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Abstract—The pervasive nature of smart connected devices
has intruded on our daily lives and has become an intrinsic
part of our world. However, the wide use of the Internet of
Things (IoT) in critical application domains has raised concerns
for user privacy and security against growing cyber threats. In
particular, the implications of cyber exploitation for IoT devices
are beyond financial losses and could constitute risks to human
life. Most deployed access control solutions for smart IoT systems
do not offer policy individualization, the ability to specify or
change the policy according to the individual user’s preference.
As a result, currently deployed systems are not well suited to
specify access control policies in a multi-user environment, where
users access the same devices to perform different operations.
The system’s security gets tricky when the smart ecosystem
involves complicated social relationships, much like in a smart
home. Relationship-based access control (ReBAC), widely used
in online social networks, offers the ability to consider user
relationships in defining access control decisions and supports
policy individualization. However, to the best of our knowledge,
no such attempt has been made to develop a formal ReBAC model
for smart IoT systems. This paper proposes a ReBACji,r dynamic
and fine-grained access control model which considers the social
relationships among users along with the attributes to support
an attributes-aware relationship-based access control model for
smart IoT systems. ReBAC,r is formally defined, illustrated
through different use cases, implemented, and tested.

Index Terms—IoT, Access Control, Relationship-based access
control, Neo4j, Amazon Web Services (AWS)

[. INTRODUCTION AND MOTIVATION

The Internet of Things (IoT) refers to the smart and au-
tomated devices that communicate with each other to enable
convenience and remote services for users. It has proliferated
in multiple spheres of human lives and has become an intrinsic
part of our smart lifestyle. The rapid progress of IoT has led to
a technological revolution. This enables a connected ecosystem
that includes novel consumer applications in smart homes,
elder care, organizational applications (medical and health
care, vehicular communication systems), industrial applica-
tions (manufacturing, agriculture), infrastructure applications
(smart cities, energy management), and military applications
including Internet of Battlefield Things.

Although the functional aspects and the novel IoT appli-
cations completely unimaginable, the security issues involved
in this technology are often overlooked. The deployment of
resource constrained devices, along with the adoption of a
plethora of technologies in IoT, enlarges the attack surface and
introduces new security vulnerabilities [1], [2]. Open source

and proprietary IoT frameworks like SmartThings [3], Nest,
and IoTivitiy [4] help connectivity over the cloud and the edge
to enable communication and operations by devices and third-
party applications. In such a setting, IoT devices are accessed
by other smart devices and third-party applications running
remotely in the cloud and operated using mobile devices held
by end users. If such complicated systems are compromised,
an adversary can remotely issue commands to switch ON your
home thermostat or remotely issue commands to TURN OFF
your car engine [5]. To prevent such security attacks and to
make these distributed smart devices resilient against such
misuse, it is essential to deploy security mechanisms, including
access control, at different interfaces in this ecosystem without
curtailing user experience. Current access control policies fall
short when multiple users use the same devices [6]. Real-
world examples of lapses in access control models have
started to surface; for instance, a burger commercial triggered
a home assistant, and a cartoon mischievously triggered an
Amazon Echo voice assistant to fill an Amazon cart with items
[7]. Although these examples have no financial losses, other
scenarios may involve an adversary asking a voice assistant to
open the smart front door lock.

Many access control models have been proposed in the lit-
erature for different IoT application domains. The majority of
them are based on role-based access control (RBAC) [8], [9],
or attribute-based access control (ABAC) [10], [11]. Several
other access control models for IoT that are built on differ-
ent technologies, such as UCON [12]-[14] and blockchain
technology [15]-[18] have been proposed. However, most of
these models support a system-wide access control policy
defined by the security administrator. On the other hand, they
do not support policy individualization, where different users
can express their preferences on how their own or related
devices can be used. In an IoT system that involves multiple
users with complex social relationships, even though one user
can own a device, his/her actions may impact other related
users in the system. For example, in smart home IoT use
case, changing the thermostat temperature will also affect
other users in the system. Therefore, policy individualization
must exist, and different users should be able to specify their
‘relationship-based’ policies on the devices they own or for the
devices which affect them. Moreover, users should be able to
generate policies that regulate their usage according to their
preferences. The system must then collectively utilize these
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individualized policies from related users and system-defined
centralized policies for access control decisions. Furthermore,
in some IoT applications, systems’ users have complex social
relationships between them. Traditional access control models
don’t consider the relationship between [oT system users when
deciding on access. This is particularly critical in the social
10T (SIoT) application domain [19], [20]. The objectives being
pursued by the SIoT paradigm are clear: to keep separate
the two levels of people and things; to allow objects to
have their own social networks; to enable humans to impose
rules to protect their privacy and only access the result of
autonomous inter-object interactions occurring on the objects
social network. However, how social relationships can be used
for access control in the way used in online social networks
(OSNG5) [21] has not been widely studied.

Relationship-based access control model (ReBAC) models
[21]-[24] were first introduced to address access control in
online social networks (OSNs). ReBAC models’ basic idea is
to consider the social relationship between the subject user and
the object owner when deciding on different access requests.
Moreover, ReBAC models support policy individualization,
where in addition to system administrators, different users
in the system can customize their policies on their related
users or resources. However, the existing core ReBAC models
[21], [22], [24] do not capture different characteristics of
users, devices, operations, and environments, to develop fine-
grained policies and rules for socially driven authorization.
Some proposed ReBAC models [23], [25] incorporate users
or/and relationship attributes in addition to the relationships
between different users in the system when deciding on
access requests. Nevertheless, these models were designed
for social networks, which have different policy needs, and
only require a limited number of relationships, such as friend
or friend-of-friend. Furthermore, The dynamic nature of IoT
systems necessities incorporating devices’, operations’, and
environment’s attributes when deciding on an access request.
He et al [6] discussed the need for a social relationship-centric
access control model for multi-user IoT devices. However, no
formal model has been proposed so far.

