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Pairing properties of the t-t ′-t ′′-J model
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We study the pairing properties of the two-dimensional t-t ′-t ′′-J model, where t ′ and t ′′ are second and
third neighbor hoppings, at a doping level x ≈ 0.1. Recent studies of the t-t ′-J model find strong pairing for
t ′ > 0, associated with electron doping, but an absence of pairing for t ′ < 0, associated with hole doping.
This is in contrast to the cuprates, where the highest transition temperatures appear for hole doping. Model
parametrizations for the cuprates estimate a t ′′ comparable to t ′, which, in principle, might fix this discrepancy.
However, we find that it does not; we observe a suppression of pairing for the hole-doped system (t ′ < 0, t ′′ > 0),
while for the electron-doped system (t ′ > 0, t ′′ < 0) d-wave pairing is robust. Extended hoppings appear to be
insufficient to make the one-band t-t ′-J model capable of describing the pairing in the hole-doped system.
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Can a single-band two dimensional t-t ′-t ′′-J model cap-
ture the physics of both the hole- and electron-doped high-Tc

cuprates? This model, with near-neighbor t , next nearest
neighbor t ′, and third nearest neighbor t ′′ hopping parameters,
a near neighbor spin exchange J , and the restriction of no
double-site occupancy, has been found to describe a number
of properties seen in these materials. For example, (1) the
asymmetrical behavior of the commensurate antiferromag-
netic (AFM) spin correlations which rapidly decrease with
hole doping (t ′ < 0, t ′′ > 0) but remain strong for a much
longer range of electron doping (t ′ > 0, t ′′ < 0) [1,2], the ap-
pearance of stripes in the hole-doped region and their absence
in the low electron-doped region [3,4], and (3) a single particle
spectral weight where doped holes lead to the appearance
of Fermi arcs around the (±π/2,±π/2) regions of the Bril-
louin zone while doped electrons are accommodated near the
(±π, 0) and (0,±π ) regions [1,2].

However, while the material itself has clear superconduc-
tivity with a high transition temperature, it has been unclear
whether these models have a superconducting ground state.
In many cases the t-J model and its “parental” Hubbard
model have competing/intertwined orders [5–26], partic-
ularly stripes and uniform d-wave superconductivity, that
are very close in energy. Recently, density-matrix renor-
malization group (DMRG) studies found that while t ′ > 0
(electron doping) can lead to strong and unambiguous d-
wave superconductivity in the ground state [27–29], for t ′ <

0 (hole doping) the model exhibits charge stripes with the
pairing suppressed [27]. While the coexistence of super-
conductivity and short range AFM correlations have been
reported on the electron-doped side [30], the absence of a
superconducting phase for the hole-doped case is clearly at
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odds with the long held belief that the t-t ′-J model pro-
vides an appropriate model for understanding the cuprate
superconductors.

The third neighbor hopping t ′′ is thought to be roughly the
same size as t ′ in the cuprates [2,31–33]. For the case of the
hole-doped cuprates, it reflects the extended nature of the or-
thogonalized Zhang-Rice singlet [34] of the three-band CuO2

model [35]. Can the addition of t ′′ fix the discrepancy? In this
paper, we use DMRG to investigate pairing properties of the
t-t ′-t ′′-J model at a doping level x ≈ 0.1. Our main conclusion
is that t ′′ does not resolve the discrepancy. We find that the pa-
rameters used for the electron-doped cuprates (t ′ > 0, t ′′ < 0)
enhance superconductivity, both individually and in combi-
nation. However, the ones used for the hole-doped cuprates
(t ′ < 0, t ′′ > 0) suppress it. In most of the region with pairing
there is coexisting antiferromagnetic (AFM) order and uni-
form electron/hole density, i.e., an absence of charge stripes.
These results imply that the extended t-t ′-t ′′-J model fails to
capture the superconducting phase of the hole-doped cuprates.
The Hamiltonian of the t-t ′-t ′′-J model that we will study is

H =
∑
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−t (c†
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+
∑

〈〈i j〉〉σ
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iσ c jσ + H.c.)

+
∑
〈i j〉

J

(
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)
+
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i
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with the restriction of no double site occupancy. The
single/double/triple brackets under the summations denote
first/second/third nearest neighbor pairs of sites and ntot

i =
ni↑ + ni↓ is the total particle density on site i. The nearest
neighbor hopping t is set to 1 and the spin exchange J is set
to 0.4 for all calculations. It has been proposed [31,32] that
the parameters t ′ = −0.3, t ′′ = 0.2 correspond to hole-doped
cuprates.
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FIG. 1. Scan where both t ′′ and t ′ vary with a fixed ratio of −2/3. The system crosses from a parameter region corresponding to electron
doping to one corresponding to hole doping [31,32]. In the upper plot, the area of the circles represents the local fermion density xi at site i
such that, for the electron-doped system, the electron density ni = 1 + xi and for the hole-doped system ni = 1 − xi; the arrows represents the
local 〈Sz〉 with the colors indicating different AFM regions. In the lower plot the width/color of the links represent the magnitude/sign of the
singlet pairing between two adjacent sites. The electron-doped region has coexisting AFM, uniform hole density, and strong d-wave pairing,
while the hole-doped region is striped with the pairing suppressed.

