
Fast and Scalable Human Pose Estimation
using mmWave Point Cloud

Sizhe An, Umit Y. Ogras
University of Wisconsin-Madison, Madison, Wisconsin, U.S.A.

ABSTRACT
Millimeter-Wave (mmWave) radar can enable high-resolution hu-
man pose estimation with low cost and computational require-
ments. However, mmWave data point cloud, the primary input to
processing algorithms, is highly sparse and carries significantly less
information than other alternatives such as video frames. Further-
more, the scarce labeled mmWave data impedes the development
of machine learning (ML) models that can generalize to unseen
scenarios. We propose a fast and scalable human pose estimation
(FUSE) framework that combines multi-frame representation and
meta-learning to address these challenges. Experimental evalua-
tions show that FUSE adapts to the unseen scenarios 4× faster than
current supervised learning approaches and estimates human joint
coordinates with about 7 cm mean absolute error.

1 INTRODUCTION
Human pose estimation refers to detecting and tracking key joints,
such as wrists, elbows, and knees. It has rapidly growing applica-
tions areas, including rehabilitation, professional sports, and au-
tonomous driving [10, 15, 20]. For example, one of the leading
causes of autonomous car accidents is “robotic” driving, where
the self-driver makes a legal but unexpected stop and causes other
drivers to crash into it [10]. Studies show that real-time human
pose estimation can help computers understand and predict human
motion, leading to more natural driving. Similarly, human pose
estimation can enable remote rehabilitation applications, which are
currently not feasible.

Human pose estimation can be performed by processing im-
age, video, lidar (light detection and ranging), or mmWave radar
data. The most common input type is RGB image and video frames
since they offer accurate real-world representations using true
color. However, the RGB frame quality depends heavily on the
environmental setting, such as light condition and visibility. The
lidar point cloud is a powerful alternative that overcomes these
challenges. However, it has high cost and significant processing
requirements, making them unsuitable for indoor applications such
as rehabilitation. In contrast, mmWave radar can generate high-
resolution 3D point clouds while maintaining low-cost and power
advantages [19].
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Using mmWave point cloud for human pose estimation faces
two major challenges. First, mmWave point cloud is significantly
sparser and less informative compared to video and lidar point
cloud data. For example, humans can easily recognize the object
and its details from video and lidar point cloud, while it is almost
impossible for people to interpret the mmWave point cloud repre-
sentation accurately. Second, the amount of labeled mmWave data
lags severely behind video and lidar point cloud data. However, ML
algorithms need a large amount of data to learn the generalization
to new scenarios. For example, human pose estimation techniques
must easily generalize to new users not included during training.
Hence, there is a critical need for approaches that can perform well
with fewer data points to harness the potential of mmWave data.
This capability can enable home-based applications with signifi-
cantly lower computation requirements since fewer data samples
and training efforts are needed.

Meta-learning has recently gained momentum because it can
help ML models adapt to unseen scenarios faster with a few train-
ing iterations. It focuses on learning a strategy that generalizes to
related yet unseen tasks from similar task distributions [3, 4]. It is
first trained with a batch of tasks and learning rules designed to
facilitate learning new tasks using only a few training iterations.
In this way, the model employs the parameters sensitive to new
samples, expediting generalization to new tasks. The meta-learning
concept fits the mmWave point cloud context very well since the
amount of labeled training mmWave data is substantially smaller
than video and lidar point cloud data. Hence, it can be a crucial en-
abler for mmWave radar point cloud-based human pose estimation
with a few data samples and training iterations.

This paper presents FUSE, a fast and scalable human pose es-
timation technique using mmWave point cloud. FUSE estimates
the coordinates of 19 joints on the human body using mmWave
point cloud as the input. Its first component is a novel point cloud
pre-processing method that fuses sparse frames to construct multi-
frame data representations. Multi-frame representation enriches
the sparse point cloud representation, reducing the mean absolute
error (MAE) on the human pose estimation task by 34%, as demon-
strated in Section 4.2. This method can easily be integrated into
existing mmWave radar-based techniques as a pre-processing step
to boost their performance without affecting other parts. The sec-
ond component is a meta-learning framework that enables FUSE
to adapt to the unseen data within a few epochs. Experimental
results show that FUSE can converge to the optimal state in just
five epochs, which is 4× faster than prior approaches.