This paper proposes an operational relationship-based ac-
cess control model for smart IoT systems, referred to as
ReBAC,r. Our model is inspired by the attribute-aware
relationship-based access control model designed for online
social networks [23]. However, unlike the attribute-aware Re-
BAC model [23] which only captures users and relationships
attributes when deciding on an access request, ReBACj,7 is a
dynamic and fine-grained model that captures different users,
sessions, devices, operations, and environmental attributes.
Moreover, unlike other access control models, ReBACy,T sup-
ports policy individualization and considers the complex social
relationships between the subjects (users) and the objects
(resources) in the authorization process. The key contributions
of this paper are as follows:

« We motivate the need for an attribute-aware relationship-
based access control model for socially-driven IoT.

o We propose ReBAC,T, a formal relationship-based access
control policy model for smart IoT systems.

o We present multiple use cases to demonstrate and highlight
the need for ReBACj,1 formal policy model.

e We provide a proof of concept implementation using
Neo4j [26] graph database in AWS IoT [27] to illustrate
ReBACi,r applicability in commercial technologies.

The rest of the paper is organized as follows. Section II discuss
relevant background and related work. Section III propose the
ReBACi,r formal model, followed by policy specification in
Section IV. Different smart applications use-cases and detailed
proof of concept implementation are discussed in Sections V
and VI respectively. Our work is concluded with some future
directions in Section VII.

II. RELATED WORK

Multiple access control models have been proposed in the
literature for IoT application domains. Some models are based
on ABAC [10], [11] as in [28]-[33], while other models
are based on RBAC [8], [9] as in [34]-[38]. UCON based
access control models [12]-[14] were also utilized for different
IoT application domains [39]-[41]. Moreover, some of the
proposed models are built on blockchain technology [15]-
[18]. Several other access control models for IoT have been
proposed. For example, authors in [42] presented a certificate-
based device access control scheme in an IoT environment.
The authors in [1], [2], [43], [44] provided surveys on different
access control models in the literature.

ReBAC have been widely used in the OSNs. It enables
different content owners to specify their preferences on how
related users can access their objects (i.e., photos, posts, etc)
based on the relationship between the content owner and the
requesting user. The authors in [22], [24] proposed a ReBAC
model that utilizes user-to-user relationships (the relationship
between the requesting user and the target resource owner)
to decide on different access requests in a social network.
Cheng et al [21] has extended the ReBAC model proposed in
[22] to incorporate user-to-resource and resource-to-resource
relationships in addition to user-to-user relationships when
deciding on access requests. Carminati et al [25] [45] [46]
[47] have introduced the notion of trust to make an access
decision based on the trust level, type and depth of user to
user relationship using a centralized certificate authority which
asserts the validation of relationship path. Besides OSNs,
ReBAC models have also been proposed in other application
domains, including healthcare and education. In the same line,
Fong et al. [48] have also demonstrated the use of ReBAC in
electronic health record use cases.

In general, pure ReBAC models don’t capture different
characteristics of users, devices, operations, and environments.
Hence, they are not fine-grained and dynamic models. Accord-
ingly, the authors in [22] proposed an attribute-aware ReBAC
model. This model utilizes the relationship type between
the requesting user and target resource owner, as well as
users’ attributes and relationships’ attributes, to decide on
access requests. Attribute-aware ReBAC offers more flexi-
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Fig. 1: Conceptual ReBACi,r Model

ble and expressive policies. However, unlike our proposed
model (ReBACi,r), attribute-aware ReBAC doesn’t capture
sessions, resources, operations, and environmental attributes.

Recently, some works on ReBAC for IoT have been pro-
posed [49], [50]. In [49], the authors proposed a blockchain
architecture to enforce ReBAC in a smart city use case.
However, they neither provided a formal authorization policy
model nor implemented or tested their architecture. In [50], the
authors focused on representing how relationships actualize
and dissolve over time in relationship graphs.

III. FORMAL MODEL

This section introduces the ReBAC;,T model. It is a user-
to-user ReBAC model. In other words, it decides on access
requests based on the relationship between the subject user and
the owner of the requested resource. The model is conceptually
illustrated in Figure 1, and formally specified in Table I.

A. Basic Components

Users (U): This set refers to the system’s human users. It
consists of accessing users (AU) and controlling users (CU).
Accessing user is a user who tries to access a resource in the
system. Each resource in the system is owned by a specific
user; we refer to the resource owner as the controlling user.
Relationships (3): This set defines the relationship types
between users (U2U Relationship). Given a relationship type
o; € X, the inverse of the relationship is o, 1 ¢ X. This
model supports only one relationship between resources and
users (U2R Relationship), which is ownership.

Sessions (S): Each user creates one or more sessions during
which he may initiate an action on a resource. Each session
is linked to a unique, controlling user through the many to
one SU relation. The user-session distinction allows sessions
to partially inherit some of its unique creator user’s policies.
A user might have multiple sessions with different inherited
access control policies active concurrently and asynchronously.
Resources (R): Resources is the set of targets in the smart
system. We have two types of resources, devices (D) and
information (I N FO). Devices is the set of smart devices,
and information is the set of different information on different

devices (e.g., the video feeds file on the smart camera). The
function info maps each device to the set of information
available on that device.

