
20
22

 I
E

E
E

 I
nt

er
na

ti
on

al
 C

on
fe

re
nc

e
on

 B
ig

 D
at

a
(B

ig
 D

at
a)

 |
97

8-
1-

66
54

-8
04

5-
1/

22
/$

31
.0

0
©

20
22

 I
E

E
E

 |
D

O
I:

 1
0.

11
09

/B
ig

D
at

a5
56

60
.2

02
2.

10
02

05
28

2022 IEEE International Conference on Big Data (Big Data)

Analysis
on Machine

of Label-Flip Poisoning Attack
Learning Based Malware Detector

Kshitiz Aryal
Department of Computer Science
Tennessee Technological University

Cookeville, TN, USA
karyal42@tntech.edu

Maanak Gupta
Department of Computer Science
Tennessee Technological University

Cookeville, TN, USA
mgupta@tntech.edu

Mahmoud Abdelsalam
Department of Computer Science

North Carolina A&T State University
Greensboro, NC, USA

mabdelsalam1@ncat.edu

Abstract—With the increase in machine learning (ML) applica-
tions in different domains, incentives for deceiving these models
have reached more than ever. As data is the core backbone of M L
algorithms, attackers shifted their interest towards polluting the
training data itself. Data credibility is at even higher risk with
the rise of state-of-art research topics like open design principles,
federated learning, and crowd-sourcing. Since the machine learn-
ing model depends on different stakeholders for obtaining data,
there are no existing reliable automated mechanisms to verify
the veracity of data from each source.

Malware detection is arduous due to its malicious nature with
the addition of metamorphic and polymorphic ability in the
evolving samples. M L has proven to solve the zero-day malware
detection problem, which is unresolved by traditional signature-
based approaches. The poisoning of malware training data can
allow the malware files to go undetected by the ML-based
malware detectors, helping the attackers to fulfill their malicious
goals. A feasibility analysis of the data poisoning threat in the
malware detection domain is still lacking. Our work will focus on
two major sections: training ML-based malware detectors and
poisoning the training data using the label-poisoning approach.
We will analyze the robustness of different machine learning
models against data poisoning with varying volumes of poisoning
data.

Index Terms—Cybersecurity, Poisoning Attacks, Machine
Learning, Malware Detectors, Adversarial Malware Analysis

I . INTRODUC T I ON

Machine Learning (ML) techniques have been emerging
rapidly, providing computational intelligence to various ap-
plications. The ability of machine learning to generalize to
unseen data has paved its way from labs to the real world. It
has already gained unprecedented success in many fields like
image processing [1], [2], natural language processing [3], [4],
recommendation systems used by Google, YouTube and Face-
book, cybersecurity [5], [6], robotics [7], drug research [8], [9],
and many other domains. ML-based systems are achieving
unparalleled performance through modern deep neural net-
works bringing revolutions in AI-based services. Recent works
have shown significant achievements in fields like self-driving
cars and voice-controlled systems used by tech giants like
autopilot in Tesla, Apple Siri, Amazon Alexa, and Microsoft
Cortana. With machine learning being applied to such critical
applications, continuous security threats are never a bombshell.
In addition to traditional security threats like malware at-
tack [10], phishing [11], man-in-the-middle attack [12], denial-

of-service [13], SQL injection [14], adversaries are finding
novel ways to sneak into ML models [15].

Data poisoning and evasion attacks [16]–[20] are the latest
menaces against the security of machine learning models.
Poisoning attacks enable attackers to control the model’s
behavior by manipulating a model’s data, algorithms, or hyper-
parameters during the model training phase. On the other hand,
an evasion attack is carried out during the test time by manip-
ulating the test sample. Adversaries can craft legitimate inputs
imperceptible to humans but force models to make wrong
predictions. Szegedy et al. [21] discovered the vulnerability
of deep learning architecture against adversarial attacks, and
ever since, there have been several major successful adversar-
ial attacks against machine learning architectures [22], [23].
Sophisticated attackers are motivated by very high incentives
to manipulate the result of the machine learning models. With
the current data scale with which machine learning models are
trained, it is impossible to verify each data point individually.

In most scenarios, it is unlikely that an attacker gets access
to training data. However, with many systems adopting online
learning [24], crowd-sourcing [25] for training data, open
design principles, and federated learning, poisoning attacks
already pose a serious threat to ML models [26]. There have
been instances [27] when big companies have been compro-
mised by a data poisoning attack. Malware public databases
like VirusTotal1, which rely on crowdsourced malware files
for training its algorithm, can be poisoned by attackers while
Google’s mail spam filter can be thrown out of track by wrong
reporting of spam emails.

Data poisoning relates to adding training data that either
leaves a backdoor on the model or negatively impacts the
model’s performance. Figure 1 shows the architecture of the
poisoning attack. In the given figure, the addition of poisoned
data in the training bag forces the model to learn and predict so
that attackers benefit from it. This type of poisoning is not
limited to particular domains but has extended across all
ML applications. Label flipping attack is carried out to flip
the prediction of machine learning detectors. Among all the
existing approaches, we chose one of the simplest poisoning
techniques called label poisoning. We swap the

1https://www.virustotal.com/

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 4236
Authorized licensed use limited to: Tennessee Technological University. Downloaded on June 18,2023 at 18:00:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. General architecture for Poisoning Machine Learning Models

existing training data labels in label poisoning to check the
ML models’ robustness.

