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A B S T R A C T

Many animals are known to exhibit foraging patterns where the distances they travel in a given direction are
drawn from a heavy-tailed Lévy distribution. Previous studies have shown that, under sparse and random
resource conditions, solitary non-destructive (with regenerating resources) foragers perform a maximally
efficient search with Lévy exponent 𝜇 equal to 2, while for destructive foragers, efficiency decreases with
𝜇 monotonically and there is no optimal 𝜇. However, in nature, there also exist situations where multiple
foragers, displaying avoidance behavior, interact with each other competitively. To understand the effects of
such competition, we develop a stochastic agent-based simulation that models competitive foraging among
mutually avoiding individuals by incorporating an avoidance zone, or territory, of a certain size around each
forager which is not accessible for foraging by other competitors. For non-destructive foraging, our results show
that with increasing size of the territory and number of agents the optimal Lévy exponent is still approximately
2 while the overall efficiency of the search decreases. At low values of the Lévy exponent, however, increasing
territory size actually increases efficiency. For destructive foraging, we show that certain kinds of avoidance
can lead to qualitatively different behavior from solitary foraging, such as the existence of an optimal search
with 1 < 𝜇 < 2. Finally, we show that the variance among the efficiencies of the agents increases with increasing
Lévy exponent for both solitary and competing foragers, suggesting that reducing variance might be a selective
pressure for foragers adopting lower values of 𝜇. Taken together, our results suggest that, for multiple foragers,
mutual avoidance and efficiency variance among individuals can lead to optimal Lévy searches with exponents
different from those for solitary foragers.
1. Introduction

Living organisms forage in order to find resources such as food or
to reproduce by mating. An underlying motivation for their foraging
movement is therefore to search for and increase their encounters with
such resources. Optimal Foraging Theory (OFT) considers that animals
aim to maximize a currency such as net caloric gain per unit time,
subject to constraints that could be physiological or environmental. For
fixed constraints, therefore, OFT would predict that organisms would
adopt the most efficient search strategy (Viswanathan et al., 1999).

The search strategy can be guided by external cues such as visual,
uditory or olfactory stimuli or even previous memories, which could
elp increase efficiency. However, when the locations of resources are
ot known a priori and there are no directional cues, a natural question
hat arises is whether organisms can optimize a completely stochastic
earch (Viswanathan et al., 2011).
In such a situation, in the case of sparse targets, many animals

uch as the albatross exhibit foraging patterns where distances traveled
re drawn from a heavy tailed Lévy distribution, 𝑃 (𝑙𝑗 ) ∼ 𝑙−𝜇𝑗 , where
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1 < 𝜇 ≤ 3 (Viswanathan et al., 1996, 1999), with the direction of
movement chosen from a uniformly distributed angle. When 𝜇 ≤
1, the motion is ballistic and with 𝜇 > 3, it reduces to Brownian
motion, with a crossover between the two for intermediate values of
𝜇. Similar foraging patterns, with 1 < 𝜇 ≤ 3, was observed in a
wide range of other organisms such as jackals (Atkinson et al., 2002),
bacteria within a swarm (Ariel et al., 2015), T-cells (Harris et al.,
2012), and spider monkeys (Ramos-Fernández et al., 2004). It has been
shown theoretically that, in the case of sparse and randomly distributed
targets that regenerate immediately after consumption (non-destructive
foraging), the search efficiency, (𝜂), is optimized around 𝜇 = 2, where
(𝜂) is defined as the ratio of total number of targets found, to the total
distance traveled (Viswanathan et al., 1999). This is consistent with
the behavior of several foraging animals (Viswanathan et al., 1999),
including the ones mentioned above, lending validity to the model.

Several extensions to this basic model have been studied to gain
insights into more realistic foraging and they show the existence of
different optimal strategies under different conditions.
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One example is when resources take a finite time to regenerate, as
would be the case for plant-based food sources such as grass, flowers or
fruits. For cases where the regeneration time far exceeds the foraging
timescales, foraging is destructive and no optimal 𝜇 value is observed
with efficiency decreasing monotonically as 𝜇 increases (Viswanathan
et al., 1999, 2011, 2000, 2002) from 1. Tuning the regeneration time
etween the extremes of destructive and non-destructive can result in
crossover regime where the optimum strategy shifts in the range of 𝜇
etween 1 and 2. (Santos et al., 2004).
Targets can also display various types of spatial distributions such as