Actions (ACT): The actions set refers to the actions allowed
to be performed on resources as specified by resource manu-
facturers. We have two types of actions: (a) Actions on devices
(ACT}), and (b) Actions on information (ACTj, ¢,).
Policies (P): We have two types of policies, user-specified
policies and system-specified policies. In user-specified poli-
cies, ReBACj,r allows users to express their preferences
concerning themselves or their related users and resources.
Accessing user policy (Parr), accessing session policy (Pag),
and target resource policy (Prpr) are policies specified by
different users in the system and are applied to accessing user,
accessing session, and target resource respectively. Accessing
user policies (P4y) is the set of policies specified by different
users in the system and include policies that regulate the
accessing user access rights granted by different users in the
system. Accessing session policies (P4) is a subset of the ac-
cessing user policies set (P4rr). A user creates sessions during
which he/she initiates some actions on specific resources. For
a session s;, the session policies set P, is inherited from the
user u;, where u; = user(s;), and P, C P,,. Two different
sessions initiated by the same user may inherit different
subsets of policies. How different sessions inherit policies
from users is considered part of administrative access control
which is outside the scope of this model. Target resource
policies (Prr) is the set of policies specified by different users,
including the target’s controlling user, and regulate the target
resource access rights. On the other hand, system-specified
policies Psy s is the set of policies defined by the system ad-
ministrator and applied system-wide. It is categorized into two
types: system authorization policies (Psy squtr) and conflict
resolution policies (Psy scr). System authorization policies
enable the administrator to decide on authorization rights for
users on resources. Authorization policies written by multiple
users may conflict and require conflict resolution policies.
System conflict resolution policies are outside this model’s
scope and are part of administrative access control models.
Environment State (£S): Environment state is a singleton
set, where current denotes the posture of the environment at the
current time. This can be described by different environment
attributes as shown in Section III-B

Relationship Graph (RG): The relationship graph is depicted
similarly to the OSN’s social graph proposed in [22], where
the relationship between different smart system users can be
depicted as a directed labeled simple graph. Each user is
represented as a node, and the edges between nodes represent
the U2U relationship between different users. For every rela-
tionship o; € 3, there exist an inverse relationship o, lew
We do not explicitly always show the inverse relationships on
the relationship graph, but we assume the original relationship
and its inverse twin always exist simultaneously.

Access Decision Module (ADM): The access decision mod-
ule receives the request, converges all required policies as well
as the relationships on the relationship graph, and decides on
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TABLE I: ReBAC;,7 Model Formalization Part I: Basic Components

Users, Relationship, and Sessions

—U is the set of users, which include accessing users (AU C U) and controlling users (CU C U).

—X is the set of relationships between users (i.e., relationship types).

—¥ = {01,09, ., 00,07, 05", ..o} denotes a finite set of relationship types, where each type specifier denotes a relationship

type supported in the system between two users.

—S is the set of sessions (each session is created, terminated and controlled by an individual user).
—SU C S x U is a many to one relation assigning each session to its single controlling user. We define the derived function

user(s) : S — U, where: user(s;) = u; such that (s;,u;) € SU.
Resources and Actions

—R is the set of resources. Resources can be devices (D) or information (/INFO), R=DUINFO.

—D is the set of devices deployed in the smart system.

—INFO is the set of possible information on devices (device manufacturers specified)
—The function info: D — 2/NFO gpecifies the valid information for each device (device manufacturers specified)
—ACT is the set of actions, ACT = {acty,acts, ..., act,}. Actions are initiated by sessions on resources.

—ACT = ACT; U AC Ty 0.

—ACT, is the set of possible actions on devices (device manufacturers specified).
—ACT;,;, is the set of possible actions on devices information (device manufacturers specified).

Environment State

—FES = {current} is a singleton set where current denotes the environment at the current time instance

Policies

—P is the set of policies that govern the ability of accessing users to access target resources.

— P,y is the set of accessing user policies.
—Pag is the set of accessing session policies. We define Pys C Pay.
—Prp is the set of target resource policies.

—Psyg is the set of system-specified policies. This set is furthered divided into system authorization policies (Psy squt) and

conflict resolution policies(Psysq.). We have Psys = Psy sauth U Psy ser
- We have P = Pyy U Prg U Psy,.
Relationship Graph

—RG is the relationship graph of an IoT smart system users. It is modeled as a triple RG = (U, E, ) where:

o U: is the set of users in the smart system.
« X is the set of relationships between users (i.e., relationship types).
o F is the set of graphs edges. We have £ C U x U x X.

—RG is the directed labeled relationship graph, where (u;,u;,05) € RG refers to a relationship from user u; to user u; with the relationship name oy.

TABLE II: ReBAC;,7 Model Formalization Part II: Attribute Functions and Values

—UA,SA, RA,ACTA, ESA, EdgeA and CountA are sets of user, session, resource, action, environment state, edge, and count attribute

functions receptively.

— Session attribute functions can be inherited attribute functions from the session’s unique user creator or it can be unique session attribute functions.
— Each session s; inherits a subset of the attribute functions in U A from its unique user creator (controlled by the session creator user(s;)). For every inherited attribute function

att € UA, att(s;) = att(user(s;)) at all time.
— Sy A is the unique session attribute functions set.

— Resource attribute functions set RA can be divided into two subsets: (a)Device attribute functions DA. (b)Information attribute functions INFOA. RA = DAUINFOA.

— FdgeA and CountA are attributes related to the relationship graph.
— Edge attribute functions set EdgeA describe edges in the relationship graphs.

— Count attribute function set CountA is a singleton set, where CountA = {count}.

