GEM-RL: Generalized Energy Management of
Wearable Devices using Reinforcement Learning

Toygun Basaklar*, Yigit Tuncel*, Suat Gumussoy', and Umit Ogras*
*Department of Electrical and Computer Engineering, University of Wisconsin - Madison, Madison, WI, USA
fSiemens Technology, Princeton, NJ, USA

Abstract—Energy harvesting (EH) and management (EM) have
emerged as enablers of self-sustained wearable devices. Since EH
alone is not sufficient for self-sustainability due to uncertainties
of ambient sources and user activities, there is a critical need for
a user-independent EM approach that does not rely on expected
EH predictions. We present a generalized energy management
framework (GEM-RL) using multi-objective reinforcement learning.
GEM-RL learns the trade-off between utilization and the battery
energy level of the target device under dynamic EH patterns
and battery conditions. It also uses a lightweight approximate
dynamic programming (ADP) technique that utilizes the trained
MORL agent to optimize the utilization of the device over a longer
period. Thorough experiments show that, on average, GEM-RL
achieves Pareto front solutions within 5.4% of the offline Oracle
for a given day. For a 7-day horizon, it achieves utility up to 4%
within the offline Oracle and up to 50% higher utility compared
to baseline EM approaches. The hardware implementation on a
wearable device shows negligible execution time (1.98 ms) and
energy consumption (23.17 pJ) overhead.

Index Terms—Energy harvesting, multi-objective reinforcement
learning, dynamic programming, energy management

I. INTRODUCTION

Wearable devices have become widely popular for health mon-
itoring applications, activity recognition, smart entertainment
systems, and smart fashion [1]-[3]. These devices typically
include a lightweight, small, rechargeable battery to avoid
user discomfort. However, small battery capacities limit the
computational power and operating lifetime of the device.
Energy harvesting (EH) from ambient sources has emerged as
a promising solution for self-sustainable wearable devices [4],
[5]. However, relying only on EH is not sufficient to achieve
self-sustainability due to the uncertainties of ambient sources.
Therefore, recent research has proposed energy management
(EM) approaches to improve the application performance while
removing the manual recharge requirements [4], [6]-[8].

The primary goal of EM is to maximize the utilization of the
device by judiciously allocating the available energy according to
the users’ and applications’ needs. EM approaches should cope
with the stochastic behavior of the harvested energy and user
patterns. State-of-the-art research employs dynamic optimization
approaches along with a prediction method that obtains expected
EH values [8], [9]. Thus, their performance depends critically
on the accuracy of these predictions. The major drawback of
predictive approaches is the critical dependency on user activity
and location [9]. Additionally, solving an optimization problem
for a specific objective in a highly dynamic environment is not
practical. For example, users may want to intervene to save
battery for a given day which introduces a second dimension

to the optimization problem. Therefore, there is a critical need
for a prediction-free and user-independent EM approach that
also enables a multi-objective optimization.

This work presents a generalized energy management frame-
work using multi-objective reinforcement learning, GEM-RL.
It learns the trade-off between utilization and the battery energy
level of the target device under dynamic EH patterns and
battery conditions without relying on forecasts of the harvested
energy. GEM-RL transforms multi-dimensional objective space
into a single dimension by assigning weights (preferences) to
each objective [10]. It employs a multi-objective version of
the TD3 (MO-TD3) [11] algorithm to obtain a single policy
network that covers the entire preference space. The inputs
of the policy network consist of battery and harvested energy-
related values (state) and the preferences. This formulation
enables an optimal policy (energy allocations) for any user-
specified preference at run-time. We randomly sample an EH
pattern, an initial battery energy level, and a preference vector
for each episode during training. This enables the GEM-RL
agent to generalize its policy for different EH patterns and
battery energy conditions. GEM-RL also uses a lightweight
approximate dynamic programming (ADP) approach that utilizes
the trained agent to optimize the utilization of the device over
a longer horizon. We also implemented an offline Oracle and
two baseline EM approaches [4], [8] as comparison points.
Extensive experiments show GEM-RL achieves Pareto front
solutions within 5.4% of the Oracle for a given day. For a
horizon of 7 days, it achieves utility up to 4% within the Oracle
and up to 50% higher utility compared to baseline approaches.
Hardware implementation of GEM-RL shows the execution
time and energy consumption overhead per inference are 1.98
ms and 23.17 pJ, while the memory footprint of the framework
is only 118 KB. Our major contributions are:

« GEM-RL, a generalized energy management framework using
multi-objective reinforcement learning that learns the trade-
off between any multiple objectives under various energy
harvesting patterns and battery conditions,

« A broadly usable wearable device environment that can be
used as a benchmark for evaluations of RL algorithms,

« Extensive evaluations that show near-optimal results within
5.4% of the Oracle, on average, for a given day and utility
up to 4% within the Oracle and up to 50% higher utility
compared to baseline approaches for a horizon of 7 days,

« Wearable hardware implementation with 118 KB memory
footprint and 23.17 uJ per inference energy consumption.

In the rest, Section II reviews the related work, while Section
III provides an overview of the problem. Section IV formulates
the RL environment dynamics and presents the proposed energy
manager, GEM-RL. Finally, we evaluate and discuss the results
in Section V and conclude the paper in Section VI.

II. RELATED WORK

Recent research on energy harvesting and management
focuses on optimizing the allocation of harvested energy to
maximize device utilization while considering the application
requirements and achieving self-sustainability [4], [7]-[9].
Kansal et al. [4] propose linear programming to determine the
duty cycle of the target device. Their approach uses predictions
of EH using an exponentially weighted moving average to
determine future energy allocations. Bhat et al. [8] solve a
relaxed convex optimization that maximizes the utility while
achieving self-sustainability. Their approach first decides initial
energy allocations for a given period based on the predictions
of future EH values. It then makes corrections to these energy
allocations by considering variations between future and actual
EH values. Hussein et al. propose a two-stage approach, AdaEM,
that adapts the uncertainties in the EH values and activities of the
user [9]. The first stage involves a supervised learning method to
learn the distribution and uncertainty of the EH of a specific user
based on their activities and location. The second stage solves a
dynamic, robust optimization problem that takes the output from
the first stage to instantiate the problem. However, their approach
is not generalizable since the activity prediction is trained for a
specific user or set of users, and the quality of the decision of
the second stage heavily depends on the accuracy of the first
stage. Recently, RL-based approaches have emerged to achieve a
prediction-free and generalizable EM. RLMan [7] is a recent EM
approach that utilizes RL to maximize the packet generation rate
in a point-to-point communication system. However, their setting
and reward function does not generalize to other applications
and performance metrics such as utilization and accuracy. A
more recent study, tinyMAN [12], uses RL with a generalized
reward function to obtain near-optimal energy allocations while
achieving self-sustainability. The main drawback of tinyMAN
is that it is trained on a cluster of users that has similar EH
patterns which suggests that generalization aspect is absent.

In strong contrast to prior approaches, we propose a gen-
eralized energy management framework using multi-objective
reinforcement learning (MORL), GEM-RL, that learns a trade-
off between multiple objectives under dynamic EH patterns
and battery conditions. GEM-RL employs a general utilization
function [8] and the battery energy level of the target device
as its objectives. It is prediction-free and user-independent as
it learns from various EH patterns of 4772 users and various
battery conditions. It also uses a lightweight ADP approach that
utilizes the trained MORL agent to optimize the utilization of
the device over a longer horizon. We also show that GEM-RL
can be embedded in a wearable device prototype.

III. OVERVIEW AND PRELIMINARIES

The proposed GEM-RL framework considers an environment
that consists of an energy harvesting wearable device with

processing capability, an EH source, and a rechargeable battery,
as depicted in Figure 1. This section overviews these components
as a background for the approach presented in Section IV.
Wearable Device and its Utility: The wearable device im-
plements the target application, such as health monitoring. It
should provide a high quality of service (QoS) to the application
while maintaining the battery energy at a certain level. This
QoS is modeled by a utility function, which is a non-decreasing
function of the energy allocated to the application. That is, the
application can perform better (e.g., provide higher accuracy,
process data faster, remain active longer) when allocated more
energy. The benefits can diminish and eventually saturate if the
extra energy becomes redundant due to another constraint, such
as the device’s maximum capacity. We emphasize that GEM-RL
supports any arbitrary non-decreasing utility function unlike
prior work that requires convex functions [8], [9], [13].