atchy, or normally distributed. For cases of low target density, when
argets are non-regenerative and Lévy distributed with exponent close
o 3, an optimal Lévy exponent for the searcher is observed around
≈ 2 (Ferreira et al., 2012), while for patchy distributions at high
ensity, less super-diffusive strategies, (2 < 𝜇 < 3), perform nearly
s well as 𝜇 = 2 (Wosniack et al., 2017). On the other hand, sparse
ut patchy distributions can result in tunable, highly super-diffusive,
ptimal search strategies with Lévy exponents in the range 1 < 𝜇 <
(Raposo et al., 2011). The topography of the environment can also
ave an effect on search efficiency. For example, when the environment
as a concave porous topography (Volpe and Volpe, 2017), the search is
ptimized for destructive foraging (non-regenerative resources) around
= 2.4. Finally, an interplay between landscape size, number of targets
nd search termination can lead to an optimum that can be tuned over
he entire range 1 < 𝜇 < 3 (Zhao et al., 2015).
While solitary foragers have been extensively studied, in many

atural settings, multiple organisms cooperate or compete with each
ther for resources. Studies have shown that Brownian searchers with
ven rudimentary, purely repulsive interactions can minimize their
ean first-passage time (MFPT) to targets with optimal, intermediate
alues of the interaction strength (Tani et al., 2014). Furthermore,
earch times are minimized for both Brownian and Lévy searchers
hen the range of cooperation is optimized, but Lévy strategies can
e faster (Martínez-García et al., 2014). Along these lines, studies on
he effects of communication on the foraging patterns of Mongolian
azelles showed that communication over intermediate length scales
eads to a faster search and minimizes the MFPT to targets (Martínez-
arcía et al., 2013). Cooperative foraging in hierarchical groups with
specific leader have also been found to benefit from Lévy strategies,
hough they may happen at the expense of group cohesion (Santos
t al., 2009). Mixtures of strategies have also been shown to help
ooperative foraging. For example, the search efficiency of a group of
oragers, who can either search independently or by following others
ho find target patches, is maximized for a mixture of the two strate-
ies. If searchers only follow other successful individuals, target patches
ight become depleted before they arrive at the site (Bhattacharya and
icsek, 2014).
While such cooperative behaviors have evolved in many instances,

ompetitive interactions between foragers for limited resources are also
uite common. Mutual spatial avoidance is a generic behavior that has
merged in a variety of species, ranging from tigers (Carter et al., 2015)
o rodents (Borremans et al., 2017), to ameliorate the negative con-
equences of competitor co-localization. These consequences include
educed gain from the same resources and potentially lethal encounters
mong aggressive individuals. Mutual avoidance can occur over a range
f spatial and temporal scales and can be mediated by visual, acoustic,
cent or other chemical cues. At one end of the spectrum are territorial
redators that maintain territories over kilometers and years, mainly
hrough scent marking. Lions (Heinsohn, 1997), tigers (Burger et al.,
008; Carter et al., 2015), wolves (Lewis and Murray, 1993), and moun-
ain lions (Hornocker, 1969) establish and maintain static territories,
r fixed exclusive areas, where there is an abundance of resources to
urvive and to reproduce. Furthermore, some animals such as red fox,
ynamically modify their territories based on the trajectories of other
nimals as their scent marks start to disappear over time (Giuggioli
2

t al., 2011). At the other end of the spectrum, mutual avoidance
ay be just restricted to the immediate proximity of an individual
ypically reinforced with direct sighting in animals that live in social
ollectives. For example, animals such as oystercatchers (Stillman et al.,
997), red knots (van Gils et al., 2015), swans (Gyimesi et al., 2010),
nd rodents (Borremans et al., 2017) avoid interfering with other
ogeneric individuals in a close vicinity during the foraging process.
uch contact avoidance interactions not only help minimize antagonis-
ic encounters within the group but are also known to help facilitate
ollective motion in swarms and flocks (Couzin et al., 2002; Katz et al.,
011; Charlesworth and Turner, 2019). Interestingly, general, unifying
odels of animal interactions have been developed that can describe
oth foraging and collective motion (Potts et al., 2014).
While mutual avoidance is clearly a common behavior across a

ange of spatiotemporal scales, its’ effects on foraging are less well
tudied. Here we develop and use a stochastic agent based model
o understand how such mutual avoidance interactions can influence
oraging efficiency as a function of foragers density, avoidance distance
nd intrinsic search strategy.
We explore different types of strategies that can optimize group

