QUANTUM LIGHT FOR IMAGING, SENSING AND SPECTROSCOPY

EDITED BY: Roberto de J. León-Montiel, Mario Alan Quiroz-Juarez,

Omar Magana-Loaiza and Juan Torres

PUBLISHED IN: Frontiers in Physics

Frontiers eBook Copyright Statement

The copyright in the text of individual articles in this eBook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers.

The compilation of articles constituting this eBook is the property of Frontiers.

Each article within this eBook, and the eBook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this eBook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version.

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or eBook, as applicable.

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with.

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question.

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers' Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.

ISSN 1664-8714 ISBN 978-2-83250-394-2 DOI 10.3389/978-2-83250-394-2

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers Journal Series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world's best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view. By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact

QUANTUM LIGHT FOR IMAGING, SENSING AND SPECTROSCOPY

Topic Editors:

Roberto de J. León-Montiel, National Autonomous University of Mexico, Mexico Mario Alan Quiroz-Juarez, Autonomous Metropolitan University, Mexico Omar Magana-Loaiza, Louisiana State University, United States Juan Torres, The Institute of Photonic Sciences (ICFO), Spain

Citation: León-Montiel, R. d. J., Quiroz-Juarez, M. A., Magana-Loaiza, O., Torres, J., eds. (2022). Quantum Light for Imaging, Sensing and Spectroscopy.

Lausanne: Frontiers Media SA. doi: 10.3389/978-2-83250-394-2

Table of Contents

04 Editorial: Quantum Light for Imaging, Sensing and Spectroscopy

Roberto de J. León-Montiel, Mario A. Quiroz-Juárez, Omar S. Magaña-Loaiza and Juan P. Torres

Of Time and Space Resolved First Order Optical Interference Between Distinguishable Photon Paths

M. Fernandez-Guasti and C. García-Guerrero

16 Identification of Diffracted Vortex Beams at Different Propagation Distances Using Deep Learning

Heng Lv, Yan Guo, Zi-Xiang Yang, Chunling Ding, Wu-Hao Cai, Chenglong You and Rui-Bo Jin

24 Polarization-Entangled Two-Photon Absorption in Inhomogeneously Broadened Ensembles

Frank Schlawin

32 Distributed Edge-Enhanced Imaging With a Fractional Spiral Phase Filter Using Random Light

Huahua Wang, Jian Ma, Zhixin Yang, Haoran Du, Xingwang Kang, Hengzhi Su, Lu Gao and Ze Zhang

- **38** High-Dimensional Entanglement of Photonic Angular Qudits
 Graciana Puentes
- 46 Nonlinear Quantum Optics With Structured Light: Tightly Trapped Atoms in the 3D Focus of Vectorial Waves

R. Gutiérrez-Jáuregui and R. Jáuregui

58 Entangled Biphoton Enhanced Double Quantum Coherence Signal as a Probe for Cavity Polariton Correlations in Presence of Phonon Induced Dephasing

Arunangshu Debnath and Angel Rubio

72 Frequency Conversion of Optical Vortex Arrays Through Four-Wave Mixing in Hot Atomic Gases

L. A. Mendoza-López, J. G. Acosta-Montes, J. A. Bernal-Orozco, Y. M. Torres, N. Arias-Téllez, R. Jáuregui and D. Sahagún Sánchez

81 Multiple Pathway Quantum Beat Spectroscopy

Zhenhuan Yi, Tuguldur Kh. Begzjav, Gombojav O. Ariunbold, Aleksei M. Zheltikov, Alexei V. Sokolov and Marlan O. Scully

88 Quantum Interferometric Metrology with Entangled Photons

Yuanyuan Chen, Ling Hong and Lixiang Chen

OPEN ACCESS

EDITED BY Xiongfeng Ma, Tsinghua University, China

REVIEWED BY He Lu, Shandong University, China

*CORRESPONDENCE Roberto de J. León-Montiel, roberto.leon@nucleares.unam.mx

SPECIALTY SECTION

This article was submitted to Quantum Engineering and Technology, a section of the journal Frontiers in Physics

RECEIVED 27 August 2022 ACCEPTED 06 September 2022 PUBLISHED 20 September 2022

CITATION

León-Montiel RdJ, Quiroz-Juárez MA, Magaña-Loaiza OS and Torres JP (2022), Editorial: Quantum light for imaging, sensing and spectroscopy. Front. Phys. 10:1029478. doi: 10.3389/fphy.2022.1029478

COPYRIGHT

© 2022 León-Montiel, Quiroz-Juárez, Magaña-Loaiza and Torres. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Quantum light for imaging, sensing and spectroscopy