In summary, the major contributions of this paper are as follows:
• An effective point cloud pre-processing method that en-
hances mmWave point cloud representation by frame fusion,

• A meta-learning framework that significantly enhances the
ability to generalize and adapt to unseen scenarios,
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• Experimental evaluations that show 7 cmMAE in estimating
joint coordinates with 4× fewer training iterations than prior
approaches (Our code is released for reproducibility.1)

In the rest, Section 2 reviews the related work. Section 3 in-
troduces the mmWave background knowledge and the proposed
approach. Section 4 presents the experimental results. Finally, Sec-
tion 5 concludes the paper.

2 RELATEDWORK
Early applications of mmWave radar focused on classification [16],
localization [7], and obstacle detection [17] problems that do not
require a high resolution. For example, a mmWave radar-based
indoor human activity recognition technique is proposed in [16].
It recognizes five different activities: boxing, jumping, jumping
jacks, squats, and walking with more than 90% accuracy. Sugi-
moto et al. [17] present an obstacle detection method consisting
of occupancy-grid representation and a segmentation method that
divides the radar data. Similarly, Lemic et al. [7] propose a local-
ization system that determines a mobile node’s location using the
flight time and arrival angles obtained by all the mmWave devices.
In summary, these applications do not require a fine-grained repre-
sentation due to their simplicity.

Human pose estimation has attracted significant attention with
recent advances in computer vision. It has a broad range of applica-
tions, including rehabilitation, professional sports, and autonomous
driving [10, 15, 20]. Since it aims to reveal the nature of human
motion (e.g., 3D joint coordinates), it requires a fine-grained rep-
resentation. Zhao et al. [22] propose a technique that uses radio-
frequency (RF) antenna arrays reconstructs up to 14 body parts,
including head, neck, shoulders, elbows, wrists, hip, knees, and feet.
They compute 4D (time and three spatial axes) RF tensors using
a 64-element antenna array with 60cm × 18cm area. The massive
customized antenna arrays enrich the input representation, but the
large size and high cost significantly hinder practicality.

Recent mmWave radar-based pose estimation techniques use
point cloud representation from commercial radar devices like Texas
Instrument (TI) xWR1x43. Sengupta et al. [14] propose mmPose,
a human pose estimation technique that constructs the skeleton
using mmWave point cloud and a forked-CNN architecture. They
use two radar devices and sum up the point values in the feature
map level to overcome the sparse representation of the point cloud.
Xue et al. [21] present the mmMesh technique to construct human
mesh using mmWave point cloud. It employs a human shape model
to strengthen the ability of deep learning models to predict human
shape with fewer points. Finally, another recent study proposes
a mmWave-based assistive rehabilitation system (MARS) [2] us-
ing human pose estimation. It sorts the mmWave point cloud and
performs matrix transformations before feeding them to a CNN
model. However, none of the prior techniques address two funda-
mental problems: mmWave point cloud data sparsity and the need
for few-shot learning due to limited mmWave data.

The meta-learning concept was first proposed in [13]. With
the fast development of the deep learning industry, meta-learning
has drawn significant attention again recently as its potential to
reduce the training data requirements for the ML model. A few
1https://github.com/SizheAn/FUSE

studies have recently applied meta-learning to point cloud [8, 12].
Puri et al. [12] use MAML to solve the point cloud-based object
classification and show it achieves similar accuracy with fewer
data samples. Similarly, Li et al. [8] propose few-shot meta-learning
on point cloud for indoor semantic segmentation. However, both
studies focus on the lidar point cloud, and their applications only
involve simple classification and semantic segmentation.