Under a particle-hole transformation which changes the signs
of both hoppings, the set (t ′ = 0.3, t ′′ = −0.2) corresponds to
electron doping with a filling n = 1 + x. Here we treat both t ′
and t ′′ as adjustable parameters to investigate their individual
and combined effects on superconductivity. A chemical poten-
tial μ is used to control the doping level x. We keep x ≈ 0.1,
where with t ′′ = 0 it is known to have one phase for t ′ > 0
(electron doping) with clear superconductivity and another
phase for t ′ < 0 (hole doping) where superconductivity is
suppressed [27].

The DMRG calculations are carried out using the ITensor
library [36]. We study cylinders, with open boundary condi-
tions in the x direction and periodic boundary conditions in
the y direction. We typically perform around 20 sweeps and
keep a maximum bond dimension m ∼ 3000, which provides
good convergence for local observables of interest: the local
doping on site i, ndope(i) = 1 − ntot

i , the local magnetization
on site i, Sz(i) = 1

2 (ni↑ − ni↓), and the local singlet pairing
order parameter �(i, j) on nearest neighboring sites i and j,
�†(i, j) = 1√

2
(c†

i,↑c†
j,↓ − c†

i,↓c†
j,↑). Note that this bond dimen-

sion would not be sufficient for more difficult observables,
such as long-range pairing correlations [21,28]. Our main
interest is the overall phase diagram. We allow symmetry to
break in these phases (encouraging the breaking with initial
states or boundary fields) so that local observables describe
them. Although our results are limited to width-8 cylinders,
there are no indications that larger widths would give a qual-
itatively different phase diagram. A potential difficulty for

DMRG simulations on large systems is the tendency to get
stuck in metastable phases. This issue is most serious near
phase boundaries where different competing phases are close
in energy. To reduce this problem, we employ “scan” cal-
culations where along the length of a 40 × 8 cylinder we
vary one or two parameter(s) [27] linearly and slowly. A
varying chemical potential is also used to keep the doping
level constant—the variation of μ down the cylinder is manu-
ally adjusted with repeated runs to keep the doping constant.
In this way the cylinder forms different phases in different
regions along the length of the cylinder. The competition
between phases occurs over a few columns of sites which
automatically “regularizes” or controls the competition so that
no large length scales or large entanglement can occur. The
converged position of the phase boundary translates to the
parameter values of the boundary. The phases are particularly
stable near the center of each region. Near the centers of
each region, we have also performed separate nonscan/fixed-
parameter simulations to verify the phase.

In Fig. 1 we show a scan calculation which crosses a
parameter region in which the system changes from electron-
doped to hole-doped cuprates. The upper panel shows the
local fermion density xi and spin 〈Sz〉 observables which gives
an immediate view of the phases and their spin/charge orders.
Restricted by the t-J space, we simulate the electron-doped
system by staying below half filling and performing a particle-
hole transformation which changes the sign for both t ′ and t ′′.
Therefore, one can treat the fermion density xi (green circles)
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FIG. 2. t ′′-varying scan at t ′ = 0 and x ≈ 0.1 plotted in the same way as in Fig. 1. For t ′′ < 0 the system shows AFM order with a slightly
nonuniform hole density and d-wave pairing that peaks for t ′′ = −0.16. For t ′′ > 0 stripes appear and the pairing is suppressed.

in the left half of the system (t ′ > 0) as the density of doped
electrons added to the half-filled band and in the right half of
the system (t ′ < 0) as doped holes. For the parameter set (t ′ =
0.3, t ′′ = −0.2) corresponding to the electron-doped case, the
system exhibits commensurate AFM with uniform density and
a strong d-wave pairing shown in the lower plot. The pairing
reaches its maximum around t ′ ≈ 0.2, t ′′ ≈ −0.13 instead of
increasing monotonically with |t ′|, |t ′′|. On the other hand, the
parameter set (t ′ = −0.3, t ′′ = 0.2) associated with the hole-
doped system shows a charge density wave with the pairing
suppressed. One can see that its spin pattern which has much
smaller spin moments differs from the conventional striped
state near the t ′ = 0 region. As discussed in the Supplemental
Material [37], the spin correlations in this unconventional
striped phase are short ranged, mimicking the behavior of the
two-leg Heisenberg ladders.

Next in Fig. 2 we present another scan calculation which
varies t ′′ with t ′ fixed at zero to investigate the individual effect
of t ′′. For t ′′ < 0 corresponding to the electron-doped cuprates
we see commensurate AFM with a slight nonuniformity in
density, while for t ′′ > 0 related to hole-doped cuprates it
shows conventional stripes. The d-wave pairing only exists for
t ′′ < 0 and its magnitude peaks around t ′′ = −0.16. Roughly
speaking, the effect of having a t ′′ alone is very similar to
having a t ′ alone [27] with opposite sign. The small differ-
ences are that the enhancement of pairing by t ′′ > 0 is overall
weaker and happens over a narrower window. The rest of the
scan calculations are presented in the Supplemental Material
[38].