EH Source and Battery Dynamics: The EH source generates
energy that can be either transferred to the device or stored in the
battery. GEM-RL is oblivious to the type (e.g., solar) of energy
harvesting source. It also does not rely on any predictions of
the harvested energy, GEM-RL uses only the actual harvested
energy (EH) at the end of a time step.

In this work, GEM-RL uses one-day long episodes (I' =
24 hours) divided into one-hour time steps (£). We denote the
battery energy level at the start of time interval ¢ as EP, the
harvested and the allocated energy in time interval t as EF,
E# respectively. There are two physical constraints on the
battery energy level. The first constraint ensures that the battery
maintains a minimum energy level, EB. | to stay idle so that
the device does not turn itself off. The second constraint ensures
that the battery energy level cannot exceed its limits, EZ . We
can define the battery energy dynamics in this environment as:

EE, =EF+Ef —-Ef teT
EB. <EB<EB . teT

maxT:?

EH Dataset: GEM-RL can be trained with any available EH
data. To provide reproducible results that can be compared with
prior work, we use the publicly available American Time Use
Survey [14] and solar/motion EH models from literature [5].
Our environment randomly draws the EH on each time step
from this dataset. We emphasize that the proposed GEM-RL
framework is general to work with any dataset, but we are not
aware of any other publicly available data.

(1

IV. PROPOSED GENERALIZED ENERGY MANAGEMENT
FRAMEWORK - GEM-RL

A. Wearable Device Environment Dynamics for RL

RL techniques enabled breakthrough results in a wide range of
topics, including autonomous driving, robotics, and gaming [11].
Impressive research progress in applying RL to these areas is
primarily due to the broadly used open-source ML environments.
For example, Google DeepMind’s StreetLearn [15] environment
and Microsoft Research’s AirSim [16] lead to several novel
approaches for autonomous driving. The first major contribution
of this work is a general wearable device environment for RL.
This environment enables us to apply the proposed MORL

6 . . "‘.\ - —— AR ¥
i ‘Wearable Device Environment for RL \ ‘:" 2160 R o z
! 1 4 e B
I li\ Ef p T I iua ‘.‘:‘ 5 §
| EH Source =~ ———> Battery '— ! ’." B gg = % : -
; 07\ E‘B E J” E 64 .’s‘. ; Iy o
{ —* Processing i e 32 .. . 3
\ L | J |/ s, sam| 5~ </
Ef } E4 L u(EDH EFT/ E% 2 w0 w0 w3 B [
[o . X X i Daily Utility ", E N
L Multi-objective Reinforcement Learning (MORL) Agent il - 0 123 Time(Houn To 24
Preference: w = {w;, w;} f L] e, t ‘ﬂi‘. \‘\
[]
i Approximate Dynamic Programming } Battery)
é{ - Constraint]™ 4w
. . “ .
_ Operating Preference Point J 5 5 T P —_— -

Fig. 1: Overview of GEM-RL

techniques and ADP to wearable device energy management.
We also plan to release it to the public to catalyze research
in this area and enable the broader RL community to use our
wearable device environment as a benchmark.

The proposed wearable device environment is designed
with generality in mind to enable any reinforcement learning
technique. The state space is defined as S C R®:

- EB: The battery energy level at time t.

- EH |: The EH during previous time ¢ — 1.

“~1 EA: The cumulative energy allocations until time ¢

- EJ: Initial battery energy at the beginning of a episode.

- t: The current time step.

- Zi_:h E¥: The cumulative EH until time ¢.

The environment either generates random EH patterns (E)
and initial battery energy conditions (EZ) during training or
takes these as inputs to the system for evaluation purposes.

The one-dimensional action space corresponds to the allo-
cated energy at every time step (E;* € R). It is bounded by
EA.. from below such that the device can stay in an idle state.

The agent can have one or multiple objectives to consider.
In this work, we consider two competing objectives: the utility
of the target device and the battery energy level. The goal of
the agent is to learn the trade-off between the utility of the
device and the battery energy level under certain constraints.
As mentioned before, GEM-RL supports any arbitrary utility
function. To provide a fair comparison with prior work, our
experimental e\;a]uations use the following utility function
u(Ef) = ln(E—E}_—}, used in literature [8].