oraging in these cases. In our simulations, each identical agent has an
voidance zone or territory with a fixed size, 𝑟𝑡, around itself which is
ot accessible by the other searchers. We study the effect on foraging
fficiency of varying the territory size and the number of foragers.
e do this with two different protocols. In the first protocol, we
tudy ‘‘terrestrial’’ animals, who are not able to cross a competitor’s
erritory, such that they are forced to stop at the intersection of the
xcluded region and their own path. In the second protocol, we study
‘aerial’’ animals. In this case, foragers are allowed to pass through
r over others’ territories, but they cannot forage in it. We note that
ur model assumes that foragers always know where the boundaries
f a competitor’s territory are either by direct visual contact with the
ompetitor for small territories or by using scent markings or long
ange acoustic cues for large territories where the competitors may
ot be visible. We also note that for the case of very large territories,
ur model does not address the foraging process within the territory
ut rather the movement of the territory’s center over much larger
imescales as the animal forages for a new or more resource rich
erritory as is the case for transient male predators during dispersal as
hey seek to establish their independent territories (Carter et al., 2015).
sing this model, we study the difference between the efficiency of a
roup of competitors and a single searcher performing Lévy flights of
arying index 𝜇. We look at varying the density of agents and size of
heir territory, 𝑟𝑡, and how it affects the search efficiency, and thus the
earch strategy of territorial competitors while performing Lévy flights.
e also compute the variance in efficiency among multiple competing
oragers as a function of the system parameters with a view to shedding
ight on optimizing searches in situations where minimizing variability
s an important factor in addition to maximizing efficiency.

. Model and simulation

Here we describe our agent-based model that we used to study
oraging in a group of mutually avoiding competitors. Each individ-
al agent performs a random walk consisting of a series of steps in
andom directions and has a perceptive range, 𝑟𝑣, within which it can
etect resources. The step-lengths are drawn from a heavy-tailed Lévy
istribution that is bounded:

(𝑙𝑗 ) =
𝜇 − 1

𝑙1−𝜇0 − 𝑙1−𝜇𝑚𝑎𝑥

(

𝑙𝑗
)−𝜇 (1)

The Lévy exponent is within the range of 𝜇 ∈ (1, 3]. The smallest
step-length we allow the forager to take is 𝑙0 = 𝑟𝑣 because steps smaller
than the vision radius, 𝑟𝑣, will not be beneficial. The maximum step-
length, 𝑙𝑚𝑎𝑥, is equal to 𝐿, the size of our system. This is due to the
fact that steps larger than the size of a landscape, 𝐿, are not realistic
and unbounded displacements, or infinite step-lengths, are naturally
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Fig. 1. Schematic illustration of foraging protocols. (a) Terrestrial animals are not allowed to cross other foragers’ territories. (b) Aerial animals are allowed to cross other foragers’
erritories, but cannot land in it.
orbidden (Wosniack et al., 2017). The mean free path between two
uccessive targets is defined as:

= (2𝑟𝑣𝜌)−1, (2)

here 𝜌 is the target density (total number of targets over total area).
he efficiency of the search, (𝜂), is the ratio of total target found
𝑁𝑡𝑜𝑡𝑎𝑙) over total distance traveled (𝐿𝑡𝑜𝑡𝑎𝑙), or the inverse of average
light length ⟨𝑙⟩ times the average number of flights (𝑁) between two
uccessive targets:

=
𝑁𝑡𝑜𝑡𝑎𝑙
𝐿𝑡𝑜𝑡𝑎𝑙

= 1
⟨𝑙⟩𝑁

(3)

The Lévy flight foraging procedure for a single agent with targets
orks as follows Viswanathan et al. (1999):

1. At each time step, if there are multiple targets within the for-
agers perceptive range, 𝑟𝑣, the agent goes to the nearest target.

2. If there are no targets nearby, the forager picks a random flight
length, 𝑙𝑗 , from the Lévy distribution (Eq.(1)), and a random
uniformly distributed angle between 0 to 2𝜋, and starts the next
flight.

3. The forager is constantly looking for targets within its vision
radius, 𝑟𝑣, while it is taking the steps along its way.

4. If a target site is within 𝑟𝑣, the forager goes to it. Otherwise, it
completes that flight path, 𝑙𝑗 , and repeats steps 1 and 2.