— Count attribute count captures the number of occurrence for the attribute-based relationship graph path specification as described in Section IV-A and Section III-B .
— For each attribute att in UAUSAUDAUINFOAUACTAUESAU EdgeAU CountA, Range(att) is the attribute range, a finite set of atomic values

— attType : UAU SAUDAUINFOAU ACTAU ESAU EdgeA — {set, atomic}.

— attType : CountA — {atomic}.

— The attribute count € CountA maps the occurrence of a specific path in the relationship graph to a specific number in Rang(count).
— Each att e UAUSAUDAUINFOAUACTAUESAU EdgeA correspondingly maps users in U, sessions in .S, devices in D , information in /N FO, actions in ACT,

the environment state current , or edge in £ to atomic or set attribute values. Formally:

att : U or S or D or INFO or ACT or {current} or E — {

Range(att), if attType(att) = atomic
oftange(att) =it it Type(att) = set

the access. Policy conflicts are resolved using conflict resolu-
tion policies in Psyg. An access request is a triple (s, r, act),
whereby an accessing user session s requests to perform an
action act on a resource r. For example, if Alice, the parent
at home, wishes to turn on (turn_on) the home security
alarm (home_alarm). This request can be modeled as (s Azice»
home_alarm, turn_on) where user(sajic.) = Alice.
B. Attributes in ReBACio1

In IoT smart systems, the dynamism of communication
between people, connected devices, data, utility, and the
changing nature of the environmental characteristics in IoT

smart systems requires that actors’ rights change accordingly.
Therefore, it is critical to capture users’, sessions’, resources’,
and environment’s attributes when deciding on an access
control request. See Table II for attribute functions definition.
Attributes are functions that take an entity, such as a user,
and determine a specific value from its range. For each
attribute function att;, there is a range of possible values
(Range(att;)) that att; can be evaluated to. An atomic
valued attribute will return one value from its range, while
a set valued attribute will return a subset of its range. U A,
SA, ACTA, RA, and ESA are sets of attributes associated
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with users, sessions, actions, resources, and environment state,
respectively. User attributes (U A) define users’ characteristics,
such as name, age, etc. Session attributes (S A) capture session
characteristics. Some session attributes are inherited from the
session’s user creator, for instance, user age, user gender,
etc. Other session attributes (S, A) are unique to the session,
for example, the type of connection, the device used for the
access, etc. Action attributes (ACT A) is the set of attributes
associated with the requested action, for instance, action level
of danger. Resource attributes RA is the set of attributes
associated with resources. We have two types of resource
attributes, device attributes DA, and information attributes
INFOA, that describe different devices and information
characteristics, respectively. Hence, RA = DA U INFOA.
Different environment characteristics are captured through the
environment state attributes £'SA. Examples of environment
states attributes may include weather, time, etc. Moreover,
we define two relationship graph related attributes , Edge
attributes(Edge A) and count attributes (CountA). EdgeA
are characteristics that describe edges in relationship graphs.
For instance, relationship weights, relationship types, and so
on. CountA describes the occurrence requirement for the
attribute-based path specification; it specifies the lower bound
of the occurrence of such bath, as described in Section IV-A.

IV. POLICY SPECIFICATION

In IoT, attribute-based policies should capture the requesting
user and session attributes, the requested action attributes, the
requested resource attributes, and the current environment at-
tributes. The authors in [23] proposed an attribute aware policy
specification language for social networks ReBAC models.
However, their policy only captures users’ and relationships’
attributes. In this paper, we adapt this policy language for
IoT application use cases. Moreover, we extend it to capture
resources’, actions’, and environmental attributes in addition to
users’ and relationship attributes. Towards this goal, in Section
IV-A, we introduce the attribute-based policy language for
relationship graph related attributes, which is adapted from
[23] and specifies access control requirements on relationship
paths (nodes and relationship) between accessing user and
the target’s controlling user in the relationship graph. Then,
in Section IV-B, we introduce the authorization function
grammar, which specifies access control requirements on the
requesting session, the requested device, the requested action,
and the environmental context. Finally, in Section IV-C we
utilize the attribute-based policy language for relationship
graph attributes and the authorization function to present our
formal policy language for ReBAC,r. This policy language
governs accessing user policies (Par), accessing session
policies (P4g) target resource policies (Prg), and system
authorization policies (Psy squth)- System conflict resolution
policies (Psy scr) are outside the scope of this model.

A. Attribute-Based Policy Language for Relationship Graph
Features

Access control requirements related to different attributes

are specified using attribute-based policies. Many users may

TABLE III: Attribute quantifiers [23]

V[+m, —n] All entities from the '™ to the n'" last,
m + n < h where m & n are non-negative integers and h is a hop-count limit
V[+m, +n All entities from the m® to the n’*, m <n < h
V[—m, —n All entities from the m™ last to the n'" last, h > m > n
3[+m, —n One entity from the m™™ (o the n'™ last, m +n < h
3[+m, +n One entity from the m?" to the n'", m <n < h
I[—m, —n One entity from the m’" last to the n'"* last, h > m > n
v{z(iN)} All entities in this set
3{2FVH One entity in this set

exist on the relationship path between two users in the relation-
ship graph (RG). Each user (node) or relationship (edge) has
attributes that can be used for specifying access control rules.
Sometimes, when a user tries to access a specific resource,
the attributes of all users or relationships on the path between
the requesting user and the resource controlling user need
to be considered. In some cases, attributes of only certain
users or relationships are used. To capture these cases, we
need attribute quantifiers. In this model, we use the attribute
quantifiers proposed in [23] and shown in Table III. As
illustrated in Table III, the universal quantifier V denotes ~all”
user(s) or relationship(s), while the existential quantifier 3
denotes at least one” user or relationship. The notations [] and
{} denote ranges and a set of users/relationships, respectively.
These ranges and sets are located at a specific distance on
the relationship path between accessing user and the target
resource’s controlling user. Plus and minus signs express the
forward (from the start) and backward directions (from the
end), followed by a number that denotes the position from
the front or the back. The indicator for users starts from
0. On the other hand, the indicator for relationships begins
from 1. For instance, for a relationship, 41 indicates the
first relationship on the path, while —2 means the second
last. However, for users, +0 denotes the starting user, and
-1 represents the second last user on the path. The attribute-
based policy for the attributes related to the relationship graph,
which are nodes (users) and edges (relationships) attributes, is
defined as follows:

A relationship graph attributes-based policy rule
(RGAttPolicy) is a triple,
(quantifier, f(UA, EdgeA), f(CountA)) .

In a relationship graph attributes-based policy rule, a quantifier
denotes the quantity and the position of specific node/edge
attributes. It is applied to a user and edge attribute func-
tion (f(UA, EdgeA) but not to the count attribute function
(f(CountA). f(UA,EdgeA) is a boolean function of the
quantified user and/or edge attributes. For instance, consider
the following three rules:

e Ra: (F[+1, -1}, familyMember(u) = True, count > 3)
e Rb: (3[+1, 1], familyMember(u) = TrueAadult(u) =

True, —)

o Rc: (V[+1,—1], TrustLevel(e) > 7,—)

Ra defines a rule stating that “there must be at least three
common connections (paths) between the requester and the
resource owner, which contains a family member”. In Rb and
Rc, the count attribute predicate is not used and is shown as

'—' which means count > 1 in default. Rb defines a rule
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TABLE IV: ReBACi,1t Model Formalization Part IIT: Authorization Policy

— Accessing user policies P4y, accessing session policies P4 g, target resource policies Pr g, and system authorization policies Pgy sqq¢h are defined using the following formula:
< Authorization(s : S,act : ACT,r : R, current : ES), GraphRule >

— The graph rule GraphRule is described using the grammar of Table V.
Attributes Authorization Function

—Authorization(s : S,act : ACT,r : R, current : ES) is a propositional logic formula returning true or false specified using the following grammar.

o = term | term A term | term V term | (term) | ~term | 3z € set.a | Va € set.«

setcompare =:=C|C|Z
atomiccompare :::<|:\§

term = set setcompare set | atomic € set | atomic ¢ set | atomic atomiccompare atomic

set ::= sa(s) | acta(op) | da(d) | infoa(info) | esa(current), where attType(sa) = attType(acta) = attType(da) = attType(infoa) = attType(esa) = set
atomic ::= sa(s) | acta(op) | da(d) | infoa(info) | esa(current) | value, where attType(sa) = attType(acta) = attType(da) = attType(infoa) = attType(esa) = atomic

—For a specific session s;, resource r; and action acty, the authorization function Authorization(s;,acty,r;, current) is evaluated by substituting the actual attribute values of sa(s;),
acta(acty), esa(current), and da(r;) if the requested resource is a device (r; € D) or infoa(r;) if the requested resource is an information (r; € INFO) for the corresponding symbolic
placeholders and evaluating the resulting logical formula to be True or False. Any term that references an undefined attribute value is evaluated as False.

TABLE V: Grammar for graph rules

GraphRule — “(” StartingNode“,” PathRule*)”

PathRule — AttPathSpecExp |Att PathSpecExp

Connective PathRule

AttPathSpecExp — PathSpecExp |PathSpecExp
? " RGAttPolicy

Connective — V |A

PathSpecExp — PathSpec |“=" PathSpec

PathSpec — “(” AttPath“,” HopCount*)” |

“("’EmptySet*,” HopCount*)”

HopCount — Number

AttPath — Path |Path” : ” RGAttPolicy

Path — TypeSeq|TypeSeqPath

EmptySet — 0

TypeSeq — AttTypeExp |AttTypeExp* - " TypeSeq

AttTypeExp — TypeExp |TypeExp* : ” RG Att Policy

TypeExp — TypeSpecifier |TypeSpecifier Wildcard

RGAttPolicy — use dedicated parser to process

StartingNode — uq|uc

TypeSpecifier — o1loz]. .. |0n\af1|051| o en s

WZldCaT‘d—) “*77‘H?7?|“+7?

Number — [0 — 9]+

stating that “’there must be at least one common path between
the requester and the resource owner, which contains an adult
family member”. Rc defines a rule saying that “there must
be at least one common bath between the requester and the
resource owner, in which the trust level of each edge in the
bath is greater than or equal to 7”. Hence, the system will
check each edge on the path to ensure its trust value meets
the requirement before granting access.

B. Attributes Authorization Function

An attribute authorization function is a boolean func-
tion. It is inspired by the work of [32], and defined us-
ing the grammar of Table IV. For a specific session s;,
action acty, and a resource r; the authorization function
Authorization(s;, acty, rj, current) is evaluated by substi-
tuting the actual attribute values of sa(s;), acta(acty), da(r;)
(if the requested resource is a device in the smart system
r; € D) or infoa(r;) (if the requested resource is an
information on a smart device in the smart system r; €
INFO), and esa(current) for the corresponding symbolic
placeholders and evaluating the resulting logical formula to
be True or False. Any term that references an undefined
attribute value is evaluated as False. Term refers to any atomic
logical declarative sentence. An atomic sentence is a type of
declarative sentence that is either true or false and cannot be
broken down into other sentences [51].