In the MORL ‘setting, the objectives generally have different
scales. To alleviate this problem and to impose the constraints
on the battery, we define our reward function as:

[er'w(Ef), By" In(EP)] Ef > Emn
(BB — B2, |EF — EE.l) EP < FE,,
[y w(EL), |EF — ERac| + By In(EP)] EP > Efa.
2
For our experiments, we use the coefficients « =1 and 5 =3
and the discount factor as v = 0.95. We impose the minimum
battery energy level constraint using |[EF — EB, | and the
maximum battery energy level constraint using |[EZ — EZ |
and assigning EP = EB__ if the battery energy level exceeds
the maximum capacity of the battery.
An episode terminates if time T = 24 is reached or the battery
is completely exhausted, EZ < 0. We develop our environment

Tt =

in Python and register it as an OpenAI’s Gym [17] environment
such that any RL algorithm can further adopt it. We plan to
release it to the public under a GNU license.

B. Proposed MORL Framework

The goal of the MORL algorithm is to obtain a policy that
yields a solution on the Pareto front for a given preference, as
shown in Figure 1. The Pareto front is a set of solutions that
are non-dominated by each other but are superior to the rest of
the solutions in the solution space. In this work, we employ a
recent MORL algorithm [11], MO-TD3, to learn to trade-off
between utility and battery energy level. In this algorithm, the
network takes preference vectors of the objectives as inputs
along with the state vectors. It also employs novel approaches
for efficient exploration of the preference space.

Algorithm 1 describes the training of the MORL agent for
our framework. We measured the idle energy consumption of
the target wearable device for an hour as 0.64 J. Therefore, we
set B/, to this value. Similarly, the minimum battery energy
level (EB,) is set as 1 J to allow our MORL agent to cover
the corner cases where the battery is drained.

At each episode, we randomly choose an EH distribution
from the dataset, an initial battery energy level, and a pref-
erence vector, w. The agent then interacts with the environ-
ment using its actor-network (mg). The transitions collected
(8¢, @z, Ty, 8, w}, done) are then stored in the experience replay
buffer D. Then, the algorithm samples a minibatch (B) of
transitions from D and updates both the actor and critic networks.
The training terminates when N number of time steps is
reached. We implement GEM-RL in Python. The modified
hyperparameters from [11] are given in Table 1.

C. Proposed Approximate Dynamic Programming Technique

The MO-TD3 algorithm presented in the previous section
determines near-optimal energy allocations in a single day for
a given preference vector. Next, we need to determine the

TABLE I: Definition of the hyperparameters and their values.

Hyperparameter Description Value

N Number of Time Steps 6 x 10°
D Experience Replay Buffer Size 1 x 106
B Minibatch size 128

n Learning Rate 1x1074
N, Number of hidden layers 3

Nn Number of hidden neurons 64

Algorithm 1: GEM-RL: MO-TD3

Algorithm 2: GEM-RL: DP Technique

1 Initialize: Replay buffer D, Critic networks Qs,,Qs,

2 and actor network g with parameters 61, 62, and ¢,

3 Target networks Qg; <— Qg,, Qg < Qo,, Ty < Ty.

4 forn=0: N do

if done = T'rue then
Reset the environment to random EE and EH pattern.
Sample a preference vector w.

Observe state s; and select action a;.

Interact with the environment and store the transition

10 (st,at,Tt, ', w, done) in D.

1 Sample random B transitions from D; a + mg (s, w)

12 Y < T +yargg mini=r2 WTQQ: (s',a,w)

13 Losscritic, (0:) = E [(y - Qo,(s,a, w)) 2]

14 VsLossactor, (¢) = E [Vﬂ wT Qg (5,a,w)V 4my(s, w)]
15 Update critic, actor, and target network parameters.

[I

preferences that maximize the utility over a longer period of time,
such as a week or month. This section presents our second major
contribution, a lightweight approximate dynamic programming
(ADP) algorithm that maximizes the device utility over a longer
horizon (H) while maintaining a certain battery energy level
EZ at the end of the horizon.