In this work, we perform a comparative analysis of different
machine learning-based malware detectors’ robustness against
label-flipping data poisoning attacks. Unlike the existing ap-
proaches, we are demonstrating the impact of simple label-
switching data poisoning in different malware detectors. We
will first train eight different ML models widely used to detect
malware, namely Stochastic Gradient Descent (SGD), Random
Forest (RF), Logistic Regression (LR), K-Nearest Neighbor
Classifier (KNN), Linear Support Vector Machine (SVM),
Decision Tree (DT), Perceptron, and Multi-Layer Perceptron
(MLP). This will be followed by poisoning 10% and 20% of
training data by flipping the label of data samples. All of the
models are retrained after data poisoning, and the performance
of each model is evaluated. The major contributions of this
paper are as follows.
• We taxonomize the existing data poisoning attacks on ma-

chine learning models in terms of domains, approaches, and
targets.

• We provide threat modeling for adversarial poisoning attacks
against malware detectors. The threat is modeled in terms of
the attack surface, the attacker’s knowledge, the attacker’s
capability, and adversarial goals.

• We train eight different machine learning-based malware
detectors from malware data obtained from VirusTotal and
VirusShare2. We compare the performance of these malware
detectors with training and testing data in terms of accuracy,
precision, and recall.

• Finally, we show a simple label-switching approach to
poison the data without any knowledge of training models.

2https://virusshare.com/

Fig. 2. Taxonomy of poisoning attack on attack domain, approach and target

The performance of malware detectors is analyzed while
poisoning 10% and 20% of the total training data.
The rest of the paper is organized as follows. The existing

literature for data poisoning attacks in different domains,
including malware, is discussed in Section II. Section II I
provides the threat modeling for data poisoning attacks. An
overview of ML algorithms that are used to train the malware
detector in this paper is discussed in Section IV. Section V dis-
cusses experimental methodology elaborating on the algorithm
and the testbed used for the experiment. The evaluation and
discussion on the performed experiments are given in Section
VI. Finally, Section VI I concludes this work.

I I . L I T E R AT U R E R E V I E W

Data poisoning attacks have been used against the machine
learning domain for a long time. The existing literature on
data poisoning attacks can be taxonomized in terms of attack
domains, approach, and the target (victim), as illustrated in
Figure 2. The recently trending technologies like crowd-
sourcing and federated learning are always vulnerable as the
veracity of individual data can never be verified. The recent
victims of poisoning attacks have spread in security, network,
and speech recognition domains. We also classified the major
approaches that are taken to produce or optimize the poisoning
attacks in Figure 2. The existing data poisoning approaches
have targeted almost all the machine learning algorithms
ranging from traditional algorithms like regression to modern
deep neural network architectures.

Table I summarizes the existing literature on poisoning
attacks. Biggio et al. [43] attacked a support vector machine
using gradient ascent. To make poisoning attacks closer to
the real world, Yang et al. [44] used a generative adversarial
network with an autoencoder to poison deep neural nets.
Gongalez et al. [45] extended poisoning from binary learning
to multi-class problems. Shafahi et al. [28] proposed a targeted
clean label poisoning attack on neural networks using an
optimization-based crafting method. Shen et al. [31] performed
an imperceptible poisoning attack on a deep neural network
by clogging the back-propagation from gradient tensors during
training while also minimizing the gradient norm. Jiang et

4237
Authorized licensed use limited to: Tennessee Technological University. Downloaded on June 18,2023 at 18:00:40 UTC from IEEE Xplore. Restrictions apply.

Im
ag

e

Cr
ow

d
So

ur
ci

ng

G
ra

ph

Fe
de

ra
te

d
Le

ar
ni

ng

Se
cu

ri
ty

O
nl

in
e

Le
ar

ni
ng

G
ra

di
en

t

Re
in

fo
rc

em
en

t
Le

ar
ni

ng

La
b

el
Fl

ip
pi

ng

G
A

N

O
th

er
s

N
eu

ra
l

N
et

w
or

k

SV
M

Re
gr

es
si

on

G
ra

ph
Em

be
dd

in
g

Cu
st

om
iz

ed

√ √ √ √

√ √ √
√ √ √

√ √ √
√ √ √
√ √ √

√ √ √
√ √ √ √

√ √ √
√ √ √

√ √ √ √
√ √ √

√ √ √ √
√ √ √
√ √ √ √ √

TA B L E I
DATA POI S ONING AT T A C K S

Domains Approach Target

Publications

Shafahi

et

al.

[28]

√ √ √

Liu et al. [29]
Cao et al. [30]
Shen et al. [31]
Zhang et al. [32]
Jiang et al. [33]
Kwon et al. [34]
Zhang et al. [35]
Bagdasaryal et al. [36]
L i et al. [37]
Sasaki et al. [38]
Zhang et al. [39]
Lovisotto et al. [40]
L i et al. [41]
Kravchik et al. [42]
This Work

Domains:Poisoning domain for crafted attack, Approach: Approach to poison the training data, Target: Target of poisoning attack

al. [33] performed a flexible poisoning attack against linear and
logistic regression. Kwon et al. [34] could selectively poison
particular classes against deep neural networks. Cao et al. [30]
proposed a distributed label-flipping poisoning approach to
poison the DL model in federated architecture. Miao et al. [46]
poisoned Dawid-Skene [47] model by exploiting the reliability
degree of workers. Fang et al. [48] proposed a poisoning attack
against a graph-based recommendation system by maximizing
the hit ratio of target items using fake users.