For a solitary forager, the average number of flights between two
uccessive targets, 𝑁 , depends on whether the search is destructive or
on-destructive (non-regenerative or regenerative resources). For de-
tructive searches, 𝑁𝑑 ≈ ( 𝜆

𝑟𝑣
)𝜇−1, and 𝑁𝑛 ≈ ( 𝜆

𝑟𝑣
)
𝜇−1
2 for non-destructive

searches (Viswanathan et al., 1999; Buldyrev et al., 2001). For a solitary
agent, the efficiency is maximized as a function of Lévy index 𝜇, with
value 𝜇 = 2, (Viswanathan et al., 1999).

To model multi-agent foraging we consider 𝑁𝑓 foragers which are
randomly placed in a two dimensional box of size 𝐿 with periodic
boundary conditions. The periodicity is applied to the movement of
the foragers, as well as the regeneration of the targets. Targets are
distributed randomly, from [0, 𝐿] in 𝑥 and y, and, in the non-destructive
case, they are regenerative such that at each time step, we have a
fixed number of targets. Each forager has a territory with radius 𝑟𝑡
around itself which is not accessible by the other foragers. Individual
foragers perform flights according to the Lévy flight foraging procedure
specified above with modifications due to interactions detailed below.
At each step, foragers perform their flights in a random order to
avoid bias. We define two different protocols for our foragers to model
3

terrestrial and aerial animals. In our first protocol, terrestrial, foragers
are not able to cross another forager’s territory, and they are forced to
stop at the intersection of the excluded region and their path. In our
second protocol, aerial, foragers are allowed to cross other foragers’
excluded region but they cannot forage in it. The foraging pattern, for
the first protocol (Fig. 1a), terrestrial, is then as follows:

1. At each step, a random order of foragers is chosen. When one
forager finishes the following steps, the next forager starts. By
the end of the step, all agents have performed one flight.

2. The chosen forager picks a random flight length, 𝑙𝑗 , from the
Lévy distribution (Eq.(1)), and a uniformly distributed random
angle.

3. The forager starts moving, and uses Lévy flight foraging proce-
dure to find targets (Viswanathan et al., 1999).

4. If the forager’s path intersects with other territories, the forager
stops at the intersection of its path and the excluded region.

5. If a target is inside of the other foragers territory, the forager will
skip that target, to remain consistent with the given protocol.

6. Steps 1 to 5 are repeated until the maximum number of steps of
the simulation is reached.

The foraging pattern for the second protocol (Fig. 1b), aerial, is
similar to the terrestrial protocol, except for step (4). In this case,
if the end point of the forager’s flight is inside of another forager’s
excluded region, step (2) needs to be repeated. We note that the first
protocol is meant to represent terrestrial animals because they can
sense competitor territories and we assume that they stop the moment
that they hit the periphery of an excluded region. Similarly, the second
protocol represents aerial animals, since the agents are able to see the
end point of their flight at the beginning, and choose another random
path to avoid landing inside a competitor’s territory. It can also model
terrestrial animals with a visual range for competitors that is much
larger than the territory size, allowing the animal to choose a path that
avoids stopping in the competitor territory.

3. Results

The interaction between the foragers affects the search efficiency,
and potentially changes the optimal foraging strategy by changing
the encounter rate. Two factors influence this rate, the number of
foragers, 𝑁𝑓 , and radius of their territory, 𝑟𝑡. By increasing the number
of foragers, as well as the radius of the territory, the encounter rate
between foragers will increase. In what follows, we study cases with
two, four and eight agents with territory radius 10 < 𝑟𝑡 < 100. Unless
otherwise stated, the simulation box size, number of targets and vision

radius are fixed as 𝐿 = 500, 𝑁𝑡𝑎𝑟𝑔𝑒𝑡𝑠 = 25, 𝑟𝑣 = 1.
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Fig. 2. In the top row, 𝑇1−3, are snapshots of simulations (after 10, 150 and 500 flights respectively) for the terrestrial case, with 𝑁𝑓 = 8 and 𝑟𝑡 = 100, where the green path
represents the foraging pattern for 1 forager. The bottom row, 𝐴1−3, shows snapshots of simulations (after 10, 150 and 500 flights respectively) for the aerial case, with 𝑁𝑓 = 8
and 𝑟𝑡 = 100. 𝜇 = 2 in both cases. For visualization purposes, the other 7 agents are stationary in this set of simulations.
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In the terrestrial case (Fig. 2𝑇1−3), we notice that increasing the
radius of territory, 𝑟𝑡, and the number of agents, 𝑁𝑓 , leads to lower
efficiencies (Fig. 3) overall. However, the optimal Lévy index 𝜇 is still
approximately equal to 2 (Fig. 3a,b). To investigate this further, we
look at the inverse of average number of flights ( 1