Algorithm 2 outlines the proposed novel ADP algorithm.
Suppose the time horizon H is divided in the days h, 0 < h <
H. The state S, = {EJ},E£ } consists of the initial battery
energy level (E{‘;-j;‘) and the target battery energy level Eﬁ‘ for
step h (Line 1). The action/decision corresponds to a preference
vector at the beginning of each day w € 2 (Line 1). We define
Un(w, Sp) = 23:01 u(E{') as the total utility obtained at the
end of day h, starting from state .S}, for the preference w. Using
these definitions, our DP formulation becomes maximizing the
total utility while meeting a minimum battery constraint, EZ
at the end of the horizon (Line 2):

str?

H
max Y Un(w,Sh), st Ef, >Ef,, 3)
h=0

wel

Next, we express the principle of optimality [18] as:
maxy,eq Up—p(w,Sh)+Uj_;(w,Sh_1). Here, the * symbol
denotes the optimality of a given function. Then, we solve
this equation using a backward recursion since we know
EZ, > Ef,, should be satisfied at the end of the horizon.
However, an exact DP solution is not feasible on a wearable
device due to the limited computational resources. Therefore, we
approximate U} _,(w, S,_,) at each step except the first step
(h = 0). To this end, we first generate an energy battery level set
by dividing the battery energy level range, [0, 160], into M equal
values (Line 4). We then use these M levels as the initial battery
energy levels in state vector Sy, = {Ef} ,Ef} VYm e M.
Then, we use uniformly distributed energy allocations based on
the expected EH, and actual initial energy battery level, Ef _ :

E£=0_E(‘}E:s m+22;é ::0 E’J{f

Using these energy allocations, we then obtain the previous
utility values as Ug_,(w, Sh—1,m)-

A
Et,.m_

1 State: Sy = {Eg, , EJ }, Action: w € Q

2 Formulation: maxco Zf:[] Un(w, Sh) st E?H > EE.,.
3 maxXweq Un=p(w,Sn)+ Ui 1(w, Sh—1)

4 Initialize: Ef m € M and EE,,, =80+ A

s for h= H: 0do

6 if h =0 then

7 argmax,, Up(w,Sy) subject to Eﬂ >EE,,,

8 else

9 E;‘j‘m given by Equation 4

10 Find Up_;(w, Sh—1,m) ¥V w € Q,m € M with B/, .
1 Find Up(w, Sh,m) Vw € 2, m € M using MORL.

12 argmax,, .. Un(w, Sh,m) + Up_1(w, Sh-1)

13 subject to Eﬁ >FEE,,,

14 Assign EE_,, = Erj?h_l

We run our trained MORL agent for each {w, Sh .} pair to
calculate the utility for day h. Then, we simply select the pair
{w,Sp m} that achieves the maximum of the Ux(w, Sh.m) +
Uy _,(w,Sh—1,m) while achieving the EE,,, constraint. We
then use this state’s initial battery energy (Ef'}i;_l‘m) as the
target battery energy EZ,,, of the previous step, h — 1. We
recursively apply this to decide the battery constraints EZ_,
for the previous steps until we reach the first step, h = 0.
As a result, the proposed ADP approach optimizes the utility
of the device by determining the preference vector w at the
beginning of each day over a longer horizon. It also calculates
the difference between the actual battery energy level at the end
of the day and the expected EZ,,, for step h = 0 and feeds
this difference (A) back to the algorithm to correct the EB .
at step h = H for the next day.

V. EXPERIMENTAL EVALUATIONS

A. Experimental Setup

Optimal Oracle: We designed an offline Oracle using CVX [19].
It solves the following optimization problem for a given
preference and finite horizon:

T—1

mazimize Z ay'wiu(Ef) + By'we In(EE) 5)
t=0

subject to Eff > Ef, and EB, <EPF <EB_.

Since the Oracle uses the actual harvested energy values and
allocations, it is infeasible, but it provides optimal results.