In the given Table I, we can observe that only a handful of
works have been carried out in the security domain. Sasaki
et al. [38] proposed an attack framework for backdoor
embedding, which prevented the detection of specific types of
malware. They generated poisoning samples by solving an op-
timization problem and tested it against a logistic regression-
based malware detector. To poison the Android malware de-
tectors, Lie et al. [41] experimented backdoor poisoning attack
against Drebin [49], DroidCat [50], MamaDroid [51] and
DroidAPIMiner [52]. Kravchik et al. [42] attacked the cyber
attack detectors deployed in the industrial control system. The
back gradient optimization techniques used to pollute the train-
ing data successfully poison the neural network-based model.
These works have focused their approach on some algorithm
testing against some defense mechanism. However, none of
the works compared the feebleness of multiple algorithms
against data poisoning attacks. In this work, we demonstrate
the effectiveness of label switch poisoning of the training
data against eight machine learning algorithms widely used in
malware detectors.

I I I . T H R E AT MODEL: KN OW T H E A D V E R S A R Y

All security threats are defined in terms of their goals and
attack capabilities. Modeling the threat allows for identifying
and better understanding the risk arriving with a threat. A
poisoning attack is performed by manipulating the training
data either at the initial learning or incremental learning

Fig. 3. Threat model for poisoning attack

period. The threat model of a poisoning attack reflects the
attacker’s knowledge, goal, capabilities, and attack surface, as
shown in Figure 3.
Attack Surface: Attack surface denotes how the adversary
attacks the model under analysis. Machine learning algorithms
require data to pass through different stages in the pipeline,
and each stage offers some kind of vulnerability. In this work,
we are only concerned about poisoning attacks which make
the training data an attack surface.
Attacker’s Knowledge: The attacker’s knowledge is the
amount of information about the model under attack that an
attacker has. Based on the amount of knowledge of the
attacker, the poisoning approach is determined. Attacker’s
knowledge can be broadly classified into the two following
categories:
• White box model: In the white box model, an attacker has

complete information about the underlying target model,
such as the algorithm used, training data, hyper-parameters,
and gradient information. It’s easier to carry out a white box
attack due to the information available that helps the attacker
to create a worst-case scenario for the target model.

• Black box model: In the black-box model, an attacker only

4238
Authorized licensed use limited to: Tennessee Technological University. Downloaded on June 18,2023 at 18:00:40 UTC from IEEE Xplore. Restrictions apply.

has information about the model’s input and output. An
attacker has no information about the internal structure of
the model. Black-box models can also be divided further
into complete black-box models and gray-box models. In
the gray box model, the model’s performance for each input
the attacker provides can be known. As such, the gray box
attack is considered to be relatively easier than the complete
black box model.

In this paper, we perform a black box attack on different
malware detection models. Our experiments will prove the vul-
nerability of these models to random label poisoning attacks
without having any information about the models.
Attacker’s Capability: The attacker’s capability represents
the ability of an adversary to manipulate the data and model in
different stages of the ML pipeline. It defines the sections that
can be manipulated, the mechanism used for manipulation, and
constraints to the attacker. Poisoning can be carried out in a
well-controlled environment if the attacker has complete infor-
mation about the underlying model and training data. Attacker
capabilities can be classified into the following categories:
• Data Injection: It is the ability to insert new data into the

training dataset, leading machine learning models to learn
on contaminated data.

• Data Modification: It is the ability to access and modify
the training data as well as the data labels. Label flipping
is a well-known approach carried out in poisoning attack
domains.

• Logic Corruption: It is the ability to manipulate the logic of
ML models. This ability is out of scope for data poisoning
and is considered a model poisoning approach.

Adversarial Goals: The attacker’s objective is to deceive the
ML model by injecting poisoned data. However, poisoning
training data might differ depending on the goals of an
attacker. Attacker goals can be categorized as:

• Untargeted Misclassification: An attacker tries to change
the model’s output to a value different than the original
prediction. Untargeted misclassification is a relatively easier
goal for attackers.

• Targeted Misclassification: An attacker’s goal is to add a
certain backdoor in the models so that particular samples
are classified to a chosen class.

• Confidence Reduction: An attacker can also poison training
data to reduce the confidence of the machine learning model
for a particular prediction. In this approach, changing the
classification label is unnecessary, but reducing the confi-
dence score is enough to meet the attacker’s goal.

Our paper aims to cause the malware detector models to
misclassify. However, since we are dealing with binary clas-
sification, it can be considered either targeted or untargeted
misclassification.

I V. OV E RV I E W OF MAC H I N E L E A R N I N G A L G O R I T H M S

Almost all of the ML architectures have already been
victimized by data poisoning attacks. In this section, we will

brief some ML architectures in which we performed data
poisoning attacks later in this paper.

