainty reduction. Each line corresponds to a specific optimization test (shown on 489 

the right axis). The parameters are given on the bottom axis. The vertical dashed lines separate 490 
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the different parameter subsets (phenology, photosynthesis and post C uptake). Table S1 details 491 

the prior and posterior parameter values and their uncertainty for all parameters together with the 492 

maximum and minimum bounds used in the optimizations. 493 

 494 

Looking at the individual parameter plots for the P1 assimilation scenario (Figure S10), 495 

we find that at some sites several posterior parameters are “edge-hitting” (e.g. soil Q10). Given 496 

we chose weak prior constraints (wide bounds) in all optimizations, the fact that some posterior 497 

parameters are hitting their bounds suggests that the optimization may be aliasing model 498 

structural error onto the parameters (MacBean et al., 2016) and/or that the model cannot improve 499 

further via parameter optimization. Instead, further model developments are likely needed to 500 

address structural uncertainties and missing processes. Hypotheses as to what (missing) 501 

processes might be responsible for these remaining model errors have been discussed in 502 

MacBean et al (submitted). For example, it is possible that model inability to capture peak GPP 503 

fluxes for some sites (see Section 3.1) is due to too weak a response of model vegetation growth 504 

to pulses of moisture availability, an issue which is not fully alleviated by using only NEE to 505 

optimize model parameters. 506 

 507 

4 Conclusions 508 

While improvement in modeled NEE is best when all parameters are optimized, our 509 

assimilation scenario experiments have shown that post C uptake and phenology parameters are 510 

key for correcting model underestimates in dryland mean annual NEE and IAV, respectively. 511 

Remaining model-data discrepancies indicate that additional model developments are needed. . 512 

The specific DA configuration (e.g. the number of parameters, and the processes with which they 513 

are related) can lead to different posterior values and degree of improvement in model-data fit. 514 

Therefore, further tests of different DA configurations and optimizations at other locations are 515 

needed to explore the potential of Bayesian DA systems for quantifying and reducing error in 516 

dryland ecosystem C fluxes. However, our study demonstrates that dryland C cycle parameters 517 

and processes in TBMs need optimizing and/or further development before we can reliably use 518 

these models to accurately simulate dryland ecosystem contributions to global C cycle 519 

variability.  520 
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Parameter 
Name 

Description (Unit) Plant functional type 
TeNE TeBE TeBD GC4 

Photosynthesis parameters 
ARJV a coefficient of the linear regression (a+bT) 

defining the Jmax25/Vcmax25 ratio (mu mol 
e- (mu mol CO2)-1) 

2.59 ± 0.4 
2, 3 

2.59 ± 0.4 
2, 3 

2.59 ± 0.4 
2, 3 

1.715 ± 
0.48 
1, 2.2 

aSJ a coefficient of the linear regression (a+bT) 
defining the Entropy term for Jmax (J K-1 
mol-1) 

659.7 ± 264 
330, 990 

659.7 ± 264 
330, 990 

659.7 ± 264 
330, 990 

630 ± 252 
315, 945 

aSV a coefficient of the linear regression (a+bT) 
defining the Entropy term for Vcmax (J K-1 
mol-1) 

668.39 
± 267.6 
334, 1003 

668.39 
± 267.6 
334, 1003 

668.39 
± 267.6 
334, 1003 

641.64 
± 256.4 
321, 962 

BRJV b coefficient of the linear regression (a+bT) 
defining the Jmax25/Vcmax25 ratio (mu mol 
e- (mu mol CO2)-1) 

-0.035 
± 0.028 
-0.07, 0 

-0.035 
± 0.028 
-0.07, 0 

-0.035 
± 0.028 
-0.07, 0 

-0.01 
± 0.028 
-0.035, 
0.035 

bSJ b coefficient of the linear regression (a+bT) 
defining the Entropy term for Jmax (J K-1 
mol-1 C-1) 

-0.75 ± 0.6 
-1.5, 0 

-0.75 ± 0.6 
-1.5, 0 

-0.75 ± 0.6 
-1.5, 0 

0.01 ± 0.6 
-0.75, 0.75 

bSV b coefficient of the linear regression (a+bT) 
defining the Entropy term for Vcmax (J K-1 
mol-1 C-1) 