In contrast to the previous studies, the proposed FUSE framework
not only enhances the point cloud representation but also adapts
to the unseen scenarios with a few training iterations. The novel
point cloud pre-processing method using frame fusion increases the
mmWave point cloud information by multiple times. In addition,
for the first time, we apply meta-learning in the field of mmWave
point cloud for the challenging task-human pose estimation.

3 PROPOSED POSE ESTIMATION FRAMEWORK
This section first provides a brief background on mmWave human
pose estimation. Then, it presents the proposed FUSE framework
that consists of point cloud pre-processing and meta-learning steps,
as described in Figure 1.

3.1 Background and Motivation
3.1.1 mmWave point cloud. mmWave point cloud is usually gen-
erated by Frequency Modulated Continuous Wave (FMCW) radar
using multiple transmit (Tx) and receiver antennas (Rx) [14, 22].
The radar transmits a chirp signal, a sinusoid wave whose frequency
increases linearly with time, and receives the reflected signals at
the RX antennas. Then, it processes the data to obtain range, veloc-
ity and angle resolutions using range FFT, Doppler FFT, and angle
estimation algorithms, respectively. After eliminating noise with
the constant false alarm rate (CFAR) algorithm, the radar constructs
a high-quality point cloud in the following format:

𝑃𝑖 =
(
𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑑𝑖 , 𝐼𝑖

)
, 𝑖 ∈ Z+, 1 ≤ 𝑖 ≤ 𝑁 (1)

where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are the spatial coordinates of the point, 𝑑𝑖 repre-
sents the Doppler velocity, 𝐼𝑖 denotes the signal intensity, and 𝑁

represents the total number of points in a given frame.

3.1.2 Baseline convolution neural networks. Convolutional neural
networks (CNNs) have become the mainstream method to process
images and videos due to their ability to effectively extract feature
maps from raw data [5]. Likewise, previous mmWave pose esti-
mation studies [2, 14, 21, 22] employ CNNs to convert mmWave
point clouds to 3D human joint coordinates. They typically use
a few convolution layers with non-linear activation functions to
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Figure 1: Overview of the proposed FUSE framework
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extract the features from the input. Then, the intermediate feature
maps from the convolution layers are flattened to one-dimensional
feature vectors. Finally, fully-connected (FC) layers process the
one-dimensional feature vectors to produce the final output in the
form of 3D coordinates of human joints. These networks are trained
using ground truth joint locations obtained using a camera-based
system. The mean absolute error (i.e., the 𝐿1 loss) between the
ground truth and CNN predictions is used both during training and
final evaluations.

3.1.3 Shortcomings of state-of-the-art techniques. Prior mmWave
pose estimation techniques focus on improving ML model accuracy
for an existing set of users or movements. However, two critical
aspects are ignored in these studies. First, they do not consider
improving the sparse point cloud representation. For example, Zhao
et al. [22] designed large antenna arrays to enrich the radar data.
Similarly, Sengupta et al. [14] use two mmWave radars and sum
up their information. However, increasing the area or the number
of antennas does not address the fundamental challenge. Instead,
it increases the cost and makes deployment harder. Second, these
studies rely on offline model training and testing. This choice is
not practical since ML models need to quickly adapt to unseen
scenarios in different application scenarios such as autonomous
driving and rehabilitation. Thus, it is crucial to have an initial model
that can fastly converge with any new data samples. To address
these challenges, we propose a framework that enhances the point
cloud representation and adapts to the unseen scenarios faster with
a few training iterations.