𝑁 ) and the inverse
of average flight length ( 1

⟨𝑙⟩ ) as a function of radius of territory, 𝑟𝑡, for
different values of 𝜇 since the efficiency is defined as 𝜂 = 𝑁𝑡𝑜𝑡𝑎𝑙

𝐿𝑡𝑜𝑡𝑎𝑙
= 1

⟨𝑙⟩𝑁 .
We observe that steps become truncated, so that the inverse average
step length increases as a function of 𝑟𝑡 (Fig. 3c). At the same time,
ewer targets are accessible to each forager because they are enclosed
y other agents’ territories. Therefore, the inverse of number of steps
etween two successive targets decreases as a function of 𝑟𝑡 for different
alues of 𝜇 (Fig. 3c inset). The relative reduction in the number of
argets found is however larger than the reduction in the distance
raveled (Fig. 3d) leading to net decrease in efficiency with increasing
𝑡 for 𝜇 greater than about 1.4. However, counter-intuitively, we note
hat the efficiency is higher for larger 𝑟𝑡 and larger number of foragers
hen 𝜇 is smaller than 1.4 (Fig. 3a,b). The reason for this is that,
or small 𝜇 and small 𝑟𝑡 values, very long jumps are more likely to
ccur. So, the agents end up taking long jumps without finding as many
argets. Therefore, the natural truncation in the step-lengths for larger
𝑡 values is in fact beneficial for the agents and it prevents them from
raveling long distances without finding resources. This is also reflected
n the fact that the relative reduction in the number of targets found is
maller than the reduction in the distance traveled for 𝜇 < 1.4 (Fig. 3d).
hus, territorial competition can be beneficial in the limit of low 𝜇,
e-localized search strategies.
When we compare the aerial (Fig. 2𝐴1−3) and the terrestrial

Fig. 2𝑇1−3) cases, we notice that, as for the terrestrial case, the
fficiency in the aerial case decreases when the number of foragers,
nd radii of territory increases (Fig. 4a,b). We also observe a lower
fficiency for the aerial case compared to the terrestrial case that is
ore pronounced for lower values of 𝜇. The average flight length in
he terrestrial case is lower than the aerial case, since in the aerial
ase, agents are still allowed to take longer jumps. Since the steps
till come from the same Lévy distribution, bigger flight lengths can
ccur (Fig. 4c). However, in the terrestrial case, ⟨𝑙⟩ decreases by
ncreasing 𝑟 because foragers are forced to stop if their path intersects
4

𝑡 t
ith other territories. The total number of targets found in both cases
ecreases by increasing 𝑟𝑡, since targets in other foragers territories, are
ot accessible to all of the foragers. However, the number of targets
ound does not significantly increase with decreasing 𝜇, compared to
he terrestrial case which is shown in (Fig. 4c inset). This can also be
een in the ratio of total targets found in the aerial case to the terrestrial
ase as well as the ratio of the average flight lengths in the two cases,
lotted as a function of 𝜇 in (Fig. 4d). We see immediately that the
verage flight length, ⟨𝑙⟩, ratio is significantly higher than the ratio of
argets of found 𝑁𝑡𝑜𝑡𝑎𝑙 for smaller values of 𝜇 (Fig. 4d). This results in a
reater suppression of the efficiency in the aerial case for small values
f 𝜇.
While we have so far considered the mean efficiency of the pop-