Baseline Approaches: We implemented two prior ap-
proaches [4], [8] for comparison. We use the median user’s
expected EH pattern in the EH dataset described in Section III,
and extend it over the horizon of 7 days. Both approaches use
these future EH values to determine future energy allocations.
Evaluation conditions: The training set excludes the users
corresponding to 10°", 30" 50 70%" 90" percentile
cumulative EH in the dataset. We denote these EH patterns
as EH;, EH», EHs, EHy, EH5, respectively. We also initialize
the battery (EL) at three different levels: 20% (32 J), 50% (80

« GEM-RL - E‘;: 12 Oracle - EnB: 32

*GEM-RL-E[:80 — & - Oracle-Ep: 80

¢ GEM-RL-E]: 128 — & -Oracle-Ej: 128

S160 2 g
é 128 b‘m. é& %
. My e
& 96 qhﬂ & :_
S 64,
5 32
g , [an) XA .. do) (10) & .
0 20770 .60 80 ", 80 0 20 40 60 "-.,'so 0 20" 40 60, 80 [0 20 40 60 80
‘.-'"Dail}' urility."'-..' Daily utility 5 .+ Daily utility W, Daily utility X
S 16 (¢ = Or . K R o= L
2% 2a) "= Oradle 1/1(2b) N 2ad) o [(2e) i el
o |FEE R et EEEEEIEEEEEEEIEE?@E?BEEE ‘I 5 e SccE e coeEgEERT b CHma
S 1607Ga) = 8El§lleRL (3b) [——r = ez [RTY) S
2. 80 - - EGmnEEEFEE'EEEE
=
0 (3¢) SesoepaERee EE%E (3e)
s 30 (4b) [E0) m dd) - (€ I
= 15 " ol mﬁjﬂ
= 8, P ol P pe P P el e | o w0, | et B %mnﬂnnﬂn
0 1 8 240 6 12 18 24!0 6 12 18 24 6 12 18 6 12 18 24
Time (hr) Time (hr) Time (hr) Time (hr) Time (hr)

Fig. 2: (1): Comparison of Pareto front solutions between an offline Oracle and GEM-RL using EB;, EB, and EB3 (a-e) EH;,
EHs, EHs, EHy, EH5, respectively. (2-4): Energy allocations, battery energy level, harvested energy obtained by Oracle and
GEM-RL for a) EBy, w = {1,0}, b) EBg, w = {0.5,0.5}, ¢) EB3, w = {0, 1}, d) EBy, w = {0.75,0.25}, e) EB3, w = {0.5,0.5}

1), 80% (128 J) of the battery capacity (160 J) and denote these
as EB;, EB,, EBj, respectively. We refer the combinations of
the EH patterns and battery levels as the evaluation set.

B. Performance Evaluation of our MORL Agent

Figure 2 shows the Pareto front solutions of the Oracle
and GEM-RL for each configuration in the evaluation set.
Specifically, Figure 2(1a) plots the Pareto front solutions for
three levels of EF for the user with an EH pattern of EH;. We
observe that GEM-RL closely follows the Pareto front obtained
by the Oracle. For example, the mean absolute percentage error
(MAPE) with respect to Oracle averaged over all preferences
obtained by GEM-RL is 5.5% for EB; (red curve). Similarly,
the MAPE is 6.4% and 6.8% for EB5 (blue) and EB3 (black),
respectively. The remaining plots (1b)—(1e) show that GEM-
RL consistently performs very close to the offline Oracle. For
instance, the MAPE over all preferences for EB;, EBo and
EBj; is 6.0%, 3.81%, 3.88%, respectively, for EHs shown in
Figure 2(1e). Considering all configurations in the evaluation set,
the total MAPE averaged over all preferences is only 5.4%. We
further investigate the behavior of our approach by presenting
the energy allocations in a day for a given initial battery
energy level, EH pattern, and preference in Figure 2(2a-e). Our
energy allocations closely follow those generated by Oracle.
For example, Figure 2(2a) and (3a) show the energy allocations
and battery energy levels obtained by the Oracle and GEM-RL
for EBy with w = {1, 0}. In fact, this configuration is a corner
case where the initial battery energy level is 20% (EB,), the
harvested energy is low (EH;), and the preference (w = {1,0})
is set to maximize the utility without considering the battery
energy level. GEM-RL closely follows the Oracle even in this
condition in terms of energy allocations and battery energy level,
and its utility is within 0.5% of the Oracle’s, without violating

any constraints. Moreover, we observe that GEM-RL responds
to changes in EH similar to the Oracle. The error values and
the Pareto front and individual solutions illustrated in Figure 2
clearly demonstrate that GEM-RL successfully optimizes the
trade-off between utilization and the battery energy level for any
unseen EH pattern, battery condition, and preference without
relying on the forecasts of harvested energy using a single
extremely light-weight policy, as demonstrated in Section V-D.