3.2 Multi-Frame Point Cloud Representation
As the sole data source to pose estimation, the point cloud must
contain sufficient information to enable CNNs to extract the fea-
tures, thus predicting accurate joint coordinates. However, current
mmWave point cloud solutions only offer up to hundreds of points
for one frame due to the limited number of antennas on the com-
mercial mmWave radar [21]. For illustration, Figure 2(a) shows a
video frame of a subject performing squat movement. With 512X424
frames (217K pixels), this frame can also be easily interpreted by hu-
mans. In strong contrast, the corresponding mmWave point cloud
has only 64 3D points (192 data points) in a frame, i.e., almost 1000x
fewer data points, as shown in Figure 2(b). Consequently, it is harder
for ML algorithms to extract information from this representation.

The redundancy in video frames is often eliminated by using
residual frames (i.e., differences between consecutive frames), which
emphasize the changes due to motion [18]. Indeed, Figure 2(c) il-
lustrates that residual frames preserve the relevant information,
facilitating feature extraction by ML algorithm. mmWave radar
faces precisely the opposite problem: we must enrich a severely
sparse representation as opposed to reducing redundancy. There-
fore, for the first time in literature, we propose to fuse multiple sparse
point cloud frames to synthesize a richer representation. As illustrated
by Figure 2(d), the proposed multi-frame approach significantly
improve the interpretability compared to a single mmWave point
cloud frame. Unlike a single-frame point cloud frame in Figure 2(b),
multi-frame point cloud representation accurately captures the
shape in the upper body. For example, we can see there are more
points around the main body and arm area.

Let 𝑇𝑆 > 0 be the sampling period of the target mmWave radar
(in this work, 𝑇𝑆 = 100𝑚𝑠). The 𝑘𝑡ℎ frame 𝑓 [𝑘] in the point cloud
contains the points collected during time interval

[
𝑘𝑇𝑠 , (𝑘 + 1)𝑇𝑠

)
for 𝑘 ∈ Z+. Hence, we can express The 𝑘𝑡ℎ frame 𝑓 [𝑘] as:

𝑓 [𝑘] =
[
𝑃1 [𝑘], 𝑃2 [𝑘], . . . , 𝑃𝑁 [𝑘]

]
∀𝑘 ∈ Z+ (2)

where 𝑃𝑖 [𝑘] is the 𝑖𝑡ℎ point in frame 𝑘 for 1 ≤ 𝑖 ≤ 𝑁 . Then, we
fuse𝑀 consecutive frames by concatenating them as follows:

𝐹 [𝑘] =
{
𝑓 [𝑘−𝑀], 𝑓 [𝑘−(𝑀−1)], . . . , 𝑓 [𝑘], . . . , 𝑓 [𝑘+𝑀−1], 𝑓 [𝑘+𝑀]

}
(3)

where 𝑀 is a meta parameter that controls the number of fused
frames. For instance,𝑀 = 1 implies fusing three frames as 𝐹 [𝑘] =
{𝑓 [𝑘−1], 𝑓 [𝑘], 𝑓 [𝑘+1]}. This simple yet powerful idea significantly
enhances the information content as interpretability even with
𝑀 = 1, as shown in Figure 2(d). Quantitative analysis in Section 4.2
demonstrates that our proposal can significantly improve the results
of prior studies that employ mmWave point cloud data.

Figure 2: Visualization comparison of (a) one RGB frame,
(b) a single-frame point cloud, (c) RGB residual frame, (d)
proposed multi-frame point cloud.

3.3 Meta-Learning for Human Pose Estimation
Meta-learning, also known as “learning to learn", aims at training
a model on a variety of tasks such that it can solve new learning
tasks using only “few training samples". In our context, consider
that a learning model, such as a CNN, is trained using an initial set
of users and prescribed movements. If new users or movements are
introduced, traditional techniques would either need to trainmodels
from scratch or adapt the model using incremental learning [1,
23]. Learning from scratch is highly inefficient, while the latter
approach is an after-thought. In strong contrast, we construct the
initial model by explicitly maximizing its ability to adapt to new users
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and movements using only a few training samples. This capability is
achieved by choosing model parameters sensitive to new samples,
thereby ensuring that the gradient-based online learning rule can
rapidly progress with new data. In this way, FUSE adapts to unseen
scenarios quickly and estimates joint coordinates accurately after
fine-tuning with a few training iterations.