Stochastic Gradient Descent: Stochastic gradient descent
(SGD) is derived from the gradient descent algorithm, which is
a popular ML optimization technique. A gradient gives the
slope of the function and measures the degree of change of a
variable in response to the changes of another variable.
Starting from an initial value, gradient descent runs iteratively
to find the optimal values of the parameters, which are the
minimal possible value of the given cost function. In Stochastic
Gradient Descent, a few samples are randomly selected in
place of the whole dataset for each iteration. The term batch
determines the number of samples to calculate each iteration’s
gradient. In normal gradient descent optimization, a batch is
taken to be the whole dataset leading to the problem when the
dataset gets big. Stochastic gradient descent considers a small
batch in each iteration to lower the computing cost of the
gradient descent approach while working with a large dataset.
Random Forest: A random forest is a supervised ML
algorithm that is constructed from an ensemble of decision tree
algorithms. Its ensemble nature helps to provide a solution to
complex problems. The random forest is made up of a large
number of decision trees that have been trained via bagging or
bootstrap aggregation. The average mean of the output of
constituent decision trees is the random forest’s ultimate
forecast. The precision of the output improves as the number of
decision trees used grows. A random forest overcomes the
decision tree algorithm’s limitations by eliminating over-fitting
and enhancing precision.
Logistic Regression: The probability for classification prob-
lems is modeled using logistic regression, which divides
them into two possible outcomes. For classification, logistic
regression is an extension of the linear regression model. For
regression tasks, linear regression works well; however, it fails
to replicate for classification. The linear model considers the
class a number and finds the optimum hyperplane that mini-
mizes the distances between the points and the hyperplane. As
it interpolates between the points, it cannot be interpreted as
probabilities. Because there is no relevant threshold for class
separation, logistic regression is applied. It is a widely used
classification algorithm due to its ease of implementation and
strong performance in linearly separable classes.
K-Nearest Neighbors (KNN) Classifier: The KNN algorithm
relies on the assumption that similar things exist in close
proximity. It is a non-parametric and lazy learning algorithm.
KNN does not carry any assumption for underlying data
distribution. It does not require training data points for model
generation, as all the training data are used in a testing phase.
This results in faster training and a slower testing process. The
costly testing phase will consume more time and memory. In
KNN, K is the number of nearest neighbors and is generally
considered odd. KNN, however, suffers from the curse of
dimensionality. With increased feature dimension, it requires
more data and becomes prone to overfitting.
Support Vector Machine (SVM): A support vector machine

4239
Authorized licensed use limited to: Tennessee Technological University. Downloaded on June 18,2023 at 18:00:40 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Data Poisoning Algorithm
Input: Non-poisoned feature set
Output: Poisoned feature set
Data: Static features obtained from malware and

benign training set
1 for all the samples do
2 Train the machine learning models and measure

the performance
3 for 10% each of Malware and Benign data do
4 if Training label is not flipped then
5 label=Get training label of given data
6 if label==0 then
7 Flip the label to 1
8 else if label==1 then
9 Flip the label to 0

10 Train all the models and measure the performance
11 for 20% each of Malware and Benign data do
12 if Training label is not flipped then
13 label=Get training label of given data
14 if label==0 then
15 Flip the label to 1

16 else if label==1 then
17 Flip the label to 0

18 Train all the models and measure the performance

is a popular supervised ML algorithm applied in both classi-
fication and regression tasks. SVM aims to find a hyperplane
that classifies the data points. In SVM, there are several pos-
sible hyperplanes, and we need to determine the optimal hy-
perplane that maximizes the margin between the two classes.
Hyperplanes are the decision boundary for SVM, where data
points near to hyperplane are the support vectors. Due to its
effectiveness in high dimensional spaces and memory-efficient
properties, it is widely adopted in different domains.
Multi-Layer Perceptron: The term ’Perceptron’ is derived
from the ability to perceive, see, and recognize images in a
human-like manner. A perceptron machine is based on the
neuron, a basic unit of computation, with a cell receiving a
series of pairs of inputs and weights. Although the perceptron
was originally thought to represent any circuit and logic, non-
linear data cannot be represented by a perceptron with only one
neuron. Multi-Layer Perceptron was developed to overcome
this limitation. In multi-layer perceptron, the mapping between
input and output is non-linear. It has input and output layers
and several hidden layers stacked with numerous neurons.
Because the inputs are merged with the initial weights in a
weighted sum and applied to the activation function, the
multi-layer perceptron falls under the category of feedforward
algorithms. Each linear combination is propagated to the
following layer, unlike with a perceptron.

V. E X P E R I M E N TA L ME THODO L OG Y

In this paper, we are using the label-flipping approach to
poison the training data. With source class C S and a target
class C T from a set of classes C , the dataset D I is poisoned.
The detailed poisoning performed in the paper is shown in
Algorithm 1. We perform a label poisoning attack of differ-
ent volumes to training data without guiding the poisoning
mechanism through machine learning architecture or the loss
function. It is an efficient way to showcase the ability of
random poisoning to hamper the model’s performance. We are
training all eight malware detector models three times in total.
As illustrated in Algorithm 1, we begin the model training
with clean data without adding any noise. After recording the
model’s performance on clean data, we proceed towards the
first stage of poisoning our data. We take 10% of shuffled
training data belonging to each malware and benign class, and
we change their labels. We retrain all the models and again
measure the performance of the models. We repeat the same
operation with 20% of shuffled training data. The percentage
of poisoned data is taken randomly for this experimental
purpose, as the goal is to show the impact on the models.
The algorithm we followed in carrying out this experiment is
not a novel approach but a generic approach to poison the
data.