-1.07 ± 0.8 
-2, 0 

-1.07 ± 0.8 
-2, 0 

-1.07 ± 0.8 
-2, 0 

0.1 ± 0.856 
-1.07, 1.07 

CN C/N ratio 40 ± 32 
20, 100 

40 ± 32 
20, 100 

40 ± 32 
20, 100 

- 

D_Jmax Energy of deactivation for Jmax (J/mol) 200000 
± 16000 
180000, 
220000 

200000 
± 16000 
180000, 
220000 

200000 
± 16000 
180000, 
220000 

192000 
± 15200 
173000, 
211000 

D_Vcmax Energy of deactivation for Vcmax (J/mol) 200000 
± 16000 
180000, 
220000 

200000 
± 16000 
180000, 
220000 

200000 
± 16000 
180000, 
220000 

192000 
± 15200 
173000, 
211000 

E_gamma_sta
r 

Energy of activation for gamma_star (J mol-
1) 

37830 
± 8000 
27830, 
47830 

37830 
± 8000 
27830, 
47830 

37830 
± 8000 
27830, 
47830 

37830 
± 8000 
27830, 
47830 

E_Jmax Energy of activation for Jmax (J mol-1) 49884 
± 8000 
39884, 
59884 

49884 
± 8000 
39884, 
59884 

49884 
± 8000 
39884, 
59884 

77900 
± 8000 
67900, 
87900 

E_KmC Energy of activation for KmC (J mol-1) 79430 
± 8000 
69430, 
89430 

79430 
± 8000 
69430, 
89430 

79430 
± 8000 
69430, 
89430 

79430 
± 8000 
69430, 
89430 

E_KmO Energy of activation for KmO (J mol-1) 36380 
± 8000 
26380, 
46380 

36380 
± 8000 
26380, 
46380 

36380 
± 8000 
26380, 
46380 

36380 
± 8000 
26380, 
46380 

fpseudo Fraction of electrons at PSI that follow 
pseudocyclic transport 

- - - 0.1 ± 0.032 
0.06, 0.14 

fpsir )UDFWLRQ�RI�36,,�HíWUDQVSRUW�UDWH�SDUWLWLRQHG�WR�
the C4 cycle 

- - - 0.4 ± 0.16 
0.4, 0.6 

FRAC_GRO
WTHRESP 

Fraction of GPP which is lost as growth 
respiration 

0.28 ± 
0.064 
0.2, 0.36 

0.28 ± 
0.064 
0.2, 0.36 

0.28 ± 
0.064 
0.2, 0.36 

0.28 ± 
0.064 
0.2, 0.36 



 
 

fQ Fraction of electrons at reduced plastoquinone 
that follow the Q-cycle 

- - - 1 ± 0.24 
0.7, 1.3 

gamma_star2
5 

Ci-based CO2 compensation point in the 
absence of Rd at 25C (ubar) 

42.75 ± 8 
22.75, 
62.75 

42.75 ± 8 
22.75, 
62.75 

42.75 ± 8 
22.75, 
62.75 

42.75 ± 8 
22.75, 
62.75 

gbs Bundle-sheath conductance (mol m-2 s-1 bar-
1) 

- - - 0.003 ± 
0.0008 
0.001, 
0.005 

HYDROL_H
UMCSTE 

Root profile (m) in empirical plant water 
stress function calculation 

1 ± 1.5 
0.25, 4 

0.8 ± 1.12 
0.2, 3 

0.8 ± 1.12 
0.2, 3 

1 ± 1.5 
0.25, 4 

KmC25 Michaelis-Menten constant of Rubisco for 
CO2 at 25C (ubar) 

404.9 ± 160 
204.9, 
604.9 

404.9 ± 160 
204.9, 
604.9 

404.9 ± 160 
204.9, 
604.9 

650 ± 160 
450, 850 

KmO25 Michaelis-Menten constant of Rubisco for O2 
at 25C (ubar) 

278400 ± 
80000 
178400, 
378400 

278400 ± 
80000 
178400, 
378400 

278400 ± 
80000 
178400, 
378400 

450000 ± 
80000 
350000, 
550000 

kp Initial carboxylation efficiency of the PEP 
carboxylase (mol m-2 s-1 bar-1) 

- - - 0.7 ± 0.24 
0.4, 1 

LAI_MAX Maximum LAI (m2/m2) 5 ± 2 
3, 8 

5 ± 2 
3, 8 

5 ± 2 
3, 8 

2.5 ± 0.8 
4, 10 

Sco25 Relative CO2 /O2 specificity factor for 
Rubisco at 25C (bar bar-1) 