3.3.1 mmWave meta-learning setup. This section defines the pa-
rameters and terminology used for meta-learning.

Definition 1 (Training data, D𝑡𝑟𝑎𝑖𝑛). The training data is the set
of all fused frames 𝐹 [𝑘], 𝑘 ≥ 1 constructed using the point cloud
frames as defined by Equation 3, i.e.,

D𝑡𝑟𝑎𝑖𝑛 =
⋃

𝑘 𝐹 [𝑘] (4)

Instead of directly using individual samples inD𝑡𝑟𝑎𝑖𝑛 , meta-learning
generates tasks and uses them for learning as described next.

Definition 2 (Task, T ). We define task T a set of fused frames
uniformly sampled from the training data, i.e., T ∼ D𝑡𝑟𝑎𝑖𝑛 .

Next, we present the proposed offline meta-training and online
fine-tuning techniques.

3.3.2 Offline Meta-Training. After constructing the training data
D𝑡𝑟𝑎𝑖𝑛 , we train the initial model using meta-learning using Algo-
rithm 1. The algorithm starts with randomly initializing the model
parameters 𝜃 . Then, it starts performing the meta-training itera-
tions (lines 2–12). Each iteration 𝑖 starts with uniformly sampling a
batch of tasks from the training data: T𝑖 ∼ D𝑡𝑟𝑎𝑖𝑛 (line 3). Then, the
inner loop (lines 4–10) operates on these tasks. We first randomly
choose a subset of tasks in the batch, and denote them as support
tasks T 𝑠𝑢𝑝

𝑖
. The support tasks are used to update the intermediate

model parameters in each iteration using gradient descent:

𝜃 ′𝑖 = 𝜃 − 𝛼∇𝜃𝐿T𝑠𝑢𝑝

𝑖
(𝑔𝜃 ) (5)

where 𝛼 is the 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑙𝑒𝑣𝑒𝑙 learning rate. Our implementation
uses the mean absolute error in joint coordinates (i.e., L1 distance)
as the loss function, but other functions such as L2 can also be used
(line 7). Unlike traditional supervised learning techniques, meta-
learning samples next a set of query tasks T𝑞𝑟𝑦

𝑖
(line 8) similar to

the selection of the support tasks. Then, the loss function for the
query tasks are found for the model updated on line 7 (line 9). After
going over all tasks in T𝑖 , the model updates its initial parameters 𝜃
using the summation of the loss on each query task𝑇𝑞𝑟𝑦

𝑖
, as shown

in the following equation:

𝜃 = 𝜃 − 𝛽∇𝜃
∑︁
T𝑞𝑟𝑦

𝑖

𝐿T𝑞𝑟𝑦

𝑖
(𝑔𝜃 ′

𝑖
) (6)

Note that the initial parameters 𝜃 are only updated once after all
𝑇𝑖 are done for a meta-training iteration. Also, in strong contrast to
traditional transfer learning, these parameters are updated using the
intermediate parameters obtained from T 𝑠𝑢𝑝 but the loss evaluated
from T𝑞𝑟𝑦 . In transfer learning, the initial parameters 𝜃 are updated
using the intermediate parameters and the loss obtained from the
same tasks. This crucial difference is why meta-learning can find
the most sensitive parameters to the new data samples.