C. Policy Formalization

As shown in Table IV, each access control authorization
policy is composed of two parts: the authorization function and
the graph rule. It is represented as a pair < Authorization(s :
S,act : ACT,r : R,current : ES), GraphRule >. The
attributes’ authorization function Authorization(s : S,act :
ACT,r : R,current : ES) set attributes specifications
on the requesting session s, requested action act, requested
resource r, and the current environment state current. On the
other hand, the graph rule GraphRule specifies the type and
attributes of the relationship path between the access requester
and the controlling user of the target resource.
Graph Rules. Table V defines the syntax for the graph rules
using Backus-Naur Form (BNF). This syntax is adapted from
[23]. Each graph rule specifies a starting node (startingnode)
and a path rule (pathrule). Starting node stands for the
user where the policy evaluation begins, which can be the
accessing user (u,) or the resource’s controlling user (u.).
A path rule comprises one or more attribute path spec ex-
pressions (AttPathSpecExp). Each attribute path spec ex-
pression consists of one or two parts, the path spec expres-
sion only (PathSpecExp) or the path specifier expression
and the relationship graph attribute policy (RGAttPolicy).
Since this is an attribute-aware U2U ReBAC, we add the
term RGAttPolicy similarly to the addition of AttPolicy
in [23]. The RGAttPolicy is defined in Section IV-A.It
facilitates policies capable of capturing relationship graph
attributes (RGA). The RG AttPolicy, in this case, is called
a global relationship graph attribute-based policy. It denotes
the relationship graph attributes that need to be applied on the
entire PathSpecExp. The PathSpecExp can be expressed
as a path specifier (PathSpec) with or without negation. The
PathSpec state the required sequence of relationship types
and the corresponding maximum number of edges on the graph
(the hop count limit for the sequence). Users can specify a
more complicated and fine-grained policy for an action against
a target by connecting multiple path spec expressions with
conjunctive connective “A” and disjunctive connective “V”.
Also, negation “—” over path specs is used to imply the
absence of the specified pattern of relationship types and hop
count limit as authorization requirements. The path specifier
consists of two parts, the attribute path (AttPath) and the
hop count (HopCount) or the empty set and the hop count.
The attribute path consists of the path (path) or the path
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and a relationship graph attribute policy (RG Att Policy). The
path path is a sequence of characters, denoting the pattern
of relationship path between two users that must be satisfied,
the RG AttPolicy (if it is there) is called a local relationship
graph attribute-based policy that applies only to this path
segment, and the hopcount limits the maximum number of
edges on the path. The pattern of relationship path (path)
represents a sequence of type sequence (T'ypeSeq) . TypeSeq
can be one attribute type expressions (AttTypeFExp) or mul-
tiple attribute type expressions concatenated together where,
AttTypeExp“ - "TypeSeq denotes multiple AttTypeExp
concatenated together. The AttTypeExp consists of one or
two parts, the type expression only (I'ypeExp), or the type
expression and a local RGAttPolicy, which needs to be
applied to this type expression only. The T'ype Exp consists of
one type specifier (T'ypeSpecifier), or one TypeSpecifier
and a wildcard (Wildcard). The (TypeSpecifier) denotes
a relationship in the set of relationships. Hence, the path
is basically a sequence of TypeSpecifier (relationships)
denoting the pattern of relationship types required between the
starting node and the evaluating node in the relationship graph
to denote the access. We use three kinds of wildcard notations
representing different occurrences of relationship types: an
asterisk (*) for 0 or more, plus (+) for 1 or more, and a
question mark(?) for 0 or 1. The hop count (HopCount)
describes the maximum distance between the starting node
and the evaluated node in the graph. The AttPath can be the
empty set, and HopCount = 0, indicating that only the policy
writer can access the resource under the specified conditions.

V. USE CASE SCENARIOS

The following section describes two use cases that utilize
ReBAC,r authorization policies in different ToT domains.
Use Case 1: Smart Home. The child John, would like to
grant his direct friends who are older than nine years access
to entertainment devices during weekend evenings only.

P1 :( (day(current) € {Sa,S} A {17:00}
< time(current) < {19 : 00} A EntertainmentDevices(r)=
True), (uq, ((friend, 1):3 {+0}, age(u) > 9, —)))

In this use case, the authorization policy has two parts, the
authorization function (day(current) € {Sa,S} A 17:00 <
time(current) < 19:00 A EntertainmentDevices(r) =
True) and the graph rule. The graph rule consists of two
parts: (1) A starting node equal to wu, indicating that the
graph rule should be calculated starting from the accessing
user in the relationship graph. (2) One attribute path specifier
expression. The attribute path specifier expression has two
parts a path specifier ((friend, 1)) and a relationship graph
attribute policy (3{+0},age(u) > 9,—). The relationship
graph attribute policy 3{+0},age(u) > 9, — indicates that
there must be at least one connection between the requesting
user and the target controlling user, where the requesting
user’s age is greater than or equal to nine. The path specifier
(friend, 1) indicates that this connection path has one edge
with a direct relationship friend. The authorization function

(day(current) € {Sa,S} A 17:00 < time(current) <
19:00 A EntertainmentDevices(r) = True) captures the
required environment and resource attributes. In other words,
to grant the access request, the day needs to be Saturday or
Sunday, the access time between 5:00 pm and 7:00 pm, and
the requested resource needs to be an entertainment device.
Use Case 2: Smart Health. Doctor Alex wants to grant
each nurse that he supervises access to the medical records
of the patients under the supervision of both the doctor and
the nurse. Nurses are not allowed to access the medical records
of patients who are not under their supervision but under the
doctor’s supervision. Nurses can access those medical records
only during their shifts from 8:00 am to 5:00 pm.
P2:{(08:00 < time(current) < 05:00A
Medical Records(r) = T'rue),
( ugq, (Responsiblenurse, 1)\
(Supervisor Responsibledoctor,2) ) )