lation, we now consider a measure of the variance by computing
he standard deviation of the efficiencies among agents. We also look
t this standard deviation for many solitary foragers with different
tarting points. We consistently observe a higher standard deviation for
igher 𝜇 values even after traveling long distances (Fig. 5a), and the
eviations are of comparable magnitude for the terrestrial, aerial and
olitary searchers. Therefore, there is no significant difference between
erritorial searchers and solitary searchers in terms of the variance
f the efficiency among foragers. We note that, though the standard
eviation will eventually vanish after long enough times, it is important
o consider variance among individuals at intermediate times that could
e of biological relevance, such as seasons or reproductive intervals.
his standard deviation, in fact, increases monotonically as 𝜇 increases
n all cases (Fig. 5b). This indicates that foraging strategies with higher
values, or shorter step lengths may lead either to a highly efficient
earch or a search with an efficiency well below the average efficiency
f the population. For a search with smaller Lévy index and larger
light lengths, on the other hand, the variance is small, and all the
gents perform a search with efficiency close to the average. We can
ationalize this by considering that at higher 𝜇 values, due to the
maller step sizes, less space is sampled within a certain time, and so
f an agent is in part of a space which has more (or less) resources,
t will have a more (or less) efficient search. For smaller 𝜇 values,
onger flights are dominant, and chances of visiting different spots of

he landscape within the relevant time will be higher. Therefore, the
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Fig. 3. (a) Efficiency 𝜂 versus 𝜇 for eight agents (𝑁𝑓 = 8), and different radii of territory (𝑟𝑡 = 10, 20, 40, 80, 100). (b) Efficiency 𝜂 versus 𝜇 for 𝑟𝑡 = 100 and different number of
gents (𝑁𝑓 = 2, 4, 8). The spread is the standard error of the mean and the solid lines are the average efficiencies. (c) Inverse of average flight lengths, 1

⟨𝑙⟩
, as a function of 𝑟𝑡.

nset is the inverse of the average number of flights between two successive targets, 1
𝑁
. Both plots are for different values of Lévy index 𝜇 = 1.2, 2.0, 2.8. (d) Ratio of total targets

ound (blue) and total distance traveled (red) for 𝑟𝑡 = 100 and 𝑟𝑡 = 10.𝑁𝑓 = 8 in (c) and (d).
Fig. 4. (a) Efficiency for the aerial case (𝑟𝑡 = 40,100) and the terrestrial case (𝑟𝑡 = 40) for 𝑁𝑓 = 8. (b) Efficiency for the aerial case (𝑁𝑓 = 4, 8) and the terrestrial case (𝑁𝑓 = 4)
for 𝑟𝑡 = 100. (c) Average flight length for the terrestrial (solid lines) and aerial (dashed lines) case. Inset is total target found for the terrestrial(solid lines) and aerial(dashed lines)
case. (d) Ratio of total targets found (blue) and total distance traveled (red) between the aerial and the terrestrial cases for 𝑟𝑡 = 40 and 𝑁𝑓 = 8.
searcher is able to better sample the entire space, resulting in a smaller
variance.

Finally, we look at the efficiency in the destructive case, where
targets will not be able to grow back after they are found. In the ter-
restrial case, the behavior is similar to a single searcher (Viswanathan
et al., 2011) with no optimal value for 𝜇 (Fig. 6a), and the efficiency
5

decreasing as 𝜇 increases. We also see that increasing territories results
in slightly suppressed efficiencies. In the aerial case, however, we see
a peak in the efficiency as a function of 𝜇 especially for higher 𝑟𝑡,
indicating the existence of an optimal strategy for destructive foraging
in this case. This peak arises from the same effect in the non-destructive

aerial search where the efficiency is suppressed for smaller 𝜇 values and
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Fig. 5. (a) The standard deviation of the efficiency over distance traveled for the terrestrial, aerial and single forager cases. (b) Efficiency as a function of 𝜇 for the aerial,
terrestrial and single forager cases. The shaded region around the mean efficiency is the standard deviation measured after 𝑁 = 107 flights.
Fig. 6. Non-regenerative search efficiency as a function of 𝜇. The spread is the standard error of the mean and the solid lines are the average efficiencies. (a) For the terrestrial
case, we observe no optimal Lévy index 𝜇 and the behavior is similar to a single forager. (b) For the aerial case, we observe a tunable optimum in efficiency as 𝑟𝑡 increases.
𝑁𝑓 = 8 in (a) and (b).
e

higher 𝑟𝑡, since longer jumps are allowed, but agents cannot access the
targets (Fig. 6b). In this case, this suppression creates a slight peak in
the efficiency around 𝜇 = 1.6 for higher 𝑟𝑡 values (Fig. 6b). We note that
the optimum shifts to the left and becomes less pronounced for smaller
𝑟𝑡 indicating an optimum that is tunable by territory size.