A. Experimental Environment and Dataset

All the experiments are performed in Google-Colab us-
ing Google’s GPU. All the implementation will be worked
around using python libraries and Scikit-Learn. The training
dataset [53] is obtained from the Kaggle repository, where
data are collected from VirusTotal and VirusShare. The dataset
comprises windows PE malware and benign files processed
through static executable analysis. The dataset comprises
216,352 files (75,503 benign files and 140,849 malware files)
with 54 features.

V I . E VA L UAT I O N R E S U LT S AND A N A LY S I S

A. Data Pre-processing and Transformation

We begin our experiment by loading data from Kaggle
dataset [53]. To clean the data, we followed two different
approaches. First, we ignored rows that are missing more than
50% of data, whereas we replaced the null values with the
arithmetic mean value of the column for rows with less than
50% missing values. Second, we normalized the data by scal-
ing the values from 0 to 1. Afterward, 85% of data were used
for training purposes while the remaining 15% were used for
testing purposes. We trained selected eight machine learning
models with standard hyper-parameters for each model. We
didn’t tweak many machine learning parameters to fine-tune
the detection accuracy, resulting in significant overfitting in a
few models.

B. Performance Indicators

We evaluated the malware detectors’ performance using the
following metrics:

4240
Authorized licensed use limited to: Tennessee Technological University. Downloaded on June 18,2023 at 18:00:40 UTC from IEEE Xplore. Restrictions apply.

T P + T N

T P T P

F 1-score =

TA B L E II
M A LWA R E D E T E C T I O N T R A I N I N G R E S U L T

Algorithm

Stochastic Gradient Descent
Decision Tree
Random Forest
Logistic Regression
KNN Classifier
Support Vector Machine
Perceptron
Multi-Layer Perceptron

Accuracy
93.41
99.96
99.97

93.2
98.38
93.15
90.93
91.28

Training Data
Precision Recall

92.49 88.29
99.98 99.91
99.92 99.97
92.21 87.94
97.33 98.05
92.44 87.51

88.6 84.91
91.07 83.16

Clean Data

F1 Accuracy
90.34 72.98
99.94 59.65
99.94 83.65
90.02 92.33
97.69 97.42
89.91 92.03
86.72 75.39
86.94 71.93

Testing Data
Precision Recall F1

58.6 78.77 67.20
44.5 59.85 51.05

98.82 54.12 69.94
92.24 85.36 88.67
96.38 96.25 96.31
90.89 85.94 88.34
60.28 87.86 71.50
57.45 77.66 66.04

TA B L E II I
M A LWA R E D E T E C T I O N P E R F O R M A N C E W I T H 10% POI SONI NG DATA

Algorithm

Stochastic Gradient Descent
Decision Tree
Random Forest
Logistic Regression
KNN Classifier
Support Vector Machine
Perceptron
Multi-Layer Perceptron

Accuracy
85.12
96.77
96.77
84.51
89.49
84.75
77.94
83.85

10% Poisoned Data
Training Data
Precision Recall F1 Accuracy

82.49 77.14 79.73 72.39
99.44 92.01 95.58 51.92
98.92 92.51 95.61 80.13
82.29 75.39 78.69 83.26
85.47 87.1 86.28 86.59
82.84 75.42 78.96 66.99
67.78 79.69 73.25 40.16
82.72 72.58 77.32 83.33

Testing Data
Precision Recall F1

64.23 61.38 62.77
38.33 43.98 40.96
82.68 60.22 69.68
81.06 72.91 76.77
83.1 81.15 82.11

63.14 31.16 41.73
25.89 31 73.25
82.81 70.74 76.30

Accuracy =
T P + T N + F P + F N

P recision =
T P + F P

, Recall =
T P + F N

2 � (P recision � Recall)
P recision + Recall

A positive outcome corresponds to a malware sample, while
a negative result corresponds to a benign example. TP, TN,
FP, and FN are true positives, true negatives, false positives,
and false negatives, respectively. Accuracy is the percentage
of correct predictions on the given data. Precision measures
the ratio between true positives and all the positives. Recall
provides the ability of our model to predict true positives
correctly. The F1 score is the harmonic mean, the combination
of a classifier’s precision and recall.

C. Results and Discussion

Table II shows the accuracy, precision, and recall for train-
ing and testing data. Stochastic Gradient Descent, Decision
Trees, Random Forest, and Perceptron looked overfitted to
training data compared to other models. Since the data volume is
a little bit high, decision tree-based classifiers are prone to
overfitting problems. We used shallow layer neural networks
leading perceptron to overfit in the data. However, classifiers
like logistic regression, KNN classifier, and Support Vector
Machine have shown the best performance in all three metrics.
We have compared the performance of both the training and
testing sets as we have only poisoned the training data while
preserving the test data from attack.