2800 ± 800 
1800, 3800 

2800 ± 800 
1800, 3800 

2800 ± 800 
1800, 3800 

2590 ± 800 
1590, 3590 

SLA Specific leaf area (m2/gC) 0.00926 
± 0.005 
0.004, 0.02 

0.02 
± 0.012 
0.01, 0.04 

0.026 ± 
0.0148 
0.013, 0.05 

0.026 
± 0.0148 
0.013, 0.05 

theta Convexity factor for response of J to 
irradiance 

0.7 ± 0.18 
0.5, 0.95 

0.7 ± 0.18 
0.5, 0.95 

0.7 ± 0.18 
0.5, 0.95 

0.7 ± 0.18 
0.5, 0.95 

TPHOTO_M
AX 

Maximum photosynthesis temperature (deg 
C) 

55 ± 4 
50, 60 

55 ± 4 
50, 60 

55 ± 4 
50, 60 

55 ± 4 
50, 60 

TPHOTO_MI
N 

Minimum photosynthesis temperature (deg C) -4 ± 4 
-9, 1 

-4 ± 4 
-9, 1 

-4 ± 4 
-9, 1 

-4 ± 4 
-9, 1 

VCMAX25 Maximum rate of Rubisco activity-limited 
carboxylation at 25C (micromol/m2/s) 

35 ± 10 
19, 51 

45 ± 16 
25, 65 

55 ± 20 
30, 80 

70 ± 25.6 
38, 102 

VMAX_OFF
SET 

Offset (minimum relative vcmax) 0.3 ± 0.048 
0.24, 36 

 
Post C uptake parameters - autotrophic and heterotrophic respiration, C allocation, biomass and soil C turnover  
HCRIT_LITT
ER 

Scaling depth for litter humidity (m) 0.08 ± 0.192 
0.02, 0.5 

KSOILC Scalar on the active soil C pool content (to 
account for uncertainty in spin-up) 

1 ± 0.6 
0.5, 2 

MAINT_RES
P_COEFF 

Coefficient to calculate maintenance 
respiration as a fraction of biomass  

1.4 ± 0.84 
0.7, 2.4 

MAINT_RES
P_SLOPE_C 

Slope of maintenance respiration coefficient 
(1/K), constant c of aT^2+bT+c, tabulated 

0.16 
± 0.064 
0.08, 0.24 

0.16 
± 0.064 
0.08, 0.24 

0.16 
± 0.064 
0.08, 0.24 

0.12 ± 0.06 
0.04, 0.2 

MAX_LTOL
SR 

Extrema of leaf allocation fraction 0.5 ± 0.08 
0.4, 0.6 

MIN_LTOLS
R 

Extrema of leaf allocation fraction 0.2 ± 0.08 
0.1, 0.3 

MOIST_COE
FF__1 

Coefficient to calculate moisture control for 
litter and soil C decomposition 

1.1 ± 0.24 
0.8, 1.4 

MOIST_COE
FF__2 

Coefficient to calculate moisture control for 
litter and soil C decomposition 

2.4 ± 0.24 
2.1, 2.7 

MOIST_COE
FF__3 

Coefficient to calculate moisture control for 
litter and soil C decomposition 

0.29 ± 0.232 
0.01, 0.59 

MOISTCON
T_MIN 

Minimum soil wetness to limit the 
heterotrophic respiration 

0.25 ± 0.2 
0.1, 0.6 



 
 

RESIDENCE
_TIME 

Residence time of trees (years) 40 ± 24 
30, 90 

40 ± 24 
30, 90 

40 ± 24 
30, 90 

0 ± 0 
0,0 

SOIL_Q10 Temperature dependency factor for 
heterotrophic respiration (Note: actual Q10 = 
expSOIL_Q10. 