4. Summary and discussion

It has been established that many solitary foragers such as goats (De
Knegt et al., 2007), spider monkeys (Ramos-Fernández et al., 2004),
nd even single cells (Harris et al., 2012) perform Lévy flight type
earch patterns while looking for sparse, randomly located resources.
hile the actual statistics of the searches are debated and myriad fac-
ors including memory, topography, spatial and temporal distribution
f resources can affect the optimal strategy (Reynolds and Bartumeus,
009; James et al., 2011; Yoda et al., 2012), it is clear that searches do
contain steps from long-tailed distributions and optimization principles
are at work. The analysis of simple, minimal models have provided
rigorous, quantitative frameworks to analyze such behavioral patterns
and uncover potential reasons for observed strategies.

In this spirit, to understand the effects of avoidance interactions
on foraging strategy, we have introduced a minimal model of group
foraging with territorial competition.
6

f

For a single searcher looking for regenerating resources, the ef-
ficiency of search is maximized when a combination of localized
and non-localized steps are taken. In the case of sparse targets, the
most beneficial search strategies observed are Lévy flights with 𝜇 ≈
2 (Viswanathan et al., 1999). We showed that, in the presence of
competition, strategies maximizing the efficiency are similar to those
for single searchers and the optimal Lévy exponent, 𝜇, is still approx-
imately 2. However, in both terrestrial and aerial cases, the efficiency
of the search generally decreases when the number of agents and the
size of territory increases, i.e. increasing competition leads to lower
overall efficiency for the group. However, for 𝜇 values close to 1, in
the terrestrial case, larger territories, limiting the motion of foragers,
are beneficial and increase the search efficiency because they cause a
truncation in foragers step lengths. This truncation prevents foragers
from traveling long distances without finding targets. Thus an increase
in territorial competition can increase the efficiency of the group.

For destructive foraging, where targets do not regenerate after being
consumed, the optimal search strategy for solitary foragers within the
minimal model is purely ballistic. This can change when targets are
distributed in patches or can occasionally evade capture or the land-
scape is porous and concave (Reynolds and Bartumeus, 2009; Ferreira
t al., 2012; Volpe and Volpe, 2017). Here, we show that, for terrestrial
oragers, similar to solitary foragers, the optimal strategy is still ballistic
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and the efficiency decreases as the size of territory or population of
foragers increase. However, for the aerial foraging case, where long
jumps are allowed, and resources are limited, an optimum appears. For
long-ranged searches, large territories limit the access to the targets by
other foragers, and since crossing is allowed, agents end up taking very
long jumps without finding any targets. This results in a suppression in
the efficiency for small 𝜇 values and creates an optimum that depends
n the territory size. The optimum eventually disappears for small
erritories since the targets become more accessible and the optimal
trategy becomes ballistic.
Finally, in addition to looking at the mean efficiency of the group,

e also focused on the variance in efficiencies among individuals which
s potentially of biological significance in contexts where bounding the
owest efficiencies in a group might be important. We found that the
ariance among the efficiencies of individual foragers in a group was
imilar to the variance in the efficiencies of many solitary foragers. For
mall Lévy exponent, 𝜇, values the variance is small, and for large 𝜇 val-
es the variance increases. This suggests that, if minimizing variance
s a selective pressure (to lower the chances of starvation for example),
hen a strategy with a lower 𝜇 than is optimal to maximize the mean
ay be manifested. In particular, for non-destructive foraging, this
ould lead to individuals and groups exhibiting Lévy strategies with 𝜇 <
. Interestingly such long-ranged searches may be more advantageous
or territorial competitors than solitary foragers as their mean efficiency
s also higher in this regime.
It is to be noted that we chose to model the search strategies of

ndividuals who are in the presence of competitors by Lévy flights. This
hoice was motivated by several reasons. It is the simplest model for
ninformed searches that covers the spectrum from Brownian to ballis-
ic searches by tuning a single parameter. There is also evidence that
atterns giving rise to Lévy searches might be intrinsically generated
y neural networks (Sims et al., 2019) in which case it is a natural
ase model that may be adaptively modified. It is also conceivable that
ndividual Lévy search strategies evolved first with fine-tuning coming
ater to deal with competition. Finally, many of species that we consider
uch as deer and monkeys (Ramos-Fernández et al., 2004; Focardi et al.,
009) switch between individual and group exploration, making a Lévy
earch a natural base behavior.
We now discuss specific examples of situations where our re-