C. Performance Evaluation of GEM-RL for Longer Period

The previous section shows the performance of the MORL
algorithm throughout a single day. This section evaluates GEM-
RL’s novel ADP approach, over 7-day horizon (H = 7) with
M = 25 battery levels and EE,,, = 80 J final battery level
constraint. Figure 3 shows the cumulative utility, daily utility,
and battery energy levels obtained by the Oracle, baseline
approaches [4], [8], and GEM-RL for EB4, EBs and EB3. Since
the prior approaches [4], [8] decide future allocations from the
predicted EH values, they completely drain the battery on the
first day for corner cases such as low initial battery and low EH
as shown in Figure 3(1-3a). To analyze the performance of the
approaches, we calculate the MAPE of cumulative utilities over 7
days with respect to Oracle for each EH pattern in the evaluation
set. We set the MAPE to 100% if the algorithm completely fails
to keep the device on. Table II shows that GEM-RL achieves
cumulative utility up to 4% within the Oracle and up to 50%
higher cumulative utility compared to baseline approaches for
7-day horizon. Additionally, GEM-RL does not violate any
constraints, whereas the baseline approaches [4] and [8], cause
violations 16% and 10% of the total instances, respectively.
Thus, we conclude that GEM-RL achieves near-optimal energy
allocations with various EH patterns and battery conditions for
an arbitrary horizon.

— B —-0Oracle [4] -2 -[8] —EH-GEM-RL
2400 400 400,
= £
E 300 300 300 =8
° EI/EE = g
2 200 200 o g E T 200 FEE
3 f=¢
£ 100 E"E;E ﬂg_ﬂwo EE 100 EQE
=1
3 J|Egzz® & LB
34567 1234567 1234567
60 60 : s [
N
2w o "BBEERY o cAEEERS
= / =] W
220 E:Eﬁ\'f'ﬂn 200 o ol 2 LIPS
HEE
S s as87 1234567 1234567
5150 150 oo L/ nn—
100 EEg g 4100 JZI’EE ﬁﬁwu v B Eﬁii
3 5o o sl /T 50l B ¢
=y R - g1 803 /-5 ™" aomsH
£ 0 h === B 0 0 Shlmt 2=
850, Toad | s -50
01234567 01234567 01234567
Day Day Day

Fig. 3: Comparison of cumulative utility, daily utility, and battery
energy level for a longer period of time between an offline
Oracle, baseline approaches, GEM-RL for (a) EB;, EH;y, (b)
EB», EHy, and (c) EB3, EHs.

D. Energy-Performance Evaluation of GEM-RL on Hardware

We deployed our MORL agent using TensorFlow Lite for
Micro (TFLM) flow [20] and implemented the GEM-RL
framework on the TI CC2652R microcontroller (MCU). The
MCU has an ARM Cortex M4F running at 48 MHz and has 352
KB of flash memory and 80 KB of SRAM. The execution time
and energy consumption overhead of a single policy network
call are measured as 1.98 ms and 23.17 pJ, respectively. There
are 24 network calls in one day for the specific preference. To
determine this preference, the total execution time and energy
consumption overhead of the ADP solutions are 7.32 s and
84.12 m], respectively. Hence, in total, the GEM-RL framework
takes up to 7.37 s and consumes 84.58 ml energy in a single
day. These results are negligible compared to 24 hours and 160
J battery capacity. Moreover, considering the TFLM operators,
inputs, outputs, intermediate values, and our agent’s network
weights, the memory footprint of GEM-RL becomes 118 KB.
These results suggest that GEM-RL provides an efficient general
EM framework that is deployable on a wearable device.

TABLE II: MAPE of cumulative utilities over 7-day horizon
for each configuration in the evaluation set w.r.t. Oracle. For
each EH pattern, the MAPE of EB,, EB,, EB5 are averaged.