We flipped the labels of 10% training data as a poisoning
attack. On poisoning 10% of total data, the performance metric
for each detector is displayed in Table III. The results show the
robustness of decision trees and random forest-based malware
detectors compared to other malware detectors. We further
poisoned 20% of total training data to see the impact of
increased poisoned data in each model, whose results are
shown in Table IV. The left-most confusion matrix in each of
the figures from Figure 4 to Figure 11 shows the number of
TP, TN, FP, and FN for each classifier on clean data, whereas
the middle and right one shows results with 10% and 20%
poisoning, respectively. In the confusion matrix, label ’0’ is
for malware, and label ’1’ is for benign samples. The top-left
corner in the confusion matrix gives True Positive, the top-
right corner gives False Positive, the bottom-left gives False
Negative, and the bottom-right corner gives True Negative
samples.

D. Analysis and Observations
The goal of this work is to show the vulnerability of popular

machine-learning models that are used for malware detection.
Results in Tables II, I I I and I V reflect the limitations of
all the experimented machine learning models even with the
basic label poisoning attack. Figure 12 shows the ROC curve,
comparing the models’ performance on the clean data, 10%
and 20% poisoned data. In the ROC curve, the blue curve
corresponds to the performance of clean data, the orange
curve corresponds to 10% poisoned data, and the green curve
corresponds to the 20% poisoned data. The curve closest to
the top-left corner is the one performing best. We can infer
from the graph that logistic regression, K-Nearest Neighbors,

4241
Authorized licensed use limited to: Tennessee Technological University. Downloaded on June 18,2023 at 18:00:40 UTC from IEEE Xplore. Restrictions apply.

TA B L E I V
M A LWA R E D E T E C T I O N P E R F O R M A N C E W I T H 20% POI SONI NG DATA

Algorithm

Stochastic Gradient Descent
Decision Tree
Random Forest
Logistic Regression
KNN Classifier
Support Vector Machine
Perceptron
Multi Layer Perceptron

Accuracy
78.56
96.54
96.54
78.38
87.41
78.58
75.16
77.6

20% Poisoned data
Training Data
Precision Recall F1 Accuracy

75.65 70.21 72.83 62.69
93.54 98.34 95.88 40.26
93.04 98.94 95.90 72.8
74.3 72.13 73.20 77.58
82.48 87.94 85.12 82.15
74.45 72.6 73.51 75.39
68.58 72.57 72.57 49.37
75.45 67.1 71.03 76.85

Testing Data
Precision Recall F1

54.86 50.72 52.71
34.25 49.67 40.54
68.77 61.66 65.02
75.1 76.78 75.93

76.16 82.2 79.06
74.74 60.37 66.79
38.28 38.28 38.28
74.81 65.66 69.94

Fig. 4. Confusion Matrix for Stochastic Gradient Descent Based Malware Detector

Fig. 5. Confusion Matrix for Decision Tree Based Malware Detector

Fig. 6. Confusion Matrix for Random Forest-Based Malware Detector

Fig. 7. Confusion Matrix for Logistic Regression Based Malware Detector

Support Vector Machine, and Multi-Layer Perceptron are the
best models on the clean data. However, the distance between
the three curves represents the robustness of the model toward
the poisoning attack. If the separation between the curves of

clean data and poisoning data is low, it infers that the poisoning
attack has a minimal impact on the model’s performance. In
the ROC graph, we can observe that Random Forest, Logistic
Regression, K-Nearest Neighbors, and Multi-Layer Perceptron

4242
Authorized licensed use limited to: Tennessee Technological University. Downloaded on June 18,2023 at 18:00:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Confusion Matrix for KNN Based Malware Detector

Fig. 9. Confusion Matrix for Support Vector Machine-Based Malware Detector

Fig. 10. Confusion Matrix for Perceptron Based Malware Detector

Fig. 11. Confusion Matrix for Multi-Layer Perceptron Based Malware Detector

have their graphs close to each other, proving their robustness
against poisoned data. Random Forest’s robustness can be
attributed to its ensemble nature which helps it to capture
better insights about the data. The robustness of logistic
regression and K-Nearest Neighbors can be due to the low
dimensionality of our training data. Further, we can observe
the performance of models, like SVM and perceptron, doing
better with the 20% poisoned data than with 10% poisoned
data. The gain in the performance of these models is due
to unrestricted data poisoning. Since we are not guiding our
poisoning approach according to the models, further adding
poisoning data after some threshold point slightly improves the
models’ performance. In the end, even the least sophisticated
attacks, like label poisoning, are causing the performance
decay of the models to a large extent. This further alerts us
toward the catastrophic consequences of more sophisticated
attacks like gradients and reinforcement learning.

V I I . CO NC L U S I O N

In this work, we perform a feasibility analysis of label-
flip poisoning attacks on ML-based malware detectors. We
evaluated eight different ML models that are widely used in
malware detection. Spotting the lack of poisoning attacks work
in the malware domain, this paper analyses the robustness
of ML-based malware detectors against different volumes of
poisoned data. We observed the decay in performance of all
the models while poisoning 10% and 20% of total training
data. The significant decrease in the performance of the models
shows the severe vulnerability of malware detectors to guided
poisoning approaches. We also observed differences in the
effect of poisoning attacks across the different models. Our
work is carried out within the limited scope of one generic
poisoning algorithm and a single malware dataset. There are
few future research directions that are clearly visible. The
malware detectors can be tested against many advanced poi-
soning approaches using numerous datasets from the industry.