0.69 ± 0.44 
0, 1.1 

TAU_FRUIT Fruit lifetime (days) 90 ± 24 
60, 120 

90 ± 24 
60, 120 

90 ± 24 
60, 120 

- 

TAU_META
BOLIC 

A coefficient to calculate residence times in 
metabolic litter pools (days) 

0.066 ± 0.0112 
0.052, 0.08 

TAU_SAP Sapwood heartwood conversion time (days) 730 ± 144 
550, 910 

730 ± 144 
550, 910 

730 ± 144 
550, 910 

- 

TAU_STRUC
T 

A coefficient to calculate residence times in 
structural litter pools (days) 

0.245 ± 0.04 
0.2, 0.3 

 
Phenology parameters 
GDD_THRE
SHOLD 

Temperature threshold used in the calculation 
of number of growing degree day, GDD 
(days) 

5 ± 0.8 
4, 6 

GDDNCD_C
URVE 

Constant in the computation of critical GDD 0.0091 ± 0.00112 
0.0072, 0.01 

GDDNCD_O
FFSET 

Constant in the computation of critical GDD 
(days) 

64 ± 11.2 
50, 78 

GDDNCD_R
EF 

Reference value used in the computation of 
critical GDD (days) 

603 ± 96.8 
482, 724 

HUM_FRAC Critical humidity (relative to min/max) for 
phenology (%) 

- - - 0.5 ± 0.2 
0.25, 0.75 

HUM_MIN_
TIME 

Minimum time elapsed since moisture 
minimum (days) 

- - - 35 ± 12 
20, 50 

LAI_MAX_T
O_HAPPY 

Threshold of LAI below which plant uses 
carbohydrate reserves 

0.5 ± 0.14 
0.35, 0.7 

0.5 ± 0.14 
0.35, 0.7 

0.5 ± 0.14 
0.35, 0.7 

0.5 ± 0.14 
0.35, 0.7 

LEAF_AGE_
CRIT_COEF
_1 

A coefficient to calculate critical leaf age 
(days) 

1.5 ± 0.24 
1.2, 1.8 

LEAF_AGE_
CRIT_COEF
_2 

A coefficient to calculate critical leaf age 
(days) 

0.75 ± 0.12 
0.6, 0.9 

LEAF_AGE_
CRIT_COEF
_3 

A coefficient to calculate critical leaf age 
(days) 

10 ± 1.6 
12, 8 

LEAF_AGE_
CRIT_TREF 

Reference temperature used to calculate of 
critical leaf age (days) 

20 ± 4 
15, 25 

LEAFAGE_F
IRSTMAX 

Leaf age at which vmax attains vcmax_opt (in 
fraction of critical leaf age) 

0.03 ± 0.0048 
0.024, 0.036 

LEAFAGE_L
ASTMAX 

Leaf age at which vmax falls below 
vcmax_opt (in fraction of critical leaf age) 

0.5 ± 0.08 
0.4, 0.6 

LEAFAGEC
RIT 

Critical leaf age, tabulated (days) 910 ± 200 
610, 1210 

730 ± 192 
490, 970 

180 ± 60 
120, 240 

120 ± 60 
30, 180 

LEAFFALL Length of death of leaves, tabulated (days) - - 10 ± 4 
5, 15 

10 ± 4 
5, 15 

LEAFLIFE_T
AB 

Leaf longevity (years) 0.33 ± 0.1 
0.2, 0.75 

1 ± 0.668 
0.33, 2 

2 ± 0.9 
0.75, 3 

2 ± 0.9 
0.75, 3 

MAX_TURN
OVER_TIME 

Maximum turnover time for grass (days) - - - 80 ± 4 
75, 85 

MIN_GROW
THINIT_TIM
E 

Minimum time since last beginning of a 
growing season (days) 

300 ± 24 
270, 330 

MIN_LEAF_
AGE_FOR_S
ENESCENCE 

minimum leaf age to allow senescence (days) - - 90 ± 8 
80, 100 

30 ± 4 
25, 35 

MIN_TURN
OVER_TIME 

Minimum turnover time for grass (days) - - - 10 ± 4 
5, 15 



 
 

NCD_MAX_
YEAR 

A coefficient to calculate maximum possible 
number of chilling days (NCD) 

3 ± 0.8 
2, 4 

NCDGDD_T
EMP 

Critical temperature for the ncd vs. gdd 
function in phenology (C) 

- - 5 ± 4 
0, 10 

- 

NOSENESCE
NCE_HUM 

Relative moisture availability above which 
there is no humidity-related senescence 