Roberto de J. León-Montiel^{1*}, Mario A. Quiroz-Juárez², Omar S. Magaña-Loaiza³ and Juan P. Torres^{4,5}

¹Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico, ²Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Mexico City, Mexico, ³Quantum Photonics Laboratory, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States, ⁴ICFO—Institut de Ciencies Fotoniques, Barcelona, Spain, ⁵Department of Signal Theory and Communications, Campus Nord D3, Universitat Politecnica de Catalunya, Barcelona, Spain

KEYWORDS

non-classical light sources, quantum technologies, quantum imaging, quantum-enhanced spectroscopy, atomic quantum optics, quantum metrology, structured light, machine learning

Editorial on the Research Topic

Quantum light for imaging, sensing and spectroscopy

The last two decades have witnessed an enormous progress in the development of novel ideas and technologies for sensing and imaging based on the quantum properties of light. Our ability to generate, manipulate and detect non-classical states of light has opened new avenues in experimental imaging, sensing and spectroscopy, where unprecedented levels of sensitivity and resolution can be attained. In this Research Topic, we aim at highlighting state-of-the-art research, and their potential applications, in imaging, spectroscopy and metrology. This includes the generation and control of quantum optical states, such as single-photon sources, entangled photon pairs, and structured light beams.

This Research Topic, issued within the Quantum Engineering and Technology section of Frontiers in Physics, includes one brief research report, eight original research articles, and one review article. These contributions cover applications of entangled light in metrology and spectroscopy, the generation of spatially-structured non-classical states of light, as well as imaging applications using correlated thermal light and machine learning.

Chen et al. provide a review article on both theoretical and experimental entangled-photon-enabled quantum interferometric metrology. Topics covered by the review include Hong-Ou-Mandel interferometry with frequency and time resolution, entanglement-assisted single-photon absorption and two-photon absorption spectroscopy using energy-time correlated photon pairs. Scully et al. introduce a spectroscopy technique based on the monitoring of quantum beats in the cooperative light emission from an atomic (or molecular) sample. The use of entangled photon pairs in the context of spectroscopy is discussed by Schlawin, who explores the possible role of

León-Montiel et al. 10.3389/fphy.2022.1029478

the sample's inhomogeneous broadening and photons' polarization degrees of freedom in the quantum enhancement that entangled two-photon absorption might offer to experimental nonlinear spectroscopy. Debnath and Rubio further show that entangled light can also be used as a probe for extracting information about dissipative cavity exciton-polariton dynamics in the ultrafast regime.

The generation and control of non-classical states of light are discussed in two contributions. Puentes discusses a method for the generation of entangled two-photon states in high-dimensional Hilbert spaces by placing multiple angular slits in the path of spontaneous parametric down-converted entangled photon pairs. This result can be relevant for quantum information protocols where high-dimensional encryption is required. Mendoza-López et al. demonstrate theoretically and experimentally the frequency conversion of multiple optical vortices by inducing a four-wave mixing process in a hot vapor of rubidium atoms. The authors' study adds to the available protocols for the generation and control of photonic orbital angular momentum in atomic ensembles.

The potential of structured light for quantum physics is discussed by Gutiérrez-Jáuregui and Jáuregui who show that nonlinear processes, at the single-photon level, might be produced in the light-matter interaction of tightly trapped atoms in the focus of vectorial waves. Furthermore, Lv et al. demonstrate that propagating spatially-structured modes of light can be identified (and reconstructed) using deep learning. This method is particularly relevant in quantum applications where structured light is susceptible to phase distortions due to propagation in noisy environments.

Wang et al. demonstrate a theoretical and experimental scheme for "fractional" ghost imaging. This is managed by symmetrically placing the object to be imaged and a fractional spiral phase filter in the test and reference pseudo-thermal beams of a lensless ghost imaging system. Finally, Fernandez-Guasti and Garcia-Guerrero demonstrate an interesting scheme that allows for two non-degenerate photon beams to exhibit first-order optical interference. These results call for a possible reformulation of the "which-way information" concept for non-degenerate photon interference.

To conclude, we would like to mention that the study of quantum light for imaging, sensing, and spectroscopy is a timely and exciting research field at the forefront of physics and technology. It has the potential to impact many areas of science and engineering, from material science to quantum communications and quantum computing. We expect this Research Topic to provide valuable information and guidance for future research along these lines.

Finally, we would like to thank all authors, reviewers and administrative staff at Frontiers, without whom this Research Topic could not have been possible.

Author contributions

All authors have made a substantial, direct, and intellectual contribution to the editorial and approved it for publication.

Acknowledgments

RJLM thankfully acknowledges financial support by DGAPA-UNAM under the project UNAM-PAPIIT IN102920. OSML acknowledges support from the National Science Foundation through Grant No. OMA MPS—2231387.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.