ults may apply. Studies which include comparisons of individual
nd group behavior are particularly relevant and include analyses of
allow deer (Focardi et al., 2009) and spider monkey foraging (Ramos-
ernández et al., 2004). Interestingly, while individual deer were
ound to forage with a 𝜇 ≈ 2, consistent with the optimal foraging
rediction for sparse, regenerating resources (here grass), individual
onkeys performed searches for fruiting trees with 𝜇 ≈ 1.5. One
ossibility is that the clearly finite regeneration time for fruit could
esult in a shift toward more destructive type foraging and hence a
hift in optimal strategy toward ballistic searches (Santos et al., 2004).
n this case, though, one might expect much more ballistic searches
iven the vast disparity in regeneration time (year) and the foraging
ime (hours) making it almost fully destructive. Another intriguing
ossibility is that minimizing variance may be important for individual
onkeys, which, our work shows, leads to more ballistic searches as
ell. In both spider-monkeys and deer, it was apparent that groups
xhibited shorter ranged search patterns (either with a higher 𝜇 or
xponential) than individuals, which could be due to the effects of
roup cohesion disfavoring long range excursions. In the case of spider-
onkeys, the observed 𝜇 when individuals were part of a group was
ndeed close to 2, indicating, perhaps that minimizing variance is not
mportant when part of the group. There was also no evidence of
otable ‘terrestrial’ exclusion in these two cases (based on overlapping
rajectories), indicating either very short ranged mutual avoidance, if
ny, or ‘aerial’ mutual avoidance allowing individuals to pass by, but
ot forage, within a certain excluded zone. To really pin down any
7

voidance requires simultaneous tracking of multiple foragers in groups
and computing correlations between their locations. This would be an
interesting direction for future field studies.

It is interesting to note that many animals display foraging strategies
with 𝜇 that are below 2. These include Magellanic penguins foraging
with a Lévy exponent of 𝜇 = 1.7 (Sims et al., 2008), Blue sharks
with < 1.6 < 𝜇 < 2.3 (Humphries et al., 2010), sub-populations of
grey seals (Austin et al., 2004) with 1.1 < 𝜇 < 1.3, black-browed
and wandering albatrosses with 1.27 and 1.19 respectively (Humphries
et al., 2012), and jellyfish with 𝜇 as low as 1.18 (Hays et al., 2012).
While finite regeneration times, landscape size and heterogeneity and
termination can all be factors in these shifts (Santos et al., 2004; Raposo
et al., 2011; Zhao et al., 2015), our work suggests that minimizing
variance could be another factor to consider. Furthermore, in some
of these cases, such as the grey seals, albatrosses and jellyfish, the 𝜇
is so low that groups of them could potentially boost their efficiency
appreciably by displaying ‘‘terrestrial’’ avoidance. It would be fruitful
to look for signatures of such behavior in field data.

Animals involved in destructive foraging can also display shifts from
the ideal optimal ballistic 𝜇 ≈ 1 behavior. For example, groups of
black-tailed gulls display 𝜇 ∼ 1.5 in human-caused foraging trips where
the location of finite food resources is more predictable compared to
natural foraging trips (Yoda et al., 2012) while elephant herds engage
in destructive foraging (Shannon et al., 2006), with 1.8 < 𝜇 < 2.4 (Dai
et al., 2007). Again, while factors such as target distributions, target
mobility and landscape structure (Reynolds and Bartumeus, 2009; Fer-
reira et al., 2012; Volpe and Volpe, 2017) can contribute to these shifts,
our work indicates that ‘‘aerial’’ avoidance could be another factor that
could contribute to such deviations.

Finally, we note that the patchiness of resources can lead not only
to different optimal strategies (Reynolds and Bartumeus, 2009) but also
to long-term effects in species decline due to fragmentation of habitats
and reduction in encounter rates (Wosniack et al., 2013; Niebuhr et al.,
2015). It is interesting to consider how territorial mutual avoidance
that we have studied here might exacerbate such long-term effects.

Overall, our work has shown that territorial competition can lead to
the improved efficiency of very long-ranged searches and highlighted
factors that can shift the optimum strategy of foragers including se-
lective pressure on minimizing the variance of the efficiency favoring
lower 𝜇 or more long-ranged strategies, and aerial territorial com-
petition leading to the existence of shorter-ranged optimal strategies
for destructive foraging. We hope that our results will help future
work consider these additional factors quantitatively when analyzing
foraging data from the field that show deviations from the simplest
optimal strategies.
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