- - - 0.3 ± 0.12 
0.15, 0.45 

PHENO_GD
D_CRIT_A 

Critical gdd tabulated constant a - - - 0 ± 0 
0, 0 

PHENO_GD
D_CRIT_B 

Critical gdd constant b - - - 0 ± 0 
0, 0 

PHENO_GD
D_CRIT_C 

Critical gdd constant c - - - 400 ± 64 
320, 480 

PHENO_MOI
GDD_T_CRI
T 

Average temperature threshold for C4 grass 
used (C) 

- - - 22 ± 8 
12, 32 

SENESCENC
E_HUM 

Critical relative moisture availability for 
senescence 

- - - 0.2 ± 0.08 
0.1, 0.3 

SENESCENC
E_TEMP_A 

Critical temperature for senescence (C), 
constant a of aT^2+bT+c, tabulated 

- - 0 ± 0 
0, 0 

0 ± 0 
0, 0 

SENESCENC
E_TEMP_B 

Critical temperature for senescence (C), 
constant b of aT^2+bT+c, tabulated 

- - 0 ± 0 
0, 0 

0 ± 0 
0, 0 

SENESCENC
E_TEMP_C 

Critical temperature for senescence (C), 
constant c of aT^2+bT+c, tabulated 

- - 12 ± 8 
2, 22 

5 ± 4.8 
-1, 11 

TAU_CLIMA
TOLOGY 

tau for climatologic variables (days) 20 ± 8 
10, 30 

TAU_GDD Time scales for phenology and other 
processes (days) 

40 ± 16 
20, 60 

TAU_GPP_
WEEK 

Time scales for phenology and other 
processes (days) 

6 ± 1 
5, 7 

TAU_HUM_
MONTH 

Time scales for phenology and other 
processes (days) 

20 ± 8 
10, 30 

TAU_HUM_
WEEK 

Time scales for phenology and other 
processes (days) 

6 ± 1 
5, 7 

TAU_LEAFI
NIT 

Time to attain the initial foliage using the 
carbohydrate reserve (days) 

10 ± 10 
5, 30 

10 ± 10 
5, 30 

10 ± 10 
5, 30 

10 ± 10 
5, 30 

TAU_NGD Time scales for phenology and other 
processes (days) 

50 ± 20 
25, 75 

TAU_SOILH
UM_MONTH 

Time scales for phenology and other 
processes (days) 

20 ± 8 
10, 30 

TAU_T2M_
MONTH 

7LPH� FRQVWDQW� IRU� WKH� ³PRQWKO\´� �-meter 
temperature (days) 

20 ± 8 
10, 30 

TAU_T2M_
WEEK 

7LPH� FRQVWDQW� IRU� WKH� ³ZHHNO\´� �-meter 
temperature (days) 

6 ± 1 
5, 7 

TAU_TSOIL
_MONTH 

7LPH� FRQVWDQW� IRU� WKH� ³PRQWKO\´� VRLO�
temperature (days) 

20 ± 8 
10, 30 

 
Conductance parameters - included in initial optimization sensitivity test but not in final optimizations 
A1 empirical factor involved in the calculation of 

fvpd 
0.85 ± 0.04 
0.8, 0.9 

0.85 ± 0.04 
0.8, 0.9 

0.85 ± 0.04 
0.8, 0.9 

0.85 ± 0.04 
0.8, 0.9 

B1 empirical factor involved in the calculation of 
fvpd 

0.14 ± 
0.032 
0.1, 0.18 

0.14 ± 
0.032 
0.1, 0.18 

0.14 ± 
0.032 
0.1, 0.18 

0.2 ± 0.032 
0.15, 0.25 

CHOISNEL_
RSOL_CSTE 

Constant in the computation of resistance for 
bare soil evaporation (s/m2) 

3.3E4 ± 19400 
1.75E4, 6.6E4 

CONDVEG_
Z0 

Surface roughness (m) 0.15 ± 0.12 
0, 0.3 

DEFC_MUL
T 

Constant in the computation of surface 
resistance (KW-1) 

1.5 ± 0.9 
0.75, 3 

DEFC_PLUS Constant in the computation of surface 
resistance (KW-1) 

0.023 ± 0.016 
0.003, 0.043 



 
 

g0 Residual stomatal conductance when 
irradiance approaches zero (mol m-2 s-1 bar-
1) 