Algorithm 1: Meta-training for mmWave point cloud
Input: D𝑡𝑟𝑎𝑖𝑛 , 𝑔𝜃 (untrained model), 𝛽 (meta-learning rate)
Output: ML model that computes human joint coordinates

using mmWave point cloud.
1 Initialize the parameters 𝜃 of the ML model 𝑔𝜃
2 for each meta-training iteration do
3 Sample a batch of tasks: T𝑖 ∼ D𝑡𝑟𝑎𝑖𝑛

4 for all T𝑖 do do
5 Sample support tasks from T𝑖 : T 𝑠𝑢𝑝

𝑖
⊂ T𝑖

6 Compute the gradient ∇𝜃𝐿𝑇 𝑠𝑢𝑝

𝑖
(𝑔𝜃 )

7 Update parameters 𝜃 ′
𝑖
= 𝜃 − 𝛼∇𝜃𝐿𝑇 𝑠𝑢𝑝

𝑖
(𝑔𝜃 )

8 Sample query tasks T𝑞𝑟𝑦

𝑖
⊂ T𝑖

9 Evaluate 𝐿𝑇𝑞𝑟𝑦

𝑖
(𝑔𝜃 ′

𝑖
) using parameters 𝜃 ′

𝑖

10 end
11 Update the initial parameters

𝜃 = 𝜃 − 𝛽∇𝜃
∑

T𝑞𝑟𝑦

𝑖

𝐿T𝑞𝑟𝑦

𝑖
(𝑔𝜃 ′

𝑖
)

12 end

3.3.3 Online Fine-Tuning Phase. So far, we presented the construc-
tion of the initial meta-learned model using the available training
data. Suppose a new user or movement, which is absent from the
training data, is introduced in the field, i.e., after the trained model
is deployed. Our goal is to use few training samples denoted by
D𝑡𝑒𝑠𝑡 to update the initial model. We emphasize that the cardinality
of the test data is |D𝑡𝑒𝑠𝑡 | << |D𝑡𝑟𝑎𝑖𝑛 |. Section 4.3 validates this
claim and shows that the size of the required test data is 4× smaller
than that required by supervised techniques.

We use D𝑡𝑒𝑠𝑡 to perform the fine-tuning and testing to evaluate
our meta-trained model’s performance. The model takes a part of
D𝑡𝑒𝑠𝑡 to perform forward pass and back-propagation to fine-tune.
Then, we use the other part of D𝑡𝑒𝑠𝑡 only to perform inference
and evaluate the model. The exact procedure to split the data is
described with the implementation in Section 4.1. Ideally, only fine-
tuning for a few iterations should be enough since the model learns
the generalization of the point cloud. In summary, the fine-tuning
phase does not require any extra steps, facilitating online usage.

4 EXPERIMENTAL EVALUATIONS
4.1 Experimental Setup and Baseline Model
Human Pose Estimation Data: We employ an open-source mm-
Wave point cloud dataset (MARS [2]) to evaluate the proposed FUSE
framework. The dataset consists of 40,083 labeled frames (defined in
Equation 2) collected using TI IWR1443 Boost mmWave radar [19].
The frames correspond to 10 distinct rehabilitation movements per-
formed by four human subjects in front of the mmWave radar and
Microsoft Kinect V2 sensor. The reference coordinates of 19 joints
are found using Kinect V2 and added as labels to the mmWave data
at a 10 Hz sampling rate. Then, each movement data is individually
split into 60% training, 20% validation, and 20% test sets.
Baseline ML model: We implement the CNN trained with the
MARS dataset [2] as the baseline model to ensure a fair comparison.
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It has two convolution layers with Rectified Linear Unit (ReLU) ac-
tivations, followed by two FC layers, with a total model of 1,095,115
parameters. The number of neurons of two FC layers is 512 and
57, respectively. Here, the output values of the final 57 neurons
represent 19 human joints coordinates values in 𝑥 , 𝑦, 𝑧-axes. The
proposed CNN trained using the FUSE framework has the same
dimensions and model size for a fair comparison.
Implementation details: We implemented all baseline and meta-
learning approaches using PyTorch 1.8.1 [11]. The training and
testing are performed on a Nvidia GeForce RTX 3090 graphic card
with 24GB of memory. The meta-learning approach is based on
MAML-PyTorch implementation [9]. Our results can be reproduced
using the following hyper-parameter values: 20,000 meta-training
iterations, 32 tasks sampled for each iteration, sample-level learning
rate 𝛼 = 0.1, task-level meta-learning rate 𝛽 = 0.001. During meta-
training, each support task and query task T𝑖 samples 1,000 frames
from D𝑡𝑟𝑎𝑖𝑛 randomly. We use 200 frames from D𝑡𝑒𝑠𝑡 to fine-tune
and the all rest frames from D𝑡𝑒𝑠𝑡 to evaluate the performance.
Finally, MAE (i.e. the L1 loss) loss function and Adam optimizer [6]
are employed for calculating the loss and updating the gradients.