In this use case, the graph rule consists of two parts: (1)
The starting node u,, indicating that the graph rule should be
calculated starting from the accessing user in the relationship
graph. (2) Two attribute path specifier expressions with a
connective logical and (/) between them. Each attribute path
specifier expression consists of one path specifier. The first
path specifier is (Responsiblenurse,1) indicating that there
must be a connection path of one edge in the relationship graph
between the requesting user and the target resource owner
(which is the patient ) with a relationship Responsiblenurse.
In other words, the requesting user needs to be the respon-
sible nurse of the target owner (The patient). The second
path specifier is (Supervisor Responsibledoctor,2) indicat-
ing that there must be another connection path of two edges in
the relationship graph between the requesting user and the tar-
get resource owner with a relationship sequence Supervisor
and Responsibledoctor, in other words the requesting user
need to be a nurse reported to a doctor who in turns the
responsible doctor of the target resource owner. Note here
that the two attribute path specifier expressions don’t contain a
relationship graph attribute policy (RG AttPolicy) indicating
that there is no graph related attributes that need to be
satisfied on the two specified paths ((Responsiblenurse, 1)
and (Supervisor Responsibledoctor,2)). Moreover, the au-
thorization function (08 :00 < time(current) < 05:00 A
Medical Records(r) = True) indicates that to grant the
access the time of request should be between 8:00 am and
5:00 pm and the resource should be a medical record.

VI. PROOF OF CONCEPT IMPLEMENTATION

In this section, we provide a proof of concept implemen-
tation of the ReBACt,r model demonstrating its practicality.
Section VI outlines our implemented use case while section
VI-B illustrates our architecture and underlying details.

A. Use Case Outline

We modeled the use case based on the ReBACi,r compo-
nents, as shown in Table VI. The goal is to evaluate the user
access request based on the policies at the end of Table VI
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TABLE VI: ReBAC,1 Implementation Use Case

U = {Alex, Bob, John, Juliet, Andrew}

UA = {UserAge, Admin}

UserAge : U — {x : x is an integer }

Admin : U — {True, False}

UserAge(Alex) = 36, User Age(Bob) = 32

UserAge(John) = 14, User Age(Juliet) = 9

User Age(Andrew) = 14

Admin(Alex) = Admin(Bob) = True

Admin(John) = Admin(Juliet) = Admin(Andrew) = False

S={.}

SA = {UserAge, Admin, SessionTimeOut}
UserAge : S — {x : x is an integer }

Admin : S — {True, False}
SessionTimeOut : s : S — {x : X is an integer }

3 = {Spouse, Child, Friend}

R=DUINFO

Aws Lambda

Neo4j GraphDatabase

5 %3

S3 Bucket

Decision
Module

‘ Authorization
M Request

Fig. 2: Deployed System Architecture using AWS

INFO = {}, D = {SmartDoor, SmartLight, SmartTV, PlayStationpntertainment, and (b) DeviceOwner specifies the owner of

RA=DAUINFOA

INFOA = {}, DA = {EntertainmentDevices, DeviccOwner }
EntertainmentDevices : D — {True, False}
DeviceOwner : D — U
EntertainmentDevices(SmartDoor) = False
EntertainmentDevices(SmartLight) = False
EntertainmentDevices(SmartTV) = True
EntertainmentDevices(PlayStation) = True
DeviceOwner(PlayStation) = John
DeviceOwner(SmartDoor) = Alex
DeviceOwner(SmartLight) = Alex
DeviceOwner(SmartTV) = Alex

ACT = ACTsmartDoor U ACTSmartLightU

ACTSwLartTV ) ACTPlayStation
ACTSmartDoor = {lock, unlock}
ACTsmartLight = {turn_on, turn_of f}
ACTSm.aT'tTV = {t'U/I”TL_O’rZ, turn_off}
ACTpiaystation = {turn_on, turn_of f}
ACTA = {}

ES = {Current}

EA = {Time}

Time : ES — {x : x is an hour of a day }

P1 :( (day(current) € {Sa,S} A {17:00} < time(current) < {19:00}
AEntertainmentDevices(r) = True),

(va, ((Friend, 1) : 3{+0}, age(u) >9,-)))

P2 : ((DeviceOwner(r) = Alex), (ua, (0,0)))

P3: ((DeviceOwner(r) = Alex), (uq, (Spouse, 1)))

(P1, P2, and P3). Our smart [oT system has five users: Alex,
Bob, John, Juliet, and Andrew. We have two user attributes:(1)
User Age determining users’ age. (2) Admin determining if
the user is a system admin. We have three session attributes,
UserAge and Admin inheriting values from the user creator,
while SessionTimeOut is a unique session attribute function.
The session set is not defined here since it is a dynamic
set which will be defined during run time. We defined three
relationships Spouse, Child, and Friend. Bob and Alex are
Spouse, John and Juliet are children of Bob and Alex, and
Andrew is John’s friend. In this use case, we don’t have any
information resources, hence, the information set (I NFO)
is empty and the resources set (R) is equal to the devices
set. We also created four devices: SmartDoor (owner Alex),
SmartLight (owner Alex), SmartTV (owner Alex), and PlaySta-
tion (owner John). We have two device attribute functions:
(a) EntertainmentDevices determines if the device is for

each device. Each device d has a set of supported actions, re-
ferred as ACTy. In our use case, we don’t have action attribute
functions, accordingly, the set of action attributes (ACT A) is
empty set. We have one environment attribute ( 7'2me), which
takes an environment state as an input, and return the current
time. Finally, we have three user defined policies: (1) P/ is
defined by user John, as explained in use case 1 in Section
V. (2) P2 is written by Alex, and is explained as following.
The authorization function part ((DeviceOwner(r) = Alex))
implies that this policy applies on the devices owned by
Alex. The graph rule part ((uq, (§,0)) indicates that only the
policy writer (Alex) can access the devices specified by this
policy. (3) P3 is written by Alex, where the authorization
function part ((DeviceOwner(r) = Alex)) implies that this
policy applies on the resources owned by Alex. The graph
rule part ((uq, (Spouse, 1))) indicates that in the relationship
graph starting from the requesting user, there should be an
edge between the requesting user and the requested resource’s
owner with a Spouse relationship.