0.00625 
± 0.00048 
0.00565, 
0.00685 

0.00625 
± 0.00048 
0.00565, 
0.00685 

0.00625 
± 0.00048 
0.00565, 
0.00685 

0.01875 
± 0.0016 
0.01675, 
0.02075 

GB_REF Leaf bulk boundary layer resistance (s m-1) 0.04 ± 0.032 
0, 0.08 

KZERO A vegetation dependent constant used in the 
calculation of the surface resistance 
(kg/m^2/s) 

0.00012 
± 0.000016 
0.0001, 
0.00014 

0.00012 
± 0.000016 
0.0001, 
0.00014 

0.00025 
± 0.00004 
0.0002, 
0.0003 

0.0003 
± 0.00004 
0.00025, 
0.00035 

RATIO_Z0M
_Z0H 

Ratio between z0m and z0h 1 ± 0.4 
0.5, 1.5 

1 ± 0.4 
0.5, 1.5 

1 ± 0.4 
0.5, 1.5 

1 ± 0.4 
0.5, 1.5 

Z_DECOMP Scaling depth for soil activity 0.2 ± 0.6 
0, 1.5 

Z0_BARE Bare soil roughness length (m) 0.01 ± 0.0016 
0.008, 0.012 

Z0_OVER_H
EIGHT 

To get z0 from height 0.0625 ± 0.032 
0.02, 0.1 

Table S1. Prior information for all ORCHIDEE parameters optimized in this study: prior 
value, uncertainty and maximum and minimum bounds for the different plant functional 
types (temperate needleleaf/broadleaf evergreen (TeNE, TeBE) forests, temperate 
broadleaf deciduous (TeBD) forest, C4 grassland (GC4)).  

 
 

 
Site 

Daily root mean square error (RMSE) 

GPP Reco 

Prior Posterior Prior Posterior 

US-Vcm 1.392 1.366 2.009 1.315 

US-Vcp 1.822 1.116 0.979 0.927 

US-Mpj 1.312 0.903 1.051 0.867 

US-Fuf 1.074 0.828 0.534 0.629 

US-Wjs 0.995 0.73 0.778 0.672 

US-Ses 0.259 0.229 0.233 0.255 

US-Wkg 1.177 0.809 0.617 0.49 

US-SRG 1.345 0.982 0.95 0.825 

US-Seg 0.699 0.449 0.441 0.324 

US-SRM 1.158 0.617 0.8 0.572 

US-Whs 0.698 0.531 0.507 0.437 

US-Aud 1.028 0.707 0.561 0.602 



 
 

Table S2. Daily GPP and ecosystem respiration (Reco) model-data fit when assimilating 
NEE observations with all parameters (P1) in terms of prior and posterior root mean 
square error (RMSE) for all twelve sites. The reduction in daily GPP RMSE varies between 
0.03 to 0.7 gCm-2d-1, and the reduction in daily Reco RMSE varies between 0 to 0.7 gCm-

2d-1. The sites are listed in order from largest mean annual C sink (US-Vcm) to mean 
annual C source (US-Aud).   
 

 

Figure S1. Comparison of NEE observations (grey) with corresponding ORCHIDEE model 
simulations before (green line) and after assimilation (red line) for assimilating NEE 
observations with all parameters (P1). The vegetation types are listed within brackets for 
each site. The RMSE measures the fit of the model prior and posterior simulations with 
the corresponding observations. Across all sites, the prior and posterior NEE RMSEs vary 
between 0.291-1.377 and 0.196-0.788, respectively. The sites are listed in order from 
largest mean annual C sink (US-Vcm) to mean annual C source (US-Aud). 
 



 
 

 
Figure S2. Daily, monthly and annual NEE (a, d), GPP (b, e) and Reco (c, f) prior and 
posterior Pearson correlation coefficients (R) and slope values for the linear regression 
between model and observed fluxes for assimilating NEE observations and optimizing all 
phenology, photosynthesis and post C uptake parameters (P1). The R between observed 
and modeled NEE at daily, monthly and annual timescales for optimizing all parameters 
(P1) increase by up to 0.50, 0.55, 0.65 respectively. Note that the y axis limits for both R 
and slope are the same and therefore 3 sites fall outside the y-axis upper limit for the 
Reco slope. 
 



 
 

 
Figure S3. Seasonal cycle with mean monthly total fluxes. Comparison of flux 
observations with corresponding ORCHIDEE model simulations (prior and posterior) for 
assimilating NEE observations and optimizing all phenology, photosynthesis and post C 
uptake parameters (P1). The sites are listed from left to right according to C sink to 
source. 
 