4.2 Multi-Frame Fusion of Point Cloud Data
Fusing multiple frames enriches the information content of the
mmWave point. To study the impact of frame the fusion alone, this
section uses the baseline CNN architecture, the default 60% - 20%
- 20% data split, and training parameters (128 batch size and 150
epochs). We conduct experiments on three settings: single-frame
(baseline), fuse three frames, and fuse five frames.

Table 1 summarizes the average MAE in predicting the joint co-
ordinates with and without multi-frame fusion. Without changing
any other parameters, fusing three frames consistently decreases the
average MAE along 𝑥−,𝑦−, and 𝑧−axis, and average MAE reduction
from 5.5 cm to 3.6 cm. Fusing more frames does not continuously
improve the accuracy since redundancy is introduced. Specifically,
we observe that fusing three frames outperforms a single frame by
1.9 cm margin (34%). This improvement is impressive since achiev-
ing similar savings without frame fusion would require a significant
increase in the model complexity.

These controlled experiments show that fusing multiple frames
enhances the point cloud representation, thus improving the per-
formance of human pose estimation. Hence, it can boost the per-
formance of existing mmWave radar techniques without affecting
the ML models they employ. In the rest, we fuse three frames since
it leads to significant savings with negligible overhead.

Table 1: MAE of the baseline model under different frame
fusion settings.

X (cm) Y (cm) Z (cm) Average (cm)

Single-frame 6.4 3.6 6.5 5.5
Fuse 3 Frames 4.2 2.5 4.4 3.6
Fuse 5 Frames 6.9 4.1 5.5 5.5

4.3 Convergence Time and Accuracy Evaluation
4.3.1 Data splitting. To examine the ability of FUSE to adapt to
new scenarios, this experiment splits the dataset to capture the
worst-case scenario. The training and validation sets exclude all

data from one particular movement (“right limb extension") and one
of the users (user 4). With this split, the test data (D𝑡𝑒𝑠𝑡 ) seen only
during fine-tuning has only 749 frames, justifying our claim about
few samples available online. In contrast, the training data (D𝑡𝑟𝑎𝑖𝑛)
consists of 29,225 frames from the remaining nine movements and
users. A more comprehensive leave-one-out experiment is left for
future work due to space and execution time considerations.

4.3.2 Quantitative results. Fine-tuning is a commonly used method
in transfer learning [23] to test a model’s ability to adapt to new
data samples. It fine-tunes all layers or part of a pre-trained model
with new data samples [23]. We conduct experiments for both cases:
fine-tuning all layers and only the last FC layer with its activation.
Fine-tune all layers: Figure 3 shows the MAE comparison be-
tween baseline and FUSE model fine-tuned for all layers. The base-
line model achieves a remarkable MAE of 6.7 cm after the initial
training with the original data available offline, as shown in Fig-
ure 3(a). In contrast, the proposed FUSE model starts with 12.4 cm
MAE since it is optimized for generalization rather than fitting to
known cases. Indeed, FUSE achieves almost 6.0 cm MAE after only
5 fine-tuning epochs with the new data.We emphasize that both the
baseline model and FUSE are fine-tuned using the new data, which is
not included in the initial training. The extra data improves FUSE’s
performance even on the original training dataset. After fine-tuning,
the MAE of FUSE stabilizes at about 9.4 cm for the original data
(Figure 3(a)) and 4.0 cm for the new user data (Figure 3(b)).