4243
Authorized licensed use limited to: Tennessee Technological University. Downloaded on June 18,2023 at 18:00:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. ROC Curve for Malware detectors under Poisoning Environments

The poisoning can be tested in a more real environment by
poisoning the executable files. The research community still
lacks exhaustive studies on the vulnerabilities of malware
detectors and how to make detectors more robust against these
poisoning attacks.

R E F E R E N C E S

[1] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, 2012, pp. 3642–3649.

[2] J. Schmidhuber, U. Meier, and D. Ciresan, “Multi-column deep neural
networks for image classification,” in 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE Computer Society, 2012.

[3] K . Chowdhary, “Natural Language Processing,” Fundamentals of Arti-
ficial Intelligence, pp. 603–649, 2020.

[4] J. Hirschberg and C. D. Manning, “Advances in Natural Language
Processing,” Science, vol. 349, no. 6245, pp. 261–266, 2015.

[5] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection by
machine learning: A review,” Expert Systems with Applications, vol. 36,
no. 10, pp. 11 994–12 000, 2009.

[6] N. Peiravian and X. Zhu, “Machine learning for android malware detec-

4244
Authorized licensed use limited to: Tennessee Technological University. Downloaded on June 18,2023 at 18:00:40 UTC from IEEE Xplore. Restrictions apply.

ˇ `

˜ ´

tion using permission and api calls,” in 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence, 2013, pp. 300–305.

[7] J. Kober and J. Peters, “Learning motor primitives for robotics,” in 2009
IEEE International Conference on Robotics and Automation, 2009.

[8] R. Manicavasaga, P. B. Lamichhane, P. Kandel, and D. A. Talbert, “Drug
repurposing for rare orphan diseases using machine learning techniques,”
in The International FLAIRS Conference Proceedings, vol. 35, 2022.

[9] A. Dhakal, C. McKay, J. J. Tanner, and J. Cheng, “Artificial intelligence in
the prediction of protein–ligand interactions: recent advances and
future directions,” Briefings in Bioinformatics, vol. 23, no. 1, p. bbab476,
2022.

[10] M. H. R. Khouzani, S. Sarkar, and E. Altman, “Maximum Damage
Malware Attack in Mobile Wireless Networks,” IEEE/ACM Transactions
on Networking, vol. 20, no. 5, pp. 1347–1360, 2012.

[11] S. Gupta, A. Singhal, and A. Kapoor, “A literature survey on social
engineering attacks: Phishing attack,” in 2016 International Conference
on Computing, Communication and Automation (ICCCA), 2016.

[12] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-Middle Attack to
the HTTPS Protocol,” IEEE Security Privacy, vol. 7, no. 1, 2009.

[13] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and D. Zam-
boni, “Analysis of a denial of service attack on TCP,” in Proceedings.
1997 IEEE Symposium on Security and Privacy (Cat. No.97CB36097).

[14] W. G. Halfond, J. Viegas, A. Orso et al., “A classification of sql-injection
attacks and countermeasures,” in Proceedings of the IEEE International
Symposium on Secure Software Engineering, vol. 1. IEEE, 2006.

[15] I. Yilmaz and R. Masum, “Expansion of cyber attack data from
unbalanced datasets using generative techniques,” arXiv preprint
arXiv:1912.04549, 2019.

[16] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C.
Eckert, and F. Roli, “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in IEEE European Signal
Processing Conference, 2018, pp. 533–537.

[17] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J.
Keshet, “Adversarial examples on discrete sequences for beating
whole-binary malware detection,” arXiv preprint :1802.04528, 2018.

[18] L . Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, “Explain-
ing Vulnerabilities of Deep Learning to Adversarial Malware Binaries,”
arXiv preprint arXiv:1901.03583, 2019.

[19] O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples in
malware detection,” in 2019 IEEE Security and Privacy Workshops.

[20] K . Aryal, M. Gupta, and M. Abdelsalam, “A Survey on Adversarial
Attacks for Malware Analysis,” arXiv preprint arXiv:2111.08223, 2021.

[21] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[22] S. M. P. Dinakarrao, S. Amberkar, S. Bhat, A. Dhavlle, H. Sayadi, A.
Sasan, H. Homayoun, and S. Rafatirad, “Adversarial attack on
microarchitectural events based malware detectors,” in Proceedings of
the 56th Annual Design Automation Conference 2019, 2019, pp. 1–6.

[23] W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on GAN,” arXiv preprint arXiv:1702.05983, 2017.

[24] S. Shalev-Shwartz et al., “Online learning and online convex optimiza-
tion,” Foundations and Trends® in Machine Learning, vol. 4, 2012.

[25] A. Rai, K . K . Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee:
Zero-effort Crowdsourcing for Indoor Localization,” in Proceedings of
the 18th Annual International Conference on Mobile Computing and
Networking, 2012, pp. 293–304.

[26] K . Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V.
Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, B. McMahan et al.,
“Towards federated learning at scale: System design,” Proceedings of
Machine Learning and Systems, vol. 1, pp. 374–388, 2019.