 
Figure S4. Annual NEE, GPP and Reco mean square deviation (MSD) decomposition into 
bias, variance, and phase between simulations and observations for assimilating NEE 
observations and optimizing all phenology, photosynthesis and post C uptake 
parameters (P1). Different rows separate the sites as sink (a-c), pivot (d-f) and source (g-i) 



 
 

based on total annual C flux. The sink sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs 
and US-Ses; the pivot sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the 
source site ia: US-Aud. The x axes display the optimization scenarios (Prior and P1). The 
box whiskers show the spread of bias, variance and phase for all 12 sites considered in 
this study. The bias, variance and phase indicate the mean difference in flux magnitude, 
the mismatch in terms of flux fluctuation magnitude scales with the mean seasonal 
amplitude, and the seasonality in flux time series, respectively. Note that the y axis limits 
are different for all fluxes and site types. 
 

 
Figure S5. Annual NEE scatter plots for prior and all posterior simulations for 
assimilating NEE observations with various parameter sets (P1-P7). Different colour 
legends represent various sites, ordered from the largest mean sink (US-Vcm) to the 
largest mean source (US-Aud). The middle of the trend line should sit on the 1:1 line if 
the accurate mean annual source/sink behavior for a site is well captured by the model. 
A slope value close to or equal to 1 demonstrates the model is better at capturing the 
IAV. The sink sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot 
sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the source site is: US-Aud. 
 



 
 

 
Figure S6. NEE (a, d), GPP (b, e) and Reco (c, f) annual anomaly prior and posterior 
Pearson correlation coefficients (R) and slope values for the linear regression between 
model and observed fluxes across all assimilation scenarios with different parameter 
combinations (P1-P7). The legend represents various assimilation scenarios (Prior - blue 
bars, and posterior P1-P7 - orange bars). 
 



 
 

 
Figure S7. Mean monthly seasonal cycles comparing observations (black curve), prior 
(red curve), and posterior simulations for assimilation scenarios (P1 to P7 - blue to 
magenta curves) for NEE (left column), GPP (middle column), and Reco (right column) 
averaged across site C balance types (sink - top row; pivot - middle row; and the source 
site, US-Aud, on the bottom row). 
 



 
 

 
Figure S8. Daily NEE, GPP and Reco mean square deviation (MSD) decomposition into 
bias, variance, and phase between simulations and observations for assimilating NEE 
observations with various parameter sets (P1-P7). Different rows separate the sites as 
sink (a-c), pivot (d-f) and source (g-i) based on total annual C flux. The sink sites are: US-
Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-SRG, 
US-Seg, US-SRM and US-Whs; and the only source site is: US-Aud. The x axes display 
various optimization scenarios (Prior, P1-P7). The parameters included in each 
optimization are: P1: all parameters; P2: phenology and photosynthesis; P3: phenology 
and post C uptake; P4: photosynthesis and post C uptake; P5: phenology; P6: 
photosynthesis and P7: post C uptake. The box whiskers show the spread of bias, 
variance and phase for all 12 sites considered in this study. The bias, variance and phase 
indicate the mean difference in flux magnitude, the mismatch in terms of flux fluctuation 
magnitude scales with the mean seasonal amplitude, and the seasonality in flux time 
series, respectively. Note that the y axis limits for both gross fluxes are the same. 
 



 
 

 
Figure S9. Parameter posterior error covariance matrix for US-Vcm for various 
assimilation scenarios (P1-P7). 
 

 
Figure S10. Values of all optimized parameters related to phenology, photosynthesis 
and post C uptake when assimilating NEE and optimizing all parameters (P1) for all 12 
sites. For each parameter, the range of variation (corresponding to yellow arrows), the 



 
 

prior and the posterior values are provided for all sites. For the mixed-PFT sites, only the 
parameters for the majority PFT fraction are presented, although the other PFT 
parameters are also optimized. For example, this figure shows the parameters associated 
with PFT=4 (TeNE) for site US-Mpj, however the optimization is performed with all the 
parameters of both PFT=4 (TeNE) and 11 (C4G). Note that the soil Q10 parameter is the 
exponent of the actual Q10 value used to calculate heterotrophic respiration 
temperature sensitivity (see Table S1 for more information). 
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