Figure 3(b) also shows that the baseline model can be effectively
fine-tuned for the new data. In strong contrast to FUSE, the im-
proved performance comes at a steep penalty for the original data,
as shown by the solid line in Figure 3(b). As the baseline model
adapts to new data, it forgets the original one, implying that it tends
to overfit rather than learn the trends.

In summary, FUSE is able to achieve 6.0 cm MAE, ∼3 cm lower
than the baseline with only 5 epochs fine-tuning. With 26 epochs,
as a red circle shown in Figure 3(b), baseline approach is able to
achieve 4.6 cm, which is comparable to 4.3 cm for FUSE model.
However, it is at the expense of forgetting the original data. The
MAE for original data reaches 10.6 cm, as summarized in Table 2
(columns labeled “All layers"), since the baseline model do not
learn the generalization. After that, the baseline approach just keep
memorizing the new data and forgetting the original data.

Figure 3: MAE comparison between baseline and FUSEmodel
for fine-tuning all layers.

Fine-tune the last layer: Figure 4 shows the MAE comparison
between the baseline and FUSE model when only the last fully
connected layer is fine-tuned. It shows a very similar pattern with



DAC ’22, July 10–14, 2022, San Francisco, CA, USA Sizhe An, Umit Y. Ogras

Table 2: MAE comparison between baseline and FUSE model.
Results of both fine-tuning all layers and only the last layer
are presented in the table. Intersection means the epoch
where baseline’s MAE meets FUSE’s for the new data. It is 26
epochs for all layers and 16 epochs for the last layer (marked
by a red circle in the second plot.

All layers Last layer
baseline FUSE baseline FUSE

5 epochs Original 6.4 7.6 6.5 9.0
New 9.0 6.0 9.6 8.3

Intersection Original 10.6 6.6 7.2 8.2
New 4.6 4.3 7.1 7.0

50 epochs Original 18.7 6.4 31.0 7.8
New 2.0 3.9 3.9 6.0

Figure 4: MAE comparison between baseline and FUSEmodel
for fine-tuning the last layer.

fine-tuning with all layers, as summarized in Table 2 (columns
labeled “last layer"). With only 5 epochs of fine-tuning, the FUSE
model achieves 8.3 cm MAE, 1.3 cm lower than the baseline. With
16 epochs, as shown with a red circle in Figure 4(b), the baseline
approach can achieve 7.1 cm, which is comparable to 7.0 cm for
FUSE model. However, it is at the expense of forgetting the original
data, as the MAE for original data reaches 7.2 cm. The baseline
approach memorizes the new data and forgets the original data to
adapt to new scenarios. Compared to fine-tuning all layers, fine-
tuning only the last layer yields a higher error for new data and
significantly worse forgetting trend. The results show that fine-
tuning with all layers can help the model adapt to unseen scenarios
since FUSE learns the generalization.

In summary, FUSE enhances the mmWave point cloud represen-
tation, thus improving the human pose estimation performance
significantly. In addition, FUSE adapts to the unseen data within
five epochs. This is 4× faster than the baseline approach that needs
at least 20 epochs to achieve the same performance, at the expense
of forgetting the original data.

5 CONCLUSIONS
Human pose estimation offers valuable insight for many applica-
tions, including rehabilitation, professional sports, and autonomous
driving. mmWave radar-based pose estimation is emerging as a
promising direction due to low cost, power consumption, com-
putation requirements. However, it suffers from sparsity repre-
sentation and scarce labeled data. This paper presented FUSE, a
mmWave point cloud-based human pose estimation framework, to

mitigate these challenges. FUSE consists of a novel multi-frame pre-
processing method and meta-learning components. Multi-frame
representation alone reduces the MAE of joint coordinate estimates
by 34% compared to prior work. In addition, the meta-learning
enables the ML model to adapt to the unseen scenarios within five
epochs, 4× faster than existing approaches.
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