EH; EH> EHs EHy; EHs

[4] 100% 100% 28% 25% 44%
[8] 48% 47% 32% 32% 22%
GEM-RL 4% 5% 8% 16% 20%

VI. CONCLUSION

Energy management approaches for wearable devices must
be user-independent, prediction-free, and able to handle multiple
objectives to be practical. This paper presented GEM-RL, a

generalized energy management framework using MORL that
learns trade-offs between multiple objectives under different
EH patterns and battery conditions. It determines near-optimal
energy allocations in a single day for a given preference. It
also uses a novel dynamic programming technique to maximize
the utility over longer periods. GEM-RL achieves Pareto front
solutions within 5.4% of Oracle, on average, for a given day.
For 7-day horizon, it achieves utility up to 4% within the Oracle
and up to 50% higher utility compared to baseline approaches.
Hardware measurements show that it has 1.98 ms and 23.17 pJ
per inference execution time and energy consumption overhead.

ACKNOWLEDGMENT

This work was supported in part by NSF CAREER award
(CNS-1651624) and DARPA YFA Grant (D14AP00068).

REFERENCES

[1] T. Basaklar, Y. Tuncel, S. An, and U. Ogras, “Wearable devices and low-
power design for smart health applications: challenges and opportunities,”
in Intl. Symp. on Low Power Electronics and Design, 2021, pp. 1-1.

[2] G. Sucharitha, B. Tannmayee, and K. Dwarakamai, “Revolution in iot:
Smart wearable technology,” in Internet of Things and Its Applications,
2022, pp. 407-425.

[3] G. Bhat, R. Deb, and U. Y. Ogras, “Openhealth: open-source platform

for wearable health monitoring,” IEEE Design & Test, vol. 36, no. 5, pp.

27-34, 2019.

A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management

in energy harvesting sensor networks,” ACM Trans. Embed. Comput. Syst.

(TECS), vol. 6, no. 4, pp. 32-es, 2007.

[5] Y. Tuncel, T. Basaklar, and U. Ogras, “How much energy can we harvest

daily for wearable applications?” in Intl. Symp. on Low Power Electronics

and Design, 2021, pp. 1-6.

Y. Tuncel, G. Bhat, J. Park, and U. Y. Ogras, “Eco: Enabling energy-

neutral iot devices through runtime allocation of harvested energy,” IEEE

Internet of Things Journal, vol. 9, no. 7, pp. 4833-4848, 2021.

[71 E A. Aoudia, M. Gautier, and O. Berder, “Rlman: An energy manager
based on reinforcement learning for energy harvesting wireless sensor
networks,” JEEE Trans. Green Commun. Netw., 2(2), pp. 408-417, 2018.

[8] G. Bhat, J. Park, and U. Y. Ogras, “Near-optimal energy allocation for
self-powered wearable systems,” in Intl. on Conf. Comput.-Aided Des.,
2017, pp. 368-375.

[9] D. Hussein, G. Bhat, and J. R. Doppa, “Adaptive energy management for

self-sustainable wearables in mobile health,” in Proc. AAAI 2022,

C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement learning: A

comprehensive overview,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 45, no. 3, pp. 385-398, 2014.

[11] T. Basaklar, S. Gumussoy, and U. Y. Ogras, “Pd-morl: Preference-
driven multi-objective reinforcement learning algorithm,” arXiv preprint
arXiv:2208.07914, 2022.

[12] T. Basaklar, Y. Tuncel, and U. Y. Ogras, “tinyman: Lightweight energy

manager using reinforcement learning for energy harvesting wearable iot

devices,” arXiv preprint arXiv:2202.09297, 2022.

N. Yamin, G. Bhat, and J. R. Doppa, “Diet: a dynamic energy management

approach for wearable health monitoring devices,” in Design, Automation

& Test in Europe Conf. & Exhibition, 2022, pp. 1365-1370.

US Department of Labor, “American Time Use Survey,” 2018, https:

Ihwww.bls.gov/tus/, accessed 1 March 2021.

[15] P Mirowski et al., “Learning to navigate in cities without a map,” in
Neural Information Processing Systems (NeurIPS), 2018.

[16] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics, 2017. [Online]. Available: https://arxiv.org/abs/1705.05065

[17] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, . Schulman, J. Tang,
and W. Zaremba, “Openai gym,” 2016.

[18] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34-37, 1966.

[19] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[20] R. David et al., “Tensorflow lite micro: Embedded machine learning on
tinyml systems,” arXiv preprint arXiv:2010.08678, 2020.

[4

—_—

[6

—

[10]

[13]

[14]