By collecting all the scans, we have constructed the ap-
proximate phase diagram in the t ′-t ′′ plane shown in Fig. 3.
The solid lines are DMRG scans as discussed above. The
blue parts of these scans denote parameter ranges with
d-wave pairing and the red parts without pairing. By connect-

ing the transition points on these scans, we have mapped out
an approximate boundary of the pairing phase, as indicated by
the green dotted line.

It is clear from Fig. 3 that t ′ > 0 and t ′′ < 0 enhance pair-
ing, while t ′ < 0 and t ′′ > 0 suppress it. This is true when t ′
[27] or t ′′ acts individually, as can be seen from the t ′ = 0 and

FIG. 3. Approximate phase diagram in the t ′-t ′′ plane at doping
x ≈ 0.1. The lines are “scans” with the blue/red color denoting the
parameter range with/without pairing. The dotted green line shows
the extrapolated pairing phase boundary based on the scans. The
light/dark gray regions have AFM order with uniform/nonuniform
hole density, while the white background is striped. Square [33],
diamond [31,32], and circle [2] markers indicate the (t ′, t ′′) values
proposed in several studies with solid markers for electron-doped
systems and hollow markers for hole-doped systems.
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t ′′ = 0 axis. When they act together, the effect appears to be
largely additive since the approximate pairing phase boundary
is roughly orthogonal to the t ′′/t ′ = −2/3 line. In other words,
one always has a decrease of pairing strength when starting
from a point in the pairing phase (within the range shown in
Fig. 3) and decreasing t ′ or increasing t ′′.

The region with superconductivity largely has coexisting
AFM order with uniform density, as indicated by the light
gray area. This supports the idea that charge stripes (either
with or without π phase shift of AFM order) compete with
pairing and the absence of stripes supports good pair mobil-
ity and superconducting phase coherence. We also note that
the longer range hoppings t ′ and t ′′ will in principle lead to
longer range next-nearest J ′ and third nearest neighbor J ′′
exchange couplings. For example, if one assumes that the
exchange coupling J = 0.4 arises from a Hubbard model with
t = 1 and U = 10, then for t ′ = 0.3, one would have J ′ ≈
(t ′/t )2J = 0.036. This longer range exchange coupling has a
negligible effect on the AFM order and as we have discussed
one will have a phase with coexisting d-wave superconducting
and AFM order arising from electron doping. However, as
Jiang and Kivelson [29] have discussed, for a larger value
of J ′ = J/2 and corresponding t ′ = t/

√
2, they find that a d-

wave superconductor arises from electron doping a spin-liquid
state. The parameters t ′ = 0.3, t ′′ = −0.2, associated with an
electron-doped system and marked by the open diamond in
Fig. 3, correspond to a state which is deep inside the pairing
phase. Alternatively, the parameters t ′ = −0.3, t ′′ = 0.2, as-
sociated with a hole-doped system and marked by the solid
diamond in Fig. 3, correspond to a state which is far away
from the pairing phase boundary. We have tried numerous
ways to obtain a phase in the hole-doped region which is
superconducting, but the only way seems to be to apply an
unphysical large pairing field throughout the system, and its
removal leads to the disappearance of pairing within a few
DMRG sweeps. These results indicate a fundamental flaw in

the model for a reliable description of the doping dependence
of pairing in the cuprates.

Discussion. If the t-t ′-t ′′-J model is not sufficient to de-
scribe superconductivity in the cuprates, it is natural to look
at less renormalized models. One can think of these mod-
els as devised in successive steps starting with all electron
calculations, constructing a three-band model, reducing it to
a single-band Hubbard model and from there, in the large
U limit, to a t-t ′-t ′′-J model. Apparently, somewhere in this
process the correct modeling of the pairing for the hole-doped
system is lost. It may be that the restriction of no double
occupancy is too severe and a single band Hubbard model
will turn out to be adequate. However, another possibility
may stem from the reduction of the three-band charge-transfer
model to a single-band Mott-Hubbard model, and in particular
this reduction on the hole-doped side. In the case of electron
doping, this reduction is fairly simple: the doped electrons
dominantly occupy the coppers sites, and so it is reasonable
to integrate out the oxygens. However, on the hole-doped side,
the doped holes tend to go onto both the Cu and its surround-
ing O(px, py) orbitals [39], and conceptually the reduction to a
one band model proceeds through the Zhang-Rice singlet pic-
ture [34]. Although there is evidence from simulation [40–42]
and experiments [43–45] that support the Zhang-Rice singlet
picture, it may also be that a more careful treatment of the
reduction could introduce new terms beyond extended hop-
pings, which are necessary to get the pairing behavior right.
It may also be that the required terms are complicated or very
extended, and it would be better to go back to a three-band
model.
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