[27] “Tay, Microsoft’s A I chatbot, gets a crash course in racism from
Twitter,”

https://www.theguardian.com/technology/2016/mar/24/tay
-microsofts-ai-chatbot-gets-a-crash-course-in-racism-from-twitter, 2016.

[28] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison Frogs! Targeted Clean-Label Poisoning At-
tacks on Neural Networks,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[29] X . Liu, S. Si, X . Zhu, Y. Li, and C.-J. Hsieh, “A unified framework for
data poisoning attack to graph-based semi-supervised learning,” arXiv
preprint arXiv:1910.14147, 2019.

[30] D. Cao, S. Chang, Z. Lin, G. Liu, and D. Sun, “Understanding distributed
poisoning attack in federated learning,” in 2019 IEEE 25th International
Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2019.

[31] J. Shen, X . Zhu, and D. Ma, “TensorClog: An imperceptible poisoning
attack on deep neural network applications,” IEEE Access, vol. 7, 2019.

[32] J. Zhang, J. Chen, D. Wu, B. Chen, and S. Yu, “Poisoning Attack
in Federated Learning using Generative Adversarial Nets,” in 2019
18th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE.

[33] W. Jiang, H. Li, S. Liu, Y. Ren, and M. He, “A Flexible Poisoning Attack
Against Machine Learning,” in ICC 2019-2019 IEEE International
Conference on Communications (ICC). IEEE, 2019, pp. 1–6.

[34] H. Kwon, H. Yoon, and K.-W. Park, “Selective poisoning attack on deep
neural network to induce fine-grained recognition error,” in IEEE Sec-
ond International Conference on Artificial Intelligence and Knowledge
Engineering, 2019, pp. 136–139.

[35] H. Zhang, T. Zheng, J. Gao, C. Miao, L . Su, Y. Li, and K. Ren, “Data
poisoning attack against knowledge graph embedding,” in Proceedings
of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 4853–4859. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/674

[36] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2020, pp. 2938–2948.

[37] M. Li, Y. Sun, H. Lu, S. Maharjan, and Z. Tian, “Deep reinforcement
learning for partially observable data poisoning attack in crowdsensing
systems,” IEEE Internet of Things Journal, vol. 7, 2020.

[38] S. Sasaki, S. Hidano, T. Uchibayashi, T. Suganuma, M. Hiji, and S. Kiy-
omoto, “On embedding backdoor in malware detectors using machine
learning,” in IEEE International Conference on Privacy, Security and
Trust, 2019, pp. 1–5.

[39] X . Zhang, X . Zhu, and L. Lessard, “Online Data Poisoning Attack,” in
Learning for Dynamics and Control. PMLR, 2020, pp. 201–210.

[40] G. Lovisotto, S. Eberz, and I. Martinovic, “Biometric backdoors: A
poisoning attack against unsupervised template updating,” in 2020 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2020.

[41] C. Li, X . Chen, D. Wang, S. Wen, M. E. Ahmed, S. Camtepe, and Y.
Xiang, “Backdoor attack on machine learning based android malware
detectors,” IEEE Trans. on Dependable and Secure Computing, 2021.

[42] M. Kravchik, B. Biggio, and A. Shabtai, “Poisoning attacks on cyber
attack detectors for industrial control systems,” in Proceedings of the
36th Annual ACM Symposium on Applied Computing, 2021.

[43] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” arXiv preprint arXiv:1206.6389, 2012.

[44] C. Yang, Q. Wu, H. Li, and Y. Chen, “Generative Poisoning Attack
Method Against Neural Networks,” preprint arXiv:1703.01340, 2017.

[45] L . Munoz-Gonzalez, B. Biggio, A. Demontis, A. Paudice, V. Wongras-
samee, E. C. Lupu, and F. Roli, “Towards Poisoning of Deep Learning
Algorithms with Back-gradient Optimization,” in Proceedings of the
10th ACM workshop on Artificial Intelligence and Security, 2017.

[46] C. Miao, Q. Li, L . Su, M. Huai, W. Jiang, and J. Gao, “Attack under
Disguise: An Intelligent Data Poisoning Attack Mechanism in Crowd-
sourcing,” in Proceedings of the 2018 World Wide Web Conference.

[47] A. P. Dawid and A. M. Skene, “Maximum Likelihood Estimation of
Observer Error-Rates Using the EM Algorithm,” Journal of the Royal
Statistical Society: Series C (Applied Statistics), vol. 28, no. 1, 1979.

[48] M. Fang, G. Yang, N. Z. Gong, and J. Liu, “Poisoning attacks to
graph-based recommender systems,” in Proceedings of the 34th Annual
Computer Security Applications Conference, 2018, pp. 381–392.

[49] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K . Rieck, and C.
Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in NDSS, vol. 14, 2014, pp. 23–26.

[50] H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Effective android
malware detection and categorization via app-level profiling,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 6, 2018.

[51] E. Mariconti, L . Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” preprint arXiv:1612.04433, 2016.

[52] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in International Conference
on Security and Privacy in Communication Systems. Springer, 2013.

[53] “Malware detection,” https://www.kaggle.com/competitions/malware-
detection/data.

4245
Authorized licensed use limited to: Tennessee Technological University. Downloaded on June 18,2023 at 18:00:40 UTC from IEEE Xplore. Restrictions apply.