B. Enforcement Architecture

Our deployed system architecture is shown in Fig-
ure 2. We simulated the environment with AWS Lambda
[52], AWS S3 bucket [53] and Neo4j Graph database
[26]. We created four JSON files uploaded to AWS
S3  bucket: users_attributes.json, env_attributes.json, de-
vices_attributes.json, and user_policy.json to capture attributes
of users, environment, and devices, together with user defined
policies respectively. We defined a Lambda function to analyze
the users_attributes.json file and insert the user information
into the Neo4j graph database.

Neodj is a graph database that has nodes and relationships
instead of tables or documents, as shown in Figure 3. Rela-
tionships are kept locally alongside the nodes to offer more
flexible format [54]. The system is optimized for traversing
through the data quickly, with millions of edges per second.
The data from the Neo4j graph database can be retrieved
through a Cypher Query Language [55]. In our use case, the
Neo4j graph database (shown in Figure 3) is used (deployed
in AWS EC2 [56]) to build the relationship graph between
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Fig. 3: Relationship Graph in Neo4j
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Fig. 4: Access Request Handling Sequence Diagram

the system’s users and to calculate the total number of edges
between the requesting user and the target device owner. The
decision module (written in Python 3.9) receives the access
request, and then analyzes it according to the contents of the
JSON files and the Neo4j relationship graph.

We developed a web application in the Flask [57] to create
our use case. The details of user access request handling are
formulated in Figure 4. A user sends the authentication request
through the IDP (Identity Provider). If the authentication is
valid, the user sends the access request (user, device, action)
through the web application. The decision module receives
the access request from the application. Then for each defined
policy it performs the following two checks: (1) First, using the
Cypher Query Language it checks the accessing user node’s
validation in the Neo4j graph. If the accessing user exists in
the graph, the decision module finds the paths between the
accessing user and the requested device owner, and checks
whether one of the paths satisfy the graph rule of the tested
policy. If the graph rule is satisfied by one of the paths, then
the decision module performs the second check, if the graph
rule is not satisfied for any of the paths between the accessing
user and the device owner, then the decision module will check
the next policy. (2) In the second step, the decision module
extracts the attributes of the requesting session, device, action,
and the current environment state from the attributes’” JSON
file, and checks whether they satisfy the authorization function
part of the tested policy. If the two checks are satisfied, the

TABLE VII: Multiple users requesting one device

Number Of Users Number Of

Devices

Average Processing
Time in ms
266.200
290.597
315.887
461.493

| W B =—
—=| =] =] =

TABLE VIII: Multiple users requesting multiple devices

Number Of Users Number Of Average Processing
Devices Time in ms
1 1 249.344
2 2 464.507
3 3 514.615
4 4 533.962

session is established and the user can access the requested
device within that session. If none of the policies is satisfied,
then the decision module will reject the request.

C. Performance Analysis

In this section, the performance of our implementation is
evaluated by conducting multiple test cases. We examined
situations with different sets of requests. Each set of authoriza-
tion requests is processed ten times to determine the average
processing time. The multi-threading paradigm of Python
is used to evaluate multiple user requests simultaneously.
Table VII shows the average processing time of the decision
module when multiple users send access request for one device
(PlayStation). From these results, we can notice that when the
number of requests increase, the average processing time of
the decision module also increases.

Table VIII shows the decision module average processing
time when multiple users send access requests for multiple
devices simultaneously. The first row the average processing
time when Alex requests to unlock the SmartDoor. The
second row appends one more request to the previous, and
checks if Bob can turn_on the SmartLight. Third row
has three simultaneous requests, appending John request to
turn_on the PlayStation with earlier two. Finally, the last
row shows the decision module average processing time with
four requests, adding Juliet request to turn_on the SmartTV .
The system decided correctly according to our defined policies
(P1, P2, and P3), where all the requests were approved except
Juliet request to turn_on the SmartTV. As can be noticed
that with the increase in number of requests for multiple
users and different devices (one user per device), the average
processing time of the decision module also increases.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an attribute aware relationship
based access control model for socially driven smart IoT
systems. The model supports policy individualization allowing
system users to define their own policies, and further captures
social relationships among users to define a dynamic and
fine-grained access control approach. We developed a formal
ReBACj,T policy model and attributes aware relationship
based policy specification language. Additionally, we pre-
sented two use case scenarios for our model in different IoT
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environments. We demonstrated the applicability of one of the
use cases through a proof-of-concept implementation using the
Neo4j graph database and AWS. Furthermore, we provided a
performance test to show how our system responds in different
scenarios. We can conclude that our model is applicable and
functional based on the evaluation. In the future, we plan
to use user-device and device-device relationships to cover
some more practical real-life scenarios. We will also conduct
a comprehensive theoretical and empirical analysis comparing
our proposed approach with other existing approaches.
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